test / add_new_data.py
muzaffercky's picture
Merge datasets
5057d50
from datasets import load_dataset, concatenate_datasets, DatasetDict
import pandas as pd
current_dataset = load_dataset("muzaffercky/kurdish-kurmanji-voice-corpus")
new_dataset = load_dataset("audiofolder", data_dir="./prepare_data")
metadata_df = pd.read_csv("metadata.csv", sep=";")
def add_transcription(example):
path = example["audio"]["path"]
*args, root_folder, folder, filename = path.split("/")
full_name = f"{root_folder}/{folder}/{filename}"
matching_rows = metadata_df[metadata_df["file_name"] == full_name]
transcription = matching_rows["transcription"].values[0]
source = matching_rows["source"].values[0]
example["transcription"] = transcription
example["url"] = source
print(transcription)
return example
def merge_datasets(current: DatasetDict, new: DatasetDict):
keys = set(current.keys()).union(
set(new.keys())
)
updated_splits = {}
for key in keys:
current_has_key = key in current
new_has_key = key in new
if current_has_key and new_has_key:
current_split = current[key]
new_split = new[key]
updated_splits[key] = concatenate_datasets(
[current_split, new_split]
)
elif current_has_key:
updated_splits[key] = current[key]
elif new_has_key:
updated_splits[key] = new[key]
return DatasetDict(updated_splits)
new_dataset = new_dataset.map(add_transcription).remove_columns("label")
updated_dataset = merge_datasets(current_dataset, new_dataset)
updated_dataset.push_to_hub("muzaffercky/kurdish-kurmanji-voice-corpus")