nguyenvulebinh commited on
Commit
b189d12
·
verified ·
1 Parent(s): 93bdc62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +261 -0
README.md CHANGED
@@ -514,3 +514,264 @@ configs:
514
  - split: video_50
515
  path: "labels/video_50/label-eval-0.tar"
516
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514
  - split: video_50
515
  path: "labels/video_50/label-eval-0.tar"
516
  ---
517
+
518
+
519
+ # AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios
520
+
521
+ **Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025).
522
+
523
+ A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference.
524
+
525
+ ## Getting Started
526
+
527
+ ### Sections
528
+ 1. <a href="#install">Installation</a>
529
+ 2. <a href="#evaluation">Evaluation</a>
530
+ 3. <a href="#training">Training</a>
531
+
532
+ ## <a id="install">1. Installation </a>
533
+
534
+ Following this steps:
535
+
536
+ ```sh
537
+ # Clone the baseline code repo
538
+ git clone https://github.com/nguyenvulebinh/AVSRCocktail.git
539
+ cd AVSRCocktail
540
+
541
+ # Create Conda environment
542
+ conda create --name AVSRCocktail python=3.11
543
+ conda activate AVSRCocktail
544
+
545
+ # Install FFmpeg, if it's not already installed.
546
+ conda install ffmpeg
547
+
548
+ # Install dependencies
549
+ pip install -r requirements.txt
550
+ ```
551
+
552
+ ## <a id="evaluation">2. Evaluation</a>
553
+
554
+ The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios.
555
+
556
+ ### Quick Start
557
+
558
+ **Basic evaluation on LRS2 test set:**
559
+ ```sh
560
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
561
+ ```
562
+
563
+ **Evaluation on AVCocktail dataset:**
564
+ ```sh
565
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
566
+ ```
567
+
568
+ ### Supported Datasets
569
+
570
+ #### 1. LRS2 Dataset
571
+ Evaluate on the LRS2 dataset with various noise conditions:
572
+
573
+ **Available test sets:**
574
+ - `test`: Clean test set
575
+ - `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer
576
+ - `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers
577
+ - `test_snr_0_interferer_1`: SNR 0dB with 1 interferer
578
+ - `test_snr_0_interferer_2`: SNR 0dB with 2 interferers
579
+ - `test_snr_5_interferer_1`: SNR 5dB with 1 interferer
580
+ - `test_snr_5_interferer_2`: SNR 5dB with 2 interferers
581
+ - `test_snr_10_interferer_1`: SNR 10dB with 1 interferer
582
+ - `test_snr_10_interferer_2`: SNR 10dB with 2 interferers
583
+ - `*`: Evaluate on all test sets and report average WER
584
+
585
+ **Example:**
586
+ ```sh
587
+ # Evaluate on clean test set
588
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
589
+
590
+ # Evaluate on noisy conditions
591
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1
592
+
593
+ # Evaluate on all conditions
594
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*"
595
+ ```
596
+
597
+ #### 2. AVCocktail Dataset
598
+ Evaluate on the AVCocktail cocktail party dataset:
599
+
600
+ **Available video sets:**
601
+ - `video_0` to `video_50`: Individual video sessions
602
+ - `*`: Evaluate on all video sessions and report average WER
603
+
604
+ The evaluation reports WER for three different chunking strategies:
605
+ - `asd_chunk`: Chunks based on Active Speaker Detection
606
+ - `fixed_chunk`: Fixed-duration chunks
607
+ - `gold_chunk`: Ground truth optimal chunks
608
+
609
+ **Example:**
610
+ ```sh
611
+ # Evaluate on specific video
612
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
613
+
614
+ # Evaluate on all videos
615
+ python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*"
616
+ ```
617
+
618
+ ### Configuration Options
619
+
620
+ #### Model Configuration
621
+ - `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model)
622
+ - `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`)
623
+ - `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`)
624
+
625
+ #### Processing Parameters
626
+ - `--max_length`: Maximum length of video segments in seconds (default: 15)
627
+ - `--beam_size`: Beam size for beam search decoding (default: 3)
628
+
629
+ #### Dataset Parameters
630
+ - `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`)
631
+ - `--set_id`: Specific subset to evaluate (see dataset-specific options above)
632
+
633
+ #### Output Options
634
+ - `--verbose`: Enable verbose output during processing
635
+ - `--output_dir_name`: Name of output directory for session processing (default: `output`)
636
+
637
+ ### Advanced Usage
638
+
639
+ **Custom model checkpoint:**
640
+ ```sh
641
+ python script/evaluation.py \
642
+ --model_type avsr_cocktail \
643
+ --dataset_name lrs2 \
644
+ --set_id test \
645
+ --checkpoint_path ./model-bin/my_custom_model \
646
+ --cache_dir ./custom_cache
647
+ ```
648
+
649
+ **Optimized inference settings:**
650
+ ```sh
651
+ python script/evaluation.py \
652
+ --model_type avsr_cocktail \
653
+ --dataset_name AVCocktail \
654
+ --set_id "*" \
655
+ --max_length 10 \
656
+ --beam_size 5 \
657
+ --verbose
658
+ ```
659
+
660
+ ### Output Format
661
+
662
+ The evaluation script outputs Word Error Rate (WER) scores:
663
+
664
+ **LRS2 evaluation output:**
665
+ ```
666
+ WER test: 0.1234
667
+ ```
668
+
669
+ **AVCocktail evaluation output:**
670
+ ```
671
+ WER video_0 asd_chunk: 0.1234
672
+ WER video_0 fixed_chunk: 0.1456
673
+ WER video_0 gold_chunk: 0.1123
674
+ ```
675
+
676
+ When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions.
