# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Youtube Casual Audio Dataset""" import datasets import pandas as pd import re _DATA_URL = "https://dutudn-my.sharepoint.com/:u:/g/personal/122180028_sv1_dut_udn_vn/Ed5mI5CjXIxHgb2qqPOElj0BBgn7FGT75SUgPdIuMS1LDw?download=1" _PROMPTS_URLS = { "train": "https://drive.google.com/uc?export=download&id=1s5d-1ZTzcxsnxUjiBLsv9KCB-yBcXyQ9", "test": "https://drive.google.com/uc?export=download&id=1-l1QdNQ98DGZM63-GOKIVnFvxTz2SGeK", "validation": "https://drive.google.com/uc?export=download&id=1GM_6s5icko6zRrldx8LcbANyl0geMSl8" } _DESCRIPTION = """\ """ _LANGUAGES = { "vi": { "Language": "Vietnamese", "Date": "2021-12-11", "Size": "17000 MB", "Version": "vi_100h_2020-12-11", "Validated_Hr_Total": '~20h', "Overall_Hr_Total": '~100h', "Number_Of_Voice": 62, }, } class YoutubeCasualAudioConfig(datasets.BuilderConfig): """BuilderConfig for YoutubeCasualAudio.""" def __init__(self, name, sub_version, **kwargs): """ Args: data_dir: `string`, the path to the folder containing the files in the downloaded .tar citation: `string`, citation for the data set url: `string`, url for information about the data set **kwargs: keyword arguments forwarded to super. """ self.sub_version = sub_version self.language = kwargs.pop("language", None) self.date_of_snapshot = kwargs.pop("date", None) self.size = kwargs.pop("size", None) self.validated_hr_total = kwargs.pop("val_hrs", None) self.total_hr_total = kwargs.pop("total_hrs", None) self.num_of_voice = kwargs.pop("num_of_voice", None) description = f"Youtube Casual Audio speech to text dataset in {self.language} version " \ f"{self.sub_version} of {self.date_of_snapshot}. " \ f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \ f"{self.num_of_voice} speakers. The dataset has a size of {self.size} " super(YoutubeCasualAudioConfig, self).__init__( name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs ) class YoutubeCasualAudio(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 BUILDER_CONFIGS = [ YoutubeCasualAudioConfig( name=lang_id, language=_LANGUAGES[lang_id]["Language"], sub_version=_LANGUAGES[lang_id]["Version"], ) for lang_id in _LANGUAGES.keys() ] def _info(self): features = datasets.Features( { "file_path": datasets.Value("string"), "script": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" archive = dl_manager.download(_DATA_URL) tsv_files = dl_manager.download(_PROMPTS_URLS) path_to_data = "audio" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "tsv_files": tsv_files["train"], "audio_files": dl_manager.iter_archive(archive), "path_to_clips": path_to_data, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "tsv_files": tsv_files["test"], "audio_files": dl_manager.iter_archive(archive), "path_to_clips": path_to_data, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "tsv_files": tsv_files["validation"], "audio_files": dl_manager.iter_archive(archive), "path_to_clips": path_to_data, }, ), ] def _generate_examples(self, tsv_files, audio_files, path_to_clips): """Yields examples.""" data_fields = list(self._info().features.keys()) # audio is not a header of the csv files data_fields.remove("audio") examples = {} df = pd.read_csv(tsv_files, sep="\t", header=0) df = df.dropna() chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]' for file_path, script in zip(df["file_path"], df["script"]): # set full path for mp3 audio file audio_path = path_to_clips + "/" + file_path # Preprocessing script if ":" in script: two_dot_index = script.index(":") script = script[two_dot_index + 1:] script = script.replace("\n", " ") script = re.sub(chars_to_ignore_regex, '', script).lower() examples[audio_path] = { "file_path": audio_path, "script": script, } for path, f in audio_files: if path.startswith(path_to_clips): if path in examples: audio = {"path": path, "bytes": f.read()} yield path, {**examples[path], "audio": audio}