{"problem_id": "p02392", "p_user": "u765185763", "n_user": "u106088354", "pos": "a, b, c = map(int, input(). split())\nif a < b and b B and C > A and B > A:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "A,B,C = map(int,input().split())\nif C > B and C > A:\n print(\"Yes\")\nprint(\"No\")\n\n", "jacc_sim": 0.9523809523809523, "before_after_length": [44, 37], "nl": "Title: Range\n\nWrite a program that takes three integers a, b, and c as input and prints \"Yes\" if a < b < c, otherwise \"No\".\n\nInput:\nThree integers a, b, and c separated by a single space are given in a line.\n\nOutput:\nPrint \"Yes\" or \"No\" in a line.\n\nConstraints:\n0 \u2264 a, b, c \u2264 100\n\nSample Input 1:\n1 3 8\n\nSample Output 1:\nYes\n\nSample Input 2:\n3 8 1\n\nSample Output 2:\nNo", "diff_info": " and B > Aelse:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02392", "p_user": "u396644496", "n_user": "u775160104", "pos": "a, b, c = map(int,input().split())\nif a b > c:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9047619047619048, "before_after_length": [56, 37], "nl": "Title: Range\n\nWrite a program that takes three integers a, b, and c as input and prints \"Yes\" if a < b < c, otherwise \"No\".\n\nInput:\nThree integers a, b, and c separated by a single space are given in a line.\n\nOutput:\nPrint \"Yes\" or \"No\" in a line.\n\nConstraints:\n0 \u2264 a, b, c \u2264 100\n\nSample Input 1:\n1 3 8\n\nSample Output 1:\nYes\n\nSample Input 2:\n3 8 1\n\nSample Output 2:\nNo", "diff_info": " \n>< b:\n if>< \")\n \n else:\n print(\"No\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02392", "p_user": "u932925375", "n_user": "u423320231", "pos": "a,b,c=list(map(int,input().split()))\nif a x:\n break\n print(cnt)", "neg": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\n cnt = 0\n for i in range(1, n+1):\n for j in range(i+1, n+1):\n for k in range(j+1, n+1):\n if (i + j + k) == x:\n cnt += 1\n elif (i + j + K) > x:\n break\n print cnt", "jacc_sim": 0.967741935483871, "before_after_length": [124, 122], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "Kk ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u610816226", "n_user": "u610816226", "pos": "n = 0\nwhile 1:\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n break\n else:\n for i in range(1, a+1):\n for j in range(1, i):\n for k in range(1, j):\n if i + j + k == b:\n n += 1\n print(n)\n n = 0\n \n", "neg": "n = 0\nwhile 1:\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n break\n else:\n for i in range(1, a+1):\n for j in range(1, i):\n for k in range(1, j):\n if i + j + k = b:\n n += 1\n print(n)\n \n", "jacc_sim": 1.0, "before_after_length": [104, 99], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "=n=0 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u826095884", "n_user": "u144068724", "pos": "while(True):\n n,x=map(int,input().split())\n \n if n == 0 and x==0:\n break\n \n count = 0\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1,n+1):\n if i+j+k == x:\n count += 1\n \n print(count)\n \n", "neg": "while 1:\n n,x = map(int,input().split())\n count == 0\n if n == 0 and x == 0:\n break\n\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1,n+1):\n if i + j + k == x:\n count += 1\n print(count)", "jacc_sim": 0.9642857142857143, "before_after_length": [111, 102], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " 1(True) \n if n == 0 and x==0:\n break\n \n =iornii== 0 ad range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1,n+1):\n if i+j+k == == 0:\n break\n\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1,n+1):\n if i + j + k == x\n \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u535719732", "n_user": "u535719732", "pos": "while True:\n num = list(map(int,input().split()))\n if(num[0] == 0 and num[1] == 0): break\n c = 0\n for i in range(1,num[0]+1):\n for j in range(i+1,num[0]+1):\n if j <= i:\n continue\n k = num[1]-(i+j)\n if k > j and k <= num[0]:\n c+= 1\n print(c)\n", "neg": "while True:\n num = list(map(int,input().split()))\n if(num[0] == 0 and num[1] == 0): break\n c = 0\n for i in range(1,num[0]+1):\n for j in range(1,num[0]+1):\n if j <= i:\n continue\n k = num[1]-(i+j)\n if k > j and k <= num[1]:\n c+= 1\n print(c)\n", "jacc_sim": 1.0, "before_after_length": [124, 122], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "i+10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u340901659", "n_user": "u340901659", "pos": "def solve(n,x):\n count = 0\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n k = x - i - j\n if j < k and k <= n:\n count += 1\n return count\n\nwhile True:\n n,x = map(int,input().split())\n if n == x == 0:\n break;\n print(solve(n,x))", "neg": "def solve(n,x):\n count = 0\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n k = x - i -j\n if j < b and b <= n:\n count += 1\n return count//6\n\nwhile True:\n n,x = map(int,input().split())\n if n == x == 0:\n break;\n print(solve(n,x))", "jacc_sim": 0.918918918918919, "before_after_length": [111, 113], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " bkbk//6", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u424457654", "n_user": "u424457654", "pos": "while True:\n n, x = map(int, input().split())\n if n == x == 0:\n break\n Sum = 0\n count = 0\n for a in range(1, n + 1):\n for b in range(a + 1, n + 1):\n for c in range(b + 1, n + 1):\n Sum = a + b + c\n if Sum == x:\n count = count + 1\n print(count)", "neg": "while True:\n n, x = map(int(input().split()))\n if n == x == 0:\n break\n Sum = 0\n count = 0\n for a in range(1, n):\n for b in range(1, n):\n for c in range(1, n):\n Sum = a + b + c\n if Sum == x:\n count = count + 1\n print(count)", "jacc_sim": 1.0, "before_after_length": [105, 96], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "(, ) + 1a1,+ 1, + 1b1,+ 1, + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u138628845", "n_user": "u138628845", "pos": "ele_and_tar = []\nrs = []\nflag1 = 1\nflag2 = 0\nwhile flag1:\n data = [int(x) for x in input().split()]\n if data == [0,0]:\n flag1 = 0\n else:\n ele_and_tar.append(data)\n \nfor i in range(len(ele_and_tar)):\n rs.append(0)\nfor math in ele_and_tar:\n for i in range(1,math[0]+1):\n for j in range(i+1,math[0]+1):\n for k in range(j+1,math[0]+1):\n if (i + j + k) == math[1]:\n rs[flag2] = rs[flag2] + 1\n flag2 = flag2 + 1\n \nfor out in rs:\n print(out)\n\n", "neg": "ele_and_tar = []\nrs = []\nflag1 = 1\nflag2 = 0\nwhile flag1:\n data = [int(x) for x in input().split()]\n if data == [0,0]:\n flag1 = 0\n else:\n ele_and_tar.append(data)\n \nfor i in range(len(ele_and_tar)):\n rs.append(0)\nfor math in ele_and_tar:\n for i in range(1,math[0]+1):\n for j in range(i+1,math[0]+1):\n for k in range(j+1,math[0]+1):\n if (i + j + k) == math[1]:\n rs[flag2] = rs[flag2] + 1\n flag2 = flag2 + 1\n", "jacc_sim": 0.9411764705882353, "before_after_length": [214, 199], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " \nfor out in rs:\n print(out)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u104171359", "n_user": "u104171359", "pos": "#!/usr/local/env python3\n\nimport sys\n\n\ndef main():\n while True:\n count = 0\n n, r = map(int, sys.stdin.readline().split())\n if n == r == 0:\n break\n for n1 in range(1, n-1):\n for n2 in range(n1+1, n):\n for n3 in range(n2+1, n+1):\n if n1 + n2 + n3 == r:\n count += 1\n print(count)\n\n\nif __name__ == '__main__':\n main()", "neg": "#!/usr/local/env python3\n\nimport sys\n\n\ndef main():\n while True:\n count = 0\n n, r = map(int, sys.stdin.readline().split())\n if n == r == 0:\n break\n for n1 in range(1, n-1):\n for n2 in range(n1+1, n):\n for n3 in range(n2+1, n+1):\n print('n1: %d, n2: %d, n3: %d' % (n1, n2, n3))\n if n1 + n2 + n3 == r:\n count += 1\n print('count: %d' % count)\n print(count)\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9555555555555556, "before_after_length": [148, 193], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "if n1 + n2 + n3 == r:\n count += 1\n count)\n\n\nif __name__ == __mai__1: %d, n2: %d, n3: %d % (n1, n2, n3))\n if n1 + n2 + n3 == r count += 1\n print('count: %d' % count)\n print(count)\n\n\nif __nae__ == '__m__':\n main", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u805716376", "n_user": "u805716376", "pos": "while 1:\n n, x = map(int, input().split())\n if n == x == 0:\n break\n cnt = 0\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1, n+1):\n if i+j+k == x:\n cnt += 1\n print(cnt)\n", "neg": "n, x = map(int, input().split())\ncnt = 0\nfor i in range(n):\n for j in range(i+1,n):\n for k in range(j+1, n):\n if i+j+k == x:\n cnt += 1\nprint(cnt)\n", "jacc_sim": 0.9230769230769231, "before_after_length": [100, 72], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "while 1:\n if n == x == 0:\n break\n 1,+1 +1 +1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u281808376", "n_user": "u281808376", "pos": "def a():\n data_set=[]\n while True:\n s=input().split()\n data_set.append(s)\n if [\"0\",\"0\"] in data_set:\n break\n data_set=data_set[:-1]\n import itertools\n for i in data_set:\n count=0\n n=int(i[0])\n x=int(i[1])\n num=list(itertools.combinations(range(1,n+1),3))\n for j in num:\n if sum(j)==x:\n count+=1\n print(count)\na()\n", "neg": "def a():\n data_set=[]\n while True:\n s=input().split()\n data_set.append(s)\n if [\"0\",\"0\"] in data_set:\n break\n data_set=data_set[:-1]\n import itertools\n for i in data_set:\n count=0\n n=int(i[0])\n x=int(i[1])\n num=list(itertools.combinations(range(1,n+1),3))\n for j in num:\n if sum(j)==x:\n count+=1\n print(count)\n\n", "jacc_sim": 1.0, "before_after_length": [156, 154], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "a()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u949338836", "n_user": "u949338836", "pos": "#coding:utf-8\n#1_7_B 2015.4.5\nwhile True:\n n,x = map(int,input().split())\n if n == x == 0:\n break\n count = 0\n \n for i in range(1 , n + 1):\n for j in range(1 , n + 1):\n if i < j < (x - i - j) <= n:\n count += 1\n print(count)", "neg": "#coding:utf-8\n#1_7_B 2015.4.5\nwhile True:\n n,x = map(int,input().split())\n if n == x == 0:\n break\n count = 0\n \n for i in range(1 , n + 1):\n for j in range(1 , n + 1):\n if (x - i - j) < n and i < j < (x - i -j):\n count += 1\n print(count)", "jacc_sim": 0.972972972972973, "before_after_length": [109, 116], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "i < j < = and i < j < (x - i -j)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u644636020", "n_user": "u644636020", "pos": "while True:\n n, x = [int(i) for i in input().split()]\n\n\n if n == x == 0:\n break\n\n count = 0\n for s in range(1, n - 1):\n for m in range(s+1, n):\n for e in range(m+1, n+1):\n if x == sum([s, m, e]):\n count += 1\n\n print(count)", "neg": "while True:\n n, x = [int(i) for i in input().split()]\n\n\n if n == x == 0:\n break\n\n count = 0\n for s in range(1, n - 1):\n for m in range(s+1, n):\n for e in range(m+1, n+1):\n if n < x:\n break\n if x == sum([s, m, e]):\n count += 1\n\n print(count)", "jacc_sim": 0.96875, "before_after_length": [109, 119], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "n < :\n break\n if x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u067975558", "n_user": "u067975558", "pos": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0: break\n count = 0\n for i in range(1,n - 1):\n for j in range(i + 1 ,n):\n if i + j + j + 1 > x: break\n for k in range(j + 1 ,n + 1):\n if i + j + k == x:\n count += 1\n break\n print(count)", "neg": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0: break\n count = 0\n for i in range(1,n - 1):\n for j in range(i + 1 ,n):\n if i + j + j + 1: break\n for k in range(j + 1 ,n + 1):\n if i + j + k == x: \n count += 1\n break \n print(count)", "jacc_sim": 0.9666666666666667, "before_after_length": [119, 117], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " > x ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u442346200", "n_user": "u442346200", "pos": "while True:\n (n , x) = [int (i) for i in input().split()]\n if n == x == 0:\n break\n\n count = 0\n for a in range(1, n + 1 - 2):\n for b in range(a + 1, n + 1 - 1):\n for c in range(b + 1, n + 1 ):\n if (a + b + c) == x:\n count += 1\n print(count)", "neg": "while True:\n (n , x) = [int (i) for i in input().split()]\n if n == x == 0:\n break\n\n count = 0\n for a in range(1, n + 1 = 2):\n for b in range(a + 1, n + 1 - 1):\n for c in range(b + 1, n + 1 ):\n if (a + b + c) == x:\n count += 1\n print(count)", "jacc_sim": 1.0, "before_after_length": [114, 114], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "=-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u083019081", "n_user": "u902639104", "pos": "while True:\n n,x=map(int,input().split())\n cnt=0\n if n==0 and x==0:\n break\n for i in range(1,n+1):\n for j in range(i+1,n+1):\n for k in range(j+1,n+1):\n if i+j+k==x:\n cnt+=1\n print(cnt)\n", "neg": "while True:\n n,x=map(int,input().split())\n if n==0 and x==0:break\n for i in range(1,n+1):\n for j in range(1,i):\n for k in range(1,j):\n if i+j+k==x :a=a+1\n print(a)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [103, 87], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "cif =t\n if n==0\n 1,+1,n+11,+1,n+1 a=a+1pri c(a)+=1 print(cnt)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u501414488", "n_user": "u501414488", "pos": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\n count = 0\n for a in range(1,n+1):\n for b in range(a+1,n+1):\n for c in range(b+1, n+1):\n if a + b + c == x:\n count += 1\n print(count)", "neg": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\ncount = 0\nfor a in range(1,n+1):\n for b in range(a+1,n+1):\n for c in range(b+1, n+1):\n if a + b + c == x:\n count += 1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [106, 103], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " count+= count += ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u090341796", "n_user": "u839008951", "pos": "while True:\n n,x=map(int,input().split())\n if n==0 and x==0:\n break\n ans=0\n for i in range(1,n+1):\n for j in range(1,i):\n for k in range(1,j):\n if x==i+j+k:\n ans=ans+1\n print(ans)\n", "neg": "while True:\n n, x = map(int, input().split())\n\n if(n == 0 and x == 0):\n break\n\n ot = 0\n for i in range(1, n + 1):\n for j in range(i + 1, n + 1):\n for k in range(j + 1, n + 1):\n print(i, j, k)\n if i + j + k == x:\n ot += 1\n\n print(ot)\n\n", "jacc_sim": 0.9310344827586207, "before_after_length": [96, 117], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " \n(nn )\nans=0\n ftr=i0in range(1,n+1): iji n + 1 k in range(1, in range(i + 1, n + 1for if x==i+j+ in range(j + 1, n + 1)print(i,j,k)\na if i + j + k == x:\n ot += 1\n\n prit(ot)s=ans+1 print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u494314211", "n_user": "u494314211", "pos": "while(True):\n\ta,b=list(map(int,input().split()))\n\tif a==0 and b==0:\n\t\tbreak\n\tc=0\n\tfor i in range(1,a+1):\n\t\tfor j in range(1,i):\n\t\t\tfor k in range(1,j):\n\t\t\t\tif i+j+k==b:\n\t\t\t\t\tc+=1\n\tprint(c)", "neg": "while(True):\n\ta,b=list(map(int,input().split()))\n\tif a==0 and b==0:\n\t\tbreak\n\tc=0\n\tfor i in range(a):\n\t\tfor j in range(i):\n\t\t\tfor k in range(j):\n\t\t\t\tif i+j+k==b:\n\t\t\t\t\tc+=1\n\tprint(c)", "jacc_sim": 1.0, "before_after_length": [103, 95], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "1,+11,1,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u663910047", "n_user": "u663910047", "pos": "x=1\ny=1\nlist=[]\nwhile x>0:\n if x ==0 and y == 0:\n break\n x,y = map(int,input().split())\n list.append([x,y])\n\nlist.remove([0,0])\n\nfor L in list:\n ans = 0\n for i in range(1,L[0]-1):\n for j in range(i+1,L[0]):\n for k in range(j+1,L[0]+1):\n if L[1]== i + j+ k:\n ans += 1\n else:\n pass\n print(ans)", "neg": "x=1\ny=1\nlist=[]\nwhile x>0:\n if x ==0 and y == 0:\n break\n x,y = map(int,input().split())\n list.append([x,y])\n\nfor L in list:\n ans = 0\n for i in range(1,L[0]-1):\n for j in range(i+1,L[0]):\n for k in range(j+1,L[0]+1):\n if L[1]== i + j+ k:\n ans += 1\n else:\n pass\n print(ans)", "jacc_sim": 0.972972972972973, "before_after_length": [158, 148], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "flist.remve([0,0])\n\nfo", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u485986915", "n_user": "u485986915", "pos": "while True :\n num = 0\n n,x = map(int,input().split())\n if(n==0 and x==0): break\n for i in range (1,n) :\n for j in range(1,i):\n s = x - j - i\n if(s<=n and j x:\n break\n print(count)", "neg": "(n, x) = [int(i) for i in input().split()]\nif n == x == 0:\n break\n \ncount = 0\nfor a in range(1, n+1):\n for b in range(a+1, n+1):\n for c in range(b+1, n+1):\n if (a + b + c) == x:\n count += 1\n elif (a + b + c) > x:\n break\nprint(count)", "jacc_sim": 0.9354838709677419, "before_after_length": [126, 118], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "while True:\n count+= count += ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u626266743", "n_user": "u626266743", "pos": "while True:\n n, x = map(int, input().split())\n if (n == x == 0):\n break\n\n count = 0\n for a in range(1, x // 3):\n for b in range(a + 1, x // 2):\n for c in range(b + 1, n + 1):\n Sum = a + b + c\n if (Sum == x):\n count += 1 \n print(count)", "neg": "while True:\n n, x = map(int, input().split())\n if (n == x == 0):\n break\n\n count = 0\n for a in range(1, n + 1):\n for b in range(a + 1, n + 1):\n for c in range(b + 1, n + 1):\n Sum = a + b + c\n if (Sum == x):\n count += 1 \n print(count)", "jacc_sim": 0.9032258064516129, "before_after_length": [107, 107], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " nx+//13nx+//12", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u713218261", "n_user": "u713218261", "pos": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\n\n count = 0\n for a in range(1, n+1):\n for b in range(a+1, n+1):\n for c in range(b+1, n+1):\n if (a + b + c) == x:\n count += 1\n print(count)", "neg": "while True:\n (n, x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\n\n for a in range(1, n+1):\n for b in range(a+1, n+1):\n for c in range(b+1, n+1):\n count = 0\n if (a + b + c) == x:\n count += 1\n elif (a + b + c) > x:\n break\n print(count)\n~ ", "jacc_sim": 0.90625, "before_after_length": [110, 129], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": "count = 0\n count = 0\n elif (a + b + c) > x:\n break\n \n~ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02412", "p_user": "u527848444", "n_user": "u527848444", "pos": "while True:\n (n,x) = [int(i) for i in input().split()]\n if n == x == 0:\n break\n \n count = 0\n for a in range(1, n + 1 - 2):\n for b in range(a + 1, n + 1 - 1):\n for c in range(b + 1,n + 1):\n if (a + b + c) == x:\n count += 1\n print(count) ", "neg": "while True:\n (n,x) = [int(i) for i in input().split()]\n\n for a in range(1, n + 1 - 2):\n for b in range(a + 1, n + 1 - 1):\n for c in range(b + 1,n + 1):\n if (a + b + c) == x:\n count += 1\n print(count) ", "jacc_sim": 0.9354838709677419, "before_after_length": [115, 97], "nl": "Write a program to find the number of combinations of three distinct integers from 1 to n, whose sum is x. The input consists of multiple datasets, each containing two integers n and x. The program should stop processing when n and x are both zero. Constraints: 3 \u2264 n \u2264 100, 0 \u2264 x \u2264 300. For each dataset, output the number of combinations. For example, given n = 5 and x = 9, there are 2 combinations: 1 + 3 + 5 = 9 and 2 + 3 + 4 = 9.", "diff_info": " if n == x == 0:\n break\n \n count = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u357086816", "n_user": "u357086816", "pos": "# -*- coding: utf-8 -*-\na = int(input())\nxy = [map(int, input().split()) for _ in range(a)]\nx, y = [list(i) for i in zip(*xy)]\nflag = 0\nb=0\nfor i in range(a):\n if (x[i] == y[i]):\n flag = flag+1\n if (flag ==3):\n b = 1\n else:\n flag = 0\n \nif b==1:\n print(\"Yes\")\nelse:\n print(\"No\")\n\n\n\n", "neg": "# -*- coding: utf-8 -*-\na = int(input())\nxy = [map(int, input().split()) for _ in range(a)]\nx, y = [list(i) for i in zip(*xy)]\nflag = 0\nfor i in range(a):\n if (x[i] == y[i]):\n flag = flag+1\n else:\n flag = 0\nif flag >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")\n\n", "jacc_sim": 0.9523809523809523, "before_after_length": [141, 120], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "b=0\n if (flag ==3):\n b = 1\n ifflag>=3 \nif b==1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u060505280", "n_user": "u060505280", "pos": "N = int(input())\ncnt = 0\nans = False\nfor i in range(N):\n a, b = input().split()\n if a == b:\n cnt += 1\n else:\n cnt = 0\n if cnt == 3:\n ans = True\n break\nprint('Yes' if ans else 'No')\n\n", "neg": "N = int(input())\ncnt = 0\nans = False\nfor i in range(N):\n a, b = input().split()\n print(a, b)\n if a == b:\n cnt += 1\n else:\n cnt = 0\n if cnt == 3:\n ans True\n break\n print(cnt)\nprint('Yes' if ans else 'No')\n\n", "jacc_sim": 1.0, "before_after_length": [81, 94], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "prf nt(, ==):ifa cnt + 1\n else:\n cnt 0\n if cnt == 3:\n ans = True\n :\n cnt += 1\n else:\n cnt = 0\n if cnt == 3:\n ans True\n b\n print(cnt)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u146803137", "n_user": "u146803137", "pos": "n = int(input())\nans = \"No\"\ncount = 0\nfor i in range(n):\n D1,D2 = map(int,input().split())\n count=count+1 if D1==D2 else 0\n ans=\"Yes\" if count>=3 else ans\n\nprint(ans)", "neg": "n = int(input())\nans = \"No\"\ncount = 0\nfor i in range(n):\n D1,D2 = map(int,input().split())\n count+=1 if D1==D2 else 0\n ans=\"Yes\" if D1 >= 3 else ans\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [75, 74], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "=count=D1 count ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u898967808", "n_user": "u898967808", "pos": "n = int(input())\n \nans = 'No'\ncount = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if a==b:\n count += 1\n if count == 3:\n ans = 'Yes'\n else:\n count = 0\n \nprint(ans) ", "neg": "n = int(input())\n\nans = 'No'\ncount = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if a==b:\n count += 1\n if count == 3:\n ans = 'Yes'\n\nprint(ans) \n \n \n ", "jacc_sim": 0.9655172413793104, "before_after_length": [83, 78], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " else:\n count = 0\n \n \n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u760569096", "n_user": "u440608859", "pos": "n = int(input())\nc = 0\nfor i in range(n):\n a, b = map(int, input().split())\n if a==b:\n c+=1\n else:\n c=0\n if c == 3:\n print('Yes')\n exit()\nprint('No')", "neg": "n=int(input())\nc=1\nfor i in range(n):\n a,b=map(int,input().split())\n if a==b:\n count+=1\n else:\n count=0\n if count==3:\n c=1\nif c==1:\n print(\"Yes\")\nelse:\n print(\"No\")\n\n\n ", "jacc_sim": 0.9333333333333333, "before_after_length": [76, 91], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " 1 0 ount ount ount :\n c=1\nif c==1\"'\"'\nelse:exit()\n\"'\"'\n\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u556610039", "n_user": "u556610039", "pos": "num = int(input())\nans = 0\ncnt = 0\nfor x in range(num):\n d1, d2 = map(int, input().split())\n if d1 == d2: cnt += 1\n else: \n ans = max(cnt, ans)\n cnt = 0\nans = max(cnt, ans)\nif ans >= 3: print(\"Yes\")\nelse: print(\"No\")", "neg": "num = int(input())\nans = 0\ncnt = 0\nfor x in range(num):\n d1, d2 = map(int, input().split())\n if d1 == d2: cnt += 1\n else: \n ans = max(cnt, 2)\n cnt = 0\nans = max(cnt, 2)\nif ans >= 3: print(\"Yes\")\nelse: print(\"No\")", "jacc_sim": 0.96875, "before_after_length": [96, 96], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "2ans2ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u680798287", "n_user": "u680798287", "pos": "N = int(input())\nD = []\ncount, temp = 0, 0\n\nfor n in range(N):\n input_line = input().split()\n if (int(input_line[0]) == int(input_line[1])):\n count += 1\n if count == 3:\n temp = 1\n elif(temp ==1):\n break\n else:\n count = 0\n\nif count >= 3:\n print('Yes')\n\nelse:\n print('No')", "neg": "N = int(input())\nD = []\ncount = 0\n\nfor n in range(N):\n input_line = input().split()\n if (int(input_line[0]) == int(input_line[1])):\n count += 1\n if count == 3:\n temp = 1\n elif(temp ==1):\n break\n else:\n count = 0\n\nif count >= 3:\n print('Yes')\n\nelse:\n print('No')", "jacc_sim": 0.9696969696969697, "before_after_length": [119, 115], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": ",temp 0,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u402228762", "n_user": "u402228762", "pos": "c = int(input())\ncount = 0\n\nd = [list(map(int,input().split())) for i in range(c)]\nfor i in range(c):\n a,b = d[i][0],d[i][1]\n \n if (a==b):\n count += 1\n if ( count == 3):\n break\n else : \n count = 0\n\nif (count >= 3):\n \n print(\"Yes\")\nelse :\n print(\"No\")\n", "neg": "c = int(input())\ncount = 0\n\nd = [list(map(int,input().split())) for i in range(c)]\nfor i in range(c):\n a,b = d[i][0],d[i][1]\n \n if (a==b):\n count += 1\n else : \n count = 0\n\nif (count >= 3):\n \n print(\"Yes\")\nelse :\n print(\"No\")\n", "jacc_sim": 0.9705882352941176, "before_after_length": [120, 109], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " if ( count == 3):\n break\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u344512965", "n_user": "u344512965", "pos": "N = int(input())\nDi = 0\nDi1 = []\nDi2 = []\nnmDi = 0\nif N >= 3 and N <= 100:\n for x in range(N):\n Di = input()\n Di1.append(Di[0])\n Di2.append(Di[-1])\n for x in range(N):\n if Di1[x] == Di2[x]:\n nmDi += 1\n if nmDi == 3:\n break\n elif Di1[x] != Di2[x] and nmDi > 0:\n nmDi = 0\n if nmDi >= 3:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n print (\"No\")", "neg": "N = int(input())\nDi1 = []\nDi2 = []\nnmDi = 0\nif N >= 3 and N <= 100:\n for x in range(N):\n Di1.append(int(input()))\n Di2.append(int(input()))\nfor x in range(N):\n if Di1[x] == Di2[x]:\n nmDi += 1\n if nmDi == 3:\n break\n elif Di1[x] != Di2[x] and nmDi > 0:\n nmDi = 0\nif nmDi >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.972972972972973, "before_after_length": [171, 151], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " = 0\nDi = input()\n DiD[0]nt(input())D[-1]nt(input()) nmDi= nmDi = \nelse:\n print (\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u858742833", "n_user": "u858742833", "pos": "def main():\n N = int(input())\n z = 0\n for i in range(N):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n z += 1\n else:\n z = 0\n if z >= 3:\n return True\n\n return False\n\nprint(\"Yes\" if main() else \"No\")\n", "neg": "def main():\n N = int(input())\n z = 0\n for i in range(N):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n z += 1\n else:\n z = 0\n if z >= 3:\n return True\n\n return False\n\n# print(\"Yes\" if main() else \"No\")\nprint(main())\n", "jacc_sim": 0.9714285714285714, "before_after_length": [94, 100], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "# print(main())\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u935241425", "n_user": "u935241425", "pos": "n = int( input() )\n#print( n )\n\ncnt = 0\nans = \"No\"\nfor i in range( n ):\n a, b = map( int, input().split() )\n if a == b:\n cnt = cnt + 1\n else:\n cnt = 0\n\n if cnt == 3:\n ans = \"Yes\"\n\n\nprint( ans )\n", "neg": "n = int( input() )\n#print( n )\n\ncnt = 0\nfor i in range( n ):\n a, b = map( int, input().split() )\n if a == b:\n cnt = cnt + 1\n else:\n cnt = 0\n\n if cnt == 3:\n exit( \"Yes\" )\n\n\nprint( \"No\" )\n", "jacc_sim": 0.9354838709677419, "before_after_length": [94, 91], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\nans = \"No\"exit(ans = )ans\"No\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u657818166", "n_user": "u657818166", "pos": "n = int(input())\nt = []\ni = 0\nfor _ in range(n):\n x, y = map(int, input().split())\n if x == y:\n i += 1\n else:\n i = 0\n t.append(i)\nif(len(list(filter(lambda x: x >= 3, t))) == 0):\n print(\"No\")\nelse:\n print(\"Yes\")\n", "neg": "n = int(input())\nt = []\ni = 0\nfor _ in range(n):\n x, y = map(int, input().split())\n if x == y:\n i += 1\n else:\n i = 0\n t.append(i)\nif(len(filter(lambda x: x >= 3, t)) == 0):\n print(\"No\")\nelse:\n print(\"Yes\")\n", "jacc_sim": 0.972972972972973, "before_after_length": [102, 100], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "(list)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u577134002", "n_user": "u577134002", "pos": "n=int(input())\ns=0\nok=0\nfor i in range(n):\n lis=input().split()\n if lis[0]==lis[1]:\n s+=1\n if s>=3:\n ok=1\n else:\n s=0\nif ok==1:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n=int(input())\ns=0\nfor i in range(n):\n lis=input().split()\n if lis[0]==lis[1]:\n s+=1\n else:\n s=0\nif s>=3:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9655172413793104, "before_after_length": [94, 78], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "=0\nok if s>=3:\n ok=1\n s>ok3=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u168017191", "n_user": "u168017191", "pos": "def solve():\n N = int(input())\n lines = [input().split() for i in range(N)]\n count = 0\n for d,e in lines:\n if d==e:\n count += 1\n if count>=3:\n print(\"Yes\")\n return\n else:\n count = 0\n print(\"No\")\n return\n\nsolve()\n", "neg": "def solve():\n N = int(input())\n lines = [input().split() for i in range(N)]\n for d,e in lines:\n if d==e:\n count += 1\n if count>=3:\n print(\"Yes\")\n return\n else:\n count = 0\n print(\"No\")\n return\n\nsolve()", "jacc_sim": 1.0, "before_after_length": [93, 87], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\n count = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u966648240", "n_user": "u966648240", "pos": "n=int(input())\nans=0\nD=[]\nA=[]\nfor i in range(n):\n a,b=map(int, input().split())\n D.append([a,b])\n\n\nfor i in range(len(D)):\n if D[i][0]==D[i][1]:\n ans +=1\n else:\n if ans>0:\n ans = 0\n A.append(ans)\n \nif max(A) >= 3:\n print(\"Yes\")\n \nelse:\n print(\"No\")", "neg": "n=int(input())\nans=0\nD=[]\nfor i in range(n):\n a,b=map(int, input().split())\n D.append(a)\n D.append(b)\n\n\nfor i in range(len(D)-1):\n if D[i]==D[i+1]:\n ans +=1\n\nif ans>=3:\n print(\"Yes\")\n \nelse:\n print(\"No\")", "jacc_sim": 0.918918918918919, "before_after_length": [136, 110], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "=[]\nA[,b]\n\nforiin range(len()):\n if D[i][0]==D[i][1]:\n ans +=1\n else:\n if ans>0:\n ans = 0\n Ab)\n\n\nfor i in rge(len(D)-1):\n if D[i]==D[i+1]:\n an) +=1\nif \nif mnsx(A) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u518064858", "n_user": "u817247382", "pos": "n=int(input())\ncnt=0\nans=\"No\"\nfor i in range(n):\n d1,d2=map(int,input().split())\n if d1==d2:\n cnt+=1\n else:\n cnt=0\n if cnt>=3:\n ans=\"Yes\"\nprint(ans) \n", "neg": "n = int(input())\nnum_of_double = 0\n\nfor i in range(n):\n d1, d2 = map(int,input().split())\n\n if d1 == d2:\n num_of_double += 1\n\nif num_of_double >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9032258064516129, "before_after_length": [83, 84], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " ctum_of_double ans=\"No\" \n ctum_of_double \n\nif num_of_double >= 3:print(\"Yes\")\n cnt=0\n if cnt>=3:\n ans=\"Yes\"\nans\"No\" \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u490642448", "n_user": "u533232830", "pos": "n = int(input())\ncnt = 0\nfor _ in range(n):\n a,b = map(int,input().split())\n if(a==b):\n cnt += 1\n else:\n cnt = 0\n if(cnt==3):\n print('Yes')\n exit()\nprint('No')", "neg": "cnt = 0\nfor _ in range(n):\n a, b = map(int, input().split())\n if a == b:\n cnt += 1\n else:\n cnt = 0\n \n if cnt == 3:\n print(\"Yes\")\n exit()\n\nprint(\"No\")", "jacc_sim": 1.0, "before_after_length": [77, 70], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "n = int(input())\n ( ) \n ( ) \"'\"' \n\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u006880673", "n_user": "u309120194", "pos": "N=int(input())\nD = [list(map(int, input().split())) for _ in range(N)]\nans = 0\nfor i in range(N-2):\n if D[i][0] == D[i][1]:\n if D[i+1][0] == D[i+1][1]:\n if D[i+2][0] == D[i+2][1]:\n ans = 1\n break\nif ans:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "N = int(input())\nD = [list(map(int, input().split())) for _ in range(N)]\n \nfor i in range(N-2):\n if D[i][0] == D[i][1] and D[i+1][0] == D[i+1][1] and D[i+2][0] == D[i+2][1]:\n print('Yes')\n break\n \nprint('No')", "jacc_sim": 0.9117647058823529, "before_after_length": [126, 108], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " ans= 0ifD[i][0]== D[f][1]and +1+1:\nand if D[i+1][0] == D[i+1][1]:\n ifpri as = 1\n break\nif ans:\n prin'\"'\" braklse:\n'\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u851282199", "n_user": "u851282199", "pos": "cnt = 0\nn = int(input())\nfor i in range(0,n):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n cnt += 1\n if cnt == 3 :\n print(\"Yes\")\n break\n elif cnt >= 0 and d1 != d2:\n cnt = 0 \n if i == n-1:\n print(\"No\")", "neg": "cnt = 0\nn = int(input())\nfor i in range(0,n):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n cnt += 1\n if cnt == 3 :\n print(\"Yes\")\n break\n else:\n cnt == 0\n \n if cnt != 3 and i == n-1:\n print(\"No\")", "jacc_sim": 0.9117647058823529, "before_after_length": [100, 96], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "se:\n cnt == 0\n \n >= 0 and d13 an2:\n cnt = 0 \n if", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u852124489", "n_user": "u852124489", "pos": "N = int(input())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n if a == b:\n count += 1\n else:\n count = 0\n if count == 3:\n break\nif count >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "N = int(input())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n if a == b:\n count += 1\nif count >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9666666666666667, "before_after_length": [85, 66], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " else:\n count = 0\n if count == 3:\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u304612256", "n_user": "u304612256", "pos": "from sys import stdin\ninput = stdin.readline\n\nN = int(input())\n\nb = False\ncnt = 0\nfor i in range(N):\n D1, D2 = map(int, input().split())\n if D1 == D2:\n cnt += 1\n if cnt == 3:\n b = True\n else:\n cnt = 0\n\nif b == True:\n print('Yes')\nelse:\n print('No')", "neg": "input = stdin.readline\n\nN = int(input())\n\nb = False\ncnt = 0\nfor i in range(N):\n D1, D2 = map(int, input().split())\n if D1 == D2:\n cnt += 1\n if cnt == 3:\n b = True\n else:\n cnt = 0\n\nif b == False:\n print('No')\nelse:\n print('Yes')", "jacc_sim": 0.9166666666666666, "before_after_length": [109, 104], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "from sys import stdin\nFaTrue:\n print('Yes')\ne\nelse:\n print('Yes')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u244516102", "n_user": "u244516102", "pos": "N = int(input())\nt = 0\nfor i in range(N):\n a, b = [int(x) for x in input().split()]\n if a != b:\n t = 0\n else:\n t += 1\n if t > 2:\n break\nif t > 2:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "N = int(input())\nt = 0\nfor i in range(N):\n a, b = [int(x) for x in input().split()]\n if a != b:\n t = 0\n else:\n t += 1\n if t == 2:\n break\nif t == 3:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9411764705882353, "before_after_length": [90, 90], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": ">==>==32", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u693974737", "n_user": "u693974737", "pos": "n = int(input())\ncur = 0\nbest = 0\nfor _ in range(n):\n a, b = input().split()\n if a == b:\n cur += 1\n best = max(best, cur)\n else:\n cur = 0\nif best >= 3:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = int(input())\ncur = 0\nbest = 0\nfor _ in range(n):\n \ta, b = input().split()\n if a == b:\n cur += 1\n best = max(best, cur)\n else:\n \tcur = 0\nif best >= 3:\n \tprint(\"Yes\")\nelse:\n \tprint(\"No\")", "jacc_sim": 1.0, "before_after_length": [84, 88], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\t \t \t \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u167908302", "n_user": "u167908302", "pos": "# coding:utf-8\nn = int(input())\ncount = 0\n\nfor i in range(n):\n d1, d2 = map(int, input().split())\n\n if d1 == d2:\n count += 1\n else:\n count = 0\n\n if count == 3:\n print('Yes')\n exit()\n\n\nprint('No')\n", "neg": "# coding:utf-8\nn = int(input())\ncount = 0\n\nfor i in range(n):\n d1, d2 = map(int, input().split())\n\n if d1 == d2:\n count += 1\n\n if count >= 3:\n print('Yes')\n exit()\n\nprint('No')\n", "jacc_sim": 0.9428571428571428, "before_after_length": [92, 82], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\nifelse:\ncount> count = 0\n\n if count =\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u835095496", "n_user": "u835095496", "pos": "def run(n, _in_list):\n '''\n '''\n is_doublet_count = 0\n for x in _in_list:\n if is_doublet_count == 3:\n break\n _in = list(x)\n if _in[0] ==_in[1]:\n is_doublet_count += 1\n else:\n is_doublet_count = 0\n \n print('Yes' if is_doublet_count >= 3 else 'No')\n \n\n\n\n\nif __name__ == '__main__':\n n = int(input())\n _in_list = [map(int, input().split()) for _ in range(n)]\n run(n, _in_list)", "neg": "def run(n, _in_list):\n '''\n '''\n is_doublet_count = 0\n for x in _in_list:\n _in = list(x)\n if _in[0] ==_in[1]:\n is_doublet_count += 1\n else:\n is_doublet_count = 0\n \n print('Yes' if is_doublet_count >= 3 else 'No')\n \n\n\n\n\nif __name__ == '__main__':\n n = int(input())\n _in_list = [map(int, input().split()) for _ in range(n)]\n run(n, _in_list)", "jacc_sim": 0.9736842105263158, "before_after_length": [182, 166], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\n if is_doublet_count == 3:\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u914408528", "n_user": "u914408528", "pos": "n = int(input())\n\nanswer = \"No\"\nnumber = 0\nfor i in range(n):\n a, b = map(int, input().split())\n if a == b:\n number += 1\n else:\n number = 0\n if number == 3:\n answer = \"Yes\"\n\nprint(answer)\n", "neg": "n = int(input())\n\nnumber = 0\nfor i in range(n):\n a, b = map(int, input().split())\n if a == b:\n number += 1\n else:\n number = 0\n if number == 3:\n print(\"Yes\")\n\nprint(\"No\")", "jacc_sim": 0.9655172413793104, "before_after_length": [81, 73], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\nanswer = \"No\"aprit(swer = )\"No\"answer\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u057415180", "n_user": "u057415180", "pos": "n = int(input())\ncnt = 0\nfor i in range(n):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n cnt += 1\n if cnt == 3:\n break\n else:\n cnt = 0\nif cnt >= 3:\n print('Yes')\nelse:\n print('No')", "neg": "n = int(input())\ncnt = 0\nfor i in range(n):\n d1, d2 = map(int, input().split())\n if d1 == d2:\n cnt += 1\nif cnt >= 3:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9666666666666667, "before_after_length": [88, 69], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": " if cnt == 3:\n break\n else:\n cnt = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u224392054", "n_user": "u224392054", "pos": "import math\nfrom fractions import Fraction as frac\n\nMOD = 1e9 + 7\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ndef lcm(a, b):\n return a * b // gcd(a, b)\n\ndef solve(case_no):\n n = int(input())\n cnt=0\n for i in range(n):\n \ta,b = map(int,input().split())\n \tif a==b:\n \t\tcnt += 1\n \t\tif cnt == 3:\n \t\t\tprint(\"Yes\")\n \t\t\texit()\n \telse:\n \t\tcnt=0\n print(\"No\")\n \t\n\nt = 1\n# t = int(input())\nfor i in range(1, t + 1):\n solve(i)\n", "neg": "import math\n\nfrom fractions import Fraction as frac\n\nMOD = 1e9 + 7\n\ndef gcd(a, b):\n\n if b == 0:\n\n return a\n\n return gcd(b, a % b)\n\ndef lcm(a, b):\n\n return a * b // gcd(a, b)\n\ndef solve(case_no):\n\n n = int(input())\n\n cnt=0\n\n for i in range(n):\n\n \ta,b = map(int,input().split()) \tif a==b:\n\n cnt += 1\n\n if cnt == 3:\n\n \t\tprint(\"Yes\")\n\n \t\texit()\n\n \telse:\n\n \t\tcnt=0\n\n print(\"No\")\n\nt = 1\n\n# t = int(input())\n\nfor i in range(1, t + 1):\n\n solve(i)", "jacc_sim": 1.0, "before_after_length": [211, 221], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "\n\n\n\n\n\n\n\n\n \tif a==b:\n\tifa==b:\n \t\t\n\t\t \n\t\n\t\n\n\n \t\n\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u054825571", "n_user": "u054825571", "pos": "N=int(input())\np=False\ns=0\nfor i in range(N):\n a,b=map(int,input().split())\n if a==b:\n s+=1\n if s==3:\n p=True\n break\n else:\n s=0\nprint(\"Yes\" if p else \"No\")\n", "neg": "N=int(input())\np=False\ns=0\nfor i in range(N):\n a,b=map(int,input().split())\n if a==b:\n s+=1\n if s==3:\n break\n else:\n s=0\nprint(\"Yes\" if p else \"No\")", "jacc_sim": 0.96875, "before_after_length": [85, 79], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "p=True\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02547", "p_user": "u630554891", "n_user": "u893197162", "pos": "n=int(input()) \ncnt=0\nans=0\n\nfor i in range(n):\n a,b=map(int, input().split())\n if a==b:\n cnt+=1\n if ans < cnt:\n ans = cnt\n else:\n cnt=0\n\nif ans >=3:\n print('Yes')\nelse:\n print('No')", "neg": "ans = 0\nfor i in range(int(input())):\n a,b = map(int,input().split())\n if a==b:\n ans += 1\nif ans>=3:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9032258064516129, "before_after_length": [94, 63], "nl": "Score: 200 points\n\nProblem Statement:\nTak rolled two dice N times. Check if doublets occurred at least three times in a row.\n\nConstraints:\n- 3 <= N <= 100\n- 1 <= D_{i,j} <= 6\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nD_{1,1} D_{1,2}\n...\nD_{N,1} D_{N,2}\n\nOutput:\nPrint \"Yes\" if doublets occurred at least three times in a row. Print \"No\" otherwise.\n\nSample Input 1:\n5\n1 2\n6 6\n4 4\n3 3\n3 2\n\nSample Output 1:\nYes\nFrom the second roll to the fourth roll, three doublets occurred in a row.\n\nSample Input 2:\n5\n1 1\n2 2\n3 4\n5 5\n6 6\n\nSample Output 2:\nNo\n\nSample Input 3:\n6\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n\nSample Output 3:\nYes", "diff_info": "as int(input())\ncnt=ans=0\n\nit(input()) ans cnt if if < cnt:\n ans = cnt\n else:\n cnt=0\n\nif ans ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u645661835", "n_user": "u645661835", "pos": "from math import sqrt\n\n# Function to return count of Ordered pairs\n# whose product are less than N\ndef countOrderedPairs(N):\n # Initialize count to 0\n count_pairs = int(0)\n\n # count total pairs\n p = int(sqrt(N - 1)) + 1\n q = N\n # q = int(sqrt(N)) + 2\n for i in range(1, p, 1):\n for j in range(i, q, 1):\n if i * j > N-1:\n break\n # print(i,j)\n count_pairs += 1\n #print(count_pairs)\n # multiply by 2 to get ordered_pairs\n count_pairs *= 2\n\n #print(count_pairs)\n # subtract redundant pairs (a, b) where a==b.\n count_pairs -= int(sqrt(N - 1))\n\n # return answer\n return count_pairs\n\n # Driver code\n\nN = int(input())\nprint(countOrderedPairs(N))\n# ans=prime_factorize(N)\n# print(ans)", "neg": "from math import sqrt\n\n# Function to return count of Ordered pairs\n# whose product are less than N\ndef countOrderedPairs(N):\n # Initialize count to 0\n count_pairs = int(0)\n\n # count total pairs\n p = int(sqrt(N - 1)) # + 1\n q = N\n # q = int(sqrt(N)) + 2\n for i in range(1, p, 1):\n for j in range(i, q, 1):\n if i * j > N:\n break\n # print(i,j)\n count_pairs += 1\n #print(count_pairs)\n # multiply by 2 to get ordered_pairs\n count_pairs *= 2\n\n #print(count_pairs)\n # subtract redundant pairs (a, b) where a==b.\n count_pairs -= int(sqrt(N - 1))\n\n # return answer\n return count_pairs\n\n # Driver code\n\nN = int(input())\nprint(countOrderedPairs(N))\n# ans=prime_factorize(N)\n# print(ans)\n", "jacc_sim": 1.0, "before_after_length": [261, 262], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " # -1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u396961814", "n_user": "u396961814", "pos": "import math\n\nN = int(input())\n\nans = 0\n\nfor a in range(1, N):\n cnt = 0\n for b in range(a, N):\n if a * b < N:\n if a < b:\n cnt += 2\n elif a == b:\n cnt += 1\n else:\n break\n ans += cnt\n\nprint (ans)\n", "neg": "N = int(input())\n\nans = 0\n\nfor a in range(1, N):\n cnt = 0\n for b in range(1, N):\n if a * b < N:\n if a < b:\n cnt += 2\n elif a == b:\n cnt += 1\n else:\n break\n \n ans += cnt\n\nprint (ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [94, 91], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "import math\n\na, N):\n if a * b < N:\n if a < b:\n cnt += 2\n elif a == b:\n cnt += , N):elseif a * b < Nif a < :reaka cts2\n elif a == b:\n cnt += 1\n else:\n break\n \n ans += \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u773440446", "n_user": "u802180430", "pos": "n = int(input())\nans = 0\nfor i in range(1,n):\n ans += (n-1)//i\n \nprint(ans)", "neg": "n = int(input())\nans = 0\nfor i in range(1,n-1):\n ans+= (n-1)//i\nprint(ans);\n ", "jacc_sim": 0.95, "before_after_length": [38, 41], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "-1 \n;\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u606784601", "n_user": "u606784601", "pos": "import math\nn=int(input())\ns=0\n\nr=0\nt=n\nfor i in range(1,n):\n p=((n-1)//i)\n\n\n\n s+=p\n\nprint(s)\n", "neg": "import math\nn=int(input())\ns=0\n\nr=0\nt=n//2\nfor i in range(1,t+1):\n p=((n-1)//i)\n\n\n\n s+=p\n\nprint(s+t-1)", "jacc_sim": 0.96, "before_after_length": [60, 67], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "//2nt+1+t-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u203197031", "n_user": "u203197031", "pos": "def main():\n import sys\n ikimasu = sys.stdin.buffer.readline\n ini = lambda: int(ins())\n ina = lambda: list(map(int, ikimasu().split()))\n ins = lambda: ikimasu().strip()\n \n n = ini()\n rick = 0\n import math\n for i in range(1,n+1):\n rick+=math.floor((n-1)/i)\n print(rick)\n \n\n\n \n \n\n\n \n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nif __name__ == \"__main__\":\n main()", "neg": "def main():\n import sys\n ikimasu = sys.stdin.buffer.readline\n ini = lambda: int(ins())\n ina = lambda: list(map(int, ikimasu().split()))\n ins = lambda: ikimasu().strip()\n \n n = ini()\n rick = 0\n for i in range(1,n+1):\n rick+=(n-1)/i\n print(rick)\n \n\n\n \n \n\n\n \n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9512195121951219, "before_after_length": [171, 161], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "import math\n math.floor()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u170349801", "n_user": "u170349801", "pos": "N = int(input())\nNR = int(N**0.5)\ncount = 0\nif int(N/2)-N/2 == 0:\n for i in range(1,int(N/2)):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n count += int(N/i)\nelse:\n for i in range(1,int(N/2)+1):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n count += int(N/i)\n\ncount += int(N/2)\nprint(count)\n", "neg": "N = int(input())\nNR = int(N**0.5)\ncount = 0\nif int(N/2)-N/2 == 0:\n for i in range(1,int(N/2)):\n if int(N/i)-N/i == 0:\n count += int(N-1/i)-1\n else:\n count += int(N/i)\nelse:\n for i in range(1,int(N/2)+1):\n if int(N/i)-N/i == 0:\n count += int(N-1/i)-1\n else:\n count += int(N-1/i)\n\ncount += int(N/2)\nprint(count)", "jacc_sim": 1.0, "before_after_length": [168, 173], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "-1-1-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u128196936", "n_user": "u128196936", "pos": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int):\n n = 0\n for c in range(1, N):\n if N % c == 0:\n n += N // c - 1\n else:\n n += N // c\n print(n)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n solve(N)\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int):\n n = 0\n for c in range(1, N):\n a = 1\n # print(\"c\",c)\n while a*a < N-c:\n # print(\"a\",a)\n if (N-c) % a == 0:\n n += 2\n a += 1\n if a*a == N-c:\n n += 1\n print(n)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n solve(N)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9178082191780822, "before_after_length": [208, 252], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "aifN % c = 0:\n n += N // c -# print(\"c\",c)\n whillse:\na*a< n +=-c:\n// # print(\"a\",a)\n if (N-) % a == 0:\n n += 2\n a += 1\n if a*a == N-c:\n n += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u684743124", "n_user": "u856877925", "pos": "n=int(input())\nans=0\nfor a in range(1,n+1):\n ans+=(n-1)//a\nprint(ans)", "neg": "n = int(input())\nans = 0\nfor a in range(1, n):\n ans += (n - 1)\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 34], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " +1 //a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u749491107", "n_user": "u414920281", "pos": "n = int(input())\nans = 0\nfor a in range(1, n+1):\n ans += (n-1)//a\nprint(ans)", "neg": "n=int(input())\nans=0\nfor a in range(1,n):\n ans+=n//a\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 33], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " +1 (-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u734442632", "n_user": "u734442632", "pos": "import sys\nn = int(sys.stdin.readline().strip())\n\n# A * B + C, make sure A * B <= N, if A == B, it is (N-A*B) + 1, else ((N-A*B) + 1) * 2\nres = 0\n\"\"\"\nfor i in range(1, n//2+1):\n if i ** 2 < n:\n res += 1\n for j in range(i+1, n//i+1):\n if i*j >= n:\n break\n res += 2\n\nprint(res)\n\"\"\"\n\n# A==B, from 1 to square root\nres += int(n**0.5)\nupperbound = int(n**0.5) + 1\nif int(n**0.5) ** 2 == n:\n # n has int square root\n res -= 1\n upperbound = int(n**0.5)\n\n# Assuming A < B\n# A = 1, B=2...N-1\n# A = 2, B=3...N/2 or N/2-1\n\nfor i in range(1, upperbound):\n if n % i == 0:\n half = n // i - 1 - i\n else:\n half = n//i - i\n res += half * 2\nprint(res)", "neg": "import sys\nn = int(sys.stdin.readline().strip())\n\n# A * B + C, make sure A * B <= N, if A == B, it is (N-A*B) + 1, else ((N-A*B) + 1) * 2\nres = 0\n\"\"\"\nfor i in range(1, n//2+1):\n if i ** 2 < n:\n res += 1\n for j in range(i+1, n//i+1):\n if i*j >= n:\n break\n res += 2\n\nprint(res)\n\"\"\"\n\n# A==B, from 1 to square root\nres += int(n**0.5)\nif int(n**0.5) ** 2 == n:\n res -= 1\n# Assuming A < B\n# A = 1, B=2...(N-1)/1\n# A = 2, B=3...(N-1)/2\nfor i in range(1, int(n**0.5)):\n half = (n-1) // i - i\n res += half * 2\nprint(res)", "jacc_sim": 0.9259259259259259, "before_after_length": [315, 264], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "ifupperbound =+ 1\nif int(n**0.5) # n has int square root\n upperbound = int(n**0.5)\n\n()/1(/2 or N/2\n)/2iupperbout(d):\n if ** % i == .5)) ( // i 1)1// irle:\n+= *=2\nprit(//i - i\n += half * 2\nprint(res", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u649769812", "n_user": "u075303794", "pos": "N = int(input())\nans = 0\nfor i in range(1, N):\n ans += (N-1) // i\n\nprint(ans)\n", "neg": "N=int(input())\nans=0\nfor i in range(N):\n ans+=(N-1)//i\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 34], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " 1, \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u240444124", "n_user": "u240444124", "pos": "s=0\nn=int(input())-1\nfor i in range(n):s+=n//(i+1)\nprint(s)", "neg": "s=0\nn=int(input())-1\nfor i in range(n):s+=(i+1)//n\nprint(s)", "jacc_sim": 1.0, "before_after_length": [35, 34], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "n////n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u542687073", "n_user": "u542687073", "pos": "n=int(input())\nx=0\nfor i in range(n):\n if i==0:\n continue\n elif n//i==n/i:\n x+=(n//i)-1\n else:\n x+=n//i\n \nprint(x)", "neg": "n=int(input())\nx=0\nfor i in range(n):\n if i==0:\n continue\n else:\n for j in range(n-i+1):\n if j==0:\n continue\n else:\n if (n-i) / j == (n-i) // j:\n x+=1\n \nprint(x)", "jacc_sim": 0.9130434782608695, "before_after_length": [68, 91], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "seif n//i==n/ix+=for j in range//i)i+): if j==0:\n continue\n if (n-i) / j == (n-i) // j:\n 1n//i ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u894858952", "n_user": "u894858952", "pos": "N = int(input())\nL=[0]*N\n\nfor i in range (1,N):\n L[i]=(N-1)//i\n #print(i)\n\n#print(L)\nans = sum(L)\nprint(ans)", "neg": "N = int(input())\nL=[0]*N\n\nfor i in range (1,N):\n L[i]=round((N-1)/i)\n #print(i)\n\n#print(L)\nans = sum(L)\nprint(ans)", "jacc_sim": 0.96, "before_after_length": [62, 64], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "round(/)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u045953894", "n_user": "u175590965", "pos": "n = int(input())\nans = 0\nfor a in range(1,n):\n ans += (n-1) // a\nprint(ans)", "neg": "n = int(input())\nans =0\n\nfor i in range(1,n):\n ans +=(n-1)//a\nprint(ans)", "jacc_sim": 0.95, "before_after_length": [36, 37], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " \nia ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u742260762", "n_user": "u742260762", "pos": "N =int(input())\nc = 0\nfor i in range(N):\n c += (N-1)//(i+1)\nprint(c) \n \n", "neg": "N =int(input())\nc = 0\nfor i in range(N):\n c += n-1//i+1\nprint(c) \n \n", "jacc_sim": 0.9473684210526315, "before_after_length": [41, 37], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "n(N)()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u694536861", "n_user": "u694536861", "pos": "N = int(input())\ncount = 0\n\nfor a in range(1, N):\n tmp = (N-1) // a\n if a <= (N) // 2:\n count += tmp\n else:\n count += 1 \n\nprint(count)", "neg": "N = int(input())\ncount = 0\n\nfor a in range(1, N+1):\n tmp = (N-1) // a\n if a == tmp:\n count += 1\n if a < N // 2:\n count += tmp\n else:\n count += 1 \n\nprint(count-1)", "jacc_sim": 1.0, "before_after_length": [64, 78], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "+1=<(tmp:\n count += 1\n if a < )-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u371409687", "n_user": "u556571816", "pos": "n=int(input())\nans=0\nfor i in range(1,n):\n ans+=-(-n//i)-1\nprint(ans)", "neg": "n = int(input())\n \nfor i in range(1,n):\n ans += (n-1)//i\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [36, 34], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " ans=0 ---1))-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u200488698", "n_user": "u200488698", "pos": "#!/usr/bin/env python\nfrom typing import List\n\n\ndef input_int() -> int:\n return int(input())\n\n\ndef input_list_int() -> List[int]:\n return list(map(lambda x: int(x), input().split()))\n\n\ndef f(n: int) -> int:\n ans = 0\n for a in range(1, n):\n ans += (n - 1) // a\n return ans\n\n\nif __name__ == '__main__':\n n = input_int()\n print(f(n))", "neg": "\n#!