alexbauer-pf commited on
Commit
3e40f37
·
verified ·
1 Parent(s): e094511

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -107
README.md CHANGED
@@ -368,17 +368,15 @@ import datasets
368
  import torch
369
  from torch.utils.data import DataLoader
370
 
371
- ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
372
- ds = ds.select_columns([c for c in ds.column_names
373
  if c.startswith("boundary.")
374
  or c.startswith("metrics.")])
375
 
376
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
377
- ds_torch = ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
378
 
379
- dataloader = DataLoader(ds_torch, batch_size=4)
380
-
381
- for batch in dataloader:
382
  print(batch)
383
  break
384
  ```
@@ -387,105 +385,112 @@ for batch in dataloader:
387
  <summary>Output</summary>
388
 
389
  ```python
390
- {'boundary.is_stellarator_symmetric': tensor([True, True, True, True]),
391
- 'boundary.n_field_periods': tensor([5., 2., 5., 3.]),
392
- 'boundary.r_cos(0, 0)': tensor([0.9995, 0.9933, 1.0000, 1.0000]),
393
- 'boundary.r_cos(0, 1)': tensor([ 0.0008, 0.0957, 0.0978, -0.0658]),
394
- 'boundary.r_cos(0, 2)': tensor([-0.0166, -0.0522, -0.0358, -0.0385]),
395
- 'boundary.r_cos(0, 3)': tensor([ 0.0006, -0.0098, 0.0004, 0.0022]),
396
- 'boundary.r_cos(0, 4)': tensor([ 2.7140e-06, -5.2107e-04, 4.1021e-04, 4.6007e-04]),
397
- 'boundary.r_cos(1, -1)': tensor([-0.0774, -0.0480, 0.0674, 0.0142]),
398
- 'boundary.r_cos(1, -2)': tensor([-0.0254, 0.0015, 0.0327, 0.0565]),
399
- 'boundary.r_cos(1, -3)': tensor([-0.0036, -0.0002, 0.0047, -0.0110]),
400
- 'boundary.r_cos(1, -4)': tensor([ 0.0009, -0.0007, 0.0019, -0.0007]),
401
- 'boundary.r_cos(1, 0)': tensor([0.2136, 0.1506, 0.0668, 0.0835]),
402
- 'boundary.r_cos(1, 1)': tensor([-0.0430, -0.0009, -0.0421, -0.0468]),
403
- 'boundary.r_cos(1, 2)': tensor([ 0.0070, 0.0099, 0.0148, -0.0137]),
404
- 'boundary.r_cos(1, 3)': tensor([-0.0019, 0.0014, -0.0013, 0.0040]),
405
- 'boundary.r_cos(1, 4)': tensor([-0.0001, -0.0001, -0.0001, 0.0001]),
406
- 'boundary.r_cos(2, -1)': tensor([ 0.0222, -0.0189, -0.0043, -0.0197]),
407
- 'boundary.r_cos(2, -2)': tensor([ 0.0252, -0.0124, -0.0106, 0.0008]),
408
- 'boundary.r_cos(2, -3)': tensor([ 0.0063, -0.0054, -0.0039, 0.0047]),
409
- 'boundary.r_cos(2, -4)': tensor([ 0.0011, 0.0021, -0.0010, -0.0004]),
410
- 'boundary.r_cos(2, 0)': tensor([-0.0170, -0.0226, -0.0083, -0.0095]),
411
- 'boundary.r_cos(2, 1)': tensor([-1.9742e-03, 2.4878e-03, -6.7278e-05, -5.8859e-03]),
412
- 'boundary.r_cos(2, 2)': tensor([0.0030, 0.0017, 0.0003, 0.0010]),
413
- 'boundary.r_cos(2, 3)': tensor([-0.0009, 0.0002, -0.0010, 0.0009]),
414
- 'boundary.r_cos(2, 4)': tensor([ 0.0002, 0.0002, 0.0002, -0.0002]),
415
- 'boundary.r_cos(3, -1)': tensor([-0.0052, -0.0055, 0.0013, -0.0080]),
416
- 'boundary.r_cos(3, -2)': tensor([-0.0019, -0.0035, 0.0026, -0.0004]),
417
- 'boundary.r_cos(3, -3)': tensor([-0.0030, 0.0013, 0.0007, 0.0002]),
418
- 'boundary.r_cos(3, -4)': tensor([-0.0011, 0.0003, 0.0003, 0.0029]),
419
- 'boundary.r_cos(3, 0)': tensor([-0.0057, -0.0003, -0.0014, 0.0013]),
420
- 'boundary.r_cos(3, 1)': tensor([ 0.0021, 0.0029, 0.0010, -0.0005]),
421
- 'boundary.r_cos(3, 2)': tensor([-0.0001, 0.0011, -0.0008, -0.0007]),
