Update README.md
Browse files
README.md
CHANGED
@@ -76,127 +76,13 @@ For each tile, we provide the original slide id (`slide_id`), tile id (`tile_id`
|
|
76 |
|
77 |
# How to extract features
|
78 |
|
79 |
-
The following code snippet allows you to extract features with your feature extractor.
|
80 |
-
91 folders will be created, each named by the `slide_id` and containing a `features.npy` file.
|
81 |
-
This feature file is a numpy array of shape (16278, 3+d) where d is the output dimension of your model and 3 corresponds to `(deepzoom_level, x_coordinate, y_coordinate)`.
|
82 |
-
|
83 |
> [!IMPORTANT]
|
84 |
-
>
|
85 |
>
|
|
|
86 |
|
87 |
2h30 and roughly 10 Gb storage are necessary to extract all features with a ViT-B model, 16 CPUs and 1 Nvidia T4 (16Go).
|
88 |
|
89 |
-
> [!IMPORTANT]
|
90 |
-
> 🎉 We plan to release a dedicated Github repository to properly extract features and compute metrics as done in (Filiot et al., 2025).
|
91 |
-
>
|
92 |
-
>
|
93 |
-
|
94 |
-
```python
|
95 |
-
|
96 |
-
# Generic libraries
|
97 |
-
from __future__ import annotations
|
98 |
-
from pathlib import Path
|
99 |
-
from PIL import Image
|
100 |
-
from loguru import logger
|
101 |
-
from tqdm import tqdm
|
102 |
-
|
103 |
-
# Tensor-related libraries
|
104 |
-
import numpy as np
|
105 |
-
import torch
|
106 |
-
from torch.utils.data import DataLoader
|
107 |
-
import datasets
|
108 |
-
|
109 |
-
# You first need to login with your HF token
|
110 |
-
#from huggingface_hub import login
|
111 |
-
#login()
|
112 |
-
|
113 |
-
# Set your PIL.Image transform and embedding model
|
114 |
-
#transform = # torchvision.transforms.transforms transforming PIL Image into Tensor
|
115 |
-
#model = # torch.nn.Module outputing a tensor of features of shape (batch_size, features_dimension)
|
116 |
-
|
117 |
-
# You can tweak the batch size depending on your hardware or model
|
118 |
-
batch_size = 32
|
119 |
-
num_slides = 91
|
120 |
-
num_tiles = 16278
|
121 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
122 |
-
|
123 |
-
# Set your export directory
|
124 |
-
export_dir = Path("/path/to/your/export/directory/")
|
125 |
-
|
126 |
-
|
127 |
-
def collate(batch: list[dict[str, str | Image]]) -> tuple[list[str], list[str], torch.Tensor]:
|
128 |
-
"""Return slide ids, tile ids and transformed images."""
|
129 |
-
slide_ids =[b["slide_id"] for b in batch]
|
130 |
-
tile_ids = [b["tile_id"] for b in batch]
|
131 |
-
imgs = torch.stack([transform(b["png"]) for b in batch], axis=0)
|
132 |
-
return (slide_ids, tile_ids, imgs)
|
133 |
-
|
134 |
-
|
135 |
-
def process_imgs(imgs: torch.Tensor, tile_ids: list[str]) -> torch.Tensor:
|
136 |
-
"""Perform inference on input (already transformed) images."""
|
137 |
-
with torch.inference_mode():
|
138 |
-
batch_features = model(imgs.to(device)).squeeze() # (N_tiles, d) numpy array
|
139 |
-
batch_tiles_coordinates = np.array([tile_id.split("_")[1:] for tile_id in tile_ids]).astype(int) # (N_tiles, 3) numpy array
|
140 |
-
batch_stack = np.concatenate([batch_tiles_coordinates, batch_features], axis=1)
|
141 |
-
return batch_stack
|
142 |
-
|
143 |
-
def save_features(slide_features: list[np.ndarray], slide_id: str):
|
144 |
-
"""Save features to disk."""
