Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Size:
100K - 1M
License:
dataset loading script
Browse files
xlwic.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
import datasets
|
| 3 |
+
from datasets.info import DatasetInfo
|
| 4 |
+
from datasets.utils.download_manager import DownloadManager
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
_DESCRIPTION = """A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.
|
| 8 |
+
|
| 9 |
+
XL-WiC provides dev and test sets in the following 12 languages:
|
| 10 |
+
|
| 11 |
+
Bulgarian (BG)
|
| 12 |
+
Danish (DA)
|
| 13 |
+
German (DE)
|
| 14 |
+
Estonian (ET)
|
| 15 |
+
Farsi (FA)
|
| 16 |
+
French (FR)
|
| 17 |
+
Croatian (HR)
|
| 18 |
+
Italian (IT)
|
| 19 |
+
Japanese (JA)
|
| 20 |
+
Korean (KO)
|
| 21 |
+
Dutch (NL)
|
| 22 |
+
Chinese (ZH)
|
| 23 |
+
and training sets in the following 3 languages:
|
| 24 |
+
|
| 25 |
+
German (DE)
|
| 26 |
+
French (FR)
|
| 27 |
+
Italian (IT)
|
| 28 |
+
"""
|
| 29 |
+
_CITATION = """@inproceedings{raganato-etal-2020-xl-wic,
|
| 30 |
+
title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},
|
| 31 |
+
author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},
|
| 32 |
+
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
| 33 |
+
pages={7193--7206},
|
| 34 |
+
year={2020}
|
| 35 |
+
}
|
| 36 |
+
"""
|
| 37 |
+
_DOWNLOAD_URL = "https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip"
|
| 38 |
+
_VERSION = "1.0.0"
|
| 39 |
+
_WN_LANGS = ["EN", "BG", "ZH", "HR", "DA", "NL", "ET", "FA", "JA", "KO"]
|
| 40 |
+
_WIKT_LANGS = ["IT", "FR", "DE"]
|
| 41 |
+
_CODE_TO_LANG_ID = {
|
| 42 |
+
"EN": "english",
|
| 43 |
+
"BG": "bulgarian",
|
| 44 |
+
"ZH": "chinese",
|
| 45 |
+
"HR": "croatian",
|
| 46 |
+
"DA": "danish",
|
| 47 |
+
"NL": "dutch",
|
| 48 |
+
"ET": "estonian",
|
| 49 |
+
"FA": "farsi",
|
| 50 |
+
"JA": "japanese",
|
| 51 |
+
"KO": "korean",
|
| 52 |
+
"IT": "italian",
|
| 53 |
+
"FR": "french",
|
| 54 |
+
"DE": "german",
|
| 55 |
+
}
|
| 56 |
+
_AVAILABLE_PAIRS = (
|
| 57 |
+
list(zip(["EN"] * (len(_WN_LANGS) - 1), _WN_LANGS[1:]))
|
| 58 |
+
+ list(zip(["EN"] * len(_WIKT_LANGS), _WIKT_LANGS))
|
| 59 |
+
+ [("IT", "IT"), ("FR", "FR"), ("DE", "DE")]
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class XLWiCConfig(datasets.BuilderConfig):
|
| 64 |
+
version:str=None
|
| 65 |
+
training_lang:str = None
|
| 66 |
+
target_lang:str = None
|
| 67 |
+
name:str = None
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class XLWIC(datasets.GeneratorBasedBuilder):
|
| 71 |
+
BUILDER_CONFIGS = [
|
| 72 |
+
XLWiCConfig(
|
| 73 |
+
name=f"xlwic_{source.lower()}_{target.lower()}",
|
| 74 |
+
training_lang=source,
|
| 75 |
+
target_lang=target,
|
| 76 |
+
version=datasets.Version(_VERSION, ""),
|
| 77 |
+
)
|