/usr/bin/env python\nfrom typing import List\n\n\ndef input_int() -> int:\n return int(input())\n\n\ndef input_list_int() -> List[int]:\n return list(map(lambda x: int(x), input().split()))\n\n\ndef f(n: int) -> int:\n ans = 0\n for a in range(1, n - 1):\n ans += (n - 1) // a\n return ans\n\n\nif __name__ == '__main__':\n n = input_int()\n print(f(n))", "jacc_sim": 1.0, "before_after_length": [138, 141], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "\n):\n ans += (n:\n ans += (n - 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u419655514", "n_user": "u419655514", "pos": "def readInt():\n return int(input())\ndef readList():\n return list(map(int,input().split()))\ndef readMap():\n\treturn map(int,input().split())\ndef readStr():\n return input()\ninf=float('inf')\nmod = 10**9+7\nimport math\nfrom itertools import permutations\ndef solve(N):\n count=0\n for i in range(1,N):\n count+=(N-1)//i\n return count\n\nN=readInt()\nprint(solve(N))", "neg": "def readInt():\n return int(input())\ndef readList():\n return list(map(int,input().split()))\ndef readMap():\n\treturn map(int,input().split())\ndef readStr():\n return input()\ninf=float('inf')\nmod = 10**9+7\nimport math\nfrom itertools import permutations\ndef solve(N):\n count=0\n for i in range(1,N):\n count+=(N-1)//i\n return count\n\n# N=readInt()\n# print(solve(N))\n\nfor i in range(1,101):\n print(solve(i))", "jacc_sim": 0.9565217391304348, "before_after_length": [129, 150], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "# # \n\nfor i in range(1,101):\n print(solve(i))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u239653493", "n_user": "u239653493", "pos": "n=int(input())\ncount=0\nfor i in range(1,int(n**(1/2))+1):\n for j in range(i,n):\n if i*j>=n:\n break\n elif i==j:\n count+=1\n else:\n count+=2\nprint(count)", "neg": "n=int(input())\ncount=0\nfor i in range(1,int(n**(1/2))):\n for j in range(i,n):\n if i*j>=n:\n break\n elif i==j:\n count+=1\n else:\n count+=2\nif (int(n**(1/2)))**2==n:\n print(count)\nelse:\n print(count+1)", "jacc_sim": 1.0, "before_after_length": [82, 109], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "+1if (int(n**(1/2)))**2==n:\n \nelse:\n print(count+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u510582860", "n_user": "u510582860", "pos": "N=int(input())\ndef test(n):\n buf=0\n for i in range(1,n):\n if i**2 > n:\n break\n if i**2 == n:\n buf+=1\n break\n if n%i==0:\n buf+=2\n return buf\n\nans=0\nfor i in range(N-1):\n ans+=int((N-1)/(i+1))\n\nprint(ans)\n", "neg": "N=int(input())\nans=1\ndef test(n):\n buf=0\n for i in range(1,n):\n if i**2 > n:\n break\n if i**2 == n:\n buf+=1\n break\n if n%i==0:\n buf+=2\n return buf\n\ndef ans(n):\n if n==2:\n return 1\n return test(n-1) + ans(n - 1)\n\nprint(ans(N))\n", "jacc_sim": 0.9666666666666667, "before_after_length": [115, 124], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "ans=1\ndef (n):\n if n0=2:fo eturni1\ni returratest(ge(N:\n+ans(n ans+=int((N )/(i+1)(N)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u962330718", "n_user": "u962330718", "pos": "N=int(input())\nans=0\nfor i in range(1,int(N**(1/2))+1):\n a=(N-1)//i\n ans+=(a-i)*2+1\nif int(N**(1/2))**2==N:\n ans+=1\nprint(ans)", "neg": "N=int(input())\nans=0\nfor i in range(1,int(N**(1/2))+1):\n a=N//i\n ans+=(a-i)*2+1\nprint(ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [79, 54], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "(-1)if int(N**(1/2))**2==N:\n ans+=1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u872259176", "n_user": "u872259176", "pos": "n = int(input())\ncount = 0\nfor a in range(1,n):\n count += (n-1)//a\nprint(count)", "neg": "n = int(input())\ncount = 0\nfor a in range(1,n):\n count += int((n-1)/a)\nprint(count)n = int(input())\ncount = 0\nfor a in range(1,n):\n count += int((n-1)/a)\nprint(count)", "jacc_sim": 1.0, "before_after_length": [36, 74], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "int(/)n = int(input())\ncount = 0\nfor a in range(1,n):\n count += int((n-1)/a)\nprint(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u555878443", "n_user": "u555878443", "pos": "n = int(input()) - 1\n\nj = 0\n\nans = 0\n\nfor i in range(1, n):\n \n j = i\n \n while True:\n j += 1\n if i * j > n:\n break\n ans += 1\n\n\nk = 1\n\ner = 0\n\nwhile True:\n er += 1\n if k ** 2 > n:\n break\n k += 1\n\n\nprint((ans * 2) + er - 1)\n", "neg": "n = int(input()) - 1\n\nj = 0\n\nans = 0\n\nfor i in range(1, n // 2):\n \n j = i\n \n while True:\n j += 1\n if i * j > n:\n break\n ans += 1\n\nk = 1\n\ner = 0\n\nwhile True:\n if k ** 2 > n:\n break\n er += 1\n k += 1\n\nprint((ans * 2) + er)", "jacc_sim": 0.9655172413793104, "before_after_length": [118, 115], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": " // 2\ner += 1\n er += 1\n \n - 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u217551556", "n_user": "u217551556", "pos": "N = int(input())\nNR = int(N**0.5)\ncount = 0\nif int(N/2)-N/2 == 0:\n for i in range(1,int(N/2)):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n count += int(N/i)\nelse:\n for i in range(1,int(N/2)+1):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n count += int(N/i)\n\ncount += int(N/2)\nprint(count)", "neg": "N = int(input())\nNR = int(N**0.5)\ncount = 0\nfor i in range(1,int(N/2)):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n count += int(N/i)\n\ncount += int(N/2)\nprint(count)", "jacc_sim": 1.0, "before_after_length": [167, 92], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "if int(N/2)-N/2 == 0:\n ifint(N/i)-N/i==0:\n count += f nt(N/nt(N/i1N/i == 0: count += int(N/i)-1\n count += int(N/i)\nelse:\n for i in range(1,int(N/2)+1):\n if int(N/i)-N/i == 0:\n count += int(N/i)-1\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02548", "p_user": "u070423038", "n_user": "u070423038", "pos": "n = int(input())\n\ncount = 0\nstart = n//2\nif (n % 2 == 1):\n start += 1\n\nfor i in range(1, start):\n temp = n // i\n if temp * i < n:\n count += temp\n else:\n count += temp - 1\n\nprint(count + n//2)\n", "neg": "n = int(input())\n\ncount = 0\n\nfor i in range(1, n//2):\n temp = n // i\n if temp * i < n:\n count += temp\n else:\n count += temp - 1\n\nprint(count + n//2)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [85, 67], "nl": "You are given a positive integer N. Find the number of tuples (A, B, C) of positive integers that satisfy the equation A * B + C = N. The input is given as a single integer N, and the output should be the number of tuples that satisfy the equation. The constraints are 2 \u2264 N \u2264 10^6, and all input values are integers. For example, if N is 3, the output would be 3, as there are 3 tuples of integers that satisfy the equation: (1, 1, 2), (1, 2, 1), and (2, 1, 1).", "diff_info": "start = n//2i (n % 2 == 1):\n start += 1\n\nfstart):\n temp = n // i\n if temp * i < n:\n count += temp\n else:\n count += temp - 1\n\nprint(count + : temp = n // i\n if temp * i < n:\n count += temp\n else:\n count += temp - 1\n\nprint(count + n//2)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u941645670", "n_user": "u941645670", "pos": "n = int(input())\nmod = (10**9)+7\nn_all = 10**(n) % mod\nbad_0 = 9**(n)%mod\nbad_9 = 9**(n)%mod\nbad_18 = 8**(n)%mod\n\nprint((n_all-bad_0-bad_9+bad_18)%mod)", "neg": "\nn = int(input())\nn_all = 10**(n) % mod\nbad_0 = 9**(n)%mod\nbad_9 = 9**(n)%mod\nbad_18 = 8**(n)%mod\n\nprint(n_all-bad_0-bad_9+bad_18)", "jacc_sim": 0.95, "before_after_length": [86, 75], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\n\nmod = (10**9)+7(%mod)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u421310964", "n_user": "u421310964", "pos": "N = int(input())\na = 2 * (10**(N) - 9**(N)) - (10**(N) - 8**(N)) \nans = a % (10**9+7)\nprint(ans)", "neg": "N = int(input())\n\na = 2*(10^N-9^N)-(10^N-8^N)\nans = a % (10^9+7)\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [54, 46], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\n **(^N-9^ 9**(N)) - **(^N-8^ - 8**(N)) ^**", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u566159623", "n_user": "u566159623", "pos": "mod = 10**9+7\nN = int(input())\nans = pow(10, N, mod)\na = pow(9, N, mod)\nb = pow(8, N, mod)\n\nans-=2*a-b\nans%=mod\nprint(ans)", "neg": "mod = 10**9+7\nN = int(input())\nans = pow(10, N, mod)\na = pow(9, N, mod)\nb = pow(8, N, mod)\nprint(ans, a, b)\nans-=2*a-b\nans%=mod\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [67, 75], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "print(ans, a, b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u194228880", "n_user": "u194228880", "pos": "n = int(input(''))\n\nmod = 1000000007\n\ncnt_all= 10**n%mod\ncnt_90=8**n%mod\ncnt_9=9**n%mod\ncnt_0=cnt_9%mod\ncnt=(cnt_all + cnt_90 - cnt_9 - cnt_0)%mod\n#print(\"{} - {} - {} + {} = {}\".format(cnt_all,cnt_9,cnt_0,cnt_90,cnt))\nprint(cnt)\n", "neg": "n = int(input(''))\n\nmod = 1000000007\n\ncnt_all= 10**n\ncnt_90=8**n\ncnt_9=9**n\ncnt_0=9**n\ncnt=cnt_all + cnt_90 - cnt_9 - cnt_0\n#print(\"{} - {} - {} + {} = {}\".format(cnt_all,cnt_9,cnt_0,cnt_90,cnt))\nprint(cnt)\n", "jacc_sim": 0.9642857142857143, "before_after_length": [116, 105], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "%mod%mod%mod9**n\n_9%mod\ncnt()%mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u428699622", "n_user": "u428699622", "pos": "N = int(input())\ncomb = 10**N-2*9**N+8**N\nprint(comb%(10**9+7))", "neg": "N = int(input())\ncomb = 10**N-2*(9**N-8**N)\nprint(comb%(10**9+7))", "jacc_sim": 1.0, "before_after_length": [33, 34], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "(-+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u674588203", "n_user": "u674588203", "pos": "# AtCoder Beginner Contest 178\n# C - Ubiquity\n\nN=int(input())\n\nmod=10**9+7\n\nprint(((10**N)-(9**N)-(9**N)+(8**N))%mod)", "neg": "# AtCoder Beginner Contest 178\n# C - Ubiquity\nimport math\n\nN=int(input())\n\nmod=10**9+7\n\nprint((10**N)%mod-(9**N)%mod)-(9**N)%mod+(8**N)%mod)", "jacc_sim": 0.9230769230769231, "before_after_length": [62, 73], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "import math\n()%mod-(9**N)%mod%mod-(9**N))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u698919163", "n_user": "u698919163", "pos": "N = int(input())\n\nmod = 10**9+7\n\nif N == 1:\n print(0)\nelif N == 2:\n print(2)\nelse:\n tmp = 2*(pow(10,N,mod)-pow(9,N,mod))-(pow(10,N,mod)-pow(8,N,mod))\n print(tmp%mod)\n ", "neg": "N = int(input())\n\nmod = 10**9+7\n\nif N == 1:\n print(0)\nelif N == 2:\n print(1)\nelse:\n tmp = (2*(pow(10,N,mod)-pow(9,N,mod))-(pow(10,N,mod)-pow(8,N,mod)))\n print(tmp)\n ", "jacc_sim": 0.9615384615384616, "before_after_length": [94, 93], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "12()%mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u231905444", "n_user": "u231905444", "pos": "n = int(input())\nans = 1\nans1 = 1\nans2 = 1\nmod = 1000000007\nfor i in range(n):\n\tans = (ans*10)%mod\n\tans2 = (ans2*8)%mod\n\tans1 = (ans1*9)%mod\nans = (ans - ans1 + mod)%mod\nans = (ans - ans1 + mod)%mod\nans = (ans + ans2)%mod\nprint(ans)\n", "neg": "n = int(input())\nans = 1\nans2 = 1\nmod = 1000000007\nfor i in range(n):\n\tans = (ans*10)%mod\n ans2 = (ans2*8)%mod\nans = (ans - ans2 + mod)%mod\nprint(ans)", "jacc_sim": 0.92, "before_after_length": [114, 71], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "1 = 1\nans\t \tans1 = (ans1*9)%mod\n21)%mod\nans = (ans - ans1 + mod)%mod\nans = (ans + ans2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u706659319", "n_user": "u706659319", "pos": "def div(n,T):\n tmp = 10 ** 9 + 7\n _ = 1\n for t in range( T- 1):\n _ *= n\n _ %= tmp\n return _ * n\n \nN = int(input())\na = div(10,N)\nb = div(9,N)\nc = div(8,N)\nprint((a + c - b * 2) % (10 ** 9 + 7)) ", "neg": " tmp = 10 ** 9 + 7\ndef div(n,T):\n _ = 1\n for t in range(T):\n _ *= n\n _ %= tmp\n return _\n \nN = int(input())\na = div(10,N)\nb = div(9,N)\nc = div(8,N)\n\nprint((a + c - 2 * b) % tmp\n", "jacc_sim": 1.0, "before_after_length": [104, 94], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " tmp = 10 ** 9 + 7\ntmp = 10 ** 9 + 7\n - 1 * n\nb * * btmp\n(10 ** 9 + 7)) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u463470469", "n_user": "u463470469", "pos": "N = int(input())\na = (10**N+8**N-2*(9**N))%((10**9)+7)\nprint(a)", "neg": "N = int(input())\na = (10**N-8**N)%(10**9+7)\nprint(a)", "jacc_sim": 0.9411764705882353, "before_after_length": [37, 30], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "-+-2*(9**N)()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u374802266", "n_user": "u374802266", "pos": "n,m=int(input()),10**9+7\nprint((pow(10,n,m)-2*pow(9,n,m)+pow(8,n,m))%m)", "neg": "n,m=int(input()),10**9+7\nprint((pow(10,p,m)-2*pow(9,p,m)+pow(8,p,m))%m)", "jacc_sim": 0.95, "before_after_length": [46, 46], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "pnpnpn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u234791058", "n_user": "u234791058", "pos": "# -*- coding: utf-8 -*-\nMOD=1000000007\nx = int(input())\nn1 = (10**x)%MOD\nn2 = 2*9**x%MOD\nn3 = 8**x%MOD\nn = (n1-n2+n3+MOD)%MOD\nprint(int(n))", "neg": "# -*- coding: utf-8 -*-\nMOD=1000000007\nx = int(input())\nn1 = (10**x)%MOD\nn2 = 2*9**x%MOD\nn3 = 8**x%MOD\nprint(n1, n2, n3)\nn = n1-n2+n3\nprint(int(n))", "jacc_sim": 0.9615384615384616, "before_after_length": [80, 86], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "print(n1, n2, n3)\n(+MOD)%MOD", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u188228787", "n_user": "u188228787", "pos": "N = int(input())\n \n \ndef ruizyou(x, n, S=1):\n \n S = 1\n for _ in range(n):\n S = (S*x)%(1e9+7)\n \n return S\n \na = int( ruizyou(10, N) + ruizyou(8, N) - ruizyou(9, N)*2 )\n \nprint(int(a%(1e9+7)))", "neg": "N = int(input())\n\n\ndef ruizyou(x, n, S=1):\n \n S = 1\n for _ in range(n):\n S = (S*x)%(1e9+7)\n \n return S\n \na = int( ruizyou(10, N) + ruizyou(8, N) - ruizyou(9, N)*2 )\n\nprint(a%(1e9+7))", "jacc_sim": 1.0, "before_after_length": [111, 107], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u414558682", "n_user": "u608726540", "pos": "n = int(input())\n\nans = ((((10 ** n) - (9 ** n)) * 2) - ((10 ** n) - (8 ** n))) % (10 ** 9 + 7) \nprint(ans)", "neg": "n = int(input())\nans = (10**n)%-2*(9**n)+8**n\nprint(ans%(10**9+7))\n", "jacc_sim": 1.0, "before_after_length": [52, 37], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\n((( % 2* +8) * 2) - ((10 ) - (8 ** n))) % (10 ** 9 + 7) %(10**9+7)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u849559474", "n_user": "u849559474", "pos": "n = int(input())\nmod = 10**9+7\n\ndef pow(n, num):\n s = num\n for i in range(1,n):\n s = s*num%mod\n return s\nprint((pow(n,10) - 2*pow(n,9) + pow(n,8))%mod)\n", "neg": "n = int(input())\nmod = 10**9+7\n\ndef pow(n, num):\n s = num\n for i in range(1,num):\n s = s*num%mod\n return s\nprint((pow(n,10) - 2*pow(n,9) + pow(n,8))%mod)", "jacc_sim": 1.0, "before_after_length": [81, 80], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "um \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u830588156", "n_user": "u830588156", "pos": "def main():\n N = int(input())\n \n A = 1\n countA = 0\n for i in range(N):\n A = (A*10)%(10**9 + 7)\n \n B = 1\n countB = 0\n for i in range(N):\n B = (B*9)%(10**9 + 7)\n \n C = 1\n countC = 0\n for i in range(N):\n C = (C*8)%(10**9 + 7)\n \n ans = (A - 2*B + C)%(10**9 + 7)\n \n print(ans)\n \nif __name__ == '__main__':\n main()", "neg": "def main():\n N = int(input())\n \n A = 1\n countA = 0\n for i in range(N):\n if A*10 >= 10**9 + 7:\n countA += 1\n A = (A*10)%(10**9 + 7)\n \n B = 1\n countB = 0\n for i in range(N):\n if B*9 >= 10**9 + 7:\n countB += 1\n B = (B*9)%(10**9 + 7)\n \n C = 1\n countC = 0\n for i in range(N):\n if C*8 >= 10**9 + 7:\n countC += 1\n C = (C*8)%(10**9 + 7)\n \n Z = B*(countB-countC)*(10**9 + 7) - C\n \n ans = (A*(countA-countC)*(10**9 + 7) - 2*Z - C) % (10**9 + 7)\n \n print(ans)\n \nif __name__ == '__main__':\n main()", "jacc_sim": 0.9444444444444444, "before_after_length": [171, 266], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "if A*10 >= 10**9 + 7:\n countA += 1\n if B*9 >= 10**9 + 7:\n countB += 1\n if = (C)%( >= :)\nacouts = (A - 2*B + += 1\n C = (C*8(10**9 + 7)\n \n Z = B*(countB-countC)*(10**9 + 7) - C\n \n ans = (A*(countA-countC)*(10**9 + 7) - 2*Z - C) % ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u597455618", "n_user": "u597455618", "pos": "MOD = 10**9+7\n\nn = int(input())\nprint((pow(10, max(n, 0), MOD) - pow(9, max(n, 0), MOD) -\n pow(9, max(n, 0), MOD) + pow(8, max(n, 0), MOD)) % MOD)\n", "neg": "MOD = 10**9+7\n\nn = int(input())\nprint((2*pow(10, max(0, n-2), MOD) + (n*(n-1)-2)*pow(8, max(0, n-2), MOD)) % MOD)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [75, 62], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "2*0n0), MOD) - pow(9, max(, 0), MOD) 2\n pow(9, max(n, 0(n*(n-1)-2)*0n0n-2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u274644863", "n_user": "u274644863", "pos": "n = int(input())\nmod = 10**9 +7\n\nif n == 1:\n print(0)\nelif n == 2:\n print(2)\nelse:\n print(((10**n)-2*(9**n)+(8**n))%mod)", "neg": "\nn = int(input())\nmod = 10**9 +7\n\nif n == 1:\n print(0)\nelif n == 2:\n print(2)\nelse:\n print((10**n%mod)-(8**n%mod))", "jacc_sim": 1.0, "before_after_length": [66, 61], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\n()-2*(9**n)+(8**n))-(8**n%mod))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u994988729", "n_user": "u223904637", "pos": "mod = 10 ** 9 + 7\nN = int(input())\n\nans = pow(10, N, mod)\nans -= 2 * pow(9, N, mod)\nans += pow(8, N, mod)\n\nprint(ans % mod)", "neg": "n=int(input())\nmod=10**9+7\nans=pow(n,10,mod)\nans-=2*pow(n,9,mod)\nans+=pow(n,8,mod)\nprint(ans%mod)", "jacc_sim": 0.9047619047619048, "before_after_length": [58, 58], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "nmod 10 ** 9 + 7\nN = mod=10**9+7 n, N, n, N, n, N, \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u971091945", "n_user": "u460386402", "pos": "n = int(input())\nmod = 10**9+7\n\nif n==1:\n print(0)\nelse:\n print(((10**n)-(9**n)-(9**n)+(8**n))%mod)", "neg": "n=int(input())\nif n==1:\n print(0)\nelse:\n print((10**n-(8*10**(n-1))-2*(9**(n-1)))%(10**9+7))", "jacc_sim": 0.9090909090909091, "before_after_length": [57, 56], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " mod = 10**9+7\n\n (-(8*10**(n-1)2*n)-9**-1+(8**nmod(10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u395313349", "n_user": "u395313349", "pos": "def main():\n MOD = int(1e9 + 7)\n n = int(input())\n print((pow(10,n,MOD) - 2*pow(9 , n , MOD)%MOD + pow(8 , n , MOD) + MOD)%MOD)\n \nif __name__ == \"__main__\":\n main()", "neg": "def main():\n MOD = int(1e9 + 7)\n n = int(input())\n print((pow(10,n,MOD) - 2*pow(9 , n , MOD)%MOD + pow(8 , n , MOD) + MOD)%MOD)\n\nif __namme__ == \"__main__\":\n main()", "jacc_sim": 0.9285714285714286, "before_after_length": [79, 79], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " m", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u694665829", "n_user": "u694665829", "pos": "n = int(input())\nif n == 1:\n print(0)\n exit()\nif n == 2:\n print(2)\n exit()\nelse:\n print((10**n-(2*9**n-8**n))%(10**9+7))", "neg": "n = int(input())\nif n == 1:\n print(0)\nif n == 2:\n print(2)\nelse:\n print((10**n-(2*9**n-8**n))%(10**9+7))", "jacc_sim": 0.9545454545454546, "before_after_length": [67, 59], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " exit()\n)\n exit(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u228223940", "n_user": "u974792613", "pos": "n = int(input())\nmod = 10**9+7\n\nif n == 1:\n print(0)\n exit()\n \nans = pow(10,n,mod)\nans -= pow(9,n,mod)*2\nans += pow(8,n,mod)\nans %= mod\nprint(ans)\n", "neg": "n = int(input())\n\nif n == 1:\n print(0)\n\nmod = 10 ** 9 + 7\n\nans = pow(10, n, mod) - 2 * pow(9, n, mod) + pow(8, n, mod)\nans %= mod\n\nprint(ans)\n", "jacc_sim": 0.96, "before_after_length": [77, 71], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\nmod = 10**9+7 exit()mod=10**9 + 7\n \nans= 2 * *2\nans= \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u714852797", "n_user": "u228636605", "pos": "N = int(input())\n\nprint(((10 ** N - 2 * 9 ** N + 8 ** N) % (10 ** 9 + 7)))", "neg": "N = int(input())\nprint((10**N - 9 ** N - 9**N + 8**N) % (10**9 - 7))", "jacc_sim": 0.9375, "before_after_length": [33, 33], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "\n( 2 *- 9**N -+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u135572611", "n_user": "u135572611", "pos": "MOD = int(1e9 + 7)\nn=int(input())\nans = 10 ** n % MOD\nans -= 9 ** n % MOD\nans -= 9 ** n % MOD\nans += 8 ** n % MOD\nans %= MOD\nprint(ans)\n", "neg": "MOD = int(1e9 + 7)\nn=int(input())\nprint(10 ** n - 9 ** n - 9 ** n + 8 ** n % MOD)", "jacc_sim": 0.9444444444444444, "before_after_length": [59, 38], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "aprit(s = % MOD\nans =% MOD\nans =% MOD\nans =\nans %= MOD\nprint(ans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u790812284", "n_user": "u790812284", "pos": "N = int(input())\n \nMOD = 10**9 + 7\n \nif N==1:\n print(0)\nelif N==2:\n print(2)\nelse:\n ans = pow(10,N,MOD) - 2*pow(9,N,MOD) + pow(8,N,MOD)\n ans = ans%MOD\n print(ans)", "neg": "N = int(input())\n\nMOD = 10**9 + 7\n\nif N==1:\n print(0)\nelif N==2:\n print(2)\nelse:\n tmp = (N*(N-1))%MOD\n \n ans = pow(10, N-2, MOD)\n \n ans = (ans*tmp)%MOD\n \n print(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [91, 94], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": " tmp = (N*(N-1))%MOD\n \n -2 \n-2*pow(9,N,MOD)+pow(8,N,MOD)(*tmp)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u347502437", "n_user": "u347502437", "pos": "def main():\n N = int(input())\n print((10**N - 9**N - 9**N + 8**N)%(10**9 + 7))\n\nmain()\n", "neg": "def main():\n N = input()\n print((10 ** N - 9 ** N - 9 ** N + 8 ** N)%(10**9 + 7))\n\nmain()", "jacc_sim": 0.9444444444444444, "before_after_length": [43, 40], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "t(in) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u806976856", "n_user": "u806976856", "pos": "n=int(input())\np=10**9+7\nprint((10**n-2*9**n+8**n)%p)", "neg": "n=int(input())\nprint((10**n-9**n*2+8**n)%10**9+7)", "jacc_sim": 0.9411764705882353, "before_after_length": [34, 30], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "=10**9+7\np2**2p10**9+7", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u021019433", "n_user": "u021019433", "pos": "M = 10**9 + 7\nn = int(input())\nprint((pow(10, n, M) - 2 * pow(9, n, M) + 8**n) % M)\n", "neg": "M = 10**9 + 7\nn = int(input())\nprint((pow(10, n, M) - 2 * pow(9, n, M) + pow(8, n, M) % M)\n", "jacc_sim": 1.0, "before_after_length": [45, 49], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "pow(, **, M", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02554", "p_user": "u240444124", "n_user": "u240444124", "pos": "n=int(input())\nM=10**9+7\nprint((pow(10,n,M)+pow(8,n,M)-2*pow(9,n,M))%M)", "neg": "n=int(input())\nM=10**9+7\nprint((pow(10,n,M)-pow(8,n,M))%M)", "jacc_sim": 0.9473684210526315, "before_after_length": [46, 36], "nl": "You are given a sequence of integers A1, A2, ..., AN of length N. You need to find how many sequences satisfy the following conditions: 0 \u2264 Ai \u2264 9, there exists some i such that Ai = 0, and there exists some i such that Ai = 9. Output the result modulo 10^9 + 7. Constraints: 1 \u2264 N \u2264 10^6. Input is given as N, and the output should be the answer modulo 10^9 + 7.", "diff_info": "-+-2*pow(9,n,M)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u264349861", "n_user": "u264349861", "pos": "#dt = {} for i in x: dt[i] = dt.get(i,0)+1\nimport sys;input = sys.stdin.readline\ninp,ip = lambda :int(input()),lambda :[int(w) for w in input().split()]\n\nM = 10**9+7\nn = inp()\ndp = [0]*2001\nif n <= 2:\n print(dp[n])\n exit()\ndp[0] = 1\nt = 0\nfor i in range(3,n+1):\n t += dp[i-3]\n dp[i] = t%M\nprint(dp[n]%M)", "neg": "#dt = {} for i in x: dt[i] = dt.get(i,0)+1\nimport sys;input = sys.stdin.readline\ninp,ip = lambda :int(input()),lambda :[int(w) for w in input().split()]\n\nM = 10**9+7\nn = inp()\ndp = [0]*2001\nif n <= 2:\n print(dp[n])\n exit()\ndp[0] = 1\nt = 0\nfor i in range(3,n+1):\n t += dp[i-3]\n dp[i] = t\nprint(dp[n])", "jacc_sim": 0.98, "before_after_length": [155, 150], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "%M%M", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u188745744", "n_user": "u188745744", "pos": "N=int(input())\nDP=[0]*(N+1)\ntmp=0\nmod=10**9+7\nif N<3:\n print(0)\n exit()\nDP[3]=1\nfor i in range(4,N+1):\n DP[i]=(DP[i-1]+DP[i-3])%mod\nprint(DP[N]%mod)", "neg": "N=int(input())\nDP=[0]*(N+1)\nDP[3]=1\ntmp=0\nmod=10**9+7\nfor i in range(4,N+1):\n DP[i]=(DP[i-1]+DP[i-3])%mod\nprint(DP[N]%mod)", "jacc_sim": 0.90625, "before_after_length": [95, 79], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "DP[3]=1\n\nif N<3:\n print(0)\n exit()\nDP[3]=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u385650604", "n_user": "u385650604", "pos": "import math\nN = input()\nN = int(N)\nx = N // 3\nx = int(x)\np = 10 ** 9 + 7\nsum = 0\nif x == 0:\n print(0)\nelse:\n for k in range(x):\n y = N - 3*k - 3\n l = k \n M = y + l\n a = math.factorial(l)\n b = math.factorial(M) \n c = math.factorial(y)\n d = a * c\n z = b // d\n z = z % p\n sum += z\n sum = sum %p\n\n sum = int(sum)\n print(sum)\n\n \n\n ", "neg": "import math\nN = input()\nN = int(N)\nx = N / 3\np = 10 **9 + 7\nif x == 0:\n print(0)\nsum = 0\nelse:\n for k in range(x):\n y = N - 3 * k\n l = k - 1\n M = y + l\n a = math.factorial(l)\n b = math.factorial(M) \n c = math.factorial(y)\n z = b / a / c\n z = z % p\n sum += z\n\nprint(z)\n\n \n\n ", "jacc_sim": 0.95, "before_after_length": [173, 144], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "/\nx = int(x) \nsum = 0sum = 0\n - 3 - 1 d = a * c\n a cd \nprint(z)\n\n\n\nsum = sum %p\n\n sum = int(sum)\n print(sum)\n\n \n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u466332671", "n_user": "u466332671", "pos": "s = int(input())\nMOD = 1000000007\ndp = [0] * (s+1)\ndp[0] = 1\nfor i in range(1, s+1):\n for j in range(0, (i-3)+1):\n dp[i] += dp[j]\n dp[i] %= MOD\n\nprint(dp[s])", "neg": "s = int(input())\nMOD = 1000000007\ndp = [0] * (s+1)\ndp[0] = 1\nfor i in range(1, s+1):\n for j in range(0, (i-3)+1):\n dp[i] += dp[j]\n dp[i] %= MOD\n\nprint(dp)", "jacc_sim": 1.0, "before_after_length": [86, 84], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "[s]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u279266699", "n_user": "u279266699", "pos": "import sys\n\n\nstdin = sys.stdin\ndef ns(): return stdin.readline().rstrip()\ndef ni(): return int(stdin.readline().rstrip())\ndef nm(): return map(int, stdin.readline().split())\ndef nl(): return list(map(int, stdin.readline().split()))\n\n\ndef modinv(a, mod=10**9+7):\n return pow(a, mod-2, mod)\n\n\ndef C(n, r, mod=10**9+7):\n r = min(r, n-r)\n res = 1\n for i in range(r):\n res = res * (n - i) * modinv(i+1, mod) % mod\n return res\n\n\ndef main():\n s = ni()\n mod = 10 ** 9 + 7\n ans = [0] * 2001\n ans[0] = 1\n for i in range(3, 6):\n ans[i] = 1\n for i in range(6, s + 1):\n ans[i] = (ans[i - 1] + ans[i - 3]) % mod\n print(ans[s])\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\n\n\nstdin = sys.stdin\ndef ns(): return stdin.readline().rstrip()\ndef ni(): return int(stdin.readline().rstrip())\ndef nm(): return map(int, stdin.readline().split())\ndef nl(): return list(map(int, stdin.readline().split()))\n\n\ndef modinv(a, mod=10**9+7):\n return pow(a, mod-2, mod)\n\n\ndef C(n, r, mod=10**9+7):\n r = min(r, n-r)\n res = 1\n for i in range(r):\n res = res * (n - i) * modinv(i+1, mod) % mod\n return res\n\n\ndef main():\n s = ni()\n mod = 10 ** 9 + 7\n ans = [0] * 2001\n for i in range(6):\n ans[i] = 1\n for i in range(6, s + 1):\n ans[i] = (ans[i - 1] + ans[i - 3]) % mod\n print(ans[s])\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [293, 283], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "ans[0] = 1\n 3, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u206133536", "n_user": "u206133536", "pos": "MOD = 10**9 + 7\ndp = {0: 1}\n\nS = int(input())\nfor s in range(3, S+1):\n for term in range(3, s+1):\n if s - term < 0:\n break\n else:\n dp[s] = dp.get(s-term, 0) + dp.get(s, 0) % MOD\n\nprint(dp.get(S, 0))", "neg": "MOD = 10**9 + 7\ndp = {0: 1}\n\nS = int(input())\nfor s in range(3, S+1):\n for term in range(3, s+1):\n if s - term < 0:\n break\n else:\n dp[s] = dp.get(s-term, 0) + dp.get(s, 0) % MOD\n\nprint(dp[S])", "jacc_sim": 1.0, "before_after_length": [104, 100], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "[.get(], 0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u367794409", "n_user": "u367794409", "pos": "S = int(input())\nmod = 10**9 + 7\n\nmemo = []\nfor i in range(S//3):\n for j in range(S-3*i-2):\n if j == 0:\n memo.append([1])\n else:\n if i == 0:\n x = 1\n memo[i].append(x)\n else:\n x = (memo[i][j-1]+memo[i-1][j])%mod\n memo[i].append(x)\nans = 0\nfor i in range(S//3):\n ans = (ans + memo[i][S-3*(i+1)])%mod\nprint(ans)\n", "neg": "S = int(input())\nmod = 10**9 + 7\n\nmemo = []\nfor i in range(S//3):\n for j in range(S-3*i-2):\n if j == 0:\n memo.append([1])\n else:\n if i == 0:\n x = 1\n memo[i].append(x)\n else:\n x = (memo[i][j-1]+memo[i-1][j])%mod\n memo[i].append(x)\nans = 0\nfor i in range(S//3):\n ans = (ans + memo[i][S-3*(i+1)])%mod\nprint(memo)\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [164, 169], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "memo)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u740157634", "n_user": "u740157634", "pos": "S = int(input())\nmod = 10**9+7\n\ndp = [1]+[0]*S\n\nfor i in range(1, S+1):\n for j in range(0, i-2):\n dp[i] += dp[j]\n\nprint(dp[S]%mod)\n", "neg": "S = int(input())\nmod = 10**9+7\n\ndp = [1]+[0]*(S-1)\n\nfor i in range(0, S+1):\n for j in range(3, S-2):\n dp[i] += dp[j]\n\nprint(dp[S]%mod) \n", "jacc_sim": 0.9655172413793104, "before_after_length": [74, 78], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "(-1)0130Si ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u078816252", "n_user": "u078816252", "pos": "import sys\nimport threading\n\nS = int(input())\nA = [-1 for _ in range(2001)]\nA[0] = 0\nA[1] = 0\nA[2] = 0\nA[3] = 1\n\nfor i in range(S+1):\n if A[i] == -1:\n A[i] = A[i-1] + A[i-3]\n\nprint(A[S]%(10**9+7))", "neg": "import sys\nimport threading\n\nS = int(input())\nA = [-1 for _ in range(S+1)]\nA[0] = 0\nA[1] = 0\nA[2] = 0\nA[3] = 1\nA[4] = 1\nA[5] = 1\n\nfor i in range(S+1):\n if A[i] == -1:\n A[i] = A[i-1] + A[i-3]\nprint(A[S]%(10**9+7))", "jacc_sim": 0.9117647058823529, "before_after_length": [111, 125], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "2001)]\nA[0] = 0\nA[1] = 0\nA[2] = 0\nA[3] = 1\n\nfor i in range(]:A[0]=if0\nA[1]= 0\n2i=0-1: i] = A[i-1] + A[i- = 1A[4] = 1\nA[5] = 1\n\nfor i in range(S+1):\n if A[i] == -1:\n A[i] = A[i-1] + A[i-3]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u453623947", "n_user": "u453623947", "pos": "S = int(input())\nm = (10**9)+7\nl = [1,1]\nfor i in range(2,S+1) :\n l.append(l[-1]*i)\n\nans = 0\nfor i in range(S//3) :\n kou = i+1\n maru = S - 3*kou\n shikiri = i\n ans += l[maru+shikiri] // (l[maru]*l[shikiri])\n\nprint(int((ans%m)))\n", "neg": "S = int(input())\n\nl = [1,1]\nfor i in range(2,S+1) :\n l.append(l[-1]*i)\n\nans = 0\nfor i in range(S//3) :\n kou = i+1\n maru = S - 3*kou\n shikiri = i\n ans += l[maru+shikiri] / (l[maru]*l[shikiri])\n\nprint(int(ans%((10**9)+7)))\n", "jacc_sim": 0.9714285714285714, "before_after_length": [127, 124], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "m = (10**9)+7/(m((10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u573234244", "n_user": "u573234244", "pos": "s = int(input())\n\nx = s // 3\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\nans = 0\nfor i in range(x):\n Box = i + 1\n Nokori = s - 3 * Box\n ans_ = cmb(Nokori + Box - 1, Box - 1) \n ans += ans_\nprint(ans % (10 ** 9 + 7))", "neg": "s = int(input())\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\nans = 0\nfor i in range(x):\n Box = i + 1\n Nokori = s - 3 * Box\n ans_ = cmb(Nokori + Box - 1, Box - 1) \n ans += ans_\nprint(ans % (10 ** 9 + 7))", "jacc_sim": 1.0, "before_after_length": [277, 270], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "\n\nx = s // 3", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u679089074", "n_user": "u679089074", "pos": "#D\ns = int(input())\n\nnum = [1,0,0]\nfor i in range(s-2):\n num = [num[1],num[2],num[0]+num[2]]\n #print(num)\n \nprint(num[2]%(10**9+7))", "neg": "#D\ns = int(input())\n\nnum = [0,0,1]\nfor i in range(s-3):\n num = [num[1],num[2],num[0]+num[2]]\n #print(num)\n \nprint(num[2]%(10**9+7))", "jacc_sim": 0.9655172413793104, "before_after_length": [74, 74], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "1,,132", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u325282913", "n_user": "u325282913", "pos": "MOD = 10**9 + 7\nS = int(input())\ndp = [0]*(S+4)\ndp[0] = 1\ndp[3] = 1\nfor i in range(4,S+1):\n for k in range(i-2):\n dp[i] += dp[k]\nprint(dp[S]%MOD)", "neg": "MOD = 10**9 + 7\nS = int(input())\ndp = [0]*(S+1)\ndp[0] = 1\ndp[3] = 1\nfor i in range(4,S+1):\n for k in range(i-2):\n dp[i] += dp[k]\nprint(dp[S]%MOD)", "jacc_sim": 1.0, "before_after_length": [83, 83], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "14", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u476068053", "n_user": "u476068053", "pos": "def main():\n s = int(input())\n mod = 10**9 + 7\n\n dp = [0] * (s+1)\n dp[0] = 1\n for i in range(1, s+1):\n for j in range(0, (i-3)+1):\n dp[i] += dp[j]\n dp[i] %= mod\n print(dp[-1])\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "def main():\n s = int(input())\n mod = 10**9 + 7\n\n dp = [0] * (s+1)\n dp[0] = 1\n# for i in range(1, s+1):\n# for j in range(0, (i-3)+1):\n# dp[i] += dp[j]\n# dp[i] %= mod\n for i in range(1, s+1):\n if i < 3:\n dp[i] = 0\n else:\n dp[i] = dp[i-1] + dp[i-3]\n\n print(dp[-1])\n\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.918918918918919, "before_after_length": [115, 171], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "####for i in range(1, s+1):\n if i < 3:\n d[rnt(] = 0\n else:\n i] = dp[i + dp[i-3]\n\n print(dp[-1]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u991542950", "n_user": "u991542950", "pos": "mod = (10 ** 9 + 7)\ntot = 1\nl = [1, 0, 0]\nfor i in range(2000):\n nex = (tot - l[-1] - l[-2]) % mod\n tot = (tot + nex) % mod\n l.append(nex)\nprint(l[int(input())])", "neg": "mod = (10 ** 9 + 7)\ntot = 1\nl = [1, 0, 0]\nfor i in range(3, 2000):\n nex = (tot - l[-1] - l[-2])\n tot = (tot + nex) \n l.append(nex)\nprint(l[int(input())])", "jacc_sim": 0.9375, "before_after_length": [81, 79], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "3, % mod% mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u961223096", "n_user": "u961223096", "pos": "import numpy as np\n\nMOD = 10**9+7\n\nn = int(input())\narr = np.zeros((n+1,n+1), dtype=int)\nfor i in np.arange(3,n+1):\n arr[0,i] = 1\n\nfor i in np.arange(1,n+1):\n sum_ = 0\n for j in np.arange(3*i,n+1):\n sum_ += arr[i-1,j]\n sum_ %= MOD\n if j+3 >= n + 1:\n break\n arr[i,j+3] = sum_\n\nans = 0\nfor i in range(n+1):\n ans += arr[i,n]\n ans %= MOD\nprint(ans)\n\n\n\n\n\n\n", "neg": "import numpy as np\n\nMOD = 10**9+7\n\nn = int(input())\narr = np.zeros((n+1,n+1), dtype=np.int16)\nfor i in np.arange(3,n+1):\n arr[0,i] = 1\n\nfor i in np.arange(1,n+1):\n sum_ = 0\n for j in np.arange(3*i,n+1):\n sum_ += arr[i-1,j]\n sum_ %= MOD\n if j+3 >= n + 1:\n break\n arr[i,j+3] = sum_\n\nans = 0\nfor i in range(n+1):\n ans += arr[i,n]\n ans %= MOD\nprint(ans)\n\n\n\n\n\n\n", "jacc_sim": 0.9761904761904762, "before_after_length": [193, 196], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "np.16", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u642012866", "n_user": "u642012866", "pos": "S = int(input())\nmod = 10**9+7\n\nans = 0\n\nx = [0]*(2020)\nx[3] = 1\nx[4] = 1\nx[5] = 1\nfor i in range(6, S+1):\n x[i] += 1\n for j in range(3, i-2):\n x[i] += x[j]\n x[i] %= mod\n\nprint(x[S])", "neg": "S = int(input())\nmod = 10**9+7\n\nans = 0\n\nx = [0]*(S+1)\nx[3] = 1\nx[4] = 1\nx[5] = 1\nfor i in range(6, S+1):\n x[i] += 1\n for j in range(3, i-2):\n x[i] += x[j]\n x[i] %= mod\n\nprint(x[S])", "jacc_sim": 0.9705882352941176, "before_after_length": [111, 112], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "S+12020", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u688839540", "n_user": "u688839540", "pos": "def f(n):\n res = 1\n if n <= 1:\n return 1\n while n>1:\n res *= n\n n-=1\n return res\n \ndef h(n,m):\n return f(n+m-1)//f(n)//f(m-1)\n \ns=int(input())\n \nres = 0\n \npair = s//3\n \nfor i in range(1,pair+1):\n res += h(s-3*i,i)\nprint(res%(10**9+7))", "neg": "def f(n):\n if n <= 1:\n return 1\n return f(n-1)*n\n \ndef h(n,m):\n return f(n+m-1)//f(n)//f(m-1)\n \ns=int(input())\n \nres = 0\n \npair = s//3\n \nfor i in range(1,pair+1):\n res += h(s-3*i,i)\nprint(res%(10**9+7))", "jacc_sim": 0.9444444444444444, "before_after_length": [138, 121], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "res = 1\n rwhilturnf(->):\n res = \n n-=1\n return res", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u543000780", "n_user": "u543000780", "pos": "S = int(input())\nmod = 10**9+7\nmemo = [-1]*(S+1)\nmemo[0] = 1\ndef redis(s):\n if memo[s] != -1:\n return memo[s]\n else:\n if s < 3:\n memo[s] = 0\n return 0\n elif s < 6:\n memo[s] = 1\n return 1\n else:\n tmp = 0\n for num in range(s-2):\n tmp += redis(num)%mod\n memo[s] = tmp\n return tmp%mod\nprint(redis(S))\n \n\n\n", "neg": "S = int(input())\nmod = 10**9+7\nmemo = [-1]*(S+1)\ndef redis(s):\n if memo[s] != -1:\n return memo[s]\n else:\n if s < 3:\n memo[s] = 0\n return 0\n elif s < 6:\n memo[s] = 1\n return 1\n else:\n tmp = 0\n for num in range(s):\n tmp += (redis(num)*redis(s-num))%mod\n memo[s] = tmp\n return tmp%mod\nprint(redis(S))\n \n\n", "jacc_sim": 0.9736842105263158, "before_after_length": [154, 151], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "memo[0] = 1\n-2()*redis(s-num)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u798260206", "n_user": "u798260206", "pos": "n = int(input())\nS = n//3\nmod=10**9+7\ndef combination(n, r, mod=10**9+7):\n r = min(r, n-r)\n res = 1\n for i in range(r):\n res = res * (n - i) * pow(i+1, mod-2, mod) % mod\n return res\n \nans = 0\nif S>=1:\n for i in range(1,S+1):\n t = n - 3*i\n ans += combination(t+i-1,i-1)\n print(ans%mod)\n \n \nelse:\n print(0)", "neg": "n = int(input())\nS = n//3\n\ndef combination(n, r, mod=10**9+7):\n r = min(r, n-r)\n res = 1\n for i in range(r):\n res = res * (n - i) * pow(i+1, mod-2, mod) % mod\n return res\n \nans = 0\nif S>=1:\n for i in range(1,S+1):\n t = n - 3*i\n ans += combination(t+i-1,i-1)\n print(ans)\n \n \nelse:\n print(0)", "jacc_sim": 1.0, "before_after_length": [164, 155], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "mod=10**9+7%mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u278057806", "n_user": "u278057806", "pos": "from sys import stdin\ninput = stdin.readline\n\nS = int(input())\n\nA = [-1] * (2001)\nmod = 10 ** 9 + 7\n\nfor i in range(3):\n A[i] = 0\n\nfor i in range(3, 6):\n A[i] = 1\n\n\ndef dfs(n):\n if A[n] != -1:\n return A[n]\n else:\n A[n] = (dfs(n - 3) + dfs(n - 1)) % mod\n return A[n]\n\n\nprint(dfs(S))\n", "neg": "from sys import stdin\ninput = stdin.readline\n\nS = int(input())\n\nA = [-1] * (S + 1)\nmod = 10 ** 9 + 7\n\nfor i in range(3):\n A[i] = 0\n\nfor i in range(3, 6):\n A[i] = 1\n\n\ndef dfs(n):\n if A[n] != -1:\n return A[n]\n else:\n A[n] = (dfs(n - 3) + dfs(n - 1)) % mod\n return A[n]\n\n\nprint(dfs(S))\n", "jacc_sim": 0.9761904761904762, "before_after_length": [145, 146], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "200S + ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u575354126", "n_user": "u575354126", "pos": "import sys\nimport math,bisect\nsys.setrecursionlimit(10 ** 5)\nfrom collections import defaultdict\nfrom itertools import groupby,accumulate\nfrom heapq import heapify,heappop,heappush\nfrom collections import deque,Counter,OrderedDict\ndef I(): return int(sys.stdin.readline())\ndef neo(): return map(int, sys.stdin.readline().split())\ndef Neo(): return list(map(int, sys.stdin.readline().split()))\nmod = 10**9+7\nfact = [1]+[0]*(10**4)\nfor i in range(1,10**4):\n fact[i] = (i*fact[i-1])%mod\nN = I()\nif N < 3:\n print(0)\n exit()\nr = 1\nAns = 0\nwhile N-r*3 >= 0:\n n = N-3*r\n Ans += (fact[n+r-1]*pow(fact[n],mod-2,mod)*pow(fact[r-1],mod-2,mod))%mod\n Ans = Ans%mod\n r += 1\nprint(Ans%mod)\n", "neg": "import sys\nimport math,bisect\nsys.setrecursionlimit(10 ** 5)\nfrom collections import defaultdict\nfrom itertools import groupby,accumulate\nfrom heapq import heapify,heappop,heappush\nfrom collections import deque,Counter,OrderedDict\ndef I(): return int(sys.stdin.readline())\ndef neo(): return map(int, sys.stdin.readline().split())\ndef Neo(): return list(map(int, sys.stdin.readline().split()))\nmod = 10**9+7\nfact = [1]+[0]*(10**4)\nfor i in range(1,10**4):\n fact[i] = (i*fact[i-1])%mod\nN = I()\nif N < 3:\n print(0)\nr = 1 \nAns = 0\nwhile N-r*3 >= 0:\n n = N-3*r\n Ans += (fact[n+r-1]*pow(fact[n],mod-2,mod)*pow(fact[r-1],mod-2,mod))%mod\n Ans = Ans%mod\n r += 1\nprint(Ans)\n", "jacc_sim": 0.9852941176470589, "before_after_length": [279, 274], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "r=1 exit()\nr = 1%mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u987692205", "n_user": "u987692205", "pos": "s=int(input())\nmod=10**9+7\ndp=[0]*(s+1)\ndp[0]=1\n\nfor i in range(1,s+1):\n\tfor j in range(0,(i-3)+1):\n\t\tdp[i]+=dp[j]\n\t\tdp[i]%=mod\nprint(dp[s])\n\n", "neg": "s=int(input())\nmod=10**9+7\ndp=[0]*s\ndp[0]=1\n\nfor i in range(0,s+1):\n\tdp[i]=dp[i-1]+dp[i-3]\n\tdp[i]%=mod\n\nprint(dp[s])\n\n", "jacc_sim": 0.9642857142857143, "before_after_length": [91, 78], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "(+1)01for j in range(0,(i-3)+1):\n\t\t+ji-1]+dp[i-3\t\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u189806337", "n_user": "u189806337", "pos": "s = int(input())\np = [0]*(s+1)\nmod = 10**9 + 7\np[0] = 1\n\nif s >= 3:\n\tfor i in range(3,s+1):\n\t\tp[i] = (sum(p[:i-2]))%mod\nprint(p[s])", "neg": "s = int(input())\np = [1]*(s+1)\nmod = 10**9 + 7\n\np[1] = 0\np[2] = 0\nif s >= 3\n\tfor i in range(3,s+1):\n\t\tp[i] = (sum(p[:i-2]))%mod\nprint(p[s])", "jacc_sim": 1.0, "before_after_length": [78, 84], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "10\n1001p[2] = 0:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u460745860", "n_user": "u460745860", "pos": "mod = pow(10,9) + 7\nS = int(input())\n\ndp = [0] * (S+1)\n\ndp[0] = 1\n\nfor i in range(S+1):\n for j in range(0,(i-3)+1):\n dp[i] += dp[j]\n dp[i] %= mod\n\nprint(dp[-1] % mod)", "neg": "S = int(input())\n\ndp = [0] * (S+1)\n\ndp[0] = 1\n\nfor i in range(S+1):\n for j in range(0,(i-3)+1):\n dp[i] += dp[j]\n dp[i] %= 10**9+7\n\nprint(dp[-1] % 10**9+7)", "jacc_sim": 0.9310344827586207, "before_after_length": [95, 92], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "mod = pow(10,9) + 7\nmod10**9+7mod10**9+7", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u728095140", "n_user": "u728095140", "pos": "from operator import mul\nfrom functools import reduce\n\n\ndef combinations_count(n, r):\n r = min(r, n - r)\n numer = reduce(mul, range(n, n - r, -1), 1)\n denom = reduce(mul, range(1, r + 1), 1)\n return numer // denom\n\n\nN = int(input())\nans = 0\namari = int(N % 3)\nshou = int(N // 3)\n\nfor i in range(shou):\n\n ans = (ans + combinations_count((amari + shou - 1), amari)) % (10**9 + 7)\n amari += 3\n shou -= 1\nprint(ans)\n", "neg": "from operator import mul\nfrom functools import reduce\n\n\ndef combinations_count(n, r):\n r = min(r, n - r)\n numer = reduce(mul, range(n, n - r, -1), 1)\n denom = reduce(mul, range(1, r + 1), 1)\n return numer // denom\n\n\nN = int(input())\nans = 0\namari = int(N % 3)\nshou = int(N // 3)\n\nfor i in range(shou):\n amari += 3\n shou -= 1\n ans = (ans + combinations_count((amari + shou - 1), amari)) % (10**9 + 7)\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [170, 169], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": " amari += 3\n shou -= 1 amari += 3\n shou -= 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u017415492", "n_user": "u017415492", "pos": "n=int(input())\nmod=10**9+7\n\ndef kaijou(n):\n ans=1\n for i in range(1,n+1):\n ans*=i\n ans%=mod\n return ans%mod\n\nk,t=divmod(n,3)\nif n>=3:\n ans=(kaijou(t+k-1)*pow(kaijou(k-1),mod-2,mod)*pow(kaijou(t),mod-2,mod))\n bunpai=t\n for i in range(k-1,0,-1):\n bunpai+=3\n ans+=(kaijou(bunpai+i-1)*pow(kaijou(i-1),mod-2,mod)*pow(kaijou(bunpai),mod-2,mod))\n ans%=mod\n print(ans%mod)\nelse:\n print(0)\n\n ", "neg": "n=int(input())\nmod=10**9+7\n\ndef kaijou(n):\n ans=1\n for i in range(1,n+1):\n ans*=i\n ans%=mod\n return ans%mod\n\nk,t=divmod(n,3)\nif t==0:\n ans=1\nelif t==1:\n ans=k\nelse:\n ans=(kaijou(2+k-1)*pow(kaijou(k-1),mod-2,mod)*pow(kaijou(2),mod-2,mod))\nbunpai=t\nfor i in range(k-1,0,-1):\n bunpai+=3\n ans+=(kaijou(bunpai+i-1)*pow(kaijou(i-1),mod-2,mod)*pow(kaijou(bunpai),mod-2,mod))\n ans%=mod\nprint(ans)\n\n ", "jacc_sim": 0.9473684210526315, "before_after_length": [233, 238], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "tn>3:\n ans(kaijou(t+k-1)*pow(kaijou(k-1),mod-2,mod)*pow(kaijou(t),mod-2,mod))\n bunpai=t\n for i in range(k-1,,-1)a buspai+3\n ans+=(kaijou(bunpai+i-)*pow(kaijou(i-1),mod-2,mod)*pow(kaijou(bunpai),mod-2,mod))\n ans%=mod\n print(ans%mod)seif t==1ans=k\nelse:\n ans=(kaijou(2+k-1)*ow(kaijou(k-1),mod-2,mod)*pow(kaijou(2),mod-2,mod))\nbunpai=t\nfo it rangek-1,,-1: bunpai+=3ans+=(kaijou(bunpai+i-1)*pow(kaijou(i-1),mod-2,mod)*pow(kaijou(bunpai),mod-2,mod))\nans%=mod\nprint(ans)\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02555", "p_user": "u550146922", "n_user": "u550146922", "pos": "s = int(input())\nimport sys\np = 10**9+7\ndp = [0]*2003\ndp[2]=1\nif s<=3:\n print(dp[s-1])\n sys.exit()\nfor i in range(3,s):\n dp[i] = (dp[i-1]%p+dp[i-3]%p)%p\n\n\nprint(dp[s-1])", "neg": "s = int(input())\nimport sys\np = 10**9+7\ndp = [0]*100#2003\ndp[2]=1\nif s<=3:\n print(dp[s-1])\n sys.exit()\nfor i in range(3,s):\n dp[i] = (dp[i-1]%p+dp[i-3]%p)%p\n\n\nprint(dp[s-1])", "jacc_sim": 0.9459459459459459, "before_after_length": [104, 106], "nl": "Score: 400 points\nProblem Statement:\nGiven an integer S, find the number of sequences with terms as integers greater than or equal to 3, and whose sum is S. Output the answer modulo 10^9 + 7.\nConstraints:\n1 \u2264 S \u2264 2000\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nS\nOutput:\nPrint the answer.\nSample Input 1:\n7\nSample Output 1:\n3\n3 sequences satisfy the condition: {3,4}, {4,3}, and {7}.\nSample Input 2:\n2\nSample Output 2:\n0\nThere are no sequences that satisfy the condition.\nSample Input 3:\n1729\nSample Output 3:\n294867501", "diff_info": "100#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u035210736", "n_user": "u035210736", "pos": "from decimal import *\nx, k, d = map(Decimal, input().split())\n\nif x >= 0:\n if x-k*d >= 0:\n print(abs(x-k*d))\n else:\n if x//d%2 == k%2:\n print(abs(x%d))\n else:\n print(abs(d-x%d))\nelse:\n if x+k*d <= 0:\n print(abs(x+k*d))\n else:\n if -x//d%2 == k%2:\n print(abs(-x%d))\n else:\n print(abs(d+x%d))", "neg": "from decimal import *\nx, k, d = map(Decimal, input().split())\n\nif x >= 0:\n if x-k*d >= 0:\n print(abs(x-k*d))\n else:\n if d%2 == k%2:\n print(abs(k-x%d))\n else:\n print(abs(x%d))\nelse:\n if -x+k*d <= 0:\n print(abs(-x+k*d))\n else:\n if d%2 == k%2:\n print(abs(k+x%d))\n else:\n print(abs(-x%d))", "jacc_sim": 0.9655172413793104, "before_after_length": [162, 158], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x//k-x%))\nelse:\n if x%d))\nelse:\n if --x//k-x%d))\n else:\n print(abs(d\n else:\n print(abs(-x%d))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u579610094", "n_user": "u579610094", "pos": "x,k,d=[int(x) for x in input().split()]\n\n\nif abs(x)==d:\n\tif k%2==0:\n\t\tprint(abs(x))\n\telse:\n\t\tprint(0)\nelse:\n\n\tnum= abs(x)//d\n\tif k<=num:\n\t\tif x<0:\n\t\t\tx=x+k*d\n\t\telse:\n\t\t\tx=x-k*d\n\t\tprint(abs(x))\n\telse:\n\t\tif x<0:\n\t\t\tx=x+num*d\n\t\telse:\n\t\t\tx=x-num*d\n\n\t\tk=k-num\n\n\t\tif k%2==0:\n\t\t\tprint(abs(x))\n\t\telse:\n\t\t\tprint(min(abs(x-d),abs(x+d)))\n", "neg": "x,k,d=[int(x) for x in input().split()]\n\nprint(x)\n\nif abs(x)==d:\n\tif k%2==0:\n\t\tprint(abs(x))\n\telse:\n\t\tprint(0)\nelse:\n\n\tnum= abs(x)//d\n\tif k=k:\n print(x-d*k)\nelse:\n if (k-i)%2==0:\n print(x-d*i)\n else:\n print(abs(x-d*(i+1)))", "neg": "x,k,d=map(int,input().split())\n\nx=abs(x)\ni=x//d\n\nprint(i)\nif i>=k:\n print(x-d*k)\nelse:\n if (k-i)%2==0:\n print(x-d*i)\n else:\n print(abs(x-d*(i+1)))", "jacc_sim": 1.0, "before_after_length": [90, 95], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "\nprint(i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u087118202", "n_user": "u087118202", "pos": "x,k,d=map(int,input().split())\n\nx=abs(x)\nans=0\nif x>=d*k:\n ans=x-k*d\nelse:\n e= int(x/d)\n k-=e\n x-=e*d\n if k%2==1:\n x=abs(x-d)\n ans=x\n\nprint(ans)", "neg": "x,k,d=map(int,input().split())\n\nx=abs(x)\nans=0\nif x/d>=k:\n ans=x-k*d\nelse:\n e= x/d\n k-=e\n x-=e*d\n if k%2==1:\n ans=abs(x-d)\n else:\n ans=x\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [101, 102], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "/dd*int()xans else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u106797249", "n_user": "u106797249", "pos": "\ndef resolve():\n X, K, D = list(map(int, input().split()))\n X = -X if X < 0 else X\n m = X//D\n if m < K:\n if X%D > D-X%D:\n nmove = m+1\n print(D-X%D if (K-nmove)%2==0 else X%D)\n else:\n nmove = m\n print(X%D if (K-nmove)%2==0 else D-X%D)\n else:\n nmove = m\n print(X-K*+D)\n\n\nif '__main__' == __name__:\n resolve()", "neg": "def resolve():\n X, K, D = list(map(int, input().split()))\n X = -X if X < 0 else X\n m = X//D\n if m < K and X%D > D-X%D:\n nmove = m+1\n print(D-X%D if (K-nmove)%2==0 else X%D)\n else:\n nmove = m\n print(X%D if (K-nmove)%2==0 else D-X%D)\n\n\nif '__main__' == __name__:\n resolve()", "jacc_sim": 0.9428571428571428, "before_after_length": [167, 142], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "\n:\nand if else:\n nmov = mlse: nmove = m\n else:\n nmove = m\n print(X-K*+D)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u750712894", "n_user": "u750712894", "pos": "X,K,D = map(int,input().split())\nX = abs(X)\n \nif X <= K * D :\n if (K - X // D) % 2 == 1 :\n answer = abs(X % D - D)\n else :\n answer = X % D\nelse :\n answer = X - K * D\n \nprint(answer)", "neg": "X,K,D = map(int,input().split())\nX = abs(X)\n \nif X <= K * D :\n if K % 2 == 1 :\n answer = abs(X % D - D)\n else :\n answer = X % D\nelse :\n answer = X - K * D\n \nprint(answer)", "jacc_sim": 0.96, "before_after_length": [88, 82], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "( - X // D)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u410558877", "n_user": "u410558877", "pos": "line = input()\n\nstrL = line.split()\nX = abs(int(strL[0]))\nK = int(strL[1])\nD = int(strL[2])\n\nmod = X % D\ndiv = int(X / D)\n\nif div > K:\n ans = X - K * D\nelif (K - div) % 2 != 0:\n ans = mod - D\nelse:\n ans = mod\n\nprint(abs(int(ans)))", "neg": "line = input()\n\nstrL = line.split()\nX = int(strL[0])\nK = int(strL[1])\nD = int(strL[2])\n\nmod = X % D\ndiv = int(X / D)\n\nif div > K:\n ans = abs(X - K * D)\nelif (K - div) % 2 != 0:\n if mod > 0:\n ans = mod - D\n else:\n ans = mod + D\n\nprint(int(abs(ans)))", "jacc_sim": 0.9705882352941176, "before_after_length": [115, 126], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "abs()abs()ifans =>-0D\nelse - D\n else:\n ans = mod + Dint(ait(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u953655640", "n_user": "u953655640", "pos": "X, K, D = map(int, input().split())\ncount1 = abs(X) // D\ncount2 = (abs(X) // D)+1\nif count1 < K:\n if (K - count1) %2 ==0:\n print(abs(abs(X)-abs(D*count1)))\n \n else:\n print(abs(abs(X)-abs(D*count2)))\nelse:\n print(abs(abs(X)-abs(D*K)))", "neg": "X, K, D = map(int, input().split())\ncount1 = X // D\ncount2 = (X // D)-1\nif count1 < K:\n if (K - count1) %2 ==0:\n print(abs(abs(X)-abs(D*count1)))\n else:\n print(abs(abs(X)-abs(D*count2)))\nelse:\n print(abs(abs(X)-abs(D*K)))", "jacc_sim": 0.9642857142857143, "before_after_length": [117, 109], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "abs()abs( // D- // D)+ \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u571718615", "n_user": "u571718615", "pos": "from sys import stdin\n\n\ndef f(x, k, d):\n if k == 0:\n return x\n\n absX = abs(x)\n tmp = absX // d\n\n if tmp > k:\n return absX - d * k\n else:\n absX = absX - d * tmp\n k = k - tmp\n if k % 2 == 0:\n return absX\n else:\n return abs(absX - d)\n\n\nif __name__ == '__main__':\n X, K, D = [int(x) for x in stdin.readline().rstrip().split()]\n print(f(X, K, D))\n", "neg": "from sys import stdin\n\n\ndef f(x, k, d):\n if k == 0:\n return x\n\n if x == 0:\n if k % 2 == 0:\n return 0\n elif k % 2 == 1:\n return d\n elif x > 0:\n tmp = abs(x) / d\n if d * tmp > d * k:\n return x - d * k\n else:\n return f((x-d*tmp), (k-tmp), d)\n elif x < 0:\n tmp = abs(x) / d\n if d * tmp > d * k:\n return x + d * k\n else:\n return f((x+d*tmp), (k-tmp), d)\n\n\nif __name__ == '__main__':\n X, K, D = [int(x) for x in stdin.readline().rstrip().split()]\n print(abs(f(X, K, D)))\n", "jacc_sim": 0.9130434782608695, "before_after_length": [164, 231], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "ifabsX= abs()\n tmp = absX // d\n\n if tmp > k:\n return absX - d * k\n else:\n absX = absX - d * tmp\n k = k - tmp\n if k % 2if k % 2 == 0:\n 0absXseif k % 2 == 1d\nabs(absX-d)\n\n\nif __nam__ == '__main__':\n X, K, D = [int(x) for x in stdin.readf x > 0:\n tmp = abs(x) / d\n if d * tmp > d * k:\n retur x - d * k\n ().rstrip().spse:\n return f((x-d*tmp), (k-tmp), d)\n elf x < 0:\n mp = absx] / d if d * tm > d * k:\n eturn x + d * k\n else:\n return f((x+d*tmp), (k-tmp), d)\n\n\nf __t(f(ame__ == '__main__':\n = [int(x for x in stdin.readline(.rstrip().split()] print(abs(f(X, K, D)))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u702399883", "n_user": "u702399883", "pos": "x,k,d=list(map(int,input().split()))\nx=abs(x)\nsyou, amari = divmod(abs(x),d)\nif x>0:\n if x-k*d==0:\n print(0)\n elif x-k*d<0:\n if amari==0:\n newk=k-syou\n if newk%2==0:\n print(0)\n else:\n print(d)\n elif amari!=0:\n newk=k-syou+1\n if newk%2==0:\n print(abs(x-d*(syou+1)))\n else:\n print(abs(x-d*syou))\n elif x-k*d>0:\n print(abs(x-k*d))\nif x==0:\n if k%2==0:\n print(0)\n else:\n print(d)\n", "neg": "x,k,d=list(map(int,input().split()))\nsyou, amari = divmod(x,d)\nif x>0:\n if x-k*d==0:\n print(0)\n elif x-k*d<0:\n if amari==0:\n newk=k-syou\n if newk%2==0:\n print(0)\n else:\n print(d)\n elif amari!=0:\n newk=k-syou+1\n if newk%2==0:\n print(abs(x-d*(syou+1)))\n else:\n print(abs(x-d*syou))\n elif x-k*d>0:\n print(abs(x-k+d))\nif x==0:\n if k%2==0:\n print(0)\n else:\n print(d)", "jacc_sim": 1.0, "before_after_length": [233, 223], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": ")\nx=abs(xabs()+*\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u298976461", "n_user": "u298976461", "pos": "x, k, d = map(int, input().split())\n\nif x == 0:\n if k % 2 == 0:\n print(0)\n else:\n print(d)\nelif x > 0:\n if x >= k * d:\n print(x - k * d)\n else:\n q, mod = divmod(x, d)\n k -= q\n if k % 2 == 0:\n print(mod)\n else:\n print(abs(mod - d))\nelif x < 0:\n if abs(x) >= k * d:\n print(abs(x + k * d))\n else:\n q, mod = divmod(abs(x), d)\n k -= q\n if k % 2 == 0:\n print(mod)\n else:\n print(abs(mod - d))\n", "neg": "x, k, d = map(int, input().split())\n\n# if x == 0:\n# if k % 2 == 0:\n# print(0)\n# else:\n# print(d)\nelif x >= 0:\n if x >= k * d:\n print(x - k * d)\n else:\n q, mod = divmod(x, d)\n k -= q\n if k % 2 == 0:\n print(mod)\n else:\n print(abs(mod - d))\nelif x < 0:\n if abs(x) >= k * d:\n print(abs(x + k * d))\n else:\n q, mod = divmod(abs(x), d)\n k -= q\n if k % 2 == 0:\n print(mod)\n else:\n print(abs(mod - d))\n", "jacc_sim": 0.9666666666666667, "before_after_length": [206, 211], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "# # # # # =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u833871588", "n_user": "u833871588", "pos": "x,k,d = [int(i) for i in input().split()]\nx=abs(x)\nx=x-k*d if x>=k*d else abs(x%d-(k-x//d)%2*d)\nprint(x)", "neg": "x,k,d = [int(i) for i in input().split()]\nx=x-k*d*x//abs(x) if abs(x)>=k*d else x-(abs(x)//d)*d*x//abs(x)-(d if abs(x)//d%2==1 else 0)*x//abs(x)\nprint(x)", "jacc_sim": 0.9285714285714286, "before_after_length": [65, 90], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x-k*d*x//\nx=x-k*dabs()x-()%d-(k-x%2*x//abs(x)-(d if abs(x)//d%2==1 else 0)*x//abs(x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u964635736", "n_user": "u964635736", "pos": "x,k,d=map(int,input().split())\nx=abs(x)\nkai=x//d\nif k < kai:\n print(x-d*k)\nelse:\n k-=kai\n if k%2 ==0:\n y=x-(d*kai)\n else:\n y=x-(d*(kai+1))\n print(abs(y))", "neg": "x,k,d=map(int,input().split())\nkai=x//d\nk-=kai\nif k%2 ==0:\n y=x-(kai*d)\nelse:\n y=x-(kai*d+1)\nprint(abs(y))", "jacc_sim": 0.9642857142857143, "before_after_length": [102, 71], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x=abs(x)\nif k < kai:\n print(x-d*k)\nelse:\n d**d d*(*d) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u494149778", "n_user": "u494149778", "pos": "input_line = input()\ndata = input_line.split(\" \")\nx = abs(int(data[0]))\nk = int(data[1])\nd = int(data[2])\na = x // d\nb = x % d\nres = abs(a)\nif res >= k :\n ans = x - k * d\nelse :\n num = k - res\n if num % 2 == 1 :\n ans = abs(b - d)\n else :\n ans = b\nprint(ans)", "neg": "input_line = input()\ndata = input_line.split(\" \")\nx =abs(int(data[0]))\nk = int(data[1])\nd = int(data[2])\na = x // d\nb = x % d\nres = abs(a)\nnum = k - res\nif num % 2 == 1 :\n ans = abs(b - d)\nelse :\n ans = res\nprint(ans)", "jacc_sim": 0.9393939393939394, "before_after_length": [122, 101], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": " if res >= k :\n ans = x - k * d\nelse :\n else:\n ans = rle : print( = b\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u869519920", "n_user": "u869519920", "pos": "x, k, d = map(int, input().split())\nx = abs(x)\n\np = x // d\nif p > k:\n print(x - k * d)\nelse:\n min = [x, x]\n min[p%2] = x - p * d\n min[(p+1)%2] = abs(min[p%2] - d)\n print(min[k%2])", "neg": "x, k, d = map(int, input().split())\nx = abs(x)\n\np = x // d\nif p > k:\n print(x - k * d)\nelse:\n min = [x, x]\n min[0] = x - p * d\n min[1] = abs(min[0] - d)\n print(min[k%2])", "jacc_sim": 0.9333333333333333, "before_after_length": [104, 94], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "0p%2(p+)%20p%2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u533350485", "n_user": "u682847501", "pos": "x, k, d = map(int, input().split())\nx = abs(x)\n\nt = x/d\n\n \nif t >= k:\n print(abs(x - (k*d)))\n \nelif (k-int(t))%2==0:\n print(abs(x-abs(int(t)*d)))\n \nelse:\n print(abs(x-abs(int(t)*d)-d))", "neg": "x, k, d = map(int, input().split())\nif x - k / d >= 0:\n print(x-k*d)\nelse:\n k -= x // d\n x %= d\n if k % 2 == 0:\n print(x)\n else:\n print(abs(x-d))\n", "jacc_sim": 0.9230769230769231, "before_after_length": [106, 79], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x = abs(x)\n\nt = x/d\n\n \ntx - k / d0kabs( ()\nelse:\n k -= x // d\n x %= d\n if k % 2 == 0:\n print(x\nseif (k-int(t))%2==0 abs(int(t)*) \nelse:\n print(abs(x-abs(int(t)*d)-d))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u626881915", "n_user": "u626881915", "pos": "x,k,d=map(int,input().split())\nq = abs(x) // d\nif q >= k:\n print(abs(x)-k*d)\nelif (k - q) % 2 == 0:\n print(abs(x)-q*d)\nelse:\n print(q*d+d-abs(x))\n", "neg": "x,k,d=map(int,input().split())\nq = abs(x) // d\nif (k - q) % 2 == 0:\n print(abs(x)-q*d)\nelse:\n print(q*d+d-abs(x))\n", "jacc_sim": 0.9259259259259259, "before_after_length": [84, 65], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "if q >= k:\n print(abs(x)-k*d)\nel", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u105608888", "n_user": "u105608888", "pos": "X, K, D = map(int, input().split())\ndef resolve_best_i(X, K, D):\n if abs(X - int(X / D) * D) < abs(X - (int(X / D)+1)*D):\n return abs(X - int(X / D) * D), int(X /D)\n else:\n return abs(X - (int(X / D)+1)*D), int(X /D) + 1\ndef make_most_min(X, K, D):\n mokuhyou = X\n best = 0\n if X >= 0:\n mokuhyou, best = resolve_best_i(X, K, D)\n if best > K:\n best_posi = abs(X - K * D)\n return best_posi\n if best % 2 == K % 2:\n return abs(X - best * D)\n else:\n return min(abs(X - (best+1) * (D)), abs(X - (best-1) * (D)))\nif X >= 0:\n a = make_most_min(abs(X), K, abs(D))\nelse:\n a = make_most_min(-X, K, abs(D))\nprint(a)", "neg": "X, K, D = map(int, input().split())\ndef resolve_best_i(X, K, D):\n if abs(X - int(X / D) * D) < abs(X - (int(X / D)+1)*D):\n return abs(X - int(X / D) * D), int(X /D)\n else:\n return abs(X - (int(X / D)+1)*D), int(X /D) + 1\ndef make_most_min(X, K, D):\n mokuhyou = X\n best = 0\n if X >= 0:\n mokuhyou, best = resolve_best_i(X, K, D)\n if best > K:\n best_posi = abs(X - best * D)\n return best_posi\n if best % 2 == K % 2:\n return abs(X - best * D)\n else:\n return min(abs(X - (best+1) * (D)), abs(X - (best-1) * (D)))\nif X >= 0:\n a = make_most_min(abs(X), K, abs(D))\nelse:\n a = make_most_min(-X, K, abs(D))\nprint(a)", "jacc_sim": 1.0, "before_after_length": [306, 306], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "Kbest", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u069486477", "n_user": "u069486477", "pos": "X,K,D = map(int,input().split()) \nX = abs(X)\nif X >= K*D:\n print(X-K*D)\nelse:\n if (K-X//D) % 2 == 1:\n print(D-(X-X//D*D))\n else:\n print(X-X//D*D)", "neg": "X,K,D = map(int,input().split()) \nif X >= K*D:\n print(X-K*D)\nelse:\n if (K-X//D) % 2 ==1:\n print(D-(X-K*D))\n else:\n print(X-X//D*D)", "jacc_sim": 0.9583333333333334, "before_after_length": [89, 80], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "\nX = abs(X) KX//D", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u741579801", "n_user": "u741579801", "pos": "X, K, D = [int(n) for n in input().split(\" \")]\n\n#X = 10\n#K = 1\n#D = 2\n\n\nstartN = (D * K - X) // (2 * D)\n\nN1 = startN + 1\nN2 = startN\nN3 = startN - 1\n\nif N1 < 0:\n N1 = 0\nif N2 < 0:\n N2 = 0\nif N3 < 0:\n N3 = 0\nif N1 > K:\n N1 = K\nif N2 > K:\n N2 = K\nif N3 > K:\n N3 = K\n\ndef getScore(n):\n score = X + n * D - D * (K - n)\n if score < 0:\n score = score * -1\n return score\n\nscore1 = getScore(N1)\nscore2 = getScore(N2)\nscore3 = getScore(N3)\n\nminScore = score1\nif minScore > score2:\n minScore = score2\nif minScore > score3:\n minScore = score3\n\nprint(minScore)", "neg": "X, K, D = [int(n) for n in input()]\n\n#X = 10\n#K = 1\n#D = 2\n\n\nstartN = (D * K - X) // (2 * D)\n\nN1 = startN + 1\nN2 = startN\nN3 = startN - 1\n\nif N1 < 0:\n N1 = 0\nif N2 < 0:\n N2 = 0\nif N3 < 0:\n N3 = 0\n\ndef getScore(n):\n score = X + n * D - D * (K - n)\n if score < 0:\n score = score * -1\n return score\n\nscore1 = getScore(N1)\nscore2 = getScore(N2)\nscore3 = getScore(N3)\n\nminScore = score1\nif minScore > score2:\n minScore = score2\nif minScore > score3:\n minScore = score3\n\nprint(minScore)", "jacc_sim": 0.9333333333333333, "before_after_length": [272, 230], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": ".split(\" \")if N1 > K:\n N1 = K\nif N2 > K:\n N2 = K\nif N3 > K:\n N3 = K\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u477011691", "n_user": "u477011691", "pos": "list = list(map(int, input().split())) \nhajime=list[0]\nkaisuu=list[1]\nhohaba=list[2]\nif hajime>=0:\n ayumi=hajime//hohaba\n nokori=kaisuu-ayumi\n kouho_1=hajime-hohaba*kaisuu\n kouho_2=hajime-hohaba*ayumi\n kouho_3=hajime-hohaba*(ayumi+1)\n \n \n \n if kaisuu <= ayumi:\n print(kouho_1)\n else:\n if nokori%2==0:\n print(kouho_2)\n else:\n print(-kouho_3)\n \nif hajime<0: \n ayumi=-hajime//hohaba\n nokori=kaisuu-ayumi\n kouho_1=hajime+hohaba*kaisuu\n kouho_2=hajime+hohaba*ayumi\n kouho_3=hajime+hohaba*(ayumi+1)\n if kaisuu<=ayumi:\n \n print(-kouho_1) \n else:\n if nokori%2==0:\n print(-kouho_2)\n else:\n print(kouho_3)", "neg": "list = list(map(int, input().split())) \nhajime=list[0]\nkaisuu=list[1]\nhohaba=list[2]\nif hajime>=0:\n ayumi=hajime//hohaba\n nokori=kaisuu-ayumi\n kouho_1=hajime-hohaba*kaisuu\n kouho_2=hajime-hohaba*ayumi\n kouho_3=-hajime+hohaba*(ayumi+1)\n if kaisuu== K * D:\n print(X - K * D)\nelif X <= K * (- D):\n print(abs(X + K * D))\nelse:\n if X >= 0:\n pos = X % D\n neg = X % D - D\n if K % 2 == (X // D) % 2:\n print(pos)\n else:\n print(abs(neg))\n elif X <= 0:\n pos = D - (abs(X) % D)\n neg = - (abs(X) % D)\n if K % 2 == (abs(X) // D) % 2:\n print(abs(neg))\n else:\n print(pos)", "neg": "X, K,D = map(int, input().split())\n\nif X >= K * D:\n print(X - K * D)\nelif X <= K * (- D):\n print(abs(X + K * D))\nelse:\n if X >= 0:\n pos = X % D\n neg = X % D - D\n if K % 2 == (X // D) % 2:\n print(pos)\n else:\n print(abs(neg))\n if X <= 0:\n pos = D - (abs(X) % D)\n neg = - (abs(X) % D)\n if K % 2 == (X // D) % 2:\n print(abs(neg)\n else:\n print(pos))", "jacc_sim": 1.0, "before_after_length": [184, 181], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "elabs()))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u222668979", "n_user": "u222668979", "pos": "x, k, d = map(int, input().split())\n\ncnt = abs(x) // d\nx = abs(x)\nif k % 2 == cnt % 2:\n ans = min(abs(x - d * min(k,cnt)), abs(x + d * min(k,cnt)))\nelif k % 2 != cnt % 2:\n ans = min(abs(x - d * min(k,(cnt + 1))), abs(x - d * min(k,(cnt + 1))))\nprint(ans)\n", "neg": "x, k, d = map(int, input().split())\n\nx, cnt = abs(x), abs(x) // d\nif k % 2 == cnt % 2:\n ans = abs(x - d * min(k, cnt))\nelif k % 2 != cnt % 2:\n ans = abs(x - d * min(k, cnt + 1)\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [127, 91], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x, abs(x),x = abs(x)\nmin( )), abs(x + d * min(k,cnt)min( ()), abs(x - d * min(k,(cnt + 1))))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u159975271", "n_user": "u159975271", "pos": "X,K,D = list(map(int , input().split()))\nans = 0\nif (X >=0):\n a = K*D\n if (X >= a):\n ans = X-a\n else:\n time = 0\n while (True):\n X -= D\n time += 1\n if X <= 0:\n break\n nokori = (K - time) % 2\n ans = X + D*nokori\nelse:\n a = -(K*D)\n if (X <= a):\n ans = X-a\n else:\n time = 0\n while (True):\n X += D\n time += 1\n if X >= 0:\n break\n nokori = (K - time) % 2\n ans = X - D*nokori\nAnsw = abs(ans)\nprint(Answ)\n", "neg": "X,K,D = list(map(int , input().split()))\nans = 0\nif (X >=0):\n a = K*D\n if (X >= a):\n ans = X-a\n else:\n time = 0\n while (True):\n X -= D\n time += 1\n if X < 0:\n break\n nokori = (K- time) % 2\n ans = X + D*nokori\nelse:\n a = -(K*D)\n if (X <= a):\n ans = X-a\n else:\n time = 0\n while (True):\n X += D\n time += 1\n if X <0:\n break\n nokori = (K - time) % 2\n ans = X - D*nokori\nprint(ans)\n", "jacc_sim": 0.9428571428571428, "before_after_length": [215, 206], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "= <>= Answ = abs(ans)\naAw", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u342563578", "n_user": "u342563578", "pos": "x,k,d = map(int,input().split())\nans = 0\nif abs(x) >= k*d:\n ans = min(abs(x-k*d),abs(x+k*d))\nelse:\n b = abs(x)%d\n c = abs(x)//d\n if (k-c) %2 == 0:\n if x < 0:\n ans = b\n else:\n ans = b\n else:\n if x < 0:\n ans = abs(b-d)\n else:\n ans = abs(b-d)\nprint(ans)", "neg": "x,k,d = map(int,input().split())\nans = 0\nif abs(x) >= k*d:\n ans = min(abs(x-k*d),abs(x+k*d))\nelse:\n b = abs(x)%d\n c = abs(x)//d\n if (k-c) %2 == 0:\n if x < 0:\n ans = -b\n else:\n ans = b\n else:\n if x < 0:\n ans = abs(b-d)\n else:\n ans = -abs(b-d)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [148, 150], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "b\n else:\n ans = b\n else:\n if x < 0:\n ans = abs(bb\n else:\n ans = b\n else:\n if x < 0:\n ans = abs(b--", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u595833382", "n_user": "u595833382", "pos": "X,K,D = [int(x) for x in input().split()]\n\nif abs(X) >= K * D:\n print(abs(X) - K * D)\nelse:\n K = K - int(abs(X) / D)\n X = int(abs(X) % D)\n if X >= int(D / 2):\n if K % 2 == 0:\n print(X)\n else:\n print(D - X)\n else:\n if K % 2 != 0:\n print(D - X)\n else:\n print(X)", "neg": "X,K,D = [int(x) for x in input().split()]\n\nif abs(X) >= K * D:\n print(abs(X) - K * D)\nelse:\n K = K - int(abs(X) / D)\n X = int(abs(X) % D)\n if int(abs(X) % D) >= int(D / 2):\n if K % 2 == 0:\n print(X)\n else:\n print(D - X)\n else:\n print(X)", "jacc_sim": 0.9655172413793104, "before_after_length": [144, 131], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "int(abs( >= int(D / 2:\n if KD) >= int(D / == 0:\n print(X\n else:\n print(D - X)\n else=!X)\n else:\n print(else:\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u090649502", "n_user": "u090649502", "pos": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(X: int, K: int, D: int):\n X=abs(X)\n\n mostl = X - K * D\n if mostl > 0:\n print(mostl)\n exit()\n\n if K%2 == 1:\n X -= D\n ans = min(abs(X), abs(X+2*D))\n else:\n ans = min(X, abs(X - K * D))\n\n Kh = K // 2\n\n N = X // (D*2)\n ans = min(ans, abs(X - D * 2 * (N - 1)))\n ans = min(ans, abs(X - D * 2 * N))\n if N < Kh:\n ans = min(ans, abs(X - D * 2 * (N + 1)))\n\n print(ans)\n\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n X = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n D = int(next(tokens)) # type: int\n solve(X, K, D)\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(X: int, K: int, D: int):\n X=abs(X)\n\n ans=min(X, X - K * D)\n\n if K%2 == 1:\n X += D\n ans = min(ans, X)\n Kh=(K+1)//2\n\n N = X // (D*2)\n ans = min(ans, abs(X - D * 2 * (N - 1)))\n ans = min(ans, abs(X - D * 2 * N))\n if N < Kh:\n ans = min(ans, abs(X - D * 2 * (N+1)))\n\n print(ans)\n\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n X = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n D = int(next(tokens)) # type: int\n solve(X, K, D)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9358974358974359, "before_after_length": [387, 346], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "ans=in(X,ostl =\n if mostl > 0:\n print(mostl)\n exit(-= D\n ans = min(abs(X), abs(X= 2*))el ane:\n=min( = min(Xabs( - K * D)\n ( +1) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u548272916", "n_user": "u548272916", "pos": "x,k,d = map(int, input().split())\nlists = []\nx = abs(x)\n\nstep = int(x/d) \n\nif step >= k:\n answer = x - k * d\nelif step < k:\n k_left = k - int(step)\n if k_left % 2 == 0:\n answer = x % d\n if k_left % 2 == 1:\n answer = abs(x - step * d - d)\n\nprint(answer)", "neg": "x,k,d = map(int, input().split())\nlists = []\n \nstep = int(x/d) \n\nif step >= k:\n answer = x - k * d\nelif step < k:\n k_left = k - int(step)\n if k_left % 2 == 0:\n answer = x % d\n if k_left % 2 == 1:\n answer = abs(x - step * x - d)\n\nprint(answer)", "jacc_sim": 1.0, "before_after_length": [119, 113], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "x= abs(x)\nx - - d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02584", "p_user": "u329730886", "n_user": "u329730886", "pos": "X, K, D = map(int, input().split())\n\nX = abs(X)\n\nn = X // D\nm = K - n\n\nA1 = abs(X - n*D)\nA2 = abs(X - (n+1)*D)\n\nAns = A2\n\nif m > 1:\n if A1 <= A2:\n if m % 2 == 0:\n Ans = A1\n else:\n if m % 2 == 0:\n Ans = A1\nelse:\n Ans = abs(X - K*D)\n\nprint(Ans)\n ", "neg": "X, K, D = map(int, input().split())\n\nX = abs(X)\n\nn = X // D\nm = K - n\n\nA1 = abs(X - n*D)\nA2 = abs(X - (n+1)*D)\n\nAns = A2\n\nif n+1 < K:\n if (A1 < A2 and m % 2 == 0) or (A1 > A2 and m % 2 != 0):\n Ans = A1\nelse:\n Ans = X - K*D\n\nprint(Ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [147, 136], "nl": "Takahashi, who lives on a number line, is currently at coordinate X. He needs to make K moves of distance D in the positive or negative direction. In one move, he can go from coordinate x to x + D or x - D. Takahashi wants to make K moves so that the absolute value of the destination coordinate is as small as possible. The task is to find the minimum possible absolute value of the destination coordinate. The input is given in the format X K D, and the output should be the minimum possible absolute value of the destination coordinate. The constraints are -10^15 \u2264 X \u2264 10^15, 1 \u2264 K \u2264 10^15, and 1 \u2264 D \u2264 10^15. All input values are integers.", "diff_info": "n+m > 1:\n if A=K:\n if (1 < A:\nand if):\nor(A1>A2a Ads = A1\n else:\n if!=)abs()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u258933429", "n_user": "u258933429", "pos": "N = int(input())\na = list(map(int, input().split()))\n#a = [list(map(int, list(input()))) for i in range(N + 1)]\n# L, R, d = map(int, input().split())\ncnt = 0\nfor i in range(0, N, 2):\n\n if a[i] % 2 != 0:\n cnt += 1\nprint(cnt)\n \n", "neg": "N = int(input())\na = list(map(int, input().split()))\n#a = [list(map(int, list(input()))) for i in range(N + 1)]\n# L, R, d = map(int, input().split())\ncnt = 0\nfor i in range(0, N, 2):\n print(i)\n if a[i] % 2 != 0:\n cnt += 1\nprint(cnt)\n \n", "jacc_sim": 1.0, "before_after_length": [103, 108], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": " print(i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u247211039", "n_user": "u247211039", "pos": "N=int(input())\na=list(map(int,input().split()))\n \nans=0\nfor i in range(0,N,2):\n if a[i]%2!