Datasets:
File size: 15,313 Bytes
5bdb646 6dbc0a3 5bdb646 6dbc0a3 c873996 5bdb646 8e94c77 5bdb646 6785cdc 358e10a b615ca9 d6e9099 b615ca9 7d4c88a b615ca9 d6e9099 b615ca9 7d4c88a b615ca9 5bdb646 6785cdc 5bdb646 6785cdc 5bdb646 46d441e 5bdb646 1a2dc21 5bdb646 46d441e b615ca9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
- machine-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- token-classification
- text-classification
task_ids:
- dialogue-modeling
- multi-class-classification
- parsing
paperswithcode_id: multiwoz
pretty_name: Multi-domain Wizard-of-Oz
dataset_info:
- config_name: v2.2
features:
- name: dialogue_id
dtype: string
- name: services
sequence: string
- name: turns
sequence:
- name: turn_id
dtype: string
- name: speaker
dtype:
class_label:
names:
'0': USER
'1': SYSTEM
- name: utterance
dtype: string
- name: frames
sequence:
- name: service
dtype: string
- name: state
struct:
- name: active_intent
dtype: string
- name: requested_slots
sequence: string
- name: slots_values
sequence:
- name: slots_values_name
dtype: string
- name: slots_values_list
sequence: string
- name: slots
sequence:
- name: slot
dtype: string
- name: value
dtype: string
- name: start
dtype: int32
- name: exclusive_end
dtype: int32
- name: copy_from
dtype: string
- name: copy_from_value
sequence: string
- name: dialogue_acts
struct:
- name: dialog_act
sequence:
- name: act_type
dtype: string
- name: act_slots
sequence:
- name: slot_name
dtype: string
- name: slot_value
dtype: string
- name: span_info
sequence:
- name: act_type
dtype: string
- name: act_slot_name
dtype: string
- name: act_slot_value
dtype: string
- name: span_start
dtype: int32
- name: span_end
dtype: int32
splits:
- name: train
num_bytes: 68222649
num_examples: 8437
- name: validation
num_bytes: 8990945
num_examples: 1000
- name: test
num_bytes: 9027095
num_examples: 1000
download_size: 276592909
dataset_size: 86240689
- config_name: v2.2_active_only
features:
- name: dialogue_id
dtype: string
- name: services
sequence: string
- name: turns
sequence:
- name: turn_id
dtype: string
- name: speaker
dtype:
class_label:
names:
'0': USER
'1': SYSTEM
- name: utterance
dtype: string
- name: frames
sequence:
- name: service
dtype: string
- name: state
struct:
- name: active_intent
dtype: string
- name: requested_slots
sequence: string
- name: slots_values
sequence:
- name: slots_values_name
dtype: string
- name: slots_values_list
sequence: string
- name: slots
sequence:
- name: slot
dtype: string
- name: value
dtype: string
- name: start
dtype: int32
- name: exclusive_end
dtype: int32
- name: copy_from
dtype: string
- name: copy_from_value
sequence: string
- name: dialogue_acts
struct:
- name: dialog_act
sequence:
- name: act_type
dtype: string
- name: act_slots
sequence:
- name: slot_name
dtype: string
- name: slot_value
dtype: string
- name: span_info
sequence:
- name: act_type
dtype: string
- name: act_slot_name
dtype: string
- name: act_slot_value
dtype: string
- name: span_start
dtype: int32
- name: span_end
dtype: int32
splits:
- name: train
num_bytes: 40937577
num_examples: 8437
- name: validation
num_bytes: 5377939
num_examples: 1000
- name: test
num_bytes: 5410819
num_examples: 1000
download_size: 276592909
dataset_size: 51726335
---
# Dataset Card for MultiWOZ
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [MultiWOZ 2.2 github repository](https://github.com/budzianowski/multiwoz/tree/master/data/MultiWOZ_2.2)
- **Paper:** [MultiWOZ v2](https://arxiv.org/abs/1810.00278), and [MultiWOZ v2.2](https://www.aclweb.org/anthology/2020.nlp4convai-1.13.pdf)
- **Point of Contact:** [Paweł Budzianowski]([email protected])
### Dataset Summary
Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics.