| 78 |
+
for source, target in _AVAILABLE_PAIRS
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
def _info(self) -> DatasetInfo:
|
| 82 |
+
return datasets.DatasetInfo(
|
| 83 |
+
description=_DESCRIPTION,
|
| 84 |
+
features=datasets.Features(
|
| 85 |
+
{
|
| 86 |
+
"id": datasets.Value("string"),
|
| 87 |
+
"context_1": datasets.Value("string"),
|
| 88 |
+
"context_2": datasets.Value("string"),
|
| 89 |
+
"target_word": datasets.Value("string"),
|
| 90 |
+
"pos": datasets.Value("string"),
|
| 91 |
+
"target_word_location_1":
|
| 92 |
+
{
|
| 93 |
+
"char_start": datasets.Value("int32"),
|
| 94 |
+
"char_end": datasets.Value("int32"),
|
| 95 |
+
},
|
| 96 |
+
"target_word_location_2":
|
| 97 |
+
{
|
| 98 |
+
"char_start": datasets.Value("int32"),
|
| 99 |
+
"char_end": datasets.Value("int32"),
|
| 100 |
+
},
|
| 101 |
+
"language": datasets.Value("string"),
|
| 102 |
+
"label": datasets.Value("int32"),
|
| 103 |
+
}
|
| 104 |
+
),
|
| 105 |
+
supervised_keys=None,
|
| 106 |
+
homepage="https://pilehvar.github.io/xlwic/",
|
| 107 |
+
citation=_CITATION,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
| 111 |
+
downloaded_file = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
| 112 |
+
dataset_root_folder = os.path.join(downloaded_file, "xlwic_datasets")
|
| 113 |
+
|
| 114 |
+
return [
|
| 115 |
+
datasets.SplitGenerator(
|
| 116 |
+
name=datasets.Split.TRAIN,
|
| 117 |
+
# These kwargs will be passed to _generate_examples
|
| 118 |
+
gen_kwargs={
|
| 119 |
+
"dataset_root": dataset_root_folder,
|
| 120 |
+
"lang": self.config.training_lang,
|
| 121 |
+
"split": "train",
|
| 122 |
+
},
|
| 123 |
+
),
|
| 124 |
+
datasets.SplitGenerator(
|
| 125 |
+
name=datasets.Split.VALIDATION,
|
| 126 |
+
# These kwargs will be passed to _generate_examples
|
| 127 |
+
gen_kwargs={
|
| 128 |
+
"dataset_root": dataset_root_folder,
|
| 129 |
+
"lang": self.config.target_lang,
|
| 130 |
+
"split": "valid",
|
| 131 |
+
},
|
| 132 |
+
),
|
| 133 |
+
datasets.SplitGenerator(
|
| 134 |
+
name=datasets.Split.TEST,
|
| 135 |
+
# These kwargs will be passed to _generate_examples
|
| 136 |
+
gen_kwargs={
|
| 137 |
+
"dataset_root": dataset_root_folder,
|
| 138 |
+
"lang": self.config.target_lang,
|
| 139 |
+
"split": "test",
|
| 140 |
+
},
|
| 141 |
+
),
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
def _yield_from_lines(self, lines, lang):
|
| 145 |
+
|
| 146 |
+
for i, (
|
| 147 |
+
tw,
|
| 148 |
+
pos,
|
| 149 |
+
char_start_1,
|
| 150 |
+
char_end_1,
|
| 151 |
+
char_start_2,
|
| 152 |
+
char_end_2,
|
| 153 |
+
context_1,
|
| 154 |
+
context_2,
|
| 155 |
+
label,
|
| 156 |
+
) in enumerate(lines):
|
| 157 |
+
_id = f"{lang}_{i}"
|
| 158 |
+
yield _id, {
|
| 159 |
+
"id": _id,
|
| 160 |
+
"target_word": tw,
|
| 161 |
+
