Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
614416a
·
verified ·
1 Parent(s): 091a54f

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +187 -2
README.md CHANGED
@@ -1,4 +1,189 @@
1
  ---
 
 
2
  language:
3
- - en
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - eng
6
+ license: unknown
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/twentynewsgroups-clustering
10
+ task_categories:
11
+ - text-clustering
12
+ task_ids:
13
+ - Thematic clustering
14
+ tags:
15
+ - mteb
16
+ - text
17
+ ---
18
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
19
+
20
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
21
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">TwentyNewsgroupsClustering.v2</h1>
22
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
23
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
24
+ </div>
25
+
26
+ Clustering of the 20 Newsgroups dataset (subject only).
27
+
28
+ | | |
29
+ |---------------|---------------------------------------------|
30
+ | Task category | t2c |
31
+ | Domains | News, Written |
32
+ | Reference | https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html |
33
+
34
+
35
+ ## How to evaluate on this task
36
+
37
+ You can evaluate an embedding model on this dataset using the following code:
38
+
39
+ ```python
40
+ import mteb
41
+
42
+ task = mteb.get_tasks(["TwentyNewsgroupsClustering.v2"])
43
+ evaluator = mteb.MTEB(task)
44
+
45
+ model = mteb.get_model(YOUR_MODEL)
46
+ evaluator.run(model)
47
+ ```
48
+
49
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
50
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
51
+
52
+ ## Citation
53
+
54
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
55
+
56
+ ```bibtex
57
+
58
+ @incollection{LANG1995331,
59
+ address = {San Francisco (CA)},
60
+ author = {Ken Lang},
61
+ booktitle = {Machine Learning Proceedings 1995},
62
+ doi = {https://doi.org/10.1016/B978-1-55860-377-6.50048-7},
63
+ editor = {Armand Prieditis and Stuart Russell},
64
+ isbn = {978-1-55860-377-6},
65
+ pages = {331-339},
66
+ publisher = {Morgan Kaufmann},
67
+ title = {NewsWeeder: Learning to Filter Netnews},
68
+ url = {https://www.sciencedirect.com/science/article/pii/B9781558603776500487},
69
+ year = {1995},
70
+ }
71
+
72
+
73
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
74
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
75
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
76
+ publisher = {arXiv},
77
+ journal={arXiv preprint arXiv:2502.13595},
78
+ year={2025},
79
+ url={https://arxiv.org/abs/2502.13595},
80
+ doi = {10.48550/arXiv.2502.13595},
81
+ }
82
+
83
+ @article{muennighoff2022mteb,
84
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
85
+ title = {MTEB: Massive Text Embedding Benchmark},
86
+ publisher = {arXiv},
87
+ journal={arXiv preprint arXiv:2210.07316},
88
+ year = {2022}
89
+ url = {https://arxiv.org/abs/2210.07316},
90
+ doi = {10.48550/ARXIV.2210.07316},
91
+ }
92
+ ```
93
+
94
+ # Dataset Statistics
95
+ <details>
96
+ <summary> Dataset Statistics</summary>
97
+
98
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
99
+
100
+ ```python
101
+ import mteb
102
+
103
+ task = mteb.get_task("TwentyNewsgroupsClustering.v2")
104
+
105
+ desc_stats = task.metadata.descriptive_stats
106
+ ```
107
+
108
+ ```json
109
+ {
110
+ "test": {
111
+ "num_samples": 59545,
112
+ "number_of_characters": 1907719,
113
+ "min_text_length": 11,
114
+ "average_text_length": 32.03827357460744,
115
+ "max_text_length": 120,
116
+ "min_labels_per_text": 2082,
117
+ "average_labels_per_text": 1.0,
118
+ "max_labels_per_text": 3236,
119
+ "unique_labels": 20,
120
+ "labels": {
121
+ "12": {
122
+ "count": 3137
123
+ },
124
+ "6": {
125
+ "count": 3070
126
+ },
127
+ "0": {
128
+ "count": 2613
129
+ },
130
+ "2": {
131
+ "count": 3155
132
+ },
133
+ "10": {
134
+ "count": 3220
135
+ },
136
+ "17": {
137
+ "count": 2986
138
+ },
139
+ "14": {
140
+ "count": 3106
141
+ },
142
+ "13": {
143
+ "count": 3055
144
+ },
145
+ "1": {
146
+ "count": 3056
147
+ },
148
+ "16": {
149
+ "count": 2911
150
+ },
151
+ "9": {
152
+ "count": 2984
153
+ },
154
+ "3": {
155
+ "count": 3070
156
+ },
157
+ "15": {
158
+ "count": 3090
159
+ },
160
+ "7": {
161
+ "count": 3036
162
+ },
163
+ "5": {
164
+ "count": 3124
165
+ },
166
+ "11": {
167
+ "count": 3236
168
+ },
169
+ "18": {
170
+ "count": 2483
171
+ },
172
+ "8": {
173
+ "count": 3090
174
+ },
175
+ "19": {
176
+ "count": 2082
177
+ },
178
+ "4": {
179
+ "count": 3041
180
+ }
181
+ }
182
+ }
183
+ }
184
+ ```
185
+
186
+ </details>
187
+
188
+ ---
189
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*