=0:\n ans+=1\n \nprint(ans)", "neg": "N=int(input())\na=map(int,input().split())\n\nans=0\nfor i in range(N):\n if i%2!=0 and a[i]%2!=0:\n ans+=1\n \nprint(ans)", "jacc_sim": 0.9310344827586207, "before_after_length": [64, 63], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "list() 0,,2 i%2!=0 and", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u674588203", "n_user": "u674588203", "pos": "N=int(input())\nai=list(map(int,input().split()))\n\nans=0\n\nfor i in range(N):\n if i%2==1:\n continue\n\n if ai[i] %2==1:\n ans+=1\nprint(ans)\n", "neg": "N=int(input())\nai=list(map(int,input().split()))\n\nans=0\n\nfor i in range(N):\n if i%2==0:\n pass\n \n if ai[i] %2==1:\n ans+=1\nprint(ans)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [71, 72], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "01passcontinue ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u084411645", "n_user": "u084411645", "pos": "input()\nprint(sum([int(i)%2 for i in input().split()[::2]]))\n", "neg": "print(sum([int(i)%2 for i in input().split()[1::2]]))", "jacc_sim": 0.9411764705882353, "before_after_length": [26, 23], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "input()\n1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u185042816", "n_user": "u185042816", "pos": "mass=int(input())\nnumber=list(map(int,input().split()))\n\ncnt = 0\n\nfor i in range(mass):\n if (i+1)%2!=0 and number[i]%2!=0:\n cnt+=1\n\nprint(cnt)", "neg": "mass=int(input())\nnumber=list(map(int,input().split()))\n\ncnt = 0\n\nfor i in mass:\n if (i+1)%2==0 and number[i]%2==0:\n cnt+=1\n print(cnt)", "jacc_sim": 0.9310344827586207, "before_after_length": [70, 65], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "range()=!=! \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u038021590", "n_user": "u038021590", "pos": "N = int(input())\nA = list(map(int, input().split()))\nans = 0\n\nfor i, a in enumerate(A):\n if (i % 2 == 0) and (a % 2 == 1):\n ans += 1\nprint(ans)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\nans = 0\n\nfor i, a in enumerate(A):\n if (i + a) % 2 == 1:\n ans += 1\nprint(ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [64, 58], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "+% 2 == 0))nd (a)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u546853743", "n_user": "u546853743", "pos": "n=int(input())\nl=list(map(int,input().split()))\ncount=0\nfor i in range(n):\n if i%2==0 and l[i]%2==1:\n count += 1\nprint(count)", "neg": "n=input()\nl=list(map(int,input().split))\nl.sort()\ncount=0\nfor i in range(n):\n if i%2==1 and l[i]%2==1:\n count += 1\nprint(count)", "jacc_sim": 0.9655172413793104, "before_after_length": [60, 62], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "int()(\nl.sort(10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u688219499", "n_user": "u674934587", "pos": "n = int(input())\na = list(map(int, input().split()))\ncount = 0\nfor i in range(n):\n if i % 2 == 0 and a[i] % 2 == 1:\n count += 1 \nprint(count)", "neg": "n=int(input())\ncount=0\na=list(map(int,input().split()))\nfor i in range(len(a)-1):\n if a[i-1]%2!=0 and i%2!=0:\n count+=1\nprint(count)", "jacc_sim": 0.9032258064516129, "before_after_length": [61, 69], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": " a count 0\na= count = 0\nle(a)-1a[ -1] ! = a[] ! 0= 1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u124212130", "n_user": "u124212130", "pos": "N = int(input())\nMylist = input().split()\nMylist = [int(s) for s in Mylist]\nANS = 0\nfor i in range(1,N+1):\n if i % 2 == 1 and Mylist[i-1] % 2 == 1:\n ANS += 1\nprint(ANS)\n", "neg": "N = int(input())\nMylist = input().split()\nMylist = [int(s) for s in Mylist]\nANS = 0\nfor i in range(N):\n if i+1 % 2 == 1 and Mylist[i] % 2 == 1:\n ANS += 1\nprint(ANS)", "jacc_sim": 0.9285714285714286, "before_after_length": [78, 73], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "1,+1+1-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u060012100", "n_user": "u060012100", "pos": "n = int(input())\ns = list(map(int,input().split()))\na = 0\nfor i in range(n):\n if i%2 == 0 and s[i]%2 ==1:\n a+=1\nprint(a)", "neg": "n = int(input())\ns = list(map(int,input().split()[:n]))\na = 0\nfor i in range(1,len(s)):\n if((i%2 == 0) and (s[i]%2 !=0)):\n a+=1\nprint(a)\n", "jacc_sim": 0.9333333333333333, "before_after_length": [61, 73], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "[:n]1,le(s) (()(!=10))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u952968889", "n_user": "u952968889", "pos": "N = int(input())\na = [int(a) for i, a in enumerate(input().split()) if i%2 == 0]\nans = [i for i in a if i%2==1]\nprint(len(ans))\n", "neg": "N = int(input())\nans = [int(a) for i, a in enumerate(input().split()) if i%2 == 0 and if a%2==1]\n\nprint(len(ans))", "jacc_sim": 0.96, "before_after_length": [56, 47], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "ns]\nans = [i for i inndai\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u435593586", "n_user": "u435593586", "pos": "n = int(input())\nlst = list(map(int, input().split()))\ncount = 0\n\nfor i in range(0, n, 2):\n if lst[i] % 2 != 0:\n count += 1\n \nprint(count)\n", "neg": "n = int(input())\nlst = list(map(int, input().split()))\ncount = 0\n\nfor i in range(1, n + 1, 2):\n if lst[i] % 2 == 0:\n count += 1\n \nprint(count)", "jacc_sim": 0.9642857142857143, "before_after_length": [62, 63], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "10 + 1=!\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u933929042", "n_user": "u211496288", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(0, n, 2):\n if a[i] % 2 == 1:\n ans += 1\n\nprint(ans)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\ncount = 0\n\nfor i in range(n):\n if (i + 1) % 2 == 0:\n if a[i] % 2 == 0: \n count += 1\n \nprint(count)", "jacc_sim": 0.9285714285714286, "before_after_length": [60, 70], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "acouts\n0, ,):\n if (i + 1) %) == 001 cou ats acouts\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u636683284", "n_user": "u546853743", "pos": "n = int(input())\nl = list(map(int,input().split()))\ncnt = 0\nfor i in range(n):\n if (i+1)%2==1 and l[i] %2 == 1:\n cnt += 1\nprint(cnt)", "neg": "n=input()\nl=list(map(int,input().split()))\ncount=0\nfor i in range(n):\n if i%2==1 and l[i]%2==1:\n count += 1\nprint(count)", "jacc_sim": 0.9310344827586207, "before_after_length": [64, 58], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": " int() ou (+1) ouou", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u802234509", "n_user": "u823391732", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(0,n,2):\n if a[i]%2:\n ans += 1\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nans = 0\nfor i in range(n//2):\n if a[2*i] % 2 == 1:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [56, 60], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "\n0,,//2* == 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u237935782", "n_user": "u237935782", "pos": "N = int(input())\na = [int(x) for x in input().split()]\n \nc = 0\n\nfor i in range(N):\n if i % 2 == 0 and a[i] % 2 ==1:\n c += 1\nprint(c)", "neg": "N = int(input())\nai = [int(x) for x in input().split()]\n\n\nc = 0\n\nfor i in range(N):\n if i % 2 == 1 and a[i] % 2 ==1:\n c += 1\n \nprint(c)", "jacc_sim": 0.9629629629629629, "before_after_length": [65, 67], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "i\n 10 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u070630744", "n_user": "u070630744", "pos": "import math\nimport collections\nimport fractions\nimport itertools\nimport functools\nimport operator\n\ndef solve():\n n = int(input())\n a = list(map(int, input().split()))\n ans = 0\n for i in range(n):\n if (i+1) % 2 == 1 and a[i] % 2 == 1:\n ans += 1\n print(ans)\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "neg": "import math\nimport collections\nimport fractions\nimport itertools\nimport functools\nimport operator\n\ndef solve():\n n = int(input())\n a = list(map(int, input().split()))\n ans = 0\n for i in a:\n if i+1 % 2 == 0 and a[i] % 2 == 0:\n ans += 1\n print(ans)\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "jacc_sim": 0.975609756097561, "before_after_length": [113, 109], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "rnge(n)()0101", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u625255205", "n_user": "u625255205", "pos": "n = int(input())\n#a,b = map(int,input().split())\na_L = list(map(int,input().split()))\n\nans = 0\nfor i in range(n):\n if (i+1)%2!=0 and a_L[i]%2 !=0:\n ans += 1\n\nprint(ans)", "neg": "n = int(input())\n#a,b = map(int,input().split())\na_L = list(map(int,input().split()))\n\nans = 0\nfor i in range(n):\n if i%2!=0 and a_L[i] !=0:\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [85, 79], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "(+1)%2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u028014940", "n_user": "u944325914", "pos": "\nn=int(input())\na=list(map(int,input().split()))\ncnt=0\n\nfor i in range(1,n+1,1):\n\n if i%2==1 and a[i-1]%2==1:\n cnt+=1\n\nprint(cnt)", "neg": "n=int(input())\na=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if i%2==1 and a[i-1]%2==1:\n ans+=1\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [73, 63], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "\nacst\n1,+1,1\n a cst\nacst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u730807152", "n_user": "u730807152", "pos": "n=map(int,input().split())\na=list(map(int,input().split()))\n \nN=0\nnew_a=a[::2]\n \nfor i in new_a:\n if i%2==0:\n N += 1\n \nprint(len(new_a)-N)", "neg": "n=map(int,input().split())\na=list(map(int,input().split()))\n\nN=0\nnew_a=a[1::2]\n\nfor i in new_a:\n if i%22==0:\n N += 1\n\nprint(len(new_a)-N)", "jacc_sim": 0.9666666666666667, "before_after_length": [77, 75], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": " 1 2 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u861886710", "n_user": "u861886710", "pos": "N = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(1, N+1):\n if (i%2 == 1) and (a[i-1]%2 == 1):\n ans += 1\nprint(ans)", "neg": "N = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(1, N+1):\n print(i)\n if (i%2 == 1) and (a[i-1]%2 == 1):\n ans += 1\nprint(ans)\n ", "jacc_sim": 1.0, "before_after_length": [69, 77], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "print(i)\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u320098990", "n_user": "u320098990", "pos": "in_str = input()\nN = int(in_str)\nin_list = input().split(' ')\ncount = 0\n\nfor i in range(N):\n if i%2==0:\n if int(in_list[i])%2==1:\n count += 1\n\nprint(count)", "neg": "in_str = input()\nN = int(in_str)\nin_list = input().split(' ')\ncount = 0\n\nfor i in range(N):\n if i%2==0:\n print(i)\n if int(in_list[i])%2==1:\n count += 1\n print(i)\n print(count)\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [74, 92], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "print(i)\n print(i)\n print(count)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u877437995", "n_user": "u877437995", "pos": "N = int(input())\narr = tuple(map(int, input().split()))\ncount = 0\n\nfor i in range(0, N, 2):\n if arr[i] % 2 != 0:\n count += 1\n \nprint(count)", "neg": "N = int(input())\narr = map(int, input().split())\ncount = 0\n\nfor i in range(1, len(arr) + 1, 2):\n if arr[i] % 2 != 0:\n count += 1\n \nprint(count)", "jacc_sim": 0.9310344827586207, "before_after_length": [61, 63], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "tuple()10Nlen(arr) + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u098679988", "n_user": "u098679988", "pos": "n = int(input())\nls = list(map(int, input().split()))\n\nans = 0\nfor i, ele in enumerate(ls):\n if (i+1)%2 != 0:\n if ele%2 != 0:\n ans += 1\nprint(ans)", "neg": "n = int(input())\nls = list(map(int, input().split()))\n\nans = 0\nfor i, ele in enumerate(ls):\n print(i+1, ele)\n if (i+1)%2 != 0:\n if ele%2 != 0:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [67, 77], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "print(i+1, ele)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u464013915", "n_user": "u464013915", "pos": "n = int(input())\nx = input().split()\n\nmasu_list = []\nfor i in range(n):\n i=i+1\n if not i%2==0:\n masu_list.append(i)\n else:\n pass\n\nanswer_list=[]\nfor masu in masu_list:\n masu = masu-1\n answer_list.append(x[masu])\n\nanswer = [int(s) for s in answer_list]\nanswer_list_2=[]\nfor ans in answer:\n if not ans%2==0:\n answer_list_2.append(ans)\n else:\n pass\nprint(len(answer_list_2))", "neg": "n = int(input())\nx = input().split()\n\nmasu_list = []\nfor i in range(n):\n if not i%2==0:\n masu_list.append(i)\n else:\n pass\n\nanswer_list=[]\nfor masu in masu_list:\n masu = masu-1\n answer_list.append(x[masu])\n\nanswer = [int(s) for s in answer_list]\nanswer_list_2=[]\nfor ans in answer:\n if not ans%2==0:\n answer_list_2.append(ans)\n else:\n pass\nprint(len(answer_list_2))", "jacc_sim": 0.9722222222222222, "before_after_length": [173, 166], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "=i+1\n i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u123745130", "n_user": "u123745130", "pos": "a=int(input())\nlst=list(map(int,input().split()))\ncnt=0\nfor i in range(0,a,2):\n if (lst[i] % 2==1) :\n cnt+=1\nprint(cnt)", "neg": "a=int(input())\nlst=list(map(int,input().split()))\nprint(a,lst)\ncnt=0\nfor i in range(0,a,2):\n if (lst[i] % 2==1) :\n cnt+=1\n print(i)\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [61, 74], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": ")\nprint(a,lst print(i)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u815763296", "n_user": "u815763296", "pos": "X = int(input())\nA = list(map(int, input().split()))\nans=0\nfor i in range(0,X,2):\n if A[i]%2!=0:\n ans+=1\n\nprint(ans)\n", "neg": "X = int(input())\nA = list(map(int, input().split()))\nans=0\nfor i in range(0,X,2):\n if A[i]%2!=0:\n ans+=1\nfor i in range(1,X,2):\n if A[i]%2==0:\n ans+=1\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [62, 92], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "for i in range(1,X,2):\n if A[i]%2==0:\n ans+=1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u438189153", "n_user": "u438189153", "pos": "N=int(input())\ntable=list(map(int,input().split()))\nnum=0\nfor i in range(1,N+1):\n if i%2==1 and (table[i-1])%2==1:\n num+=1\nprint(num)\n", "neg": "N=int(input())\ntable=list(map(int,input().split()))\nnum=0\nfor i in table:\n if i%2==1 and (table[i])%2==1:\n num+=1\n print(num)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [69, 62], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "trblng(1,N+1)-1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u290563917", "n_user": "u921617614", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nans = 0\nfor i in range(n):\n if i % 2 == 1:\n continue\n if a[i] % 2 == 1:\n ans += 1\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(0,n,2):\n\tif a[i] % 2 == 1:\n \tans += 1\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [67, 59], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": "\n0,,2\t if i % 2 == 1:\n continue\n \t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02607", "p_user": "u970809473", "n_user": "u617659131", "pos": "n=int(input())\na=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if i%2==0:\n if a[i]%2==1:\n ans+=1\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\ncount = 0\nfor i in range(0,n.2):\n if a[i] % 2 == 1:\n count += 1\nprint(count)", "jacc_sim": 0.9285714285714286, "before_after_length": [64, 58], "nl": "You are given N squares numbered from 1 to N, each with an integer written on it. Determine how many squares satisfy both conditions: the square number is odd, and the written integer is odd. Constraints: 1 \u2264 N, a_i \u2264 100. Input format: N followed by a list of integers. Output the number of squares satisfying the conditions. Example: Input 1: 5, 1 3 4 5 7. Output 1: 2. Example: Input 2: 15, 13 76 46 15 50 98 93 77 31 43 84 90 6 24 14. Output 2: 3.", "diff_info": " acoust 0,.2 if i%2==0:\n cou ast acouts", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u617718239", "n_user": "u127288756", "pos": "s = input()\nt = input()\ncount =0\nfor i in range(len(s)):\n if s[i] != t[i]:\n count += 1\nprint(count)\n", "neg": "s=input()\nt=input()\n\ncount=0\nfor i in range(s):\n if s[i]!=t[i]:\n count+=1\n\nprint(count)", "jacc_sim": 0.9523809523809523, "before_after_length": [47, 47], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " \n len() \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u548069143", "n_user": "u844123804", "pos": "a=input()\nb=input()\ncnt=0\nfor i in range(len(a)):\n if a[i]!=b[i]:\n cnt+=1\n\n\n\nprint(cnt)", "neg": "a = input().split()\nb = input().split()\n\ncnt = 0\nfor i in range(len(a)):\n if a[i]!=b[i]:\n cnt += 1\n \nprint(cnt)", "jacc_sim": 0.9130434782608695, "before_after_length": [51, 54], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " .split() .split()\n cnt += 1\ncnt+=1\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u087118202", "n_user": "u087118202", "pos": "S=input() \nT=input()\nnum = 0\nfor i in range(len(S)):\n\tif S[i] != T[i]:\n\t\tnum= num+1\nprint(num)", "neg": "S=string(input())\nT=string(input())\nnum = 0\nfor i in len(S):\n if S[i] != T[i]:\n num= num+1\nprint(num)", "jacc_sim": 0.9090909090909091, "before_after_length": [50, 49], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "string() string()range()\t \t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u841942209", "n_user": "u841942209", "pos": "S = list(input ())\nT = list(input ())\na = len(S)\nchange_time = 0\n \nfor i in range(a):\n if S[i] ==T[i]:\n \tcontinue\n \n else:\n \n \tchange_time += 1\n \n \nprint(change_time)", "neg": "S = list(input ())\nT = list(input ())\na = len(S)\nchange_time = 0\n\nfor i in a:\n if (S[i] ==T[i])\n continue\n \n else:\n S[i] =T[i]\n change_time += 1\n \n \nprint(change_time)", "jacc_sim": 0.9583333333333334, "before_after_length": [78, 84], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " rnge(a)():\t S[i] =T[i]\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u085329544", "n_user": "u656803083", "pos": "s = input()\nt = input()\nans = 0\n\nfor i in range(len(s)):\n if s[i]!=t[i]:\n ans += 1\n\nprint(ans)", "neg": "s = input()\nt = input()\n \ncount = 0\n \nfor i in range(len(s))\nif s[i] != t[i]:\n count += 1\n\nprint(count)", "jacc_sim": 0.9090909090909091, "before_after_length": [49, 49], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "a \ncouts : cou atsacouts", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u999287037", "n_user": "u924594299", "pos": "S = str(input())\nT = str(input())\nl = len(S)\ncount = 0\nfor i in range(l):\n if S[i] != T[i]:\n count += 1\nprint(count)", "neg": "S = str(input())\nT = str(input())\n\ncount = 0\nfor i in range(i, len(S)):\n if S[i] != T[i]:\n count+=1\n \nprint(count)", "jacc_sim": 0.9166666666666666, "before_after_length": [54, 56], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "l = len(S)i, en(S) \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u100082504", "n_user": "u100082504", "pos": "S = str(input())\nT = str(input())\nn = 0\n\nfor i in range(len(S)):\n if S[i] != T[i]:\n n += 1\n \nprint(n)", "neg": "S = str(input())\nT = str(input())\nn = 0\n\nfor i in len(S):\n if S[i] != T[i]:\n n += 1\n\nprint(n)", "jacc_sim": 0.9545454545454546, "before_after_length": [53, 49], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "range() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u993090205", "n_user": "u993090205", "pos": "s = input()\nt = input()\nresult = len([a for a,b in zip(s,t) if a != b])\nprint(result)", "neg": "s = input()\nt = input()\nresult = len([a,b for a,b in zip(s,t) if a != b])\nprint(result)", "jacc_sim": 1.0, "before_after_length": [36, 39], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " ,b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u337949146", "n_user": "u514401521", "pos": "S = input()\nT = input()\ncnt = 0\nfor i in range(len(S)):\n if S[i] != T[i] :\n cnt += 1\nprint(cnt)", "neg": "S = input()\nT = input()\n\ncnt = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n cnt += 1\nprint(cnt)b", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 48], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "\n b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u427093056", "n_user": "u427093056", "pos": "s=input()\nt=input()\na=0\nfor x in range(len(s)):\n if s[x]!=t[x]:\n a+=1\nprint(a)", "neg": "s=input()\nt=input()\na=0\nfor x in range(s):\n if s[x]!=t[x]:\n a+=1\nprint(a)", "jacc_sim": 0.9523809523809523, "before_after_length": [48, 45], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "len()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u720314082", "n_user": "u720314082", "pos": "S=str(input())\nT=str(input())\nsum=0\n\nfor i in range(len(S)):\n if S[i]!=T[i]:\n sum+=1\n\nprint(sum)", "neg": "S=str(input())\nT=str(input())\nsum=0\n\nfor i in range(len(S)):\n if S[i]!=T[i]:\n sum++\n\nprint(sum)", "jacc_sim": 0.9545454545454546, "before_after_length": [54, 52], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "+=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u024343432", "n_user": "u024343432", "pos": "from sys import stdin,stdout\nLI=lambda:list(map(int,input().split()))\nMAP=lambda:map(int,input().split())\nIN=lambda:int(input())\nS=lambda:input()\nimport math\ndef p(a):print(\" \".join(list(map(str,a))))\nfrom collections import Counter\n\ns=S()\nt=S()\nx=0\nfor i in range(len(s)):\n if s[i]!=t[i]:x+=1\nprint(x)\n", "neg": "from sys import stdin,stdout\nLI=lambda:list(map(int,input().split()))\nMAP=lambda:map(int,input().split())\nIN=lambda:int(input())\nS=lambda:input()\nimport math\ndef p(a):print(\" \".join(list(map(str,a))))\nfrom collections import Counter\n\ns=S()\nt=t()\nx=0\nfor i in range(len(s)):\n if s[i]!=t[i]:x+=1\nprint(x)", "jacc_sim": 1.0, "before_after_length": [128, 127], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "tS\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u075317232", "n_user": "u075317232", "pos": "def MinorChange():\n\n str1 = str(input())\n str2 = str(input())\n\n data = []\n\n for num in range(len(str1)):\n if str1[num] != str2[num]:\n data.append(str2[num])\n\n print(len(data))\n\nif __name__ == '__main__':\n MinorChange()", "neg": "def MinorChange():\n\n str1 = str(input())\n str2 = str(input())\n\n data = []\n\n for num in range(len(str1)):\n if str1[num] != str2[num]:\n data.append(str1[num])\n\n print(list(set(data)))\n\nif __name__ == '__main__':\n MinorChange()", "jacc_sim": 0.9310344827586207, "before_after_length": [93, 95], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "12ist(stn)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u690419532", "n_user": "u972036293", "pos": "S = str(input())\nT = str(input())\n\ncount = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n count +=1\nprint(count)", "neg": "S = input()\nT = input()\ncount = 0\nfor i in [:len(S)]:\n if S[i] != T[i]:\n count += 1\nprint(count)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [51, 47], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "str()str()\n[:range(]) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u851704997", "n_user": "u851704997", "pos": "S = input()\nT = input()\nans = 0\nfor i in range(len(S)):\n if(S[i] != T[i]):\n ans += 1\nprint(str(ans))", "neg": "S = input()\nT = input()\nfor i in range(len(S)):\n if(S[i] != T[i]):\n ans += 1\nprint(str(ans))", "jacc_sim": 0.9545454545454546, "before_after_length": [50, 46], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "\nans = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u645487439", "n_user": "u995163736", "pos": "s = input()\nt = input()\nans = 0\n\nfor i in range(len(s)):\n if s[i] != t[i]:\n ans += 1\nprint(ans)\n", "neg": "s = input()\nt = input()\n\nans = 0:\nfor i in range(s):\n if s[i] != t[i]:\n ans += 1\nprint(ans)", "jacc_sim": 0.9523809523809523, "before_after_length": [48, 45], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "\n:\nlen() \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u496009935", "n_user": "u125348436", "pos": "s=input()\nt=input()\n\ncnt=0\n\nfor i in range(len(s)):\n if s[i]!=t[i]:\n cnt+=1\n\nprint(cnt)\n", "neg": "cnt=0\nfor i in range(len(s)):\n if s[i]!=t[i]:\n cnt+=1\nprint(cnt)", "jacc_sim": 0.9523809523809523, "before_after_length": [52, 38], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "s=input()\nt=input()\n\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u882514852", "n_user": "u882514852", "pos": "S = input()\nT = input()\nans = 0\nfor i in range(len(S)):\n if S[i] == T[i]:\n continue\n ans += 1\n\nprint(ans)", "neg": "S = input()\nT = input()\nans = 0\nfor i in range(S):\n if S[i+1] == T[i+1]:\n ans += 1\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [50, 47], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "len()+1+1 continue\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u967442619", "n_user": "u967442619", "pos": "S = list(input())\nT = list(input())\nc = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n c += 1\nprint(c)", "neg": "S = list(input())\nT = list(input())\nprint(S, T)\nc = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n c += 1\nprint(c)", "jacc_sim": 0.9565217391304348, "before_after_length": [50, 57], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": ")\nprint(S, T", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u938635664", "n_user": "u938635664", "pos": "S = input()\nT = input()\nk = len(T)\nm = 0\nfor i in range(k):\n if S[i] != T[i]:\n m += 1\nprint(m)", "neg": "S = input()\nT = input()\nk = len(T)\nm = 0\nfor i in range(k):\n if S[k] == T[k]:\n m = m\n else:\n m += 1\nprint(m)", "jacc_sim": 0.9130434782608695, "before_after_length": [50, 59], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "ki=!ki:\n m = m\n else", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u798136015", "n_user": "u798136015", "pos": "S = input()\nT = input()\n \nres = sum(0 if s == t else 1 for s, t in zip(S,T))\nprint(res)", "neg": "S = input()\nT = input()\n\nres = sum(1 if s == t else 0 for s, t in zip(S,T))\nprint(res)", "jacc_sim": 1.0, "before_after_length": [39, 38], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " 1001", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u398383435", "n_user": "u398383435", "pos": "S = input()\nT = input()\n\nS = list(S)\nT = list(T)\n\ni = 0\nj = 0\n\nwhile j < len(S):\n if S[j] == T[j]:\n i = i\n j += 1\n else:\n i += 1\n j += 1\n\nprint(i)", "neg": "S = input()\nT = input()\n\nS = list(S)\nT = list(T)\n\ni = 0\nj = 0\n\nwhile j < len(S):\n if S[j] = T[j]:\n i = i\n j += 1\n else:\n i += 1\n j += 1\n \nprint(i)", "jacc_sim": 1.0, "before_after_length": [84, 85], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u404856401", "n_user": "u404856401", "pos": "s = str(input())\nt = str(input())\nc = 0\nfor i in range(len(s)):\n if(s[i] != t[i]):\n c+=1\n \nprint(c)", "neg": "s = str(input())\nt = str(input())\nc = 0\nfor i in len(s):\n if(s[i] != t[i]):\n c+=1\n\nprint(c)", "jacc_sim": 0.9545454545454546, "before_after_length": [55, 51], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "range() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u343545816", "n_user": "u343545816", "pos": "s = input()\nt = input()\n\ncount = 0\nfor i in range(len(s)):\n if s[i] != t[i]:\n count += 1\nprint(count)", "neg": "s,t = input()\nif s == t:\n print(0)\ncount = 0\nfor i in range(len(s)):\n if s[i] != t[i]:\n count += 1\nprint(count)\n ", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 57], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": ", = input()\nif s == t:\n print(0)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u159273602", "n_user": "u159273602", "pos": "m=input()\nn=input()\ncount=0;\nfor i in range(len(m)):\n if m[i]!=n[i] :\n count+=1\nprint(count)", "neg": "m=input()\nn=input()\ncount=0;\nfor i in range(len(m))\n if m!=n :\n count+=1\nprint(count)", "jacc_sim": 0.9090909090909091, "before_after_length": [50, 43], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": ":[i][i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u954170646", "n_user": "u954170646", "pos": "a=[input() for i in range(2)]\nP=a[0]\nS=a[1]\ncount=0\nfor t in range(len(P)):\n if P[t] != S[t]:\n count=count+1\nprint(count)", "neg": "a=[input() for i in range(2)]\nP=a[0]\nS=a[1]\ncount=0\nfor t in range(0,len(P)-1):\n if P[t] != S[t]:\n count=count+1\nprint(count)", "jacc_sim": 0.9230769230769231, "before_after_length": [64, 67], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "0,-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u244836567", "n_user": "u244836567", "pos": "a=input()\nb=input()\nc=0\nfor i in range(len(a)):\n if a[i]==b[i]:\n c=c+1\nprint(len(a)-c)", "neg": "a=input()\nb=input()\nc=0\nfor i in range(len(a)):\n if a[i]==b[i]:\n c=c+1\nprint(c)", "jacc_sim": 0.9523809523809523, "before_after_length": [52, 48], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "len(a)-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u393881437", "n_user": "u611090896", "pos": "s = input()\nt = input()\n\ncount = 0\nif s != t:\n for i in range(0,len(s)):\n if s[i] != t[i]:\n count += 1\n\nprint(count)\n", "neg": "s = input()\nt = input()\ncount=0\nfor i in len(s):\n if s[i] != t[i]:\n count+=1\nprint(count)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [58, 45], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "\n if s != t:\n range(0,) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u584588582", "n_user": "u584588582", "pos": "def calculate(s,t):\n count = 0\n j = 0\n for i in s:\n if i != t[j]:\n count += 1\n j += 1\n return count\n \ns = input()\nt = input()\nprint(calculate(s,t))\n", "neg": "def calculate(s,t):\n count = 0\n for i in t:\n if i != s[j]:\n count += 1\n j += 1\n return count \n\n\ns = raw_input()\nt = raw_input()\nprint(calculate(s,t))", "jacc_sim": 0.92, "before_after_length": [69, 67], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": " j = 0\n ts st \n\n\n raw_raw_\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02622", "p_user": "u765438844", "n_user": "u765438844", "pos": "S = input()\nT = input()\nW = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n W += 1\nprint(W)\n", "neg": "S = input()\nT = input()\nW = 0\nfor i in range(len(S)):\n if S[i] != T[i]:\n w += 1\nprint(W)", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 46], "nl": "Score: 200 points\nProblem Statement: Given strings S and T, change S to T by replacing one character at a time. Find the minimum number of operations needed. \nConstraints:\n- Length of S and T: 1 to 2*10^5\n- S and T consist of lowercase English letters\n- S and T have equal lengths\nInput: Given from Standard Input as S and T\nOutput: Print the answer\nSample Input 1:\ncupofcoffee\ncupofhottea\nSample Output 1:\n4\nExplanation: Achieve the objective in four operations by replacing specific characters.\nSample Input 2:\nabcde\nbcdea\nSample Output 2:\n5\nSample Input 3:\napple\napple\nSample Output 3:\n0\nExplanation: No operations needed to achieve the objective.", "diff_info": "wW\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u000037600", "n_user": "u000037600", "pos": "from sys import stdin\ninput=stdin.readline\ninput()\na=list(map(int,input().split()))\nans=sum(a)\nb=[0]*(10**5+1)\nfor i in a:\n b[i]+=1\nc=int(input())\nfor i in range(c):\n n,m=map(int,input().split())\n if b[n]>0:\n x=b[n]\n if x>0:\n b[m]+=x\n b[n]=0\n ans+=(m-n)*x\n print(ans)", "neg": "from sys import stdin\ninput=stdin.readline\ninput()\na=list(map(int,input().split()))\nans=sum(a)\nb=[0]*(max(a)+1)\nfor i in a:\n b[i]+=1\nc=int(input())\nfor i in range(c):\n n,m=map(int,input().split())\n x=b[n]\n if x>0:\n b[m]+=x\n b[n]=0\n ans+=(m-n)*x\n print(ans)", "jacc_sim": 0.926829268292683, "before_after_length": [147, 137], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "10**5max(a)x=b[n]\n xb[n]b[m]+=\n b[n]0b[n] if x>0:\n b[m]+=x\n b[n]=0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u008718882", "n_user": "u008718882", "pos": "import collections as cl\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\n\nsum = 0\nfor i in range(N):\n sum += A[i]\ndic = cl.Counter(A)\n\nl = []\nfor _ in range(Q):\n b, c = map(int, input().split())\n x = dic.get(b)\n if x == None:\n l.append(sum)\n continue\n if b < c:\n sum += (c - b) * x\n else:\n sum -= (b - c) * x\n l.append(sum)\n if c not in dic:\n dic[c] = dic.pop(b)\n else:\n dic[c] = dic.pop(b) + dic[c]\n\nfor s in l:\n print(s)\n", "neg": "import collections as cl\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\n\nsum = 0\nfor i in range(N):\n sum += A[i]\ndic = cl.Counter(A)\nprint(A, dic, sum)\n\nl = []\nfor _ in range(Q):\n b, c = map(int, input().split())\n if dic.get(b) == None:\n continue\n if b < c:\n sum += (c - b) * dic[b]\n else:\n sum -= (b- c) * dic[b]\n l.append(sum)\n if c not in dic:\n dic[c] = dic.pop(b)\n else:\n dic[c] = dic.pop(b) + dic[c]\n print(dic) \n\n\nfor s in l:\n print(s)", "jacc_sim": 0.9787234042553191, "before_after_length": [215, 224], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "print(A, dic, sum)\nx = dic.get(b)\n xdic.get(b)l.append(sum)\n x\n else:\n sum -= (b - c) * x\n l.append(sum)\n if c not in dic:\n bc\n else:\n sum -di(b- .pop(b\n* else:\n bc\n= l.appen(sum)\n c.pop(b) + dic[c]\n\n c nt in dic:\n dic[c] = dic.pop(b)\n else:\n dic[c] = dic.pop(b) + dic[c]\n pint(dic) \n\n\nfor \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u337626942", "n_user": "u337626942", "pos": "n=int(input())\na=list(map(int, input().split()))\nq=int(input())\n\nS=sum(a)\n\ntable=[0]*(10**6)\n\nfor i in range(n):\n table[a[i]]+=1\n\nfor i in range(q):\n b, c=map(int, input().split())\n if table[b]!=0:\n cnt=table[b]\n table[c]+=cnt\n ans=S+(cnt*(c-b))\n\n print(ans)\n\n table[b]=0\n S=ans\n else:\n print(S)", "neg": "n=int(input())\na=list(map(int, input().split()))\nq=int(input())\nresults=[]\n\nS=sum(a)\n\ntable=[0]*(10**6)\n\nfor i in range(n):\n table[a[i]]+=1\n\nfor i in range(q):\n b, c=map(int, input().split())\n if table[b]!=0:\n cnt=table[b]\n table[c]+=cnt\n ans=S+(cnt*(c-b))\n results.append(ans)\n table[b]=0\n S=ans\n else:\n results.appned(S)\n\nfor result in results:\n print(result)", "jacc_sim": 0.9047619047619048, "before_after_length": [160, 180], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "\nresults=[]\nresults.aperidt\nresults.aprited\n\nfor result in results:\n print(result)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u942388574", "n_user": "u942388574", "pos": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Tue Jun 23 21:04:33 2020\n\n@author: naoki\n\"\"\"\n\nN = int(input()) # input the row A length \"N\" \nA = list(map(int,input().split())) # input the row of A \nQ = int(input()) # input the number of trying operation \nBC = [list(map(int,input().split())) for i in range(Q)]\nS = 0\nnum = [0 for i in range(100001)] \nfor i in A:\n S += i # Sum of all conponents of the row \"A\"\n num[i]+=1 \n\nfor B,C in BC:\n S = S + (C - B) * num[B]\n num[C] += num[B]\n num[B] = 0 \n print(S)\n\n", "neg": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Tue Jun 23 21:04:33 2020\n\n@author: naoki\n\"\"\"\n\nN = int(input()) # input the row A length \"N\" \nA = list(map(int,input().split())) # input the row of A \nQ = int(input()) # input the number of trying operation \nBC = [list(map(int,input().split())) for i in range(Q)]\nS = 0\nnum = [0 for i in range(100001)] \nfor i in A:\n S += i # Sum of all conponents of the row \"A\"\n num[i]+=1 \n\nfor B,C in BC:\n S = S + (C - B) * num[B+1]\n num[C+1] += num[B+1]\n num[B+1] = 0 \n print(S)\n\n", "jacc_sim": 1.0, "before_after_length": [217, 225], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "]\n num[C] 1]\n num[C+1] ++1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u544865362", "n_user": "u544865362", "pos": "N = input()\narr = [int(x) for x in input().split()]\n\nq = int(input())\nans = sum(arr)\n\nhashmap = {}\nfor val in arr:\n if val in hashmap:\n hashmap[val] += 1\n else:\n hashmap[val] = 1\n\n\nwhile q > 0:\n\n [x, y] = [int(x) for x in input().split()]\n if x in hashmap:\n if y in hashmap:\n hashmap[y] += hashmap[x]\n ans -= hashmap[x]*x\n ans += y*hashmap[x]\n del hashmap[x]\n else:\n diff = hashmap[x] * x\n ans -= diff\n hashmap[y] = hashmap[x]\n del hashmap[x]\n add = hashmap[y] * y\n ans += add\n \n print(ans)\n q -=1", "neg": "N = input()\narr = [int(x) for x in input().split()]\n\nq = int(input())\nans = sum(arr)\n\nhashmap = {}\nfor val in arr:\n if val in hashmap:\n hashmap[val] += 1\n else:\n hashmap[val] = 1\n\n\nwhile q > 0:\n print(hashmap)\n [x, y] = [int(x) for x in input().split()]\n if x in hashmap:\n if y in hashmap:\n hashmap[y] += hashmap[x]\n ans -= hashmap[x]*x\n ans += y*hashmap[x]\n else:\n diff = hashmap[x] * x\n ans -= diff\n hashmap[y] = hashmap[x]\n del hashmap[x]\n add = hashmap[y] * y\n ans += add\n \n print('ans', ans)\n q -=1", "jacc_sim": 0.9736842105263158, "before_after_length": [236, 236], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": " print(hashmap) del hashmap[x]\n 'ans', ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u018776180", "n_user": "u018776180", "pos": "n = int(input())\nalist = [int(s) for s in input().split(\" \")]\nadict = {}\nans = 0\nfor a in alist:\n ans += a\n if a in adict:\n adict[a] += 1\n else:\n adict[a] = 1\nq = int(input())\nbclist = []\nfor _ in range(q):\n b, c = [int(s) for s in input().split(\" \")]\n bclist.append([b, c])\n\nfor b, c in bclist:\n if c in adict and b in adict:\n ans += (c - b) * adict[b]\n adict[c] += adict[b]\n del adict[b]\n elif b in adict:\n ans += (c - b) * adict[b]\n adict[c] = adict[b]\n del adict[b]\n print(ans)", "neg": "n = int(input())\nalist = [int(s) for s in input().split(\" \")]\nadict = {}\nans = 0\nfor a in alist:\n ans += a\n if a in adict:\n adict[a] += 1\n else:\n adict[a] = 1\nq = int(input())\nbclist = []\nfor _ in range(q):\n b, c = [int(s) for s in input().split(\" \")]\n bclist.append([b, c])\n\nfor b, c in bclist:\n if c in adict and b in adict:\n ans += c * (adict[c] + adict[b]) - b * adict[b]\n adict[c] += adict[b]\n del adict[b]\n elif b in adict:\n ans += (c - b) * adict[b]\n adict[c] = adict[b]\n del adict[b]\n print(ans)", "jacc_sim": 1.0, "before_after_length": [238, 249], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "( - b)(adict[b]\n =)\n del adict[b]\n elif b in adict:\n ans += (c)+elif b in adict:\n ans += (c - b) * adict[b]\n adict[c] = adict[b]\n del adict[b]\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u435480265", "n_user": "u435480265", "pos": "from collections import Counter\nn = int(input())\nla = list(map(int, input().split()))\ns = sum(la)\nd = dict(Counter(la))\n\nq = int(input())\nfor _ in range(q):\n b,c = map(int, input().split())\n if b in d:\n nb = d.pop(b)\n else:\n nb = 0\n delta = (c-b)*nb\n s += delta\n print(s)\n if nb > 0:\n if c in d:\n d[c] += nb\n else:\n d[c] = nb", "neg": "from collections import Counter\nn = int(input())\nla = list(map(int, input().split()))\ns = sum(la)\nd = dict(Counter(la))\n\nq = int(input())\nfor _ in range(q):\n b,c = map(int, input().split())\n nb = d.pop(b)\n delta = (c-b)*nb\n s += delta\n print(s)\n if c in d:\n d[c] += nb\n else:\n d[c] = nb", "jacc_sim": 0.9512195121951219, "before_after_length": [152, 129], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "if b in d:\n else:\n nb = 0\n c ibd> 0 if c in d:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u430726059", "n_user": "u430726059", "pos": "n=int(input())\na = list(map(int,input().split()))\nq=int(input())\nbc = [list(map(int, input().split())) for l in range(q)]\ncnt=[0]*100001\nSum=0\nfor i in range(n):\n cnt[a[i]]+=1\n Sum+=a[i]\nfor i in range(q):\n Sum+=(bc[i][1]-bc[i][0])*cnt[bc[i][0]] \n cnt[bc[i][1]]+=cnt[bc[i][0]]\n cnt[bc[i][0]]=0\n print(Sum)", "neg": "n=int(input())\na = list(map(int,input().split()))\nq=int(input())\nbc = [list(map(int, input().split())) for l in range(q)]\ncnt=[0]*(n+1)\nSum=0\nfor i in range(n):\n cnt[a[i]]+=1\n Sum+=a[i]\nfor i in range(q):\n Sum+=(bc[i][1]-bc[i][0])*cnt[bc[i][1]] \n cnt[bc[i][1]]+=cnt[bc[i][0]]\n cnt[bc[i][0]]=0\n print(Sum)", "jacc_sim": 0.967741935483871, "before_after_length": [162, 165], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "(n+)0000110", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u633203155", "n_user": "u633203155", "pos": "import collections\n\ndef calc_sum(c):\n sum_val = 0\n for key, val in c.items():\n sum_val += key * val\n return sum_val\n\nN = int(input())\narr = list(map(int, input().split()))\nQ = int(input())\n\nactions = []\n\nfor i in range(Q):\n B, C = map(int, input().split())\n actions.append({'B':B, 'C':C})\n\nc = collections.Counter(arr)\nsum_val = calc_sum(c)\n\nfor i in range(Q):\n B = actions[i]['B']\n C = actions[i]['C']\n if B in c:\n c[C] += c[B]\n sum_val += c[B] * C - c[B] * B\n c.pop(B)\n\n print(sum_val)", "neg": "import collections\n\ndef calc_sum(c):\n sum_val = 0\n for key, val in c.items():\n sum_val += key * val\n return sum_val\n\nN = int(input())\narr = list(map(int, input().split()))\nQ = int(input())\n\nactions = []\n\nfor i in range(Q):\n B, C = map(int, input().split())\n actions.append({'B':B, 'C':C})\n\nc = collections.Counter(arr)\nsum_val = calc_sum(c)\n\nfor i in range(Q):\n B = actions[i]['B']\n C = actions[i]['C']\n if B in c:\n c[C] += c[B]\n sum_val += c[C] * C - c[B] * B\n c.pop(B)\n\n print(sum_val)", "jacc_sim": 1.0, "before_after_length": [221, 221], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "CB", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u756609156", "n_user": "u756609156", "pos": "n = int(input())\nm = {}\ntot = 0\nfor a in map(int,input().split()):\n tot += a\n if a not in m:\n m[a]=0\n m[a] += 1\nq = int(input())\nfor step in range(q):\n b,c = map(int,input().split())\n if c not in m:\n m[c] = 0\n if b in m:\n m[c] += m[b]\n tot += m[b]*(c-b)\n m[b] = 0\n print(tot)", "neg": "n = int(input())\nm = {}\ntot = 0\nfor a in map(int,input().split()):\n tot += m\n if a not in m:\n m[a]=0\n m[a] += 1\nq = int(input())\nfor step in range(q):\n b,c = map(int,input().split())\n if c not in m:\n m[c] = 0\n if b in m:\n m[c] += m[b]\n tot += m[b]*(c-b)\n m[b] = 0\n print(tot)\n\n", "jacc_sim": 1.0, "before_after_length": [146, 148], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "ma\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u860002137", "n_user": "u860002137", "pos": "from collections import defaultdict\nfrom collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\narr = defaultdict(int)\nfor k, v in Counter(a).items():\n arr[k] = v\nq = int(input())\nbc = []\nfor _ in range(q):\n b, c = map(int, input().split())\n bc.append((b, c))\n\nwhole = sum([x * y for x, y in arr.items()])\n\nfor b, c in bc:\n arr[c] += arr[b]\n tmp = arr[b]\n arr[b] = 0\n whole += (c - b) * tmp\n print(whole)", "neg": "from collections import defaultdict\nfrom collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\narr = defaultdict(int)\nfor k, v in Counter(a).items():\n arr[k] = v\nq = int(input())\nbc = []\nfor _ in range(q):\n b, c = map(int, input().split())\n bc.append((b, c))\n\nwhole = sum([x * y for x, y in arr.items()])\n\nfor b, c in bc:\n whole += c * arr[c] - b * arr[b]\n print(whole)\n arr[c] += arr[b]\n arr[b] = 0", "jacc_sim": 0.9767441860465116, "before_after_length": [175, 173], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "arr[c] += arr[b]\n tmp = arr[b]\n arr[b] = 0\n ( - b)tmparr[c] - b * arr[b]\n arr[c] += arr[b]\n arr[b] = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u536600145", "n_user": "u536600145", "pos": "from collections import defaultdict\n \nN = int(input())\nraw_numbers = list(map(int, input().split()))\nQ = int(input())\n \ntotal = sum(raw_numbers)\n \nnumbers = defaultdict(int)\n \nfor num in raw_numbers:\n numbers[num] += 1\n\nfor i in range(Q):\n a, b = map(int, input().split())\n taken = numbers[a]\n total -= numbers[a]*a\n numbers[b] += numbers[a]\n numbers[a] = 0\n total += taken*b\n print(total)", "neg": "from collections import defaultdict\nN = int(input())\nraw_numbers = list(map(int, input().split()))\nnumbers = defaultdict(int)\n\nfor num in raw_numbers:\n numbers[num] += 1\n \ntotal = sum(raw_numbers)\n \nQ = int(input())\n\nfor _ in range(Q):\n a, b = list(map(int, input().split()))\n numbers[b] += numbers[a]\n total -= a * numbers[a]\n total += b * (numbers[b] - numbers[a])\n numbers[a] = 0\n print(total)", "jacc_sim": 0.9210526315789473, "before_after_length": [146, 148], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "\n Qnumbersdefaultdct(i()\n\nfor num put())\n\ntotal = sum(:) numbers[num] += 1n \ntotal = sbers = defaultdictint)\n \nfor num in ):numbers[num] += 1\nfor i in range( = int(input())\n\nfor _ in range(Qlist()\n taken = numbers[a]\n total -= numbers[a]*atotnumbers[l]-a0\n total += taken numers[a]total += b * (numbers[b] - numbers[a])\n numbers[a] = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u376752722", "n_user": "u376752722", "pos": "N = int(input())\n\nAn = list(map(int, input().split()))\nQ = int(input())\n\nL = [0] * 100001\nfor item in An:\n L[item] += 1\n\nsum = sum(An)\n\nfor i in range(Q):\n b, c = map(int, input().split())\n sum += (c-b) * L[b]\n L[c] += L[b]\n L[b] = 0\n print(sum)", "neg": "N = int(input())\n\nAn = list(map(int, input().split()))\nQ = int(input())\n\nL = [0] * 100001\nfor item in An:\n L[item] += 1\n\nsum = sum(An)\n\nfor i in range(Q):\n b, c = map(int, input().split())\n sum += (c-b) * L[b]\n print(sum)", "jacc_sim": 1.0, "before_after_length": [122, 103], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "L[c] += L[b]\n L[b] = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u285492845", "n_user": "u285492845", "pos": "from collections import Counter\n\nn = input()\nN = int(n)\nA = [int(a) for a in input().split()]\nq = input()\nQ = int(q)\nB, C = [], []\nfor i in range(Q):\n b, c = input().split()\n B.append(int(b))\n C.append(int(c))\n\n\nmy_dict = Counter(A)\n\ndef cals_sum(my_dict):\n values = [ my_dict[key]*key for key in my_dict.keys() if my_dict[key] != 0]\n #for key in my_dict.keys():\n # value = my_dict[key]\n # sum += int(key) * int(value)\n return sum(values)\n \nmy_sum = cals_sum(my_dict)\n\nfor i in range(len(B)):\n b = B[i]\n c = C[i]\n tmpb = my_dict[b] \n my_dict[b] = 0\n tmpc = my_dict[c]\n my_dict[c] = tmpb + tmpc\n \n my_sum += ((tmpb)*c - tmpb*b)\n\n print(my_sum)\n\n\n", "neg": "from collections import Counter\n\nn = input()\nN = int(n)\nA = [int(a) for a in input().split()]\nq = input()\nQ = int(q)\nB, C = [], []\nfor i in range(Q):\n b, c = input().split()\n B.append(int(b))\n C.append(int(c))\n\n\nmy_dict = Counter(A)\n\ndef cals_sum(my_dict):\n values = [ my_dict[key]*key for key in my_dict.keys() if my_dict[key] != 0]\n #for key in my_dict.keys():\n # value = my_dict[key]\n # sum += int(key) * int(value)\n return sum(values)\n \nmy_sum = cals_sum(my_dict)\n\nfor i in range(len(B)):\n b = B[i]\n c = C[i]\n tmpb = my_dict[b] \n my_dict[b] = 0\n tmpc = my_dict[c]\n my_dict[c] = tmpb + tmpc\n \n my_sum += ((tmpb + tmpc)*c - tmpb*b)\n\n print(my_sum)\n", "jacc_sim": 1.0, "before_after_length": [312, 313], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": " + tmpc\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u418197217", "n_user": "u418197217", "pos": "from collections import Counter\nn = int(input())\nls = list(map(int, input().split()))\nq = int(input())\ncount = Counter(ls)\nsm = sum(ls)\n\nfor _ in range(q):\n b, q = map(int, input().split())\n if b in count:\n sm -= count[b] * b\n sm += count[b] * q\n print(sm)\n else:\n print(sm)\n if q in count:\n count[q] += count[b]\n\n count[b] = 0\n else:\n count[q] = count[b]\n\n count[b] = 0\n", "neg": "from collections import Counter\nn = int(input())\nls = list(map(int, input().split()))\nq = int(input())\ncount = Counter(ls)\nsm = sum(ls)\n\nfor _ in range(q):\n b, q = map(int, input().split())\n if b in count:\n sm -= count[b] * b\n sm += count[b] * q\n print(sm)\n if q in count:\n count[q] += count[b]\n\n count[b] = 0\n else:\n count[q] = count[b]\n\n count[b] = 0\n", "jacc_sim": 1.0, "before_after_length": [164, 154], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "else:\n print(sm)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u788608806", "n_user": "u788608806", "pos": "\n\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nnizi = [0] * (10**5+1)\nfor i in range(len(A)):\n # print(A[i], A)\n nizi[A[i]] += 1\nsumall = sum(A)\nfor q in range(Q):\n # print(nizi)\n B, C = map(int, input().split())\n sumall += (C-B) * nizi[B]\n nizi[C] += nizi[B]\n nizi[B] = 0\n print(sumall)", "neg": "\n\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nnizi = [0] * (max(A)+1)\nfor i in range(len(A)):\n # print(A[i], A)\n nizi[A[i]] += 1\nsumall = sum(A)\nfor q in range(Q):\n B, C = map(int, input().split())\n sumall += (C-B) * nizi[B]\n nizi[C] =+ nizi[B]\n nizi[B] = 0\n print(sumall)", "jacc_sim": 0.918918918918919, "before_after_length": [167, 159], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "10**5max(A)# print(nizi)\n ==", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u188138642", "n_user": "u188138642", "pos": "from collections import Counter\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nans = sum(A)\nA = Counter(A)\nbc = [tuple(map(int, input().split())) for i in range(Q)]\nfor b, c in bc:\n v = A.pop(b, None)\n if v:\n A[c] += v\n ans = ans+((c-b)*v)\n print(ans)\n", "neg": "from collections import Counter\nimport numpy as np\nN = int(input())\nA = list(map(int, input().split()))\nQ = int(input())\nans = sum(A)\nA = Counter(A)\nbc = [tuple(map(int, input().split())) for i in range(Q)]\nfor b, c in bc:\n v = A.pop(b, None)\n if v:\n A[c] += v\n ans = ans+((c-b)*v)\n print(ans)\n", "jacc_sim": 0.926829268292683, "before_after_length": [121, 126], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "import numpy as np\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u981418135", "n_user": "u981418135", "pos": "n = int(input())\na = list(map(int, input().split()))\nq = int(input())\nsums = sum(a)\nd = {}\n\nfor i in a:\n if i in d:\n d[i] += 1\n else:\n d[i] = 1\n\nfor i in range(q):\n b,c = map(int, input().split())\n if b in d:\n sums += d[b]*(c-b)\n if c in d:\n d[c] += d[b]\n else:\n d[c] = d[b]\n d[b] = 0\n print(sums)", "neg": "n = int(input())\na = list(map(int, input().split()))\nq = int(input())\nsums = sum(a)\nd = {}\n\nfor i in a:\n if i in d:\n d[i] += 1\n else:\n d[i] = 1\n\nfor i in range(q):\n b,c = map(int, input().split())\n if b in d:\n sums += d[b]*(c-b)\n if c in d:\n d[c] += d[b]\n else:\n d[c] = d[b]\n \t\td[b] = 0\n print(sums)", "jacc_sim": 1.0, "before_after_length": [164, 165], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "\t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u115110170", "n_user": "u115110170", "pos": "n=int(input())\nls = list(map(int,input().split()))\n\nls = sorted(ls)\nans = sum(ls)\nnewls = [0]*(100000+1+1)\nfor p in ls:\n newls[p] += 1\nls = newls\n\nq=int(input())\nfor _ in range(q):\n b,c = map(int,input().split())\n \n tmp = ls[b]\n ans = ans + tmp*c - tmp*b\n ls[b] = 0\n ls[c] += tmp\n \n print(ans)\n ", "neg": "n=int(input())\nls = list(map(int,input().split()))\n\nls = sorted(ls)\nans = sum(ls)\nnewls = [0]*(n+1)\nfor p in ls:\n newls[p] += 1\nls = newls\n\nq=int(input())\nfor _ in range(q):\n b,c = map(int,input().split())\n \n tmp = ls[b]\n ans = ans + tmp*c - tmp*b\n ls[b] = 0\n ls[c] = tmp\n \n print(ans)\n \n", "jacc_sim": 0.9714285714285714, "before_after_length": [147, 144], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "n100000+1+\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u137228327", "n_user": "u137228327", "pos": "from collections import Counter\nN = int(input())\n\nA = list(map(int,input().split()))\nQ = int(input())\n\ncounter = Counter(A)\nsum_res = sum(A)\n#print(sum_res,counter)\nfor _ in range(Q):\n bf,af = map(int,input().split())\n sum_res -= bf*counter[bf]\n sum_res += af*counter[bf]\n \n counter[af] += counter[bf]\n counter[bf] = 0\n \n print(sum_res)", "neg": "from collections import Counter\nN = int(input())\n\nA = list(map(int,input().split()))\nQ = int(input())\n\ncounter = Counter(A)\nsum_res = sum(A)\n\nfor _ in range(Q):\n bf,af = map(int,input().split())\n sum_res -= bf*counter[bf]\n sum_res += af*counter[af]\n \n counter[af] += counter[bf]\n counter[bf] = 0\n \n print(sum_res)", "jacc_sim": 0.9714285714285714, "before_after_length": [137, 128], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "#print(sum_res,counter)ab", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u657994700", "n_user": "u657994700", "pos": "from collections import Counter\n\n# print('input >>')\nN = input()\nAs = list(map(int,(input().split())))\nQ = int(input())\nBCs = []\nfor _ in range(Q):\n BCs.append(tuple(map(int,(input().split()))))\n\ncounter = dict(Counter(As))\nsum_ = sum(As)\n\nfor BC in BCs:\n if not BC[0] in counter:\n counter[BC[0]] = 0\n if not BC[1] in counter:\n counter[BC[1]] = 0\n sa = BC[1] - BC[0]\n sum_ += counter[BC[0]] * sa\n counter[BC[1]] = counter[BC[1]] + counter[BC[0]]\n counter[BC[0]] = 0\n # print(counter)\n print(sum_)", "neg": "from collections import Counter\n\n# print('input >>')\nN = input()\nAs = list(map(int,(input().split())))\nQ = int(input())\nBCs = []\nfor _ in range(Q):\n BCs.append(tuple(map(int,(input().split()))))\n\ncounter = dict(Counter(As))\nsum_ = sum(As)\n\nfor BC in BCs:\n sa = BC[1] - BC[0]\n sum_ += counter[BC[0]] * sa\n if not BC[1] in counter:\n counter[BC[1]] = 0\n counter[BC[1]] = counter[BC[1]] + counter[BC[0]]\n counter[BC[0]] = 0\n # print(counter)\n print(sum_)", "jacc_sim": 1.0, "before_after_length": [212, 191], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "if not BC[0] in counter:\n counter[BC[0]] = 0\n if not BC[1] in counter:\n counter[BC[1]] = 0\n cif nun er[]=in counter:\n = 0\n counter[BC[1]] = counter[BC[1]] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u305349402", "n_user": "u305349402", "pos": "N = int(input())\nA = list(map(int,input().split()))\nsummary = sum(A)\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n \nQ = int(input())\nfor _ in range(Q):\n B, C = list(map(int,input().split()))\n if B not in d:\n b = 0\n else:\n b = d[B]\n d[B] = 0\n if C in d:\n d[C] += b\n else:\n d[C] = b\n summary = summary + b * (C - B)\n print(summary)", "neg": "N = int(input())\nA = list(map(int,input().split()))\nsummary = sum(A)\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n \nQ = int(input())\nfor _ in range(Q):\n B, C = list(map(int,input().split()))\n b = d[B]\n d[B] = 0\n if C in d:\n d[C] += b\n else:\n d[C] = b\n summary = summary + b * (C - B)\n print(summary)", "jacc_sim": 0.9736842105263158, "before_after_length": [177, 160], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "bif= d[]\nnotin [B]:\n belse:\n b = d[B]\n d[B] = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u629350026", "n_user": "u629350026", "pos": "n=int(input())\na=list(map(int,input().split()))\nq=int(input())\ntemp=sum(a)\nimport collections\nca=collections.Counter(a)\nfor i in range(q):\n b,c=map(int,input().split())\n ba=ca[b]\n temp=temp-b*ba+c*ba\n print(temp)\n ca[b]=ca[b]-ba\n ca[c]=ca[c]+ba\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nq=int(input())\ntemp=sum(a)\nimport collections\nca=collections.Counter(a)\nprint(ca)\nfor i in range(q):\n b,c=map(int,input().split())\n ba=ca[b]\n temp=temp-b*ba+c*ba\n ca[b]=ca[b]-ba\n ca[c]=ca[c]+ba\n", "jacc_sim": 1.0, "before_after_length": [121, 120], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "print(ca)\nprint(temp)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u102059282", "n_user": "u102059282", "pos": "def sum_dict(d, sum, b, c):\n val = 0\n if b in d:\n val = d[b]\n sum -= (b * val)\n del d[b]\n d[c] = d.get(c, 0) + val\n sum += (c * val)\n return sum, d\n \nn = int(input())\na = [int(x) for x in input().split()]\nd = {}\nfor i in a:\n d[i] = d.get(i, 0) + 1\ns = sum(a)\nq = int(input())\nfor i in range(q):\n b, c = map(int, input().split())\n s, d = sum_dict(d, s, b, c)\n print(s)", "neg": "def sum_dict(d, sum, b, c):\n val = 0\n if b in d:\n val = d[b]\n sum -= (b * val)\n del d[b]\n d[c] = d.get(c, 0) + val\n sum += (c * val)\n return sum, d\n \nn = int(input())\na = [int(x) for x in input().split()]\nd = {}\nfor i in a:\n d[i] = d.get(i, 0) + 1\ns = sum(a)\nq = int(input())\nfor i in range(q):\n b, c = map(int, input().split())\n s, d = sum_dict(d, b, c)\n print(s)", "jacc_sim": 1.0, "before_after_length": [193, 191], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "b, c)\n print(, b, c\n print(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u056083426", "n_user": "u056083426", "pos": "import sys\nfrom collections import Counter\ninput = sys.stdin.readline\n\n\nN = int(input())\nalist = list(map(int, input().split()))\nQ = int(input())\n\n\nsumA = sum(alist)\nadict = Counter(alist)\n\nfor _ in range(Q):\n b, c = map(int, input().split())\n\n if b not in adict:\n print(sumA)\n continue\n\n bnum = adict.pop(b)\n if c in adict:\n adict[c] += bnum\n else:\n adict[c] = bnum\n\n sumA -= bnum * (b - c)\n print(sumA)\n", "neg": "import sys\nfrom collections import Counter\ninput = sys.stdin.readline\n\n\nN = int(input())\nalist = list(map(int, input().split()))\nQ = int(input())\n\n\nsumA = sum(alist)\nadict = Counter(alist)\n\nfor _ in range(Q):\n b, c = map(int, input().split())\n\n bnum = adict.pop(b)\n if c in adict:\n adict[c] += bnum\n else:\n adict[c] = bnum\n\n sumA -= bnum * (b - c)\n print(sumA)\n", "jacc_sim": 0.9523809523809523, "before_after_length": [177, 157], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "if b not in adict:\n print(sumA)\n continue\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u242580186", "n_user": "u242580186", "pos": "import sys\nimport time\nimport math\nst = time.perf_counter()\ndef inpl():\n return list(map(int, input().split()))\n# ------------------------------\n\nN = int(input())\nnl = [0] * 100100\nls = inpl()\nans = 0\nfor i in ls:\n\tnl[i] += 1\n\tans += i\nM = int(input())\nfor _ in range(M):\n\ta, b = map(int, input().split())\n\tans = ans - (nl[a] * a) + (nl[a] * b)\n\tnl[b] += nl[a]\n\tnl[a] = 0\n\tprint(ans)\n\n# ------------------------------\ned = time.perf_counter()\nprint('time:', ed-st, file=sys.stderr)\n", "neg": "import sys\nimport time\nimport math\nst = time.perf_counter()\ndef inpl():\n return list(map(int, input().split()))\n# ------------------------------\n\nN = int(input())\nnl = [0] * 10101\nls = inpl()\nans = 0\nfor i in ls:\n\tnl[i] += 1\n\tans += i\nM = int(input())\nfor _ in range(M):\n\ta, b = map(int, input().split())\n\tans = ans - nl[a] * a + nl[b] * b\n\tnl[b] += nl[a]\n\tnl[a] = 0\n\tprint(ans)\n\n# ------------------------------\ned = time.perf_counter()\nprint('time:', ed-st, file=sys.stderr)\n", "jacc_sim": 0.9574468085106383, "before_after_length": [194, 190], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "00\nls = inpl()\nans = 0\nfor i in ls:\n\tnl[i] += \tls = inpl()\n+0\nfor \nM=inlsint(input())\nfor _ in range(M)nl[a, b = map(nt, input().split())\n\tans = ans - (nl[a * a)=1\n\tans += i\nM = intil[put())\nfor _ in r] *nge(M):\n\ta, = map(int, input(.split())\n\tans = ans - nl[a] * a + nl[b] * b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u092387689", "n_user": "u092387689", "pos": "n = int(input())\nA = [int(x) for x in input().split()]\nsumA = sum(A)\ncounter = [0]*(10**5+1)\nfor i in range(n):\n counter[A[i]] += 1\n\nq = int(input())\n\nqueue = [list(map(int,input().split())) for i in range(q)]\n\nfor b,c in queue: \n b_cnt = counter[b]\n sumA -= (b*b_cnt)\n counter[b] = 0\n c_cnt = counter[c]\n sumA += c*(b_cnt)\n counter[c] += b_cnt\n print(sumA)\n ", "neg": "n = int(input())\nA = [int(x) for x in input().split()]\nsumA = sum(A)\ncounter = [0]*(10**5+1)\nfor i in range(n):\n counter[A[i]] += 1\n\nprint(counter[:30])\nq = int(input())\n\nqueue = [list(map(int,input().split())) for i in range(q)]\n\nfor b,c in queue: \n b_cnt = counter[b]\n sumA -= (b*b_cnt)\n counter[b] = 0\n c_cnt = counter[c]\n sumA += c*(b_cnt)\n counter[c] = b_cnt+c_cnt\n print(sumA)\n ", "jacc_sim": 0.972972972972973, "before_after_length": [172, 183], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "prq = icoupu())\n\nqurue = list(map(int,input().split())) for i in range(q)]\n\nfor b,c in queue3 \n b_cnt = counter[b]\n sumA -= (b*b_cnt)\n counter[b] = ])\nq = int(input())\n\nqueue = [list(map(int,input().split())) for i in range(q)]\n\nfor b,c in queue: \n b_cnt = counter[b]\n sumA -= (b*b_cnt)\n counter[b] = 0= b_cnt=c_cnt\nb_c pri(sumA)print(sumA)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u683134447", "n_user": "u683134447", "pos": "n = int(input())\nal = list(map(int,input().split()))\nq = int(input())\n\nfrom collections import defaultdict\ndic = defaultdict(int)\n\nans = 0\nfor a in al:\n dic[a] += 1\n ans += a\n\n\nfor _ in range(q):\n b,c = map(int,input().split())\n ans += dic[b] * (c - b)\n dic[c] += dic[b]\n dic[b] = 0\n print(ans)\n\n\n\n\n\n\n", "neg": "n = int(input())\nal = list(map(int,input().split()))\nq = int(input())\n\nfrom collections import defaultdict\ndic = defaultdict(int)\n\nans = 0\nfor a in al:\n dic[a] += 1\n ans += a\n\nprint(dic)\nfor _ in range(q):\n b,c = map(int,input().split())\n ans += dic[b] * (c - b)\n dic[c] += dic[b]\n dic[b] = 0\n print(ans)\n\n\n\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [134, 138], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "print(dic)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u723583932", "n_user": "u723583932", "pos": "n=int(input())\na=list(map(int,input().split()))\nq=int(input())\nd=dict()\nfor i in a:\n if i not in d:\n d[i]=1\n else:\n d[i]+=1\nans=sum(a)\nfor i in range(q):\n b,c=map(int,input().split())\n if b not in d:\n d[b]=0\n if c not in d:\n d[c]=0\n d[c]+=d[b]\n ans+=(c-b)*d[b]\n print(ans)\n d[b]=0\n\n \n\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nq=int(input())\nd=dict()\nfor i in a:\n if i not in d:\n d[i]=1\n else:\n d[i]+=1\nans=sum(a)\nfor i in range(q):\n b,c=map(int,input().split())\n if b not in d:\n continue\n if c not in d:\n d[c]=0\n d[c]+=d[b]\n ans+=(c-b)*d[b]\n print(ans)\n d[b]=0\n", "jacc_sim": 0.9722222222222222, "before_after_length": [170, 161], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "continue\n if c not in :\n dcbif c not in d:\n d[c]=0\n \n \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02630", "p_user": "u956433805", "n_user": "u956433805", "pos": "import collections\n\nN = int(input())\nA = list(map(int,input().split()))\nS = sum(A)\nc = collections.Counter(A)\n\nQ = int(input())\n\nfor i in range(Q):\n B, C = map(int, input().split())\n ans = S - B * c[B] + C * c[B]\n print(ans)\n S = ans\n c[C] += c[B]\n c[B] = 0", "neg": "import collections\n\nN = int(input())\nA = list(map(int,input().split()))\nS = sum(A)\nc = collections.Counter(A)\n\nQ = int(input())\n\nfor i in range(Q):\n B, C = map(int, input().split())\n ans = S - B * c[B] + C * c[B]\n print(ans)\n S = ans\n c[B] = 0\n c[C] += c[C]", "jacc_sim": 1.0, "before_after_length": [120, 120], "nl": "You are given a sequence A consisting of N positive integers. You perform Q operations, where in each operation, you replace elements with a specific value. For each operation, find the sum of all elements in A after that operation. Constraints: 1 \u2264 N, Q, A_i, B_i, C_i \u2264 10^5, B_i \u2260 C_i. Input format: N, followed by the elements of A, Q, and pairs of B and C values. Output format: Print Q integers representing the sum after each operation. Sample input and output are provided.", "diff_info": "C] += c[B]\n c[\n c[C] += c[C]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u636256839", "n_user": "u636256839", "pos": "X, Y = map(int, input().split())\nZ = 0\nANS = 'No'\nif Y % 2 == 0:\n while X >= 0:\n i = X*2 + Z*4\n if i == Y:\n ANS = 'Yes'\n X -= 1\n Z += 1\nprint(ANS)\n", "neg": "X, Y = map(int, input().split())\nZ = 0\nANS = 'No'\nif Y % 2 == 0:\n while X >= 0:\n i = X*2 + Y*4\n if i == Y:\n ANS = 'Yes'\n Z += 1\n X -= 1\nprint(ANS)\n", "jacc_sim": 1.0, "before_after_length": [79, 79], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "YZZX+-XZ-+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u556657484", "n_user": "u556657484", "pos": "X, Y = map(int, input().split())\nt = Y - 2*X\nu = 4*X - Y\n\nif (t >= 0) & (t % 2 == 0) & (u >= 0) & (u % 2 == 0):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "X, Y = map(int, input().split())\nt = Y - 2*X\nu = 4*X - Y\n\nif (t >= 2) & (t % 2 == 0) & (u >= 2) & (u % 2 == 0):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [73, 73], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "2020", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u427231601", "n_user": "u427231601", "pos": "x,y = map(int,input().split())\n\nfor i in range(x + 1):\n if 4*i + 2*(x-i) == y:\n print(\"Yes\")\n exit()\n \nprint(\"No\")\n ", "neg": "x,y = map(int,input().split())\n\nfor i in range(x):\n if 2*(i-1) + 4*(x-(i-1)) == y:\n print(\"Yes\")\n exit()\n \nprint(\"No\")\n ", "jacc_sim": 1.0, "before_after_length": [58, 62], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " + 124(-1)42(-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u055641210", "n_user": "u055641210", "pos": "x,y = map(int,input().split())\n\nif x*2 <= y <= x*4 and y%2 == 0:\n print('Yes')\nelse:\n print('No')", "neg": "x,y = map(int,input().split())\n\nif 2 <= y <= 4 and (x*y) %2 == 0:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [46, 46], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "x*x*(x*) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u142317811", "n_user": "u142317811", "pos": "X, Y = map(int, input().split())\nans = 'No'\nfor a in range(X + 1):\n b = X - a\n if 2 * a + 4 * b == Y:\n ans = 'Yes'\nprint(ans)", "neg": "X, Y = map(int, input().split())\nans = 'No'\nfor a in range(X + 1):\n b = X - a\n if 2 * a + 4 * b == Y:\n ans = 'Yes'\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [60, 60], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u798886512", "n_user": "u798886512", "pos": "x,y=map(int,input().split())\nt=2*y-4*x\nc=y-t\nif t<0 or c<0 or t%4!