File size: 8,435 Bytes
98f425b efe5396 0829d87 84275f1 cbf709e 31d61e6 ca38505 31d61e6 262d6d8 8d18f20 523e414 b3e55e2 1ff9050 220681a 1ff9050 afa318b 98f425b cb496c0 78d6653 cb496c0 98f425b 3c065f8 98f425b efe5396 84275f1 31d61e6 8d18f20 b3e55e2 98f425b 274591f fcb0bf2 274591f 4916b93 274591f 4916b93 c7df756 4916b93 d554c4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
---
dataset_info:
- config_name: issue_comments
features:
- name: user
dtype: string
- name: created_at
dtype: timestamp[us]
- name: body
dtype: string
- name: issue_number
dtype: int64
splits:
- name: train
num_bytes: 4224585
num_examples: 8587
download_size: 1677910
dataset_size: 4224585
- config_name: issues
features:
- name: number
dtype: int64
- name: title
dtype: string
- name: user
dtype: string
- name: state
dtype: string
- name: created_at
dtype: timestamp[us]
- name: closed_at
dtype: timestamp[us]
- name: comments_count
dtype: int64
splits:
- name: train
num_bytes: 271785
num_examples: 2550
download_size: 159333
dataset_size: 271785
- config_name: models
features:
- name: id
dtype: string
- name: created_at
dtype: timestamp[us, tz=UTC]
- name: likes
dtype: int64
- name: downloads
dtype: int64
- name: tags
sequence: string
splits:
- name: train
num_bytes: 15219515
num_examples: 47485
download_size: 2245503
dataset_size: 15219515
- config_name: models_likes
features:
- name: user
dtype: string
- name: model_id
dtype: string
- name: liked_at
dtype: timestamp[s, tz=UTC]
splits:
- name: train
num_bytes: 340859.0
num_examples: 5544
download_size: 154646
dataset_size: 340859.0
- config_name: pypi_downloads
features:
- name: day
dtype: date32
- name: num_downloads
dtype: int64
splits:
- name: train
num_bytes: 19440.0
num_examples: 1620
download_size: 15053
dataset_size: 19440.0
- config_name: stargazers
features:
- name: starred_at
dtype: timestamp[s, tz=UTC]
- name: user
dtype: string
splits:
- name: train
num_bytes: 231795
num_examples: 10842
download_size: 224821
dataset_size: 231795
configs:
- config_name: issue_comments
data_files:
- split: train
path: issue_comments/train-*
- config_name: issues
data_files:
- split: train
path: issues/train-*
- config_name: models
data_files:
- split: train
path: models/train-*
- config_name: models_likes
data_files:
- split: train
path: models_likes/train-*
- config_name: pypi_downloads
data_files:
- split: train
path: pypi_downloads/train-*
- config_name: stargazers
data_files:
- split: train
path: stargazers/train-*
---
## Stars
```python
import requests
from datetime import datetime
from datasets import Dataset
import pyarrow as pa
import os
def get_stargazers(owner, repo, token):
# Initialize the count and the page number
page = 1
stargazers = []
while True:
# Construct the URL for the stargazers with pagination
stargazers_url = f"https://api.github.com/repos/{owner}/{repo}/stargazers?page={page}&per_page=100"
# Send the request to GitHub API with appropriate headers
headers = {"Accept": "application/vnd.github.v3.star+json", "Authorization": "token " + token}
response = requests.get(stargazers_url, headers=headers)
if response.status_code != 200:
raise Exception(f"Failed to fetch stargazers with status code {response.status_code}: {response.text}")
stargazers_page = response.json()
if not stargazers_page: # Exit the loop if there are no more stargazers to process
break
stargazers.extend(stargazers_page)
page += 1 # Move to the next page
return stargazers
token = os.environ.get("GITHUB_PAT")
stargazers = get_stargazers("huggingface", "trl", token)
stargazers = {key: [stargazer[key] for stargazer in stargazers] for key in stargazers[0].keys()}
dataset = Dataset.from_dict(stargazers)
def clean(example):
starred_at = datetime.strptime(example["starred_at"], "%Y-%m-%dT%H:%M:%SZ")
starred_at = pa.scalar(starred_at, type=pa.timestamp("s", tz="UTC"))
return {"starred_at": starred_at, "user": example["user"]["login"]}
dataset = dataset.map(clean, remove_columns=dataset.column_names)
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="stargazers")