|
145 |
-
slide_features_export_dir = Path(export_dir / slide_id)
|
146 |
-
slide_features_export_path = slides_features_export_dir / "features.npy"
|
147 |
-
slide_features_export_dir.mkdir(exist_ok=True, parents=True)
|
148 |
-
output_slide_features = np.concatenate(slide_features, axis=0).astype(np.float32)
|
149 |
-
slide_num_tiles = output_slide_features.shape[0]
|
150 |
-
assert slide_num_tiles == num_tiles, f"Output features for slide {slide_id} contains {slide_num_tiles} < {num_tiles}."
|
151 |
-
np.save(slides_features_export_path, output_slide_features)
|
152 |
-
logger.success(f"Successfully saved features for slide: {slide_id}")
|
153 |
-
|
154 |
-
# Create the dataset and dataloader without actually loading the files to disk (`streaming=True`)
|
155 |
-
# The dataset is sorted by slide_id, meaning that the first 16278 indexes belong to the same first slide,
|
156 |
-
# then 16278:32556 to the second slide, etc.
|
157 |
-
dataset = datasets.load_dataset("owkin/plism-dataset-tiles", split="train", streaming=True)
|
158 |
-
dataloader = DataLoader(
|
159 |
-
dataset, batch_size=batch_size, collate_fn=collate, num_workers=0, pin_memory=True, shuffle=False
|
160 |
-
)
|
161 |
-
|
162 |
-
# Iterate over the full dataset and store features each time 16278 input images have been processed
|
163 |
-
|
164 |
-
slide_features = []
|
165 |
-
current_num_tiles = 0
|
166 |
-
|
167 |
-
for (slide_ids, tile_ids, imgs) in tqdm(
|
168 |
-
dataloader,
|
169 |
-
total=ceil(num_slides * num_tiles / batch_size),
|
170 |
-
desc="Extracting features"
|
171 |
-
):
|
172 |
-
reference_slide_id = slide_ids[0]
|
173 |
-
|
174 |
-
# If we're on the same slide, we just add the batch features to the running list
|
175 |
-
if all(slide_id == reference_slide_id for slide_id in slide_ids):
|
176 |
-
batch_stack = process_imgs(imgs, tile_ids)
|
177 |
-
slide_features.append(batch_stack)
|
178 |
-
# For the very last slide, the last batch may be of size < `batch_size`
|
179 |
-
current_num_tiles += batch_stack.shape[0]
|
180 |
-
# If the current batch contains exactly the last `batch_size` tile features for the slide,
|
181 |
-
# export the slide features and reset `slide_features` and `current_num_tiles`
|
182 |
-
if current_num_tiles == num_tiles:
|
183 |
-
save_features(slide_features, slide_id=reference_slide_id)
|
184 |
-
slide_features = []
|
185 |
-
current_num_tiles = 0
|
186 |
-
# The current batch contains tiles from slide N (`reference_slide_id`) and slide N+1
|
187 |
-
else:
|
188 |
-
# We retrieve the maximum index at which all tiles in the batch comes from slide N
|
189 |
-
mask = (np.array(slide_ids) != reference_slide_id)
|
190 |
-
idx = mask.argmax()
|
191 |
-
# And only process the later, then export the slides features
|
192 |
-
batch_stack = process_imgs(imgs[:idx], tile_ids[:idx]
|
193 |
-
slide_features.append(batch_stack)
|
194 |
-
save_features(slide_features, slide_id=reference_slide_id)
|
195 |
-
# We initialize `slide_features` and `current_num_tiles` with respectively
|
196 |
-
# the tile features from slide N+1
|
197 |
-
slide_features = [process_imgs(imgs[idx:], tile_ids[idx:])]
|
198 |
-
current_num_tiles = batch_size - idx
|
199 |
-
```
|
200 |
|
201 |
# License
|
202 |
|
|
|
76 |
|
77 |
# How to extract features
|
78 |
|
|
|
|
|
|
|
|
|
79 |
> [!IMPORTANT]
|
80 |
+
> 🎉 Check [plismbench](https://github.com/owkin/plism-benchmark) to perform the feature extraction of PLISM dataset and get run our robustness benchmark 🎉
|
81 |
>
|
82 |
+
>
|
83 |
|
84 |
2h30 and roughly 10 Gb storage are necessary to extract all features with a ViT-B model, 16 CPUs and 1 Nvidia T4 (16Go).
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# License
|
88 |
|