=0 or c%2!=0:\n print(\"No\")\nelse:\n print(\"Yes\")\n", "neg": "x,y=map(int,input().split())\nt=2*y-4*x\nc=y-t\nif y<0 or x<0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9310344827586207, "before_after_length": [68, 53], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "ytxc0 or t%4!=0 or c%2!=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u030278108", "n_user": "u030278108", "pos": "x, y = map(int, input().split())\n\na = 0\n\nfor i in range(x+1):\n if (x - i)*4 + (i * 2) == y:\n a += 1\n break\n\nif a == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "x, y = map(int, input().split())\n\na = 0\n\nfor i in range(x):\n if (x - i)*4 == y:\n a += 1\n break\n\nif a == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.967741935483871, "before_after_length": [76, 68], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "+1 + (i * 2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u805852597", "n_user": "u805852597", "pos": "x, y = map(int, input().split())\n\nmax_num = 4 * x\nmin_num = 2 * x\n\nif y % 2 == 1:\n print('No')\nelif (min_num <= y) and (max_num >= y):\n print('Yes')\nelse:\n print('No')", "neg": "x, y = input().split()\n\nmax_num = 4 * x\nmin_num = 2 * x\n\nif y % 2 == 1:\n print('No')\nelif (min_num <= y) and (max_num >= y):\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9310344827586207, "before_after_length": [78, 73], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " map(int,)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u053749071", "n_user": "u053749071", "pos": "x, y = map(int, input().split())\n\n# kame = x - turu\n# 2*turu + 4*kame = y\n# 2*turu + 4*(x - turu) = y\n# -2*turu + 4x - y = 0\n# turu = 2x - 1/2*y\n\nturu = 2*x - 1/2*y\nif(turu.is_integer() and turu >= 0 and (x-turu) >= 0):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "x, y = map(int, input().split())\n\n# kame = x - turu\n# 2*turu + 4*kame = y\n# 2*turu + 4*(x - turu) = y\n# -2*turu + 4x - y = 0\n# turu = 2x - 1/2*y\n\nturu = 2*x - 1/2*y\nprint(turu)\nif(turu.is_integer() and turu >= 0 and (x-turu) >= 0):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [138, 144], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "print(turu)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u302707263", "n_user": "u302707263", "pos": "import sys\nanimals, legs = [int(i) for i in input().split()]\n\ncranes = 2\nturtle = 4\n\nfor i in range(0, animals + 1):\n for j in range(0, animals + 1):\n number = (2*i) + (4*j)\n if i + j == animals and number == legs:\n print(\"Yes\")\n sys.exit()\n\nprint(\"No\")", "neg": "import sys\nanimals, legs = [int(i) for i in input().split()]\n\ncranes = 2\nturtle = 4\n\nfor i in range(1, animals + 1):\n for j in range(1, animals + 1):\n number = (2*i) + (4*j)\n if i + j == animals and number == legs:\n print(\"Yes\")\n sys.exit()\n\nprint(\"No\")", "jacc_sim": 0.9722222222222222, "before_after_length": [110, 110], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "0, animals + , animals + 110", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u561294476", "n_user": "u561294476", "pos": "X, Y = map(int, input().split())\n\nans = []\nfor x in range(0,X+1):\n if Y == 4*x + 2*(X-x):\n ans = 1\nif ans == 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n\n", "neg": "X, Y = map(int, input().split())\n\nans = []\nfor x in range(1,51):\n if Y == 4*x + 2*(X-x-1):\n ans = 1\nif ans == 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9393939393939394, "before_after_length": [72, 71], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "105X+-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u690419532", "n_user": "u690419532", "pos": "X, Y = map(int,input().split())\n\nif Y%2 == 1:\n print('No')\n exit()\n\nturu = (4* X - Y)/2\nkame = (Y - 2*X)/2\n\nif turu.is_integer() and turu >= 0 and kame.is_integer() and kame >=0:\n print('Yes')\nelse:\n print('No')", "neg": "X, Y = map(int,input().split())\n\nif Y%2!=0:\n print('No')\n exit()\n\nturu = (4*X-Y)/2\nkame = (Y-2*X)/2\n\nif turu > 0 and turu.is_integer() and kame > 0 and kame.is_integer():\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9393939393939394, "before_after_length": [102, 102], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "! == 1:\n print('No')\n exit()\n\nturu = (4* X - Y)/2\nkame = (Y - 2*X)/2\n\nif turu.is_integer() and turu >= 0 and kame.is_integer() and kame >Yes')\nelse:\n print('\n exit()\n\nturu = (4*X-Y)/2\nkame = (Y-2*X)/2\n\nif turu > 0 and turu.is_integer() and kame > 0 and kame.is_integer():\n print('Yes')\nelse:\n print('No')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u283068625", "n_user": "u283068625", "pos": "import sys\nx, y = input().split(\" \")\nfor i in range(int(x)+1):\n exp_i = int(x) - i\n# print(i)\n# print(int(i) * 2 + exp_i * 4)\n# print(int(y))\n if int(i) * 2 + exp_i * 4 == int(y):\n print(\"Yes\")\n sys.exit()\n\nprint(\"No\")\n", "neg": "import sys\nx, y = input().split(\" \")\nfor i in range(int(x)):\n exp_i = int(x) - i\n if int(i) * 2 + exp_i * 4 == int(y):\n print(\"Yes\")\n sys.exit()\n\nprint(\"No\")\n", "jacc_sim": 0.9354838709677419, "before_after_length": [109, 74], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "+1\n# print(i)\n# print(int(i) * 2 + exp_i * 4)\n# print(int(y))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u975116284", "n_user": "u785475109", "pos": "x, y = list(map(int, input().split()))\n\nfor i in range(x+1):\n j = x - i\n if 2*i + 4*j == y:\n print('Yes')\n break\nelse:\n print('No')", "neg": "x, y = map(int, input().split())\n\nfor i in range(x):\n if 2 * i + 4 * (x - i) == y:\n print(\"Yes\")\n break\nelse:\n print(\"No\")", "jacc_sim": 0.9032258064516129, "before_after_length": [64, 56], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "list()+1\n j = x - i j (x - i)\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u479484272", "n_user": "u479484272", "pos": "X,Y = input().split()\n\nA=2*int(X)-int(Y)/2\nB=int(Y)/2-int(X)\nif(A.is_integer() and A>=0 and B>=0 and B.is_integer):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "X,Y = input().split()\nA=int(Y)/2-int(X)\nB=2*int(X)-int(Y)/2\nif(A.is_integer and A>0 and B>0 ):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [77, 68], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "\n=int(Y)/2-int(X)\nBB=int(Y)/2-int(X)\n()==and B.is_integer", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u114920558", "n_user": "u864197622", "pos": "X, Y = map(int, input().split())\nif(2*X <= Y and Y <= 4*X and Y%2==0):\n print('Yes')\nelse:\n print('No')", "neg": "X, Y = map(int, input().split())\nprint(\"Yes\" if 2 * X <= Y <= 4 * Y and (Y % 2 == 0) else \"No\")", "jacc_sim": 0.96, "before_after_length": [48, 39], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "print(\"Yes\" ( and Y X Y( :\n print('Yes')\n:\n\" print('\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u882323840", "n_user": "u882323840", "pos": "a,b = map(int, input().split())\nif (b - 2 * a) % 2 == 0 and (4 * a - b) % 2 == 0 and (b - 2 * a) / 2 >= 0 and (4 * a - b) / 2 >= 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b = map(int, input().split())\nif (b - 2 * a) % 2 == 0 and (4 * a - b) % 2 == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9259259259259259, "before_after_length": [77, 53], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " and (b - 2 * a) / 2 >= 0 and (4 * a - b) / 2 >= 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u842388336", "n_user": "u842388336", "pos": "x, y = map(int, input().split())\n\nans = 'No'\nfor i in range(x+1):\n if (i*2 + (x-i)*4) == y:\n ans='Yes'\n break\nprint(ans)\n", "neg": "x, y = map(int, input().split())\n\nans = 'No'\nfor i range(x+1):\n if (x*2 + (x-i)*4) == y:\n ans='Yes'\n break\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [62, 60], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "in xi\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u898967808", "n_user": "u031722966", "pos": "x,y = map(int,input().split())\nans = 'No'\nfor i in range(x+1): \n if i*2+(x-i)*4 == y:\n ans = 'Yes'\n break\nprint(ans) ", "neg": "x, y = map(int, input().split())\nans = \"No\"\nfor a in range(0,x + 1):\n if 2 * a + 4 * (y - a):\n ans = \"Yes\"\n break\nprint(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [61, 59], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " \"'\"'ai0, \n \ni* +(x-i) a + *==( - a) \"'\"' ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u038620042", "n_user": "u066551652", "pos": "x, y = map(int, input().split())\n\n\ndef xy(a):\n if a * 2 + (x - a) * 4 == y:\n print(\"Yes\")\n exit()\n\n\nfor i in range(int(x + 1)):\n xy(i)\n\nprint(\"No\")\n", "neg": "x, y = map(int,input().split())\n\nfor i in range(x+1):\n print(i)\n if 4 * i + 2*(x - i) == y:\n print('Yes')\n exit()\n\nprint('No')", "jacc_sim": 0.9032258064516129, "before_after_length": [75, 61], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " \ndeorxy(i in rnge(x+1\n print(i)4ai22*ia * 4'\"'\"\nfor i in range(int(x + 1)):\n xy(i)\n\n'\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u309120194", "n_user": "u309120194", "pos": "X, Y = map(int, input().split())\n \nans = 'No'\nfor i in range(X+1):\n if 2*i + 4*(X-i) == Y:\n ans = 'Yes'\n break\n \nprint(ans)", "neg": "X, Y = map(int, input().split())\n\nans = 'No'\nfor i in range(X):\n if 2*i + 4*(X-i) == Y:\n ans = 'Yes'\n break\n\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [63, 59], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " +1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u900848560", "n_user": "u900848560", "pos": "a=input().split(\" \")\nans=0\nx=0\nfor i in range(1,int(a[0])):\n\tfor j in range(1,int(a[0])):\n\t\tans=(i*2)+(j*4)\n\t\tif ans==int(a[1]) and i+j==int(a[0]):\n\t\t\tx=x+1\nif int(a[0])*4==int(a[1]):\n\tx=x+1\nif int(a[0])*2==int(a[1]):\n\tx=x+1\nif x>=1:\n\tprint(\"Yes\")\nelif x==0:\n\tprint(\"No\")\n\t\t\n\t\t", "neg": "a=input().split(\" \")\nans=0\nx=0\nfor i in range(1,int(a[0])):\n\tfor j in range(1,int(a[0])):\n\t\tans=(i*2)+(j*4)\n\t\tif ans==int(a[1]) and i+j==int(a[0]):\n\t\t\tx=x+1\nif x>=1:\n\tprint(\"Yes\")\nelif x==0:\n\tprint(\"No\")\n\t\t\n\t\t", "jacc_sim": 1.0, "before_after_length": [172, 122], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "\tx=x+1\nif int(a[0])*4==int(a[1]):\n\tx=x+1\nif int(a[0])*2==int(a[1]):\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u022658079", "n_user": "u022658079", "pos": "X,Y=map(int, input().split())\nif(Y%2==1):\n print(\"No\")\n exit()\nif(2*X-Y//2<0):\n print(\"No\")\n exit()\nif(Y//2-X<0):\n print(\"No\")\n exit()\nprint(\"Yes\") ", "neg": "X,Y=map(int, input().split())\nif(Y%2==1):\n print(\"No\")\n exit()\nif(2*X-Y//2<0):\n print(\"No\")\nif(Y//2-X<0):\n print(\"No\")\nprint(\"Yes\") ", "jacc_sim": 1.0, "before_after_length": [81, 73], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " exit()\n exit()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u902040736", "n_user": "u902040736", "pos": "target = list(map(int, input().split()))\n\nnum = target[0]\ntotal = target[1]\n\nfor i in range(num + 1):\n tori = i\n kame = (num - i)\n if (tori * 2 + kame * 4) == total:\n print('Yes')\n break\nelse:\n print('No')\n", "neg": "target = list(map(int, input().split()))\n\nnum = target[0]\ntotal = target[1]\n\nflg = False\nfor i in range(target[0]):\n tori = i * 2\n kame = (target[0]-i) * 4\n if (tori + kame) == total:\n print('Yes')\n break\nelse:\n print('No')\n", "jacc_sim": 0.9473684210526315, "before_after_length": [91, 100], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "lgor=iFin rlsng(num + 1): tori = i\n kame = (num - i)\n iori in rangeaogi * 2 + kamt[0] * 4 == totaltori=i*2print('Yes') breaame = (target[0]-i) * 4 if (tori + kam) == totase print('Yes')\n break\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u147563792", "n_user": "u147563792", "pos": "x,y = map(int,input().split())\nflag = 0\nfor i in range (100):\n for j in range (100):\n if ((i+j == x) and(2*i+4*j == y)):\n print(\"Yes\")\n flag = 1\nif (flag == 0):\n print(\"No\")", "neg": "x,y = map(int,input().split())\nflag = 0\nfor i in range (100):\n for j in range (100):\n if ((i+j == x) and(2*i+4*j == y)) :\n print(\"Yes\")\n flag = 1\nif flag == 0:\nprint(\"No\")", "jacc_sim": 1.0, "before_after_length": [80, 79], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": " () ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u285497176", "n_user": "u285497176", "pos": "x,y = map(int,input().split())\n\nl = []\nc = 2 * x\nl.append(c)\nfor nn in range(x):\n c += 2\n l.append(c)\n\nflag = False\nfor ll in l:\n if ll == y:\n print(\"Yes\")\n flag = False\n break\n\n else:\n flag = True\n\nif flag:\n print(\"No\")", "neg": "x,y = map(int,input().split())\n\nl = []\nc = 2 * x\nl.append(c)\nfor nn in range(x):\n c += 2\n l.append(c)\nprint(l)\n\nflag = False\nfor ll in l:\n if ll == y:\n print(\"Yes\")\n flag = False\n break\n\n else:\n flag = True\n\nif flag:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [104, 109], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "print(l)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u405534002", "n_user": "u405534002", "pos": "x, y = map(int,input().split())\nmin = 2 * x\ngap = y - min\n\nif gap < 0 or gap > min:\n print(\"No\")\nelse:\n if gap % 2 == 0:\n print(\"Yes\")\n else:\n print(\"No\")\n", "neg": "x, y = map(int,input().split())\nmin = 2 * x\ngap = y - min\n\nif gap < 0 & gap > min:\n print(\"No\")\nelse:\n if gap % 2 == 0:\n print(\"Yes\")\n else:\n print(\"No\")\n", "jacc_sim": 0.9310344827586207, "before_after_length": [70, 70], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "&or", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u408791346", "n_user": "u408791346", "pos": "x, y = map(int,input().split())\nt , k = 2 , 4\nans = 0\nfor i in range(x+1):\n if y == (t*i + k*(x-i)):\n ans += 1\n\nif ans == 0:\n print('No')\nelse:\n print('Yes')", "neg": "x, y = map(int,input().split())\nt , k = 2 , 4\nans = 0\nfor i in range(x+1):\n print(i, x-i)\n if y == (t*i + k*(x-i)):\n ans += 1\n\nif ans == 0:\n print('No')\nelse:\n print('Yes')", "jacc_sim": 1.0, "before_after_length": [78, 88], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "\n print(i, x-i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u957872856", "n_user": "u957872856", "pos": "x, y = map(int, input().split())\nfor i in range(x+1):\n z = y - i*2\n if z%4==0 and 4*(x-i)==z:\n print(\"Yes\")\n exit()\nprint(\"No\")\n", "neg": "x, y = map(int, input().split())\nfor i in range(x+1):\n z = y - x*2\n if z%4==0:\n print(\"Yes\")\n exit()\nprint(\"No\")\n", "jacc_sim": 0.96875, "before_after_length": [65, 56], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "xi and 4*(x-i)==z", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02640", "p_user": "u426205961", "n_user": "u426205961", "pos": "X, Y = list(map(int, input().split()))\nans = \"No\"\nfor a in range(X + 1):\n b = X - a\n if 2 * a + 4 * b == Y:\n ans = \"Yes\"\nprint(ans)", "neg": "X, Y = map(int,input().split)\nans = \"No\"\nfor a in range(X + 1):\n b = X - a\n if 2 * a + 4 * b == Y:\n ans = \"Yes\"\nprint(ans)", "jacc_sim": 0.9666666666666667, "before_after_length": [63, 60], "nl": "Score: 200 points\n\nProblem Statement:\nThere are some animals in a garden. Each of them is a crane with two legs or a turtle with four legs. Takahashi says: \"there are X animals in total in the garden, and they have Y legs in total.\" Determine whether there is a combination of numbers of cranes and turtles in which this statement is correct.\n\nConstraints:\n- 1 \u2264 X \u2264 100\n- 1 \u2264 Y \u2264 100\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nX Y\n\nOutput:\nIf there is a combination of numbers of cranes and turtles in which the statement is correct, print \"Yes\"; otherwise, print \"No.\"\n\nSample Input 1:\n3 8\n\nSample Output 1:\nYes\nThe statement \"there are 3 animals in total in the garden, and they have 8 legs in total\" is correct if there are two cranes and one turtle. Thus, there is a combination of numbers of cranes and turtles in which the statement is correct.\n\nSample Input 2:\n2 100\n\nSample Output 2:\nNo\nThere is no combination of numbers of cranes and turtles in which this statement is correct.\n\nSample Input 3:\n1 2\n\nSample Output 3:\nYes\nWe also consider the case in which there are only cranes or only turtles.", "diff_info": "list( ())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u466074086", "n_user": "u466074086", "pos": "x, n = map(int,input().split())\n\nif n != 0:\n p = list(map(int,input().split()))\nelse:\n p = []\n\nresult = []\n\ni = 0\n\nwhile len(result) == 0:\n if not (x - i in p):\n result.append(x - i)\n if not (x + i in p):\n result.append(x + i)\n \n i += 1\n\nprint(int(min(result)))", "neg": "1, n = map(int,input().split())\n\nif n != 0:\n p = list(map(int,input().split()))\nelse:\n p = []\n\nresult = []\n\ni = 0\n\nwhile len(result) == 0:\n if not (x - i in p):\n result.append(x - i)\n if not (x + i in p):\n result.append(x + i)\n \n i += 1\n\nprint(int(min(result)))", "jacc_sim": 1.0, "before_after_length": [121, 121], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "1x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u725133562", "n_user": "u725133562", "pos": "x,n = map(int, input().split())\nif n != 0:\n p = list(map(int, input().split()))\n smaller = 0\n for i in range(x):\n if x - i in p:\n pass\n else:\n smaller = x-i\n break\n\n bigger = 2*x\n for j in range(x):\n if x + j in p:\n pass\n else:\n bigger = x + j\n break\n\n ans = smaller if x - smaller <= bigger - x else bigger\n #print(bigger)\n print(ans)\nelse:\n print(x)", "neg": "x,n = map(int, input().split())\nif n != 0:\n p = list(map(int, input().split()))\n\nsmaller = 0\nfor i in range(x):\n if x - i in p:\n pass\n else:\n smaller = x-i\n break\n\nbigger = 2*x\nfor j in range(x):\n if x + j in p:\n pass\n else:\n bigger = x + j\n break\n\nans = smaller if x - smaller <= bigger - x else bigger\n#print(bigger)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [155, 142], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "\n pass\nelpase: else:\n pass\nelpase: else:\n \nelse:\n print(x)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u323859575", "n_user": "u323859575", "pos": "x, n = map(int, input().split(\" \"))\n\nif n == 0:\n print(x)\nelse:\n p = list(map(int, input().split(\" \")))\n\n p_under = list(filter(lambda v: v<=x, p))\n p_upper = list(filter(lambda v: v>=x, p))\n p_under.sort(reverse=True)\n p_upper.sort()\n\n cnt = 0\n while(True):\n if x - cnt not in p_under:\n print(x - cnt)\n break\n if x + cnt not in p_upper:\n print(x + cnt)\n break\n cnt += 1\n", "neg": "x, n = map(int, input().split(\" \"))\np = list(map(int, input().split(\" \")))\n\np_under = list(filter(lambda v: vx, p))\np_under.sort(reverse=True)\np_upper.sort()\n\ncnt = 0\nwhile(True):\n if x - cnt not in p_under:\n print(x - cnt)\n break\n if x + cnt not in p_upper:\n print(x + cnt)\n break\n cnt += 1\n", "jacc_sim": 0.972972972972973, "before_after_length": [171, 146], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "\nif n == 0:\n print(x)\nelse:\n = = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u543489264", "n_user": "u543489264", "pos": "X, N = map(int, input().split())\nif N == 0:\n print(X)\n exit(0)\n\np = set(map(int,input().split()))\nnot_p = list(set(range(0,102)) - p)\n\nminV = 101\nans = 0\nfor i in not_p:\n if abs(X - i) < minV:\n minV = abs(X - i)\n ans = i\nprint(ans)", "neg": "X, N = map(int, input().split())\nif N == 0:\n print(X)\n exit()\n\np = set(map(int,input().split()))\nnot_p = list(set(range(0,100)) - p)\nprint(not_p)\n\nminV = 101\nans = 0\nfor i in not_p:\n if abs(X - i) < minV:\n minV = abs(X - i) \n ans = i\nprint(ans)", "jacc_sim": 0.9393939393939394, "before_after_length": [115, 120], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "002p)\nprint(not_ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u551906883", "n_user": "u551906883", "pos": "import math\ninput_a= input().split(\" \")\nX=int(input_a[0])\nN=int(input_a[1])\ndis=X+3\ndis2=100\nif N!=0:\n array= input().split(\" \")\nelse:\n array=[0,0]\n\nnum=X\nnum2=-100\nfor i in range(N+1):\n\n \n if str(num) not in array:\n dis=abs(X-num)\n num2=X-dis\n num1=num\n if str(num2) not in array:\n \tnuma=min([num,num2])\n else:\n numa=num1\n break\n num=num+1\n \n\nnum=X\ni=0\nfor i in range(dis):\n \n if str(num) not in array:\n \n dis2=abs(X-num)\n num3=X+dis2\n\n if str(num3) not in array:\n \tnumb=min([num,num3])\n else:\n numb=num\n break\n num=num-1\n\nif dis 1]))\n\nans_abs = 1\nfor i,x in enumerate(DL) :\n if x == i+1 :\n ans_abs += 1\n else :\n break\n\nif X-ans_abs in P :\n print(X+ans_abs)\nelse :\n print(X-ans_abs)", "neg": "X,N = map(int,input().split())\nP = [int(input()) for i in range(N)]\n\nL = sorted([abs(X-p) for p in P])\nif 0 not in L :\n print(X)\n exit()\n\nDL = list(set([x for x in L if L.count(x) > 1]))\n\nans_abs = 1\nfor i,x in enumerate(DL) :\n if x == i+1 :\n ans_abs += 1\n else :\n break\n\nif X-ans_abs in P :\n print(X+ans_abs)\nelse :\n print(X-ans_abs)\n", "jacc_sim": 0.9302325581395349, "before_after_length": [179, 160], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "import itertools\n\nif N == 0 :\n print(X)\n exit()\n\n[lnsmap(int,.spl) for t in rangeN]))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u546236742", "n_user": "u546236742", "pos": "a = input().split()\nif a[1] == \"0\":\n print(a[0])\nelse:\n number_list = input().split()\n n = 0\n number = int(a[0])\n while True:\n num = number + n\n num2 = number - n\n if str(num) not in number_list or str(num2) not in number_list:\n if str(num) not in number_list and str(num2) not in number_list:\n print(num2)\n break\n if str(num) in number_list:\n print(num2)\n else:\n print(num)\n break\n n += 1", "neg": "a = input().split()\nif a[1] == \"0\":\n print(a[0])\nelse:\n number_list = input().split()\n n = 1\n number = int(a[0])\n while True:\n num = number + n\n num2 = number - n\n if str(num) not in number_list or str(num2) not in number_list:\n if str(num) in number_list:\n print(num2)\n else:\n print(num1)\n break\n n += 1\n ", "jacc_sim": 0.9393939393939394, "before_after_length": [167, 136], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "10io number_lis:\n pr number_lis and str\n else:\n prio( i nber_list:\n print(num2)\n break\n if str(num) in number_list:\n print(num2)\n else:\n print(num)\n break\n n += )\n break\n n += 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u283929013", "n_user": "u283929013", "pos": "x,n = map(int,input().split())\nif n == 0:\n print(x)\n quit()\na = list(map(int,input().split()))\n\nk = 0\nwhile(True):\n if not x-k in a:\n print(x-k)\n quit()\n if not x+k in a:\n print(x+k)\n quit()\n k += 1", "neg": "x,n = map(int,input().split())\na = list(map(int,input().split()))\nif x == n:\n print(x)\n quit()\nk = 1\nwhile(True):\n if not x-k in a:\n print(x-k)\n quit()\n if not x+k in a:\n print(x+k)\n quit()\n k += 1", "jacc_sim": 0.9615384615384616, "before_after_length": [101, 100], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "if n == 0:\n print(x)\n quit()\nif x == n: print(x)\n quit()\n10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u038620042", "n_user": "u038620042", "pos": "x, n = map(int, input().split())\nif n != 0:\n p = list(map(int, input().split()))\n if x in p:\n for i in range(-1000, 1001):\n if i == -1000:\n mini = i\n if i in p:\n pass\n else:\n if abs(x - mini) > abs(x - i):\n mini = i\n elif abs(x - mini) == abs(x - i):\n mini = min(mini, i)\n else:\n print(mini)\n else:\n print(x)\nelse:\n print(x)\n", "neg": "x, n = map(int, input().split())\nif n != 0:\n p = list(map(int, input().split()))\n if x in p:\n for i in range(-1000, 1001):\n print(i)\n if i == -100:\n mini = i\n if i in p:\n pass\n else:\n if abs(x - mini) > abs(x - i):\n mini = i\n elif abs(x - mini) == abs(x - i):\n mini = min(mini, i)\n else:\n print(mini)\n else:\n print(x)\nelse:\n print(x)\n", "jacc_sim": 0.9696969696969697, "before_after_length": [158, 164], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "print(i)\n 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u556326496", "n_user": "u556326496", "pos": "x, n = map(int, input().split())\nif n == 0:\n print(x)\n exit()\nelse:\n ps = list(map(int, input().split()))\ncounters = [0 for _ in range(len(ps)+1)]\ncounters[0] = 1\n\nfor i,p in enumerate(ps):\n distance = abs(x - p)\n if distance < len(ps):\n counters[distance] += 1\n\nfor i,counter in enumerate(counters):\n if counter == 0:\n print(x-i)\n break\n elif counter == 1:\n if x-i in ps:\n print(x+i)\n else:\n print(x-i)\n break", "neg": "x, n = map(int, input().split())\nif n == 0:\n print(x)\n exit()\nelse:\n ps = list(map(int, input().split()))\ncounters = [0 for _ in range(len(ps))]\ncounters[0] = 1\n\nfor i,p in enumerate(ps):\n distance = abs(x - p)\n if distance < len(ps):\n counters[distance] += 1\n\nprint(counters)\nfor i,counter in enumerate(counters):\n if counter == 0:\n print(x-i)\n break\n elif counter == 1:\n if x-i in ps:\n print(x+i)\n else:\n print(x-i)\n break", "jacc_sim": 1.0, "before_after_length": [175, 179], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "+1print(counters)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u469550773", "n_user": "u469550773", "pos": "import numpy as np\nX, N = list(map(int,input().split()))\nif N == 0:\n print(X)\nelse:\n p_arr = list(map(int,input().split()))\n for i in range(101):\n if i == 0:\n if not (X in p_arr):\n print(X)\n break\n else:\n\n lower = (X-i in p_arr)\n upper = (X+i in p_arr)\n if not lower:\n print(X-i)\n break\n else:\n if not upper:\n print(X+i)\n break\n", "neg": "import numpy as np\nX, N = list(map(int,input().split()))\nif N == 0:\n input()\n print(X)\nelse:\n p_arr = list(map(int,input().split()))\n for i in range(101):\n if not (X in p_arr):\n print(X)\n else:\n if i == 0:\n continue\n lower = (X-i in p_arr)\n upper = (X+i in p_arr)\n if not lower:\n print(X-i)\n break\n else:\n if not upper:\n print(X+i)\n break", "jacc_sim": 0.9705882352941176, "before_after_length": [158, 160], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "\n input()i == 0:\n if print(X)\npr else:\n f i == 0:\n co(X)\n break\n else:\n\n lower = (X- i p_arr)\n pp\nr=(X+iin p_arr)\n if not:\n= print in p_arr break\n else:\n if not:\n= print in p_arrif not lower:\n print(X-i)\n else:\n if not upper:\n print(X+i)\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u971124021", "n_user": "u971124021", "pos": "x,n = list(map(int,input().split()))\nif n == 0:\n print(x)\n exit()\n\np = list(map(int,input().split()))\np = [-1] + p + [102]\nimport bisect\np.sort()\ni = bisect.bisect_left(p,x)\nif p[i] != x:\n print(x)\n exit()\n\nfor h in range(102):\n if p[i-h] != x-h:\n print(x-h)\n exit()\n elif p[i+h] != x+h:\n print(x+h)\n exit() \n", "neg": "x,n = list(map(int,input().split()))\nif n == 0:\n print(x)\n exit()\n\np = list(map(int,input().split()))\n\nimport bisect\np.sort()\ni = bisect.bisect_left(p,x)\nprint(p)\nfor h in range(1, p[-1]-p[0]+2):\n if p[i-h] != x-h:\n print(x-h)\n exit()\n elif p[i+h] != x+h:\n print(x+h)\n exit() \n", "jacc_sim": 0.9444444444444444, "before_after_length": [163, 148], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "p = [-1] + p + [102]prf nt([i] != x:\n print(x\n exit()\n,02):\n if i1h != xhp[0]+2)if [rnt(x)\n exit()\n elif p[i+h-h:\n print(x-h)\n exit()\n elif p[i] != x+h", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u125348436", "n_user": "u125348436", "pos": "import sys\nX,N=map(int,input().split())\nif N==0:\n print(X)\n sys.exit()\np=list(map(int,input().split()))\n\ndef abs_search(o,*l):\n if X not in p:\n print(X)\n return\n \n for pl_num in range(X+1,102):\n if pl_num not in p:\n break\n \n for mi_num in range(X-1,-1,-1):\n if mi_num not in p:\n break\n \n abs_pl=abs(pl_num-X)\n abs_mi=abs(mi_num-X)\n \n if abs_pl= 1 and b<=100:\n print(a)\n exit()\n if a not in p and b in p and a >= 1:\n print(x-i)\n exit()\n if b not in p and a in p and b<=100:\n print(x+i)\n exit()\n \n ", "jacc_sim": 0.9107142857142857, "before_after_length": [253, 239], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "\nmaMAP()\n = LMAPint,input().split()p = list(map(int,input().split()))\n\nif x not in p:\n print(x)\n exit()\n2005555555:\nanda>=1print(a)\n exit()\n if a not in p<=100:\n prt(a)\n exit()\n if a not in :\na pridt(x-i)\n exit()\n if i p and a >= 1:\n print(x-i)\n exit()\n if b n and b<=100\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u529706830", "n_user": "u529706830", "pos": "X,N = map(int, input().split())\nif N > 0: \n P = list(map(int,input().split()))\n direction = -1\n i = 1\n if not X in P:\n print(X)\n else:\n while True:\n dist = i * direction\n val = dist+X\n if not (val in P):\n print(val)\n break\n if direction < 0: direction = 1\n else : \n direction = -1\n i+=1\nelse: \n print(X)", "neg": "X,N = map(int, input().split())\nP = map(list,int(input.split()))\ndirection = -1\ni = 0\nwhile True:\n dist = i * direction\n\n if not (dist + X in P):\n print(dist + X)\n break\n i += 1\n if direction < 0: direction = 1\n else : direction = -1", "jacc_sim": 0.9393939393939394, "before_after_length": [134, 92], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "if N > 0: \n list(lsnt(in() i=0 i = 1 if not X in P:\n print(X)\n else:\n val = dist+X valdist + Xprint(dist+X print(val i+ if direction < 0: direction ifdirection<0:direction=1\n \n \n i+=1\nelse: \n print(X)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u168017191", "n_user": "u168017191", "pos": "X,N = map(int,input().split(\" \"))\nif N==0:\n print(X)\nelse:\n p = list(map(int,input().split(\" \")))\n for k in range(200):\n temp = X-k\n if temp not in p:\n print(temp)\n break\n semp = X+k\n if semp not in p:\n print(semp)\n break\n", "neg": "X,N = map(int,input().split(\" \"))\np = list(map(int,input().split(\" \")))\nfor k in range(200):\n temp = X-k\n if temp not in p:\n print(temp)\n break\n semp = X+k\n if semp not in p:\n print(semp)\n break", "jacc_sim": 0.9333333333333333, "before_after_length": [106, 88], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "if N==0:\n print(X)\nelse:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u394526356", "n_user": "u394526356", "pos": "x, n = list(map(int, input().split()))\nif not n:\n print(x) \nelse:\n l = list(map(int, input().split()))\n dic = {} \n for ll in l: dic[ll] = 1\n i = 0\n while True:\n if not dic.get(x-i,0):\n print(x-i)\n break\n elif not dic.get(x+i, 0):\n print(x+i) \n break\n i+=1", "neg": "x, n = list(map(int, input().split()))\nif not n:\n print(x) \nelse:\n l = list(map(int, input().split()))\n dic = {} \n for ll in l: dic[l] = 1\n i = 1\n while true:\n if not dic.get(x-i,0):\n print(x-i)\n break\n elif not dic.get(x+i, 0):\n print(x+i) \n break\n i+=1", "jacc_sim": 0.9459459459459459, "before_after_length": [129, 129], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "l10tT", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u876616721", "n_user": "u876616721", "pos": "x,n = list(map(int,input().split()))\nif n >0 :\n p = list(map(int,input().split()))\ny = 101\n#ans = x\nif n == 0:\n print(x)\nelse:\n for i in range(0,102):\n #if i != x:\n if p.count(i) == 0:\n #print('i=',i,abs(x-i))\n if abs(x-i) < y:\n ans = i\n y = abs(x-i)\n #print('i=',i,'abs=',abs(x-i),'ans=',ans)\n print(ans)", "neg": "x,n = list(map(int,input().split()))\nif n >0 :\n p = list(map(int,input().split()))\n#print(x,n)\n#print(p)\n#print(max(p))\ny = 100\nans = n\nif n == 0:\n print(x)\nelse:\n for i in range(0,101):\n if i != x:\n if p.count(i) == 0:\n print('i=',i,abs(x-i))\n if abs(x-i) < y:\n ans = i\n y = abs(x-i)\n print(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [165, 159], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "y = 101\nprint(x,n)\n#print(p)\n#print(mx(p))\ny = 100\nanx12## #'i=',i,'nb=',abs(x-i,'ans=',ans)\n print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u418149936", "n_user": "u418149936", "pos": "X, N = map(int, input().split(' '))\nif N == 0:\n print(X)\nelse:\n P_ls = list(map(int, input().split(' ')))\n diff = -1\n for i in range(101, -1, -1):\n if i not in P_ls:\n if diff == -1:\n diff = abs(X - i)\n rst = i\n else:\n diff = min(diff, abs(X - i))\n if diff == abs(X - i):\n rst = i\n print(rst)", "neg": "X, N = map(int, input().split(' '))\nif N == 0:\n print(X)\nelse:\n P_ls = list(map(int, input().split(' ')))\n diff, rst = -1, 0\n for i in range(101, -1, -1):\n if diff == -1:\n diff = abs(X - i)\n rst = i\n else:\n diff = min(diff, abs(X - i))\n if diff == abs(X - i):\n rst = i\n print(rst)", "jacc_sim": 0.967741935483871, "before_after_length": [142, 135], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": ",rst , 0dff==not-1:\n dnffP_ls:\n if diff = -1:\n diff = rst= rst = rst=i\n pint(r = i\n print(rst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u539850805", "n_user": "u539850805", "pos": "import sys\nfrom collections import defaultdict\n\ndef ip():\n return sys.stdin.readline()\n\n\ndef ipl():\n return sys.stdin.readline().split()\n\n\ndef solve():\n x, n = map(int, ipl())\n li = list(map(int, ipl()))\n freq = defaultdict(int)\n for i in li:\n freq[i] = 1\n i, j = x, x\n while freq[i]:\n i -= 1\n while freq[j]:\n j += 1\n if abs(i - x) < abs(j - x):\n print(i)\n elif abs(i - x) == abs(j - x):\n print(min(i, j))\n else:\n print(j)\n\n\nif __name__ == \"__main__\":\n solve()", "neg": "import sys\nfrom collections import defaultdict\n\ndef ip():\n return sys.stdin.readline()\n\n\ndef ipl():\n return sys.stdin.readline().split()\n\n\ndef solve():\n x, n = map(int, ipl())\n li = list(map(int, ipl()))\n freq = defaultdict(int)\n for i in li:\n freq[i] = 1\n i, j = x, x\n while freq[i]:\n i -= 1\n while freq[j]:\n j += 1\n if abs(i - x) < abs(j - x):\n print(i)\n else:\n print(j)\n\n\nif __name__ == \"__main__\":\n solve()", "jacc_sim": 0.9565217391304348, "before_after_length": [204, 178], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "if abs(i - x) == abs(j - x):\n print(min(i, j))\n el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u970497613", "n_user": "u970497613", "pos": "X,N = list(map(int,input().split()))\nif N != 0:\n p = list(map(int,input().split()))\nelse:\n p = [X+1]\ndef f(p):\n global X\n return p - X\n\np2 = list(map(f,p))\n\np3 = list(map(abs,p2))\n\nOK = 2\nj = 0\n\n\nif min(p3) ==0:\n while(OK==2):\n j+=1\n OK = p3.count(min(p3)+j)\n if OK == 1:\n print(X-p2[p3.index(min(p3)+j)])\n else:\n print(X-j)\nelse:\n print(X)", "neg": "X,N = list(map(int,input().split()))\np = list(map(int,input().split()))\n\ndef f(p):\n global X\n return p - X\n\np2 = list(map(f,p))\n\np3 = list(map(abs,p2))\n\nOK = 2\nj = 0\nprint(p2,p3)\n\nif min(p3) ==0:\n while(OK==2):\n j+=1\n \n OK = p3.count(min(p3)+j)\n\n print(X-p2[p3.index(min(p3)+j)])\n \nelse:\n print(X)", "jacc_sim": 0.9736842105263158, "before_after_length": [192, 168], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "if N != 0:\n else:\n p = [X+1]print(p2,p3)\n if OK == 1: \n -j\nelse:\n print(X)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u363599046", "n_user": "u363599046", "pos": "a,b = map(int, input().split())\nif b>0:\n\tp = list(map(int, input().split()))\nelse:\n\tprint(a)\n\texit()\n\nn = a\nm = a\n\nfor i in range(b+1):\n\t\"\"\"\n\tprint(n)\n\tprint(m)\n\tprint(\"\")\n\t\"\"\"\n\tif n in p:\t\n\t\tn = n-1\t\t\t\n\telse:\n\n\t\tprint(n)\n\t\texit()\n\n\tif m in p:\t\t\n\t\tm = m+1\n\telse:\n\t\tprint(m)\n\t\texit()", "neg": "a,b = map(int, input().split())\nif b>0:\n\tp = list(map(int, input().split()))\nelse:\n\tprint(a)\n\texit()\n\nn = a\nm = a\n\nfor i in range(b):\n\tprint(n)\n\tprint(m)\n\tprint(\"\")\n\tif n in p:\t\n\t\tn = n-1\n\t\tif n < 1:\n\t\t\tn = 1\n\telse:\n\t\tprint(n)\n\t\texit()\n\n\tif m in p:\t\t\n\t\tm = m+1\n\telse:\n\t\tprint(m)\n\t\texit()\n\n\n\t", "jacc_sim": 0.967741935483871, "before_after_length": [156, 164], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "+1print(n)\n\tprint(m)\n\tprint(\"\n\tprint(n\n\tprint(m)\n\tprint(\"\")\n\t\"\"\"\nif n < 1:\n\t\tn = 1\n\n\n\n\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u423741560", "n_user": "u423741560", "pos": "#!/usr/bin/env python3\n\ndef ans(P, X):\n P = set(P)\n for i in range(200):\n if X - i not in P:\n return X-i \n if X + i not in P:\n return X+i\n\nX, N = input().split(' ')\nX = int(X)\nN = int(N)\nif N == 0:\n print(X)\nelse:\n P = input().split(' ')\n P = [int(x) for x in P]\n\n print(ans(P, X))", "neg": "#!/usr/bin/env python3\n\ndef ans(P, X):\n P = set(P)\n for i in range(200):\n if X + i not in P:\n return X+i\n if X - i not in P:\n return X-i \n\nX, N = input().split(' ')\nX = int(X)\nN = int(N)\nif N == 0:\n print(X)\nelse:\n P = input().split(' ')\n P = [int(x) for x in P]\n\n print(ans(P, X))", "jacc_sim": 1.0, "before_after_length": [142, 142], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "- i not in P:\n return X-i \n if X if X - i not in P:\n return X-i \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u699089116", "n_user": "u699089116", "pos": "x, n = map(int, input().split())\nnot_p = []\nif n != 0:\n p = list(map(int, input().split()))\n not_p = [i for i in range(201) if i not in p]\nelse:\n not_p = [i for i in range(201)]\n\nmn = 101\nans = 100\nfor i in not_p:\n d = abs(x - i)\n if mn > d:\n mn = d\n ans = i\n\nprint(ans)", "neg": "x, n = map(int, input().split())\nnot_p = []\nif n != 0:\n p = list(map(int, input().split()))\n not_p = [i for i in range(201) if i not in p]\nelse:\n not_p = [i for i in range(201)]\nprint(not_p)\nmn = 101\nans = 100\nfor i in not_p:\n d = abs(x - i)\n if mn > d:\n mn = d\n ans = i\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [128, 134], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "print(not_p)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u380187071", "n_user": "u380187071", "pos": "X, N = input().split()\nX = int(X)\nN = int(N)\n\nif N == 0:\n print(X)\n exit()\n\nP = input().split()\nfor i in range(len(P)):\n P[i] = int(P[i])\n\nif X not in P:\n print(X)\n exit()\n\n\nabs_num_p = X + 1\nabs_num_n = X - 1\nwhile True:\n\n if abs_num_p in P:\n flag_p = True\n else:\n flag_p = False\n\n if abs_num_n in P:\n flag_n = True\n else:\n flag_n = False\n if( flag_p == True and flag_n == True ):\n abs_num_p += 1\n abs_num_n -= 1\n continue;\n elif(flag_p == True and flag_n == False):\n print(abs_num_n)\n break;\n elif(flag_p == False and flag_n == True ):\n print(abs_num_p)\n break;\n elif(flag_p == False and flag_n == False):\n print(abs_num_n)\n break;\n\n i += 1\n", "neg": "X, N = input().split()\nX = int(X)\nN = int(N)\n\nif N == 0:\n print(X)\n exit()\n\nP = input().split()\nfor i in range(len(P)):\n P[i] = int(P[i])\n\n\nflag_p = True\nflag_n = True\n\nabs_num = 0\nabs_num_p = X + 1\nabs_num_n = X - 1\nwhile True:\n\n if abs_num_p in P:\n flag_p = True\n else:\n flag_p = False\n\n if abs_num_n in P:\n flag_n = True\n else:\n flag_n = False\n\n if(flag_p == True & flag_n == True):\n abs_num_p += 1\n abs_num_n -= 1\n continue;\n elif(flag_n == True & flag_p == False):\n print(abs_num_p)\n break;\n elif(flag_n == False):\n print(abs_num_n)\n break;\n abs_num_p += 1\n abs_num_n -= 1\n", "jacc_sim": 0.9047619047619048, "before_after_length": [315, 288], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "\nilag_p=XTrue\nflag_oti= True\n\nabs_um=P:\n0 print(X)\n exit()\n\n\n & and np&flnd flapnpnnp):\n print(bs_umd flag == True ):\n print(abs_num_pelif(flgbsnum_ == False and flag_n == False):\n print(abs_num_n)\n break;\n\n i abs_num_n -= 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u294490207", "n_user": "u294490207", "pos": "X,N = map(int,input().split(\" \"))\ntarget = X\nif N != 0:\n p_list = list(map(int,input().split(\" \")))\n\n target_num_min = X\n target_num_plus = X\n if X in p_list:\n while True:\n target_num_min -= 1\n if target_num_min not in p_list:\n target = target_num_min\n break\n target_num_plus += 1\n if target_num_plus not in p_list:\n target = target_num_plus\n break\nprint(target)", "neg": "X,N = map(int,input().split(\" \"))\nif N != 0:\n p_list = list(map(int,input().split(\" \")))\ntarget = X\ntarget_num_min = X\ntarget_num_plus = X\nif X in p_list:\n while True:\n target_num_min -= 1\n if target_num_min not in p_list:\n target = target_num_min\n break\n target_num_plus += 1\n if target_num_plus not in p_list:\n target = target_num_plus\n break\nprint(target)", "jacc_sim": 1.0, "before_after_length": [150, 146], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "target = X\n\n _num_min minplustarget_num_plus= if\nif X target= = target target= = target ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u179304833", "n_user": "u179304833", "pos": "x,n=list(map(int,input().split()))\nif n==0:\n print(x)\n exit()\nP=list(map(int,input().split()))\nP.append(x)\nPP=sorted(P)\nif PP.count(x) == 1:\n print(x)\nelse:\n i=PP.index(x)\n k=1\n high=x\n low=x\n while k>0:\n if PP.count(x+k)==0:\n high=x+k\n if PP.count(x-k)==0:\n low=x-k\n k+=1\n if low!=x:\n print(low)\n exit()\n elif high!=x:\n print(high)\n exit()\n", "neg": "x,n=list(map(int,input().split()))\nif n==0:\n print(x)\n exit()\nP=list(map(int,input().split()))\nP.append(x)\nPP=sorted(P)\nif PP.count(x) >= 2:\n print(x)\nelse:\n i=PP.index(x)\n k=1\n high=None\n low=None\n while k>0:\n if PP.count(x+k)>0:\n high=x+k\n if PP.count(x-k)>0:\n low=x-k\n k-=1\n if low!=None:\n print(low)\n exit()\n elif high!=None:\n print(high)\n exit()\n", "jacc_sim": 0.9459459459459459, "before_after_length": [199, 199], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": ">=21xNonexNone>==>==-+xNonexNone", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02641", "p_user": "u872271866", "n_user": "u872271866", "pos": "\ndef main():\n x, n = map(int, input().split(\" \"))\n p =[]\n dif = 1e2\n ans = 0\n l_a = [i for i in range(102)]\n if n != 0:\n p = list(map(int, input().split(\" \")))\n for ele in l_a[::-1]:\n if abs(x - ele) <= dif and ele not in p:\n ans = ele\n dif = abs(x - ele)\n print(ans)\nif __name__ == \"__main__\":\n main()", "neg": "\ndef main():\n x, n = map(int, input().split(\" \"))\n p =[]\n dif = 1e2\n ans = 0\n l_a = [i for i in range(100)]\n if n != 0:\n p = list(map(int, input().split(\" \")))\n for ele in l_a[::-1]:\n if abs(x - ele) <= dif and ele not in p:\n ans = ele\n dif = abs(x - ele)\n print(ans)\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9523809523809523, "before_after_length": [140, 140], "nl": "Score: 300 points\n\nProblem Statement:\nGiven an integer X and an integer sequence of length N: p1, ..., pN. Find the integer nearest to X, not contained in the sequence, with the minimum absolute difference. If there are multiple such integers, report the smallest one.\n\nConstraints:\n1 <= X <= 100\n0 <= N <= 100\n1 <= pi <= 100\np1, ..., pN are all distinct integers.\n\nInput:\nInput is given from Standard Input in the format: X N\np1 ... pN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n6 5\n4 7 10 6 5\n\nSample Output 1:\n8\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the one nearest to 6 is 8.\n\nSample Input 2:\n10 5\n4 7 10 6 5\n\nSample Output 2:\n9\nAmong the integers not contained in the sequence 4, 7, 10, 6, 5, the ones nearest to 10 are 9 and 11. We should print the smaller one, 9.\n\nSample Input 3:\n100 0\n\nSample Output 3:\n100\nWhen N = 0, the second line in the input will be empty. Also, as seen here, X itself can be the answer.", "diff_info": "02", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u531487260", "n_user": "u531487260", "pos": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n A.sort()\n MAX = A[-1]\n dp = [1] * (MAX + 5)\n ANS = 0\n for i in range(N):\n if dp[A[i]] == 0:\n continue\n for j in range(MAX+1):\n if A[i]*j > MAX:\n break\n dp[A[i]*j] = 0\n dp[A[i]] = 0\n if i < N-1 and A[i] == A[i+1]:\n continue\n ANS += 1\n print(ANS)\n\nif __name__ == '__main__':\n main()", "neg": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n A.sort()\n MAX = A[-1]\n dp = [1] * (MAX + 5)\n ANS = 0\n for i in range(N):\n if dp[A[i]] == 0:\n continue\n for j in range(MAX):\n if i*j > MAX:\n break\n dp[i*j] = 0\n dp[A[i]] = 0\n if i < N-1 and A[i] == A[i+1]:\n continue\n ANS += 1\n print(ANS)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [180, 174], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "+1A[]A[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u727057618", "n_user": "u727057618", "pos": "from collections import Counter\n\ndef main():\n n = int(input())\n a = sorted([int(i) for i in input().split()])\n table = [True for i in range(max(a))]\n res = 0\n amax = max(a)\n\n for i in a:\n if (amax/2) + 1 < i:\n break\n if table[i-1] is False:\n continue\n for j in range(i*2, amax+1, i):\n table[j-1] = False\n\n c = Counter(a)\n for i in set(a):\n if table[i-1]:\n if c[i] == 1:\n res += 1\n print(res)\n\nif __name__ == '__main__':\n main()\n\n", "neg": "from collections import Counter\n\ndef main():\n n = int(input())\n a = sorted([int(i) for i in input().split()])\n table = [True for i in range(max(a))]\n res = 0\n amax = max(a)\n\n for i in a:\n if (amax ** 0.5) + 1 < i:\n break\n if table[i-1] is False:\n continue\n for j in range(i*2, amax+1, i):\n table[j-1] = False\n\n c = Counter(a)\n for i in set(a):\n if table[i-1]:\n if c[i] == 1:\n res += 1\n print(res)\n\nif __name__ == '__main__':\n main()\n\n", "jacc_sim": 0.96, "before_after_length": [198, 200], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "/2 ** 0.5", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u964904181", "n_user": "u964904181", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\n\ndef solve2(N, A):\n A.sort()\n amax = A[-1]\n dp = [True] * (amax + 1)\n cnt = [0] * (amax + 1)\n\n for a in A:\n cnt[a] += 1\n\n for i in range(amax):\n x = i + 1\n if cnt[x] > 1:\n dp[x] = False\n\n if cnt[x] > 0:\n y = x * 2\n while y <= amax:\n dp[y] = False\n y += x\n\n ansval = [x for x in A if dp[x]]\n\n # print(ansval)\n ans = len(ansval)\n\n return ans\n\n\ndef solve1(N, A):\n ans = 0\n for i in range(N):\n is_ans = True\n for j in range(N):\n if i != j:\n if A[i] % A[j] == 0:\n is_ans = False\n break\n\n if is_ans:\n ans += 1\n\n return ans\n\n\nprint(solve2(N, A))\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\n\ndef solve2(N, A):\n A = sorted(A)\n amax = A[-1]\n dp = [True] * (amax + 1)\n\n for i in range(len(dp)):\n x = i + 1\n if x in A:\n cnt = 2\n y = cnt * x\n while y <= amax:\n dp[y] = False\n cnt += 1\n y = cnt * x\n\n ansval = [x for x in A if dp[x]]\n\n # print(ansval)\n ans = len(ansval)\n\n return ans\n\n\ndef solve1(N, A):\n ans = 0\n for i in range(N):\n is_ans = True\n for j in range(N):\n if i != j:\n if A[i] % A[j] == 0:\n is_ans = False\n break\n\n if is_ans:\n ans += 1\n\n return ans\n\n\nprint(solve2(N, A))\n", "jacc_sim": 0.9245283018867925, "before_after_length": [309, 273], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": ". = edA cnt = [0] * (amax + 1)\na in A:\n cnt[a] += 1\n\n for leamax):\n x = i + 1\n if c(t[x] > 1:\n [)):\n ]i + 1False if x in A:if [x]> 0:\n y x *\n y = cnt * xycnt 1\n y = cnt *", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u627600101", "n_user": "u627600101", "pos": "N = int(input())\nA = list(map(int, input().split()))\ncount = 0\nA.sort()\nc=0\n\"\"\"\nfor k in range(len(A)-1):\n if A[k] == A[k+1]:\n del A[k]\n A.insert(0,0)\n c+=1\n if k 0:\n saidai = A[-1]\nelse:\n saidai=0\n#print(A)\n\"\"\"\nsaidai = A[-1]\nfoo = [0 for k in range(saidai+1)]\nfor k in range(len(A)):\n if foo[A[k]] == 1:\n continue\n else:\n for j in range(A[k], saidai+1, A[k]):\n foo[j] = 1\n if k < len(A)-1:\n if A[k] == A[k+1]:\n continue\n if 0 < k < len(A):\n if A[k] == A[k-1]:\n continue\n count+=1\nprint(count) ", "neg": "N = int(input())\nA = list(map(int, input().split()))\ncount = 0\nA.sort()\nc=0\nfor k in range(len(A)-1):\n if A[k] == A[k+1]:\n del A[k]\n A.insert(0,0)\n c+=1\n if k 0:\n saidai = A[-1]\nelse:\n saidai=0\n#print(A)\nfoo = [0 for k in range(saidai+1)]\nfor k in range(len(A)):\n if foo[A[k]] == 1:\n continue\n else:\n count+=1\n for j in range(A[k], saidai+1, A[k]):\n foo[j] = 1\nprint(count) ", "jacc_sim": 0.9761904761904762, "before_after_length": [361, 263], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "\"\"\"\n else:\n del A[k+1]\n A.insert(0,0)\n c+=1\n\"\"\"\nsaidai = A[-1]\ncfr j in range(A[k], saidai+1, A[k]):\n foo[j] = 1\n if k < len(A)-1:\n if A[k] == A[k+1]:\n continnt+=1\n for j in rang(A[k], saidai+1, A[k]):i oo[j]=0< k < len(A):\n if A[k] == A[k-1]:\n continue\n count+=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u344655022", "n_user": "u344655022", "pos": "import sys\ninput = sys.stdin.readline\n\nn = int(input())\na = [int(x) for x in input().split()]\nmaxval = 10 ** 6\nfactor_cnt = [0] * (maxval+1)\nfactor_cnt[0] = 2\nfor i in range(n):\n if factor_cnt[a[i]] > 1:\n continue\n for k in range(a[i], maxval+1, a[i]):\n factor_cnt[k] += 1\n\nresult = sum(factor_cnt[v] <= 1 for v in a)\nprint(result)", "neg": "import sys\ninput = sys.stdin.readline\n\nn = int(input())\na = [int(x) for x in input().split()]\nmaxval = 10 ** 6\neratosthenes = [0] * (maxval+1)\n\nfor i in range(n):\n if a[i] == 1:\n continue\n for k in range(a[i], maxval+1, a[i]):\n eratosthenes[k] += 1\n\nresult = sum(eratosthenes[v] > 1 for v in a)\nprint(result)", "jacc_sim": 0.9024390243902439, "before_after_length": [145, 142], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "fercr_csthetesfactor_cnt[0] = 2fctor_cnta[]>==fercr_cstheteseratosthenes[v] > 1 or v in c)\nprin(o_cnesul[v] <= 1 for v in a\nprint(result)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u544437477", "n_user": "u544437477", "pos": "n = int(input())\na = list(map(int, input().split()))\na.sort()\nflag = [True] * (a[-1]*3)\nfor i, num in enumerate(a):\n if a[(i-1)%n]==num or a[(i+1)%n]==num:\n if i-1>=0 or i+1=0 or i+1=2:\n cou -=1\nprint(cou)", "neg": "counter = [0 for i in range(10**6+1)]\nn = int(input())\na = sorted(list(map(int,input().split())))\nfor i in a:\n counter[i] += 1\nl = [0 for i in range(10**6+1)]\ncou = 0\nfor i in range(n):\n b = a[i]\n if l[b]==0:\n cou += 1\n for j in range(b,10**6+1,b):\n l[j] = 1\n if counter[j]>=2:\n cou -=1\nprint(cou)", "jacc_sim": 1.0, "before_after_length": [154, 154], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "jb", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u556069480", "n_user": "u556069480", "pos": "import math , sys\n\nN = int( input() )\nA = list( map( int, input().split() ))\nA.sort()\nCs = [0 for _ in range(10**6+1)]\nM = A[-1]\n#print(A)\ni=0\nM = max(A)\nfor i in range(N):\n e = A[i]\n if Cs[e]==1:\n Cs[e]=2\n elif Cs[e]==0:\n Cs[e]=1\n\nfor i in range(len(Cs)):\n Cs[i] = Cs[i]%2\n\nfor e in A:\n i = 2\n while e*i <= M:\n Cs[e*i] = 0\n i+=1\nans = sum(Cs)\nprint(ans)\n", "neg": "import math , sys\n\nN = int( input() )\nA = list( map( int, input().split() ))\nA.sort()\nCs = [0 for _ in range(10**6+1)]\n#print(A)\ni=0\nM = min(max(A),10**6+1)\nfor i in range(N):\n e = A[i]\n if Cs[e]==1:\n Cs[e]=2\n elif Cs[e]==0:\n Cs[e]=1\n\nfor i in range(len(Cs)):\n Cs[i] = Cs[i]%2\n\nfor e in A:\n i = 2\n while e*i 0:\n dp[a] = dp[a] + 1\n continue\n while i * a < maxV:\n i_a = i * a\n dp[i_a] = dp[i_a] + 1\n i += 1\n\ncount = 0\nfor a in values:\n if dp[a] == 1:\n count+=1\n\nprint(count)\n", "neg": "number = int(input())\nvalues = [i+2 for i in range(2*10**5)]\n# values = list(map(int, input().split()))\n\nmaxV = 10**6+1\ndp = [0]*(maxV)\n\nfor a in values:\n i = 1\n if dp[a] > 0:\n dp[a] = dp[a] + 1\n continue\n while i * a < maxV:\n i_a = i * a\n dp[i_a] = dp[i_a] + 1\n i += 1\n\ncount = 0\nfor a in values:\n if dp[a] == 1:\n count+=1\n\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [172, 172], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "# # ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u434609232", "n_user": "u434609232", "pos": "N = int(input())\nA = list(map(int, input().split()))\nS = set(A)\nM = max(S)\nA.sort()\n\npre_a = 0\nfor a in A:\n if a == pre_a:\n S.discard(a)\n if a in S:\n j = a * 2\n while j <= M:\n S.discard(j)\n j += a\n pre_a = a\nprint(len(S))", "neg": "N = int(input())\nA = list(map(int, input().split()))\nS = set(A)\nM = max(S)\nA.sort()\n\nfor a in A:\n if a == pre_a:\n S.discard(a)\n if a in S:\n j = a * 2\n while j <= M:\n S.discard(j)\n j += a\n pre_a = a\nprint(len(S))", "jacc_sim": 0.9696969696969697, "before_after_length": [117, 111], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "\npre_a = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u780475861", "n_user": "u780475861", "pos": "def main():\n n, *A = map(int, open(0).read().split())\n A.sort()\n n = A[-1]\n isPrime = [True] * (n + 1)\n prep = 0\n for i in A:\n if prep == i:\n isPrime[prep] = False\n continue\n if isPrime[i]:\n for j in range(i * 2, n + 1, i):\n isPrime[j] = False\n prep = i\n\n prep = res = 0\n for i in A:\n if prep == i:\n continue\n if isPrime[i]:\n res += 1\n prep = i\n print(res)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n n, *A = map(int, f.read().split())\n A.sort()\n n = A[-1]\n isPrime = [True] * (n + 1)\n prep = 0\n for i in A:\n if prep == i:\n isPrime[prep] = False\n continue\n if isPrime[i]:\n for j in range(i * 2, n + 1, i):\n isPrime[j] = False\n prep = i\n\n prep = res = 0\n for i in A:\n if prep == i:\n continue\n if isPrime[i]:\n res += 1\n prep = i\n print(res)\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9523809523809523, "before_after_length": [186, 183], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "fopen(0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u127499732", "n_user": "u127499732", "pos": "def main():\n n, *a = map(int, open(0).read().split())\n if n == 1:\n print(1)\n return\n\n m = max(a) + 1\n l = [0] * m\n for i in a:\n for j in range(i, m, i):\n l[j] += 2\n l[i] -= 1\n\n ans = l.count(1)\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "def main():\n n, *a = map(int, open(0).read().split())\n if n == 1:\n print(1)\n return\n\n m = max(a) + 1\n l = [0] * m\n for i in a:\n for j in range(i, m, i):\n l[j] += 2\n l[i] -= 1\n\n ans = sum(a[i] == -1 for i in a)\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.95, "before_after_length": [128, 136], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "l.count(1)\n print(anum(a[i] == -1 for i in a)\n print(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u201986772", "n_user": "u201986772", "pos": "from bisect import bisect\nfrom collections import Counter\nn=int(input())\nb=sorted(list(map(int,input().split())))\na=Counter(b)\nmA=b[-1]\nacc=0\ndp=[True]*(mA+1)\nfor i,v in a.items():\n if dp[i]==True and v==1:\n acc+=1\n else:dp[i]=False\n for k in range(mA//i+1):\n dp[k*i]=False\nprint(acc)", "neg": "from bisect import bisect\nfrom collections import Counter\nn=int(input())\nb=sorted(list(map(int,input().split())))\na=Counter(b)\nmA=max(b)\nacc=0\ndp=[True]*(mA+1)\nfor i,v in a.items():\n if dp[i]==True and v==1:\n print(i)\n acc+=1\n else:dp[i]=False\n if i!=1:\n for k in range(2,mA//i+1):\n dp[k*i]=False\nprint(acc)", "jacc_sim": 0.9166666666666666, "before_after_length": [131, 147], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "max()[-1]print(i)\n if i!=1:\n 2, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u505564549", "n_user": "u505564549", "pos": "import sys\ninput = sys.stdin.readline\n\nn=int(input())\nL=list(map(int,input().split()))\nL.sort()\nhb = L[-1]\ndp = [-1 for i in range(hb+1)] \nfor i in L:\n if dp[i]!=0:\n if dp[i]==1:\n dp[i]=0\n continue\n dp[i]=1\n for j in range(2*i,hb+1,i):\n dp[j]=0\nans=0\nfor i in L:\n if dp[i]==1:\n ans+=1\nprint(ans)\n\n\n", "neg": "import sys\ninput = sys.stdin.readline\n\nn=int(input())\nL=list(map(int,input().split()))\nL.sort()\nhb = L[-1]\ndp = [-1 for i in range(hb+1)] \nprint(L)\nfor i in L:\n if dp[i]!=0:\n if dp[i]==1:\n dp[i]=0\n continue\n dp[i]=1\n for j in range(2*i,hb+1,i):\n dp[j]=0\nans=0\nfor i in L:\n if dp[i]==1:\n ans+=1\nprint(ans)\n\n\n", "jacc_sim": 1.0, "before_after_length": [168, 173], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "\nprint(L)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u469254913", "n_user": "u469254913", "pos": "import numpy as np\n# import math\n# import copy\n# from collections import deque\nimport sys\ninput = sys.stdin.readline\n# sys.setrecursionlimit(10000)\n# from numba import njit,i8\n\n\ndef sieve(N,A,dp):\n for i in range(N):\n now = A[i]\n M = A[-1] // now\n for j in range(2,M+1):\n dp[now*j-1] = False\n return dp\n\n\ndef cnt(N,A,dp):\n skip = 0\n res = 0\n for i in range(N):\n now = A[i]\n if skip == now:\n continue\n if i != N - 1:\n if now == A[i+1]:\n skip = now\n continue\n if dp[now-1]:\n res += 1\n return res\n\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n\n A = sorted(A)\n A = np.array(A)\n\n dp = np.array([True for i in range(A[-1])])\n # print(dp)\n dp = sieve(N,A,dp)\n # print(dp)\n\n res = cnt(N,A,dp)\n\n print(res)\n\n\n\nmain()\n", "neg": "import numpy as np\n# import math\n# import copy\n# from collections import deque\nimport sys\ninput = sys.stdin.readline\n# sys.setrecursionlimit(10000)\nfrom numba import njit,i8\n\n\n@njit(i8[:](i8,i8,i8[:]))\ndef sieve(N,A,dp):\n for i in range(N):\n now = A[i]\n M = A[-1] // now\n for j in range(2,M+1):\n dp[now*j-1] = False\n return dp\n\n\n@njit(i8(i8,i8,i8[:]))\ndef cnt(N,A,dp):\n skip = 0\n res = 0\n for i in range(N):\n now = A[i]\n if skip == now:\n continue\n if i != N - 1:\n if now == A[i+1]:\n skip = now\n continue\n if dp[now-1]:\n res += 1\n return res\n\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n\n A = sorted(A)\n A = np.array(A)\n\n dp = np.array([True for i in range(A[-1])])\n # print(dp)\n dp = sieve(N,A,dp)\n # print(dp)\n\n res = cnt(N,A,dp)\n\n print(res)\n\n\n\nmain()\n", "jacc_sim": 0.984375, "before_after_length": [338, 376], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "# \n@njit(i8[:](i8,i8,i8[:]))@njit(i8(i8,i8,i8[:]))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u414980766", "n_user": "u414980766", "pos": "N = int(input())\nA = list(map(int, input().split()))\nM = 1000005\ncnt = [0]*M\nfor a in A:\n if cnt[a]!=0:\n cnt[a]+=1\n continue\n \n for i in range(a, M, a):\n cnt[i]+=1\n \nans = 0\nfor a in A:\n if cnt[a] == 1:\n ans+=1\nprint(ans)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nM = 1000005\ncnt = [0]*M\nfor a in A:\n if cnt[a]!