alexbauer-pf commited on
Commit
d961cd4
·
verified ·
1 Parent(s): 0c94c8c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -296,8 +296,8 @@ The dataset consists of 2 tabular parts. Both parts have a column `plasma_config
296
 
297
  <table>
298
  <tr>
299
- <th style="border-right: 1px solid gray;">full_json/full_flat</th>
300
- <th>vmecpp_ideal_mhd_equilibria</th>
301
  </tr>
302
  <tr>
303
  <td style="border-right: 1px solid gray;">
@@ -309,15 +309,14 @@ The dataset consists of 2 tabular parts. Both parts have a column `plasma_config
309
  <li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
310
  <li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
311
  </ul>
 
312
  </td>
313
- <td>Contains, for each plasma boundary, a JSON representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
314
  </td>
315
  </tr>
316
  </table>
317
 
318
- The `full_json` variant of the dataset contains for each of the components listed about an identifier column (ending with `.id`), as well as a JSON column.
319
-
320
- The `full_flat` variant contains the same information as `full_json` but with all JSON columns flattened into one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
321
 
322
  ## Uses
323
 
@@ -328,6 +327,7 @@ Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an
328
  ```python
329
  import datasets
330
  import torch
 
331
 
332
  ds = datasets.load_dataset(
333
  "proxima-fusion/constellaration",
@@ -508,9 +508,9 @@ row = next(wout_ds.__iter__())
508
 
509
  vmecpp_wout_json = row["json"]
510
  vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
511
- ```
512
 
513
  # Fetch corresponding boundary
 
514
  plasma_config_id = row["plasma_config_id"]
515
  boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
516
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
 
296
 
297
  <table>
298
  <tr>
299
+ <th style="border-right: 1px solid gray;">default</th>
300
+ <th>vmecpp_wout</th>
301
  </tr>
302
  <tr>
303
  <td style="border-right: 1px solid gray;">
 
309
  <li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
310
  <li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
311
  </ul>
312
+ For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
313
  </td>
314
+ <td>Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
315
  </td>
316
  </tr>
317
  </table>
318
 
319
+ The columns `plasma_config_id` and `vmecpp_wout_id` are present in both parts and link the two in both directions.
 
 
320
 
321
  ## Uses
322
 
 
327
  ```python
328
  import datasets
329
  import torch
330
+ from pprint import pprint
331
 
332
  ds = datasets.load_dataset(
333
  "proxima-fusion/constellaration",
 
508
 
509
  vmecpp_wout_json = row["json"]
510
  vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
 
511
 
512
  # Fetch corresponding boundary
513
+
514
  plasma_config_id = row["plasma_config_id"]
515
  boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
516
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)