Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 3,952 Bytes
515a0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d6eab
515a0f9
 
 
 
 
 
 
d496bc3
515a0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d496bc3
515a0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93a363
 
 
515a0f9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: query
    dtype: string
  - name: docs
    sequence: string
  - name: scores
    sequence: float64
  splits:
  - name: train
    num_bytes: 957899062
    num_examples: 502939
  download_size: 917108315
  dataset_size: 957899062
---

# Dataset Card for **MS MARCO Hard Negatives (OpenSearch)**

## Dataset Summary

This dataset is derived from the **MS MARCO** train split([Hugging Face](https://huggingface.co/datasets/mteb/msmarco)) and provides **hard-negative mining** annotations to train retrieval systems. For each query from the source split, we retrieve the **top-100 candidate documents** using the [opensearch-project/opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) and attach **re-ranking scores** from two cross-encoders: [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) and [castorini/monot5-3b-msmarco](https://huggingface.co/castorini/monot5-3b-msmarco).

> ⚠️ **Licensing/Usage:** Because this dataset is derived from MS MARCO, please review Microsoft’s terms before using this dataset. ([Microsoft GitHub](https://microsoft.github.io/msmarco/Datasets.html), [GitHub](https://github.com/microsoft/msmarco))

---

## How to Load

```python
import datasets
ds = datasets.load_dataset("opensearch-project/msmarco-hard-negatives", split="train")
```

---

## Training example

Related training example: **opensearch-sparse-model-tuning-sample**. ([GitHub](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample))

To convert the dataset to text-only format for sample repo training:
```python
import datasets

# 1) Load datasets
msmarco_hard_negatives = datasets.load_dataset(
    "opensearch-project/msmarco-hard-negatives", split="train"
)
msmarco_queries = datasets.load_dataset("BeIR/msmarco", "queries")["queries"]
msmarco_corpus = datasets.load_dataset("BeIR/msmarco", "corpus")["corpus"]

# 2) fix occasional text encoding issues
def transform_str(s):
    try:
        s = s.encode("latin1").decode("utf-8")
        return s
    except Exception:
        return s

msmarco_corpus = msmarco_corpus.map(
    lambda x: {"text": transform_str(x["text"])}, num_proc=30
)

# 3) Build convenient lookup tables
id_to_text = {_id: text for _id, text in zip(msmarco_corpus["_id"], msmarco_corpus["text"])}
qid_to_text = {_id: text for _id, text in zip(msmarco_queries["_id"], msmarco_queries["text"])}

# 4) Replace IDs with raw texts to get a text-only dataset
msmarco_hard_negatives = msmarco_hard_negatives.map(
    lambda x: {
        "query": qid_to_text[x["query"]],
        "docs": [id_to_text[doc] for doc in x["docs"]],
    },
    num_proc=30,
)

# 5) Save to disk (directory will contain the text-only view)
msmarco_hard_negatives.save_to_disk("data/msmarco_ft")
```

---

## Citation

If you use this dataset, **please cite**:
[Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers](https://arxiv.org/abs/2411.04403)
```
@misc{geng2024competitivesearchrelevanceinferencefree,
      title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers}, 
      author={Zhichao Geng and Dongyu Ru and Yang Yang},
      year={2024},
      eprint={2411.04403},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2411.04403}, 
}
```

## Related Papers
- [Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers ](https://arxiv.org/abs/2504.14839)

## License

This project is licensed under the [Apache v2.0 License](https://github.com/opensearch-project/neural-search/blob/main/LICENSE).

---


## Copyright

Copyright OpenSearch Contributors. See [NOTICE](https://github.com/opensearch-project/neural-search/blob/main/NOTICE) for details.