=0:\n cnt[a]+=1\n continue\n \n for i in range(a, M, a):\n cnt[a]+=1\n \nans = 0\nfor a in A:\n if cnt[a] == 1:\n ans+=1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [117, 117], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "ai", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u763534217", "n_user": "u763534217", "pos": "n = int(input())\na = list(map(int, input().split()))\na.sort()\nmaxa = max(a)\n\ndp = {i: 0 for i in range(1, maxa+1)}\n\nans = 0\nfor i in range(n):\n if dp[a[i]] == 1:\n continue\n\n if i == n - 1 or a[i] != a[i+1]:\n ans += 1\n\n t = 1\n while a[i]*t <= maxa:\n dp[a[i]*t] = 1\n t += 1\n\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\na.sort()\nmaxa = max(a)\n\ndp = {i: 0 for i in range(1, dp+1)}\n\nans = 0\nfor i in range(n):\n if dp[a[i]] == 1:\n continue\n\n if i == n - 1 or a[i] != a[i+1]:\n ans += 1\n\n prime += a[i]\n while prime <= maxa:\n dp[prime] = 1\n prime += a[i]\n \nprint(ans)", "jacc_sim": 0.925, "before_after_length": [148, 146], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "dpmaxatprime+1a[i]pra[me]*tpra[me*t]tprime1a[i] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u723711163", "n_user": "u723711163", "pos": "from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\nA.sort()\nc = Counter(A)\nlst = [1] * (10**6+1)\nres = 0\n\nfor i,a in enumerate(A):\n if lst[a] == 0: continue\n if i==N-1 or A[i+1] != a:\n res += 1\n for j in range(a, 10**6+1, a):\n lst[j] = 0\n\nprint(res)\n", "neg": "N = int(input())\nA = list(map(int,input().split()))\nA.sort()\nc = Counter(A)\nlst = [1] * (10**6+1)\nres = 0\n\nfor i,a in enumerate(A):\n if lst[a] == 0: continue\n if i==N-1 or A[i+1] != a:\n res += 1\n for j in range(a, 10**6+1, a):\n lst[j] = 0\n\nprint(res)", "jacc_sim": 0.9285714285714286, "before_after_length": [132, 126], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "from collections import Counter\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u744034042", "n_user": "u744034042", "pos": "n = int(input())\na = list(map(int,input().split()))\nm = max(a) + 10\nli = [0]*m \nfor x in a:\n li[x] += 1\nans = 0\nfor i in range(1,m):\n if li[i]: \n if li[i]==1: \n ans += 1 \n for j in range(i,m,i): \n li[j] = 0\nprint(ans)", "neg": "n = int(input())\na = list(map(int,input().split()))\nm = max(a)\nli = [0]*m \nfor x in a:\n li[x] += 1\nans = 0\nfor i in range(1,m):\n if li[i]: \n if li[i]==1: \n ans += 1 \n for j in range(i,m,i): \n li[j] = 0", "jacc_sim": 0.9375, "before_after_length": [113, 106], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": " + 10\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u764956288", "n_user": "u764956288", "pos": "import sys\nimport numpy as np\n\n\ndef solve(sequence):\n\n sequence.sort()\n\n max_v = sequence[-1]\n\n dp = [True] * (max_v + 1)\n\n previous = -1\n for v in sequence:\n if v == previous:\n dp[v] = False\n continue\n\n previous = v\n\n if not dp[v]:\n continue\n\n for iv in range(2 * v, max_v+1, v):\n dp[iv] = False\n\n count = 0\n for v in sequence:\n if dp[v]:\n count += 1\n\n return count\n\n\n# if sys.argv[-1] == 'ONLINE_JUDGE':\n# from numba.pycc import CC\n# cc = CC('my_module')\n# cc.export('main', '(i8[::1])')(solve)\n# cc.compile()\n# exit()\n#\n#\n# from my_module import solve\n\n\ndef main():\n _ = input()\n sequence = np.array(input().split(), np.int64)\n print(solve(sequence))\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\nimport numpy as np\n\n\ndef solve(sequence):\n\n sequence.sort()\n\n max_v = sequence[-1]\n\n dp = [True] * (max_v + 1)\n\n previous = -1\n for v in sequence:\n if v == previous:\n dp[v] = False\n continue\n\n previous = v\n\n if not dp[v]:\n continue\n\n for iv in range(2 * v, max_v+1, v):\n dp[iv] = False\n\n count = 0\n for v in sequence:\n if dp[v]:\n count += 1\n\n return count\n\n\nif sys.argv[-1] == 'ONLINE_JUDGE':\n from numba.pycc import CC\n cc = CC('my_module')\n cc.export('main', '(i8[::1])')(solve)\n cc.compile()\n exit()\n\n\nfrom my_module import solve\n\n\ndef main():\n sequence = np.array(input().split(), np.int64)\n print(solve(sequence))\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9672131147540983, "before_after_length": [297, 282], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "# # # # # # ### \n _ = input()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u303650160", "n_user": "u303650160", "pos": "import sys\n\ndef Not_Divisible(n,p):\n maxp = max(p)\n dp = [[True,0] for _ in range(maxp+1)]\n for a in p:\n dp[a][1]+=1\n t =2\n while a*t <= maxp:\n if dp[a*t][0] == True :\n dp[a*t][0] = False\n t+=1\n k=0\n for d in p:\n if dp[d][1] == 1 and dp[d][0] == True:\n k+=1\n return k\n\n\ndef main():\n input = sys.stdin.readline\n \n inp1 = input().rstrip().split()\n n = int(inp1[0])\n\n inp2 = input().rstrip().split()\n p = tuple(map(int,inp2))\n print(Not_Divisible(n,p))\n\n\nif __name__ == '__main__':\n main()", "neg": "import sys\n\ndef Not_Divisible(n,p):\n maxp = max(p)\n dp = [True for _ in range(maxp+1)]\n for a in p:\n t =2\n while a*t <= maxp:\n if dp[a*t] == True :\n dp[a*t] = False\n t+=1\n k=0\n for d in p:\n if dp[d] == True:\n k+=1\n return k\n\n\ndef main():\n input = sys.stdin.readline\n \n inp1 = input().rstrip().split()\n n = int(inp1[0])\n\n inp2 = input().rstrip().split()\n p = tuple(map(int,inp2))\n print(Not_Divisible(n,p))\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9807692307692307, "before_after_length": [245, 217], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "[,0]\n dp[a][1]+=1[0][0]][1] == 1 and dp[d][0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u334712262", "n_user": "u334712262", "pos": "# -*- coding: utf-8 -*-\nimport sys\n# sys.setrecursionlimit(10**6)\n# buff_readline = sys.stdin.buffer.readline\nbuff_readline = sys.stdin.readline\nreadline = sys.stdin.readline\n\nINF = 2**62-1\n\n\ndef read_int():\n return int(buff_readline())\n\n\ndef read_int_n():\n return list(map(int, buff_readline().split()))\n\n\ndef read_float():\n return float(buff_readline())\n\n\ndef read_float_n():\n return list(map(float, buff_readline().split()))\n\n\ndef read_str():\n return readline().strip()\n\n\ndef read_str_n():\n return readline().strip().split()\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\n@mt\ndef slv(N, A):\n from collections import Counter\n c = Counter()\n ma = max(A)\n for a in A:\n for i in range(ma//a + 1):\n c[a*i] += 1\n\n ans = 0\n for a in A:\n if c[a] == 1:\n ans += 1\n\n return ans\n\n\ndef main():\n N = read_int()\n A = read_int_n()\n print(slv(N, A))\n\n # from random import randint\n # N = 2* (10**5)\n # A = [randint(1, 10**6) for _ in range(N)]\n # print(slv(N, A))\n\n\nif __name__ == '__main__':\n main()\n", "neg": "# -*- coding: utf-8 -*-\nimport sys\n# sys.setrecursionlimit(10**6)\n# buff_readline = sys.stdin.buffer.readline\nbuff_readline = sys.stdin.readline\nreadline = sys.stdin.readline\n\nINF = 2**62-1\n\n\ndef read_int():\n return int(buff_readline())\n\n\ndef read_int_n():\n return list(map(int, buff_readline().split()))\n\n\ndef read_float():\n return float(buff_readline())\n\n\ndef read_float_n():\n return list(map(float, buff_readline().split()))\n\n\ndef read_str():\n return readline().strip()\n\n\ndef read_str_n():\n return readline().strip().split()\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\n@mt\ndef slv(N, A):\n ans = 0\n c = Counter()\n ma = max(A)\n for a in A:\n for i in range(ma//a + 1):\n c[a*i] += 1\n\n for a in A:\n if c[a] == 1:\n ans += 1\n\n return ans\n\n\ndef main():\n N = read_int()\n A = read_int_n()\n print(slv(N, A))\n\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.927710843373494, "before_after_length": [494, 435], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "ansfrom=collections0import Counterans = 0\n # from random import randint\n # N = 2* (10**5)\n # A = [randint(1, 10**6) for _ in range(N)]\n # print(slv(N, A))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u596505843", "n_user": "u596505843", "pos": "import sys, math\ninput = sys.stdin.readline\nrs = lambda: input().strip()\nri = lambda: int(input())\nrl = lambda: list(map(int, input().split()))\nmod = 10**9 + 7\n\nN = ri()\nA = rl()\n\nA.sort()\nm = A[-1]\n\nimport collections\nh = collections.Counter(A)\n\nans = 0\nfor a in A:\n\tif h[a] == 0:\n\t\tcontinue\n\tif h[a] == 1:\n\t\tans += 1\n\tfor j in range(a, m+1, a):\n\t\th[j] = 0\nprint(ans)\n", "neg": "import sys, math\ninput = sys.stdin.readline\nrs = lambda: input().strip()\nri = lambda: int(input())\nrl = lambda: list(map(int, input().split()))\nmod = 10**9 + 7\n\nN = ri()\nA = rl()\n\nA.sort()\nm = A[-1]\n\nimport collections\nh = collections.Counter(A)\n\nans = 0\nfor a in A:\n\tif a not in h:\n\t\tcontinue\n\tif h[a] == 1:\n\t\tans += 1\n\tfor j in range(a, m, a):\n\t\th[j] = 0\nprint(ans)\n", "jacc_sim": 0.9795918367346939, "before_after_length": [163, 159], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "a not in [a] == 0+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u242580186", "n_user": "u242580186", "pos": "import sys\nread = sys.stdin.readline\nimport time\nimport math\nimport itertools as it\ndef inp():\n return int(input())\ndef inpl():\n return list(map(int, input().split()))\nstart_time = time.perf_counter()\n# ------------------------------\n\nN = inp()\nA = inpl()\nA.sort()\ndp = [False] * 1001001\nnt = -1\n\nfor i in A:\n if i != nt:\n dp[i] = True\n else:\n dp[i] = False\n nt = i\n\nans = 0\nmx = A[N-1]\nnt = -1\nfor i in A:\n if dp[i]:\n ans += 1\n if i == nt:\n continue\n nt = i\n j = i\n while j <= mx:\n dp[j] = False\n j += i\n\nprint(ans)\n\n# -----------------------------\nend_time = time.perf_counter()\nprint('time:', end_time-start_time, file=sys.stderr)", "neg": "import sys\nread = sys.stdin.readline\nimport time\nimport math\nimport itertools as it\ndef inp():\n return int(input())\ndef inpl():\n return list(map(int, input().split()))\nst = time.perf_counter()\n# ------------------------------\n\nN = inp()\nA = inpl()\nA.sort()\ndp = [False] * 1001001\nnt = -1\nfor i in A:\n if i != nt:\n dp[i] = True\n else:\n dp[i] = False\n nt = i\n\nans = 0\nmx = A[N-1]\nfor i in A:\n if dp[i]:\n ans += 1\n j = i\n while j <= 1001001:\n dp[j] = False\n j += i\nprint(ans)\n\n# -----------------------------\ned = time.perf_counter()\nprint('time:', ed-st, file=sys.stderr)\n", "jacc_sim": 0.9193548387096774, "before_after_length": [257, 230], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "art_time\nnt = -1\nif i == nt:\n continue\n nt = i\n mx1001001 \nn_timen_-sime-start_time\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u072717685", "n_user": "u072717685", "pos": "import sys\nread = sys.stdin.read\nreadlines = sys.stdin.readlines\n#import numpy as np\nfrom collections import Counter\ndef main():\n n, *a = map(int, read().split())\n if 1 in a:\n count1 = a.count(1)\n if count1 == 1:\n print(1)\n sys.exit()\n else:\n print(0)\n sys.exit()\n maxa = max(a)\n seq = [0] * (maxa + 1)\n ac = Counter(a)\n for ae in ac.items():\n if ae[1] == 1:\n seq[ae[0]] = 1\n for ae in a:\n t = ae * 2\n while t <= maxa:\n seq[t] = 0\n t += ae\n r = sum(seq)\n print(r)\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\nread = sys.stdin.read\nreadlines = sys.stdin.readlines\n#import numpy as np\ndef main():\n n, *a = map(int, read().split())\n if 1 in a:\n count1 = a.count(1)\n if count1 == 1:\n print(1)\n sys.exit()\n else:\n print(0)\n sys.exit()\n maxa = max(a)\n seq = [0] * (maxa + 1)\n for ae in a:\n seq[ae] = 1\n for ae in a:\n t = ae * 2\n while t <= maxa:\n seq[t] = 0\n t += ae\n r = sum(seq)\n print(r)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9074074074074074, "before_after_length": [229, 201], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "\nfrom collections import Counterfor ec=inCounter(:) for ae in ac.items():\n if ae[1] == 1:\n [0]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u210827208", "n_user": "u210827208", "pos": "n=int(input())\nA=list(map(int,input().split()))\n\nm=max(A)\n\nX=[0]*(m+1)\n\nA.sort()\n\nfor i in range(n):\n for j in range(A[i],m+1,A[i]):\n X[j]+=1\n\nans=0\n\nfor i in range(n):\n if X[A[i]]==1:\n ans+=1\nprint(ans)", "neg": "n=int(input())\nA=list(map(int,input().split()))\n\nm=max(A)\n\nX=[True]*(m+1)\n\nA.sort()\n\nfor i in range(n):\n for j in range(A[i]*2,m+1,A[i]):\n X[j]=False\nans=0\nfor i in range(n):\n if X[A[i]]==True:\n ans+=1\nprint(ans)", "jacc_sim": 0.9117647058823529, "before_after_length": [119, 119], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "0True*2+1\nFalse\nTrue:\n ans+=:print( +=1\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u906630865", "n_user": "u906630865", "pos": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n A.sort()\n sieve_len = A[-1] + 1\n sieve = [0] * sieve_len\n\n count = 0\n for ix, a in enumerate(A):\n if sieve[a] == 0:\n if ix == len(A) - 1 or a != A[ix+1]:\n count += 1\n else:\n continue\n intermediate_a = a\n while intermediate_a < sieve_len:\n sieve[intermediate_a] += 1\n intermediate_a += a\n print(count)\n\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n A.sort()\n sieve_len = A[-1] + 1\n sieve = [0] * sieve_len\n\n count = 0\n for ix, a in enumerate(A):\n if sieve[a] == 0 and (ix == len(A) - 1 or a != A[ix+1]):\n count += 1\n else:\n continue\n intermediate_a = a\n while intermediate_a < sieve_len:\n sieve[intermediate_a] += 1\n intermediate_a += a\n print(count)\n\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9777777777777777, "before_after_length": [180, 179], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": ":\nand( if ) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02642", "p_user": "u920977317", "n_user": "u920977317", "pos": "from collections import deque\nimport math\n\ndef main():\n N=int(input())\n A=list(map(int,input().split()))\n\n A.sort(reverse=True)\n\n Amax=max(A)\n\n dp=[0]*Amax\n\n tmp=-1\n res=0\n for i in range(len(A)):\n a=A.pop()\n if a==tmp:\n continue\n if dp[a-1]==0:\n if len(A)>0:\n if A[len(A)-1]!=a:\n res+=1\n else:\n res+=1\n m=2\n while (a*m)<=Amax:\n dp[a*m-1]=1\n m+=1\n tmp=a\n\n print(res)\nif __name__==\"__main__\":\n main()", "neg": "from collections import deque\nimport math\n\ndef main():\n N=int(input())\n A=list(map(int,input().split()))\n\n A.sort()\n\n Amax=max(A)\n\n dp=[True for _ in range(Amax)]\n\n tmp=-1\n res=0\n for i in range(len(A)):\n a=A.pop(0)\n if a==tmp:\n continue\n if dp[a-1]==True:\n if len(A)>0:\n if A[0]!=a:\n res+=1\n else:\n res+=1\n if a<=math.sqrt(Amax):\n m=1\n while (a*m)<=Amax:\n dp[a*m-1]=False\n m+=1\n tmp=a\n\n print(res)\nif __name__==\"__main__\":\n main()", "jacc_sim": 0.9137931034482759, "before_after_length": [221, 233], "nl": "Score: 400 points\nProblem Statement:\nGiven a number sequence A of length N, find the number of integers i (1 \u2264 i \u2264 N) with the property: For every integer j (1 \u2264 j \u2264 N) such that i \u2260 j, Aj does not divide Ai.\n\nConstraints:\n- All values in input are integers.\n- 1 \u2264 N \u2264 2 \u00d7 10^5\n- 1 \u2264 Ai \u2264 10^6\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA1 A2 ... AN\n\nOutput:\nPrint the answer.\n\nSample Input 1:\n5\n24 11 8 3 16\n\nSample Output 1:\n3\nThe integers with the property are 2, 3, and 4.\n\nSample Input 2:\n4\n5 5 5 5\n\nSample Output 2:\n0\nNote that there can be multiple equal numbers.\n\nSample Input 3:\n10\n33 18 45 28 8 19 89 86 2 4\n\nSample Output 3:\n5", "diff_info": "reverse=True[True for _ in range(Amax)]\n\n tmp=-1\n res=0\n for i in range(len(A)):\n a=A.pop(0)\n if a==tmp:\n continue\n if dp[a-1]==True:\n if len(A)>0:\n if A*Amax\n\n tmp=-1\n res=0\n for i in range(len(A)):\n a=A.pop()\n if a==tmp:\n continue\n if dp[a-1]==0:\n if len(A)>0:\n if A[len(A)-1]ifa<=math.sqrt(Amax):\n 121False", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u589783652", "n_user": "u589783652", "pos": "N = int(input())\nlower = []\nupper = []\nfor i in range(N):\n a, b = map(int, input().split())\n lower.append(a)\n upper.append(b)\nlower.sort()\nupper.sort()\nif N % 2 == 1:\n print(upper[(N-1)//2]-lower[(N-1)//2]+1)\nelse:\n print(upper[N//2]+upper[N//2 - 1]-lower[N//2]-lower[N//2 - 1]+1)", "neg": "N = int(input())\nlower = []\nupper = []\nfor i in range(N):\n a, b = map(int, input().split())\n lower.append(a)\n upper.append(b)\nlower.sort()\nupper.sort()\nif N % 2 == 1:\n print(upper[(N+1)//2]-lower[(N+1)//2]+1)\nelse:\n print(upper[N//2 + 1]+upper[N//2]-lower[N//2 + 1]-lower[N//2]+1)", "jacc_sim": 1.0, "before_after_length": [136, 136], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "-1)//2]-lower[(N-1)//2]\n//2]-lowlse:\n p[intupper[//2]1)upper[N - 1]-lower[N//2]-lower[N//2 - 1\nelse:\n print(upper[N//2 + 1]+upper[N//2]-lower[N//2 + 1]-lower[N//2]+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u659712937", "n_user": "u699008198", "pos": "n=int(input())\n\na=[]\nb=[]\n\nfor i in range(n):\n A,B=map(int,input().split())\n a.append(A)\n b.append(B)\n\na=sorted(a)\nb=sorted(b)\nn-=1\n\nif n%2==1:\n A=(a[n//2]+a[n//2+1])/2\n B=(b[n//2]+b[n//2+1])/2\n print(int(-(A-B)*2+1))\n #print(a)\n #print(b)\n #print(A,B)\nelse:\n A=a[(n+1)//2]\n B=b[(n+1)//2]\n print(-A+B+1)\n #print([a,b,A,B])", "neg": "n = int( input() )\nA = []\nB = []\n\nfor i in range( n ):\n a, b = map( int, input().split() )\n A.append( a )\n B.append( b )\n\nA = sorted( A )\nB = sorted( B )\n\nif n % 2 == 0:\n i = n // 2\n print(( B[ i ] + B[ i - 1 ] ) - ( A[ i ] - A [ i - 1 ] ) + 1 )\nelse:\n i = ( n + 1 ) // 2\n print( B[ i ] - A[ i ] + 1 )", "jacc_sim": 0.9142857142857143, "before_after_length": [215, 150], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " A = []aB []\nb= aAB b AaA a BbB b aA a A bB b B \nn-=1 1 0Ai n // 2\n printa( B i n//2 a Bn//2+1])/2\niB=(b[n//2]+b[n//2+1])/2\n print(int((A 1 ] ) B ( A[ i ] - A [ i - 1 ] *2 ))\n #print(a)\n #print(b)\n #print(A,BAi a ( n + 1 ) // 2\n print( B i (n+1)//2\n B=b[(n+1)//2]\n print( [ i ] B+ \n #print([a,b,A,B])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u374802266", "n_user": "u374802266", "pos": "n=int(input())\na=sorted([list(map(int,input().split())) for i in range(n)])\nb=sorted(a,key=lambda x:x[1])\nif n%2==1:\n print(b[n//2][1]-a[n//2][0]+1)\nelse:\n print((b[n//2-1][1]+b[n//2][1])-(a[n//2-1][0]+a[n//2][0])+1)", "neg": "import math\nn=int(input())\na=sorted([list(map(int,input().split())) for i in range(n)])\nb=sorted(a,key=lambda x:x[1])\nif n%2==1:\n print(b[n//2][1]-a[n//2][0]+1)\nelse:\n print((b[n//2-1][1]+b[n//2][1])-(a[n//2-1][0]-a[n//2][0]))//2)", "jacc_sim": 0.9444444444444444, "before_after_length": [125, 129], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "import math\n-++1//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u364774090", "n_user": "u364774090", "pos": "N = int(input())\n\nA = [0] * N\nB = [0] * N\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nA.sort()\nB.sort()\n\nif N % 2 == 0:\n n1 = N // 2 - 1\n n2 = N // 2\n ans = B[n1] - A[n1] + B[n2] - A[n2] + 1\n print(ans)\n\nelse:\n n = N // 2\n ans = B[n] - A[n] + 1\n print(ans)", "neg": "N = int(input())\n\nA = [0] * N\nB = [0] * N\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nA.sort()\nB.sort()\n\nprint(A, B)\nif N % 2 == 0:\n n1 = N // 2 - 1\n n2 = N // 2\n ans = B[n1] - A[n1] + B[n2] - A[n2] + 1\n print(ans)\n\nelse:\n n = N // 2\n ans = B[n] - A[n] + 1\n print(ans)", "jacc_sim": 1.0, "before_after_length": [156, 163], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "print(A, B)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u970449052", "n_user": "u882616665", "pos": "N=int(input())\na=[]\nb=[]\nfor _ in range(N):\n A,B=map(int,input().split())\n a.append(A)\n b.append(B)\na=sorted(a)\nb=sorted(b)\nif N%2==1:\n print(b[N//2]-a[N//2]+1)\nelse:\n print(int(((b[N//2-1]+b[N//2])/2-(a[N//2-1]+a[N//2])/2)*2+1))", "neg": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a,b = map(input().split())\n A.append(a)\n B.append(b)\n\nA = sorted(A)\nB = sorted(B)\n \nif N%2==1:\n print(B[N//2] - A[N//2] + 1)\nelse:\n print( (B[N//2-1]+B[N//2]) - (A[N//2-1]+A[N//2]) + 1 )", "jacc_sim": 0.9117647058823529, "before_after_length": [142, 136], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " aA bB i_a ABb t,in a.append()\n ba)\n .append(ba\nA AabB Bb\n print(B[N//2]-Aprint(b -a[N//2] print((B[N//2-1]+B[N//2])- printAint(((bAb + /2-(a[N//2- ]+a[N//2]/2)*2+1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u955474478", "n_user": "u955474478", "pos": "import statistics\n\nn = int(input())\nla = []\nlb = []\nfor i in range(n):\n a, b = map(int, input().split())\n la.append(a)\n lb.append(b)\na = statistics.median(la)\nb = statistics.median(lb)\nif n % 2 == 1:\n print(b - a + 1)\nelse:\n print(int((b - a) * 2 + 1))", "neg": "n = int(input())\nla = []\nlb = []\nfor i in range(n):\n a, b = map(int, input().split())\n la.append(a)\n lb.append(b)\na = statistics.median(la)\nb = statistics.median(lb)\nif n % 2 == 1:\n print(b - a + 1)\nelse:\n print((b - a) * 2 - 1)", "jacc_sim": 0.9705882352941176, "before_after_length": [110, 104], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "import statistics\n\nint(-+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u731368968", "n_user": "u731368968", "pos": "n = int(input())\nAB = [tuple(map(int, input().split())) for i in range(n)]\nA = [AB[i][0] for i in range(n)]\nB = [AB[i][1] for i in range(n)]\n# A = [(AB[i][0], i) for i in range(n)]\n# B = [(AB[i][1], i) for i in range(n)]\n\nA.sort()\nB.sort()\n\nif n % 2 == 1:\n print(B[n // 2] - A[n // 2] + 1)\n\n\nif n % 2 == 0:\n # x = abs(A[n // 2 - 1] + B[n // 2])\n # y = abs(A[n // 2] + B[n // 2 - 1])\n # print(x, y)\n # print(abs(x - y) + 1)\n\n # print(x, y)\n a = A[n // 2] + A[n // 2 - 1]\n b = B[n // 2] + B[n // 2 - 1]\n print(b - a + 1)\n # print(a, b)\n # print(B[n // 2] - A[n // 2 - 1] + 1)\n", "neg": "n = int(input())\nAB = [tuple(map(int, input().split())) for i in range(n)]\nA = [AB[i][0] for i in range(n)]\nB = [AB[i][1] for i in range(n)]\n# A = [(AB[i][0], i) for i in range(n)]\n# B = [(AB[i][1], i) for i in range(n)]\n\nA.sort()\nB.sort()\n\nif n % 2 == 1:\n print(B[n // 2] - A[n // 2] + 1)\n\nprint(A, B)\n\nif n % 2 == 0:\n # x = abs(A[n // 2 - 1] + B[n // 2])\n # y = abs(A[n // 2] + B[n // 2 - 1])\n # print(x, y)\n # print(abs(x - y) + 1)\n\n # print(x, y)\n a = A[n // 2] + A[n // 2 - 1]\n b = B[n // 2] + B[n // 2 - 1]\n print(b-a+1)\n # print(a, b)\n # print(B[n // 2] - A[n // 2 - 1] + 1)\n", "jacc_sim": 1.0, "before_after_length": [312, 319], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "print(A, B)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u023229441", "n_user": "u023229441", "pos": "n=int(input())\nimport bisect as bi\nA=[] ; B=[]\nfor i in range(n):\n a,b=map(int,input().split())\n A.append(a)\n B.append(b)\n\nA.sort() ; B.sort()\nif n%2==1:\n a=A[(n-1)//2] ; b=B[(n-1)//2]\n \n print(b-a+1)\nelse:\n a=(A[n//2-1]+A[n//2])/2 ; b=(B[n//2-1]+B[n//2])/2\n \n print(int((b-a)/0.5)+1)\n", "neg": "n=int(input())\nimport bisect as bi\nA=[] ; B=[]\nfor i in range(n):\n a,b=map(int,input().split())\n A.append(a)\n B.append(b)\n\nA.sort() ; B.sort()\nif n%2==1:\n a=A[(n-1)//2] ; b=B[(n-1)//2]\n print(a,b)\n print(b-a+1)\nelse:\n a=(A[n//2-1]+A[n//2])/2 ; b=(B[n//2-1]+B[n//2])/2\n print(a,b)\n print(int((b-a)/0.5)+1)", "jacc_sim": 1.0, "before_after_length": [174, 187], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " print(a,b) print(a,b)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u471539833", "n_user": "u497952650", "pos": "N=int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=map(int,input().split())\n A.append(a)\n B.append(b)\nA.sort()\nB.sort()\nans=0\nif(N%2==1):\n print(B[N//2]-A[N//2]+1)\nelse:\n ans+=(B[N//2]+B[N//2-1])-(A[N//2]+A[N//2-1])+1\n print(ans)", "neg": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\nA.sort()\nB.sort()\n\nif N%2 == 1:\n print(B[N//2][1]-A[N//2][0]+1)\nelse:\n r = (B[N//2-1][1]+B[N//2][1])\n l = (A[N//2-1][0]+A[N//2][0])\n print(r-l+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [140, 154], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " \nans=0 ( ) [1]][0a r = (B[N//2-1][1]+B[N//2][1])\n l = (A[N//2-1][0]+A[N//2][0])\n prist(r-l=(B[N//2]+B[N//2-]-(A[N//2]+A[N//2-1])+1\n print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u266014018", "n_user": "u266014018", "pos": "def main():\n import sys\n n = int(input())\n A,B = [],[]\n for i in range(n):\n a,b= map(int, input().split())\n A.append(a)\n B.append(b)\n A = sorted(A)\n B = sorted(B)\n if n%2 == 0:\n ma = (A[n//2]+A[n//2-1])/2\n mb = (B[n//2]+B[n//2-1])/2\n ans = int(2*(mb-ma) + 1)\n print(ans)\n else:\n ma = A[n//2]\n mb = B[n//2]\n ans = (mb-ma) + 1\n print(ans)\n \n \nif __name__ == '__main__':\n main()", "neg": "def main():\n import sys\n n = int(input())\n A,B = [],[]\n for i in range(n):\n a,b= map(int, input().split())\n A.append(a)\n B.append(b)\n A = sorted(A)\n B = sorted(B)\n if n%2 == 0:\n ma = (A[n//2]+A[n//2-1])/2\n mb = (B[n//2]+B[n//2-1])/2\n ans = 2*(mb-ma) - 1\n print(ans)\n else:\n ma = A[n//2]\n mb = B[n//2]\n ans = int((mb-ma) +1)\n print(ans)\n \n \nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [210, 209], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "int(+ 1)\n print(ans)\n else:\n ma = A[n//2]\n mb = B[n//2]\n ans = (mbma) +\n print(ans)\n else:\n ma = A[n//2]\n mb = B[n//2]\n ans = int((mb-ma) +1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u441254033", "n_user": "u441254033", "pos": "# E\n\nN = int(input())\n\nab = []\n\nfor i in range(N):\n ab.append(tuple(map(int,input().split())))\n\nab.sort()\n \nimport statistics\nimport math\n\nam = statistics.median([i[0] for i in ab])\nbm = statistics.median([i[1] for i in ab])\n\nif N%2 != 0:\n print(bm-am+1)\nelse:\n print(int((bm-am)*2+1))\n", "neg": "# E\n\nN = int(input())\n\nab = []\n\nfor i in range(N):\n ab.append(tuple(map(int,input().split())))\n\nab.sort()\n \nimport statistics\nimport math\n\nam = statistics.median([i[0] for i in ab])\nbm = statistics.median([i[1] for i in ab])\n\nprint(am,bm)\nif am%0.5 != 0:\n print(bm-am+1)\nelse:\n print(int(bm-am+2))\n", "jacc_sim": 0.9512195121951219, "before_after_length": [125, 132], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "prnt(am,bm)\niNam20.5()*221", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u434609232", "n_user": "u434609232", "pos": "import statistics\n\nN = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = list(map(int, input().split()))\n A.append(a)\n B.append(b)\nAm = statistics.median(A)\nBm = statistics.median(B)\n\nif N % 2 == 0:\n print(round(2 * (Bm - Am) + 1))\nelse:\n print(Bm - Am + 1)", "neg": "import statistics\nimport math\n\nN = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = list(map(int, input().split()))\n A.append(a)\n B.append(b)\nAm = statistics.median(A)\nBm = statistics.median(B)\n\nprint(Am)\nprint(Bm)\n\nif N % 2 == 0:\n print(2 * round(Bm - Am) + 1)\nelse:\n print(round(Bm - Am) + 1)", "jacc_sim": 0.975, "before_after_length": [118, 135], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "\nimport mathprint(Am)\nprint(Bm)\n\n2 * 2 * ()round()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u680851063", "n_user": "u680851063", "pos": "n = int(input())\n\nls = []\nrs = []\nfor _ in range(n):\n x, y = map(int, input().split())\n ls.append(x)\n rs.append(y)\n\nls = sorted(ls)\nrs = sorted(rs)\n\nif n % 2 == 1:\n print(rs[len(rs)//2] - ls[len(ls)//2] + 1)\nelse:\n a = (rs[len(rs)//2-1] * 10 + rs[len(rs)//2] * 10) // 2\n b = (ls[len(ls)//2-1] * 10 + ls[len(ls)//2] * 10) // 2\n print((a - b) // 5 + 1)", "neg": "n = int(input())\n\nls = []\nrs = []\nfor _ in range(n):\n x, y = map(int, input().split())\n ls.append(x)\n rs.append(y)\n\nif n % 2 == 1:\n print(rs[len(rs)//2] - ls[len(ls)//2] + 1)\nelse:\n a = (rs[len(rs)//2-1] * 10 + rs[len(rs)//2] * 10) / 2\n b = (ls[len(ls)//2-1] * 10 + ls[len(ls)//2] * 10) / 2\n print((a - b) // 5 + 1)", "jacc_sim": 0.9736842105263158, "before_after_length": [185, 170], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "ls = sorted(ls)\nrs = sorted(rs)\n\n//", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u909514237", "n_user": "u909514237", "pos": "import statistics\nimport math\n\nN = int(input())\nlistA = [0] * N\nlistB = [0] * N\nidx = 0\nfor i in range(N):\n listA[idx],listB[idx] = map(int, input().split())\n idx += 1\n\nmedianA = 0\nmedianB = 0\nans = 0\nif N%2 == 0:\n medianA = statistics.median(listA)\n medianB = statistics.median(listB)\n ans = (medianB - medianA) * 2 + 1\nelse:\n medianA = statistics.median(listA)\n medianB = statistics.median(listB)\n ans = medianB - medianA + 1\n\nprint(int(ans))", "neg": "N = int(input())\nlistA = [0] * N\nlistB = [0] * N\nidx = 0\nfor i in range(N):\n listA[idx],listB[idx] = map(int, input().split())\n idx += 1\n\nmedianA = 0\nmedianB = 0\nans = 0\nif N%2 == 0:\n medianA = statistics.median(listA)\n medianB = statistics.median(listB)\n ans = (medianB - medianA) * 2 + 1\nelse:\n medianA = statistics.median(listA)\n medianB = statistics.median(listB)\n ans = medianB - medianA + 1\n\nprint(int(ans))", "jacc_sim": 0.9444444444444444, "before_after_length": [177, 170], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "import statistics\nimport math\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u054514819", "n_user": "u054514819", "pos": "N = int(input())\nleft = []\nright = []\nfor _ in range(N):\n l, r = map(int, input().split())\n left.append(l)\n right.append(r)\nleft.sort()\nright.sort()\nif N%2==0:\n for i, (l, r) in enumerate(zip(left, right), 1):\n if i==N//2:\n L = l\n R = r\n if i==N//2+1:\n R +=r\n L += l\n print((R-L)+1)\nelse:\n for i, (l, r) in enumerate(zip(left, right), 1):\n if i==N//2+1:\n print(r-l+1)", "neg": "N = int(input())\nleft = []\nright = []\nfor _ in range(N):\n l, r = map(int, input().split())\n left.append(l)\n right.append(r)\nleft.sort()\nright.sort()\nif N%2==0:\n for i, (l, r) in enumerate(zip(left, right[1:]), 1):\n if i==N//2:\n print((r-l)*2-1)\nelse:\n for i, (l, r) in enumerate(zip(left, right[1:]), 1):\n if i==N//2:\n print(r-l+1) ", "jacc_sim": 0.9230769230769231, "before_after_length": [186, 162], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "[1:]pL = l\n R = \n nt((f i==N//2+1:\n R +=\n L += l\n print((RlL+*2-[1:]+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u497952650", "n_user": "u497952650", "pos": "N = int(input())\nab = []\nfor i in range(N):\n ab.append(tuple(map(int,input().split())))\n \nup = sorted(ab,key=lambda a:a[1])\ndown = sorted(ab,key=lambda a:a[0])\n \nif N%2 == 1:\n print(up[N//2][1]-down[N//2][0]+1)\nelse:\n up2 = sorted(ab,key=lambda a:a[1],reverse=True)\n down2 = sorted(ab,key=lambda a:a[0],reverse=True)\n r = (up[N//2][1]+up2[N//2][1])\n l = (down[N//2][0]+down2[N//2][0])\n print(r-l+1)\n", "neg": "N = int(input())\nab = []\nfor i in range(N):\n ab.append(tuple(map(int,input().split())))\n \nup = sorted(ab,key=lambda a:a[0],reverse=True)\ndown = sorted(ab,key=lambda a:a[1],reverse=True)\n \nif N%2 == 1:\n print(up[N//2][1]-down[N//2][0]+1)\nelse:\n up2 = sorted(ab,key=lambda a:a[0],reverse=True)\n down2 = sorted(ab,key=lambda a:a[1],reverse=True)\n r = (up[N//2][1]+up2[N//2][1])\n l = (down[N//2][0]+down2[N//2][0])\n print(r-l+1)", "jacc_sim": 1.0, "before_after_length": [204, 211], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "1])\ndown = sorted(ab,key=lambda a:a[)\n \nif N%2 == 1:\n print(up[N//2][1]-down[N//2][0]+1)\nelse:\n up2 = sorted(ab,key=lambda a:a[1] 210\nifN%2==1:\n pint = +up2[N//2][1])\n l = (down[N//2][0]+down2[N//2][0])\n print(rldown[N//2][0]else:\n up2 = sorted(ab,key=lambda a:a[0],reverse=True)\n down2 = sorted(ab,key=lambda a:a[1],reverse=True)\n r = (up[N//2][1]+up2[N//2][1])\n l = (down[N//2][0]+down2[N//2][0])\n print(r-l+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u222668979", "n_user": "u222668979", "pos": "from statistics import median\n\nn = int(input())\nab = [list(map(int, input().split())) for _ in range(n)]\n\na = [ab[i][0] for i in range(n)]\nb = [ab[i][1] for i in range(n)]\n\nif n % 2 == 0:\n ma, mb = median(a), median(b)\n print(int(2 * mb - 2 * ma + 1))\nif n % 2 == 1:\n ma, mb = median(a), median(b)\n print(int(mb - ma + 1))\n\n\n", "neg": "from statistics import median\n\nn = int(input())\nab = [list(map(int, input().split())) for _ in range(n)]\n\na = [ab[i][0] for i in range(n)]\nb = [ab[i][1] for i in range(n)]\n\nif n % 2 == 0:\n ma, mb = median(a), median(b)\n print(ma,mb)\n print(int(mb - ma) * 2 + 1)\nif n % 2 == 1:\n ma, mb = median(a), median(b)\n print(int(mb - ma + 1))\n\n\n", "jacc_sim": 1.0, "before_after_length": [145, 152], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "ma,mb)\n print(2 * 2ma)2ma)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u239528020", "n_user": "u239528020", "pos": "#!/usr/bin/env python3\nimport statistics\n\nn = int(input())\n\na_list = []\nb_list = []\nfor _ in range(n):\n a, b = list(map(int, input().split()))\n a_list.append(a)\n b_list.append(b)\n\na_median = statistics.median(a_list)\nb_median = statistics.median(b_list)\n\n# print(a_median)\n# print(b_median)\nif n % 2 != 0:\n print(int(b_median-a_median+1))\nelse:\n print(int(b_median*2-a_median*2+1))\n", "neg": "#!/usr/bin/env python3\nimport statistics.median()\n\nn = int(input())\n\na = []\nb = []\nfor _ in range(n):\n a, b = list(map(int, input().split()))\n a.append(a)\n b.append(b)\n\na_median = statistics.median(a)\nb_median = statistics.median(b)\n\nif n % 2 == 0:\n print(b_median-a_median+1)\nelse:\n print(b_median*2-a_median*2+1)\n\n", "jacc_sim": 0.9555555555555556, "before_after_length": [171, 143], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": ".median()_list_list_list_list_list_list\n# print(a_median)\n# print(b_median)=!int()int()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u347640436", "n_user": "u113971909", "pos": "N = int(input())\nA = [None] * N\nB = [None] * N\nfor i in range(N):\n a, b = map(int, input().split())\n A[i] = a\n B[i] = b\n\nA.sort()\nB.sort()\n\nif N % 2 == 0:\n b = (B[N // 2] + B[(N - 1) // 2]) / 2\n a = (A[N // 2] + A[(N - 1) // 2]) / 2\n print(int((b - a) * 2 + 1))\nelse:\n print(B[N // 2] - A[N // 2] + 1)\n", "neg": "N = int(input())\nA = [None]*N\nB = [None]*N\n\nfor i in range(N):\n a,b = map(int, input().split())\n A[i]=a\n B[i]=b\n A.sort()\n B.sort()\n\n if N%2==0:\n x=A[N//2-1]\n y=B[N//2]\n else:\n x=A[N//2]\n y=B[N//2]\n print(y-x+1)\n", "jacc_sim": 0.9444444444444444, "before_after_length": [167, 138], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " N\nB= [\nB = [N \n A[i]=a\nBA a\n B[i] = \n xb A (B ] + B[(N )]\n y=B[N2]\n2])/2\n a = (A[N // 2] + A[(N - 1) // 2]) / 2\n print(int((b - a) * 2 + 1))\n x=A[N//2]\n y=B[N//2]\n yB[N // 2] x A[N // 2] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u102305348", "n_user": "u995062424", "pos": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\nA.sort()\nB.sort()\nif N % 2 == 0:\n b = (B[N//2-1]+B[N//2])/2\n a = (A[N//2-1]+A[N//2])/2\n ans = (b-a)//0.5 +1\nelse:\n b = B[(N+1)//2-1]\n a = A[(N+1)//2-1]\n ans = b-a+1\nprint(int(ans))", "neg": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\nA.sort()\nB.sort()\n \nif(N%2 != 0): \n print(B[N//2+1]-A[N//2+1]+1)\nelse:\n print(B[N//2]+B[N//2-1] - A[N//2]-A[N//2-1] + 1)", "jacc_sim": 0.9166666666666666, "before_after_length": [178, 137], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": " \n( 2!2 =) b = print+1]A[N//2+1B[N//2]/2\n a = (A[N//2-1]+A[N//2])/2\n ans = (b-a)//0.5 +1bprint(B[N//2]+B[N//2-1]-=AB(//2]-A[N//2-1] //2-1]\n a = A[(N+1)//2-1]\n ans = b-a+1\nprint(int(ans))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u930705402", "n_user": "u930705402", "pos": "from math import *\nfrom statistics import median\nN=int(input())\nA,B=[],[]\nfor i in range(N):\n a,b=map(int,input().split())\n A.append(a);B.append(b)\nA.sort();B.sort()\nif N%2:\n ans=B[(N+1)//2-1]-A[(N+1)//2-1]+1\nelse:\n ans=1+((B[N//2-1]+B[N//2]))-((A[N//2-1]+A[N//2]))\nprint(ans)", "neg": "from math import *\nfrom statistics import median\nN=int(input())\nA,B=[],[]\nfor i in range(N):\n a,b=map(int,input().split())\n A.append(a);B.append(b)\nA.sort();B.sort()\nif N%2:\n ans=median(B)-median(A)+1\nelse:\n ans=(median(B)-median(A))*2+1\nprint(ans)", "jacc_sim": 0.975, "before_after_length": [149, 111], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "median([)-medianAN+1//2-1]-A[(N+1)//2-1](median(B)-median(A))*2++\nprintans(B[N//2-1]+B[N//2])-((A[N//2-1]+A[N//2]))\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u025463382", "n_user": "u025463382", "pos": "n = int(input())\na = []\nb = []\nfor i in range(n):\n ai,bi = [int(j) for j in input().split()]\n a.append(ai)\n b.append(bi)\na.sort()\nb.sort()\nif n == 1:\n ans = b[0] - a[0] + 1\nelif n % 2 == 1:\n tg = (n+1) // 2\n ans = b[-tg] - a[tg-1] + 1\nelse:\n tg = n//2\n ans = b[-tg] + b[-tg-1] - a[tg-1] - a[tg] +1\nprint(ans)", "neg": "n = int(input())\na = []\nb = []\nfor i in range(n):\n ai,bi = [int(j) for j in input().split()]\n a.append(ai)\n b.append(bi)\na.sort()\nb.sort()\nif n % 2 == 1:\n tg = (n+1) // 2\n ans = b[-tg] + a[tg-1] + 1\nelse:\n tg = n//2\n ans = b[-tg] + b[-tg-1] - a[tg-1] - a[tg] +1\nprint(ans)", "jacc_sim": 0.9444444444444444, "before_after_length": [175, 153], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "== 1:\n ans = b[0] - a[0] + 1\nelif n +-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u698919163", "n_user": "u698919163", "pos": "N = int(input())\nA_list = [0]*N\nB_list = [0]*N\nfor i in range(N):\n A_list[i],B_list[i] = map(int,input().split())\n\nA_list.sort()\nB_list.sort()\n\nif N%2 == 1:\n print(B_list[(N-1)//2] - A_list[(N-1)//2] + 1)\nelse:\n big = (B_list[N//2] + B_list[N//2-1])/2\n small = (A_list[N//2] + A_list[N//2-1])/2\n print(int((big-small)*2 + 1))", "neg": "N = int(input())\nA_list = [0]*N\nB_list = [0]*N\nfor i in range(N):\n A_list[i],B_list[i] = map(int,input().split())\n\nA_list.sort()\nB_list.sort()\n\nif N%2 == 1:\n print(B_list[(N+1)//2] - A_list[(N+1)//2] + 1)\nelse:\n big = (B_list[N//2] + B_list[N//2-1])/2\n small = (A_list[N//2] + A_list[N//2-1])/2\n print(int((big-small)*2 + 1))", "jacc_sim": 1.0, "before_after_length": [180, 180], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "+1)//2] 1)//2]- +-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u201986772", "n_user": "u201986772", "pos": "n=int(input())\nalis=[]\nblis=[]\nfor i in range(n):\n a,b=map(int,input().split())\n alis.append(a)\n blis.append(b)\n \n \nalis=sorted(alis)\nblis=sorted(blis)\nif n%2!=0:\n print(blis[int((n-1)/2)]-alis[int((n-1)/2)]+1)\nelse:\n bb=(blis[int(n/2)-1]+blis[int(n/2)])\n aa=(alis[int(n/2)-1]+alis[int(n/2)])\n print(bb-aa+1)", "neg": "n=int(input())\nalis=[]\nblis=[]\nfor i in range(n):\n a,b=map(int,input().split())\n alis.ppend(a)\n blis.append(b)\n \n \nalis=sorted(alis)\nblis=sorted(blis)\nif n%2!=0:\n print(blis[int((n-1)/2)]-alis[int((n-1)/2)+1]\nelse:\n bb=(blis[int(n/2)-1]+blis[int(n/2)])\n aa=(alis[int(n/2)-1]+alis[int(n/2)])\n print(bb-aa+1)", "jacc_sim": 0.972972972972973, "before_after_length": [179, 179], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "a]])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u567225946", "n_user": "u567225946", "pos": "n=int(input())\naa=[]\nbb=[]\nfor i in range(n):\n a,b=map(int,input().split())\n aa.append(a)\n bb.append(b)\naa.sort()\nbb.sort()\nif(n%2==0):\n print(bb[n//2-1]+bb[n//2]-aa[n//2]-aa[n//2-1]+1)\nelse:\n print(bb[n//2]-aa[n//2]+1)", "neg": "n=int(input())\naa=[]\nbb=[]\nfor i in range(n):\n a,b=map(int,input().split())\n aa.append(a)\n bb.append(b)\naa.sort()\nbb.sort()\nif(n%2==0):\n print(b[n//2-1]+b[n//2]-a[n//2]-a[n//2-1]+1)\nelse:\n print(b[n//2]-a[n//2]+1)", "jacc_sim": 1.0, "before_after_length": [129, 129], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "bbaaba", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u895408010", "n_user": "u114920558", "pos": "n = int(input())\nA,B = [],[]\nfor i in range(n):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\nA.sort()\nB.sort()\nif n%2==1:\n x = A[n//2]\n y = B[n//2]\nelse:\n x = A[n//2 - 1]+A[n//2]\n y = B[n//2 - 1]+B[n//2]\nprint(y-x+1)", "neg": "N = int(input())\nA = list()\nB = list()\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n \nA.sort()\nB.sort()\n\nif(N%2==1):\n x = A[(N-1)//2]\n y = B[(N-1)//2]\n print(y-x+1)\nelse:\n x = A[(N//2)+1] + A[N//2]\n y = B[(N//2)+1] + B[N//2]\n print(y-x+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [138, 167], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "Nn, = list()\n[],[]list()Nna, a, \n\n(N n) (Nn//2]\n y = B[n//2]\nelse:\n x = A[n//2 )//2+A[n//2] (Nn//2 1)//2]\n 1]+B[n//2]\n\nelse:\n x = A[(N//2)+1] + A[N//2]\n y = B[(N//2)+1] + B[N//2]\n print(y-x+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u932291797", "n_user": "u932291797", "pos": "n = int(input())\nminnums = [[] for _ in range(n)]\nmaxnums = [[] for _ in range(n)]\n\nfor i in range(n):\n minnums[i], maxnums[i] = map(int, input().split())\n \nminnums.sort()\nmaxnums.sort()\n\nif n % 2:\n minmedian = minnums[n // 2]\n maxmedian = maxnums[n // 2]\n print(maxmedian - minmedian + 1)\nelse:\n minmedian = (minnums[n // 2 - 1] + minnums[n // 2]) / 2\n maxmedian = (maxnums[n // 2 - 1] + maxnums[n // 2]) / 2\n print(int((maxmedian - minmedian) * 2 + 1))", "neg": "n = int(input())\nminnums = [[] for _ in range(n)]\nmaxnums = [[] for _ in range(n)]\n\nfor i in range(n):\n minnums[i], maxnums[i] = map(int, input().split())\n \nminnums.sort()\nmaxnums.sort()\n\nif n % 2:\n minmedian = minnums[n // 2]\n maxmedian = maxnums[n // 2]\n print(maxmedian - minmedian + 1)\nelse:\n minmedian = (minnums[n // 2 - 1] + minnums[n // 2]) / 2\n maxmedian = (maxnums[n // 2 - 1] + maxnums[n // 2]) / 2\n print(int((maxmedian - minmedian) * 2 + 1))\n\n\nprint(minmedian, maxmedian)", "jacc_sim": 1.0, "before_after_length": [189, 200], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "\n\n\nprint(minmedian, maxmedian)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u843073153", "n_user": "u843073153", "pos": "n = int(input())\nab =[list(map(int,input().split())) for _ in range(n)]\n\nab.sort()\na = []\nb =[]\nfor x in ab:\n a.append(x[0])\n b.append(x[1])\na.sort()\nb.sort()\n\nca,cb =0,0\nif n % 2 == 0:\n ca = (a[n//2-1] + a[n//2])/2\n cb = (b[n//2-1] + b[n//2])/2\n ans = int((cb-ca)//0.5+1)\nelse:\n ca = a[(n+1)//2-1]\n cb = b[(n+1)//2-1]\n ans = (cb-ca) +1\n\nprint(int(ans))", "neg": "n = int(input())\nab =[list(map(int,input().split())) for _ in range(n)]\n\na = []\nb =[]\nfor x in ab:\n a.append(x[0])\n b.append(x[1])\n\na.sort()\nb.sort()\nca,cb =0,0\nif n % 2 == 0:\n ca = (a[n//2-1] + a[n//2])//2\n cb = (b[n//2-1] + b[n//2])//2\n ans = (cb-ca) / 0.5 +1\nelse:\n ca = a[(n+1)//2-1]\n cb = b[(n+1)//2-1]\n ans = (cb-ca)//0.5 +1\n\nprint(int(ans))", "jacc_sim": 1.0, "before_after_length": [210, 207], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "b.sort()\na\n\n//int( / )//0.5", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u290886932", "n_user": "u290886932", "pos": "N = int(input())\nL = list()\nAs, Bs= list(),list()\nfor i in range(N):\n A,B = map(int,input().split())\n L.append([A,B])\n As.append(A)\n Bs.append(B)\n\nAs.sort()\nBs.sort()\nif N % 2 == 0:\n mins = (As[N//2] + As[N//2-1]) / 2.0\n maxs = (Bs[N//2] + Bs[N//2-1]) / 2.0\n print(int((maxs-mins)/0.5)+1)\nelse:\n mins,maxs = As[N//2], Bs[N//2]\n\n print(int(maxs-mins)+1)", "neg": "N = int(input())\nL = list()\nAs, Bs= list(),list()\nfor i in range(N):\n A,B = map(int,input().split())\n L.append([A,B])\n As.append(A)\n Bs.append(B)\n\nAs.sort()\nBs.sort()\nif N % 2 == 0:\n mins = (As[N//2] + As[N//2-1]) / 2.0\n maxs = (Bs[N//2] + Bs[N//2-1]) / 2.0\nelse:\n mins,maxs = As[N//2], Bs[N//2]\n\nprint(int(maxs-mins)+1)\n", "jacc_sim": 0.9736842105263158, "before_after_length": [197, 179], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "else:\nmprs,t(int(( = As[N//2], Bs[N//2]\n\nprint(int(maxs)/0.5else:\n mins,maxs = As[N//2], Bs[N//2]\n\n print(int(maxs-mins)+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02661", "p_user": "u865298224", "n_user": "u865298224", "pos": "import math\n\nN = int(input())\nA = [0] * N\nB = [0] * N\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nA.sort()\nB.sort()\n\nmid_a = A[(N + 1) // 2 - 1] if N % 2 == 1 else (A[N // 2 - 1] + A[N // 2]) / 2\nmid_b = B[(N + 1) // 2 - 1] if N % 2 == 1 else (B[N // 2 - 1] + B[N // 2]) / 2\n\n# ans = 0\n# if isinstance(mid_a, float):\n# if not mid_a.is_integer():\n# ans += 1\n# mid_a = math.ceil(mid_a)\n# if isinstance(mid_b, float):\n# if not mid_b.is_integer():\n# ans += 1\n# mid_b = math.floor(mid_b)\n\nans = (mid_b - mid_a + 1) if N % 2 == 1 else int((mid_b - mid_a) * 2) + 1\nprint(ans)\n", "neg": "import math\n\nN = int(input())\nA = [0] * N\nB = [0] * N\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nA.sort()\nB.sort()\n\nmid_a = A[(N + 1) // 2 - 1] if N % 2 == 1 else (A[N // 2 - 1] + A[N // 2]) / 2\nmid_b = B[(N + 1) // 2 - 1] if N % 2 == 1 else (B[N // 2 - 1] + B[N // 2]) / 2\n\nans = 0\nif isinstance(mid_a, float):\n if not mid_a.is_integer():\n ans += 1\n mid_a = math.ceil(mid_a)\nif isinstance(mid_b, float):\n if not mid_b.is_integer():\n ans += 1\n mid_b = math.floor(mid_b)\nprint(mid_b - mid_a + 1)\n", "jacc_sim": 0.9767441860465116, "before_after_length": [291, 253], "nl": "You are given N integers X1, X2, ..., XN, where Ai \u2264 Xi \u2264 Bi. Find the number of different values that the median of X1, X2, ..., XN can take. The median is defined as follows: if N is odd, the median is x((N+1)/2); if N is even, the median is (x(N/2) + x(N/2+1)) / 2. Constraints: 2 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 Bi \u2264 10^9. Input is given in the format: N, A1 B1, A2 B2, ..., AN BN. Output the answer. Example: Input: 2, 1 2, 2 3. Output: 3.", "diff_info": "# # # #ans+=ans+= # # # #ans+=ans+= # \nans = (mid_b - mid_a + 1) if N % 2 == 1 else int((mid_b - mid_a) * 2) + 1\nmid_b - mid_ns + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u410118019", "n_user": "u968846084", "pos": "import collections\nn=int(input())\nA=[]\nAA=[]\nB=[]\nC=[]\nX=[]\nmod=277078100995604201\nfor i in range(n):\n a,b=map(int,input().split())\n if a<0:\n a=a*-1\n b=b*-1\n if a*b>0:\n A.append(b*pow(a,mod-2,mod)%mod)\n elif a*b<0:\n AA.append(a*pow((-b),mod-2,mod)%mod)\n else:\n if a==0 and b==0:\n X.append(i)\n elif a==0:\n B.append(i)\n else:\n C.append(i)\nmod = 10**9+7\nD=collections.Counter(A)\nDD=collections.Counter(AA)\nE=set(list(D)+list(DD))\na=1\nfor i in E:\n a=(a*(2**D[i]+2**DD[i]-1))%mod\na=(a*(2**len(B)+2**len(C)-1)-1)%mod\nprint((a+len(X))%mod)", "neg": "import collections\nn=int(input())\nA=[]\nAA=[]\nB=[]\nC=[]\nX=[]\nmod=10**9+7\nfor i in range(n):\n a,b=map(int,input().split())\n if a<0:\n a=a*-1\n b=b*-1\n if a*b>0:\n A.append(b*pow(a,mod-2,mod)%mod)\n elif a*b<0:\n AA.append(a*pow((-b),mod-2,mod)%mod)\n else:\n if a==0 and b==0:\n X.append(i)\n elif a==0:\n B.append(i)\n else:\n C.append(i)\nD=collections.Counter(A)\nDD=collections.Counter(AA)\nE=set(list(D)+list(DD))\na=1\nfor i in E:\n a=(a*(2**D[i]+2**DD[i]-1))%mod\nif len(B)==0 and len(C)==0:\n pass\nelif len(B)==0:\n a=(a*(2**len(C))-1)%mod\nelif len(C)==0:\n a=(a*(2**len(B))-1)%mod\nelse:\n a=(a*(2**len(B)+2**len(C)-1)-1)%mod\nprint((a+len(X))%mod)", "jacc_sim": 0.9636363636363636, "before_after_length": [304, 369], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "277078100995604201\nfor i in range(n):\n a,b=map(int,input().split())\n if a<0:\n a=a*-1\n b=b*-1\n if a*b>0:\n A.append(b*pow(a,mod-2,mod)%mod)\n elif a*b<0:\n AA.append(a*pow((-b),mod-2,mod)%mod)\n else:\n if a==0 and b==0:\n X.append(i)\n elif a==0:\n B.append(i)\n else:\n C.append(i)\nmod = Dfor i in range(n):\n a,bmap(incollec,ops.Cot().split())\n if a<0:\n a=a*-1\n b=b*-1\n if a*b>0:\n A.appedterb*pA)\nDD=cw(a,mllectins.Cd-2,mdunter(AA)\nE=set(list(D)+list(DD))\na=1\nfor i in E:\n a=(a*(2**D[i]+2**DD[i]-1)) elif =*b<0:\n AA.appendpow(-b),mod-,mod**len(B)+2**len(C)-1)-1)pr else:\n f a==0 at((a+len(d b==0:\n .append(i)\n elif a==0:\n B.append(i)\n else:\n C.append(i)\nD=collections.Counter(A)\nDD=collections.Counter(AA)\nE=set(list(D)+list(DD))\na=1\nfor i in E:\n a=(a*(2**D[i]+2**DD[i]-1\nif len(B==0 and len(C)==0:\n pass\nelif len(B)==0:\n a=(a*(2**len(C))-1)%mod\nelif len(C)==0:\n a=(a*(2**len(B))-1)%mod\nelse:\n a=(a*(2**len(B)+2**len(C)-1)-1)%mod\nprint((a+len(X))%mod)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u667084803", "n_user": "u588794534", "pos": "from math import gcd \nfrom collections import defaultdict\n\ndef to_irreducible(a, b):\n if a == 0:\n return [0, 1]\n GCD = gcd(a, b)\n return [a//GCD, b//GCD]\n\nMOD = 10**9 + 7\nN = int(input())\ndaiichi_dict = defaultdict(int)\ndaini_dict = defaultdict(int)\nzero_cases = 0\n\nfor i in range(N):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n zero_cases += 1\n elif a * b >=0 and b != 0:\n a, b = to_irreducible(abs(a), abs(b))\n daiichi_dict[(a,b)] += 1\n else:\n a, b = to_irreducible(abs(b), abs(a))\n daini_dict[(a,b)] += 1\n daiichi_dict[(a,b)] += 0\n\n\nans = 1 \nfor key, value_daiichi in daiichi_dict.items():\n value_daini = daini_dict[key]\n ans *= (2**value_daiichi + 2**value_daini -1)\n ans %= MOD\nprint((ans+zero_cases-1) % MOD)", "neg": "from flactions import gcd \nfrom collections import defaultdict\n\ndef to_irreducible(a, b):\n if a == 0:\n return [0, 1]\n GCD = gcd(a, b)\n return [a//GCD, b//GCD]\n\nMOD = 10**9 + 7\nN = int(input())\ndaiichi_dict = defaultdict(int)\ndaini_dict = defaultdict(int)\nzero_cases = 0\n\nfor i in range(N):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n zero_cases += 1\n elif a * b >=0 and b != 0:\n a, b = to_irreducible(abs(a), abs(b))\n daiichi_dict[(a,b)] += 1\n else:\n a, b = to_irreducible(abs(b), abs(a))\n daini_dict[(a,b)] += 1\n daiichi_dict[(a,b)] += 0\n\n\nans = 1 \nfor key, value_daiichi in daiichi_dict.items():\n value_daini = daini_dict[key]\n ans *= (2**value_daiichi + 2**value_daini -1)\n ans %= MOD\nprint((ans+zero_cases-1) % MOD)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [342, 344], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "mflchions\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u945181840", "n_user": "u945181840", "pos": "import sys\nfrom math import gcd\nfrom collections import Counter\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, *AB = map(int, read().split())\nmod = 10 ** 9 + 7\n\nab = []\nzero = 0\nfor A, B in zip(*[iter(AB)] * 2):\n if A == 0 and B == 0:\n zero += 1\n continue\n if A == 0:\n B = -1\n elif B == 0:\n A = 1\n else:\n g = gcd(A, B)\n A //= g\n B //= g\n if A < 0:\n A, B = -A, -B\n ab.append((A, B))\n\ncnt = Counter(ab)\nanswer = 1\nchecked = set()\nok = 0\n\nfor (i, j), n in cnt.items():\n if (i, j) in checked:\n continue\n if j < 0:\n c, d = -j, i\n else:\n c, d = j, -i\n if (c, d) in cnt:\n m = cnt[(c, d)]\n answer = (answer * (pow(2, n, mod) + pow(2, m, mod) - 1)) % mod\n checked.add((c, d))\n else:\n ok += n\n\nanswer *= pow(2, ok, mod)\nanswer -= 1\nanswer += zero\nanswer %= mod\nprint(answer)\n", "neg": "import sys\nfrom math import gcd\nfrom collections import Counter\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, *AB = map(int, read().split())\nmod = 10 ** 9 + 7\n\nab = []\nzero = 0\nfor A, B in zip(*[iter(AB)] * 2):\n if A == 0 and B == 0:\n zero += 1\n continue\n if A == 0:\n B = -1\n elif B == 0:\n A = 1\n else:\n g = gcd(A, B)\n A //= g\n B //= g\n if A < 0:\n A, B = -A, -B\n ab.append((A, B))\n\ncnt = Counter(ab)\nanswer = 1\nchecked = set()\nok = 0\n\nfor (i, j), n in cnt.items():\n if (i, j) in checked:\n continue\n if j < 0:\n c, d = -j, i\n else:\n c, d = j, -i\n if (c, d) in cnt:\n m = cnt[(c, d)]\n answer = (answer * (pow(2, n, mod) + pow(2, m, mod) - 1)) % mod\n checked.add((c, d))\n else:\n ok += n\n\nanswer *= pow(2, ok, mod)\nanswer %= mod\nanswer -= 1\nanswer += zero\nprint(answer+1)\n", "jacc_sim": 1.0, "before_after_length": [358, 360], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "-= 1\nanswer += zero\nanswer answer -= 1\nanswer += zero\n+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u197300773", "n_user": "u197300773", "pos": "def f():\n return [0,0]\n\nfrom collections import defaultdict\nimport math\nmod=1000000007\nn=int(input())\ndic=defaultdict(f)\nx=[]\nzerozero,azero,bzero=0,0,0\ntwo=[1]\n\nfor i in range(n):\n two.append(two[-1]*2%mod)\n\nfor _ in range(n):\n \n a,b=map(int,input().split())\n if a==0 and b==0: zerozero+=1\n elif a==0: azero+=1\n elif b==0: bzero+=1\n else:\n k=math.gcd(a,b)\n a//=k;b//=k\n if a<0: a*=-1;b*=-1\n if a*b>0: dic[(a,b)][0]+=1\n else: dic[(-b,a)][1]+=1\n\nfor (a,b) in dic:\n x.append(dic[(a,b)])\nx.append([azero,bzero])\nans=1\nfor [p,q] in x:\n ans*=(two[p]+two[q]-1)\n ans%=mod\n\nprint((ans-1+zerozero)%mod)", "neg": "from collections import defaultdict\nimport math\nmod=1000000007\nn=int(input())\ndic=defaultdict(int)\nx=[]\nzerozero,azero,bzero=0,0,0\ntwo=[1]\n\nfor i in range(n):\n two.append(two[-1]*2%mod)\n\nfor _ in range(n):\n \n a,b=map(int,input().split())\n if a==0 and b==0: zerozero+=1\n elif a==0: azero+=1\n elif b==0: bzero+=1\n else:\n k=math.gcd(a,b)\n a//=k;b//=k\n if a<0: a*=-1;b*=-1\n dic[(a,b)]+=1\n if a*b>0: dic[(b,-a)]+=0\n else: dic[(-b,a)]+=0\n\nfor (a,b) in dic:\n if a*b>0:\n x.append([ dic[(a,b)], dic[(b,-a)] ])\nx.append([azero,bzero])\nans=1\nfor [p,q] in x:\n ans*=(two[p]+two[q]-1)\n ans%=mod\nprint(x)\n\nprint(ans-1)", "jacc_sim": 0.9482758620689655, "before_after_length": [320, 334], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "from collections import a f():\n retrn [0,0]\n\nfrom collections import defaufintdf c[(,*>0: dic[(a,b][0elseif a*b>0b,b,][101 else: dic[(-b,a)]+=0\n if a*b>0:\n [ ], dic[(b,-a)] print(x)\n(+zerozero%mod)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u390727364", "n_user": "u390727364", "pos": "from sys import stdin, setrecursionlimit\n\n\ndef gcd(x, y):\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\ndef main():\n mod = 10 ** 9 + 7\n input = stdin.buffer.readline\n n = int(input())\n p = []\n m = []\n\n zz = 0\n\n for _ in range(n):\n a, b = map(int, input().split())\n if a != 0 and b != 0:\n g = gcd(a, b)\n f = b / a\n if b / a < 0:\n m.append(str(abs(a // g)) + ':' + str(abs(b // g)))\n elif f > 0:\n p.append(str(abs((b // g))) + ':' + str(abs((a // g))))\n elif a == 0 and b == 0:\n zz += 1\n elif a == 0:\n m.append(0)\n elif b == 0:\n p.append(0)\n\n g_p = {}\n for k in p:\n if k in g_p:\n g_p[k] += 1\n else:\n g_p[k] = 1\n g_m = {}\n for k in m:\n if k in g_m:\n g_m[k] += 1\n else:\n g_m[k] = 1\n\n ans = 1\n\n for k in g_p:\n if k in g_m:\n ans *= (2 ** g_p[k] + 2 ** g_m[k] - 1)\n else:\n ans *= 2 ** g_p[k]\n ans %= mod\n for k in g_m:\n if not (k in g_p):\n ans *= 2 ** g_m[k]\n ans %= mod\n print((ans + zz - 1) % mod)\n\n\nif __name__ == \"__main__\":\n setrecursionlimit(10000)\n main()\n", "neg": "from sys import stdin, setrecursionlimit\n\n\ndef gcd(x, y):\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\ndef main():\n mod = 10 ** 9 + 7\n input = stdin.buffer.readline\n n = int(input())\n p = []\n m = []\n\n zz = 0\n\n for _ in range(n):\n a, b = map(int, input().split())\n if a != 0 and b != 0:\n g = gcd(a, b)\n f = b / a\n if b / a < 0:\n m.append(-(a // g) / (b // g))\n elif f > 0:\n p.append((b // g) / (a // g))\n elif a == 0 and b == 0:\n zz += 1\n elif a == 0:\n m.append(0)\n elif b == 0:\n p.append(0)\n\n g_p = {}\n for k in p:\n if k in g_p:\n g_p[k] += 1\n else:\n g_p[k] = 1\n g_m = {}\n for k in m:\n if k in g_m:\n g_m[k] += 1\n else:\n g_m[k] = 1\n\n ans = 1\n\n for k in g_p:\n if k in g_m:\n ans *= (2 ** g_p[k] + 2 ** g_m[k] - 1)\n else:\n ans *= 2 ** g_p[k]\n ans %= mod\n for k in g_m:\n if not (k in g_p):\n ans *= 2 ** g_m[k]\n ans %= mod\n print((ans - 1) % mod + zz + 1)\n\n\nif __name__ == \"__main__\":\n setrecursionlimit(10000)\n main()\n", "jacc_sim": 0.971830985915493, "before_after_length": [497, 481], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "-str(abs)/+':' + str(abs)(str(abs))/+':' + str(abs())- 1) % mod +-) % mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u367701763", "n_user": "u367701763", "pos": "from collections import defaultdict\nfrom math import gcd\nN = int(input())\nMOD = 10**9 + 7\nL = defaultdict(lambda: [0,0])\nzero = 0\nfor _ in range(N):\n A, B = map(int, input().split())\n if A==0: d=B\n elif B==0: d=A\n else: d=gcd(A,B)\n if d != 0:\n A, B = A//d, B//d\n if A<0: A, B = -A, -B\n if B>0: L[(A,B)][0] += 1\n else: L[(-B,A)][1] += 1\n else: zero += 1\nres = 1\nfor x,y in L.values():\n res *= pow(2,x,MOD) + pow(2,y,MOD) -1\n res %= MOD\nprint((res+zero-1)%MOD)", "neg": "from collections import defaultdict\nfrom math import gcd\nN = int(input())\nMOD = 10**9 + 7\nL = defaultdict(lambda: [0,0])\nzero = 0\nfor _ in range(N):\n A, B = map(int, input().split())\n if A==0: d=B\n elif B==0: d=A\n else: d=gcd(A,B)\n if d != 0:\n A, B = A//d, B//d\n if A<0: A, B = -A, -B\n if B>0: L[(A,B)][0] += 1\n else: L[(-B,A)][1] += 1\n else: zero += 1\nres = 1\nprint(L)\nfor x,y in L.values():\n res *= pow(2,x,MOD) + pow(2,y,MOD) -1\n res %= MOD\nprint(res + zero-1)", "jacc_sim": 1.0, "before_after_length": [227, 229], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "print(L)\n( %MOD)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u330728443", "n_user": "u330728443", "pos": "#E\nfrom math import gcd\nN=int(input())\n\nmod=1000000007\nans=1\nP=dict()\nM=dict()\nzero=0\nzero1=0\nzero2=0\nfor i in range(N):\n a,b=map(int,input().split())\n if a==0 and b==0:\n zero+=1\n elif a==0 and b!=0:\n zero1+=1\n elif a!=0 and b==0:\n zero2+=1\n elif (a>0 and b<0) or (a<0 and b>0):\n GCD=gcd(abs(a),abs(b))\n a=abs(a)//GCD\n b=abs(b)//GCD\n s=str(a)+\"/\"+str(b)\n P[s]=P.get(s,0)+1\n \n else:\n GCD=gcd(abs(a),abs(b))\n a=abs(a)//GCD\n b=abs(b)//GCD\n s=str(b)+\"/\"+str(a)\n M[s]=M.get(s,0)+1\n\nP[\"0/0\"]=zero1\nM[\"0/0\"]=zero2\nfor v,cnt_p in P.items():\n if v in M:\n cnt_m=M[v]\n ans*=(2**cnt_p+2**cnt_m-1)\n M.pop(v)\n else:\n ans*=2**cnt_p\n ans%=mod\n \nfor v,cnt_m in M.items():\n ans*=2**cnt_m\n ans%=mod\n\nans-=1\nans+=zero\nans%=mod\nprint(ans)", "neg": "#E\nfrom fractions import gcd\nN=int(input())\n\nmod=1000000007\nans=1\nP=dict()\nM=dict()\nzero=0\nzero1=0\nzero2=0\nfor i in range(N):\n a,b=map(int,input().split())\n if a==0 and b==0:\n zero+=1\n elif a==0 and b!=0:\n zero1+=1\n elif a!=0 and b==0:\n zero2+=1\n elif (a>0 and b<0) or (a<0 and b>0):\n GCD=gcd(abs(a),abs(b))\n a=abs(a)//GCD\n b=abs(b)//GCD\n s=str(a)+\"/\"+str(b)\n P[s]=P.get(s,0)+1\n \n else:\n GCD=gcd(abs(a),abs(b))\n a=abs(a)//GCD\n b=abs(b)//GCD\n s=str(b)+\"/\"+str(a)\n M[s]=M.get(s,0)+1\n\nP[\"0/0\"]=zero1\nM[\"0/0\"]=zero2\nfor v,cnt_p in P.items():\n if v in M:\n cnt_m=M[v]\n ans*=(2**cnt_p+2**cnt_m-1)\n M.pop(v)\n else:\n ans*=2**cnt_p\n ans%=mod\n \nfor v,cnt_m in M.items():\n ans*=2**cnt_m\n ans%=mod\n\nans-=1\nans+=zero\nans%=mod\nprint(ans)", "jacc_sim": 0.9682539682539683, "before_after_length": [440, 441], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "mfrchions", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u674959776", "n_user": "u674959776", "pos": "import functools\nMOD=10**9+7\n\ndef euclid(a, b):\n if b == 0:\n return a\n else:\n return euclid(b, a%b)\n\ndef gcd(nums):\n return functools.reduce(euclid, nums)\n\nn=int(input())\nt=[]\nfor i in range(n):\n a,b=map(int,input().split())\n t.append((a,b))\nz=0\ny={}\nfor i in range(n):\n if t[i][0]==0 and t[i][1]==0:\n z+=1\n else:\n g=abs(gcd([t[i][0],t[i][1]]))\n if t[i][1]==0:\n a=(1,0)\n elif t[i][1]>0:\n a=(t[i][0]//g , t[i][1]//g)\n else:\n a=(-t[i][0]//g , -t[i][1]//g)\n if a not in y:\n y[a]=1\n else:\n y[a]+=1\n\ncnt=0\nx=1\nfor i in y:\n if (-i[1],i[0]) in y:\n x *= pow(2,y[(-i[1],i[0])],MOD) + pow(2,y[(i[0],i[1])],MOD)-1\n cnt+= y[(-i[1],i[0])] + y[(i[0],i[1])]\n\nans = pow(2,n-z-cnt,MOD) *x -1\nprint((ans+z)%MOD)\n", "neg": "import functools\nMOD=10**9+7\n\ndef euclid(a, b):\n if b == 0:\n return a\n else:\n return euclid(b, a%b)\n\ndef gcd(nums):\n return functools.reduce(euclid, nums)\n\nn=int(input())\nt=[]\nfor i in range(n):\n a,b=map(int,input().split())\n t.append((a,b))\nz=0\ny={}\nfor i in range(n):\n if t[i][0]==0 and t[i][1]==0:\n z+=1\n else:\n g=abs(gcd([t[i][0],t[i][1]]))\n if t[i][1]==0:\n a=(1,0)\n elif t[i][1]>0:\n a=(t[i][0]//g , t[i][1]//g)\n else:\n a=(-t[i][0]//g , -t[i][1]//g)\n if a not in y:\n y[a]=1\n else:\n y[a]+=1\n\ncnt=0\nx=1\nfor i in y:\n if (-i[1],i[0]) in y:\n x *= pow(2,y[(-i[1],i[0])],MOD) + pow(2,y[(i[0],i[1])],MOD)-1\n cnt+= y[(-i[1],i[0])] + y[(i[0],i[1])]\n\nans = pow(2,n-z-cnt,MOD) *x -1\nprint(x+z)", "jacc_sim": 1.0, "before_after_length": [428, 424], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "x(ans%MOD)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u619819312", "n_user": "u619819312", "pos": "from math import gcd\nfrom collections import defaultdict as d\nn=int(input())\nm=10**9+7\ns=d(lambda:[0,0])\np=-1\nfor i in range(n):\n a,b=map(int,input().split())\n if a==b==0:p+=1\n else:\n g=gcd(a,b)\n a=a//g\n b=b//g\n if a<0 or a==0= 0 and b != 0:\n irr = to_irreducible(abs(a), abs(b))\n quadrant1[irr] += 1\n else:\n irr = to_irreducible(abs(b), abs(a))\n quadrant2[irr] += 1\n quadrant1[irr] += 0\n\nans = 1 \nfor key, v1 in quadrant1.items():\n v2 = quadrant2[key]\n ans *= (2**v1 + 2**v2 -1)\n ans %= MOD\nprint((ans+zero_cases-1) % MOD)", "neg": "from math import gcd \nfrom collections import defaultdict\n\ndef to_irreducible(a, b):\n if a == 0:\n return (0, 1)\n GCD = gcd(a, b)\n return (a//GCD, b//GCD)\n\nMOD = 10**9 + 7\nN = int(input())\nquadrant1 = defaultdict(int)\nquadrant2 = defaultdict(int)\nzero_cases = 0\n\nfor i in range(N):\n a, b = map(int, input().split())\n irr = to_irreducible(abs(a), abs(b))\n if a == 0 and b == 0:\n zero_cases += 1\n elif a * b >= 0 and b != 0:\n quadrant1[irr] += 1\n else:\n quadrant2[reversed(irr)] += 1\n quadrant1[reversed(irr)] += 0\n\nans = 1 \nfor key, v1 in quadrant1.items():\n v2 = quadrant2[key]\n ans *= (2**v1 + 2**v2 -1)\n ans %= MOD\nprint((ans+zero_cases-1) % MOD)", "jacc_sim": 0.9830508474576272, "before_after_length": [298, 284], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "frr=at== 0 and b == 0:\n zerirreduible(be(a), ab(b))\n+ if a =01\nandb elif a * b > 0 and b !izer = tcasirrducible(ab(a), abs(b))\n quadrant1[irr]seif a * b >= 0 and b != 0quadrant1[]+1\n to_irrducibs:(abs(b), abs(a))reversed()reversed()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u764956288", "n_user": "u764956288", "pos": "from sys import stdin\nfrom collections import defaultdict\nfrom math import gcd\n\n\ndef main():\n MOD = 1000000007\n\n N, *AB = map(int, stdin.buffer.read().split())\n\n d = defaultdict(int)\n n_zeros = 0\n\n for a, b in zip(AB[::2], AB[1::2]):\n if a == 0 and b == 0:\n n_zeros += 1\n continue\n\n g = gcd(a, b)\n a, b = a // g, b // g\n\n if a * b > 0 or b == 0:\n c = (abs(a), abs(b))\n else:\n c = (-abs(a), -abs(b))\n\n d[c] += 1\n\n ans = 1\n n_not_paired = 0\n for ab, n in d.items():\n ab_pair = (-ab[1], -ab[0])\n if ab_pair in d:\n if ab[0] > 0:\n m = d[ab_pair]\n ans = ans * (pow(2, n, MOD) + pow(2, m, MOD) - 1) % MOD\n else:\n n_not_paired += n\n\n ans = (ans * pow(2, n_not_paired, MOD) + n_zeros - 1) % MOD\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "from sys import stdin\nfrom collections import defaultdict\nfrom math import gcd\n\n\ndef main():\n MOD = 1000000007\n\n N, *AB = map(int, stdin.buffer.read().split())\n\n d = defaultdict(int)\n n_zeros = 0\n\n for a, b in zip(AB[::2], AB[1::2]):\n if a == 0 and b == 0:\n n_zeros += 1\n continue\n\n g = gcd(a, b)\n a, b = a // g, b // g\n\n if a * b > 0 or b == 0:\n c = (abs(a), abs(b))\n else:\n c = (-abs(b), -abs(a))\n\n d[c] += 1\n\n ans = 1\n n_not_paired = 0\n for ab, n in d.items():\n ab_pair = (-ab[1], -ab[0])\n if ab_pair in d:\n if ab[0] > 0:\n ans = ans * (pow(2, n, MOD) + pow(2, m, MOD) - 1) % MOD\n else:\n n_not_paired += n\n\n ans = (ans * pow(2, n_not_paired, MOD) + n_zeros - 1) % MOD\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [349, 339], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "baabm = d[ab_pair]\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u157020659", "n_user": "u157020659", "pos": "import collections\nimport math\n\nn = int(input())\nm = 0\nmod = 10 ** 9 + 7\nc = []\nd = []\nfrac = []\n\nfor _ in range(n):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n n -= 1\n m += 1\n continue\n if a == 0:\n frac.append('0/1')\n elif b == 0:\n frac.append(('1/0'))\n else:\n gcd = abs(math.gcd(a, b))\n sign = 1 if a * b > 0 else -1\n a = sign * abs(a) // gcd\n b = abs(b) // gcd\n frac.append('{}/{}'.format(a, b))\n\nfrac = collections.Counter(frac)\n\ndef inverse(key):\n if key == '0/1':\n return '1/0'\n elif key == '1/0':\n return '0/1'\n elif key[0] != '-':\n a, b = key.split('/')\n return '-{}/{}'.format(b, a)\n else:\n a, b = key[1:].split('/')\n return '{}/{}'.format(b, a)\n\nfor key, value in frac.items():\n if key[0] == '-' or key[0] == '0': continue\n if frac[inverse(key)] > 0:\n c.append(value)\n d.append(frac[inverse(key)])\n\nans = pow(2, n - sum(c) - sum(d), mod)\nfor i, j in zip(c, d):\n tmp = (pow(2, i, mod) + pow(2, j, mod) - 1) % mod\n ans = ans * tmp % mod\nans = (ans - 1 + m) % mod\n\nprint(ans)", "neg": "import collections\nimport math\n\nn = int(input())\nm = 0\nmod = 10 ** 9 + 7\nc = []\nd = []\nfrac = []\n\nfor _ in range(n):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n n -= 1\n m += 1\n continue\n if a == 0:\n frac.append('0/1')\n elif b == 0:\n frac.append(('1/0'))\n else:\n gcd = abs(math.gcd(a, b))\n sign = 1 if a * b > 0 else -1\n a = sign * abs(a) // gcd\n b = abs(b) // gcd\n frac.append('{}/{}'.format(a, b))\n\nfrac = collections.Counter(frac)\nprint(frac)\n\ndef inverse(key):\n if key == '0/1':\n return '1/0'\n elif key == '1/0':\n return '0/1'\n elif key[0] != '-':\n a, b = key.split('/')\n return '-{}/{}'.format(b, a)\n else:\n a, b = key[1:].split('/')\n return '{}/{}'.format(b, a)\n\nfor key, value in frac.items():\n if key[0] == '-' or key[0] == '0': continue\n if frac[inverse(key)] > 0:\n c.append(value)\n d.append(frac[inverse(key)])\n\nans = pow(2, n - sum(c) - sum(d), mod)\nfor i, j in zip(c, d):\n tmp = (pow(2, i, mod) + pow(2, j, mod) - 1)\n ans = (ans * (pow(2, i, mod) + pow(2, j, mod) - 1)) % mod\nans = (ans - 1 + m) % mod\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [458, 483], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "(frac)\nprint\n%mod\nans=(ans = t(pow(2, i, p % m)\nans = (ans - 1pow(2, j, od) - 1)ans = (ans - 1 + m) % mod\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u318127926", "n_user": "u318127926", "pos": "n = int(input())\nab = []\nfor _ in range(n):\n a, b = map(int, input().split())\n ab.append((a, b))\ndi = {}\nz = 0\ndef gcd(a, b):\n while b!=0:\n a, b = b, a%b\n return a\nfor a, b in ab:\n if a*b!=0:\n g = gcd(abs(a), abs(b))\n a, b = a//g, b//g\n if a*b>0:\n ind = (abs(a), abs(b))\n elif a*b<0:\n ind = (abs(b), abs(a))\n else:\n ind = 0\n if ind in di:\n x, y = di[ind]\n else:\n x = y = 0\n if a*b==0:\n if b!=0:\n di[ind] = (x+1, y)\n elif a!