"context_1": context_1,
|
| 162 |
+
"context_2": context_2,
|
| 163 |
+
"label": int(label),
|
| 164 |
+
"target_word_location_1": {
|
| 165 |
+
"char_start": int(char_start_1),
|
| 166 |
+
"char_end": int(char_end_1),
|
| 167 |
+
},
|
| 168 |
+
"target_word_location_2": {
|
| 169 |
+
"char_start": int(char_start_2),
|
| 170 |
+
"char_end": int(char_end_2)
|
| 171 |
+
},
|
| 172 |
+
"pos": pos,
|
| 173 |
+
"language": lang,
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
def _from_selfcontained_file(self, dataset_root, lang, split):
|
| 177 |
+
ext_lang = _CODE_TO_LANG_ID[lang]
|
| 178 |
+
if lang in _WIKT_LANGS:
|
| 179 |
+
path = os.path.join(
|
| 180 |
+
dataset_root,
|
| 181 |
+
"xlwic_wikt",
|
| 182 |
+
f"{ext_lang}_{lang.lower()}",
|
| 183 |
+
f"{lang.lower()}_{split}.txt",
|
| 184 |
+
)
|
| 185 |
+
elif lang != "EN" and lang in _WN_LANGS:
|
| 186 |
+
path = os.path.join(
|
| 187 |
+
dataset_root,
|
| 188 |
+
"xlwic_wn",
|
| 189 |
+
f"{ext_lang}_{lang.lower()}",
|
| 190 |
+
f"{lang.lower()}_{split}.txt",
|
| 191 |
+
)
|
| 192 |
+
elif lang == "EN" and lang in _WN_LANGS:
|
| 193 |
+
path = os.path.join(
|
| 194 |
+
dataset_root, "wic_english", f"{split}_{lang.lower()}.txt"
|
| 195 |
+
)
|
| 196 |
+
with open(path) as lines:
|
| 197 |
+
all_lines = [line.strip().split("\t") for line in lines]
|
| 198 |
+
yield from self._yield_from_lines(all_lines, lang)
|
| 199 |
+
|
| 200 |
+
def _from_test_files(self, dataset_root, lang, split):
|
| 201 |
+
ext_lang = _CODE_TO_LANG_ID[lang]
|
| 202 |
+
if lang in _WIKT_LANGS:
|
| 203 |
+
path_data = os.path.join(
|
| 204 |
+
dataset_root,
|
| 205 |
+
"xlwic_wikt",
|
| 206 |
+
f"{ext_lang}_{lang.lower()}",
|
| 207 |
+
f"{lang.lower()}_{split}_data.txt",
|
| 208 |
+
)
|
| 209 |
+
elif lang != "EN" and lang in _WN_LANGS:
|
| 210 |
+
path_data = os.path.join(
|
| 211 |
+
dataset_root,
|
| 212 |
+
"xlwic_wn",
|
| 213 |
+
f"{ext_lang}_{lang.lower()}",
|
| 214 |
+
f"{lang.lower()}_{split}_data.txt",
|
| 215 |
+
)
|
| 216 |
+
path_gold = path_data.replace('_data.txt', '_gold.txt')
|
| 217 |
+
with open(path_data) as lines:
|
| 218 |
+
all_lines = [line.strip().split("\t") for line in lines]
|
| 219 |
+
with open(path_gold) as lines:
|
| 220 |
+
all_labels = [line.strip() for line in lines]
|
| 221 |
+
for line, label in zip(all_lines, all_labels):
|
| 222 |
+
line.append(label)
|
| 223 |
+
yield from self._yield_from_lines(all_lines, lang)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def _generate_examples(self, dataset_root, lang, split, **kwargs):
|
| 227 |
+
if split in {"train", "valid"}:
|
| 228 |
+
yield from self._from_selfcontained_file(dataset_root, lang, split)
|
| 229 |
+
else:
|
| 230 |
+
yield from self._from_test_files(dataset_root, lang, split)
|
| 231 |
+
|