Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -13,4 +13,62 @@ tags:
|
|
13 |
- rgb
|
14 |
size_categories:
|
15 |
- 1K<n<10K
|
16 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- rgb
|
14 |
size_categories:
|
15 |
- 1K<n<10K
|
16 |
+
---
|
17 |
+
|
18 |
+
# Shoe-Net-10K Dataset
|
19 |
+
|
20 |
+
The **Shoe-Net-10K** dataset is a curated collection of 10,000 shoe images annotated for multi-class image classification. This dataset is suitable for training deep learning models to recognize different types of shoes from images.
|
21 |
+
|
22 |
+
## Dataset Details
|
23 |
+
|
24 |
+
* **Total Images**: 10,000
|
25 |
+
* **Image Size**: Varies (typical width range: 94 px to 519 px)
|
26 |
+
* **Format**: Parquet
|
27 |
+
* **Split**:
|
28 |
+
|
29 |
+
* `train`: 10,000 images
|
30 |
+
* **Modality**: Image
|
31 |
+
* **License**: Apache 2.0
|
32 |
+
|
33 |
+
## Labels
|
34 |
+
|
35 |
+
The dataset includes 5 distinct shoe categories:
|
36 |
+
|
37 |
+
```python
|
38 |
+
labels_list = [
|
39 |
+
'Ballet Flat',
|
40 |
+
'Boat',
|
41 |
+
'Brogue',
|
42 |
+
'Clog',
|
43 |
+
'Sneaker'
|
44 |
+
]
|
45 |
+
```
|
46 |
+
|
47 |
+
Each image is labeled with one of the above shoe types.
|
48 |
+
|
49 |
+
## Usage
|
50 |
+
|
51 |
+
You can load this dataset using the Hugging Face `datasets` library:
|
52 |
+
|
53 |
+
```python
|
54 |
+
from datasets import load_dataset
|
55 |
+
|
56 |
+
dataset = load_dataset("prithivMLmods/Shoe-Net-10K")
|
57 |
+
```
|
58 |
+
|
59 |
+
Access individual samples as follows:
|
60 |
+
|
61 |
+
```python
|
62 |
+
sample = dataset["train"][0]
|
63 |
+
image = sample["image"]
|
64 |
+
label = sample["label"]
|
65 |
+
```
|
66 |
+
|
67 |
+
## Applications
|
68 |
+
|
69 |
+
This dataset can be used for:
|
70 |
+
|
71 |
+
* Image classification
|
72 |
+
* Shoe-type detection
|
73 |
+
* Retail recommendation systems
|
74 |
+
* Style and fashion recognition models
|