MultiWOZ 2.1 (Eric et al., 2019) identified and fixed many erroneous annotations and user utterances in the original version, resulting in an
improved version of the dataset. MultiWOZ 2.2 is a yet another improved version of this dataset, which identifies and fixes dialogue state annotation errors
across 17.3% of the utterances on top of MultiWOZ 2.1 and redefines the ontology by disallowing vocabularies of slots with a large number of possible values
(e.g., restaurant name, time of booking) and introducing standardized slot span annotations for these slots.
### Supported Tasks and Leaderboards
This dataset supports a range of task.
- **Generative dialogue modeling** or `dialogue-modeling`: the text of the dialogues can be used to train a sequence model on the utterances. Performance on this task is typically evaluated with delexicalized-[BLEU](https://huggingface.co/metrics/bleu), inform rate and request success.
- **Intent state tracking**, a `multi-class-classification` task: predict the belief state of the user side of the conversation, performance is measured by [F1](https://huggingface.co/metrics/f1).
- **Dialog act prediction**, a `parsing` task: parse an utterance into the corresponding dialog acts for the system to use. [F1](https://huggingface.co/metrics/f1) is typically reported.
### Languages
The text in the dataset is in English (`en`).
## Dataset Structure
### Data Instances
A data instance is a full multi-turn dialogue between a `USER` and a `SYSTEM`. Each turn has a single utterance, e.g.:
```
['What fun places can I visit in the East?',
'We have five spots which include boating, museums and entertainment. Any preferences that you have?']
```
The utterances of the `USER` are also annotated with frames denoting their intent and believe state:
```
[{'service': ['attraction'],
'slots': [{'copy_from': [],
'copy_from_value': [],
'exclusive_end': [],
'slot': [],
'start': [],
'value': []}],
'state': [{'active_intent': 'find_attraction',
'requested_slots': [],
'slots_values': {'slots_values_list': [['east']],
'slots_values_name': ['attraction-area']}}]},
{'service': [], 'slots': [], 'state': []}]
```
Finally, each of the utterances is annotated with dialog acts which provide a structured representation of what the `USER` or `SYSTEM` is inquiring or giving information about.
```
[{'dialog_act': {'act_slots': [{'slot_name': ['east'],
'slot_value': ['area']}],
'act_type': ['Attraction-Inform']},
'span_info': {'act_slot_name': ['area'],
'act_slot_value': ['east'],
'act_type': ['Attraction-Inform'],
'span_end': [39],
'span_start': [35]}},
{'dialog_act': {'act_slots': [{'slot_name': ['none'], 'slot_value': ['none']},
{'slot_name': ['boating', 'museums', 'entertainment', 'five'],
'slot_value': ['type', 'type', 'type', 'choice']}],
'act_type': ['Attraction-Select', 'Attraction-Inform']},
'span_info': {'act_slot_name': ['type', 'type', 'type', 'choice'],
'act_slot_value': ['boating', 'museums', 'entertainment', 'five'],
'act_type': ['Attraction-Inform',
'Attraction-Inform',
'Attraction-Inform',
'Attraction-Inform'],
'span_end': [40, 49, 67, 12],
'span_start': [33, 42, 54, 8]}}]
```
### Data Fields
Each dialogue instance has the following fields:
- `dialogue_id`: a unique ID identifying the dialog. The MUL and PMUL names refer to strictly multi domain dialogues (at least 2 main domains are involved) while the SNG, SSNG and WOZ names refer to single domain dialogues with potentially sub-domains like booking.
- `services`: a list of services mentioned in the dialog, such as `train` or `hospitals`.
- `turns`: the sequence of utterances with their annotations, including:
- `turn_id`: a turn identifier, unique per dialog.
- `speaker`: either the `USER` or `SYSTEM`.
- `utterance`: the text of the utterance.
