import pyarrow.parquet as pq import pyarrow as pa from PIL import Image import io import pandas as pd def is_image_corrupt(image_dict): try: image_bytes = image_dict['bytes'] image = Image.open(io.BytesIO(image_bytes)) image.verify() return False except (IOError, SyntaxError, KeyError) as e: return True def process_parquet_file(file_path, output_file_path): table = pq.read_table(file_path) df = table.to_pandas() image_column = 'image' clean_indices = [] corrupt_indices = [] for i, image_dict in enumerate(df[image_column]): if is_image_corrupt(image_dict): corrupt_indices.append(i) else: clean_indices.append(i) clean_df = df.iloc[clean_indices] clean_table = pa.Table.from_pandas(clean_df) pq.write_table(clean_table, output_file_path) print(f"File {file_path}: {len(corrupt_indices)} corrupt images were removed.") for i in range(5): input_file_path = f'data/train-0000{i}-of-00005.parquet' output_file_path = f'data/train-0000{i}-of-00005.parquet' process_parquet_file(input_file_path, output_file_path)