Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 9,886 Bytes
da78d93
78745ac
 
da78d93
78745ac
 
 
da78d93
 
 
49b09e5
da78d93
 
 
78745ac
 
da78d93
78745ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da78d93
78745ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
annotations_creators:
- derived
language:
- eng
license: other
multilinguality: monolingual
task_categories:
- text-retrieval
task_ids:
- multiple-choice-qa
config_names:
- corpus
tags:
- mteb
- text
dataset_info:
- config_name: default
  features:
  - name: query-id
    dtype: string
  - name: corpus-id
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 15384091
    num_examples: 532751
  - name: dev
    num_bytes: 217670
    num_examples: 7437
  - name: test
    num_bytes: 270432
    num_examples: 9260
- config_name: corpus
  features:
  - name: _id
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: corpus
    num_bytes: 3149969815
    num_examples: 8841823
- config_name: queries
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: queries
    num_bytes: 24100662
    num_examples: 509962
configs:
- config_name: default
  data_files:
  - split: train
    path: qrels/train.jsonl
  - split: dev
    path: qrels/dev.jsonl
  - split: test
    path: qrels/test.jsonl
- config_name: corpus
  data_files:
  - split: corpus
    path: corpus.jsonl
- config_name: queries
  data_files:
  - split: queries
    path: queries.jsonl
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MSMARCO</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

MS MARCO is a collection of datasets focused on deep learning in search

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Encyclopaedic, Academic, Blog, News, Medical, Government, Reviews, Non-fiction, Social, Web                               |
| Reference     | https://microsoft.github.io/msmarco/ |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["MSMARCO"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@article{DBLP:journals/corr/NguyenRSGTMD16,
  archiveprefix = {arXiv},
  author = {Tri Nguyen and
Mir Rosenberg and
Xia Song and
Jianfeng Gao and
Saurabh Tiwary and
Rangan Majumder and
Li Deng},
  bibsource = {dblp computer science bibliography, https://dblp.org},
  biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},
  eprint = {1611.09268},
  journal = {CoRR},
  timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},
  title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},
  url = {http://arxiv.org/abs/1611.09268},
  volume = {abs/1611.09268},
  year = {2016},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("MSMARCO")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "train": {
        "num_samples": 9344762,
        "number_of_characters": 2994608051,
        "num_documents": 8841823,
        "min_document_length": 4,
        "average_document_length": 336.79716603691344,
        "max_document_length": 1670,
        "unique_documents": 8841823,
        "num_queries": 502939,
        "min_query_length": 5,
        "average_query_length": 33.21898281898998,
        "max_query_length": 215,
        "unique_queries": 502939,
        "none_queries": 0,
        "num_relevant_docs": 532751,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0592755781516248,
        "max_relevant_docs_per_query": 7,
        "unique_relevant_docs": 516472,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    },
    "dev": {
        "num_samples": 8848803,
        "number_of_characters": 2978133099,
        "num_documents": 8841823,
        "min_document_length": 4,
        "average_document_length": 336.79716603691344,
        "max_document_length": 1670,
        "unique_documents": 8841823,
        "num_queries": 6980,
        "min_query_length": 9,
        "average_query_length": 33.2621776504298,
        "max_query_length": 186,
        "unique_queries": 6980,
        "none_queries": 0,
        "num_relevant_docs": 7437,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0654727793696275,
        "max_relevant_docs_per_query": 4,
        "unique_relevant_docs": 7433,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    },
    "test": {
        "num_samples": 8841866,
        "number_of_characters": 2977902337,
        "num_documents": 8841823,
        "min_document_length": 4,
        "average_document_length": 336.79716603691344,
        "max_document_length": 1670,
        "unique_documents": 8841823,
        "num_queries": 43,
        "min_query_length": 16,
        "average_query_length": 32.74418604651163,
        "max_query_length": 55,
        "unique_queries": 43,
        "none_queries": 0,
        "num_relevant_docs": 9260,
        "min_relevant_docs_per_query": 132,
        "average_relevant_docs_per_query": 95.3953488372093,
        "max_relevant_docs_per_query": 582,
        "unique_relevant_docs": 9139,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*