```
## Pypi downloads
```python
from datasets import Dataset
from google.cloud import bigquery
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "propane-tree-432413-4c3e2b5e6b3c.json"
# Initialize a BigQuery client
client = bigquery.Client()
# Define your query
query = """
#standardSQL
WITH daily_downloads AS (
SELECT
DATE(timestamp) AS day,
COUNT(*) AS num_downloads
FROM
`bigquery-public-data.pypi.file_downloads`
WHERE
file.project = 'trl'
-- Filter for the last 12 months
AND DATE(timestamp) BETWEEN DATE_SUB(CURRENT_DATE(), INTERVAL 54 MONTH) AND CURRENT_DATE()
GROUP BY
day
)
SELECT
day,
num_downloads
FROM
daily_downloads
ORDER BY
day DESC
"""
# Execute the query
query_job = client.query(query)
# Fetch the results
results = query_job.result()
# Convert the results to a pandas DataFrame and then to a Dataset
df = results.to_dataframe()
dataset = Dataset.from_pandas(df)
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="pypi_downloads")
```
## Models tagged
```python
from huggingface_hub import HfApi
from datasets import Dataset
api = HfApi()
models = api.list_models(tags="trl")
dataset_list = [{"id": model.id, "created_at": model.created_at, "likes": model.likes, "downloads": model.downloads, "tags": model.tags} for model in models]
dataset_dict = {key: [d[key] for d in dataset_list] for key in dataset_list[0].keys()}
dataset = Dataset.from_dict(dataset_dict)
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="models")
```
## Issues and comments
```python
import requests
from datetime import datetime
import os
from datasets import Dataset
from tqdm import tqdm
token = os.environ.get("GITHUB_PAT")
def get_full_response(url, headers, params=None):
page = 1
output = []
params = params or {}
while True:
params = {**params, "page": page, "per_page": 100}
response = requests.get(url, headers=headers, params=params)
if response.status_code != 200:
raise Exception(f"Failed to fetch issues: {response.text}")
batch = response.json()
if len(batch) == 0:
break
output.extend(batch)
page += 1
return output
# GitHub API URL for issues (closed and open)
issues_url = f"https://api.github.com/repos/huggingface/trl/issues"
# Set up headers for authentication
headers = {"Authorization": f"token {token}", "Accept": "application/vnd.github.v3+json"}
# Make the request
issues = get_full_response(issues_url, headers, params={"state": "all"})
issues_dataset_dict = {
"number": [],
"title": [],
"user": [],
"state": [],
"created_at": [],
"closed_at": [],
"comments_count": [],
}
comments_dataset_dict = {
"user": [],
"created_at": [],
"body": [],
"issue_number": [],
}
for issue in tqdm(issues):
# Extract relevant information
issue_number = issue["number"]
title = issue["title"]
created_at = datetime.strptime(issue["created_at"], "%Y-%m-%dT%H:%M:%SZ")
comments_count = issue["comments"]
comments_url = issue["comments_url"]
comments = get_full_response(comments_url, headers=headers)
for comment in comments:
comments_dataset_dict["user"].append(comment["user"]["login"])
comments_dataset_dict["created_at"].append(datetime.strptime(comment["created_at"], "%Y-%m-%dT%H:%M:%SZ"))
comments_dataset_dict["body"].append(comment["body"])
comments_dataset_dict["issue_number"].append(issue_number)
issues_dataset_dict["number"].append(issue_number)
issues_dataset_dict["title"].append(title)
issues_dataset_dict["user"].append(issue["user"]["login"])
issues_dataset_dict["state"].append(issue["state"])
issues_dataset_dict["created_at"].append(datetime.strptime(issue["created_at"], "%Y-%m-%dT%H:%M:%SZ"))
issues_dataset_dict["closed_at"].append(datetime.strptime(issue["closed_at"], "%Y-%m-%dT%H:%M:%SZ") if issue["closed_at"] else None)
issues_dataset_dict["comments_count"].append(comments_count)
issues_dataset = Dataset.from_dict(issues_dataset_dict)
comments_dataset = Dataset.from_dict(comments_dataset_dict)
issues_dataset.push_to_hub("qgallouedec/trl-metrics", config_name="issues")
comments_dataset.push_to_hub("qgallouedec/trl-metrics", config_name="issue_comments")
```
|