- `dialogue_acts`: The structured parse of the utterance into dialog acts in the system's grammar
- `act_type`: Such as e.g. `Attraction-Inform` to seek or provide information about an `attraction`
- `act_slots`: provide more details about the action
- `span_info`: maps these `act_slots` to the `utterance` text.
- `frames`: only for `USER` utterances, track the user's belief state, i.e. a structured representation of what they are trying to achieve in the fialog. This decomposes into:
- `service`: the service they are interested in
- `state`: their belief state including their `active_intent` and further information expressed in `requested_slots`
- `slots`: a mapping of the `requested_slots` to where they are mentioned in the text. It takes one of two forms, detailed next:
The first type are span annotations that identify the location where slot values have been mentioned in the utterances for non-categorical slots. These span annotations are represented as follows:
```
{
"slots": [
{
"slot": String of slot name.
"start": Int denoting the index of the starting character in the utterance corresponding to the slot value.
"exclusive_end": Int denoting the index of the character just after the last character corresponding to the slot value in the utterance. In python, utterance[start:exclusive_end] gives the slot value.
"value": String of value. It equals to utterance[start:exclusive_end], where utterance is the current utterance in string.
}
]
}
```
There are also some non-categorical slots whose values are carried over from another slot in the dialogue state. Their values don"t explicitly appear in the utterances. For example, a user utterance can be "I also need a taxi from the restaurant to the hotel.", in which the state values of "taxi-departure" and "taxi-destination" are respectively carried over from that of "restaurant-name" and "hotel-name". For these slots, instead of annotating them as spans, a "copy from" annotation identifies the slot it copies the value from. This annotation is formatted as follows,
```
{
"slots": [
{
"slot": Slot name string.
"copy_from": The slot to copy from.
"value": A list of slot values being . It corresponds to the state values of the "copy_from" slot.
}
]
}
```
### Data Splits
The dataset is split into a `train`, `validation`, and `test` split with the following sizes:
| | train | validation | test |
|---------------------|------:|-----------:|-----:|
| Number of dialogues | 8438 | 1000 | 1000 |
| Number of turns | 42190 | 5000 | 5000 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The initial dataset (Versions 1.0 and 2.0) was created by a team of researchers from the [Cambridge Dialogue Systems Group](https://mi.eng.cam.ac.uk/research/dialogue/corpora/). Version 2.1 was developed on top of v2.0 by a team from Amazon, and v2.2 was developed by a team of Google researchers.
### Licensing Information
The dataset is released under the Apache License 2.0.
### Citation Information
You can cite the following for the various versions of MultiWOZ:
Version 1.0
```
@inproceedings{ramadan2018large,
title={Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing},
author={Ramadan, Osman and Budzianowski, Pawe{\l} and Gasic, Milica},
booktitle={Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics},
volume={2},
pages={432--437},
year={2018}
}
```
Version 2.0
```
@inproceedings{budzianowski2018large,
Author = {Budzianowski, Pawe{\l} and Wen, Tsung-Hsien and Tseng, Bo-Hsiang and Casanueva, I{\~n}igo and Ultes Stefan and Ramadan Osman and Ga{\v{s}}i\'c, Milica},
title={MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling},
booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year={2018}
}
```
Version 2.1
```
@article{eric2019multiwoz,
title={MultiWOZ 2.1: Multi-Domain Dialogue State Corrections and State Tracking Baselines},
author={Eric, Mihail and Goel, Rahul and Paul, Shachi and Sethi, Abhishek and Agarwal, Sanchit and Gao, Shuyag and Hakkani-Tur, Dilek},
journal={arXiv preprint arXiv:1907.01669},
year={2019}
}
```
Version 2.2
```
@inproceedings{zang2020multiwoz,
title={MultiWOZ 2.2: A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines},
author={Zang, Xiaoxue and Rastogi, Abhinav and Sunkara, Srinivas and Gupta, Raghav and Zhang, Jianguo and Chen, Jindong},
booktitle={Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, ACL 2020},
pages={109--117},
year={2020}
}
```
### Contributions
Thanks to [@yjernite](https://github.com/yjernite) for adding this dataset. |