422
- 'boundary.r_cos(3, 3)': tensor([1.6793e-04, 3.4548e-04, 4.4246e-04, 3.4558e-05]),
423
- 'boundary.r_cos(3, 4)': tensor([-4.5783e-05, 1.1368e-04, -1.1460e-04, 1.4845e-04]),
424
- 'boundary.r_cos(4, -1)': tensor([ 7.2199e-05, 1.2212e-04, 5.9814e-05, -5.6161e-04]),
425
- 'boundary.r_cos(4, -2)': tensor([ 0.0004, 0.0004, -0.0001, -0.0003]),
426
- 'boundary.r_cos(4, -3)': tensor([-0.0002, -0.0002, -0.0001, -0.0005]),
427
- 'boundary.r_cos(4, -4)': tensor([ 2.3317e-04, 7.7059e-05, 3.5259e-05, -1.2475e-04]),
428
- 'boundary.r_cos(4, 0)': tensor([ 1.3698e-04, -2.1361e-04, -5.7761e-04, 8.3187e-05]),
429
- 'boundary.r_cos(4, 1)': tensor([-7.0448e-05, -5.2118e-04, 3.7886e-04, -1.2714e-04]),
430
- 'boundary.r_cos(4, 2)': tensor([ 0.0003, -0.0002, -0.0002, -0.0002]),
431
- 'boundary.r_cos(4, 3)': tensor([-9.0838e-05, -1.6513e-04, 6.7852e-05, 4.1940e-06]),
432
- 'boundary.r_cos(4, 4)': tensor([-6.2693e-06, 1.4236e-06, -3.0395e-05, -4.5643e-05]),
433
- 'boundary.z_sin(0, 1)': tensor([-0.1963, -0.4660, 0.0626, -0.0143]),
434
- 'boundary.z_sin(0, 2)': tensor([ 0.0197, -0.0487, 0.0186, 0.0149]),
435
- 'boundary.z_sin(0, 3)': tensor([-0.0022, -0.0056, 0.0017, -0.0066]),
436
- 'boundary.z_sin(0, 4)': tensor([ 6.1945e-04, -2.5693e-03, 3.3028e-05, -3.0652e-04]),
437
- 'boundary.z_sin(1, -1)': tensor([-0.0737, -0.0783, 0.0069, -0.0228]),
438
- 'boundary.z_sin(1, -2)': tensor([-0.0346, 0.0154, 0.0488, 0.0576]),
439
- 'boundary.z_sin(1, -3)': tensor([-0.0038, -0.0004, 0.0128, -0.0016]),
440
- 'boundary.z_sin(1, -4)': tensor([-5.1524e-04, -2.2537e-03, 1.7765e-03, 9.6958e-05]),
441
- 'boundary.z_sin(1, 0)': tensor([-0.0947, -0.1091, -0.1901, -0.1610]),
442
- 'boundary.z_sin(1, 1)': tensor([0.0144, 0.0656, 0.0731, 0.0166]),
443
- 'boundary.z_sin(1, 2)': tensor([-0.0049, 0.0008, -0.0216, 0.0150]),
444
- 'boundary.z_sin(1, 3)': tensor([ 0.0011, -0.0014, 0.0032, -0.0012]),
445
- 'boundary.z_sin(1, 4)': tensor([ 0.0002, 0.0015, -0.0005, -0.0004]),
446
- 'boundary.z_sin(2, -1)': tensor([-0.0140, 0.0100, 0.0049, -0.0189]),
447
- 'boundary.z_sin(2, -2)': tensor([ 0.0140, 0.0016, -0.0162, -0.0114]),
448
- 'boundary.z_sin(2, -3)': tensor([ 0.0048, -0.0015, -0.0107, 0.0036]),
449
- 'boundary.z_sin(2, -4)': tensor([ 0.0009, 0.0024, -0.0018, -0.0010]),
450
- 'boundary.z_sin(2, 0)': tensor([ 0.0142, -0.0110, 0.0052, -0.0008]),
451
- 'boundary.z_sin(2, 1)': tensor([ 0.0004, -0.0072, -0.0033, 0.0095]),
452
- 'boundary.z_sin(2, 2)': tensor([-0.0008, -0.0030, 0.0036, -0.0005]),
453
- 'boundary.z_sin(2, 3)': tensor([-2.4587e-04, -1.4641e-03, -6.1073e-05, -5.5180e-04]),
454
- 'boundary.z_sin(2, 4)': tensor([-4.4745e-05, 1.1328e-04, -5.3629e-05, 3.2248e-04]),
455
- 'boundary.z_sin(3, -1)': tensor([ 0.0137, 0.0037, -0.0037, 0.0090]),
456
- 'boundary.z_sin(3, -2)': tensor([-0.0037, -0.0089, -0.0025, -0.0084]),
457
- 'boundary.z_sin(3, -3)': tensor([-0.0052, 0.0009, -0.0015, -0.0025]),
458
- 'boundary.z_sin(3, -4)': tensor([-0.0011, 0.0014, -0.0002, 0.0023]),
459
- 'boundary.z_sin(3, 0)': tensor([ 0.0012, -0.0005, -0.0001, -0.0020]),
460
- 'boundary.z_sin(3, 1)': tensor([-0.0007, 0.0040, 0.0003, -0.0016]),
461
- 'boundary.z_sin(3, 2)': tensor([-0.0006, -0.0003, 0.0005, 0.0008]),
462
- 'boundary.z_sin(3, 3)': tensor([ 0.0002, 0.0003, -0.0004, 0.0004]),
