pujanpaudel commited on
Commit
1bb301b
·
verified ·
1 Parent(s): 6e989f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -1
README.md CHANGED
@@ -10,7 +10,7 @@ dataset_info:
10
  num_bytes: 5844021677.902
11
  num_examples: 7481
12
  - name: test
13
- num_bytes: 526633107.0
14
  num_examples: 726
15
  download_size: 5452408390
16
  dataset_size: 6370654784.902
@@ -21,4 +21,62 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  num_bytes: 5844021677.902
11
  num_examples: 7481
12
  - name: test
13
+ num_bytes: 526633107
14
  num_examples: 726
15
  download_size: 5452408390
16
  dataset_size: 6370654784.902
 
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
24
+ license: mit
25
+ task_categories:
26
+ - automatic-speech-recognition
27
+ language:
28
+ - ne
29
  ---
30
+
31
+ # Nepali Speech-to-Text Dataset
32
+
33
+ This repository contains a dataset for **Automatic Speech Recognition (ASR)** in the **Nepali language**. The dataset is designed for supervised learning tasks and includes **audio files along with their corresponding transcriptions**. The audio samples have been **collected from various open-source platforms and other publicly available sources** on the internet.
34
+
35
+ Each audio file has an average length of **15 seconds** and has been **converted into a consistent WAV format** for ease of processing.
36
+
37
+ ## Dataset Structure
38
+
39
+ The dataset is **split into training and testing sets**:
40
+ - **Training Data:** Contains a diverse set of Nepali speech samples from multiple sources.
41
+ - **Testing Data:** Includes the **Fleurs test data for Nepali** to ensure evaluation consistency.
42
+
43
+ ## Audio Data Overview
44
+
45
+ The total dataset contains **approximately 22.87 hours** of audio. Below is the breakdown of the dataset:
46
+
47
+ ### Table 1: Audio data length from different sources
48
+
49
+ | **Dataset** | **Audio size (Hrs)** |
50
+ |-----------------------------|----------------------|
51
+ | Common Voice 20 | 1.71 |
52
+ | Google Fleurs | 14.38 |
53
+ | OpenSLR 143 | 1.24 |
54
+ | OpenSLR 43 | 2.80 |
55
+ | Nepali Parliament Audio | 2.74 |
56
+ | **Total** | **22.87** |
57
+
58
+ The dataset includes **high variability** in terms of **speakers (age groups, genders), noisy environments, different dialects, and various acoustic conditions**, making it robust for ASR training.
59
+
60
+ ## Important Notes
61
+
62
+ - The dataset is in **raw form**, meaning **preprocessing and other corrections may be required** before training an ASR model.
63
+ - The transcriptions have been obtained from open datasets and may contain **errors or inconsistencies** that need to be addressed during data preparation.
64
+
65
+ ## References
66
+
67
+ - **Conneau, A., Ma, M., Khanuja, S., Zhang, Y., Axelrod, V., Dalmia, S., Riesa, J., Rivera, C., & Bapna, A. (2022).**
68
+ *FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech.*
69
+ arXiv preprint arXiv:2205.12446. [Link](https://arxiv.org/abs/2205.12446)
70
+
71
+ - **Sodimana, K., Pipatsrisawat, K., Ha, L., Jansche, M., Kjartansson, O., De Silva, P., & Sarin, S. (2018).**
72
+ *A Step-by-Step Process for Building TTS Voices Using Open Source Data and Framework for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese.*
73
+ Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU), Gurugram, India, pp. 66-70.
74
+ [DOI Link](http://dx.doi.org/10.21437/SLTU.2018-14)
75
+
76
+ - **Khadka, S., G.C., R., Paudel, P., Shah, R., & Joshi, B. (2023).**
77
+ *Nepali Text-to-Speech Synthesis using Tacotron2 for Melspectrogram Generation.*
78
+ SIGUL 2023, 2nd Annual Meeting of the Special Interest Group on Under-resourced Languages: a Satellite Workshop of Interspeech 2023.
79
+
80
+ - **Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M., & Weber, G. (2020).**
81
+ *Common Voice: A Massively-Multilingual Speech Corpus.*
82
+ Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pp. 4211-4215.