# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rock, Paper, Scissors dataset.""" import re from pathlib import Path import datasets _CITATION = """\ @ONLINE {rps, author = "Laurence Moroney", title = "Rock, Paper, Scissors Dataset", month = "feb", year = "2019", url = "http://laurencemoroney.com/rock-paper-scissors-dataset" } """ _URLS = { 'train': "https://storage.googleapis.com/download.tensorflow.org/data/rps.zip", 'test': "https://storage.googleapis.com/download.tensorflow.org/data/rps-test-set.zip" } _NAMES = ["rock", "paper", "scissors"] class RockPaperScissors(datasets.GeneratorBasedBuilder): """Rock, Paper, Scissors dataset.""" def _info(self): return datasets.DatasetInfo( description="Images of hands playing rock, paper, scissor game.", features=datasets.Features({ "file": datasets.Value("string"), "labels": datasets.features.ClassLabel(names=sorted(tuple(_NAMES))), }), supervised_keys=("file", "labels"), homepage="http://laurencemoroney.com/rock-paper-scissors-dataset", citation=_CITATION, ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "archive": data_files['train'], }), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "archive": data_files['test'], }), ] def _generate_examples(self, archive): labels = self.info.features['labels'] for i, path in enumerate(Path(archive).glob('**/*')): if path.suffix == '.png': yield i, dict(file=path.as_posix(), labels=labels.encode_example(path.parent.name.lower()))