#!/usr/bin/env python # coding: utf-8 # Cleaned and enhanced InternVideo2 6B evaluation script with structured logging # Source: import os import sys import subprocess import logging import json import argparse from pathlib import Path import numpy as np import cv2 import torch from tqdm import tqdm from huggingface_hub import hf_hub_download, HfApi, login def setup_logging(log_level=logging.INFO, log_file=None): handlers = [] fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' if log_file: handlers.append(logging.FileHandler(log_file)) handlers.append(logging.StreamHandler(sys.stdout)) logging.basicConfig(level=log_level, format=fmt, handlers=handlers) logging.info("Logging initialized.") def run_command(cmd, cwd=None): logging.debug(f"Running command: {cmd} (cwd={cwd})") result = subprocess.run(cmd, shell=True, cwd=cwd, capture_output=True, text=True) if result.returncode != 0: logging.error(f"Command failed: {cmd}\nSTDOUT: {result.stdout}\nSTDERR: {result.stderr}") raise RuntimeError(f"Command '{cmd}' failed (exit code {result.returncode})") logging.debug(f"Command succeeded, output: {result.stdout.strip()}") return result.stdout.strip() def download_checkpoint(repo_id: str, filename: str) -> str: logging.info(f"Downloading {filename} from {repo_id}...") path = hf_hub_download(repo_id=repo_id, filename=filename) logging.info(f"Downloaded vision checkpoint to {path}") return path def load_config(config_path: str, vision_ckpt_path: str): from demo.config import Config, eval_dict_leaf logging.info(f"Loading config from {config_path}") cfg = Config.from_file(config_path) cfg = eval_dict_leaf(cfg) cfg.model.vision_ckpt_path = vision_ckpt_path cfg.model.vision_encoder.pretrained = vision_ckpt_path cfg.pretrained_path = vision_ckpt_path logging.debug(f"Config loaded: {cfg}") return cfg def process_videos( json_path: str, model, config, output_prefix: str, num_frames_override: int = None ): """ Run inference over each video, write outputs. If num_frames_override is given, use it; otherwise use config.num_frames. """ from demo.utils import retrieve_text, _frame_from_video logging.info(f"Reading evaluation data from {json_path}") data = json.loads(Path(json_path).read_text()) preds, logits = [], [] # choose frame window size num_frames = num_frames_override if num_frames_override is not None else config.num_frames logging.info(f"Using window size: {num_frames} frames") for video_path, phrase, _ in data: logging.info("\n--- Starting new video ---") full_video = Path("photography-model") / video_path logging.info(f"Processing {full_video} with phrase '{phrase}'") frames = list(_frame_from_video(cv2.VideoCapture(str(full_video)))) scores = [] for j in tqdm(range(len(frames) - (num_frames - 1)), desc=Path(video_path).stem): _, probs = retrieve_text( frames[j : j + num_frames], [phrase], model=model, topk=1, config=config ) scores.append(probs[0]) best_idx = int(np.argmax(scores) + 1) preds.append(best_idx) logits.append(list(zip(map(float, scores), range(1, len(scores) + 1)))) logging.info(f"Video result: predicted frame {best_idx}\n") preds_file = f"{output_prefix}-t{num_frames}.json" logits_file = f"{output_prefix}-logits-t{num_frames}.json" logging.info(f"Writing predictions to {preds_file}") Path(preds_file).write_text(json.dumps(preds, indent=2)) logging.info(f"Writing logits to {logits_file}") Path(logits_file).write_text(json.dumps(logits, indent=2)) return preds_file, logits_file def upload_results(token: str, upload_files: list, repo_id: str): logging.info("Logging into Hugging Face Hub...") login(token) api = HfApi() for file_path in upload_files: logging.info(f"Uploading {file_path} to {repo_id}") api.upload_file( path_or_fileobj=file_path, path_in_repo=Path(file_path).name, repo_id=repo_id, repo_type="dataset", ) logging.info("Upload complete.") def main(): parser = argparse.ArgumentParser( description="Evaluate InternVideo2 sliding-window retrieval." ) parser.add_argument( "--branch", type=str, default="main", help="Branch to use for evaluation." ) parser.add_argument( "--num_frames", type=int, default=None, help="Manually set the number of frames per window." ) args = parser.parse_args() setup_logging() # ensure IV2 repo iv2_path = Path('~/IV2').expanduser() if not iv2_path.exists(): logging.info("Cloning IV2 repository...") run_command('git clone https://github.com/qingy1337/IV2.git ~/IV2') os.chdir(iv2_path / 'InternVideo2' / 'multi_modality') sys.path.append(os.getcwd()) run_command(f'git checkout {args.branch}', cwd=os.getcwd()) MODEL_NAME = '6B' vision_ckpt = download_checkpoint( repo_id="OpenGVLab/InternVideo2-Stage2_6B-224p-f4", filename="internvideo2-s2_6b-224p-f4.pt" ) config = load_config('scripts/pretraining/stage2/6B/config.py', vision_ckpt) from demo.utils import setup_internvideo2 model, tokenizer = setup_internvideo2(config) if not Path('photography-model').exists(): run_command('git clone https://github.com/ruo2019/photography-model.git') prefix = f"ACT75-V5-InternVideo-{MODEL_NAME}" preds_file, logits_file = process_videos( 'photography-model/data/ACT75.json', model, config, prefix, num_frames_override=args.num_frames ) upload_results( os.getenv('HF_TOKEN', ''), [preds_file, logits_file], 'qingy2024/InternVideo2-Data' ) if __name__ == '__main__': main()