463
- 'boundary.z_sin(3, 4)': tensor([-5.6412e-05, 1.0018e-04, 5.2259e-05, -6.8400e-05]),
464
- 'boundary.z_sin(4, -1)': tensor([ 3.2419e-05, -4.5468e-04, 1.1803e-03, 5.0270e-04]),
465
- 'boundary.z_sin(4, -2)': tensor([ 3.0922e-04, -2.3282e-03, -6.1121e-05, 6.0890e-04]),
466
- 'boundary.z_sin(4, -3)': tensor([ 0.0006, 0.0007, -0.0003, -0.0002]),
467
- 'boundary.z_sin(4, -4)': tensor([ 1.5477e-04, 2.9187e-04, 9.7048e-05, -3.6228e-04]),
468
- 'boundary.z_sin(4, 0)': tensor([ 0.0002, 0.0010, -0.0004, -0.0007]),
469
- 'boundary.z_sin(4, 1)': tensor([-6.8060e-04, 6.0775e-04, 4.5423e-04, -7.6356e-05]),
470
- 'boundary.z_sin(4, 2)': tensor([ 0.0002, -0.0004, -0.0003, 0.0002]),
471
- 'boundary.z_sin(4, 3)': tensor([-5.1384e-05, 5.7630e-05, 9.2855e-05, -3.2524e-05]),
472
- 'boundary.z_sin(4, 4)': tensor([ 3.9863e-05, -1.2590e-04, -4.8167e-06, 5.3396e-05]),
473
  'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
474
- 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
475
  'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
476
  'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
477
- 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
478
  'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
479
- 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
480
  'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
481
- 'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw',
482
- 'D6ydRp85utx9ZXqZVXbez8G',
483
- 'DLfSjAoEr26nCNet4S84XET',
484
- 'DBVNupAx3tW54uUz5bGQfyT'],
485
- 'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
486
  'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
487
- 'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
488
- 'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297])}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489
  ```
490
  </details>
491
  </div>
@@ -502,15 +507,15 @@ full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_jso
502
  full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
503
 
504
  plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
505
- boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
506
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
507
  ```
508
  Plot boundary:
509
  ```python
510
  from constellaration.utils import visualization
511
 
512
- visualization.plot_surface(boundary)
513
- visualization.plot_boundary(boundary)
514
  ```
515
  Boundary | Cross-sections
516
  :-------------------------:|:-------------------------:
@@ -520,19 +525,21 @@ Stream and instantiate the VMEC ideal MHD equilibria:
520
  ```python
521
  import datasets
522
  from constellaration.mhd import vmec_utils
 
523
 
524
- ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"]
525
-
526
- ds = ds.filter(lambda row: row["vmecpp_wout_json"] is not None)
527
 
528
- row = next(ds.__iter__())
529
 
530
  vmecpp_wout_json = row["vmecpp_wout_json"]
531
  vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
532
 
533
  # Fetch corresponding boundary
 
 
534
  plasma_config_id = row["plasma_config_id"]
535
- boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
536
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
537
  ```
538
  Plot flux surfaces:
 
