--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string splits: - name: train num_bytes: 5844021677.902 num_examples: 7481 - name: test num_bytes: 526633107 num_examples: 726 download_size: 5452408390 dataset_size: 6370654784.902 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: mit task_categories: - automatic-speech-recognition language: - ne --- # Nepali Speech-to-Text Dataset This repository contains a dataset for **Automatic Speech Recognition (ASR)** in the **Nepali language**. The dataset is designed for supervised learning tasks and includes **audio files along with their corresponding transcriptions**. The audio samples have been **collected from various open-source platforms and other publicly available sources** on the internet. Each audio file has an average length of **15 seconds** and has been **converted into a consistent WAV format** for ease of processing. ## Dataset Structure The dataset is **split into training and testing sets**: - **Training Data:** Contains a diverse set of Nepali speech samples from multiple sources. - **Testing Data:** Includes the **Fleurs test data for Nepali** to ensure evaluation consistency. ## Audio Data Overview The total dataset contains **approximately 22.87 hours** of audio. Below is the breakdown of the dataset: ### Table 1: Audio data length from different sources | **Dataset** | **Audio size (Hrs)** | |-----------------------------|----------------------| | Common Voice 20 | 1.71 | | Google Fleurs | 14.38 | | OpenSLR 143 | 1.24 | | OpenSLR 43 | 2.80 | | Nepali Parliament Audio | 2.74 | | **Total** | **22.87** | The dataset includes **high variability** in terms of **speakers (age groups, genders), noisy environments, different dialects, and various acoustic conditions**, making it robust for ASR training. ## Important Notes - The dataset is in **raw form**, meaning **preprocessing and other corrections may be required** before training an ASR model. - The transcriptions have been obtained from open datasets and may contain **errors or inconsistencies** that need to be addressed during data preparation. ## References - **Conneau, A., Ma, M., Khanuja, S., Zhang, Y., Axelrod, V., Dalmia, S., Riesa, J., Rivera, C., & Bapna, A. (2022).** *FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech.* arXiv preprint arXiv:2205.12446. [Link](https://arxiv.org/abs/2205.12446) - **Sodimana, K., Pipatsrisawat, K., Ha, L., Jansche, M., Kjartansson, O., De Silva, P., & Sarin, S. (2018).** *A Step-by-Step Process for Building TTS Voices Using Open Source Data and Framework for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese.* Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU), Gurugram, India, pp. 66-70. [DOI Link](http://dx.doi.org/10.21437/SLTU.2018-14) - **Khadka, S., G.C., R., Paudel, P., Shah, R., & Joshi, B. (2023).** *Nepali Text-to-Speech Synthesis using Tacotron2 for Melspectrogram Generation.* SIGUL 2023, 2nd Annual Meeting of the Special Interest Group on Under-resourced Languages: a Satellite Workshop of Interspeech 2023. - **Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M., & Weber, G. (2020).** *Common Voice: A Massively-Multilingual Speech Corpus.* Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pp. 4211-4215.