Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
Samoed commited on
Commit
073678f
·
verified ·
1 Parent(s): ec0fa4f

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +186 -65
README.md CHANGED
@@ -1,74 +1,195 @@
1
  ---
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - nfcorpus
10
- task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: train
27
- num_bytes: 3720942
28
- num_examples: 110575
29
- - name: dev
30
- num_bytes: 383427
31
- num_examples: 11385
32
- - name: test
33
- num_bytes: 415220
34
- num_examples: 12334
35
- - config_name: corpus
36
- features:
37
- - name: _id
38
- dtype: string
39
- - name: title
40
- dtype: string
41
- - name: text
42
- dtype: string
43
- splits:
44
- - name: corpus
45
- num_bytes: 5856698
46
- num_examples: 3633
47
- - config_name: queries
48
- features:
49
- - name: _id
50
- dtype: string
51
- - name: text
52
- dtype: string
53
- splits:
54
- - name: queries
55
- num_bytes: 128355
56
- num_examples: 3237
57
  configs:
58
- - config_name: default
59
- data_files:
60
- - split: train
61
- path: qrels/train.jsonl
62
- - split: dev
63
- path: qrels/dev.jsonl
64
- - split: test
65
- path: qrels/test.jsonl
66
- - config_name: corpus
67
- data_files:
68
- - split: corpus
69
- path: corpus.jsonl
70
- - config_name: queries
71
- data_files:
72
- - split: queries
73
- path: queries.jsonl
74
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
+ - eng
4
+ multilinguality: monolingual
 
5
  task_categories:
6
  - text-retrieval
 
 
 
 
7
  config_names:
8
  - corpus
9
  tags:
10
+ - mteb
11
+ - text
12
  dataset_info:
13
+ - config_name: default
14
+ features:
15
+ - name: query-id
16
+ dtype: string
17
+ - name: corpus-id
18
+ dtype: string
19
+ - name: score
20
+ dtype: float64
21
+ splits:
22
+ - name: train
23
+ num_bytes: 3720942
24
+ num_examples: 110575
25
+ - name: dev
26
+ num_bytes: 383427
27
+ num_examples: 11385
28
+ - name: test
29
+ num_bytes: 415220
30
+ num_examples: 12334
31
+ - config_name: corpus
32
+ features:
33
+ - name: _id
34
+ dtype: string
35
+ - name: title
36
+ dtype: string
37
+ - name: text
38
+ dtype: string
39
+ splits:
40
+ - name: corpus
41
+ num_bytes: 5856698
42
+ num_examples: 3633
43
+ - config_name: queries
44
+ features:
45
+ - name: _id
46
+ dtype: string
47
+ - name: text
48
+ dtype: string
49
+ splits:
50
+ - name: queries
51
+ num_bytes: 128355
52
+ num_examples: 3237
53
  configs:
54
+ - config_name: default
55
+ data_files:
56
+ - split: train
57
+ path: qrels/train.jsonl
58
+ - split: dev
59
+ path: qrels/dev.jsonl
60
+ - split: test
61
+ path: qrels/test.jsonl
62
+ - config_name: corpus
63
+ data_files:
64
+ - split: corpus
65
+ path: corpus.jsonl
66
+ - config_name: queries
67
+ data_files:
68
+ - split: queries
69
+ path: queries.jsonl
70
+ ---
71
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
72
+
73
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
74
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NFCorpus</h1>
75
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
76
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
77
+ </div>
78
+
79
+ NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval
80
+
81
+ | | |
82
+ |---------------|---------------------------------------------|
83
+ | Task category | t2t |
84
+ | Domains | Medical, Academic, Written |
85
+ | Reference | https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/ |
86
+
87
+
88
+ ## How to evaluate on this task
89
+
90
+ You can evaluate an embedding model on this dataset using the following code:
91
+
92
+ ```python
93
+ import mteb
94
+
95
+ task = mteb.get_tasks(["NFCorpus"])
96
+ evaluator = mteb.MTEB(task)
97
+
98
+ model = mteb.get_model(YOUR_MODEL)
99
+ evaluator.run(model)
100
+ ```
101
+
102
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
103
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
104
+
105
+ ## Citation
106
+
107
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
108
+
109
+ ```bibtex
110
+
111
+ @inproceedings{boteva2016,
112
+ author = {Boteva, Vera and Gholipour, Demian and Sokolov, Artem and Riezler, Stefan},
113
+ city = {Padova},
114
+ country = {Italy},
115
+ journal = {Proceedings of the 38th European Conference on Information Retrieval},
116
+ journal-abbrev = {ECIR},
117
+ title = {A Full-Text Learning to Rank Dataset for Medical Information Retrieval},
118
+ url = {http://www.cl.uni-heidelberg.de/~riezler/publications/papers/ECIR2016.pdf},
119
+ year = {2016},
120
+ }
121
+
122
+
123
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
124
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
125
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
126
+ publisher = {arXiv},
127
+ journal={arXiv preprint arXiv:2502.13595},
128
+ year={2025},
129
+ url={https://arxiv.org/abs/2502.13595},
130
+ doi = {10.48550/arXiv.2502.13595},
131
+ }
132
+
133
+ @article{muennighoff2022mteb,
134
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
135
+ title = {MTEB: Massive Text Embedding Benchmark},
136
+ publisher = {arXiv},
137
+ journal={arXiv preprint arXiv:2210.07316},
138
+ year = {2022}
139
+ url = {https://arxiv.org/abs/2210.07316},
140
+ doi = {10.48550/ARXIV.2210.07316},
141
+ }
142
+ ```
143
+
144
+ # Dataset Statistics
145
+ <details>
146
+ <summary> Dataset Statistics</summary>
147
+
148
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
149
+
150
+ ```python
151
+ import mteb
152
+
153
+ task = mteb.get_task("NFCorpus")
154
+
155
+ desc_stats = task.metadata.descriptive_stats
156
+ ```
157
+
158
+ ```json
159
+ {
160
+ "test": {
161
+ "num_samples": 3956,
162
+ "number_of_characters": 5786348,
163
+ "num_documents": 3633,
164
+ "min_document_length": 123,
165
+ "average_document_length": 1590.783925130746,
166
+ "max_document_length": 10090,
167
+ "unique_documents": 3633,
168
+ "num_queries": 323,
169
+ "min_query_length": 3,
170
+ "average_query_length": 21.764705882352942,
171
+ "max_query_length": 72,
172
+ "unique_queries": 323,
173
+ "none_queries": 0,
174
+ "num_relevant_docs": 12334,
175
+ "min_relevant_docs_per_query": 1,
176
+ "average_relevant_docs_per_query": 38.18575851393189,
177
+ "max_relevant_docs_per_query": 475,
178
+ "unique_relevant_docs": 3128,
179
+ "num_instructions": null,
180
+ "min_instruction_length": null,
181
+ "average_instruction_length": null,
182
+ "max_instruction_length": null,
183
+ "unique_instructions": null,
184
+ "num_top_ranked": null,
185
+ "min_top_ranked_per_query": null,
186
+ "average_top_ranked_per_query": null,
187
+ "max_top_ranked_per_query": null
188
+ }
189
+ }
190
+ ```
191
+
192
+ </details>
193
+
194
+ ---
195
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*