368
  import torch
369
  from torch.utils.data import DataLoader
370
 
371
+ full_flat_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
372
+ full_flat_ds = full_flat_ds.select_columns([c for c in full_flat_ds.column_names
373
  if c.startswith("boundary.")
374
  or c.startswith("metrics.")])
375
 
376
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
377
+ ds_torch = full_flat_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
378
 
379
+ for batch in DataLoader(ds_torch, batch_size=4):
 
 
380
  print(batch)
381
  break
382
  ```
 
385
  <summary>Output</summary>
386
 
387
  ```python
388
+ {'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw',
389
+ 'D6ydRp85utx9ZXqZVXbez8G',
390
+ 'DLfSjAoEr26nCNet4S84XET',
391
+ 'DBVNupAx3tW54uUz5bGQfyT'],
392
+ 'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
393
+ 'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297]),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
  'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
395
+ 'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
396
  'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
397
  'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
 
398
  'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
399
+ 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
400
  'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
401
+ 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
402
+ 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
 
 
 
403
  'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
404
+ 'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9949e-01,
405
+ 7.6796e-04, -1.6605e-02, 5.5780e-04, 2.7140e-06],
406
+ [ 9.0751e-04, -3.6262e-03, -2.5385e-02, -7.7356e-02, 2.1363e-01,
407
+ -4.3046e-02, 7.0488e-03, -1.9437e-03, -1.4148e-04],
408
+ [ 1.1192e-03, 6.2549e-03, 2.5220e-02, 2.2216e-02, -1.7012e-02,
409
+ -1.9742e-03, 3.0245e-03, -8.5555e-04, 1.9455e-04],
410
+ [-1.0992e-03, -3.0390e-03, -1.9017e-03, -5.2155e-03, -5.7048e-03,
411
+ 2.0575e-03, -1.1494e-04, 1.6793e-04, -4.5783e-05],
412
+ [ 2.3317e-04, -2.0280e-04, 4.0296e-04, 7.2199e-05, 1.3698e-04,
413
+ -7.0448e-05, 2.9516e-04, -9.0838e-05, -6.2693e-06]],
414
+
415
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9334e-01,
416
+ 9.5655e-02, -5.2197e-02, -9.8426e-03, -5.2107e-04],
417
+ [-6.9068e-04, -2.0027e-04, 1.4961e-03, -4.8040e-02, 1.5062e-01,
418
+ -8.6001e-04, 9.8727e-03, 1.3859e-03, -1.4257e-04],
419
+ [ 2.1268e-03, -5.4152e-03, -1.2367e-02, -1.8891e-02, -2.2634e-02,
420
+ 2.4878e-03, 1.7472e-03, 1.7854e-04, 1.5837e-04],
421
+ [ 2.9863e-04, 1.3137e-03, -3.4623e-03, -5.5232e-03, -2.7664e-04,
422
+ 2.9050e-03, 1.1163e-03, 3.4548e-04, 1.1368e-04],
423
+ [ 7.7059e-05, -2.3845e-04, 4.4021e-04, 1.2212e-04, -2.1361e-04,
424
