## Overview Original data available [here](http://www.seas.upenn.edu/~nlp/resources/AN-composition.tgz). ## Dataset curation `premise` and `hypothesis` columns have been cleaned following common practices ([1](https://github.com/rabeehk/robust-nli/blob/c32ff958d4df68ac2fad9bf990f70d30eab9f297/data/scripts/add_one_rte.py#L51-L52), [2](https://github.com/azpoliak/hypothesis-only-NLI/blob/b045230437b5ba74b9928ca2bac5e21ae57876b9/data/convert_add_1_rte.py#L31-L32)), that is - remove HTML tags ``, ``, ``, `` - normalize repeated white spaces - strip `mean_human_score` has been transformed into class labels following common practices ([1](https://github.com/rabeehk/robust-nli/blob/c32ff958d4df68ac2fad9bf990f70d30eab9f297/data/scripts/add_one_rte.py#L20-L35), [2](https://github.com/azpoliak/hypothesis-only-NLI/blob/b045230437b5ba74b9928ca2bac5e21ae57876b9/data/convert_add_1_rte.py#L6-L17)), that is - for test set: `mean_human_score <= 3 -> "not-entailed"` and `mean_human_score >= 4 -> "entailed"` (anything between 3 and 4 has been removed) - for all other splits: `mean_human_score < 3.5 -> "not-entailed"` else `"entailed"` more details below. ## Code to generate the dataset ```python import pandas as pd from datasets import Features, Value, ClassLabel, Dataset, DatasetDict def convert_label(score, is_test): if is_test: if score <= 3: return "not-entailed" elif score >= 4: return "entailed" return "REMOVE" if score < 3.5: return "not-entailed" return "entailed" ds = {} for split in ("dev", "test", "train"): # read data df = pd.read_csv(f"/AN-composition/addone-entailment/splits/data.{split}", sep="\t", header=None) df.columns = ["mean_human_score", "binary_label", "sentence_id", "adjective", "noun", "premise", "hypothesis"] # clean text from html tags and useless spaces for col in ("premise", "hypothesis"): df[col] = ( df[col] .str.replace("()|()|()|()", " ", regex=True) .str.replace(" {2,}", " ", regex=True) .str.strip() ) # encode labels if split == "test": df["label"] = df["mean_human_score"].map(lambda x: convert_label(x, True)) df = df.loc[df["label"] != "REMOVE"] else: df["label"] = df["mean_human_score"].map(lambda x: convert_label(x, False)) assert df["label"].isna().sum() == 0 df["label"] = df["label"].map({"not-entailed": 0, "entailed": 1}) # cast to dataset features = Features({ "mean_human_score": Value(dtype="float32"), "binary_label": Value(dtype="string"), "sentence_id": Value(dtype="string"), "adjective": Value(dtype="string"), "noun": Value(dtype="string"), "premise": Value(dtype="string"), "hypothesis": Value(dtype="string"), "label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]), }) ds[split] = Dataset.from_pandas(df, features=features) ds = DatasetDict(ds) ds.push_to_hub("add_one_rte", token="") # check overlap between splits from itertools import combinations for i, j in combinations(ds.keys(), 2): print( f"{i} - {j}: ", pd.merge( ds[i].to_pandas(), ds[j].to_pandas(), on=["premise", "hypothesis", "label"], how="inner", ).shape[0], ) #> dev - test: 0 #> dev - train: 0 #> test - train: 0 ```