=0:\n di[ind] = (x, y+1)\n else:\n z += 1\n else:\n if a*b>0:\n di[ind] = (x+1, y)\n else:\n di[ind] = (x, y+1)\nmod = 10**9+7\nans = 1\nfor i, j in di.values():\n ans *= (pow(2, i, mod)+pow(2, j, mod)-1)\n ans %= mod\nprint((ans+z-1)%mod)", "neg": "n = int(input())\nab = []\nfor _ in range(n):\n a, b = map(int, input().split())\n ab.append((a, b))\ndi = {}\ndef gcd(a, b):\n while b!=0:\n a, b = b, a%b\n return a\nfor a, b in ab:\n if a*b!=0:\n g = gcd(abs(a), abs(b))\n a, b = a//g, b//g\n if a*b>0:\n ind = (abs(a), abs(b))\n elif a*b<0:\n ind = (abs(b), abs(a))\n else:\n ind = 0\n if ind in di:\n x, y = di[ind]\n else:\n x = y = 0\n if a*b==0:\n if b!=0:\n di[ind] = (x+1, y)\n elif a!=0:\n di[ind] = (x, y+1)\n else:\n if a*b>0:\n di[ind] = (x+1, y)\n else:\n di[ind] = (x, y+1)\nprint(di)\nmod = 10**9+7\nans = 1\nfor i, j in di.values():\n ans *= (pow(2, i, mod)+pow(2, j, mod)-1)\n ans %= mod\nprint((ans-1)%mod)", "jacc_sim": 0.9827586206896551, "before_after_length": [376, 366], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "z = 0\n else:\n z += 1\n )\nprint(di+z", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u347640436", "n_user": "u347640436", "pos": "from math import gcd\n\nN = int(input())\nAB = [map(int, input().split()) for _ in range(N)]\n\nt = []\nd = {}\nd[0] = {}\nd[0][0] = 0\nfor a, b in AB:\n i = gcd(a, b)\n if i != 0:\n a //= i\n b //= i\n t.append((a, b))\n d.setdefault(a, {})\n d[a].setdefault(b, 0)\n d[a][b] += 1\n\nused = set()\nresult = 1\nfor a, b in t:\n if (a, b) in used:\n continue\n used.add((a, b))\n if a == 0 and b == 0:\n continue\n i = d[a][b]\n j, k, l = 0, 0, 0\n if -a in d and -b in d[-a]:\n j = d[-a][-b]\n used.add((-a, -b))\n if -b in d and a in d[-b]:\n k = d[-b][a]\n used.add((-b, a))\n if b in d and -a in d[b]:\n l = d[b][-a]\n used.add((b, -a))\n result *= pow(2, i + j, 1000000007) + pow(2, k + l, 1000000007) - 1\n result %= 1000000007\nresult += d[0][0] - 1\nresult %= 1000000007\nprint(result)\n", "neg": "from math import gcd\n\nN = int(input())\nAB = [map(int, input().split()) for _ in range(N)]\n\nt = []\nd = {}\nd[0][0] = 0\nfor a, b in AB:\n i = gcd(a, b)\n if i != 0:\n a //= i\n b //= i\n t.append((a, b))\n d.setdefault(a, {})\n d[a].setdefault(b, 0)\n d[a][b] += 1\n\nused = set()\nresult = 1\nfor a, b in t:\n if (a, b) in used:\n continue\n used.add((a, b))\n if a == 0 and b == 0:\n continue\n i = d[a][b]\n j, k, l = 0, 0, 0\n if -a in d and -b in d[-a]:\n j = d[-a][-b]\n used.add((-a, -b))\n if -b in d and a in d[-b]:\n k = d[-b][a]\n used.add((-b, a))\n if b in d and -a in d[b]:\n l = d[b][-a]\n used.add((b, -a))\n result *= pow(2, i + j, 1000000007) + pow(2, k + l, 1000000007) - 1\n result %= 1000000007\nprint(result + d[0][0] - 1)\n", "jacc_sim": 1.0, "before_after_length": [386, 371], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": " = {}\nd[0]print(=)result %= 1000000007\nprint(result)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u038021590", "n_user": "u038021590", "pos": "import math\nfrom collections import Counter\n\nN = int(input())\nA_B = []\nmod = 1000000007\nfor _ in range(N):\n A, B = map(int, input().split())\n if (A == 0) and (B == 0):\n A_B.append((A, B))\n elif A == 0:\n A_B.append((0, -1))\n elif B == 0:\n A_B.append((1, 0))\n else:\n if A < 0:\n A = -A\n B = -B\n C = math.gcd(abs(A), abs(B))\n A_B.append((A // C, B // C))\n\nA_B_C = Counter(A_B)\n\n\nans = 1\nDone = set([])\nDone.add((0, 0))\nfor key, value in A_B_C.items():\n if key in Done:\n continue\n keya, keyb = key\n a = 0\n if keya == 0 and keyb == 0:\n a = value + 1\n Done.add((0, 0))\n else:\n if keyb < 0:\n keya = -keya\n keyb = -keyb\n if (keyb, -keya) not in A_B_C:\n a = pow(2, value, mod)\n else:\n a = (pow(2, value, mod) - 1) + (pow(2, A_B_C[(keyb, -keya)], mod) - 1) + 1\n Done.add((keyb, -keya))\n ans *= a\n ans %= mod\n Done.add(key)\nans -= 1\nans += A_B_C[(0, 0)]\n\nprint(ans % mod)\n", "neg": "import fractions\nfrom collections import Counter\nN = int(input())\nA_B = []\nmod = 1000000007\nfor _ in range(N):\n A, B = map(int, input().split())\n if A < 0:\n A = -A\n B = -B\n C = fractions.gcd(abs(A), abs(B))\n A_B.append((A//C, B//C))\nA_B_C = Counter(A_B)\n\n\nhate_couple = 0\nans = 1\nDone = set([])\nfor key, value in A_B_C.items():\n if key in Done:\n continue\n keya, keyb = key\n a = 0\n if keyb < 0:\n keya = -keya\n keyb = -keyb\n if (keyb, -keya) not in A_B_C:\n a = pow(2, value, mod)\n else:\n a = (pow(2, value, mod) - 1) + (pow(2, A_B_C[(keyb, -keya)], mod) - 1) + 1\n Done.add((keyb, -keya))\n ans *= a\n Done.add(key)\n\nprint(ans - 1)", "jacc_sim": 0.9016393442622951, "before_after_length": [438, 310], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "math\naom tillectio\nf impoom collecionsCimpunte\nt Counter(A == 0) and (B == 0):\n A_B.append((A, B))\n elif A == 0:\n A_B.append((0, -1))\n elif B == 0:\n A_B.append((1, 0))\n else:\n if mfrchions \n\nhate_couple = 0Done.add((0, 0))\na == 0 and key== 0:\n a = value + 1\n Done.add((0, 0))\n else:\n if keyb ans %= mod\n ans -= 1\nans += A_B_C[(0, 0)]\n-%1mod\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u391589398", "n_user": "u391589398", "pos": "import math\nmod = 10**9+7\nN = int(input())\n\niwashi01 = 0\niwashi10 = 0\niwashi00 = 0\niwashi = dict()\nfor i in range(N):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n iwashi00 += 1\n elif a == 0:\n iwashi01 += 1\n elif b == 0:\n iwashi10 += 1 \n else:\n g = math.gcd(abs(a), abs(b))\n a //= g; b //= g\n if a*b > 0:\n if a < 0 and b < 0:\n a *= -1\n b *= -1\n iwashi.setdefault((a, b), [0, 0])\n iwashi[(a, b)][0] += 1\n if a*b < 0:\n if a < 0 and b > 0:\n a *= -1\n b *= -1\n a, b = -b, a\n iwashi.setdefault((a, b), [0, 0])\n iwashi[(a, b)][1] += 1\n\nr = 2**iwashi01 % mod - 1 + 2**iwashi10 % mod - 1 + 1\nfor s, t in iwashi.values():\n r *= 2**s % mod -1 + 2**t % mod -1 + 1\n r %= mod\nprint((r + iwashi00 - 1) % mod)", "neg": "import math\nmod = 10**9+7\nN = int(input())\n\niwashi01 = 0\niwashi10 = 0\niwashi00 = 0\niwashi = dict()\nfor i in range(N):\n a, b = map(int, input().split())\n g = math.gcd(abs(a), abs(b))\n a //= g; b //= g\n if a == 0 and b == 0:\n iwashi00 += 1\n elif a == 0:\n iwashi01 += 1\n elif b == 0:\n iwashi10 += 1 \n else:\n if a*b > 0:\n if a < 0 and b < 0:\n a *= -1\n b *= -1\n iwashi.setdefault((a, b), [0, 0])\n iwashi[(a, b)][0] += 1\n if a*b < 0:\n if a < 0 and b > 0:\n a *= -1\n b *= -1\n a, b = -b, a\n iwashi.setdefault((a, b), [0, 0])\n iwashi[(a, b)][1] += 1\n\nr = 2**iwashi01 % mod - 1 + 2**iwashi10 % mod - 1 + 1\nfor s, t in iwashi.values():\n r *= 2**s % mod -1 + 2**t % mod -1 + 1\n r %= mod\n print(r + iwashi00 - 1)", "jacc_sim": 1.0, "before_after_length": [372, 370], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "if a == 0 and b == 0:\n iwashi00 += 1\n elif a == 0:\n iwashi01 += 1\n elif b == 0:\n iwashi10 += 1 \n else:\n \n if a == 0 and b == 0:\n iwashi00 += 1\n elif a == 0:\n iwashi01 += 1\n elif b == 0:\n iwashi10 += 1 \n else: ( % mod)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u047102107", "n_user": "u047102107", "pos": "from sys import stdin\nfrom collections import deque, Counter, defaultdict\n# from fractions import gcd\nfrom math import gcd\nimport heapq\n\nMOD = 10 ** 9 + 7\ninput = stdin.readline\n\nn = int(input())\nzero = 0\nA, B = [], []\n# mp = defaultdict(lambda: [0, 0])\nmp = {}\nfor i in range(n):\n ai, bi = map(int, input().split())\n if ai == 0 and bi == 0:\n zero += 1\n continue\n\n gi = gcd(ai, bi)\n ai = ai // gi\n bi = bi // gi\n\n if bi < 0:\n ai = -ai\n bi = -bi\n if bi == 0 and ai < 0:\n ai = -ai\n if ai <= 0:\n ai, bi = bi, -ai\n if (ai, bi) in mp:\n mp[(ai, bi)][0] += 1\n else:\n mp[(ai, bi)] = [1, 0]\n else:\n if (ai, bi) in mp:\n mp[(ai, bi)][1] += 1\n else:\n mp[(ai, bi)] = [0, 1]\n\nans = 1\nfor key in mp:\n s, t = mp[key]\n ans *= pow(2, s, MOD) + pow(2, t, MOD) - 1\n ans %= MOD\nprint((zero - 1 + ans) % MOD)", "neg": "from sys import stdin\nfrom collections import deque, Counter, defaultdict\nfrom fractions import gcd\nimport heapq\n\nMOD = 10 ** 9 + 7\ninput = stdin.readline\n\nn = int(input())\nzero = 0\nA, B = [], []\n# mp = defaultdict(lambda: [0, 0])\nmp = {}\nfor i in range(n):\n ai, bi = map(int, input().split())\n if ai == 0 and bi == 0:\n zero += 1\n continue\n\n gi = gcd(ai, bi)\n ai = ai // gi\n bi = bi // gi\n\n if bi < 0:\n ai = -ai\n bi = -bi\n if bi == 0 and ai < 0:\n ai = -ai\n if ai <= 0:\n ai, bi = bi, -ai\n if (ai, bi) in mp:\n mp[(ai, bi)][0] += 1\n else:\n mp[(ai, bi)] = [1, 0]\n else:\n if (ai, bi) in mp:\n mp[(ai, bi)][1] += 1\n else:\n mp[(ai, bi)] = [0, 1]\n\nans = 1\nfor key in mp:\n s, t = mp[key]\n ans *= pow(2, s, MOD) + pow(2, t, MOD) - 1\n ans %= MOD\nprint((zero - 1 + ans) % MOD)", "jacc_sim": 0.984375, "before_after_length": [355, 349], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "# import gcd\nfrom math", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u493130708", "n_user": "u493130708", "pos": "import sys\ninput = sys.stdin.readline\nimport math\n\nMOD = 10**9+7\nN = int(input())\nF = []\nzero_v = 0\ninf = 0\nzero = 0\nfor _ in range(N):\n x,y = map(int,input().split())\n if x==0 and y==0:\n zero_v += 1\n elif x==0:\n inf += 1\n elif y==0:\n zero += 1\n else:\n G = math.gcd(abs(x),abs(y))\n F.append((x//G,y//G))\n\nall_keys = set()\n\nfor x,y in F:\n if x*y >0:\n if x>0:\n all_keys.add((x,y))\n else:\n all_keys.add((-x,-y))\n x,y = -y,x\n if x*y >0:\n if x>0:\n all_keys.add((x,y))\n else:\n all_keys.add((-x,-y))\n\nall_dic = {k:[0,0] for k in all_keys}\n\nfor x,y in F:\n if x*y > 0:\n if x>0:\n all_dic[(x,y)][0] += 1\n else:\n all_dic[(-x,-y)][0] += 1\n else:\n if x>0:\n all_dic[(-y,x)][1] += 1\n else:\n all_dic[(y,-x)][1] += 1\n\nans = (pow(2,inf,MOD)) + (pow(2,zero,MOD))-1\nans %= MOD\n\nfor k in all_keys:\n P,N = all_dic[k]\n ans *= (pow(2,P,MOD)) + (pow(2,N,MOD))-1\n ans %= MOD\n\n\nans += zero_v-1\n\nprint(ans%MOD)\n", "neg": "import sys\ninput = sys.stdin.readline\n\nfrom fractions import gcd\n\n\nMOD = 10**9+7\nN = int(input())\nF = []\nzero_v = 0\ninf = 0\nzero = 0\nfor _ in range(N):\n x,y = map(int,input().split())\n if x==0 and y==0:\n zero_v += 1\n elif x==0:\n inf += 1\n elif y==0:\n zero += 1\n else:\n G = gcd(abs(x),abs(y))\n F.append((x//G,y//G))\n\nsetF = set(F)\n\nall_keys = set()\n\nfor x,y in setF:\n if x*y >0:\n if x>0:\n all_keys.add((x,y))\n else:\n all_keys.add((-x,-y))\n x,y = -y,x\n if x*y >0:\n if x>0:\n all_keys.add((x,y))\n else:\n all_keys.add((-x,-y))\n\nall_dic = {k:[0,0] for k in all_keys}\n\nfor x,y in F:\n if x*y > 0:\n if x>0:\n all_dic[(x,y)][0] += 1\n else:\n all_dic[(-x,-y)][0] += 1\n else:\n if x>0:\n all_dic[(-y,x)][1] += 1\n else:\n all_dic[(y,-x)][1] += 1\n\nans = (pow(2,inf,MOD)) + (pow(2,zero,MOD))-1\nans %= MOD\n\nfor k in all_keys:\n P,N = all_dic[k]\n ans *= (pow(2,P,MOD)) + (pow(2,N,MOD))-1\n ans %= MOD\n\n\nans += zero_v-1\n\nprint(ans%MOD)", "jacc_sim": 0.9516129032258065, "before_after_length": [496, 506], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "i\nfrop fractinsrtiaporh gcd\nmath.setF = set(F)\n\nset\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u153302617", "n_user": "u153302617", "pos": "from math import gcd\nn = int(input())\np = 10**9 + 7\niwashi = {}\nbad = 0\nans = 1\nfor i in range(n):\n x, y = map(int, input().split())\n if(x == 0 and y == 0):\n bad += 1\n continue\n elif(x == 0):\n try:\n \tiwashi[(0, 1)] += 1\n except KeyError:\n iwashi[(0, 1)] = 1\n continue\n elif(y == 0):\n try:\n \tiwashi[(1, 0)] += 1\n except KeyError:\n iwashi[(1, 0)] = 1\n continue\n else:\n g = gcd(x, y)\n x, y = x // g, y // g\n if x < 0:\n x, y = -x, -y\n try:\n \tiwashi[(x, y)] += 1\n except KeyError:\n iwashi[(x, y)] = 1\n \nfor x, y in iwashi:\n a = iwashi[(x, y)]\n if y > 0:\n \trx,ry = y, -x\n else:\n \trx,ry = -y, x\n try:\n b = iwashi[(rx,ry)]\n iwashi[(rx,ry)] = 0\n except KeyError:\n \tb = 0\n ans *= pow(2, a, p) + pow(2, b, p) - 1\n ans %= p\n iwashi[(x, y)] = 0\nprint((ans + bad - 1) % p)\n", "neg": "from math import gcd\nn = int(input())\np = 10**9 + 7\niwashi = {}\nbad = 0\nans = 1\nfor i in range(n):\n x, y = map(int, input().split())\n if(x == 0 and y == 0):\n bad += 1\n continue\n elif(x == 0):\n iwashi[(0, -1)] += 1\n continue\n elif(y == 0):\n iwashi[(1, 0)] += 1\n continue\n else:\n g = gcd(x, y)\n x, y = x // g, y // g\n if x < 0:\n x, y = -x, -y\n try:\n \tiwashi[(x, y)] += 1\n except KeyError:\n iwashi[(x, y)] = 1\n \nfor x, y in iwashi:\n a = iwashi[(x, y)]\n if y > 0:\n \trx,ry = y, -x\n else:\n \trx,ry = y, -x\n try:\n b = iwashi[(rx,ry)]\n iwashi[(rx,ry)] = 0\n except KeyError:\n \tb = 0\n ans *= pow(2, a, p) + pow(2, b, p) - 1\n ans %= p\n iwashi[(x, y)] = 0\nprint((ans + bad - 1) % p)", "jacc_sim": 1.0, "before_after_length": [403, 357], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "try:\n \t-exept KeyError:\n iwashi[(0, 1)] = 1\n ctry:\n \t= 1\n except KeyError:\n iwashi[(1, 0)] y, y, \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u316464887", "n_user": "u316464887", "pos": "import math\ndef main():\n N = int(input())\n d = {}\n zb = 0\n za = 0\n zab = 0\n r = 0\n mod = 10**9 + 7\n for i in range(N):\n a, b = map(int, input().split())\n if a== 0 and b == 0:\n zab += 1\n elif b == 0:\n zb += 1\n elif a == 0:\n za += 1\n else:\n if a < 0:\n a = -a\n b = -b\n x = math.gcd(abs(a), abs(b))\n if (a//x, b//x) in d:\n d[(a//x, b//x)] += 1\n else:\n d[(a//x, b//x)] = 1\n used = set()\n l = []\n for x in d:\n if x in used:\n continue\n a, b = x[0], x[1]\n used.add(x)\n if a * b > 0:\n t = (abs(b), -abs(a))\n if t in d:\n used.add(t)\n l.append((d[x], d[t]))\n else:\n l.append((d[x], 0))\n else:\n t = (abs(b), abs(a))\n if t in d:\n used.add(t)\n l.append((d[x], d[t]))\n else:\n l.append((d[x], 0))\n r = pow(2, za) + pow(2, zb) - 1\n for i in l:\n r *= (pow(2, i[0]) + pow(2, i[1]) - 1)\n r %= mod\n return (r - 1 + zab) % mod\nprint(main())\n", "neg": "import math\ndef main():\n N = int(input())\n d = {}\n zb = 0\n za = 0\n zab = 0\n r = 0\n mod = 10**9 + 7\n for i in range(N):\n a, b = map(int, input().split())\n if a== 0 and b == 0:\n zab += 1\n elif b == 0:\n zb += 1\n elif a == 0:\n za += 1\n else:\n if a < 0:\n a = -a\n b = -b\n x = math.gcd(abs(a), abs(b))\n if (a//x, b//x) in d:\n d[(a//x, b//x)] += 1\n else:\n d[(a//x, b//x)] = 1\n used = set()\n l = []\n for x in d:\n if x in used:\n continue\n a, b = x[0], x[1]\n used.add(x)\n if a * b > 0:\n t = (abs(b), -abs(a))\n if t in d:\n used.add(t)\n l.append((d[x], d[t]))\n else:\n l.append((1, 0))\n else:\n t = (abs(b), abs(a))\n if t in d:\n used.add(t)\n l.append((d[x], d[t]))\n else:\n l.append((1, 0))\n r = zab + pow(2, za) + pow(2, zb) - 2\n for i in l:\n r *= (pow(2, i[0]) + pow(2, i[1]) - 1)\n r %= mod\n return r % mod - 1\nprint(main())\n", "jacc_sim": 1.0, "before_after_length": [457, 451], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "1d[x]1d[x] zab +21( - 1 + zab) - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u984592063", "n_user": "u984592063", "pos": "from collections import defaultdict\n\ndef gcd(a, b):\n return gcd(b, a%b) if b else a\n\nmod = 10 ** 9 + 7\nN = int(input())\nX = defaultdict(lambda: [0, 0])\n# X = dict()\nx = 0\ny = 0\nz = 0\nfor i in range(N):\n a, b = map(int, input().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[(abs(a) // g, abs(b) // g)][0] += 1\n elif a * b < 0:\n X[(abs(b) // g, abs(a) // g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\n# suppose we have a super head point which can put togother with every point.\nans = 1\npow2 = [1]\nfor i in range(N):\n pow2 += [pow2[-1] * 2 % mod]\nfor i in X.values():\n ans *= pow2[i[0]] + pow2[i[1]]- 1\n ans %= mod\nans *= pow2[x] + pow2[y] - 1\nprint((ans+z-1)%mod)\n", "neg": "from collections import defaultdict\n\ndef gcd(a, b):\n return gcd(b, a%b) if b else a\n\nmod = 10 ** 9 + 7\nN = int(input())\nX = defaultdict(lambda: [0, 0])\nprint(X[(1, 1)])\n# X = dict()\nx = 0\ny = 0\nz = 0\nfor i in range(N):\n a, b = map(int, input().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[(abs(a) / g, abs(b) / g)][0] += 1\n elif a * b < 0:\n X[(abs(b) / g, abs(a) / g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\n# suppose we have a super head point which can put togother with every point.\nans = 1\npow2 = [1]\nfor i in range(N):\n pow2 += [pow2[-1] * 2 % mod]\nfor i in X.values():\n ans *= pow2[i[0]] + pow2[i[1]]- 1\n ans %= mod\nans *= pow2[x] + pow2[y] - 1\nprint((ans+z-1)%mod)\n", "jacc_sim": 1.0, "before_after_length": [325, 336], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "# print([ = dict1)\nx = 0\ny = 0\nz = 0\nfor i in range(N):\n a1b = map(int, input(].split()# g = abs(gcd(a, b))\n if a * b > 0:\n [ = dict)\nx = 0\ny = 0\nz = 0\nfor i in rbsngeN):\n ) // gb = mpbsb) // g)][0] += 1\n elntf a * b < 0:\n X[(abs(b) // ginput().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[( g, abs(b) / g)][0] += 1\n elif a * b < 0:\n X[(abs(b) / g, abs(a) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u984592063", "n_user": "u984592063", "pos": "mod = 10 ** 9 + 7\nfrom math import gcd\nN = int(input())\nfrom collections import defaultdict\nX = defaultdict(lambda: [0, 0])\nx = 0\ny = 0\nz = 0\nfor i in range(N):\n a, b = map(int, input().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[(abs(a) // g, abs(b) // g)][0] += 1\n elif a * b < 0:\n X[(abs(b) // g, abs(a) // g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\nans = 1\npow2 = [1]\nfor i in range(N):\n pow2 += [pow2[-1] * 2 % mod]\nfor i in X.values():\n ans *= pow2[i[0]] + pow2[i[1]]- 1\n ans %= mod\nans *= pow2[x] + pow2[y] - 1\nans += z - 1\nans %= mod\nprint(ans)\n", "neg": "mod = 10 ** 9 + 7\ndef gcd(a, b):\n return gcd(b, a%b) if b else a\nN = int(input())\nfrom collections import defaultdict\nX = defaultdict(lambda: [0, 0])\nx = 0\ny = 0\nz = 0\nfor i in range(N):\n a, b = map(int, input().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[(abs(a) // g, abs(b) // g)][0] += 1\n elif a * b < 0:\n X[(abs(b) // g, abs(a) // g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\nprint(X)\nprint(X.values())\nans = 1\npow2 = [1]\nfor i in range(N):\n pow2 += [pow2[-1] * 2 % mod]\nfor i in X.values():\n \n ans *= pow2[i[0]] + pow2[i[1]]- 1\n ans %= mod\nans *= pow2[x] + pow2[y] - 1\nans += z\nans %= mod\nprint(ans)\n", "jacc_sim": 0.9454545454545454, "before_after_length": [283, 313], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "derom math import\nN = intinput())\nfrom collections import defultdict\nX = defaultdict(lambda: [0b0]:x=0\ny=0\nz = 0\nfo i in rang(N):\n a, b = map(in, inprnt().split())\n g = abs(bab))\n if * b > 0:\n X[(abs(a) // g, abs(b) // g)][0] += 1\n elif a * b < 0:\n X[(abs(b) // g, abs(a) // g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\nans = 1\npow2 = [1]\nfor i in range(N):\n pow2 += [pow2[-1] * 2 b)if b else a\nN = int(input())\nfro cllections import efaultdict\nX = defaultdict(lambda: [0, 0)x = 0\ny = 0\nz = 0\nrange(N):\n a, b = map(int, input().split())\n g = abs(gcd(a, b))\n if a * b > 0:\n X[(abs(a) // g, abs(b) // g)][0] += 1\n elif a * b < 0:\n X[(abs(b) // g, abs(a) // g)][1] += 1\n else:\n if a:\n x += 1\n elif b:\n y += 1\n else:\n z += 1\nprint(X)\nprint():ans=1\nans *= = 1]\nfor [0]]+in range(N):\n += i[1]]- 1\n ans %= mod\nans *= x] + pow2[y] 1]*1\nans2+= z - 1\nans mod]\nfor i in X.values():\n \n ans *pow2[i[0]] + pow2[i[1]]- 1\n ans %= ans *= ow2[x] + pow2[y] - 1\nans += z\nans %= mod\np", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u511965386", "n_user": "u511965386", "pos": "from collections import Counter\nimport sys\ninput = sys.stdin.readline\n\nN = int(input())\nAB = [[int(i) for i in input().split()] for _ in range(N)]\n\nmod = 10 ** 9 + 7\n\ndef gcd(a, b) :\n if b > a : \n a, b = b, a\n \n while b != 0 :\n a, b = b, a % b\n return a\n\np = []\nboth = 0\nzeroa = 0\nzerob = 0\nfor a, b in AB :\n if a == 0 and b == 0 :\n both += 1\n continue\n elif a == 0 :\n zeroa += 1\n continue\n elif b == 0 :\n zerob += 1\n continue\n \n g = gcd(abs(a), abs(b))\n a //= g\n b //= g\n if a < 0 :\n a *= -1\n b *= -1\n p.append((a, b))\n\nret = 1\nvisited = set()\ncnt = Counter(p)\nfor k, v in cnt.items() :\n a, b = k\n c, d = b, -a\n if c < 0 :\n c *= -1\n d *= -1\n if cnt[(c, d)] == 0 :\n ret *= pow(2, v, mod)\n else :\n if not (c, d) in visited :\n u = cnt[(c, d)]\n ret *= (pow(2, u, mod) + pow(2, v, mod) - 1)\n visited.add((a, b))\n visited.add((c, d))\n ret %= mod\n\nret *= pow(2, zeroa, mod) + pow(2, zerob, mod) - 1\nret %= mod\n\nprint((ret - 1 + both) % mod)", "neg": "from collections import Counter\nimport sys\ninput = sys.stdin.readline\n\nN = int(input())\nAB = [[int(i) for i in input().split()] for _ in range(N)]\n\nmod = 10 ** 9 + 7\n\ndef gcd(a, b) :\n if b > a : \n a, b = b, a\n \n while b != 0 :\n a, b = b, a % b\n return a\n\np = []\nzeroa = 0\nzerob = 0\nfor a, b in AB :\n if a == 0 and b == 0 :\n continue\n elif a == 0 :\n zeroa += 1\n continue\n elif b == 0 :\n zerob += 1\n continue\n \n g = gcd(abs(a), abs(b))\n a //= g\n b //= g\n if a < 0 :\n a *= -1\n b *= -1\n p.append((a, b))\n\nret = 1\nvisited = set()\ncnt = Counter(p)\nfor k, v in cnt.items() :\n a, b = k\n c, d = b, -a\n if c < 0 :\n c *= -1\n d *= -1\n if cnt[(c, d)] == 0 :\n ret *= pow(2, v, mod)\n else :\n if not (c, d) in visited :\n u = cnt[(c, d)]\n ret *= (pow(2, u, mod) + pow(2, v, mod) - 1)\n visited.add((a, b))\n visited.add((c, d))\n ret %= mod\n\nret *= pow(2, zeroa, mod) + pow(2, zerob, mod)\nret %= mod\n\nprint((ret - 1) % mod)", "jacc_sim": 0.9861111111111112, "before_after_length": [448, 435], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "both = 0\nboth += 1\n - 1 + both", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u535803878", "n_user": "u535803878", "pos": "import math\nn = int(input())\nfrom collections import defaultdict\nd = defaultdict(list)\ns = set()\nzc = 0\nfor i in range(n):\n a,b = map(int, input().split())\n g = math.gcd(a,b)\n if g!=0:\n a //= g; b //= g\n if a<0:\n a,b = -a, -b\n elif a==0 and b<0:\n b *= -1\n d[a,b].append(i)\n if a==b==0:\n zc += 1\nv = 1\ns = set()\nM = 10**9+7\nfor (a,b),val in d.items():\n aa,bb = b,-a\n if aa<0:\n aa,bb = -aa, -bb\n elif aa==0 and bb<0:\n bb *= -1\n if (a,b) in s or (aa,bb) in s:\n continue\n if (aa,bb) in d.keys():\n v *= (pow(2, len(val), M) + pow(2, len(d[aa,bb]), M) - 1)\n else:\n v *= pow(2, len(val), M)\n v %= M\n s.add((a,b))\n s.add((aa,bb))\nv -= 1\nv += zc\nprint(v%M)", "neg": "import math\nn = int(input())\nfrom collections import defaultdict\nd = defaultdict(list)\ns = set()\nzc = 0\nfor i in range(n):\n a,b = map(int, input().split())\n g = math.gcd(a,b)\n if g!=0:\n a //= g; b //= g\n if a<0:\n a,b = -a, -b\n elif b<0:\n b *= -1\n d[a,b].append(i)\n if a==b==0:\n zc += 1\nv = 1\ns = set()\nM = 10**9+7\nfor (a,b),val in d.items():\n aa,bb = b,-a\n if aa<0:\n aa,bb = -aa, -bb\n elif bb<0:\n bb *= -1\n if (a,b) in s or (aa,bb) in s:\n continue\n if (aa,bb) in d.keys():\n v *= (pow(2, len(val), M) + pow(2, len(d[aa,bb]), M) - 1)\n else:\n v *= pow(2, len(val), M)\n v %= M\n s.add((a,b))\n s.add((aa,bb))\nv -= 1\nv += zc\nprint(v%M)", "jacc_sim": 0.9841269841269841, "before_after_length": [350, 342], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": " a==0 andaa==0 and ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u677523557", "n_user": "u677523557", "pos": "import sys\ninput = sys.stdin.readline\nimport math\n\nmod = 10**9+7\n\nN = int(input())\nAs = {}\nEmpty = 0\nfor _ in range(N):\n x, y = map(int, input().split())\n g = math.gcd(x, y)\n if g == 0:\n Empty += 1\n continue\n x, y = x//g, y//g\n if y < 0 or (y==0 and x < 0):\n y = -y\n x = -x\n if (x, y) in As:\n As[(x, y)] += 1\n else:\n As[(x, y)] = 1\n\nans = 1\nfor (x, y), num in As.items():\n if (-y, x) in As:\n ans = (ans * (pow(2, num, mod) + pow(2, As[(-y, x)], mod) - 1)) % mod\n elif not (y, -x) in As:\n ans = (ans * pow(2, num, mod)) % mod\n\nprint((ans-1+Empty)%mod)", "neg": "import sys\ninput = sys.stdin.readline\nimport math\n\nmod = 10**9+7\n\nN = int(input())\nAs = {}\nEmpty = 0\nfor _ in range(N):\n x, y = map(int, input().split())\n g = math.gcd(x, y)\n x, y = x//g, y//g\n if x == 0 and y == 0:\n Empty += 1\n else:\n if y < 0 or (y==0 and x < 0):\n y = -y\n if (x, y) in As:\n As[(x, y)] += 1\n else:\n As[(x, y)] = 1\n\nM = N - Empty\nans = 1\nfor (x, y), num in As.items():\n if (-y, x) in As:\n if x > 0:\n ans = (ans * (pow(2, num, mod) + pow(2, As[(-y, x)], mod) - 1)) % mod\n elif not (y, -x) in As:\n ans = (ans * pow(2, num, mod)) % mod\n\nprint((ans-1)%mod)", "jacc_sim": 0.9473684210526315, "before_after_length": [275, 285], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "if g == 0:\n Empty += 1\n continue\n xy<==orand( :\nandx<0):\nEmpt = -y\n x = -x\n if (x, y) in As:\n As[(x, y)]iAs[(x, y)] = 1\n\nans = 1\n y < 0 y==0 and ,< 0):\n ),=numin As.items():\n if (\n if (xy) in As:\n As[(, y]+= 1\n else:\n As[(x, y)] = 1\n\nM = N - Empty\nans = 1\nfor (x, y), num .items() if (-y, x) in As:\n if x > 0:\n +Empty", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u387774811", "n_user": "u387774811", "pos": "from collections import defaultdict\nfrom math import gcd\nimport sys\ninput = sys.stdin.readline\nN=int(input())\nmod=10**9+7\ndic=defaultdict(lambda: [0,0])\nc=0\nd=0\ne=0\nfor i in [0]*N:\n A,B = map(int,input().split())\n if A==0 and B==0:\n e+=1\n elif A==0:\n c+=1\n elif B==0:\n d+=1\n else:\n g=gcd(A,B)\n A//=g\n B//=g\n if A*B>0:\n dic[(abs(A),abs(B))][0]+=1\n else:\n dic[(abs(B),abs(A))][1]+=1\nans=1\nfor k in dic:\n ans=ans*(pow(2,dic[k][0],mod)+pow(2,dic[k][1],mod) -1)\nans=ans*(pow(2,c,mod)+pow(2,d,mod)-1)\nprint((ans-1+e)%mod)", "neg": "from collections import defaultdict\nfrom math import gcd\nimport sys\ninput = sys.stdin.readline\nN=int(input())\nmod=10**9+7\ndic=defaultdict(lambda: [0,0])\nc=0\nd=0\ne=0\nfor i in [0]*N:\n A,B = map(int,input().split())\n if A==0 and B==0:\n e+=1\n elif A==0:\n c+=1\n elif B==0:\n d+=1\n else:\n g=gcd(A,B)\n A//=g\n B//g\n if A*B>0:\n dic[(A,B)][0]+=1\n else:\n dic[(-B,A)][1]+=1\nans=1\nfor k in dic:\n ans=ans*(pow(2,dic[k][0],mod)+pow(2,dic[k][1],mod) -1)\nans=ans*(pow(2,c,mod)+pow(2,d,mod)-1)\nprint((ans-1+e)%mod)", "jacc_sim": 0.9818181818181818, "before_after_length": [275, 266], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "=abA,B)][0]+=1\n ele:\n dic[A),abs(B))][0]+=1\n else:\n dic[(abs(B),abs(A))][1]+=1\nans=1\nfor k in dic:\n ans=ans*(pow(2,dic[k][0],mod)+pow(2,dic[k][1],mod) B,A)][)]+=1ans=1\nfor k in dic:\n di[k][0]ic[k][1] ans=ans*(owrint2,c,mod)+powans2,d,mod))\nprint((ans-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u896741788", "n_user": "u896741788", "pos": "import sys\ninput=sys.stdin.buffer.readline\nmod=10**9+7\nn=int(input())\nd={}\nz=0\nfrom math import gcd \nfor i in range(n):\n x,y=map(int,input().split())\n if x==y==0:z+=1\n else:\n f=gcd(x,y)\n x//=f;y//=f\n if x<0:x*=-1;y*=-1\n if x==0 and y<0:y=-y\n if (x,y)not in d:d[(x,y)]=1\n else:d[(x,y)]+=1\nans=1\nfor (a,s) in d:\n if d[(a,s)]==0:continue\n ng=0\n if (s,-a)in d:ng+=d[(s,-a)];d[(s,-a)]=0\n if (-s,a)in d:ng+=d[(-s,a)];d[(-s,a)]=0\n ans*=(pow(2,d[(a,s)],mod)-1 + pow(2,ng,mod)-1 +1)%mod\n ans%=mod\n d[(a,s)]=0\nprint((ans+z-1)%mod)", "neg": "import sys\ninput=sys.stdin.buffer.readline\nmod=10**9+7\nn=int(input())\nd={}\nz=0\nfrom math import gcd \nfor i in range(n):\n x,y=map(int,input().split())\n if x==y==0:z+=1\n else:\n f=gcd(x,y)\n x//=f;y//=f\n if x<0:x*=-1;y*=-1\n if x==0 and y<0:y=-y\n d[(x,y)]+=1 if (x,y)in d else d[(x,y)]=1\nans=1\nfor (a,s) in d:\n if d[(a,s)]==0:continue\n ng=0\n if (s,-a)in d:ng+=d[(s,-a)];d[(s,-a)]=0\n if (-s,a)in d:ng+=d[(-s,a)];d[(-s,a)]=0\n ans*=(pow(2,d[(a,s)],mod)-1 + pow(2,ng,mod)-1 +1)%mod\n ans%=mod\n d[(a,s)]=0\nprint((ans+z-1)%mod)", "jacc_sim": 0.9824561403508771, "before_after_length": [329, 324], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "d[(x,y)]+=1 iotin :d[(x,y)]=1\n :+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02679", "p_user": "u750990077", "n_user": "u750990077", "pos": "from collections import defaultdict\n\ndef gcd(x, y):\n r = x % y\n while r:\n x, y, r = y, r, y%r\n return y\n \ndef main():\n n = int(input())\n mod = 1000000007\n p = defaultdict(lambda: 0)\n bad = dict()\n zeros = 0\n for _ in range(n):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n zeros += 1\n else:\n if a == 0:\n p[\"0\"] += 1\n bad[\"0\"] = \"INF\"\n elif b == 0:\n p[\"INF\"] += 1\n bad[\"INF\"] = \"0\"\n else:\n g = gcd(b, a)\n a //= g\n b //= g\n sp = f\"{a}_{b}\"\n if b < 0:\n b *= -1\n a *= -1\n sm = f\"{b}_{-a}\"\n p[sp] += 1\n bad[sp] = sm\n done = set()\n good = 0\n ans = 1\n for key, num in p.items():\n if key in done:\n continue\n b = p.get(bad[key])\n done.add(bad[key])\n if b:\n ans *= pow(2, b, mod)+pow(2, num, mod)-1\n ans %= mod\n else:\n good += num\n ans *= pow(2, good, mod)\n ans += zeros\n ans -= 1\n ans %= mod\n print(ans)\n \n \n\nif __name__ == \"__main__\":\n main()", "neg": "from collections import defaultdict\n\ndef gcd(x, y):\n if x < 0:\n x, y = y, x\n r = x % y\n while r:\n x, y, r = y, r, y%r\n return y\n \ndef main():\n n = int(input())\n mod = 1000000007\n p = defaultdict(lambda: 0)\n bad = dict()\n zeros = 0\n for _ in range(n):\n a, b = map(int, input().split())\n if a == 0 and b == 0:\n zeros += 1\n else:\n if a == 0:\n p[\"0\"] += 1\n bad[\"0\"] = \"INF\"\n elif b == 0:\n p[\"INF\"] += 1\n bad[\"INF\"] = \"0\"\n else:\n g = gcd(a, b)\n a //= g\n b //= g\n sp = f\"{a}_{b}\"\n if b < 0:\n b *= -1\n a *= -1\n sm = f\"{b}_{-a}\"\n p[sp] += 1\n bad[sp] = sm\n done = set()\n good = 0\n for key, num in p.items():\n if key in done:\n continue\n b = a[bad[key]]\n done.add(bad[key])\n if b > 0:\n ans *= pow(2, b, mod)*pow(2, num, mod)-1\n ans %= mod\n else:\n good += num\n ans *= pow(2, good, mod)\n ans += zeros\n ans -= 1\n ans %= mod\n print(ans)\n \n \n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.972972972972973, "before_after_length": [412, 423], "nl": "You have caught N sardines, each with a deliciousness (A) and fragrantness (B) value. You need to choose a set of sardines to put into a cooler, ensuring that sardines on bad terms (determined by A and B values) are not chosen together. Find the number of ways to choose the set of sardines and print the count modulo 1000000007. The input consists of N, A, and B values, and the output is the count modulo 1000000007.", "diff_info": "\n if x < 0:\n x, y = y, xa, , aans = 1\n a[p.get(]) > 0*+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u770558697", "n_user": "u770558697", "pos": "n, k = map(int,input().split())\ndata = []\nfor _ in range(k):\n d = int(input())\n data.extend(list(map(int,input().split())))\n\nprint(n-len(set(data)))", "neg": "n, k = map(int,input().split())\ndata = []\nfor _ in range(k):\n d = int(input())\n data.extend(list(map(int,input().split())))\n\nprint(data)\nprint(n-len(set(data)))", "jacc_sim": 1.0, "before_after_length": [61, 66], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "data)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u937782958", "n_user": "u937782958", "pos": "n,k = map(int,input().split())\nsunuke = list(range(1,n+1))\ni = 0\nkashi_sunuke = []\nd = ''\nwhile i < k:\n d = input()\n okashi = list(map(int,input().split()))\n kashi_sunuke += okashi\n i+=1\n\no = list(set(sunuke) - set(kashi_sunuke))\nprint(len(o))", "neg": "n,k = map(int,input().split())\nsunuke = list(range(1,n+1))\ni = 0\nkashi_sunuke = []\nd = ''\nwhile i < k:\n d = input()\n okashi = list(map(int,input().split()))\n kashi_sunuke += okashi\n i+=1\n\no = list(set(sunuke) - set(kashi_sunuke))\nprint('o', o, len(o))\n", "jacc_sim": 1.0, "before_after_length": [123, 128], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "'o', o, \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u734936991", "n_user": "u734936991", "pos": "(n, k) = [int(s) for s in input().split()]\n\ndata = [[0 for i in range(k)] for j in range(n)]\n\nfor i in range(0, k):\n d = int(input())\n a = [int(s) for s in input().split()]\n\n for m in a:\n data[m - 1][i] = 1\n\ndd = []\n\nfor d in data:\n dd.append(sum(d))\n\nans = 0\n\nfor ddd in dd:\n if ddd == 0:\n ans += 1\n\nprint(ans)\n\n", "neg": "(n, k) = [int(s) for s in input().split()]\n\ndata = arr = [[0 for i in range(k + 1)] for j in range(n + 1)]\n\nfor i in range(0, k):\n d = int(input())\n a = [int(s) for s in input().split()]\n\n for m in a:\n data[m - 1][d - 1] = 1\n\ndd = []\n\nfor d in data:\n dd.append(sum(d))\n\nans = 0\n\nfor ddd in dd:\n if ddd == 0:\n ans += 1\n\nprint(ans)\n\n", "jacc_sim": 0.9714285714285714, "before_after_length": [151, 159], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": " = arr + 1 + 1id - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u845847173", "n_user": "u845847173", "pos": "n, k = map(int, input().split())\nd = []\na = []\nfor i in range(k):\n d.append(int(input()))\n a.append(list(map(int, input().split())))\n\naa = [0]*n\n\nfor j in a:\n for t in j:\n aa[t - 1] += 1\n\nans = 0\n\nfor z in aa:\n if z == 0:\n ans += 1\n else:\n ans += 0\n\nprint(ans)", "neg": "n, k = map(int, input().split())\nd = []\na = []\nfor i in range(k):\n d.append(int(input))\n a.append(list(map(int, input().split())))\n\naa = [0]*n\n\nfor j in a:\n for t in j:\n aa[t - 1] += 1\n\nans = 0\n\nfor z in aa:\n if z == 0:\n ans += 0\n\nprint(ans)", "jacc_sim": 0.9714285714285714, "before_after_length": [127, 117], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "()01 el\nprint(ane:\n ans += 0\n\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u924273546", "n_user": "u924273546", "pos": "#coding:utf-8\n\nn,k = map(int,input().split())\n\nsunuke = [\"{}\".format(i) for i in range(1,n+1)]\n\nfor i in range(k):\n d = int(input())\n a = input().split()\n for i in a:\n if i in sunuke:\n sunuke.remove(i)\n\nans = len(sunuke)\n\nprint(\"{}\".format(ans))", "neg": "#coding:utf-8\n\nn,k = map(int,input().split())\n\nsunuke = [\"{}\".format(i) for i in range(1,n+1)]\n\nfor i in range(k):\n d = int(input())\n a = input().split()\n for i in a:\n if i in sunuke:\n sunuke.remove(i)\n print(sunuke)\n\nans = len(sunuke)\n\nprint(\"{}\".format(ans))", "jacc_sim": 1.0, "before_after_length": [115, 123], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": " print(sunuke)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u730807152", "n_user": "u730807152", "pos": "n, k = map(int,input().split())\nA = []\nN = []\n\nN = list(range(1,n+1))\n\nfor i in range(1,k+1):\n d = int(input())\n a=list(map(int,input().split()))\n A += a\n\nans = list(set(N)-set(A))\n\nprint(len(ans))", "neg": "n, k = map(int,input().split())\nA = []\nN = []\n\nN = set(range(1,n+1))\n\nfor i in range(1,k+1):\n d = int(input())\n a=set(map(int,input().split()))\n A += a\n\nans = list(N-A)\n\nprint(len(ans))", "jacc_sim": 1.0, "before_after_length": [97, 93], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "lielieset()set(\n\nprint(len(ans\n\nprint(len(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u830162518", "n_user": "u830162518", "pos": "n,k=map(int,input().split())\nm=[]\nfor i in range(k):\n d=int(input())\n a=list(map(int,input().split()))\n for p in a:\n m.append(p)\nj=set(m)\nprint(n-len(j))", "neg": "n,k=map(int,input().split())\nm=[]\nfor i in range(n):\n d=int(input())\n a=list(map(int,input().split()))\n for i in a:\n m=m.append(i)\nj=set(m)\nprint(n-len(j))\n \n ", "jacc_sim": 0.9655172413793104, "before_after_length": [78, 83], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "nkip=mip\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u446774692", "n_user": "u446774692", "pos": "N,K = map(int,input().split())\nN,K\nd = [0]*K\nA = [[]]*K\nA\nfor i in range(K):\n d[i] = int(input())\n A[i] = list(map(int,input().split()))\n\ncount = 0\nfor i in range(N):\n flag = 1\n for j in range(K):\n if i+1 in A[j]:\n flag = 0\n if flag == 1:\n count += 1\n\nprint(count)\n", "neg": "N,K = map(int,input().split())\nN,K\nd = [0]*K\nA = [[]]*K\nA\nfor i in range(K):\n d[i] = int(input())\n A[i] = list(map(int,input().split()))\n\ncount = 0\nfor i in range(N):\n for j in range(K):\n if i in A[j]:\n count += 1\n\nprint(count) \n", "jacc_sim": 0.9666666666666667, "before_after_length": [131, 113], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "lag = 1\n f+1flag = 0\n if flag == 1:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u669819350", "n_user": "u669819350", "pos": "N, K = map(int, input().split())\nA = set()\nfor _ in range(K):\n d = int(input())\n A.update(list(map(int, input().split())))\nprint(N - len(A))\n", "neg": "N, K = map(int, input().split())\nA = set()\nfor _ in range(K):\n d = int(input())\n A.add(list(input().split()))\nprint(N - len(A))\n", "jacc_sim": 0.92, "before_after_length": [60, 56], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "updddtemap(int, )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u880850253", "n_user": "u880850253", "pos": "n,m = map(int,input().split())\n\nd = {}\n\nfor i in range(m):\n input()\n L = list(map(int,input().split()))\n #print(L)\n for j in L:\n d[j] = j\n\n#print(d)\nprint(n - len(d))", "neg": "n,m = map(int,input().split())\n\nd = {}\n\nfor i in range(m):\n input()\n L = list(map(int,input().split()))\n for j in L:\n d[j] = j\n\nprint(n - len(L))\n ", "jacc_sim": 0.9642857142857143, "before_after_length": [83, 72], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "#print(L)\n #print(d)\nLd\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u345483150", "n_user": "u345483150", "pos": "n,k=map(int,input().split())\nl=[0]*n\nfor i in range(k):\n d=int(input())\n h=list(map(int,input().split()))\n for j in h:\n l[j-1]=1\nprint(l.count(0))", "neg": "n,k=map(int,input().split())\nl=[0]*n\nfor i in range(k):\n d=int(input())\n h=[int(input()) for i in range(d)]\n for j in d:\n l[j-1]=1\nprint(l.count(0))", "jacc_sim": 0.9655172413793104, "before_after_length": [75, 75], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "[list(map((,.split( for i in range(d])dh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u515647766", "n_user": "u515647766", "pos": "line1 = input().split()\nn = int(line1[0])\nk = int(line1[1])\nlist1 = []\nfor i in range(k):\n d = input()\n lst = input().split()\n list1 += lst\n\nset1 = set(list1)\nnothing = set(str(i+1) for i in range(n)) - set1\nprint(len(nothing))", "neg": "line1 = input().split()\nn = int(line1[0])\nk = int(line1[1])\nlist1 = []\nfor i in range(k):\n d = input()\n lst = input().split()\n list1 += lst\n\nset1 = set(list1)\nnothing = set(i for i in range(n)) - set1\nprint(len(nothing))", "jacc_sim": 0.9666666666666667, "before_after_length": [98, 93], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "str(+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u701017915", "n_user": "u701017915", "pos": "N, K = map(int, input().split())\nl = [list(map(int, input().split())) for _ in range(2 * K)]\n\ntreated = (list(range(1, N+1)))\n\nfor i in range(K):\n tt = list(set(list(range(1, N+1))) - set(l[2*i+1]))\n treated = list(set(treated) & set(tt))\n\nprint(len(treated))", "neg": "N, K = map(int, input().split())\nl = [list(map(int, input().split())) for _ in range(2 * K)]\n\ntreated = (list(range(1, N+1)))\n\nfor i in range(int((K+1)/2)):\n tt = list(set(list(range(1, N+1))) - set(l[2*i+1]))\n print(tt)\n treated = list(set(treated) & set(tt))\n\nprint(len(treated))", "jacc_sim": 0.9696969696969697, "before_after_length": [115, 128], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "int((+1)/2)print(tt)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u211286909", "n_user": "u211286909", "pos": "N, K = [int(x) for x in input().split()]\n\nd = []\nA = []\nfor i in range(K):\n _d = int(input())\n d.append(_d)\n _a = [int(x) for x in input().split()]\n A.append(_a)\n\nres = []\nfor i in range(1, N+1):\n res.append(i)\n\nfor a in A:\n for _a in a:\n if _a in res:\n res.remove(_a)\nprint(len(res))\n", "neg": "\nd = []\nA = []\nfor i in range(K):\n _d = int(input())\n d.append(_d)\n _a = [int(x) for x in input().split()]\n A.append(_a)\n\nres = []\nfor i in range(1, N+1):\n res.append(i)\n\nfor a in A:\n for _a in a:\n if _a in res:\n res.remove(_a)\nprint(len(res))\n", "jacc_sim": 1.0, "before_after_length": [141, 123], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "N, K = [int(x) for x in input().split()]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u369796672", "n_user": "u369796672", "pos": "N, K = map(int, input().split())\n\nd = []\nl = []\ni = 0\n\nwhile i < 2*K:\n i += 1\n if i % 2 == 0:\n l.extend([int(x) for x in input().split()])\n else:\n d.append(int(input()))\n\nL = list(set(l))\nprint(N - len(L))", "neg": "N, K = map(int, input().split())\n\nd = []\nl = []\ni = 0\n\nwhile i <= 2*K:\n i += 1\n if i % 2 == 1:\n d.append(int(input()))\n else:\n l.extend([int(x) for x in input().split()])\n\nL = set(l)\nprint(K - len(L))", "jacc_sim": 0.9736842105263158, "before_after_length": [100, 98], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "=01:\n d.append(int(input()))\n else else:\n d.append(int(input()))\nset(ist(set(l)KN", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u737135713", "n_user": "u737135713", "pos": "n,k = map(int,input().split())\n\nz = 0\nl = [0]\nfor i in range(k):\n d=int(input())\n s =list(map(int,input().split()))\n l.extend(s)\nfor i in range(n+1):\n if l.count(i)==0:\n z = z + 1\nprint(z)", "neg": "n,k = map(int,input().split())\n\nz = 0\nl = [0]\nfor i in range(k):\n d=int(input())\n s =list(map(int,input().split()))\n l.extend(s)\n \nprint(l)\nfor i in range(n+1):\n if l.count(i)==0:\n z = z + 1\nprint(z)", "jacc_sim": 1.0, "before_after_length": [96, 103], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": " \nprint(l)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u486209657", "n_user": "u486209657", "pos": "N,K=map(int,input().split())\nA=[]\npeople=list(range(1,N+1,1))\nfor idx in range(K):\n d=int(input())\n X=list((map(int,input().split())))\n for i in range(len(X)):\n A.append(X[i])\nans =[i for i in people if not i in A]\nprint(len(ans))", "neg": "N,K=map(int,input().split())\nA=[]\npeople=list(range(1,N+1,1))\nfor idx in range(K):\n d=int(input())\n X=list((map(int,input().split())))\n for i in range(len(X)):\n A.append(X[i])\nans =[i for i in people if not i in A]\nprint(ans[0])", "jacc_sim": 0.9696969696969697, "before_after_length": [106, 106], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "ale(an[0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u544165032", "n_user": "u544165032", "pos": "N, K = map(int, input().split())\nA = []\nfor i in range(K):\n d = int(input())\n B = list(map(int, input().split()))\n A.extend(B)\nE = list(set(A))\nF = N - len(E)\nprint(F)", "neg": "N, K = map(int, input().split())\nA = []\nfor i in range(K):\n d = int(input())\n B = list(map(int, input().split()))\n A.extend(B)\nE = list(set(A))\nF = N - len(E)", "jacc_sim": 0.9655172413793104, "before_after_length": [78, 73], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "\nprint(F)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u539659844", "n_user": "u539659844", "pos": "n, k = map(int, input().split())\ncount = 0\nlis = []\n\nfor m in range(0, k):\n d = int(input())\n li = [int(i) for i in input().split()]\n lis = lis + li\n \nfor s in range(1, n+1):\n if s in lis:\n count += 0\n else:\n count += 1\n\nprint(count)", "neg": "n, k = map(int, input().split())\ncount = 0\nlis = []\n\nfor m in range(0, k):\n d = int(input())\n li = [int(i) for i in input().split()]\n lis = lis + li\n \nprint(lis)\n \nfor s in range(1, n+1):\n if s in lis:\n count += 0\n else:\n count += 1\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [108, 116], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "print(lis)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u869265610", "n_user": "u869265610", "pos": "N,M=list(map(int,input().split()))\nsi=[0]*N\nans=0\nfor i in range(M):\n S=int(input())\n who=list(map(int,input().split()))\n for k in range(S):\n si[who[k]-1]+=1\nfor h in range(N):\n if si[h]==0:\n ans+=1\nprint(ans)\n", "neg": "N,M=list(map(int,input().split()))\n si=[0]*N\n ans=0\n for i in range(M):\n S=int(input())\n who=list(map(int(input())))\n for k in range(S):\n si[who[k]]+=1\n for h in range(N):\n if si[h]==0:\n ans+=1\nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [109, 108], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": " (,.split( -1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u285265363", "n_user": "u285265363", "pos": "import math\nn, k = map(int, input().split())\nd = []\na = []\nfor i in range(k):\n d.append(int(input()))\n a.extend(input().split())\nans = len(set(a))\nprint(n - ans)", "neg": "import math\nn, k = map(int, input().split())\nd = []\na = []\nfor i in range(k):\n d.append(int(input()))\n a.extend(input().split())\nprint(a)\nans = len(set(a))\nprint(n - ans)", "jacc_sim": 1.0, "before_after_length": [68, 73], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "print(a)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u707030679", "n_user": "u707030679", "pos": "n,k =map(int,input().split())\n\nD=[]\nA=[]\nC=[]\nfor i in range(k):\n D.append(int(input()))\n A.append(list(map(int,input().split())))\nfor i in range(1,n+1):\n C.append(int(i))\n\nfor i in range(k):\n for a in A[i]:\n if C.count(a)!=0:\n C.remove(a)\n \nprint( len(C) )\n\n", "neg": "n,k =map(int,input().split())\n\nD=[]\nA=[]\nC=[]\nfor i in range(k):\n D.append(int(input()))\n A.append(list(map(int,input().split())))\nfor i in range(1,n+1):\n C.append(int(i))\n\nfor i in range(k-1):\n for a in A[i]:\n if C.count(a)!=0:\n C.remove(a)\n \nprint( C, len(C) )\n\n", "jacc_sim": 0.9705882352941176, "before_after_length": [134, 138], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "-1C, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u568789901", "n_user": "u568789901", "pos": "N,K=map(int,input().split())\nD=[]\nA=[]\nfor i in range(K):\n d=int(input())\n D.append(d)\n Ai=[int(x) for x in input().split()]\n A.append(Ai)\nNUMBERS=[int(x) for x in range(1,N+1)]\nfor i in range(K):\n for j in range(D[i]):\n if A[i][j] in NUMBERS:\n NUMBERS.remove(A[i][j])\n else:\n pass\nprint(len(NUMBERS))\n", "neg": "N,K=map(int,input().split())\nD=[]\nA=[]\nfor i in range(K):\n d=int(input())\n D.append(d)\n Ai=[int(x) for x in input().split()]\n A.append(Ai)\nNUMBERS=[int(x) for x in range(1,N+1)]\nfor i in range(K):\n for j in range(D[i]):\n if A[i][j] in NUMBERS:\n NUMBERS.remove(A[i][j])\nfor i in range(len(NUMBERS)):\n print(len(NUMBERS))\n", "jacc_sim": 0.9411764705882353, "before_after_length": [151, 157], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "foriinrang lse:\n pass\nprint: print(len(NUMBERS))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u246907970", "n_user": "u246907970", "pos": "l1=input().split(\" \")\nn=int(l1[0])\nk=int(l1[1])\nlist=[range(n)]\nkashi=[]\nfor i in range(k):\n tmp=input()\n num=input().split(\" \")\n for j in num:\n kashi.append(j)\nkashi=set(kashi)\nprint(n-len(kashi))", "neg": "l1=input().split(\" \")\nn=int(l1[0])\nk=int(l1[1])\nlist=[range(n)]\nkashi=[]\nfor i in range(k):\n tmp=input()\n num=input().split(\" \")\n kashi.append(num)\nkashi=set(kashi)\nprint(n-len(kashi))", "jacc_sim": 0.9666666666666667, "before_after_length": [103, 96], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "for j in num:\n jnum", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u092460072", "n_user": "u092460072", "pos": "n,k=list(map(int, input().split()))\ndic={}\nfor i in range(k):\n j=int(input())\n l=list(map(int, input().split()))\n for a in l:\n if a not in dic:\n dic[a]=True\nx=len(list(dic.keys()))\nprint(n-x)", "neg": "n,k=list(map(int, input().split()))\ndic={}\nfor i in range(2*k):\n j=int(input())\n l=list(map(int, input().split()))\n for a in l:\n if a not in dic:\n dic[a]=True\nx=len(list(dic.keys()))\nprint(n-x)\n ", "jacc_sim": 0.9428571428571428, "before_after_length": [91, 95], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "2*\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u629350026", "n_user": "u629350026", "pos": "n,k = map(int, input().split())\ndi=[0]*k\nAp=[0]*n\nfor i in range(0,k):\n di[i] = int(input())\n A = list(map(int, input().split()))\n ai=0\n A.append(-100)\n for j in range(1,n+1):\n if A[ai]==j:\n ai=ai+1\n Ap[j-1]=1\nnum=0\nfor l in range(0,n):\n if Ap[l]==0:\n num=num+1\nprint(num)", "neg": "n,k = map(int, input().split())\ndi=[0]*k\nAp=[0]*n\nfor i in range(0,k):\n di[i] = int(input())\n A = list(map(int, input().split()))\n ai=0\n for j in range(1,di[i]+1):\n if A[ai]==j:\n ai=ai+1\n Ap[j-1]=1\nnum=0\nfor l in range(0,n):\n if Ap[l]==0:\n num=num+1\nprint(num)", "jacc_sim": 0.9428571428571428, "before_after_length": [149, 143], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "A.append(-100)\n ndi[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u086624329", "n_user": "u086624329", "pos": "N,K=map(int,input().split())\n\nsunuke_list=[i+1 for i in range(N)]\n\nfor i in range(K):\n d=int(input())\n a=list(map(int,input().split()))\n b=set(sunuke_list)-set(a)\n sunuke_list=list(b)\n \nprint(len(sunuke_list))", "neg": "N,K=map(int,input().split())\n\nsunuke_list=[i+1 for i in range(N)]\n\nfor i in range(K):\n d=int(input())\n a=list(map(int,input().split()))\n b=set(sunuke_list)-set(a)\n sunuke_list=list(b)\n print(sunuke_list)\n \nprint(len(sunuke_list))", "jacc_sim": 1.0, "before_after_length": [103, 113], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "print(sunuke_list) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u842388336", "n_user": "u842388336", "pos": "n, k = map(int, input().split())\nn_list = [1]*n\nfor _ in range(k):\n _ = input()\n for i in list(map(int, input().split())):\n n_list[i-1] = 0\nprint(sum(n_list))\n", "neg": "n, k = map(int, input().split())\nn_list = [1]*n\nfor _ in range(b):\n _ = input()\n for i in range(list(map(int, input().split()))):\n n_list[i-1] = 0\nprint(sum(n_list))", "jacc_sim": 0.9642857142857143, "before_after_length": [74, 75], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "bkrange()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u435084726", "n_user": "u435084726", "pos": "N, K = map(int, input().split())\n\nsunuke = [1] * N\n\nfor i in range(K):\n di = int(input())\n tmp = map(int, input().split())\n for t in tmp:\n sunuke[t-1] = 0\nprint(sum(sunuke))", "neg": "N, K = map(int, input().split())\n\nsunuke = [1] * N\n\nfor i in range(K):\n tmp = map(int, input().split())\n for t in tmp:\n sunuke[t-1] = 0\nprint(sum(sunuke))", "jacc_sim": 0.9642857142857143, "before_after_length": [80, 72], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "\n di = int(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02688", "p_user": "u696419801", "n_user": "u696419801", "pos": "N, K = map(int, input().split())\n\nhave_snack = [0 for i in range(N)]\n\nfor k in range(K):\n hito_len = int(input())\n have_hito = list(map(int, input().split()))\n for hh in have_hito:\n have_snack[hh - 1] = 1\n\nprint(have_snack.count(0))\n", "neg": "N, K = map(int, input().split())\n\nhave_snack = [0 for i in range(N)]\n\nfor k in range(K):\n hito_len = int(input())\n have_hito = map(int, input().split())\n for hh in range(have_hito):\n have_snack[hh - 1] = 1\n\nprint(have_snack.count(0))\n", "jacc_sim": 0.9655172413793104, "before_after_length": [103, 102], "nl": "In a town, there are N Snukes, each named Snuke 1, Snuke 2, ..., Snuke N. There are K kinds of snacks sold in the town, named Snack 1, Snack 2, ..., Snack K. Each Snuke has a certain set of snacks. Takahashi will walk around the town and play tricks on the Snukes who have no snacks. The task is to determine how many Snukes will fall victim to Takahashi's mischief. The input consists of N, K, and the sets of snacks for each kind. The output should be the number of Snukes who will be victims. The constraints are that all input values are integers, and N, K, and the snack sets have specific limits. Sample inputs and outputs are provided for reference.", "diff_info": "list()range()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u190405389", "n_user": "u693945629", "pos": "s,w = map(int, input().split())\n\nprint('unsafe' if w>=s else 'safe')", "neg": "s, w = map(int, input().split())\n\nif w >= s:\n print(\"safe\")\nelse:\n print(\"unsafe\")", "jacc_sim": 0.9473684210526315, "before_after_length": [28, 35], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " if w >= s:\n '\"safe\")\nelse:\n print(\"\"' if w>=s else 'safe'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u044459372", "n_user": "u044459372", "pos": "def main():\n s, w = map(int, input().split())\n print('unsafe' if w >= s else 'safe')\n\nif __name__ == '__main__':\n main()", "neg": "def main():\n s, w = map(int, input().split())\n print('unsefe' if w >= s else 'safe')\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9166666666666666, "before_after_length": [47, 48], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "ea", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u046190224", "n_user": "u046190224", "pos": "S, W = [int(x) for x in input().split()]\n \nif W >= S:\n print('unsafe')\nelse:\n print('safe')", "neg": "W,S = [int(x) for x in input().split()]\n\nif W >= S:\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 1.0, "before_after_length": [41, 40], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "S, ,S ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u099187672", "n_user": "u099187672", "pos": "s,w = map(int,input().split())\n\nif sW else \"unsafe\")\n", "neg": "S,W = list(map(int,input()split()))\nprint(\"safe\" if S>W else \"unsafe\")", "jacc_sim": 0.9473684210526315, "before_after_length": [30, 29], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": ".\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u129898499", "n_user": "u840841119", "pos": "S,W = map(int,input().split())\nif S <= W:\n print(\"unsafe\")\nelse:\n print(\"safe\")", "neg": "W,S = map(int, input().split())\n\nprint('safe' if W < S else 'unsafe')", "jacc_sim": 0.9473684210526315, "before_after_length": [34, 27], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "S,,S if S <= W: \"'safe' if W < S else ''\"\nelse:\n print(\"safe\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u961683878", "n_user": "u961683878", "pos": "import sys\nint1 = lambda x: int(x) - 1\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(500000)\n\nS, W = map(int, read().split())\n\nif W >= S:\n print(\"unsafe\")\nelse:\n print(\"safe\")\n\n", "neg": "import sys\nint1 = lambda x: int(x) - 1\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(500000)\n\nS, W = map(int, read())\n\nif W >= S:\n print(\"unsafe\")\nelse:\n print(\"safe\")\n\n\n ", "jacc_sim": 0.96875, "before_after_length": [98, 98], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": ".split()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u103208639", "n_user": "u277314812", "pos": "s,w=map(int, input().split())\nif w>=s:\n print(\"unsafe\")\nelse:\n print(\"safe\")", "neg": "s,w = map(int,input().split())\nif s >= w :\n print(\"unsafe\")\nelse :\n print(\"safe\")", "jacc_sim": 1.0, "before_after_length": [35, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " ws s w ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u614181788", "n_user": "u944886577", "pos": "s,w = map(int,input().split())\n\nif w>=s:\n print('unsafe')\nelse:\n print('safe')", "neg": "s,w =map(input().split())\n \nif s>w:\n print(\"safe\")\nelse:\n print(\"unsafe\")", "jacc_sim": 0.9473684210526315, "before_after_length": [36, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " int, w>=>w \"'un\"' '\"un\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u277394423", "n_user": "u018846452", "pos": "s,w=map(int,input().split())\nif(s<=w):\n print('unsafe')\nelse:\n print('safe')", "neg": "s, w = map(int, input().split())\nif s < w:\n print('safe')\nelse:\n print('unsafe')", "jacc_sim": 1.0, "before_after_length": [36, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " ( =)print('safe')\nelse:\n\nelse:\n print('safe')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u792455295", "n_user": "u262481526", "pos": "S,W = map(int,input().split())\n\nprint(\"unsafe\") if S<=W else print(\"safe\")", "neg": "S, W = map(int, input().split())\nif S < W :\n print('unsafe')\nelse :\n print('safe')", "jacc_sim": 0.9473684210526315, "before_after_length": [29, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " \nprint(\"unsafe\") =:\n else\"'un'\"\nelse :\n print('safe')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u332906195", "n_user": "u718270795", "pos": "S, W = map(int, input().split())\nprint(\"unsafe\" if S <= W else \"safe\")\n", "neg": "S, W = map(int, input().split())\nprint(S, W)\nif S <= W:\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 0.9473684210526315, "before_after_length": [27, 41], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "S,\"unsafe\"W)\n:\nelse\" print('un'\"else:\n print('safe')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u952245863", "n_user": "u952245863", "pos": "s, w = map(int, input().split());\n\nif s <= w:\n print(\"unsafe\");\nelse:\n print(\"safe\");\n", "neg": "s,w=map(int.input().split());\nif s<=w:\n print(unsafe);\nelse:\n print(safe);\n", "jacc_sim": 0.95, "before_after_length": [36, 36], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " ., \n \"\" \"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u922952729", "n_user": "u922952729", "pos": "S,W=[int(i) for i in input().split(\" \")]\nif W>=S:\n print(\"unsafe\")\nelse:\n print(\"safe\")\n", "neg": "S,W=[int(i) for i in input().split(\" \")]\nif W>=S:\n print(\"unsage\")\nelse:\n print(\"safe\")", "jacc_sim": 0.9166666666666666, "before_after_length": [41, 40], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "gf\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u746206084", "n_user": "u231959533", "pos": "s,w = map(int,input().split())\nif s>w:\n print(\"safe\")\nelse:\n print(\"unsafe\")", "neg": "s, w = map(int, input().split())\nif w >= w:\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 1.0, "before_after_length": [34, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " sw = \"'un'\" '\"un'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u438782979", "n_user": "u438782979", "pos": "a,b = map(int,input().split())\nif b >= a:\n print(\"unsafe\")\nelif a > b:\n print(\"safe\")", "neg": "a,b = map(int,input().split())\nif b > a:\n priant(\"unsafe\")\nelif a > b:\n print(\"safe\")", "jacc_sim": 0.95, "before_after_length": [38, 39], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "=a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u600937333", "n_user": "u446774692", "pos": "S, W = (map(int,(input().split())))\nif (W < S):\n print('safe')\nelse:\n print('unsafe')", "neg": "S,W = map(int,input().split())\n\nif S < W:\n print(\"unsafe\")\nelse:\n print(\"safe\")", "jacc_sim": 1.0, "before_after_length": [38, 35], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " ((\n))S(WWS) '\"un\"' \"'un\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u370331385", "n_user": "u490464064", "pos": "S,W = map(int,input().split())\n\nif(S <= W):\n print('unsafe')\nelse:\n print('safe')", "neg": "S,W=map(int,input().split())\nif S=S:\n print(\"unsafe\")\nelse:\n print(\"safe\")\n", "neg": "S, W = map(int, input().split())\n\nif W >= S:\n print(unsafe)\nelse:\n print(safe)\n", "jacc_sim": 0.9473684210526315, "before_after_length": [37, 36], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " \"\"\"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u224825657", "n_user": "u224825657", "pos": "s=input()\nlis=s.split()\nif int(lis[0])>int(lis[1]):\n print(\"safe\")\nelse:\n print(\"unsafe\")", "neg": "s=input()\nlis=s.split(\" \")\nif lis[0]>lis[1]:\n print(\"safe\")\nelse:\n print(\"unsafe\")", "jacc_sim": 0.9523809523809523, "before_after_length": [46, 42], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "\" \"int()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u040642458", "n_user": "u040642458", "pos": "s, w = input().split(\" \")\n\ns = int(s)\nw = int(w)\n\nif w >= s:\n print(\"unsafe\")\nelse:\n print(\"safe\")\n", "neg": "s ,w = input(). int(\" \")\n\ns=int(s)\nw=int(w)\n\nif w >= s :\n print(\"unsafe\")\nelse :\n print(\"safe\")", "jacc_sim": 0.9444444444444444, "before_after_length": [48, 47], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": ",, spln \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u373594825", "n_user": "u373594825", "pos": "S, W = map(int, input().split())\n\nif S <= W :\n print('unsafe')\nelse:\n print('safe')", "neg": "S, W = map(int, input().split())\n\nprint(S)\nprint(W)\n\nif S <= W :\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 1.0, "before_after_length": [35, 46], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": ")\n\nprint(S)\nprint(W", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u887860190", "n_user": "u174394352", "pos": "s, w = map(int,input().split())\nres = \"\"\n\nif s <= w:\n res = \"unsafe\"\nelse:\n res = \"safe\"\n\nprint(res)\n", "neg": "s,w =map(int(input().split()))\nif s<=w:\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 0.95, "before_after_length": [48, 36], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " (,)\nres = \"\"\n p int('es = \"\"') res = \"safe\"\n\n'reafe'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u318066360", "n_user": "u318066360", "pos": "s,w=input().split()\ns=int(s)\nw=int(w)\nif s>w:\n print(\"safe\")\nif w>s:\n print(\"unsafe\")\nif w==s:\n print(\"unsafe\")", "neg": "s,w=input().split()\nif s>w:\n print(\"safe\")\nif w>s:\n print(\"unsafe\")", "jacc_sim": 0.9411764705882353, "before_after_length": [60, 33], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": ")\ns=int(s)\nw=int(w\nif w==s:\n print(\"unsafe\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u589578850", "n_user": "u589969467", "pos": "s ,w = map(int, input().split())\n\nif s <= w:\n print(\"unsafe\")\nelse:\n print(\"safe\")", "neg": "s,w = map(int,input().split())\nif s < w:\n print('unsafe')\nelse:\n print('safe')", "jacc_sim": 1.0, "before_after_length": [35, 34], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": " \n= '\"'\" '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u026788530", "n_user": "u026788530", "pos": "s,w=[int(x) for x in input().split()]\n \nif(s>w):\n print(\"safe\")\nelse:\n print(\"unsafe\")", "neg": "s,w=[int(x) for x in input().splir()]\n\nif(s>w):\n print(\"safe\")\nelse:\n print(\"unsafe\")", "jacc_sim": 0.9166666666666666, "before_after_length": [41, 41], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "rt ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u152283104", "n_user": "u152283104", "pos": "if __name__ == '__main__':\n S,W = map(int, input().split())\n if S > W:\n print('safe')\n elif S <= W:\n print('unsafe')\n", "neg": "if __name__ == '__main__':\n S,W = map(int, input().split())\n print(S,W)\n if S >= W:\n print('safe')\n elif S < W:\n print('unsafe')\n", "jacc_sim": 1.0, "before_after_length": [51, 59], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "print(S,W)\n ==", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02699", "p_user": "u345612666", "n_user": "u384744829", "pos": "a,b=map(int,input().split())\nif a>b:\n print(\"safe\")\nelse:\n print(\"unsafe\")", "neg": "a,b=map(int,input().split())\n\nif a>b\n\tprint(\"safe\")\n\nelse:\n\tprint(\"unsafe\")", "jacc_sim": 1.0, "before_after_length": [34, 35], "nl": "You are given the number of sheep (S) and wolves (W). If the number of wolves is greater than or equal to that of sheep, the wolves will attack the sheep. Print \"unsafe\" if the wolves will attack the sheep; otherwise, print \"safe\". Constraints: 1 \u2264 S \u2264 100, 1 \u2264 W \u2264 100. Input is given as S and W separated by a space. Output \"unsafe\" if wolves will attack; otherwise, output \"safe\". Example: Input 1: 4 5, Output 1: unsafe. Example: Input 2: 100 2, Output 2: safe. Example: Input 3: 10 10, Output 3: unsafe.", "diff_info": "\n:\t \n\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u623231048", "n_user": "u623231048", "pos": "s = input()\nn = len(s)\n\nli = [0] * n\nli[0] = int(s[-1])\n\nfor i in range(n-1):\n t = int(s[-i-2])\n li[i+1] = (li[i] + t * pow(10, i+1, 2019)) % 2019\n\ndict1 = {}\nfor i in li:\n if i in dict1:\n dict1[i] += 1\n else:\n dict1[i] = 1\n\nans = 0\n\nfor v in dict1.values():\n ans += v * (v-1) // 2\n\nif 0 in dict1:\n ans += dict1[0]\n\nprint(ans)\n", "neg": "s = input()\nn = len(s)\n\nli = [int(s[-1])]\n\nfor i in range(n-1):\n t = int(s[-i-2])\n li.append((li[-1] + t * 10 ** (i+1)) % 2019)\n\ndict1 = {}\nfor i in li:\n if i in dict1:\n dict1[i] += 1\n else:\n dict1[i] = 1\n\nans = 0\n\nfor v in dict1.values():\n ans += v * (v-1) // 2\n\nprint(ans + dict1[0])\n", "jacc_sim": 0.925, "before_after_length": [178, 151], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "0int(s[-1) * n\nli[0 = int(s[-1]).a[i+1] = (li[i] + t * owpend(li[-] + t * 1,** (, 2019)if 0 in dict1:\n ans += dict1[0]\n\n + dict1[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u802234211", "n_user": "u802234211", "pos": "s = list(input())\n# s = list(str(10**200000))\nn = len(s)\nans = 0\ns.reverse()\n# print(s)\nx = 1\ntot = 0\ncount = [0]*2019\nfor i in range(n):\n count[tot]+=1\n tot += int(s[i])*x\n # print(tot)\n tot %= 2019\n ans += count[tot]\n x = x*10%2019\nprint(ans)", "neg": "# s = list(input())\ns = list(str(10**200000))\nn = len(s)\nans = 0\ns.reverse()\nprint(s)\nx = 1\ntot = 0\ncount = [0]*2019\nfor i in range(n):\n count[tot]+=1\n tot += int(s[i])*x\n # print(tot)\n tot %= 2019\n ans += count[tot]\n x = x*10%2019\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [120, 119], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "s = list(input())\ninput())\ntr(10**200000))\nnist(str(10**200000))\nn = l# ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u788703383", "n_user": "u788703383", "pos": "s = input()\nn = len(s)\nm = 2019\n\na = 0\nr = [0 for _ in range(m+1)]\nr[0] = 1\nz = 0\nj = 1\nfor i in range(0,n):\n j = j * 10 % m\n ss = int(s[n-i-1])*j + z\n z = ss%m\n\n\n\n a += r[z]\n r[z] += 1\n\nprint(a)\n", "neg": "s = input()\nn = len(s)\nm = 2019\na = 0\nr = [0 for _ in range(m+1)]\nr[0] = 1\nfor i in range(0,n):\n z = (int(s[n-i-1])*pow(10,i,m) + z)%m\n a += r[z]\n r[z] += 1\nprint(a)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [119, 101], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "\nz = 0\nj = 1\nzj(j * 10 % m\n ss = j + z\n z = ss%m\n\n\n\n a += r[z]\n r[z] += 1\n\now(10,i,m) + z)%m\n a += r[z]\n r[z] += 1\np", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u067694718", "n_user": "u067694718", "pos": "s = input()\nn = len(s)\ns_cu = [0] * (n+1)\ncounter = [0] * 2019\ncounter[0] += 1\nfor i in range(n):\n s_cu[i+1] = (int(s[n-i-1]) * pow(10,i,2019) + s_cu[i]) % 2019\n counter[s_cu[i+1]] += 1\n\nans = 0\nfor i in counter:\n ans += (i * (i - 1)) // 2\n\nprint(ans)\n", "neg": "s = input()\nn = len(s)\ns_cu = [0] * n\ncounter = [0] * 2019\n\nfor i in range(1, n+1):\n s_cu[i-1] = int(s[n-i:]) \n counter[int(s[n-i-1:]) % 2019] += 1\n\nans = 0\nfor i in counter:\n ans += (i * (i - 1)) // 2\n\nprint(ans)", "jacc_sim": 0.9354838709677419, "before_after_length": [135, 113], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "(+1)counter[0] += 1n):\n s_cu[i+] = (int(s[n-i-1]) * pow(10 n+1):\n s_cu[-,209] = int(s[n-i:]\n+ counter[int(_cun--1:\n counter[s_cu[i+1]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u872538555", "n_user": "u872538555", "pos": "s = input()[::-1]\n\ncounts = [0] * 2019\ncounts[0] = 1\n\nnum, d = 0, 1\n\nfor char in s:\n num += int(char) * d\n num %= 2019\n counts[num] += 1\n d *= 10\n d %= 2019\n\nans = 0\nfor cnt in counts:\n ans += cnt * (cnt - 1) // 2\n \nprint(ans)", "neg": " = input()[::-1]\n\ncounts = [0] * 2019\ncounts[0] = 1\n\nnum, d = 0, 1\n\nfor char in s:\n num += int(char) * d\n num %= 2019\n counts[num] += 1\n d *= 10\n\nans = 0\nfor cnt in counts:\n ans += cnt * (cnt - 1) // 2\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [105, 99], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "s\n d %= 2019", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u224353074", "n_user": "u224353074", "pos": "S=list(input())\nS.reverse()\nN=len(S)\nR=[0]*N\nR10=[0]*N\nm=2019\nK=0\n\nR10[0]=1\nR[0]=int(S[0])%m\nfor i in range(1,N):\n R10[i]=(R10[i-1]*10)%m\n R[i]=(R[i-1]+int(S[i])*R10[i])%m\nd={}\nfor i in range(2019):\n d[i]=0\n\nfor i in range(N):\n d[R[i]]+=1\nans=0\nfor i in range(2019):\n if i == 0:\n ans += d[i]\n ans +=d[i]*(d[i]-1)//2\n else:\n ans +=d[i]*(d[i]-1)//2\nprint(ans)\n\n", "neg": "S=list(input())\nS.reverse()\nN=len(S)\nR=[0]*N\nR10=[0]*N\nm=2019\nK=0\n\nR10[0]=1\nR[0]=int(S[0])%m\nfor i in range(1,N):\n R10[i]=(R10[i-1]*10)%m\n R[i]=(R[i-1]+int(S[i])*R10[i])%m\nprint(R)\nd={}\nfor i in range(2019):\n d[i]=0\n\nfor i in range(N):\n d[R[i]]+=1\nans=0\nfor i in range(2019):\n if i == 0:\n ans += d[i]\n ans +=d[i]*(d[i]-1)//2\n else:\n ans +=d[i]*(d[i]-1)//2\nprint(ans)\n\n", "jacc_sim": 1.0, "before_after_length": [234, 239], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "print(R)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u971124021", "n_user": "u971124021", "pos": "from collections import Counter\nS = input()\nS = S + '0'\nmod = 2019\np = [0] * mod\nr = 0\nd = 1\nfor s in S[::-1]:\n t = int(s)%mod\n r += t*d\n r %= mod\n d = d*10%mod\n p[r] += 1\n\n#p.append(0)\n#ans = 0\n#c = Counter(p)\n#for k,n in c.most_common():\n# if n > 1:\n# ans += 1\n# else:break\n \nprint(sum([i*(i-1)//2 for i in p]))", "neg": "from collections import Counter\nS = input()\n#S = S + '0'\nmod = 2019\np = [0] * mod\nr = 0\nd = 1\nfor s in S[::-1]:\n t = int(s)%mod\n r += t*d\n r %= mod\n d = d*10%mod\n p[r] += 1\n\np.append(0)\nans = 0\nc = Counter(p)\nfor k,n in c.most_common():\n if n > 1:\n ans += 1\n else:break\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [161, 140], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "######## \nanum([i*(i-1//2 for i in p]))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u509739538", "n_user": "u509739538", "pos": "p=d=2019\nz=[0]*p\nfor i,j in enumerate(input()[::-1]):\n\td+=int(j)*pow(10,i,p)\n\tz[d%p]+=1\nr=z[0]\nfor i in z:\n\tr+=i*(i-1)//2\nprint(r)", "neg": "p=d=2019\nz=[0]*p\nfor i,j in enumerate(input()[::-1]):\n\td=d+int(j)*pow(10,i,p)\n\tz[d%p]+=1\nr=z[0]\nfor i in a:\n\tr+=i*(i-1)//2\nprint(r)", "jacc_sim": 0.967741935483871, "before_after_length": [86, 87], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "+d+az", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u102461423", "n_user": "u102461423", "pos": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\n\ndef solve(S):\n dp = [0] * 2019\n pow10 = 1\n answer = 0\n for x in S[::-1]:\n dp[0] += 1\n x = x * pow10 % 2019\n newdp = [0] * 2019\n for i in range(2019-x):\n newdp[x+i] += dp[i]\n for i in range(x):\n newdp[i] += dp[2019-x+i]\n answer += newdp[0]\n pow10 *= 10\n pow10 %= 2019\n dp = newdp\n return answer\n\n\nS = [x - ord('0') for x in read().rstrip()]\nprint(solve(S))\n", "neg": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\n\ndef solve(S):\n dp = [0] * 2019\n pow10 = 1\n answer = 0\n for x in S[::-1]:\n dp[0] += 1\n x = x * pow10 % 2019\n newdp = [0] * 2019\n for i in range(x, 2019):\n newdp[x+i] += dp[i]\n for i in range(x):\n newdp[i] += dp[2019-x+i]\n answer += newdp[0]\n pow10 *= 10\n pow10 %= 2019\n dp = newdp\n return answer\n\n\nS = [x - ord('0') for x in read().rstrip()]\nprint(solve(S))\n", "jacc_sim": 0.975, "before_after_length": [215, 214], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "x, 2019):\n newdp[x+i] += dp[i]\n for i in range(x):\n newdp[i] += dp[):\n newdp[x+i] += dp[i]\n for i in range(x):\n newdp[i] += dp[2019-x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u539367121", "n_user": "u539367121", "pos": "s=input()[::-1]\nn=len(s)\np=2019\nS=[0 for i in range(n+1)]\nans=[0]*p\n\nx10=1\nfor j, i in enumerate(s):\n S[j+1]=(S[j]+(x10*int(i)))%p\n x10*=10\n x10%=p\n ans[S[j+1]]+=1\n\ncnt=ans[0]\nfor a in ans:\n cnt+=(a*(a-1))//2\n \nprint(cnt)\n", "neg": "s=input()[::-1]\nn=len(s)\np=2019\nS=[0 for i in range(n+1)]\nans=[0]*p\n\nx10=1\nfor j, i in enumerate(s):\n S[j+1]=(S[j]+(x10*int(i)))%p\n x10=10**j\n x10%=p\n ans[S[j+1]]+=1\n\ncnt=ans[0]\nfor a in ans:\n cnt+=(a*(a-1))//2\n \nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [141, 142], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "=10*j=10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u364862909", "n_user": "u364862909", "pos": "S=input()\nmem_mod = [0 for i in range(0,2019,1)]\nN = len(S)\ncounter = 0\nS_num_tmp = list(S)\nS_num = list(map(int, S_num_tmp))\ntmp=10\n\nfor i in range(1,N,1):\n S_num[N-i-1] = S_num[N-i] + S_num[N-i-1]*pow(10,i,2019)\n\nfor i in range(0,N,1):\n X = S_num[N-i-1] % 2019\n if X==0:\n counter+=1\n counter += mem_mod[X]\n mem_mod[X] += 1\nprint(counter)", "neg": "S=input()\nmem_mod = [0 for i in range(0,2019,1)]\nN = len(S)\ncounter = 0\nS_num_tmp = list(S)\nS_num = list(map(int, S_num_tmp))\ntmp=10\n\nfor i in range(1,N,1):\n S_num[N-i-1] = S_num[N-i] + S_num[N-i-1]*pow(10,i,2019)\nprint(S_num)\n\nfor i in range(0,N,1):\n X = S_num[N-i-1] % 2019\n if X==0:\n counter+=1\n counter += mem_mod[X]\n mem_mod[X] += 1\nprint(counter)", "jacc_sim": 1.0, "before_after_length": [187, 194], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "print(S_num)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u346812984", "n_user": "u346812984", "pos": "import sys\nimport numpy as np\n\nsys.setrecursionlimit(10 ** 6)\nINF = float(\"inf\")\nMOD = 10 ** 9 + 7\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\ndef main():\n S = list(input())\n N = len(S)\n\n val = [0] * (2019)\n tenfactor = 1\n cur = 0\n val[cur] += 1\n for i in range(N):\n cur = (cur + int(S[N - i - 1]) * tenfactor) % 2019\n tenfactor = (tenfactor * 10) % 2019\n val[cur] += 1\n\n ans = 0\n for p in range(2019):\n ans += val[p] * (val[p] - 1) // 2\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\nimport numpy as np\n\nsys.setrecursionlimit(10 ** 6)\nINF = float(\"inf\")\nMOD = 10 ** 9 + 7\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\ndef main():\n S = list(input())\n N = len(S)\n\n val = [0] * (2019)\n tenfactor = 1\n cur = 0\n for i in range(N):\n cur = (cur + int(S[N - i - 1]) * tenfactor) % 2019\n tenfactor = (tenfactor * 10) % 2019\n val[cur] += 1\n\n ans = 0\n for p in range(2019):\n ans += val[p] * (val[p] - 1) // 2\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [217, 209], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "val[cur] += 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u153302617", "n_user": "u153302617", "pos": "s = str(input())\nN = len(s)\narray = [0]*2019\narray[0] += 1\ncount = 0\nd = 1\nr = 0\nfor i in reversed(range(0, N)):\n r = ( r + int( s[i] ) * d ) % 2019\n d = d * 10 % 2019\n array[r] += 1\nfor i in array:\n count += i*(i-1)/2\nprint(int(count))\n", "neg": "s = str(input())\nN = len(s)\narray = [0]*2019\narray[0] += 1\ncount = 0\nd = 1\nr = 0\nfor i in reversed(range(0, N)):\n r = ( r + int( s[i] ) * d ) % 2019\n d = d * 10 % 2019\n print(s[i],r,d)\n array[r] += 1\nfor i in array:\n count += i*(i-1)/2\nprint(int(count))\n", "jacc_sim": 1.0, "before_after_length": [114, 126], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "array[r] += 1\nfor i in array:\n count += i*(i-1)/2\ns[],r,d)\n array[r] += 1\nfor i it( array:\n += i*(i-1/2\nprint(int(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u331997680", "n_user": "u331997680", "pos": "def main():\n n, d, mods = 0, 1, [1]+[0]*2019\n for i in reversed(input()):\n n = (n+int(i)*d)%2019\n d = d*10%2019\n mods[n] += 1\n print(sum([i*(i-1)//2 for i in mods]))\nmain()", "neg": "def main():\n n, d, mods = 0, 1, [1]+[0]*2019\n for i in reversed(input()):\n n = (n+int(i)*d)%2019\n d = d*10\n mods[n] += 1\n print(n,d)\n print(sum([i*(i-1)//2 for i in mods]))\nmain()\n", "jacc_sim": 1.0, "before_after_length": [89, 95], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "%2019\n print(n,d)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u884657429", "n_user": "u884657429", "pos": "def egcd(a, b):\n \"\"\"Returns a triple (g, x, y), such that ax + by = g = gcd(a,b).\n Assumes a, b >= 0, and that at least one of them is > 0.\n Bounds on output values: |x|, |y| <= max(a, b).\"\"\"\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m) \n if g != 1:\n return None\n else:\n return x % m\n\ndef main():\n s = input()\n n = len(s)\n h = [0]\n for i in range(n):\n h.append((h[-1] * 10 + int(s[i])) % 2019)\n p = [1]\n for i in range(n):\n p.append((p[-1] * 10) % 2019)\n lk = {0 : 1}\n cnt = 0\n for i in range(1, len(h)):\n curr = (h[i] * modinv(p[i], 2019)) % 2019\n # print(i, curr)\n if curr in lk:\n cnt += lk[curr]\n lk[curr] += 1\n else:\n lk[curr] = 1 \n print(cnt)\n \nif __name__ == '__main__':\n main() \n ", "neg": "def egcd(a, b):\n \"\"\"Returns a triple (g, x, y), such that ax + by = g = gcd(a,b).\n Assumes a, b >= 0, and that at least one of them is > 0.\n Bounds on output values: |x|, |y| <= max(a, b).\"\"\"\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n\ndef modinv(a, m):\n g, x, y = egcd(a, m) \n if g != 1:\n return None\n else:\n return x % m\n\ndef main():\n s = input()\n n = len(s)\n h = [0]\n for i in range(n):\n h.append((h[-1] * 10 + int(s[i])) % 2019)\n p = [1]\n for i in range(n):\n p.append((p[-1] * 10) % 2019)\n lk = {0 : 1}\n cnt = 0\n for i in range(1, len(h)):\n curr = h[i] % 2019\n # print(i, curr)\n if curr in lk:\n cnt += lk[curr]\n lk[curr] += 1\n else:\n lk[curr] = 1 \n print(cnt)\n \nif __name__ == '__main__':\n main() \n ", "jacc_sim": 1.0, "before_after_length": [385, 374], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "( * modinv(p[i], 2019))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u780465569", "n_user": "u780465569", "pos": "import sys\nreadline = sys.stdin.readline\n\nS = readline().strip()\nS = list(map(int, S))\nN = len(S)\nP = 2019\n\nrems = [0] * N\na = 1\nb = 0\nfor i in range(N):\n b = (b + (a * S[N - i - 1]) % P) % P\n rems[N - i - 1] = b\n a = a * 10 % P\n\nrems = rems + [0]\n\ncounts = [0] * P\n\n\nfor i in range(len(rems)):\n counts[rems[i]] += 1\n\nans = 0\nfor c in counts:\n ans += c * (c - 1) // 2\n\nprint(ans)", "neg": "import sys\nreadline = sys.stdin.readline\n\nS = readline().strip()\nS = list(map(int, S))\nN = len(S)\nP = 2019\n\nrems = [0] * N\na = 1\nb = 0\nfor i in range(N):\n b = (b + (a * S[N - i - 1]) % P) % P\n rems[N - i - 1] = b\n a = a * 10 % P\n\nrems = rems + [0]\n\ncounts = [0] * P\n\n\nfor i in range(len(rems)):\n counts[rems[i]] += 1\nprint(rems)\n\nans = 0\nfor c in counts:\n ans += c * (c - 1) // 2\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [188, 194], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "\nprint(rems)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u626881915", "n_user": "u626881915", "pos": "s = input()\n\nn = len(s)\nmod_list = [0]*2019\nmod_list[0] = 1\nt = 0\nkeisu = 1\nfor i in range(n):\n t = (int(s[n-1-i])*keisu+t) %2019\n keisu = keisu*10 %2019\n mod_list[t]+= 1\ncount = 0\nfor k in range(2019):\n count += mod_list[k] * (mod_list[k]-1)//2\nprint(count)", "neg": "s = input()\nn = len(s)\nmod_list = [0]*2019\nfor i in range(n-1, -1, -1):\n t = int(s[i:])\n mod_list[t%2019]+= 1\ncount = 0\nfor k in range(2019):\n count += mod_list[k] * (mod_list[k]-1)//2\nprint(k)", "jacc_sim": 0.90625, "before_after_length": [139, 102], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "n = len(s)nmod_listlen(s)\nmod_list = \nmod_list[0] = 1\nt = 0\nkeisu = 1):\n t = (int(s[n, 1, -1):\n t = nt(s[i:*ke\n mod_lu+[t) \n keisu = keisu*10 %2019\n mod_list[tkcount", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u557494880", "n_user": "u557494880", "pos": "S = input()\nA = [0 for i in range(2019)]\nx = 0\nq = 1\nfor i in range(len(S)):\n p = i + 1\n a = (int(S[-p]))\n b = a*q%2019\n x = (x+b) % 2019\n A[x] += 1\n q = q*10%2019\nans = A[0]\nfor i in range(2019):\n ans += A[i]*(A[i]-1)//2\nprint(ans)", "neg": "S = input()\nA = [0 for i in range(2019)]\nx = 0\nfor i in range(len(S)):\n p = i + 1\n a = (int(S[-p]))10**i % 2019\n x = (x+a) % 2019\n A[x] += 1\nans += A[i]\nfor i in range(2019):\n ans += A[i]*(A[i]-1)//2\nprint(ans)", "jacc_sim": 0.9375, "before_after_length": [132, 113], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "q = 1\n10\n b = aq%2019\n x = (x+b) % 2019\n A[x] += 1\n q = qi 10 \n x = (x+a) % 2019\n A[x] += 1+i0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u509739538", "n_user": "u509739538", "pos": "import math\n\ndef readInt():\n\treturn int(input())\n\ndef readInts():\n\treturn list(map(int, input().split()))\n\ndef readChars():\n\treturn input().split()\n\ns = reversed(input())\n\nai = 0\nsi = 0\n\np = 2019\ncountarr = [0]*2019\n\nfor i, j in enumerate(s):\n\tai = (int(j)*pow(10,i,p))%p\n\tsi = (si+ai)%p\n\tcountarr[si]+=1\n\nres = countarr[0]\nfor i in range(p):\n\tc = countarr[i]\n\tres += c*(c-1)//2\n\nprint(res)", "neg": "import math\n\ndef readInt():\n\treturn int(input())\n\ndef readInts():\n\treturn list(map(int, input().split()))\n\ndef readChars():\n\treturn input().split()\n\ns = reversed(input())\n\nai = 0\nsi = [0]*len(s)\n\np = 2019\n\nfor i, j in enumerate(s):\n\tai = (int(j)*pow(10,i,p))%p\n\tsi[i] = (si[i-1]+ai)%p\ncountarr = [0]*2019\nfor i in si:\n\tcountarr[i]+=1\n\nres = countarr[0]\nfor i in range(p):\n\tc = countarr[i]\n\tres += c*(c-1)//2\n\nprint(res)", "jacc_sim": 0.9791666666666666, "before_after_length": [172, 191], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "[]*len(s)\n\nfor i, j in enumerate(s):\n\tai = (int(j)*pow(10,i,p))%p\n\tsi[i] = (si[i-1]+ai)%p\n,jinsn enumerate(s)\n\tai = (int(j)*pow(10,i,p))%p\n\tsi = (si+ai)%ps", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u961674365", "n_user": "u961674365", "pos": "s=input()\nn=len(s)\nrst=[0 for j in range(2019)]\nrst[0]=1\nx=0\nans=0\ndrst=1\nfor i in range(n):\n y=(int(s[n-1-i])*drst)%2019\n drst=(drst*10)%2019\n x+=y\n if x>=2019:\n x%=2019\n #print(x,y,drst)\n ans+=rst[x]\n rst[x]+=1\n#if rst[0]==1:\n #ans+=0\n\nprint(ans)", "neg": "s=input()\nn=len(s)\nrst=[0 for j in range(2019)]\nx=0\nans=0\nfor i in range(n):\n y=(int(s[n-1-i])*(10**i))%2019\n x+=y\n if x>=2019:\n x%=2019\n print(x,y)\n ans+=rst[x]\n rst[x]+=1\nif rst[0]==1:\n ans+=1\n\nprint(ans)", "jacc_sim": 0.9411764705882353, "before_after_length": [159, 129], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "rx=0\nan=t[]=1\nx=0\nans=0\ndrst=1(1drst)%219\n drst=(drst10*i)#,d)\n ans+=)[x]rant[x]1rst[x] rst[x]+=1\n##10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u829796346", "n_user": "u829796346", "pos": "# n = int(sys.stdin.readline())\nimport sys,bisect,math\nsys.setrecursionlimit(15000)\n\ns = sys.stdin.readline().rstrip()\ncum = [0]*(len(s)+1)#cumulative sum\nimport collections\nd = collections.defaultdict(int)\nd[0] = 1\nret = 0\ndig = 1\nfor i in range(len(s))[::-1]:\n cum[i]=(int(s[i])*dig+cum[i+1])%2019\n dig = (dig*10)%2019\n #cum[i+1]=int(s[i:])%2019\n if cum[i] in d:\n ret += d[cum[i]]\n d[cum[i]] += 1\n#print(d,cum,ret)\nprint(ret)", "neg": "import sys,bisect,math\nsys.setrecursionlimit(15000)\n\ns = sys.stdin.readline().rstrip()\ncum = [0]*(len(s)+1)#cumulative sum\nimport collections\nd = collections.defaultdict(int)\nd[0] = 1\nret = 0\ndig = 1\nfor i in range(len(s))[::-1]:\n cum[i]=(int(s[i])*dig+cum[i+1])%2019\n dig == (dig*10)%2019\n #cum[i+1]=int(s[i:])%2019\n if cum[i] in d:\n ret += d[cum[i]]\n d[cum[i]] += 1\n#print(d,cum,ret)\nprint(ret)", "jacc_sim": 0.9772727272727273, "before_after_length": [207, 194], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "# n = int(sys.stdin.readline())\n=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u624617831", "n_user": "u624617831", "pos": "s = str(input())[::-1]\n\ntmp_amari = [0]*2019\n\n#amari = 0\nnum = 0\norder = 1\nfor i in s:\n num += int(i)*order\n num %= 2019\n #print(num)\n tmp_amari[num] += 1\n order *= 10\n order %= 2019\n #print(order)\n\ntmp_print = [i for i in tmp_amari if i > 0]\n#print(tmp_print)\n\nans = 0\nans += tmp_amari[0]\n\nfor i in tmp_print:\n ans += (i*(i-1))//2\n\nprint(ans)\n", "neg": "s = str(input())[::-1]\n\ntmp_amari = [0]*2019\n\n#amari = 0\nnum = 0\norder = 1\nfor i in s:\n num += int(i)*order\n num %= 2019\n print(num)\n tmp_amari[num] += 1\n order *= 10\n\n#tmp_print = [i for i in tmp_amari if i > 0]\n#print(tmp_print)\n\nans = 0\nans += tmp_amari[0]\n\nfor i in tmp_print:\n ans += (i*(i-1))//2\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [165, 153], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "# order %= 2019 print(order)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u197457087", "n_user": "u197457087", "pos": "from collections import Counter\nS = str(input())\nN = len(S)\n\n#smod = [int(S[i:])%2019 for i in range(N)]\nsmod = [0]\ntmod = 0\nketa = 1\nfor i in range(N):\n temp = tmod + int(S[(N-1)-i])*keta\n #print(temp)\n tmod = temp%2019\n smod.append(tmod)\n keta = keta*10%2019\n\n\ncmod = Counter(smod)\n#print(cmod)\n\nans = 0\nfor i in cmod.values():\n ans += i*(i-1)/2\nprint(int(ans))\n \n", "neg": "from collections import Counter\nS = str(input())\nN = len(S)\n\n#smod = [int(S[i:])%2019 for i in range(N)]\nsmod = [0]\ntemp = 0\nfor i in range(N):\n temp = temp + int(S[(N-1)-i])*pow(10,i)\n print(temp)\n smod.append(temp%2019)\n\n\ncmod = Counter(smod)\nprint(cmod)\n\nans = 0\nfor i in cmod.values():\n ans += i*(i-1)/2\nprint(int(ans))", "jacc_sim": 0.9069767441860465, "before_after_length": [179, 152], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "epod\nketa = 1epodkpow(10,i)\n print(ttmp)\n smod.\n #peridttemp)\n tmod = \n smod.append(tmod\n keta = keta*10%2019#\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u182178426", "n_user": "u182178426", "pos": "import collections\ns = input()\nu = collections.deque([0])\nfor i in range(len(s)):\n u.append((u[i]+int(s[-i-1])*10**(i%224))%2019)\nu2 = collections.Counter(u)\nsum = 0\nfor i in u2.values():\n sum += i*(i-1)/2\nprint(int(sum))", "neg": "s = input()\nu = [0]\nfor i in range(len(s)):\n u.append((u[i]+int(s[::-1][i])*10**i)%2019)\nimport collections\nu2 = collections.Counter(u)\nprint(sum([int(i*(i-1)/2) for i in u2.values()]))\nprint(u)", "jacc_sim": 0.9444444444444444, "before_after_length": [99, 92], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "s = nmuor()\nu=collections\ns= input()\nu = collections.deque()::i-[i]()24))%2import collections\nprint(([int(i*(i-1)/2)= 0\n:])) sprint(m += i*(i-1/2\nprint(int(sum))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u110199424", "n_user": "u110199424", "pos": "from collections import Counter\n\nS = str(input())\n\nmemo = [0]\nd = 0\nmod = 2019\n\n\nfor s in S[::-1]:\n tmp = int(s) * pow(10, d, mod) % mod\n tmp = memo[-1] + tmp\n memo.append(tmp%mod)\n d += 1\n\nc = Counter(memo)\nans = sum(v * (v-1)/2 for v in c.values())\nprint(int(ans))\n\n", "neg": "from collections import Counter\n\nS = str(input())\n\nmemo = [0]\nd = 0\nmod = 2019\n\n\nfor s in S[::-1]:\n tmp = int(s) * pow(10, d, mod) % mod\n tmp = memo[-1] + tmp\n memo.appemd(tmp%mod)\n d += 1\n\nc = Counter(memo)\nans = sum(v * (v-1)/2 for v in c.values())\nprint(ans)\n\n", "jacc_sim": 0.9523809523809523, "before_after_length": [120, 120], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "mnait(an)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u577170763", "n_user": "u577170763", "pos": "S = input()\nans = 0\nr = [0] * 2019\nr[0] = 1\nt = 0\nbase = 1\nfor c in S[::-1]:\n t = (t + base * int(c)) % 2019\n base = (base * 10) % 2019\n r[t] += 1\n\nfor k in r:\n ans += k * (k - 1) // 2\n\nprint(ans)\n", "neg": "S = input()\nans = 0\nr = dict()\n\nt = 0\nbase = 1\nfor c in S[::-1]:\n t = (t + base * int(c)) % 2019\n base = (base * 10) % 2019\n\n if t in r:\n r[t] += 1\n else:\n r[t] = 1\n\nfor k in r:\n ans += r[k] * (r[k] - 1) // 2\n\nprint(ans)\n", "jacc_sim": 0.9032258064516129, "before_after_length": [102, 119], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "dict()[0] * 2019r[0] = 1\n if t in r:\n = 1\n else:\n r[t] r[]r[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u185297444", "n_user": "u185297444", "pos": "#ABC164d\ndef main():\n s = input()\n MOD = 2019\n d = [ 0 for i in range(MOD)]\n # print(d)\n ans = 0\n k = 0\n d[0] = 1\n s = s[::-1]\n # print(s)\n p = 1\n for i in s:\n # print(p,i,k)\n # print('pnosiki')\n # print(p * int(i) + k)\n k = (p * int(i) + k) % MOD\n # print('k:')\n # print(k)\n ans += d[k]\n d[k] += 1\n p = (p * 10) % MOD\n print(ans)\n return\n\nif __name__ == \"__main__\":\n main()\n", "neg": "#ABC164d\ndef main():\n s = input()\n MOD = 2019\n d = [ 0 for i in range(MOD)]\n # print(d)\n ans = 0\n k = 0\n d[0] = 1\n s = s[::-1]\n # print(s)\n p = 1\n for i in s:\n print(p,i,k)\n print('pnosiki')\n print(p * int(i) + k)\n k = (p * int(i) + k) % MOD\n print('k:')\n print(k)\n ans += d[k]\n d[k] += 1\n p = (p * 10) % MOD\n print(ans)\n return\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [203, 198], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "# # ## #", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u653807637", "n_user": "u653807637", "pos": "import collections\nimport math\n\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\ndef naive(s):\n\tcnt = 0\n\tfor i in range(len(s)):\n\t\tfor j in range(i + 1, len(s) + 1):\n\t\t\tk = int(s[i:j])\n\t\t\tif k % 2019 == 0 and k != 0:\n\t\t\t\t#print(i, j)\n\t\t\t\tcnt += 1\n\treturn cnt\n\ndef main(s):\n\tnums = [0]\n\tcur = 0\n\tp = 0.1\n\tfor i in range(len(s)):\n\t\tp = int(p * 10) % 2019\n\t\tcur = (cur + int(s[len(s) - 1 - i]) * p) % 2019\n\t\tnums.append(cur)\n\td = dict(collections.Counter(nums))\n\ta = [val for key, val in d.items() if val >= 2]\n\treturn sum([comb(x, 2) for x in a])\t\n\ns = input()\nprint(main(s))", "neg": "import collections\nimport math\n\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\ndef naive(s):\n\tcnt = 0\n\tfor i in range(len(s)):\n\t\tfor j in range(i + 1, len(s) + 1):\n\t\t\tk = int(s[i:j])\n\t\t\tif k % 2019 == 0 and k != 0:\n\t\t\t\t#print(i, j)\n\t\t\t\tcnt += 1\n\treturn cnt\n\ndef main(s):\n\tnums = [(int(s[len(s) - i - 1]) * (10 ** i)) % 2019 for i in range(len(s))]\n\t# nums = [0] + [x % 2019 for x in np.cumsum(nums)]\n\t# d = dict(collections.Counter(nums))\n\t# a = [val for key, val in d.items() if val >= 2]\n\t# return sum([comb(x, 2) for x in a])\n\ns = input()\nprint(main(s))", "jacc_sim": 0.9180327868852459, "before_after_length": [281, 264], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "0]\n\tcur = 0\n\tp = 0.1\n\tfor i in rangelen(s)):\n\t\tp = int(p * 10) % 2019\n\t\tcur = (cur + i11ip(10 ** i) for i in range(len(s))]\t# = [0] + [x % 2019 for x in npappecumsum(d(crms]# # # \t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u539969758", "n_user": "u539969758", "pos": "S = list(reversed(input()))\n\nlength = len(S)\n\na = [0]*length\nfor i in range(length):\n pickup = int(S[i])\n a[i] = pickup*pow(10, i, 2019)\n\nb = [0]*(length+1)\nfor i in range(1, length+1):\n b[i] = (b[i-1] + a[i-1]) % 2019\ncnt, ans = [0] * 2019, 0\nfor x in b:\n ans += cnt[x]\n cnt[x] += 1\n\nprint(ans)", "neg": "S = input()\nlength = len(S)\n\na = [0]*length\nfor i in range(length):\n pickup = int(S[length - i - 1])\n a[i] = pickup*pow(10, i, 2019)\n\n\nb = [0]*length\nb[0] = a[0]\nfor i in range(1, length):\n b[i] = (b[i-1] + a[i]) % 2019\n\ncnt, ans = [0] * 2019, 0\nfor x in b:\n ans += cnt[x]\n cnt[x] += 1\nprint(ans)\n", "jacc_sim": 0.9411764705882353, "before_after_length": [150, 151], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "list(reversed())\nlength - - 1\n(+1)\nb[0] = a[0]+1-1\n print(ans)print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02702", "p_user": "u863433366", "n_user": "u863433366", "pos": "S = input()\ns = S[::-1]\n\ncnt = [0]*2019\ncnt[0] = 1\nnumber = 0\nd = 1\n\nfor i in s:\n number += int(i)*d\n cnt[number % 2019] += 1\n d *= 10\n d = d % 2019\n\nans = 0\nfor i in cnt:\n ans += i*(i-1) // 2\n\nprint(ans)", "neg": "S = input()\ns = S[::-1]\n\ncnt = [0]*2019\ns[0] = 1\nnumber = 0\nd = 1\n\nfor i in s:\n number += int(i)*d\n cnt[number % 2019] += 1\n d *= 10\n d = d % 2019\n\nans = 0\nfor i in cnt:\nans += i*(i-1) // 2\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [104, 103], "nl": "You are given a string S consisting of digits from 1 through 9. Find the number of pairs of integers (i,j) (1 \u2264 i \u2264 j \u2264 |S|) such that the i-th through j-th characters of S form an integer that is a multiple of 2019 in base ten. The input is given as the string S, and the output should be the number of pairs of integers (i,j) that satisfy the condition.", "diff_info": "scnt ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u054559808", "n_user": "u054559808", "pos": "n, k = map(int, input().split())\ncnt = 0\nMOD = 1000000007\nfor i in range(k, n+2):\n left = i*(i-1)//2\n right = i*(2*n-i+1)//2\n add = right - left + 1\n cnt = (cnt+add)%MOD\nprint(cnt)", "neg": "n, k = map(int, input().split())\ncnt = 0\nMOD = 1000000007\nfor i in range(k, n+2):\n left = i*(i-1)//2\n right = i*(2*n-i+1)//2\n add = right - left + 1\n cnt += add%MOD\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [87, 83], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "+(cnt+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u862466626", "n_user": "u896741788", "pos": "n, k = map(int,input().split())\n\nans = 0\nfor i in range(k, n+2):\n ans += n*i -i**2+i +1\n\nprint(ans%(10**9+7))", "neg": "mod=10**9+7\nn,k=map(int,input().split()) \nans=0\nfor i in range(k,n+1):\n ans+=((2*n+1-k)*k//2-k*(k-1)//2+1)\n ans%=mod\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [56, 77], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "mod=10**9+7\n \n 12 (( n*i -i***n+i -k)*k//2-k*(k-1)//2+1) ans%=mod%(10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u281610856", "n_user": "u281610856", "pos": "from heapq import heappush, heappop\nfrom itertools import permutations, accumulate, combinations\nimport math\nimport bisect\nimport numpy as np\nfrom collections import defaultdict, deque\nfrom operator import itemgetter\nimport sys\n\ninput = sys.stdin.readline\nsys.setrecursionlimit(10 ** 6)\nMOD = 10**9 + 7\n\ndef main():\n n, k = map(int, input().split())\n ans = 0\n for i in range(k, n + 2):\n ans += i * (n - i + 1) + 1\n print(ans%MOD)\n\n\nif __name__ == '__main__':\n main()", "neg": "from heapq import heappush, heappop\nfrom itertools import permutations, accumulate, combinations\nimport math\nimport bisect\nimport numpy as np\nfrom collections import defaultdict, deque\nfrom operator import itemgetter\nimport sys\n\ninput = sys.stdin.readline\nsys.setrecursionlimit(10 ** 6)\n\n\ndef main():\n n, k = map(int, input().split())\n ans = 0\n for i in range(k, n + 2):\n ans += i * (n - i + 1) + 1\n print(ans%MOD)\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9661016949152542, "before_after_length": [151, 144], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "MOD = 10**9 + 7", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u565448206", "n_user": "u565448206", "pos": "N, K = map(int, input().split(' '))\ncount = 0\nfor n in range(K, N+2):\n count += n*(N-n+1) + 1\ncount %= 1000000007\nprint(count)", "neg": "N, K = map(int, input().split(' '))\ncount = 0\nfor n in range(K, N+2):\n count += n*(N-n+1) + 1\n\nprint(count)", "jacc_sim": 0.9259259259259259, "before_after_length": [55, 50], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "count %= 1000000007", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u612975321", "n_user": "u612975321", "pos": "n, k = map(int, input().split())\n\nMOD = 10**9+7\nn += 1\nans = 0\nfor i in range(k, n+1):\n p = i*(2*n - (i-1)) // 2\n m = i*(2 + i-1) // 2\n ans += p - m + 1\nprint(ans % MOD)", "neg": "n, k = map(int, input().split())\n\nn += 1\nans = 0\nfor i in range(k, n+1):\n p = i*(2*n - (i-1)) // 2\n m = i*(2 + i-1) // 2\n ans += p - m + 1\n ans %= 10**9+7\n # print(p, m, ans)\nprint(ans % 10**9+7)", "jacc_sim": 0.9393939393939394, "before_after_length": [88, 104], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "\nMOD = 10**9+7 ans %= 10**9+7\n # print(p, m, ans)\nMOD10**9+7", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u810787773", "n_user": "u810787773", "pos": "#amari = (10**100)%(10**9+7)\ndef sm(i):\n tmpp = 0\n for j in range(i):\n tmpp += j\n return tmpp,j\n\ndef bi(i,N):\n tmpp = 0\n for j in range(i):\n tmpp += N-j\n\n return tmpp,N-j\n\ndef main():\n N,K = map(int,input().split())\n ans = 0\n #loopnum = (N+1) - K + 1\n for i in range(K,N+2,1):\n if i == K:\n small,numsmall = sm(i)\n big,numbig = bi(i,N)\n #print(numsmall,numbig)\n else:\n small += numsmall+1\n numsmall += 1\n big += numbig - 1\n numbig -= 1\n ans += big - small + 1\n\n return (ans%(10**9+7))\n\nprint(main())\n", "neg": "#amari = (10**100)%(10**9+7)\ndef sm(i):\n tmpp = 0\n for j in range(i):\n tmpp += j\n return tmpp,j\n\ndef bi(i,N):\n tmpp = 0\n for j in range(i):\n tmpp += N-j\n\n return tmpp,N-j\n\ndef main():\n N,K = map(int,input().split())\n ans = 0\n #loopnum = (N+1) - K + 1\n for i in range(K,N+2,1):\n if i == K:\n small,numsmall = sm(i)\n big,numbig = bi(i,N)\n else:\n small += numsmall+1\n numsmall += 1\n big += numbig - 1\n numbig -= 1 \n ans += big - small + 1\n\n return ans\n\nprint(main())\n", "jacc_sim": 1.0, "before_after_length": [249, 230], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": " #print(numsmall,numbig)\n ans\n\nprintmis%10**9+7\nprint(main())\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u268181283", "n_user": "u944643608", "pos": "N,K = map(int,input().split())\nmod = 10**9+7\nans = 0\nfor i in range(K,N+2):\n ans += (2*N-i+1)*i//2 - i*(i-1)//2 + 1\n\nprint(ans%mod)", "neg": "N, K = map(int, input().split())\nmod = 10 ** 9 + 7\nans = 0\ntmp = 0\nfor i in range(K-1):\n tmp += i\nfor i in range(K, N + 1):\n tmp += K - 1\n ans += K * N - tmp * 2 + 1\n ans = ans % mod\nprint(ans)\n ", "jacc_sim": 0.9354838709677419, "before_after_length": [71, 89], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": " = 0\ntmp-1,N+2\n tmp += i\nfor i in range(K, N + 1):\n tmp += K - 1K (2 -i+1)*i//2itmp (i-1)// ans = ans % mod%mod\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u839509562", "n_user": "u839509562", "pos": "import sys\ninput = sys.stdin.readline\n\n\ndef log(v):\n print(v, file=sys.stderr)\n\n\nN, K = map(int, input().split())\n\nmod = 10**9 + 7\nlog(mod)\nans = 0\nfor i in range(K, N + 2):\n max = (N - i + 1 + N) * i // 2\n min = (i - 1) * i // 2\n ans += max - min + 1\n ans %= mod\nprint(ans)\n", "neg": "import sys\ninput = sys.stdin.readline\n\n\ndef log(v):\n print(v, file=sys.stderr)\n\n\nN, K = map(int, input().split())\n\nmod = 10**9 + 7\nlog(mod)\nans = 0\nfor i in range(K, N + 2):\n max = (N - i + 1 + N) * i / 2\n min = (i - 1) * i / 2\n ans += max - min + 1\n ans %= mod\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [126, 126], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "//", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u894172792", "n_user": "u894172792", "pos": "data = input().split()\nN = int(data[0])\nK = int(data[1])\ne = [n for n in range(N+1)]\ncount = 0\nfor k in range(K,N+2):\n count += k * N - k * (k-1) + 1\nprint(count%(10**9+7))", "neg": "data = input().split()\nN = int(data[0])\nK = int(data[1])\ne = [n for n in range(N+1)]\nprint(e)\ncount = 0\nfor k in range(K,N+2):\n count += 2 * N - k * (k-1)\nprint(count//(10**9+7))", "jacc_sim": 0.9393939393939394, "before_after_length": [82, 86], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "print(e)\n2k + 1%//", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u929768294", "n_user": "u929768294", "pos": "N,K = map(int,input().split())\na =0\nfor i in range(K,N+2):\n a = a + ((N+N-i+1)*i/2-(i-1)*(i)/2+1)\nprint(int(a % (10**9+7)))", "neg": "N,K = map(int,input().split())\na =0\nfor i in range(K,N+2):\n a = a + ((N+N-i+1)*i/2-(i-1)*(i)/2+1)\nprint(a%10**9+7)", "jacc_sim": 1.0, "before_after_length": [73, 70], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "int( ())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u474202990", "n_user": "u474202990", "pos": "n,k = map(int,input().split()) \nans = 0\n\n# bikkuri_n1 = math.factorial(n+1) % (10**9+7)\n\n# bikkuri_k = math.factorial(k) % (10**9+7)\n\nfor i in range(k,n+2):\n \n small = i*(i-1)//2\n big = i*(2*n-i+1)//2\n \n ans += big-small+1\n ans %= (10**9+7)\n \n \n \nprint(ans)", "neg": "import math\nn,k = map(int,input().split()) \nans = 0\n\nbikkuri_n1 = math.factorial(n+1) % (10**9+7)\n\nbikkuri_k = math.factorial(k) % (10**9+7)\nfor i in range(k,n+2):\n \n small = i*(i-1)//2\n big = i*(2*n-i+1)//2\n \n ans += big-small+1\n \n \n \nprint(ans)", "jacc_sim": 0.9459459459459459, "before_after_length": [144, 133], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "import math\n# # \n\n \n \nprint( %= (10**9+7\n \n \n \nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u008992227", "n_user": "u008992227", "pos": "import sys\nimport copy\nfrom collections import deque\nstdin = sys.stdin\n\nmod = 10**9+7\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn,k = na()\n\nif n==k-1:\n print(1)\n exit(0)\n\nprev_min = sum([i for i in range(k)])\nprev_max = sum([i for i in range(n, n-k, -1)])\nprev_num_min = k-1\nprev_num_max = n-k+1\ncnt = 0\nfor i in range(n-k+2):\n # print(\"{} {}\".format(prev_min, prev_max))\n cnt += prev_max-prev_min+1\n cnt %= mod\n \n prev_num_min += 1\n prev_num_max -= 1\n prev_min += prev_num_min\n prev_max += prev_num_max\n\nprint(cnt)\n\n\n", "neg": "import sys\nimport copy\nfrom collections import deque\nstdin = sys.stdin\n\nmod = 10**9+7\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn,k = na()\n\nif n==k-1:\n print(1)\n exit(0)\n\nprev_min = sum([i for i in range(k)])\nprev_max = sum([i for i in range(n, n-k, -1)])\nprev_num = k-1\ncnt = 0\nfor i in range(n-k+1):\n # print(\"{} {} {}\".format(prev_min, prev_max, prev_num))\n cnt += prev_max-prev_min+1\n cnt %= mod\n \n prev_min += prev_num+1\n prev_max += n-prev_num\n prev_num += 1\n\nprint(cnt)\n\n\n", "jacc_sim": 0.9333333333333333, "before_after_length": [266, 246], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "_minprev_num_max = n-k+1\n12{} , prev_nummi += prev_n+1\n prevax += n-prev_num\n prev_num += 1\n\npr += 1t(cnt) prev_num_max -= 1 prev_min += prev_num_min prev_max += prev_num_max\n\nprint(cnt)\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u755801379", "n_user": "u755801379", "pos": "n,k=map(int,input().split())\n\nal=[0]*(n+1)\nbl=[0]*(n+1)\nbl[0]=n\nfor i in range(1,n+1):\n al[i]=i+al[i-1]\n bl[i]=(n+1-i-1)+bl[i-1]\n \nans=0\nfor i in range(k,n+2):\n ans+=bl[i-1]-al[i-1]+1\nprint(ans%(10**9+7))", "neg": "n,k=map(int,input().split())\n\nal=[0]*(n+1)\nbl=[0]*(n+1)\nbl[0]=n\nfor i in range(1,n+1):\n al[i]=i+al[i-1]\n bl[i]=(n+1-i-1)+bl[i-1]\n \nans=0\nfor i in range(k,n+2):\n ans+=bl[i-1]-al[i-1]+1\nprint(ans%(1e9+7))", "jacc_sim": 0.9090909090909091, "before_after_length": [136, 136], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "e0**", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u954415195", "n_user": "u954415195", "pos": "n,k=map(int,input().split())\nsum=0\nM=1000000007\nfor i in range(k,n+2):\n sum=(2*n-i+1)*i/2-(i*(i-1))/2+1+sum\n sum=sum%M\nprint(int(sum)%M)", "neg": "n,k=map(int,input().split())\nsum=0\nM=1000000007\nprint(((2*n-k+1)*k)/2,(k*(k-1))/2)\nfor i in range(k,n+2):\n sum=(2*n-i+1)*i/2-(i*(i-1))/2+1+sum\n sum=sum%M\nprint(int(sum)%M)", "jacc_sim": 1.0, "before_after_length": [80, 106], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "\nprint(((2*n-k+1)*k)/2,(k*(k-1))/2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u760802228", "n_user": "u760802228", "pos": "N, K = map(int, input().split())\nmod = 10**9 + 7 \nans = 0 \nfor i in range(K, N + 2): \n ans += (((N*(N + 1) // 2) - ((N - i)*(N - i + 1) // 2)) - ((i - 1)*i // 2) + 1) % mod \nprint(ans % mod)", "neg": "N, K = map(int, input().split())\nmod = 10**9 + 7 \nans = 0 \nfor i in range(K, N + 2): \n l = N - i + 1 \n ans += ((N + l) * (N - l + 1) // 2) - ((i - 1)*i // 2)\nprint(ans % mod)", "jacc_sim": 0.967741935483871, "before_after_length": [92, 84], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "l = N - i + 1 \n N + l) * *(N - l) - ((N - i)*(N - i + 1) // 2) + 1) % mod ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u267300160", "n_user": "u267300160", "pos": "N,K = map(int,input().split())\nans = 0\nmod = 10**9+7\nfor k in range(K,N+2):\n ans += (k*(N-k+1)+1)\nprint(ans % mod)\n", "neg": "N,K = map(int,input().split())\nans = 0\nmod = 10**9+7\nfor k in range(K,N+2):\n ans += (k*(N-k+1)+1) % mod\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [59, 59], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": " % mod % mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u345966487", "n_user": "u345966487", "pos": "N,K = map(int,input().split())\nM = 10**9 + 7\nT = pow(10,100,M)\nans = 0\nfor k in range(K, N+2):\n ans += (2*N-k+1)*k//2 - k*(k-1)//2 + 1\n ans %= M\nprint(ans)", "neg": "N,K = map(int,input().split())\nM = 10**9 + 7\nT = pow(10,100,M)\nans = 0\nfor k in range(K, N+2):\n ans += (2*N-k+1)*k//2 - k*(k-1)//2 + 1\nprint(ans)", "jacc_sim": 0.9696969696969697, "before_after_length": [84, 79], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": " ans %= M\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u443854804", "n_user": "u443854804", "pos": "n,k=map(int,input().split())\ncount=0\nfor i in range(n+2):\n if i=k:\n mini=i*(i-1)//2\n a=n*(n+1)//2\n b=(n-i)*(n-i+1)//2\n maxi=a-b\n total=maxi-mini+1\n count+=total\nans=count%(10**9+7)\nprint(ans)\n ", "neg": "n,k=map(int,input().split())\ncount=0\nfor i in range(n+1):\n if i=k:\n mini=i*(i-1)//2\n a=n*(n+1)//2\n b=(n-i)*(n-i+1)//2\n maxi=a-b\n total=maxi-mini+1\n count+=total\nprint(count%(10**9+7))\n ", "jacc_sim": 0.975, "before_after_length": [128, 123], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "12ans=count%(10**9+7)\nacoust%(10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u859987056", "n_user": "u859987056", "pos": "n,k = map(int,input().split())\nans = 0\n\nfor i in range(k,n+2):\n ans += (i*(n-i+1) + 1)\n\nans %= 1000000007\nprint(ans)", "neg": "n,k = map(int,input().split())\nans = 0\n\nfor i in range(k,n+2):\n ans += (i*(n-i+1) + 1)\n\nprint(ans)", "jacc_sim": 0.9230769230769231, "before_after_length": [57, 51], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "ans %= 1000000007\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u202400119", "n_user": "u202400119", "pos": "def main():\n n, k = map(int, input().split())\n\n num = 10*100\n nums = [num + i for i in range(0, n+1)]\n\n # sums = []\n total = 0\n for i in range(k, n+2):\n _min = int((nums[0]+nums[i-1])*(nums[i-1]-nums[0]+1)/2)\n _max = int((nums[-i]+nums[-1])*(nums[-1]-nums[-i]+1)/2)\n\n total += _max - _min + 1\n\n print(total%(10**9+7))\n\nif __name__ == \"__main__\":\n main()", "neg": "def main():\n n, k = map(int, input().split())\n\n num = 10*100\n nums = [num + i for i in range(0, n+1)]\n\n # sums = []\n total = 0\n for i in range(k, n+2):\n _min = int((nums[0]+nums[i-1])*(nums[i-1]-nums[0]+1)/2)\n _max = int((nums[-i]+nums[-1])*(nums[-1]-nums[-i]+1)/2)\n\n total += _max - _min + 1\n\n print(total)\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9318181818181818, "before_after_length": [171, 165], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "%(10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u678505520", "n_user": "u678505520", "pos": "n,k = map(int,input().split())\ntotal = 0\nfor i in range(k,n+2):\n m = i*(i-1)//2\n M = i*n-(i*(i-1))//2\n total += M - m + 1\nprint(total % (10**9 + 7))", "neg": "n,k = map(int,input().split())\ntotal = 0\nfor i in range(k,n+2):\n m = sum(range(0,i))\n M = sum(range(n-i+1,n+1))\n total += M - m + 1\nprint(total % (10**9 + 7))", "jacc_sim": 0.9375, "before_after_length": [78, 79], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "i*sumrange(0,-1)//2i*sum(range((*(i-+1,n+//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u970133396", "n_user": "u363421241", "pos": "MOD=10**9+7\nn, k = map(int, input().strip().split())\nans=0\nfor i in range(k,n+2):\n ans+=i*(n-i+1)+1\n ans%=MOD\nprint(ans)", "neg": "n, k = map(int, input().split())\n\na = 0\n\nfor i in range(k, n+2):\n a += n*k + k - k**2 + 1\n\nans = a % (10**9+7)\nprint(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [63, 63], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "MOD=10**9+7\ntrip().s\n ns \n ns i*(-i*k 1) k - k**2 \n %MOD a % (10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u455809703", "n_user": "u924717835", "pos": "N, K = map(int, input().split())\nans = 0\nfor i in range(K, N+2):\n ans += i*(N-i+1)+1\n\nprint(ans%1000000007)", "neg": "N, K = map(int, input().split())\nans = 0\nfor i in range(K,N+2):\n ans += N*i -i**2 +i +1\nprint(ans)", "jacc_sim": 0.9230769230769231, "before_after_length": [51, 48], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": " i*(*i **2 +i )+1\n%1000000007", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u075012704", "n_user": "u075012704", "pos": "N, K = map(int, input().split())\nMOD = 10 ** 9 + 7\n\nLOW, HIGH = 0, N\nans = 0\n\nif 1 >= K:\n ans += (HIGH - LOW + 1)\n\nfor i in range(2, N + 2):\n LOW += i - 1\n HIGH += N - i + 1\n LOW %= MOD\n HIGH %= MOD\n if i >= K:\n ans += (HIGH - LOW + 1)\n ans %= MOD\n\nprint(ans)\n", "neg": "N, K = map(int, input().split())\nMOD = 10 ** 9 + 7\n\nLOW, HIGH = 0, N\nans = 0\n\nif K >= 1:\n ans += (HIGH - LOW + 1)\n\nfor i in range(2, N + 2):\n LOW += i - 1\n HIGH += N - i + 1\n LOW %= MOD\n HIGH %= MOD\n if i >= K:\n ans += (HIGH - LOW + 1)\n ans %= MOD\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [124, 124], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "1 >= >= 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u825378567", "n_user": "u825378567", "pos": "N,K=map(int,input().split())\nans=0\nfor i in range(K,N+2):\n tmp=i*N-(i-1)*i+1\n ans+=tmp\n ans%=(10**9+7)\nprint(ans)", "neg": "N,K=map(int,input().split())\nans=0\nfor i in range(K,N+2):\n tmp=i*N-2*sum(range(0,i))+1\n ans+=tmp\n ans%=(10**9+7)\nprint(ans)", "jacc_sim": 0.9666666666666667, "before_after_length": [66, 70], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "2(i-1)sum(range(0,))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u338824669", "n_user": "u338824669", "pos": "N,K=map(int,input().split())\nn=[i for i in range(N+1)]\nmod=10**9+7\n\nmin_value=[0]*(N+1)\nmax_value=[0]*(N+1)\nmin_value[0]=0\nmax_value[0]=N\nfor i in range(1,N+1):\n min_value[i]=min_value[i-1]+n[i]\n max_value[i]=max_value[i-1]+n[-(i+1)]\n\nans=0\nfor i in range(K-1,N+1):\n ans+=max_value[i]-min_value[i]+1\n ans%=mod\nprint(ans)", "neg": "N,K=map(int,input().split())\nn=[i for i in range(N+1)]\nmod=10**9+7141421 35623\n\nmin_value=[0]*(N+1)\nmax_value=[0]*(N+1)\nmin_value[0]=0\nmax_value[0]=N\nfor i in range(1,N+1):\n min_value[i]=min_value[i-1]+n[i]\n max_value[i]=max_value[i-1]+n[-(i+1)]\n\nans=0\nfor i in range(K-1,N+1):\n ans+=max_value[i]-min_value[i]+1\n ans%=mod\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [182, 188], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "141421 35623", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u905974390", "n_user": "u905974390", "pos": "n,k=map(int,input().split())\ns=[]\ncount=0\nfor i in range(n+1):\n count+=i\n s.append(count)\n\nt=[n]\ntmp=n\nfor i in range(1,n+1):\n tmp-=1\n t.append(t[i-1]+tmp)\n# print(t)\n\nans=0\nfor i in range(k-1,n+1):\n ans+=t[i]-s[i]+1\n ans%=(10**9+7)\n\nprint(ans)", "neg": "n,k=map(int,input().split())\ns=[]\ncount=0\nfor i in range(n+1):\n count+=i\n s.append(count)\n\nt=[]\nfor i in range(n+1):\n tmp=0\n for j in range(i+1):\n tmp+=n-j\n t.append(tmp)\n\nans=0\nfor i in range(k-1,n+1):\n ans+=t[i]-s[i]+1\n ans%=(10**9+7)\n\nprint(ans)", "jacc_sim": 0.9444444444444444, "before_after_length": [143, 142], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "n\ntmp=n1,=0\n for j in range(i+1):\n tmp+=nj=1[i-1]+t)\n# print(t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u769870836", "n_user": "u769870836", "pos": "n,k=map(int,input().split())\nmod=10**9+7\ndef f(n):\n mod=10**9+7\n return (n*(n+1)//2)%mod\nans=0\nfor i in range(k,n+2):\n a=f(n)-f(n-i)-f(i-1)+1\n ans+=(a%mod)\nprint(ans%mod)", "neg": "n,k=map(int,input().split())\nmod=10**9+7\ndef f(n):\n return n*(n-1)//2\nans=0\nfor i in range(k,n+2):\n a=f(n+1)-f(n-k-i)-f(k+i)+1\n ans+=a%mod\nprint(ans%mod)", "jacc_sim": 1.0, "before_after_length": [103, 93], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "mod=10**9+7\n (-+)%mod+1k-k+-1()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u879266613", "n_user": "u879266613", "pos": "from itertools import permutations, combinations\n\nN,K = map(int,input().split())\n\nans = 0\n_list = list(range(N+1))\n_list.sort(reverse = True)\nh = 0\nl = 0\ncnt = -1\n\nfor i in range(N+1):\n h += _list[i]\n cnt += 1\n l += cnt\n if i >= K-1:\n ans += h - l + 1\n \nprint(ans%(10**9 + 7))", "neg": "from itertools import permutations, combinations\n\nN,K = map(int,input().split())\n\nans = 0\n_list = list(range(N+1))\n_list.sort(reverse = True)\nh = _list[0]\nl = 0\ncnt = 0\n\nif N == K == 1:\n print(2)\n exit()\nfor i in range(1, N+1):\n h += _list[i]\n cnt += 1\n l += cnt\n print(i , h , l)\n if i >= K-1:\n ans += h - l + 1\n\n \nprint(ans%(10**9 + 7))", "jacc_sim": 0.9565217391304348, "before_after_length": [121, 155], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "0\nl = 0\ncnt = -1\n\nfor i in range(N+1):\n h += 0il=0\n = 0\n\nif N == K == 1:\n print(2)\n exit()\nfor i in range(1, N1):\n h +1_list[i] l += += 1\n l += cnt\n print(i , h , l)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02708", "p_user": "u719181921", "n_user": "u719181921", "pos": "n,K = map(int, input().split(' '))\n\n#n,k = 3, 2\n\nres = 0\n\nfor k in range(K, n+2):\n first = k * (k-1) / 2\n last = (2 * n - k + 1) * k / 2\n res += (last - first + 1) \nprint(int(res%(10**9+7)))", "neg": "n,K = map(int, input().split(' '))\n\n#n,k = 3, 2\n\nres = 0\n\nfor k in range(K, n+2):\n first = k * (k-1) / 2\n last = (2 * n - k + 1) * k / 2\n res += (last - first + 1) % (10**9+7)\nprint(int(res))", "jacc_sim": 1.0, "before_after_length": [97, 98], "nl": "You are given N+1 integers: 10^100, 10^100+1, ..., 10^100+N. Choose K or more of these integers and find the number of possible values of the sum of the chosen numbers, modulo (10^9+7). Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 K \u2264 N+1. Input format: N K. Output: Print the number of possible sum values, modulo (10^9+7). Example: Input 3 2, Output 10.", "diff_info": "% (10**9+7)%(10**9+7)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u592035627", "n_user": "u592035627", "pos": "n,m = map(int,input().split())\nA = [int(x) for x in input().split()]\nB = sum(A)\na = 0\nfor i in range(n):\n if A[i] >= B/(4*m):\n a += 1\nif a >= m:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n,m = map(int,input().split())\nA = list(input().split())\nB = sum(A)\na = 0\nfor i in range(n):\n if A[i] >= B/(4*m):\n a += 1\nif a >= m:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9459459459459459, "before_after_length": [88, 81], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "l[snx) for x in )]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u740047492", "n_user": "u740047492", "pos": "n,m=map(int,input().split())\na=[int(i) for i in input().split()]\ncount=0\n \nA=sum(a)/(4*m)\nfor i in a:\n if i>=A:\n count+=1\nif count>=m:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n,m=map(int,input().split())\na=[int(i) for i in input().split()]\ncount=0\n\nA=sum(a)//(4\uff0am)\nfor i in range(n):\n if a[i]>A:\n count+=1\nif count>=m:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9166666666666666, "before_after_length": [87, 93], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": " /\uff0a*rnge(n)a[]=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u849151695", "n_user": "u849151695", "pos": "N, M = map(int,input().split())\nA = list(map(int,input().split()))\n\n#print(M)\nA.sort()\n#print(A)\nlimit = sum(A)/(4*M)\n#print(limit)\ncount = 0\nfor i in range(N):\n if A[i] >= limit:\n count +=1\n\n#print(count)\n\n#print(N-n-1)\nif count >= M:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "\nN, M = map(int,input().split())\nA = list(map(int,input().split()))\n\n#print(M)\nA.sort()\n#print(A)\nlimit = sum(A)/(4*M)\n#print(limit)\ncount = 0\nfor i in range(N):\n if A[i] > limit:\n count +=1\n\nprint(count)\n\n#print(N-n-1)\nif count > M:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [129, 128], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "\n=#=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u215286521", "n_user": "u215286521", "pos": "nums = list(map(int, input().split()))\nn = nums[0]\nm = nums[1]\n\na = list(map(int, input().split()))\n\nsum = 0\nfor v in a:\n sum += v\n\nresult = []\nfor s in a:\n if s >= sum * (1 / (4 * m)):\n result.append(s)\nif len(result) >= m:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "nums = list(map(int, input().split()))\nn = nums[0]\nm = nums[1]\n\na = list(map(int, input().split()))\n\nsum = 0\nfor v in a:\n sum += v\n\nresult = []\nfor s in a:\n if s >= sum * (1 / (4 * m)):\n result.append(s)\nprint(result)\nif len(result) >= m:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [117, 123], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "print(result)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u087118202", "n_user": "u087118202", "pos": "n,m=map(int,input().split())\na=list(map(int,input().split()))\n \nlimit=sum(a)/(4*m)\nc=0\nfor aa in a:\n if aa >=limit:\n c+=1\n else:\n pass\nif c>=m:\n print('Yes')\nelse:\n print('No')", "neg": "n,m=map(int,input().split())\na=list(map(int,input().split()))\n\nlimit=sum(a)/(4*m)\nc=0\nfor aa in a:\n if a >=limit:\n c+=1\n else:\n pass\nif c==0:\n print('No')\nelse:\n print('Yes')", "jacc_sim": 1.0, "before_after_length": [92, 90], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": " a>m=0NoYesNoYes", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u194228880", "n_user": "u194228880", "pos": "nm = input('')\nn = int(nm.split(' ')[0])\nm = int(nm.split(' ')[1])\nalist = input('').split(' ')\n\nt = 0\nfor i in range(n):\n t += int(alist[i])\n\n s = 0\nfor i in range(n):\n a = int(alist[i])\n if a*4*m >= t:\n s+=1\n\nif s >= m:\n print('Yes')\nelse:\n print('No')\n\n", "neg": "nm = input('')\nn = int(nm.split(' ')[0])\nm = int(nm.split(' ')[1])\nalist = input('').split(' ')\n\nt = 0\nfor i in range(n):\n t += int(alist[i])\nlm = t/(m*4)\nprint(lm)\ns = 0\nfor i in range(n):\n a = int(alist[i])\n if a > lm:\n s+=1\n\nif s > m:\n print('Yes')\nelse:\n print('No')\n\n", "jacc_sim": 0.9428571428571428, "before_after_length": [131, 140], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "\nlm=t/s = 0\nfor i in rangemn):\n a = int(alist[i])\n if a*)\nprint(l)\ns = 0\nfor i in range(n):\n a = int(alist[i])\n if a=tlm=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u569776981", "n_user": "u569776981", "pos": "import math\nn, m = map(int,input().split())\na = list(map(int,input().split()))\nsum = sum(a)\n\nx = 0\nfor i in a:\n if i * 4 * m >= sum:\n x += 1\n\n\nif x >= m:\n print('Yes')\nelse:\n print('No')", "neg": "import math\nn, m = map(int,input().split())\na = list(map(int,input().split()))\nsum = sum(a)\nprint(sum)\nx = 0\nfor i in a:\n if i >= (math.ceil(sum / 4 * m)):\n x += 1\n\nprint(x)\nif x >= m:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 0.9428571428571428, "before_after_length": [86, 102], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "print(sum)* 4 * m (math.ceil( / 4 * m))print(x)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u812867074", "n_user": "u812867074", "pos": "n,m = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\ns = sum(a)\n\nfor i in a:\n if i >= s/(4*m):\n count+=1\n\nif m <= count:\n print('Yes')\nelse:\n print('No')\n", "neg": "n,m = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\nfor i in a:\n if i >= 1/(4*m):\n count+=1\n\nif m <= count:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9411764705882353, "before_after_length": [85, 77], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "s = sum(a)\n1s\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u119982001", "n_user": "u119982001", "pos": "import math\n\nN, M = list(map(int, input().split()))\nA = sorted(map(int, input().split()), reverse=True)\n\nborder = sum(A) / (4*M)\nflag = 'Yes'\n\nfor i in range(M):\n if border > A[i]:\n flag = 'No'\n\nprint(flag)", "neg": "N, M = list(map(int, input().split()))\nA = sorted(map(int, input().split()), reverse=True)\nprint(N, M , A, sum(A))\n\nborder = sum(A) // (4*M)\nflag = 'Yes'\n\nfor i in range(M):\n if border > A[i]:\n flag = 'No'\n\nprint(flag)\n", "jacc_sim": 0.9459459459459459, "before_after_length": [88, 98], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "import math\n\np\nboderint(N,M=, sum(, sum(A)\n\nborder= sum(A) /\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u266143155", "n_user": "u266143155", "pos": "n, m = map(int, input().split())\na = list(map(int, input().split()))\nans = \"Yes\"\n\na.sort(reverse=True)\n\nfor i in range(m):\n if a[i] < sum(a)*(1/(4*m)):\n ans = \"No\"\n break\n\nprint(ans)", "neg": "n, m = map(int, input().split())\na = list(map(int, input().split()))\na.sort(reverse = True)\nans = \"Yes\"\nfor i in range(n):\n if a[i] < sum(a)*(1/(4*m)):\n ans = \"No\"\n break\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [88, 85], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "ns = \"Yes\"\n\na ans = \"Yes\"nm\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u183256664", "n_user": "u183256664", "pos": "N, M = list(map(int, input().split()))\nA = list(map(int, input().split()))\ncount = N\nX = sum(A)\nfor a in A:\n if a < X / (4 * M):\n count -= 1\nif count < M:\n print('No')\nelse:\n print('Yes')\n", "neg": "N, M = list(map(int, input().split()))\nA = list(map(int, input().split()))\ncount = N\nfor a in A:\n if a < N / (4 * M):\n count -= 1\nif count < M:\n print('No')\nelse:\n print('Yes')", "jacc_sim": 0.9375, "before_after_length": [85, 77], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "X = sum(A)\nNX\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u442068463", "n_user": "u442068463", "pos": "a,b = map(int, input().split())\nList = list(map(int, input().split()))\nc = sum(List)\nList = sorted(List)[::-1]\nd = List[b-1]\nif d < c/4/b:\n\tprint(\"No\")\nelse:\n\tprint(\"Yes\")", "neg": "a,b = map(int, input().split())\nList = list(map(int, input().split()))\nc = sum(List)\nList = sorted(List)[::-1]\nd = List(b-1)\nif d < c/4/b;\n\tprint(\"No\")\nelif\n\tprint(\"Yes\")", "jacc_sim": 0.9090909090909091, "before_after_length": [78, 78], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "([)];:ifse:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u085510145", "n_user": "u085510145", "pos": "N,M=map(int,input().split())\nA=list(map(int,input().split()))\npop = 1/(4*M)*sum(A)\nlis = []\nfor i in A:\n if i>=pop:\n lis.append(i)\nif len(lis)>=M:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "A=list(map(int,input().split()))\npop = 1/(4*M)*sum(A)\nlis = []\n\nfor i in A:\n if i>pop:\n lis.append(i)\nif len(lis)>=M:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9714285714285714, "before_after_length": [95, 81], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "N,M=map(int,input().split())\n\n=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u106778233", "n_user": "u106778233", "pos": "n,m=map(int,input().split())\na=list(map(int,input().split()))\nl=sum(a)\na.sort()\nif a[-m]= s/(4*m):\n count += 1\nif count >= m:\n print('Yes')\nelse:\n print('No')\n", "neg": "n,m = map(int,input().split())\nai = list(map(int,input().split()))\ns = sum(ai)\ncheck = s/4/m\ncount = 0\nfor i in ai:\n if i > round(check, 0):\n print(round(check, 0))\n count += 1\nif count >= m:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9142857142857143, "before_after_length": [82, 98], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "heck = s/4/m\nc=s/round4*mcheck, 0\n print(round(check, 0))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u785728112", "n_user": "u785728112", "pos": "n,m = map(int,input().split())\na = list(map(int,input().split()))\na = sorted(a,reverse = True)\nx = sum(a)\nif a[m-1]<(x/(4*m)):\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "n,m = map(int,input().split())\na = list(map(int,input().split()))\na = sorted(a,reverse = True)\nx = sum(a)\nif a[m-1]<(x//4):\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9696969696969697, "before_after_length": [77, 73], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "/(*m)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u750958070", "n_user": "u750958070", "pos": "N,M = map(int, input().split())\nx = list(map(int, input().split()))\ntotal_vote = sum(x)\ncount = 0\nfor y in x:\n if y >=(total_vote/(4*M)):\n count+=1\n \nif count>=M:\n print('Yes')\nelse:\n print('No')\n", "neg": "N,M = map(int, input().split())\nx = input()\ntotal_vote = sum(x)\ncount = 0\nfor y in x:\n if y >=(total_vote/(4*M)):\n count+=1\n \nif count>=M:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 0.9696969696969697, "before_after_length": [92, 83], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "lsnpumap(int, input().split())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u072606168", "n_user": "u072606168", "pos": "n,m = map(int, input().split())\na = list(map(int, input().split()))\nb = [i for i in a if i >= sum(a)/4/m]\nif len(b) < m:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "n,m = map(int, input().split())\na = list(map(int, input().split()))\na = [i for i in a if i >= sum(a)/4*m]\nif len(a) < m:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9393939393939394, "before_after_length": [70, 70], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "ab*/ab", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u704158845", "n_user": "u704158845", "pos": "n,m = map(int,input().split())\na = list(map(int,input().split()))\n\nsum = 0\nfor i in range(n):\n sum = sum + a[i]\nsum_divided = sum/(4*m)\ncnt = 0\nfor i in range(n):\n if a[i] >= sum_divided:\n cnt = cnt + 1\nif cnt >= m:\n print('Yes')\nelse:\n print('No')", "neg": "n,m = map(int,input().split())\na = list(map(int,input().split()))\n\nsum = 0\nfor i in range(a):\n sum = sum + a[i]\nsum_divided = sum/(4*m)\ncnt = 0\nfor i in range(a):\n if a[i] >= sum_divided:\n cnt = cnt + 1\nif cnt >= m:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [115, 115], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "anan", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u860966226", "n_user": "u860966226", "pos": "data = input().split()\n \nn = int(data[0])\nm = int(data[1])\n \npro = [int(s) for s in input().split()]\n \nvote = 0\nfor i in pro:\n vote += i\n \ns_pro = sorted(pro, reverse=True)\n\nif s_pro[m - 1] < vote * 1 / (4 * m):\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "data = input().split()\n\nn = int(data[0])\nm = int(data[1])\n\npro = [int(s) for s in input().split()]\n\nvote = 0\nfor i in pro:\n vote += i\n\ns_pro = sorted(pro, reverse=True)\n\nif s_pro[m - 1] < 1 / (4 * vote):\n print(\"No\")\nelse:\n print(\"Yes\")\n", "jacc_sim": 1.0, "before_after_length": [112, 107], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": " vote * mvote\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u356748525", "n_user": "u356748525", "pos": "n,m = input().split()\nn = int(n)\nm = int(m)\narr = list(map(int,input().split()))\nminn = sum(arr)*(1/(4*m))\nt = 0\nfor i in arr:\n if i >= minn:\n t += 1\n#print(t)\nif t >= m:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n,m = input().split()n,m = input().split()\nn = int(n)\nm = int(m)\narr = list(map(int,input().split()))\nminn = sum(arr)*(1/(4*m))\nt = 0\nfor i in arr:\n if i >= minn:\n t += 1\nif t >= m:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9705882352941176, "before_after_length": [102, 104], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "n,m = input().split()#print(t)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u405080602", "n_user": "u414137637", "pos": "N,M=map(int,input().split())\nA=list(map(int,input().split()))\nA.sort(reverse=True)\nif A[M-1]= M else print(\"No\")", "neg": "N, M = map(int, input().split())\nA = list(map(int, input().split()))\n\ntotal_votes_checker = lambda M, i, total_votes: (False if i <= (1 / (4 * M)) * total_votes else True)\n\nA = list(filter(lambda i: total_votes_checker(M, i, total_votes), A))\n\nprint(\"Yes\") if len(A) >= M else print(\"No\")\n\n", "jacc_sim": 0.9714285714285714, "before_after_length": [118, 110], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": ")\n\ntotal_votes = sum(A=\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u296101474", "n_user": "u296101474", "pos": "n, m = map(int, input().split())\na_list = list(map(int, input().split()))\n\nborder = sum(a_list) * (1/(4*m))\n\ncnt = 0\nfor i in a_list:\n if cnt == m:\n print('Yes')\n exit()\n\n if i >= border:\n cnt += 1\n\nif cnt >= m:\n print('Yes')\nelse:\n print('No')\n", "neg": "n, m = map(int, input().split())\na_list = list(map(int, input().split()))\n\nborder = sum(a_list) * (1/(4*m))\nprint(sum(a_list))\nprint(1/(4*m))\nprint(border)\n\ncnt = 0\nfor i in a_list:\n if cnt == m:\n print('Yes')\n exit()\n\n if i >= border:\n cnt += 1\n\nprint('No')\n", "jacc_sim": 0.9705882352941176, "before_after_length": [113, 121], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "\ncpri(sum( = 0\nfor i in :))pr f c == m:\n print'Yes')\n exit()\n\n if i >= border:\n cnt += /(4*m))print(border)\ncnt = 0\nfor in a_list:\n i>= lsxit()\n\n if i >= bordr cnt += 1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u724687935", "n_user": "u699547221", "pos": "N, M = map(int, input().split())\nA = list(map(int, input().split()))\nS = sum(A)\n\ncnt = 0\nfor a in A:\n if S / (4 * M) <= a:\n cnt += 1\n\nans = 'Yes' if cnt >= M else 'No'\nprint(ans)\n", "neg": "N, M = map(int,input().split())\nA = list(map(int,input().split()))\nS = sum(A)\ncnt = 0\nfor a in A:\n\tif a >= S / (4*M):\n\tcnt += 1\nif cnt >= M:\n\tprint(\"Yes\")\nelse:\nprint(\"No\")", "jacc_sim": 0.9428571428571428, "before_after_length": [83, 80], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": " \n\t a >= <= a\t \nans = 'Yes' :\n\tprint(\"Yes\")\n: 'No'ans\"No\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u121276807", "n_user": "u121276807", "pos": "N,M = list(map(int, input().split()))\n\nA = list(map(int, input().split()))\n\nAsum = sum(A)\n\nfor i in range(M):\n Amax = max(A)\n max_index = A.index(Amax)\n A.pop(max_index)\n \n\nif Amax < Asum/4/M:\n print('No')\nelse:\n print('Yes')", "neg": "N,M = list(map(int, input().split()))\n\nA = list(map(int, input().split()))\n\nprint(A)\n\nAsum = sum(A)\n\nfor i in range(M):\n Amax = max(A)\n max_index = A.index(Amax)\n A.pop(max_index)\n \n\nif Amax < Asum/4/M:\n print('No')\nelse:\n print('Yes')", "jacc_sim": 1.0, "before_after_length": [111, 117], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": ")\n\nprint(A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u823885866", "n_user": "u823885866", "pos": "import sys\nN, M = map(int, sys.stdin.readline().split())\nli = list(map(int, sys.stdin.readline().split()))\nli.sort(reverse=True)\nif li[M-1] < sum(li)/(4*M):\n print('No')\nelse:\n print('Yes')\n", "neg": "import sys\nN, M = map(int, sys.stdin.readline().split())\nli = list(map(int, sys.stdin.readline().split))\nli.sort(reverse=False)\nif li[M-1] < sum(li)/(4*M):\n print('No')\nelse:\n print('Yes')", "jacc_sim": 0.9444444444444444, "before_after_length": [82, 80], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "()TruFals\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u515916750", "n_user": "u515916750", "pos": "N, M = map(int, input().split(' '))\nlis1 = list(map(int, input().split(' ')))\nS = sum(lis1)\nthresh = S / (4 * M)\nlis2 = sorted(lis1)\nif lis2[-M] < thresh:\n print('No')\nelse:\n print('Yes')", "neg": "N, M = input().split(' ')\nlis1 = map(int, input().split(' '))\nS = sum(lis1)\nthresh = S / (4 * M)\nlis2 = sorted(lis1)\nif lis2[M - 1] < thresh:\n print 'No'\nelse:\n print 'Yes'", "jacc_sim": 0.9393939393939394, "before_after_length": [87, 82], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": " = input().split(' ')\nlis1))\nlis1 = list(map(int, input().split(' ')- - 1 () ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u405660020", "n_user": "u405660020", "pos": "n,m=map(int,input().split())\na=list(map(int, input().split()))\n\ncnt=0\nsou=sum(a)\nfor i in range(n):\n if a[i]>=sou/(4*m):\n cnt+=1\nprint('Yes' if cnt>=m else 'No')\n", "neg": "n,m=map(int,input().split())\na=list(map(int, input().split()))\n\ncnt=0\nsou=sum(a)\nprint(sou)\nfor i in range(n):\n if a[i]>=sou/(4*m):\n cnt+=1\nprint('Yes' if cnt>=m else 'No')\n", "jacc_sim": 1.0, "before_after_length": [85, 91], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": ")\nprint(sou", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02718", "p_user": "u552122040", "n_user": "u552122040", "pos": "n,m = map(int,input().split())\na = sorted(list(map(int,input().split())),reverse=True)\nprint(\"YNeos\"[sum([sum(a)/(4*m)<=a[i] for i in range(m)])!