+ -5.2118e-04, -1.5413e-04, -1.6513e-04, 1.4236e-06]],
425
+
426
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
427
+ 9.7826e-02, -3.5796e-02, 4.3583e-04, 4.1021e-04],
428
+ [ 1.8546e-03, 4.6983e-03, 3.2687e-02, 6.7351e-02, 6.6784e-02,
429
+ -4.2107e-02, 1.4765e-02, -1.3257e-03, -1.3003e-04],
430
+ [-9.6934e-04, -3.8986e-03, -1.0552e-02, -4.2583e-03, -8.3177e-03,
431
+ -6.7278e-05, 3.3263e-04, -1.0408e-03, 2.2868e-04],
432
+ [ 2.6668e-04, 6.7729e-04, 2.6165e-03, 1.2503e-03, -1.4094e-03,
433
+ 9.9661e-04, -8.1563e-04, 4.4246e-04, -1.1460e-04],
434
+ [ 3.5259e-05, -1.1595e-04, -1.3741e-04, 5.9814e-05, -5.7761e-04,
435
+ 3.7886e-04, -1.9925e-04, 6.7852e-05, -3.0395e-05]],
436
+
437
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
438
+ -6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
439
+ [-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
440
+ -4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
441
+ [-3.5474e-04, 4.7144e-03, 8.3967e-04, -1.9705e-02, -9.4592e-03,
442
+ -5.8859e-03, 1.0172e-03, 9.2020e-04, -2.0059e-04],
443
+ [ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
444
+ -5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
445
+ [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
446
+ -1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]]]),
447
+ 'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
448
+ -1.9626e-01, 1.9675e-02, -2.2323e-03, 6.1945e-04],
449
+ [-5.1524e-04, -3.8208e-03, -3.4611e-02, -7.3697e-02, -9.4725e-02,
450
+ 1.4401e-02, -4.8538e-03, 1.1153e-03, 1.8119e-04],
451
+ [ 8.8862e-04, 4.7645e-03, 1.4034e-02, -1.3992e-02, 1.4160e-02,
452
+ 3.7312e-04, -7.9215e-04, -2.4587e-04, -4.4745e-05],
453
+ [-1.1121e-03, -5.1679e-03, -3.6563e-03, 1.3666e-02, 1.2211e-03,
454
+ -7.2069e-04, -6.1250e-04, 2.2509e-04, -5.6412e-05],
455
+ [ 1.5477e-04, 6.2145e-04, 3.0922e-04, 3.2419e-05, 2.4620e-04,
456
+ -6.8060e-04, 1.9615e-04, -5.1384e-05, 3.9863e-05]],
457
+
458
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
459
+ -4.6604e-01, -4.8706e-02, -5.5774e-03, -2.5693e-03],
460
+ [-2.2537e-03, -3.5303e-04, 1.5423e-02, -7.8331e-02, -1.0906e-01,
461
+ 6.5595e-02, 8.1187e-04, -1.4336e-03, 1.4737e-03],
462
+ [ 2.4240e-03, -1.4512e-03, 1.5746e-03, 1.0027e-02, -1.0979e-02,
463
+ -7.1742e-03, -3.0459e-03, -1.4641e-03, 1.1328e-04],
464
+ [ 1.3788e-03, 9.4350e-04, -8.9247e-03, 3.6596e-03, -5.4934e-04,
465
+ 4.0136e-03, -2.9544e-04, 3.2837e-04, 1.0018e-04],
466
+ [ 2.9187e-04, 7.0291e-04, -2.3282e-03, -4.5468e-04, 1.0021e-03,
467
+ 6.0775e-04, -3.5128e-04, 5.7630e-05, -1.2590e-04]],
468
+
469
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
470
+ 6.2592e-02, 1.8552e-02, 1.7140e-03, 3.3028e-05],
471
+ [ 1.7765e-03, 1.2827e-02, 4.8849e-02, 6.8718e-03, -1.9011e-01,
472
+ 7.3130e-02, -2.1610e-02, 3.1883e-03, -5.4797e-04],
