Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
Nepali
Size:
1K - 10K
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ dataset_info:
|
|
10 |
num_bytes: 5844021677.902
|
11 |
num_examples: 7481
|
12 |
- name: test
|
13 |
-
num_bytes: 526633107
|
14 |
num_examples: 726
|
15 |
download_size: 5452408390
|
16 |
dataset_size: 6370654784.902
|
@@ -21,4 +21,62 @@ configs:
|
|
21 |
path: data/train-*
|
22 |
- split: test
|
23 |
path: data/test-*
|
|
|
|
|
|
|
|
|
|
|
24 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
num_bytes: 5844021677.902
|
11 |
num_examples: 7481
|
12 |
- name: test
|
13 |
+
num_bytes: 526633107
|
14 |
num_examples: 726
|
15 |
download_size: 5452408390
|
16 |
dataset_size: 6370654784.902
|
|
|
21 |
path: data/train-*
|
22 |
- split: test
|
23 |
path: data/test-*
|
24 |
+
license: mit
|
25 |
+
task_categories:
|
26 |
+
- automatic-speech-recognition
|
27 |
+
language:
|
28 |
+
- ne
|
29 |
---
|
30 |
+
|
31 |
+
# Nepali Speech-to-Text Dataset
|
32 |
+
|
33 |
+
This repository contains a dataset for **Automatic Speech Recognition (ASR)** in the **Nepali language**. The dataset is designed for supervised learning tasks and includes **audio files along with their corresponding transcriptions**. The audio samples have been **collected from various open-source platforms and other publicly available sources** on the internet.
|
34 |
+
|
35 |
+
Each audio file has an average length of **15 seconds** and has been **converted into a consistent WAV format** for ease of processing.
|
36 |
+
|
37 |
+
## Dataset Structure
|
38 |
+
|
39 |
+
The dataset is **split into training and testing sets**:
|
40 |
+
- **Training Data:** Contains a diverse set of Nepali speech samples from multiple sources.
|
41 |
+
- **Testing Data:** Includes the **Fleurs test data for Nepali** to ensure evaluation consistency.
|
42 |
+
|
43 |
+
## Audio Data Overview
|
44 |
+
|
45 |
+
The total dataset contains **approximately 22.87 hours** of audio. Below is the breakdown of the dataset:
|
46 |
+
|
47 |
+
### Table 1: Audio data length from different sources
|
48 |
+
|
49 |
+
| **Dataset** | **Audio size (Hrs)** |
|
50 |
+
|-----------------------------|----------------------|
|
51 |
+
| Common Voice 20 | 1.71 |
|
52 |
+
| Google Fleurs | 14.38 |
|
53 |
+
| OpenSLR 143 | 1.24 |
|
54 |
+
| OpenSLR 43 | 2.80 |
|
55 |
+
| Nepali Parliament Audio | 2.74 |
|
56 |
+
| **Total** | **22.87** |
|
57 |
+
|
58 |
+
The dataset includes **high variability** in terms of **speakers (age groups, genders), noisy environments, different dialects, and various acoustic conditions**, making it robust for ASR training.
|
59 |
+
|
60 |
+
## Important Notes
|
61 |
+
|
62 |
+
- The dataset is in **raw form**, meaning **preprocessing and other corrections may be required** before training an ASR model.
|
63 |
+
- The transcriptions have been obtained from open datasets and may contain **errors or inconsistencies** that need to be addressed during data preparation.
|
64 |
+
|
65 |
+
## References
|
66 |
+
|
67 |
+
- **Conneau, A., Ma, M., Khanuja, S., Zhang, Y., Axelrod, V., Dalmia, S., Riesa, J., Rivera, C., & Bapna, A. (2022).**
|
68 |
+
*FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech.*
|
69 |
+
arXiv preprint arXiv:2205.12446. [Link](https://arxiv.org/abs/2205.12446)
|
70 |
+
|
71 |
+
- **Sodimana, K., Pipatsrisawat, K., Ha, L., Jansche, M., Kjartansson, O., De Silva, P., & Sarin, S. (2018).**
|
72 |
+
*A Step-by-Step Process for Building TTS Voices Using Open Source Data and Framework for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese.*
|
73 |
+
Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU), Gurugram, India, pp. 66-70.
|
74 |
+
[DOI Link](http://dx.doi.org/10.21437/SLTU.2018-14)
|
75 |
+
|
76 |
+
- **Khadka, S., G.C., R., Paudel, P., Shah, R., & Joshi, B. (2023).**
|
77 |
+
*Nepali Text-to-Speech Synthesis using Tacotron2 for Melspectrogram Generation.*
|
78 |
+
SIGUL 2023, 2nd Annual Meeting of the Special Interest Group on Under-resourced Languages: a Satellite Workshop of Interspeech 2023.
|
79 |
+
|
80 |
+
- **Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M., & Weber, G. (2020).**
|
81 |
+
*Common Voice: A Massively-Multilingual Speech Corpus.*
|
82 |
+
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pp. 4211-4215.
|