mwirth-epo commited on
Commit
8c9af4b
·
verified ·
1 Parent(s): dedd23c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -44,4 +44,63 @@ configs:
44
  - split: test
45
  path: subgroup/test-*
46
  default: true
 
 
 
 
 
 
 
 
47
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  - split: test
45
  path: subgroup/test-*
46
  default: true
47
+ license: cc-by-sa-4.0
48
+ task_categories:
49
+ - text-classification
50
+ tags:
51
+ - legal
52
+ pretty_name: CPC classification datasets
53
+ size_categories:
54
+ - 1M<n<10M
55
  ---
56
+ # CPC classification datasets
57
+
58
+ These datasets have been used to train the CPC ([Cooperative Patent Classification](https://www.cooperativepatentclassification.org/home)) classification models mentioned in the article **_Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360_**.
59
+
60
+ Columns:
61
+ - `publication_number`: the patent publication number, the content of the publication can be looked up using e.g. [Espacenet](https://worldwide.espacenet.com/patent/search?q=EP4030126A1) or the [EPO’s Open Patent Services](https://www.epo.org/en/searching-for-patents/data/web-services/ops)
62
+ - `labels`: the CPC symbols used as prediction labels (CPC release 2024.01)
63
+
64
+ ## Datasets
65
+ ### Subgroup dataset
66
+ Used to train the _subgroup_ model with 224 542 labels.
67
+
68
+ How to load the dataset:
69
+ ```python
70
+ from datasets import load_dataset
71
+ dataset = load_dataset("mwirth-epo/cpc-classification-data", name="subgroup")
72
+ ```
73
+
74
+ ### Main group dataset
75
+ Used to train the _main group_ model with 9 025 labels.
76
+
77
+ This dataset was created from the subgroup dataset with a filter excluding main groups with less than 20 documents.
78
+
79
+ How to load the dataset:
80
+ ```python
81
+ from datasets import load_dataset
82
+ dataset = load_dataset("mwirth-epo/cpc-classification-data", name="main_group")
83
+ ```
84
+
85
+
86
+ ## Citation
87
+
88
+ **BibTeX:**
89
+ ```bibtex
90
+ @article{HAHNKE2025102360,
91
+ title = {Encoder models at the European Patent Office: Pre-training and use cases},
92
+ journal = {World Patent Information},
93
+ volume = {81},
94
+ pages = {102360},
95
+ year = {2025},
96
+ issn = {0172-2190},
97
+ doi = {https://doi.org/10.1016/j.wpi.2025.102360},
98
+ url = {https://www.sciencedirect.com/science/article/pii/S0172219025000274},
99
+ author = {Volker D. Hähnke and Arnaud Wéry and Matthias Wirth and Alexander Klenner-Bajaja},
100
+ keywords = {Natural language processing, Language model, Encoder network, Classification, Cooperative Patent Classification}
101
+ }
102
+ ```
103
+
104
+ **APA:**
105
+
106
+ Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360