677
+
678
+ ## <a id="training">3. Training</a>
679
+
680
+ ### Model Architecture
681
+
682
+ - **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`)
683
+ - **Decoder**: Transformer decoder with CTC/Attention joint training
684
+ - **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units
685
+ - **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate
686
+
687
+ ### Training Data
688
+
689
+ The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include:
690
+
691
+ | Dataset | Size |
692
+ |---------|------|
693
+ | **LRS2** | ~145k samples |
694
+ | **VoxCeleb2** | ~540k samples |
695
+ | **AVYT** | ~717k samples |
696
+ | **AVYT-mix** | ~483k samples |
697
+
698
+ The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper.
699
+
700
+ **Dataset Features:**
701
+ - **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline
702
+ - **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data
703
+ - **Labeled**: Text transcriptions for supervised learning
704
+
705
+ The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB.
706
+
707
+ ### Training Process
708
+
709
+ The training script is available at `script/train.py`.
710
+
711
+ **Multi-GPU Distributed Training:**
712
+ ```sh
713
+ # Set environment variables for distributed training
714
+ export NCCL_DEBUG=WARN
715
+ export OMP_NUM_THREADS=1
716
+ export CUDA_VISIBLE_DEVICES=0,1,2,3
717
+
718
+ # Run with torchrun for multi-GPU training (using default parameters)
719
+ torchrun --nproc_per_node 4 script/train.py
720
+
721
+ # Run with custom parameters
722
+ torchrun --nproc_per_node 4 script/train.py \
723
+ --streaming_dataset \
724
+ --batch_size 6 \
725
+ --max_steps 400000 \
726
+ --gradient_accumulation_steps 2 \
727
+ --save_steps 2000 \
728
+ --eval_steps 2000 \
729
+ --learning_rate 1e-4 \
730
+ --warmup_steps 4000 \
731
+ --checkpoint_name avsr_avhubert_ctcattn \
732
+ --model_name_or_path ./model-bin/avsr_cocktail \
733
+ --output_dir ./model-bin
734
+ ```
735
+
736
+ **Model Output:**
737
+ The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`).
738
+
739
+ #### Configuration Options
740
+
741
+ You can customize training parameters using command line arguments:
742
+
743
+ **Dataset Options:**
744
+ - `--streaming_dataset`: Use streaming mode for datasets (default: False)
745
+
746
+ **Training Parameters:**
747
+ - `--batch_size`: Batch size per device (default: 6)
748
+ - `--max_steps`: Total training steps (default: 400000)
749
+ - `--learning_rate`: Initial learning rate (default: 1e-4)
750
+ - `--warmup_steps`: Learning rate warmup steps (default: 4000)
751
+ - `--gradient_accumulation_steps`: Gradient accumulation (default: 2)
752
+
753
+ **Checkpoint and Logging:**
754
+ - `--save_steps`: Checkpoint saving frequency (default: 2000)
755
+ - `--eval_steps`: Evaluation frequency (default: 2000)
756
+ - `--log_interval`: Logging frequency (default: 25)
757
+ - `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn")
758
+ - `--resume_from_checkpoint`: Resume training from last checkpoint (default: False)
759
+
760
+ **Model and Output:**
761
+ - `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail")
762
+ - `--output_dir`: Output directory for checkpoints (default: "./model-bin")
763
+ - `--report_to`: Logging backend, "wandb" or "none" (default: "none")
764
+
765
+ **Hardware Requirements:**
766
+ - **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory**
767
+ - **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch**
768
+ - **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence
769
+
770
+
771
+ ## Acknowledgement
772
+
773
+ This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories.
774
+
775
+ ## Contact
776
+
777