473
+ [-1.7520e-03, -1.0653e-02, -1.6171e-02, 4.8786e-03, 5.1656e-03,
474
+ -3.2699e-03, 3.5506e-03, -6.1073e-05, -5.3629e-05],
475
+ [-2.1859e-04, -1.4518e-03, -2.4928e-03, -3.6855e-03, -1.1030e-04,
476
+ 2.5252e-04, 4.9944e-04, -3.5102e-04, 5.2259e-05],
477
+ [ 9.7048e-05, -3.4866e-04, -6.1121e-05, 1.1803e-03, -4.2218e-04,
478
+ 4.5423e-04, -2.6355e-04, 9.2855e-05, -4.8167e-06]],
479
+
480
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
481
+ -1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
482
+ [ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
483
+ 1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
484
+ [-9.9541e-04, 3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
485
+ 9.4527e-03, -4.6871e-04, -5.5180e-04, 3.2248e-04],
486
+ [ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
487
+ -1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
488
+ [-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
489
+ -7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]]]),
490
+ 'boundary.r_sin': tensor([nan, nan, nan, nan]),
491
+ 'boundary.z_cos': tensor([nan, nan, nan, nan]),
492
+ 'boundary.n_field_periods': tensor([5., 2., 5., 3.]),
493
+ 'boundary.is_stellarator_symmetric': tensor([True, True, True, True])}
494
  ```
495
  </details>
496
  </div>
 
507
  full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
508
 
509
  plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
510
+ boundary_json = full_json_df.loc[plasma_config_id]["boundary.json"]
511
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
512
  ```
513
  Plot boundary:
514
  ```python
515
  from constellaration.utils import visualization
516
 
517
+ visualization.plot_surface(boundary).show()
518
+ visualization.plot_boundary(boundary).get_figure().show()
519
  ```
520
  Boundary | Cross-sections
521
  :-------------------------:|:-------------------------:
 
525
  ```python
526
  import datasets
527
  from constellaration.mhd import vmec_utils
528
+ from constellaration.geometry import surface_rz_fourier
529
 
530
+ vmec_wout_ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"]
531
+ vmec_wout_ds = vmec_wout_ds.filter(lambda row: row["vmecpp_wout_json"] is not None)
 
532
 
533
+ row = next(vmec_wout_ds.__iter__())
534
 
535
  vmecpp_wout_json = row["vmecpp_wout_json"]
536
  vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
537
 
538
  # Fetch corresponding boundary
539
+ full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json")["train"]
540
+ full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
541
  plasma_config_id = row["plasma_config_id"]
542
+ boundary_json = full_json_df.loc[plasma_config_id]["boundary.json"]
543
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
544
  ```
545
  Plot flux surfaces: