Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -44,4 +44,63 @@ configs:
|
|
44 |
- split: test
|
45 |
path: subgroup/test-*
|
46 |
default: true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
- split: test
|
45 |
path: subgroup/test-*
|
46 |
default: true
|
47 |
+
license: cc-by-sa-4.0
|
48 |
+
task_categories:
|
49 |
+
- text-classification
|
50 |
+
tags:
|
51 |
+
- legal
|
52 |
+
pretty_name: CPC classification datasets
|
53 |
+
size_categories:
|
54 |
+
- 1M<n<10M
|
55 |
---
|
56 |
+
# CPC classification datasets
|
57 |
+
|
58 |
+
These datasets have been used to train the CPC ([Cooperative Patent Classification](https://www.cooperativepatentclassification.org/home)) classification models mentioned in the article **_Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360_**.
|
59 |
+
|
60 |
+
Columns:
|
61 |
+
- `publication_number`: the patent publication number, the content of the publication can be looked up using e.g. [Espacenet](https://worldwide.espacenet.com/patent/search?q=EP4030126A1) or the [EPO’s Open Patent Services](https://www.epo.org/en/searching-for-patents/data/web-services/ops)
|
62 |
+
- `labels`: the CPC symbols used as prediction labels (CPC release 2024.01)
|
63 |
+
|
64 |
+
## Datasets
|
65 |
+
### Subgroup dataset
|
66 |
+
Used to train the _subgroup_ model with 224 542 labels.
|
67 |
+
|
68 |
+
How to load the dataset:
|
69 |
+
```python
|
70 |
+
from datasets import load_dataset
|
71 |
+
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="subgroup")
|
72 |
+
```
|
73 |
+
|
74 |
+
### Main group dataset
|
75 |
+
Used to train the _main group_ model with 9 025 labels.
|
76 |
+
|
77 |
+
This dataset was created from the subgroup dataset with a filter excluding main groups with less than 20 documents.
|
78 |
+
|
79 |
+
How to load the dataset:
|
80 |
+
```python
|
81 |
+
from datasets import load_dataset
|
82 |
+
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="main_group")
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
## Citation
|
87 |
+
|
88 |
+
**BibTeX:**
|
89 |
+
```bibtex
|
90 |
+
@article{HAHNKE2025102360,
|
91 |
+
title = {Encoder models at the European Patent Office: Pre-training and use cases},
|
92 |
+
journal = {World Patent Information},
|
93 |
+
volume = {81},
|
94 |
+
pages = {102360},
|
95 |
+
year = {2025},
|
96 |
+
issn = {0172-2190},
|
97 |
+
doi = {https://doi.org/10.1016/j.wpi.2025.102360},
|
98 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0172219025000274},
|
99 |
+
author = {Volker D. Hähnke and Arnaud Wéry and Matthias Wirth and Alexander Klenner-Bajaja},
|
100 |
+
keywords = {Natural language processing, Language model, Encoder network, Classification, Cooperative Patent Classification}
|
101 |
+
}
|
102 |
+
```
|
103 |
+
|
104 |
+
**APA:**
|
105 |
+
|
106 |
+
Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360
|