=m::2])\n", "neg": "n,m = map(int,input().split())\na = sorted(list(map(int,input().split())),reverse=True)\nprint(\"YNeos\"[sum([sum(a)/(4*m)>=a[i] for i in range(m)])==m::2])\n", "jacc_sim": 0.9117647058823529, "before_after_length": [71, 70], "nl": "You are given a popularity poll for N items on sale, each with a specific number of votes. You need to select M popular items, ensuring that each selected item has at least 1/4M of the total votes. If it's possible to select M popular items, print \"Yes\"; otherwise, print \"No\". The constraints are 1 \u2264 M \u2264 N \u2264 100, 1 \u2264 Ai \u2264 1000, and all Ai values are distinct integers. The input is given as N M followed by the votes for each item, and the output should be \"Yes\" or \"No\" based on the selection possibility.", "diff_info": "><=!", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u550294762", "n_user": "u550294762", "pos": "def make_divisors(n):\n lower_divisors, upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\n\nn = int(input())\n\ntmp = n - 1\nret = len(make_divisors(tmp)) - 1\n\ntmplen = make_divisors(n)\n\nfor item in tmplen:\n if item == 1:\n continue\n val = n\n while True:\n if val % item == 0:\n val = val // item\n else:\n if val % item == 1:\n ret += 1\n break\n\nprint(ret)\n", "neg": "def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n \nn = int(input())\n\ntmp = n - 1\nret = len(make_divisors(tmp)) - 1\n\ntmplen = make_divisors(tmp)\n\nfor item in tmplen:\n if item == 1:\n continue\n val = n\n while True:\n if val % item == 0:\n val = val // item\n else:\n if val % item == 1:\n ret += 1\n break\n\nprint(ret)\n", "jacc_sim": 1.0, "before_after_length": [224, 224], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": " \n ntmp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u802963389", "n_user": "u802963389", "pos": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\nN = int(input())\nmd = make_divisors(N)\nmdd = make_divisors(N-1)\nse = set(md + mdd)\nli = list(se)\nans = 0\nfor i in li:\n if i != 1:\n n = N\n while n >= i:\n if n % i == 0:\n n = n // i\n else:\n n = n % i\n if n == 1:\n ans += 1\nprint(ans)", "neg": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\nN = int(input())\nmd = make_divisors(N)\nmdd = make_divisors(N-1)\nse = set(md+mdd)\nli = list(se)\nans = 0\nfor i in li:\n if i != 1:\n n = N\n while n >= i:\n if n % i == 0:\n n = n // i\n else:\n n = n - i\n if n == 1:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [214, 214], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": " -%", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u703950586", "n_user": "u703950586", "pos": "import sys,queue,math,copy,itertools,bisect,collections,heapq\n\ndef main():\n NI = lambda : int(sys.stdin.readline())\n\n N = NI()\n max_i = int(math.log2(N))\n div = []\n for i in range(1,int(math.sqrt(N))+1):\n if N % i == 0:\n div.append((i,N//i)); div.append((N//i,i))\n\n ans = 0\n for a,b in div:\n if a == 1:\n for i in range(1,int(math.sqrt(b-1))+1):\n if (b-1) % i == 0:\n p = 2 - (i*i == b-1) - (i == 1)\n ans += p\n else:\n for i in range(1,max_i+1):\n c = round(math.pow(a,1/i))\n if c ** i == a:\n if b % c == 1: ans += 1\n print(ans)\n\nif __name__ == '__main__':\n main()", "neg": "import sys,queue,math,copy,itertools,bisect,collections,heapq\n\ndef main():\n NI = lambda : int(sys.stdin.readline())\n\n N = NI()\n max_i = int(math.log2(N))\n div = []\n for i in range(1,int(math.sqrt(N))+1):\n if N % i == 0:\n div.append((i,N//i)); div.append((N//i,i))\n\n ans = 0\n for a,b in div:\n if a == 1:\n for i in range(1,int(math.sqrt(b-1))+1):\n if b % i == 1:\n ans += (1 if i*i == b-1 or i == 1 else 2)\n else:\n for i in range(1,max_i+1):\n c = round(math.pow(a,1/i))\n if c ** i == a:\n if b % c == 1: ans += 1\n print(ans)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9649122807017544, "before_after_length": [280, 271], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "b % i == 1:\n ans += 1 if i*i == )%or10:\nelse p = - (i*i == b-1 - (i == 1)\n ans += p", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u192042624", "n_user": "u192042624", "pos": "import math\n\n\nN = int(input())\n\nnn = int(math.sqrt(N))\n# nn = int(N / 2)\n\nans = 1\nfor x in range(2,nn+1):\n\n if N % x == 1:\n ans += 1\n continue\n \n if N % x > 1:\n continue\n\n tmp = N\n while tmp > x:\n tmp = tmp / x\n if tmp % x == 1 :\n ans += 1\n break\n elif tmp % x > 1 :\n break\n elif tmp == x:\n ans += 1\n break\n\nx = 1\ntmp = N - 1\nwhile tmp / x > nn:\n if tmp % x == 0:\n ans += 1\n x += 1\n\nprint(ans)\n", "neg": "import math\n\n\nN = int(input())\n\nnn = int(math.sqrt(N))\n\nans = 0\nfor x in range(2,nn+1):\n\n if N % x > 1:\n continue\n\n if N % x == 1:\n ans += 1\n continue\n \n tmp = N\n while True:\n tmp = tmp / x\n if tmp % x == 1:\n ans += 1\n break\n elif tmp == x :\n ans += 1\n break\n elif tmp % x >= 1:\n break\n\nprint(ans+2)\n\n\n\n\n", "jacc_sim": 0.9142857142857143, "before_after_length": [192, 148], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "#\nans=nn0= int(N / 2)\n\nans = 1>==\n ans += 1 >==\n ans += 1 Truetmp > x %==> 1 :\n break\n elif tmp == x\nx=1\ntmp=N- e1\nwhie tmp / x > nn:\n >=10 brek\n\nprit(an 2)= 1 x += 1print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u509405951", "n_user": "u509405951", "pos": "import math\n \nN = int(input())\n \ncnt = 0\n \nif N == 2:\n print(1)\n exit()\n \ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n # divisors.sort()\n return divisors\nres1 = sorted(make_divisors(N))\nres1 = res1[1:math.ceil(len(res1)/2)]\n \nfor num in res1:\n kensa = N\n while True:\n if kensa % num == 0:\n kensa = kensa // num\n continue\n break\n if kensa % num == 1:\n cnt += 1\n \nres2 = sorted(make_divisors(N-1))\ncnt += len(res2[1:])+1\n \nprint(cnt)", "neg": "import math\n\nN = int(input())\n\ncnt = 0\n\nif N == 2:\n print(1)\n exit()\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\nres1 = sorted(make_divisors(N))\nprint(res1)\nres1 = res1[1:math.ceil(len(res1)/2)]\n\nfor num in res1:\n kensa = N\n while True:\n if kensa % num == 0:\n kensa = kensa // num\n continue\n break\n if kensa % num == 1:\n cnt += 1\n\nres2 = sorted(make_divisors(N-1))\ncnt += len(res2[1:])+1\n\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [267, 266], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": " )\nprint(res1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u557282438", "n_user": "u557282438", "pos": "N = int(input())\ncnt = 0\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.pop(0)\n return divisors\nN1_yakusu = make_divisors(N-1)\nN_yakusu = make_divisors(N)\ncnt += len(N1_yakusu)\nfor K in N_yakusu:\n new_N = N\n while(new_N%K==0):\n new_N = new_N//K\n if(new_N%K == 1):\n cnt += 1\nprint(cnt)", "neg": "N = int(input())\ncnt = 0\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\nN1_yakusu = make_divisors(N-1)\nN_yakusu = make_divisors(N)\ncnt += len(N1_yakusu)\nfor s in N_yakusu:\n new_N = s\n while(new_N%K==0):\n new_N = new_N//K\n if(new_N%K == 1):\n cnt += 1\nprint(cnt)", "jacc_sim": 0.9069767441860465, "before_after_length": [213, 213], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "\n #spprt0sKsN", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u686230543", "n_user": "u686230543", "pos": "n = int(input())\n\nif n == 2:\n count = 1\nelse:\n count = 2\ndivisor = []\n\nd = 2\nwhile d * d < n - 1:\n if (n - 1) % d == 0:\n count += 2\n d += 1\nif d * d == n - 1:\n count += 1\n\nd = 2\nwhile d * d < n:\n if n % d == 0:\n divisor.append(d)\n divisor.append(n // d)\n d += 1\nif d * d == n:\n divisor.append(d)\n\nfor d in divisor:\n tmp = n\n while tmp % d == 0:\n tmp //= d\n if tmp % d == 1:\n count += 1\n\nprint(count)", "neg": "n = int(input())\n\ncount = 1\ndivisor = []\n\nd = 2\nwhile d * d < n - 1:\n if n % d == 1:\n count += 2\n d += 1\nif d * d == n:\n count += 1\n\nd = 2\nwhile d * d < n:\n if n % d == 0:\n divisor.append(d)\n divisor.append(n // d)\n d += 1\nif d * d == n:\n divisor.append(d)\ncount += 1\n\nfor d in divisor:\n tmp = n\n while tmp % d == 0:\n tmp //= d\n if tmp % d == 1:\n count += 1", "jacc_sim": 0.9333333333333333, "before_after_length": [192, 169], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "ifcount=n== 2:\n count = \nelse:\n count = 2( - 1)10 - 1count += 1\n\n\nprint(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u091051505", "n_user": "u091051505", "pos": "import math\nimport copy\ndef prime_factorize(n):\n a = [n]\n for i in range(2, math.floor(n ** 0.5) + 1):\n if n % i == 0:\n a.append(i)\n if n // i != i:\n a.append(n // i)\n return a\n\nN = int(input())\nprime_n = prime_factorize(N)\nprime_n_1 = prime_factorize(N - 1)\n\nans = 0\nfor i in prime_n:\n n = copy.deepcopy(N)\n while (n % i) == 0:\n n = n // i\n if (n % i) == 1:\n ans += 1\nans += len(prime_n_1)\nif N > 2:\n print(ans)\nelse:\n print(1)", "neg": "def prime_factorize(n):\n a = [n]\n for i in range(2, math.floor(n ** 0.5) + 1):\n if n % i == 0:\n a.append(i)\n if n // i != i:\n a.append(n // i)\n return a\n\nN = int(input())\nprime_n = prime_factorize(N)\nprime_n_1 = prime_factorize(N - 1)\n\nans = 0\nfor i in prime_n:\n n = copy.deepcopy(N)\n while (n % i) == 0:\n n = n // i\n if (n % i) == 1:\n ans += 1\nans += len(prime_n_1)\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [210, 188], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "import math\nimport copy\nif N > 2:\n \nelse:\n print(1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u608088992", "n_user": "u608088992", "pos": "import sys\n\ndef solve():\n input = sys.stdin.readline\n N = int(input())\n used = {N}\n if N > 2: used |= {N - 1}\n for i in range(2, N):\n if i ** 2 > N: break\n else:\n if N % i == 0:\n d = N\n while d % i == 0:\n d //= i\n if d % i == 1: used |= {i}\n if (N - 1) % i == 0:\n used |= {i}\n if i ** 2 != N - 1: used |= {(N - 1) // i}\n print(len(used))\n #print(used)\n\n return 0\n\nif __name__ == \"__main__\":\n solve()", "neg": "import sys\n\ndef solve():\n input = sys.stdin.readline\n N = int(input())\n used = {N}\n if N > 2: used |= {N - 1}\n for i in range(2, N):\n if i ** 2 > N: break\n else:\n d = i\n while d * i <= N: d *= i\n if d == N or (N - d) % i == 0: used |= {i}\n if (N - 1) % i == 0:\n used |= {i}\n if i ** 2 != N - 1: used |= {(N - 1) // i}\n print(len(used))\n #print(used)\n\n return 0\n\nif __name__ == \"__main__\":\n solve()", "jacc_sim": 0.9565217391304348, "before_after_length": [191, 187], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "d = f N % i == 0: d = N\n * i <= N: d *= i\n if d == N or (N - d) :\n d //= i\n if d % i == 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u547167033", "n_user": "u547167033", "pos": "n=int(input())\nif n==2:\n print(1)\n exit()\nnn=n-1\nans=set([nn])\nfor i in range(2,int(nn**0.5)+1):\n if nn%i==0:\n ans.add(i)\n ans.add(nn//i)\nl=set()\nl.add(n)\nfor i in range(2,int(n**0.5)+1):\n if n%i==0:\n l.add(i)\n l.add(n//i)\nfor j in l:\n m=n\n while m%j==0:\n m//=j\n if m%j==1:\n ans.add(j)\nprint(len(ans))", "neg": "n=int(input())\nnn=n-1\nans=set([nn])\nfor i in range(2,int(nn*0.5)+1):\n if nn%i==0:\n ans.add(i)\n ans.add(nn//i)\nl=[n]\nfor i in range(2,int(nn*0.5)+1):\n if n%i==0:\n l.append(i)\n l.append(n//i)\nfor j in l:\n m=n\n while m%j==0:\n m//=j\n if m%j==1:\n ans.add(j)\nprint(len(ans))", "jacc_sim": 0.9459459459459459, "before_after_length": [187, 164], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "if n==2:\n print(1)\n exit()\n*[set()\nl.add(])n*ppenddppen", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u690536347", "n_user": "u690536347", "pos": "N = int(input())\nans = set()\n\ndef check(N, k):\n if k<2:\n return False\n N //= k\n while N:\n if (N-1)%k==0:\n return True\n if N%k:\n return False\n N //= k\n return False\n\n\nfor k in range(1, int(N**0.5)+1):\n if (N-1)%k==0:\n k1, k2 = k, (N-1)//k\n ans.add(k1)\n ans.add(k2)\n if N%k==0:\n k1, k2 = k, N//k\n if check(N, k1):\n ans.add(k1)\n if check(N, k2):\n ans.add(k2)\n\nans.remove(1)\nprint(len(ans))", "neg": "N = int(input())\nans = set()\n\ndef check(N, k):\n if k<2:\n return False\n N //= k\n while N:\n if (N-1)%k==0:\n return True\n if N%k:\n return False\n N //= k\n\nfor k in range(1, int(N**0.5)+1):\n if (N-1)%k==0:\n ans.add(k)\n ans.add((N-1)//k)\n if N%k==0:\n if check(N, k):\n ans.add(k1)\n if check(N, N//k):\n ans.add(k2)\n\nans.remove(1)\nprint(len(ans))", "jacc_sim": 1.0, "before_after_length": [223, 191], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "\n return False\nk1, k2 = k, (N-1)//k\n 1(N-1)//2\n k1, k2 = k, N//k1N//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u039623862", "n_user": "u039623862", "pos": "n = int(input())\n\n\ndef check(n, k):\n while n % k == 0:\n n = n // k\n if n >= k:\n n = n - k * (n // k)\n return n\n\n\ndef count(n):\n total = 0\n cands = set([n, n-1])\n for i in range(2, int(n ** 0.5) + 1):\n if n % i == 0:\n cands.add(i)\n cands.add(n // i)\n for i in range(2, int(n ** 0.5) + 1):\n if (n-1) % i == 0:\n cands.add(i)\n cands.add((n - 1) // i)\n for k in cands:\n if k == 1:\n continue\n if check(n, k) == 1:\n total += 1\n return total\n\n\nprint(count(n))", "neg": "n = int(input())\n\n\ndef check(n, k):\n while n % k == 0:\n n = n // k\n if n >= k:\n n = n - k * (n // k)\n return n\n\n\ndef count(n):\n total = 0\n cands = set([n, n-1])\n for i in range(2, int(n ** 0.5) + 1):\n if n % i == 0:\n cands.add(i)\n cands.add(n // i)\n for i in range(2, int(n ** 0.5) + 1):\n if (n-1) % i == 0:\n cands.add(i)\n cands.add((n - 1) // i)\n for k in cands:\n if k == 1:\n continue\n if check(n, k) == 1:\n total += 1\n return total\n", "jacc_sim": 0.9736842105263158, "before_after_length": [235, 227], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "\n\nprint(count(n))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u633051991", "n_user": "u633051991", "pos": "\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\nds = set(make_divisors(N)) | set(make_divisors(N-1))\n\ndef check(n,k):\n if n= 2:\n ans += 1\n for i in range(2, int(n ** (0.5)) + 1):\n m = n\n if m % i == 0:\n while m % i == 0:\n m = int(m / i)\n if m % i == 1:\n ans += 1\n ans += divisor(n - 1)\n return ans\nn = int(input())\nprint(function(n))", "neg": "def divisor(n):\n list1 = []\n for i in range(1, int(n ** (0.5)) + 1):\n if n % i == 0:\n list1.append(i)\n list1.append(int(n / i))\n list1 = list(set(list1))\n return len(list1) - 1\n\ndef function(n):\n ans = 0\n if n >= 2:\n ans += 1\n for i in range(2, int(n ** (0.5)) + 1):\n m = n\n if m % i == 0:\n while m % i == 0:\n m = int(m / i)\n ans += divisor(m)\n ans += divisor(n - 1)\n return ans\nn = int(input())\nprint(function(n))", "jacc_sim": 1.0, "before_after_length": [205, 199], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "if m % i == 1:\n 1\n ans += m)\n ans += divisor(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u945200821", "n_user": "u945200821", "pos": "import math\n\n\ndef list_divisor(n):\n divisor1 = {1}\n for i in range(2, int(math.sqrt(n)) + 1):\n if n % i == 0:\n divisor1.add(i)\n\n divisor2 = {n}\n for i in divisor1:\n divisor2.add(n // i)\n\n return divisor1 | divisor2\n\n\ndef main():\n n = int(input().rstrip())\n\n sub_only = len(list_divisor(n - 1)) - 1\n\n div_included = 0\n for d in (list_divisor(n) - {1}):\n n1 = n // d\n while n1 % d == 0:\n n1 = n1 // d\n\n if n1 == 1:\n div_included += 1\n continue\n\n if d in list_divisor(n1 - 1):\n div_included += 1\n\n print(sub_only + div_included)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import math\n\n\ndef list_divisor(n):\n divisor1 = {1}\n for i in range(2, int(math.sqrt(n)) + 1):\n if n % i == 0:\n divisor1.add(i)\n\n divisor2 = {n}\n for i in divisor1:\n divisor2.add(n // i)\n\n return divisor1 & divisor2\n\n\ndef main():\n n = int(input().rstrip())\n\n sub_only = len(list_divisor(n - 1)) - 1\n\n div_included = 0\n for d in list_divisor(n):\n n1 = n // d\n while n1 % d == 0:\n n1 = n1 // d\n\n if d in list_divisor(n1 - 1):\n div_included += 1\n \n print(sub_only + div_included)\n \n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9361702127659575, "before_after_length": [258, 235], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "&|list_divisorlist_divisor() - {1}n1 == 1:\n div_included += 1\n continue\n\n if ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u347600233", "n_user": "u347600233", "pos": "def calc_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ndef div_or_sub(n, k):\n while k <= n:\n if n % k == 0:\n n //= k\n else:\n n %= k\n return n\n\nn = int(input())\ncnt = len(calc_divisors(n - 1)) - 1\nn_divisors = calc_divisors(n)\nfor divisor in n_divisors[1:]:\n if div_or_sub(n, divisor) == 1:\n cnt += 1\nprint(cnt)", "neg": "def calc_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ndef div_or_sub(n, k):\n while k <= n:\n if n % k == 0:\n n //= k\n else:\n n %= k\n return n\n\nn = int(input())\ncnt = len(calc_divisors(n - 1)) - 1\nn_divisors = calc_divisors(n)\nfor divisor in n_divisors:\n if div_or_sub(n, divisor) == 1:\n cnt += 1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [216, 213], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": " [1:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u922449550", "n_user": "u490642448", "pos": "N = int(input())\n\ndef check(p):\n _N = N\n while _N%p == 0:\n _N //= p\n return (_N-1)%p == 0\n\nn = int(N**0.5) + 1\nP0 = set([N])\nP1 = set([N-1])\nfor i in range(2, n+1):\n if (N-1)%i == 0:\n P1.add(i)\n P1.add((N-1)//i)\n if N%i == 0:\n P0.add(i)\n P0.add(N//i)\n\nP0.discard(1)\nP1.discard(1)\nans = len(P1)\nfor p in P0:\n ans += check(p)\n\nprint(ans)", "neg": "N = int(input())\n\ndef check(p):\n _N = N\n while _N%p == 0:\n _N //= p\n return ((_N-1)%p == 0) or (_N == 1)\n\nn = int(N**0.5)\nP0 = set([N])\nP1 = set([N-1])\nfor i in range(2, n+1):\n if N%i == 0:\n P0.add(i)\n P0.add(N//i)\n\nn = int((N-1)**0.5)\nfor i in range(2, n+1):\n if N%i == 0:\n P1.add(i)\n P1.add(N//i)\n\nans = len(P1)\nfor p in P0:\n ans += check(p)\n\nprint(ans)\n", "jacc_sim": 0.9512195121951219, "before_after_length": [204, 215], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "() or (_N == 1) + 1(-1)0101(N//i)\n\nn = int**//i)\n if N%i == :\n P05add(i)\n P0.add(N//i)\n\nP0.discard(1)\nP1.discard(1)\nans = len(P1ipP0:\nrange(2, as 1):\n if N%i == 0:\n P1.add(i)\n P1.add(N//i)\n\nans = len(P1)\nfor p in P0:\n ans +\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u951480280", "n_user": "u951480280", "pos": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\ndef make_divisors2(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n\n # divisors.sort()\n return divisors\n\nn=int(input())\nl = make_divisors(n-1)\nans = len(l)\n\nl2 = make_divisors2(n)\nfor i in l2[1:]:\n n1 = n\n while n1%i == 0:\n n1 = n1//i\n if n1%i == 1:\n ans += 1\nprint(ans)", "neg": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\ndef make_divisors2(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0 and (n//i)%i == 1:\n divisors.append(i)\n\n # divisors.sort()\n return divisors\n\nn=int(input())\nl = make_divisors(n-1)\nans = len(l)\nl2 = make_divisors2(n)\nans += len(l2)\nprint(ans)", "jacc_sim": 0.926829268292683, "before_after_length": [261, 228], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": ":\nand( divisors.apped(i)\n\n # divisors.sort()\n return divisors\n\nn=int(input())\nl = make_divisors(n-1)\nans = len(l)\n\nl2 = make_divisors2(n)\nfor i in l2[1:]:\n n1 = n\n while n1%i == 0:\n n1 = n1)\n if n1 divisors.append(i)\n\n # divisors.sort()\n return divisors\n\nn=int(input())\nl = make_divisors(n-1)\nans = len(l)\nl2 = make_divisors2(n)\n1len(l2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u145600939", "n_user": "u145600939", "pos": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort()\n return divisors\n\ndef main():\n n = int(input())\n ans = 0\n div = make_divisors(n)\n for i in div[1:]:\n var = n\n while not var%i:\n var = var // i\n if var%i == 1:\n ans += 1\n ans += len(make_divisors(n-1)) - 1\n print(ans)\n\nmain()\n", "neg": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort()\n return divisors\n\ndef main():\n n = int(input())\n ans = 0\n div = make_divisors(n)\n for i in div[::1]:\n var = n\n while not var%i:\n var = var // i\n if var%i == 1:\n ans += 1\n ans += len(make_divisors(n-1)) - 1\n print(ans)\n\nmain()\n", "jacc_sim": 1.0, "before_after_length": [193, 193], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": ":::", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u497952650", "n_user": "u711238850", "pos": "import numpy as np\ndef factor(N):\n ans = []\n for i in range(1,int(np.sqrt(N))+1):\n if N%i == 0:\n ans.append(i)\n if N//i != i:\n ans.append(N//i)\n return ans\n\ndef check(K,N):\n while N >= K:\n if N%K == 0:\n N //= K\n else:\n N %= K\n if N%K == 1:\n return True\n else:\n return False\n\nN = int(input())\nans = len(factor(N-1))-1\n\nfor K in factor(N)[1:]:\n if check(K,N):\n ans += 1\n\nprint(ans) \n", "neg": "from copy import deepcopy\nimport numpy as np\ndef factor(N):\n ans = []\n for i in range(1,int(np.sqrt(N))+1):\n if N%i == 0:\n ans.append(i)\n if N//i != i:\n ans.append(i)\n return ans\n\ndef check(K,N):\n while N>=K:\n if N%K == 0:\n N = N//K\n else:\n N = N%K\n if N%K == 1:\n return True\n else:\n return False\n\nN = int(input())\nans = len(factor(N-1)[1:])\nfor K in factor(N)[1:]:\n if check(K,N):\n ans += 1\n\nprint(ans) \n", "jacc_sim": 0.9333333333333333, "before_after_length": [191, 197], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "from copy import deepcopy\nN// = N= = N= )-1\n\nfor K in factor(N))\nfor K in factor(N)[1:] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u190616335", "n_user": "u190616335", "pos": "#!/usr/bin/python3\n# -*- coding: utf-8 -*-\ndef make_divisors(n):\n divisors = []\n for i in range(2, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\nn = int(input())\nif n == 2:\n print(1)\nelif n == 3:\n print(2)\nelif n == 4:\n print(3)\nelse:\n count = 2\n check_list = make_divisors(n-1)\n count += len(check_list)\n check_list = make_divisors(n)\n for k in check_list:\n temp_n = n // k\n while(True):\n if temp_n % k == 0:\n temp_n = temp_n // k\n elif temp_n % k == 1:\n count += 1\n break\n else:\n break\n print(count)\n", "neg": "#!/usr/bin/python3\n# -*- coding: utf-8 -*-\ndef make_divisors(n):\n divisors = []\n for i in range(2, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\nn = int(input())\nif n == 2:\n print(0)\nelif n == 3:\n print(2)\nelif n == 4:\n print(3)\nelse:\n count = 2\n check_list = make_divisors(n-1)\n count += len(check_list)\n temp_n = str(n)\n suma = 0\n for i in range(len(temp_n)):\n suma += int(temp_n[i])\n if suma % 3 == 0:\n count += 1\n \n \"\"\"\n for k in [3]:\n temp_n = n\n while(True):\n if temp_n % k == 0:\n temp_n = temp_n // k\n else:\n temp_n = temp_n - k\n if temp_n <= 0:\n break\n if temp_n == 1:\n count += 1\n break\n \"\"\"\n print(count)\n", "jacc_sim": 0.9285714285714286, "before_after_length": [286, 353], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "01tchmpcklin = r(n)\n= suk = 0\n for i in rang_divisorsle()\n for k in check_list:\n )):\n suma +it(temp_n[i])\n// if suma % 3 == 0:\n count += 1\n \n \"\"\"\n for in [3]:\n temp_n = nifse:\n =%temp_n - \n if temp_n <=01 count += 1\nif tlsemp_n == 1\n count += 1\"\"\"\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u454093752", "n_user": "u454093752", "pos": "N = int(input())\nA = []\nc = 0\n\nfor i in range(2,int(N**0.5)+1):\n if N % i == 0:\n A.append(i)\n A.append(N//i)\n\nfor i in range(2,int((N-1)**0.5)+1):\n if (N - 1) % i == 0:\n A.append(i)\n\n A.append((N-1)//i)\nA = list(set(A))\nif N == 2:\n print(1)\nelse:\n for i in A:\n start = N\n while(True):\n if start % i != 0:\n break\n start = start//i\n if start % i == 1:\n c += 1\n print(c+2)", "neg": "N = int(input())\nA = []\nc = 0\n\nfor i in range(2,int(N**0.5)+2):\n if N % i == 0:\n A.append(i)\n A.append(N//i)\n\nfor i in range(2,int((N-1)**0.5)+1):\n if (N - 1) % i == 0:\n c += 2\n\nif N == 2:\n print(2)\nelse:\n for i in A:\n start = N\n while(True):\n if start % i != 0:\n break\n start = start//i\n if start % i == 1:\n c += 1\n break\n print(c+2)", "jacc_sim": 0.9459459459459459, "before_after_length": [200, 178], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "21cA.append(i)\n\n+ A.append((N-1)//i)\nA = list(set(A))\nif N =\n\nif N == 221 \n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u116233709", "n_user": "u116233709", "pos": "n=int(input())\ndef prime_factorize(n):\n a=[]\n while n%2==0:\n a.append(2)\n n//=2\n f=3\n while f**2<=n:\n if n%f==0:\n a.append(f)\n n//=f\n else:\n f+=2\n if n!=1:\n a.append(n)\n return(a)\n\nimport collections\nA=collections.Counter(prime_factorize(n-1))\nans=1\ncnt=0\nfor a,b in A.items():\n ans*=(b+1)\n\nimport math\nli=[]\nfor i in range(2,math.floor(n**0.5)+1):\n if n%i==0:\n li.append(i)\n if i!=n//i:\n li.append(n//i)\nli.append(n)\nfor i in li:\n x = n\n while x % i == 0:\n x //= i\n if x % i == 1:\n cnt += 1\nprint(ans - 1 + cnt)\n\n ", "neg": "n=int(input())\ndef prime_factorize(n):\n a=[]\n while n%2==0:\n a.append(2)\n n//=2\n f=3\n while f**2<=n:\n if n%f==0:\n a.append(f)\n n//=f\n else:\n f+=2\n if n!=1:\n a.append(n)\n return(a)\n\nimport collections\nA=collections.Counter(prime_factorize(n-1))\nB=collections.Counter(prime_factorize(n))\n\nans=1\ncnt=0\nfor a,b in A.items():\n ans*=(b+1)\nfor a, b in B.items():\n if b>=2:\n for i in range(2,b+1):\n if (n//(a**i))%a==1:\n cnt+=1\nimport math\nfor i in range(1,math.floor(n**0.5)+1):\n if n%i==0:\n if ((n//i)-1)%i==0:\n cnt+=1\n if ((n//i)-1)%(n//i)==0:\n cnt+=1\n\nprint(ans-2+cnt)\n\n", "jacc_sim": 0.9215686274509803, "before_after_length": [285, 318], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "B=collections.Counter(prime_factorize(n))\n\n\nfor a, b n B.iteports():\n math\nlf b>[]\nfor i in range(:\n for i in range(2,b+1):\n if (n//(a**i))%a==1:\n cnt+=1\nimport math\nfor i in range(1lf ((.appe//d(\n if i!=n//i:\n li.append(n//i)\nli.append(n)\nfor i in li:\n x = n\n while x % i == 0:\n x //= i\n if x % i == 1:\n cnt += 1\nprint(ans 1)%i==0:\n1 cnt=1\n if ((n//i)-1)%(n//i)==0:\n +=1\n\nprint(ans-2+cnt ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u278057806", "n_user": "u278057806", "pos": "from sys import stdin\nfrom math import sqrt\ninput = stdin.readline\n\nN = int(input())\n\nif N == 2:\n print(1)\n exit()\n\ns = set([N - 1, N])\n\n\nfor i in range(2, int(sqrt(N)) + 1):\n tmp = N\n if (tmp - 1) % i == 0:\n s.add(i)\n s.add((tmp - 1) // i)\n elif tmp % i == 0:\n while tmp % i == 0:\n tmp //= i\n\n if tmp % i == 1:\n s.add(i)\n\n tmp = N\n while tmp % (N // i) == 0:\n tmp //= (N // i)\n\n if tmp % (N // i) == 1:\n s.add(N // i)\n\n# print(s)\nprint(len(s))\n", "neg": "from sys import stdin\nfrom math import sqrt\ninput = stdin.readline\n\nN = int(input())\n\ns = set([N - 1, N])\n\n\nfor i in range(2, int(sqrt(N)) + 1):\n tmp = N\n if (tmp - 1) % i == 0:\n s.add(i)\n s.add((tmp - 1) // i)\n elif tmp % i == 0:\n while tmp % i == 0:\n tmp //= i\n\n if tmp % i == 1:\n s.add(i)\n\n tmp = N\n while tmp % (N // i) == 0:\n tmp //= (N // i)\n print(tmp)\n\n if tmp % (N // i) == 1:\n s.add(tmp // i)\n\n# print(s)\nprint(len(s))\n", "jacc_sim": 0.975, "before_after_length": [221, 210], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": ")\n\nif N == 2:\n print(1)\n exit( print(tmp)\nNtmp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u892445454", "n_user": "u892445454", "pos": "N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\n\ndivlist = make_divisors(N)\ncount = 0\nfor i in divlist[1:]:\n n = N\n while n % i == 0:\n n = n // i\n if n % i == 1:\n count += 1\n\nprint(count + len(make_divisors(N-1))-1)", "neg": "N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\n\ndivlist = make_divisors(N)\ncount = 0\nif len(divlist) != 2:\n for i in divlist[2:]:\n temp = N // i\n if temp % i == 1:\n count += 1\n\nprint(count + len(make_divisors(N-1)))", "jacc_sim": 0.9210526315789473, "before_after_length": [172, 166], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "iori in diven(dvst[1:]:\n n = N\n whiist) != 2:\n for i in divlist[2:]:\n tmpn= N // i\n if temp10 n = n // i\n if n % i == 1:\n-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u904547029", "n_user": "u904547029", "pos": "n = int(input())\n\ndef divisior(n):\n a = []\n i = 1\n while (i*i <= n):\n if n%i == 0:\n a.append(i)\n if (i*i != n): a.append(n//i)\n i += 1\n return a\n\nans = 0\na = divisior(n)\n\nfor x in a[1:]:\n tmp = n\n while (tmp%x == 0): tmp = tmp//x\n if (tmp%x == 1) : ans += 1\n\nb = divisior(n-1)\n\nans = ans + len(b) -1\n\nprint(ans)\n\n\n", "neg": "n = int(input())\n\ndef divisior(n):\n a = []\n i = 1\n while (i*i <= n):\n if n%i == 0:\n a.append(i)\n if (i*i != n): a.append(n//i)\n i += 1\n\n return a\n\nans = 0\na = divisior(n).sort()\n\nfor x in a[1:]:\n tmp = n\n while (tmp%x == 0): tmp = tmp//x\n if (tmp%x == 1) : ans += 1\n\nb = divisior(n-1)\n\nans = ans + len(b) -1\n\nprint(ans)\n\n\n", "jacc_sim": 0.9722222222222222, "before_after_length": [170, 173], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "\n).sort(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u531436689", "n_user": "u531436689", "pos": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\nfrom collections import deque\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\nDR = [1, -1, 0, 0]\nDC = [0, 0, 1, -1]\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\ndef get_yakusu(n):\n ans = set()\n for i in range(1, int(math.sqrt(n)) + 1):\n if n % i == 0:\n if i != 1:\n ans.add(i)\n if n // i != i:\n ans.add(n // i)\n return ans\n\ndef main():\n N = I()\n cnt = 0\n yakusu = get_yakusu(N)\n n1yakusu = get_yakusu(N-1)\n if N == 2:\n print(1)\n return\n for n in yakusu:\n cpN = N\n while True:\n if n == 1:\n break\n if cpN % n == 0:\n cpN = cpN // n\n else:\n break\n if cpN % n == 1:\n cnt += 1\n cnt += len(n1yakusu)\n print(cnt)\nmain()\n\n", "neg": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\nfrom collections import deque\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\nDR = [1, -1, 0, 0]\nDC = [0, 0, 1, -1]\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n \ndef get_yakusu(n):\n ans = set()\n for i in range(1, int(math.sqrt(n)) + 2):\n if n % i == 0:\n if i != 1:\n ans.add(i)\n if n // i != i:\n ans.add(n // i)\n return ans\n\ndef main():\n N = I()\n cnt = 0\n yakusu = get_yakusu(N)\n n1yakusu = get_yakusu(N-1)\n for n in yakusu:\n cpN = N\n while cpN % n == 0 and cpN > n:\n cpN //= n\n if cpN % n == 1:\n cnt += 1\n cnt += len(n1yakusu)\n print(cnt)\nmain()\n\n", "jacc_sim": 0.9404761904761905, "before_after_length": [463, 429], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": " 21if N == 2:\n print(1)\n return\n True:\n if n == 1:\n break\n if :\nand => n:\n =\n else:\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u627600101", "n_user": "u627600101", "pos": "N = int(input())\n\nif N == 2:\n print(1)\n exit()\n\nans = 0\n\ndef factorization(n):\n lis = []\n if n % 2 == 0:\n c = 0\n while n%2 == 0:\n n //= 2\n c += 1\n lis.append([2, c])\n k = 3\n while k*k <= n:\n if n%k == 0:\n c = 0 \n while n%k == 0:\n n //= k\n c += 1\n lis.append([k, c])\n else:\n k += 2\n if n > 1:\n lis.append([n, 1])\n return lis\n\nlist1 = factorization(N-1)\nans1 = 1\nfor k in range(len(list1)):\n ans1 *= list1[k][1]+1\nans += ans1-1\n\ndef operation(K):\n n = N\n while n%K == 0:\n n //= K\n if n%K == 1:\n return True\n else:\n return False\n\nlist2 = factorization(N)\nfactorlist = [1]\nfor l in range(len(list2)):\n list3 = []\n for j in range(list2[l][1]):\n for k in range(len(factorlist)):\n list3.append(factorlist[k]*list2[l][0]**(j+1))\n factorlist += list3\nfactorlist = factorlist[1:-1]\nans += 1\nfor item in factorlist:\n if operation(item):\n ans +=1\nprint(ans)", "neg": "N = int(input())\n\nif N == 2:\n print(1)\n exit()\n\nans = 0\n\ndef factorization(n):\n lis = []\n if n % 2 == 0:\n c = 0\n while n%2 == 0:\n n //= 2\n c += 1\n lis.append([2, c])\n k = 3\n while k*k <= n:\n if n%k == 0:\n c = 0 \n while n%k == 0:\n n //= k\n c += 1\n lis.append([k, c])\n else:\n k += 2\n if n > 1:\n lis.append([n, 1])\n return lis\n\nlist1 = factorization(N-1)\nans1 = 1\nfor k in range(len(list1)):\n ans1 *= list1[k][1]+1\nans += ans1-1\n\ndef operation(K):\n while N%K == 0:\n N //= K\n if N%K == 1:\n return True\n else:\n return False\n\nlist2 = factorization(N)\nfactorlist = [1]\nfor l in range(len(list2)):\n list3 = []\n for j in range(list2[l][1]):\n for k in range(len(factorlist)):\n list3.append(factorlist[k]*list2[l][0]**(j+1))\n factorlist += list3\nfactorlist = factorlist[1:-1]\nans += 1\nfor item in factorlist:\n if operation(item):\n ans +=1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [410, 405], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "n = N\n NnNnNn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u672220554", "n_user": "u672220554", "pos": "import math\nimport collections\n\nN = int(input())\nres = 1\n\n\nn = 10 ** 6 + 5000\nfl = [1] * n\nfl[0] = 0\nfl[1] = 0\nlprime = []\nfor i in range(n):\n if fl[i] == 1:\n lprime.append(i)\n ti = i * 2\n while ti < n:\n fl[ti] = 0\n ti += i\n\n\ndef prime_factorize(n):\n global lprime\n a = []\n for p in lprime:\n if p * p > n:\n break\n while n % p == 0:\n a.append(p)\n n //= p\n if n != 1:\n a.append(n)\n return a\n\n\ndef yakusuu(N):\n t = math.floor(math.sqrt(N))\n res = []\n for i in range(2, t + 1):\n if N % i == 0:\n res.append(i)\n return res\n\n\ntres = prime_factorize(N - 1)\nctres = collections.Counter(tres)\nfor s in ctres.values():\n res *= s + 1\ntres = yakusuu(N)\nfor c in tres:\n t = N\n while t % c == 0:\n t //= c\n if t == 1 or (t - 1) % c == 0:\n res += 1\nprint(res)\n", "neg": "import math\nimport collections\n\nN = int(input())\nres = 1\n\n\nn = 10 ** 6 + 5000\nfl = [1] * n\nfl[0] = 0\nfl[1] = 0\nlprime = []\nfor i in range(n):\n if fl[i] == 1:\n lprime.append(i)\n ti = i * 2\n while ti < n:\n fl[ti] = 0\n ti += i\n\n\ndef prime_factorize(n):\n global lprime\n a = []\n for p in lprime:\n if p * p > n:\n break\n while n % p == 0:\n a.append(p)\n n //= p\n if n != 1:\n a.append(n)\n return a\n\n\ndef yakusuu(N):\n t = math.floor(math.sqrt(N))\n res = []\n for i in range(2, t + 1):\n if N % i == 0:\n res.append(t)\n return res\n\n\ntres = prime_factorize(N - 1)\nctres = collections.Counter(tres)\nfor s in ctres.values():\n res *= s + 1\ntres = yakusuu(N)\nif len(tres) != 0:\n for c in tres:\n t = N\n while t % c == 0:\n t //= c\n if t == 1 or (t - 1) % c == 0:\n res += 1\nprint(res)\n", "jacc_sim": 0.9833333333333333, "before_after_length": [364, 375], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "tii len(tres) != 0:\n f ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02722", "p_user": "u471641802", "n_user": "u471641802", "pos": "n = int(input())\na = [n]\nif n != 2:\n a.append(n - 1)\n\ndef div_(N, k):\n while N % k == 0:\n N /= k\n if N % k == 1:\n a.append(k)\n\nfor k in range(2, int(n ** 0.5) + 1):\n if n % k == 0:\n div_(n,k)\n if k != n / k:\n div_(n, n // k)\n\n if (n - 1) % k == 0:\n a.append(k)\n if k != (n - 1) / k:\n a.append((n - 1) // k)\n\nprint(len(a))", "neg": "n = int(input())\na = [n]\nif n != 2:\n a.append(n - 1)\n\ndef div_(N, k):\n while N % k == 0:\n N /= k\n if N % k == 1:\n a.append(k)\n\nfor k in range(2, int(n ** 0.5) + 1):\n if n % k == 0:\n div_(n,k)\n if k != n / k:\n div_(n, n // k)\n\n if (n - 1) % k == 0:\n a.append(k)\n if k != (n - 1) / k:\n a.append((n - 1) // k)\n\nprint(a)\nprint(len(a))", "jacc_sim": 1.0, "before_after_length": [183, 188], "nl": "You are given a positive integer N. Choose an integer K between 2 and N (inclusive), then repeat the operation until N becomes less than K. Operation: if K divides N, replace N with N/K; otherwise, replace N with N-K. Find how many choices of K will make N become 1 in the end. Constraints: 2 \u2264 N \u2264 10^12. Input is given as N. Output the number of choices of K in which N becomes 1. For example, given N=6, the output is 3, as there are three choices of K (2, 5, and 6) that make N become 1.", "diff_info": "a)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u936378263", "n_user": "u936378263", "pos": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\n\ndist = [0] * (N)\n\nfor i in range(N-1):\n dist[i] = A[i+1] - A[i]\ndist[N-1] = A[0] - A[-1] + K\n\nprint(K - max(dist))", "neg": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\n\ndist = [0] * (N-1)\n\nfor i in range(N-1):\n dist[i] = A[i+1] - A[i]\n \nprint(K - max(dist))", "jacc_sim": 1.0, "before_after_length": [95, 79], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "-1dist[N-1]=A[0]-A[-1] + K\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u129961029", "n_user": "u129961029", "pos": "a,b=map(int,input().split())\ns=list(map(int,input().split()))\nans=[]\nfor i in range(b-1):\n ans.append(s[i+1]-s[i])\nans.append(a-s[b-1]+s[0])\nprint(a-max(ans))\n\n\n\n\n\n", "neg": "a,b=map(int,input().split())\ns=list(map(int,input().split()))\nans=[]\nfor i in range(b-1):\n ans.append(s[i]-s[i-1])\nans.append(a-s[b]+s[0])\nprint(a-max(ans))\n\n\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [89, 87], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "+1-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u067694718", "n_user": "u067694718", "pos": "k, n = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\nmax = k - a[len(a) - 1] + a[0]\nfor i in range(len(a) - 1):\n t = a[i + 1] - a[i]\n if(t > max): max = t\n\nprint(k - max)", "neg": "k, n = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\nmax = a[len(a) - 1] - a[0]\nfor i in range(len(a) - 1):\n t = a[i + 1] - a[i]\n if(t > max): max = t\n\nprint(max)", "jacc_sim": 1.0, "before_after_length": [99, 95], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "k - -+k - ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u645568816", "n_user": "u645568816", "pos": "K, N = map(int, input().split())\nA = list(map(int, input().split())) \n\nmaxdis = 0\nfor i in range(len(A)-1):\n if maxdis < A[i+1] - A[i]:\n maxdis = A[i+1] - A[i]\nif maxdis < (K - A[-1]) + A[0]:\n maxdis = (K - A[-1]) + A[0]\nprint(K-maxdis)\n", "neg": "K, N = map(int, input().split())\nA = list(map(int, input().split())) \n\nmaxdis = 0\nfor i in range(len(A)-1):\n if maxdis < A[i+1] - A[i]:\n maxdis = A[i+1] - A[i]\nif maxdis < A[-1] - A[0]:\n maxdis = A[-1] - A[0]\nprint(K-maxdis)\n", "jacc_sim": 1.0, "before_after_length": [120, 114], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "(KA[-1] A[-1]) +(KA[-1] A[-1]) +", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u747391638", "n_user": "u747391638", "pos": "k,n = map(int,input().split(\" \"))\nalist = list(map(int, input().split(\" \")))\nglist = []\nfor i in range(n-1):\n glist.append(alist[i+1]-alist[i])\nglist.append(k+alist[0]-alist[n-1])\n\nprint(k-max(glist))", "neg": "k ,n = map(int, input().split(\" \"))\nalist = list(map(int, input().split(\" \"))\nglist = []\nfor i in range(n-1):\n glist.append(alist[i+1]-alist[i])\nglist.append(k+alist[0]-alist[n-1])\n\nprint(int(k-max(glist)))\n \n ", "jacc_sim": 1.0, "before_after_length": [97, 105], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": " ) int()\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u844895214", "n_user": "u844895214", "pos": "import sys\nfrom collections import deque\nimport numpy as np\nimport math\nsys.setrecursionlimit(10**6)\ndef S(): return sys.stdin.readline().rstrip()\ndef SL(): return map(str,sys.stdin.readline().rstrip().split())\ndef I(): return int(sys.stdin.readline().rstrip())\ndef IL(): return map(int,sys.stdin.readline().rstrip().split())\n\ndef Main():\n k,n = IL()\n a = list(IL())\n a.sort()\n dist = []\n for i in range(n):\n if i= dis:\n dis = A[i+1]-A[i]\nprint(M-dis)", "neg": "M,N = list(map(int,input().split()))\nA = input().split()\nA.append(M)\ndis = 0\nfor i in range(N):\n if A[i+1]-A[i] >= dis:\n dis = A[i+1]-A[i]\n \nprint(A[-2]-A[0]-(dis-A[1]-A[0]))", "jacc_sim": 0.9666666666666667, "before_after_length": [91, 100], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "list(map(int,))+A[0] \nMA[2]-A[0]-(-A[1]-A[0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u304593245", "n_user": "u304593245", "pos": "\n\nK,N = list(map(int,input().split()))\nA = list(map(int,input().split()))\nB = []\nfor i in range(N-1):\n B.append(abs(A[i+1]-A[i]))\nB.append(K+A[0]-A[-1])\n#print(B)\nprint(K-max(B))\n", "neg": "\n\nK,N = list(map(int,input().split()))\nA = list(map(int,input().split()))\nA.append(K)\nB = []\nans = K\nfor i in range(N):\n B.append(abs(A[i]-A[i+1]))\nprint(B)\nprint(K-max(B))\n", "jacc_sim": 0.9032258064516129, "before_after_length": [96, 88], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "A.append(K)\n\nans = K-1+1+1B.append(K+A[0]-A[-1])\n#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u408849410", "n_user": "u408849410", "pos": "K,N = map(int,input().split())\nA = list(map(int,input().split()))\nL = []\nT = K+A[0]-A[-1]\nfor i in range(N-1):\n L.append(A[i+1]-A[i])\nL.append(T)\nprint(K-max(L))", "neg": "K,N = map(int,input().split())\nA = list(map(int,input()))\nL = []\nT = K+A[0]-A[-1]\nfor i in range(N-1):\n L.append(A[i+1]-A[i])\nprint(K-max(L))", "jacc_sim": 1.0, "before_after_length": [87, 78], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "t().spliL.append(T)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u991134049", "n_user": "u991134049", "pos": "K, N = list(map(int, input().split()))\nL = list(map(int, input().split()))\nsa = [L[i+1]-L[i] for i in range(N-1)]\nsa += [K-L[N-1]+L[0]]\nans = K-max(sa)\nprint(ans)\n", "neg": "K, N = map(int, input().split())\nL = list(map(int, input().split()))\nsa = [L[i+1]-L[i] for i in range(N-1)]\nsa += K-L[N-1]+L[0]\nans = K-max(sa)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [84, 79], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "list()[]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u151365505", "n_user": "u151365505", "pos": "K,N = map(int,input().split())\t\nA = list(map(int,input().split()))\nD=[A[0]-A[-1]+K]\nfor i in range(N-1):\n D.append(A[i+1]-A[i])\nprint(K-max(D))", "neg": "k,n = map(int,input().split())\t\na = list(map(int,input().split()))\nD=[A[0]-A[-1]+K]\nfor i in range(N-1):\n D.append(A[i+1]-A[i])\nprint(K-max(D))", "jacc_sim": 0.9032258064516129, "before_after_length": [77, 77], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "kKnNaA", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u922769680", "n_user": "u922769680", "pos": "K,N=map(int,input().split())\na_list=list(map(int,input().split()))\nb_list=[]\nfor i in range(N-1):\n X=a_list[i+1]-a_list[i]\n b_list.append(abs(X))\nb_list.append(K-a_list[-1]+a_list[0])\nprint(K-max(b_list))", "neg": "K,N=map(int,input().split())\na_list=list(map(int,input().split()))\nb_list=[]\nfor i in range(N):\n X=a_list[i]-a_list[i-1]\n b_list.append(abs(X))\nprint(K-max(b_list))", "jacc_sim": 0.9333333333333333, "before_after_length": [107, 84], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "-1+]-a_list[i--a_list[i]b_list.append(K-a_list[-1]+a_list[0])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u564657854", "n_user": "u564657854", "pos": "K,N = map(int,input().split())\nA_str = input().split()\nA = [int(h) for h in A_str]\nD = []\nfor i in range(1,N):\n D.append(A[i]-A[i-1])\nD.append(A[0]+(K-A[N-1]))\nmaximum = max(D)\nprint(K-maximum)", "neg": "K,N = map(int,input().split())\nA_str = input().split()\nA = [int(h) for h in A_str]\nprint(A)\nD = []\nfor i in range(1,N):\n D.append(A[i]-A[i-1])\nD.append(A[0]+(K-A[N-1]))\nprint(D)\nmaximum = max(D)\nprint(K-maximum)", "jacc_sim": 1.0, "before_after_length": [99, 109], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "print(A)\nprint(D)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u411858517", "n_user": "u411858517", "pos": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\ntmp = 0\nfor i in range(N-1):\n tmp = max(tmp, A[i+1]-A[i])\n \ntmp = max(tmp, K + A[0] - A[-1])\n\nprint(K - tmp)\n", "neg": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\ntmp = 0\nfor i in range(N-1):\n tmp = max(tmp, A[i+1]-A[i])\n \ntmp = max(tmp, K - A[-1])\n\nprint(K - tmp)", "jacc_sim": 1.0, "before_after_length": [95, 89], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "+ A[0] \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u797375364", "n_user": "u797375364", "pos": "k, n = map(int, input().split())\na = list(map(int, input().split()))\n\nlst = []\nfor i in range(0, len(a)-1) :\n lst += [a[i + 1] - a[i]]\nlst += [k - a[-1] + a[0]]\n\nprint(sum(lst) - max(lst))\n", "neg": "k, n = map(int, input().split())\na = list(map(int, input().split()))\n\nlst = []\nfor i in range(0, len(a)-1) :\n lst += [a[i + 1] - a[i]]\nlst += [k - a[-1] + a[0]]\nprint(lst)\n\nprint(sum(lst) - max(lst))\n", "jacc_sim": 1.0, "before_after_length": [91, 96], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "print(lst)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u831752983", "n_user": "u831752983", "pos": "k,n=map(int,input().split())\na=list(map(int,input().split()))\ndist = [k-a[n-1]+a[0]]\nfor i in range(n-1):\n dist.append(a[i+1]-a[i])\n\nprint(k-max(dist))\n", "neg": "k,n=map(int,input().split())\na=list(map(int,input().split()))\ndist = [k-dist[n-1]+dist[0]]\nfor i in range(n):\n dist.append(a[i+1]-a[i])\n\nprint(k-max(dist))\n", "jacc_sim": 1.0, "before_after_length": [80, 78], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "adistadist-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u195765467", "n_user": "u195765467", "pos": "k,n=map(int,input().split())\na=list(map(int,input().split()))\ndiff=0\nfor i in range(len(a)-1):\n diff_a=a[i+1]-a[i]\n if diffdiff:\n diff=diff_b\nprint(k-diff)", "neg": "k,n=map(int,input().split())\na=list(map(int,input().split()))\ndiff=0\nfor i in range(len(a)-1):\n diff_a=a[i+1]-a[i]\n if diffdiff:\n diff=a[n-1]-a[0]\nprint(k-diff)", "jacc_sim": 0.96875, "before_after_length": [115, 113], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "d f_b=(k--)+\nif diff_bdiff_ba[n-1]-a[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u250554058", "n_user": "u250554058", "pos": "def main():\n k, N = (int(x) for x in input().split())\n min_LIST = []\n LIST = []\n LIST = list(map(int,input().split()))\n x = 0\n\n for i in range(len(LIST) - 1):\n min_LIST.append(LIST[i + 1] - LIST[i])\n if(x <= min_LIST[i]):\n x = min_LIST[i]\n\n if(N != 2):\n min_LIST.append(LIST[0] + (k - LIST[-1]))\n if(x <= (LIST[0] + (k - LIST[-1]))):\n x = (LIST[0] + (k - LIST[-1]))\n\n sum_list = sum(min_LIST) - x\n\n print(sum_list)\nif __name__ == \"__main__\":\n main()\n", "neg": "def main():\n k, N = (int(x) for x in input().split())\n min_LIST = []\n LIST = []\n LIST = list(map(int,input().split()))\n\n for i in range(len(LIST) - 1):\n min_LIST.append(LIST[i + 1] - LIST[i])\n if(min_LIST[i] <= (LIST[i + 1] - LIST[i])):\n x = (LIST[i + 1] - LIST[i])\n print(x)\n\n print(min_LIST)\n\n min_LIST.append(LIST[0] + (k - LIST[-1]))\n if(x <= (LIST[0] + (k - LIST[-1]))):\n x = (LIST[0] + (k - LIST[-1]))\n\n sum_list = sum(min_LIST) - x\n\n print(sum_list)\nif __name__ == \"__main__\":\n main()\n\n\n\n\n", "jacc_sim": 0.95, "before_after_length": [215, 238], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": " x = 0\nxmin_LIST[i]m(LIST[n_LIST[i]):\n x = min_LIST[i]\n\n if(N != 2):\n min_LIST.append(LIST[0](k - LIST[- - LIST[i]: x = (LIST[f(x <= (LIST[0](k - LIST[- - LIST[i])): x = (LIST[0] + (k - LIST[-1]))\n\n sum_list = sum(min_LIST) - x\n\nx)\n\n print(min_LIST)\n\n min_LIST.append(LIST[0] + (k - LIST[-1]))\n if(x <= (LIST[0] + (k - LIST[-1]))):\n x = (LIST[0] + (k - LIST[-1]))\n\n = sum(min_LIST) - x\n\n print(sum_list\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u684267998", "n_user": "u684267998", "pos": "K,N = map(int,input().split())\nA = list(map(int,input().split()))\n\nS = [0]*(N)\n\nfor i in range(N):\n \n if i==N-1:\n S[i] = K + A[0] -A[i]\n else:\n S[i] = A[i+1] - A[i]\n\nSmax = S.index(max(S))\n\nans = sum(S)-S[Smax]\nprint(ans)", "neg": "K,N = map(int,input().split())\nA = list(map(int,input().split()))\n\nS =[A[0]]+ [0]*(N)\n\nfor i in range(N):\n if i==N-1:\n S[i+1] = K- A[i]\n else:\n S[i+1] = A[i+1] - A[i]\n\nSmax = S.index(max(S))\n\nans = sum(S)-S[Smax]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [127, 130], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "[A[0]]+ \n ] = K + A[0] -A[i]\n else:\n S[i] = A[i= K- A[i]\n else:\n S[i+1] = A[i+1] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u763383823", "n_user": "u763383823", "pos": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\nnew = []\nfor i in range(N-1):\n new.append(A[i+1]-A[i])\nnew.append(K + A[0] - A[-1])\nnew.sort()\nprint(sum(new[:-1]))", "neg": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\nnew = []\nfor i in range(N-1):\n new.append(A[i+1]-A[i])\nnew.append(K + A[0] - A[-1])\nnew.sort()\nprint(sum(new[:y-1]))", "jacc_sim": 0.9666666666666667, "before_after_length": [88, 89], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "y", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u731368968", "n_user": "u731368968", "pos": "K, N = map(int, input().split())\n\nA = list(map(int, input().split()))\n\na = [A[i + 1] - A[i] for i in range(N - 1)]\na.append(K + A[0] - A[-1])\n\na.sort()\nprint(sum(a[:-1]))\n", "neg": "K, N = map(int, input().split())\n\nA = list(map(int, input().split()))\nA.append(A[0])\n\na = [A[i + 1] - A[i] for i in range(N - 1)]\na.append(K + A[0] - A[-1])\n\na.sort()\nprint(sum(a[:-1]))\n", "jacc_sim": 1.0, "before_after_length": [85, 94], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": ")\nA.append(A[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u735091636", "n_user": "u735091636", "pos": "KN = input(\"\").split()\nA = input(\"\").split()\n\nK = int(KN[0])\nN = int(KN[1])\nA_0 = int(A[0])\nA_N = int(A[N-1])\nL = A_0\n\nfor j in range(N-1):\n A_i = int(A[j+1])\n A_m = int(A[j])\n if A_i - A_m > L:\n L = A_i - A_m\n\nif L > K - A_N + A_0:\n print(K-L)\nelse:\n print(A_N - A_0)\n", "neg": "\nKN = input(\"\").split()\nA = input(\"\").split()\n\nK = int(KN[0])\nN = int(KN[1])\nA_0 = int(A[0])\nA_N = int(A[N-1])\nL = A_0\n\nfor j in range(N-1):\n A_i = int(A[j+1])\n A_m = int(A[j])\n if A_i - A_m > L:\n L == A_i - A_m\n\nif L > K - A_N + A_0:\n print(K-L)\nelse:\n print(K - A_N + A_0)\n\n", "jacc_sim": 1.0, "before_after_length": [167, 171], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "\n=K - +-\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u578647703", "n_user": "u578647703", "pos": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\nresult = 0\nmx = -float(\"inf\")\nfor i in range(N-1):\n mx = max(mx, A[i+1] - A[i])\nmx = max(mx, K - A[-1] + A[0])\n\nresult = K - mx\nprint(result)", "neg": "K, N = map(int, input().split())\nA = list(map(int, input().split()))\nresult = 0\nmx = -float(\"inf\")\nfor i in range(N-1):\n mx = max(mx, A[i+1] - A[i])\nmx = max(mx, K - A[-1])\n\nresult = K - mx\nprint(result)", "jacc_sim": 1.0, "before_after_length": [97, 92], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": " + A[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u028014940", "n_user": "u028014940", "pos": "\nK, N = map(int, input().split())\nA = list(map(int, input().split()))\nlst = []\nfor i in range(1, N-1):\n diff_1 = abs(A[i + 1] - A[i])\n lst.append(diff_1)\n diff_2 = abs(A[i] - A[i - 1])\n lst.append(diff_2)\n\nlst.append\nlst.append(K + A[0] - A[N-1])\nprint(K - max(lst))", "neg": "\nK, N = map(int, input().split())\nA = list(map(int, input().split()))\nlst = []\nfor i in range(1, N-1):\n diff_1 = abs(A[i + 1] - A[i])\n lst.append(diff_1)\n diff_2 = abs(A[i] - A[i - 1])\n lst.append(diff_2)\n\nlst.append(K + A[0] - A[N-1])\nprint(lst)\nprint(K - max(lst))", "jacc_sim": 1.0, "before_after_length": [133, 134], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "\nlst.appendlst)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u275577311", "n_user": "u275577311", "pos": "KN = list(map(int, input().split()))\ndis = list(map(int, input().split()))\nlists = []\nfor i in range(KN[1]-1):\n lists.append(dis[i+1]-dis[i])\n\nlists.append(KN[0]+dis[0]-dis[KN[1]-1])\nprint(KN[0]-max(lists))", "neg": "KN = list(map(int, input().split()))\ndis = list(map(int, input().split()))\nlists = []\nfor i in range(KN[1]-1):\n lists.append(dis[i+1]-dis[i])\n\nlists.append(KN[0]+dis[0]-dis[KN[1]-1])\nprint(lists)\nprint(KN[0]-max(lists))", "jacc_sim": 1.0, "before_after_length": [102, 107], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "lists)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u595856802", "n_user": "u595856802", "pos": "k, n = map(int, input().split())\nA = list(map(int, input().split()))\nmaximum = 0\nfor i in range(n):\n x = A[i] - A[i-1]\n if i == 0:\n x += k\n if x > maximum:\n maximum = x\nprint(k - maximum)\n", "neg": "k, n = map(int, input().split())\nA = list(map(int, input().split()))\nA[-1] -= k\nmaximum = 0\nfor i in range(n):\n x = A[i] - A[i-1]\n if x > maximum:\n maximum = x\nprint(k - maximum)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [85, 80], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "maximum = 0\nfor i in range(n):\n x = i] - A[i\n if i == 0:\n x += k\n if x > maximum:\n maximum = x\nprint(k=k\n = 0\nfor i in range(n: x = A[i] - A[i-1]\n if x > maximum:\n maximum = x\nprint(k - maximum)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u414050834", "n_user": "u414050834", "pos": "k,n=map(int,input().split())\na=list(map(int,input().split()))\nt=0\nfor i in range(1,n):\n t=max(t,a[i]-a[i-1])\ns=max(t,k-a[n-1]+a[0])\nprint(k-s)\n", "neg": "k,n=map(int,input().split())\na=list(map(int,input().split()))\nt=0\nfor i in range(1,n):\n t=max(t,a[i]-a[0])\nprint(k-t)", "jacc_sim": 0.9285714285714286, "before_after_length": [86, 64], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "i-1])\ns=max(t,k-a[n-1]+a[ts\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u599925824", "n_user": "u599925824", "pos": "def check(a):\n if a < 0:\n return a * -1\n else:\n return a\n\ndef main():\n K, N = map(int, input().split())\n As = list(map(int, input().split()))\n r = []\n r.append(K-As[-1]+As[0])\n for x in range(N-1, -1, -1):\n solve = As[x] - As[x-1]\n r.append(check(solve))\n ans = sorted(r)\n ans.remove(ans[-1])\n print(K-ans[-1])\n\nif __name__ == \"__main__\":\n main()", "neg": "def check(a):\n if a < 0:\n return a * -1\n else:\n return a\n\ndef main():\n K, N = map(int, input().split())\n As = list(map(int, input().split()))\n r = []\n for x in range(N-1, -1, -1):\n if As[x] == 0:\n r.append(check(K - As[x-1]))\n continue\n elif As[x-1] == 0:\n r.append(check(As[x]))\n continue\n solve = As[x] - As[x-1]\n r.append(check(solve))\n ans = sorted(r)\n print(K-ans)\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9111111111111111, "before_after_length": [167, 195], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "r.append(K-As[-1]+As[0])\n ifsolve =-==0:As[x-1] solve))\n ans = sorted(r)\n ans.remove(ans[-1])\n print( As[x-1]))\n continue\n elif As[x-1] == 0:\n r.pped(check(Ax]))\n continue\n solve = As[x] As[x-\n r.append(check(solve))\n ans = sorted(r)\n print(K-ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u208120643", "n_user": "u208120643", "pos": "\"\"\"Boot-camp-for-Beginners_Easy012_C_Next-Prime_30-August-2020.py\"\"\"\nimport numpy as np\n\nK, N = map(int, input().split())\nA = list(map(int, input().split()))\n\ntheta = []\nfor i in range(len(A)):\n if i == len(A)-1:\n theta.append((K-A[i]+A[0]))\n else:\n theta.append((A[i+1]-A[i]))\n\n#print(\"sum\",sum(theta))\n\ntheta.remove(max(theta))\n#print(theta)\ns=0\nfor j in range(len(theta)):\n s+=theta[j]\n#print(s)\nl_min=s\nprint(l_min)", "neg": "\"\"\"Boot-camp-for-Beginners_Easy012_C_Next-Prime_30-August-2020.py\"\"\"\nimport numpy as np\n\nK, N = map(int, input().split())\nA = list(map(int, input().split()))\n\ntheta = []\nfor i in range(len(A)):\n if i == len(A)-1:\n theta.append(2*np.pi*(K-A[i]+A[0])/K)\n else:\n theta.append(2*np.pi*(A[i+1]-A[i])/K)\n\ntheta.remove(max(theta))\n#print(theta)\ns=0\nfor j in range(len(theta)):\n s+=theta[j]\n#print(s)\nl_min=(s*K)/(2*np.pi)\nprint(l_min)\n", "jacc_sim": 0.9056603773584906, "before_after_length": [200, 218], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "2*np.pi*/K2*np.pi*/K)\n\n#print(\"sum\",sum(theta)(*K)/(2*np.pi)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02725", "p_user": "u482157295", "n_user": "u482157295", "pos": "k,n = map(int,input().split())\nn_inf = list(map(int,input().split()))\n#n_inf.append(k)\n#n_inf.insert(0,0)\nkyori_list = [j for j in range(n-1)]\nfor i in range(n-1):\n kyori_list[i] = n_inf[i+1]-n_inf[i]\n#print(kyori_list)\nkyori_list.append((n_inf[0])+(k-n_inf[n-1]))\n#print(kyori_list)\nkyori_list.sort(reverse=1)\nprint(sum(kyori_list[1:n+1]))", "neg": "k,n = map(int,input().split())\nn_inf = list(map(int,input().split()))\nn_inf.append(k)\nn_inf.insert(0,0)\n#print(n_inf)\nkyori_list = [j for j in range(n+1)]\nfor i in range(n+1):\n kyori_list[i] = n_inf[i+1]-n_inf[i]\n#print(kyori_list)\nkyori_list.sort(reverse=1)\n#print(kyori_list)\nprint(sum(kyori_list[1:n+1]))", "jacc_sim": 1.0, "before_after_length": [182, 161], "nl": "You are given a circular pond with a perimeter of K meters and N houses around it. Each house is located at a specific distance from the northmost point of the pond, measured clockwise around the pond. You can only travel around the pond when moving between houses. Find the minimum distance that needs to be traveled when starting at one of the houses and visiting all N houses. Constraints: 2 \u2264 K \u2264 10^6, 2 \u2264 N \u2264 2 \u00d7 10^5, 0 \u2264 A1 < ... < AN < K. Input is given as K N followed by the distances of the N houses. Output the minimum distance needed to travel.", "diff_info": "##kyori_list = [j for j in range(n-1)]\nfor i in range(n-1):\n kyori_list[i] = n_inf[i+1]-n_inf[i]\nn_inf)\n)\nky = [j f j n r_list.ngpp(d((n_inf[0])1)]\nfor i in rangen+1):\n yori_list[i] = n_inf[i+1]in-1)))\n#print(kyori_list", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u311488536", "n_user": "u311488536", "pos": "import math\nN = int(input())\nK = list(map(int,input().split()))\nhashmap = {}\nfor k in K:\n if k not in hashmap:\n hashmap[k] = 0\n hashmap[k]+=1\ntotal = 0\nfor v in hashmap.values():\n if v>=2:\n \ttotal+=math.factorial(v) // (math.factorial(v - 2) * 2)\n\nfor k in K:\n print(total-(hashmap[k]-1))", "neg": "import math\nN = int(input())\nK = list(map(int,input().split()))\nhashmap = {}\nfor k in K:\n if k not in hashmap:\n hashmap[k] = 0\n hashmap[k]+=1\ntotal = 0\nfor v in hashmap.values():\n total+=math.factorial(v) // (math.factorial(v - 2) * 2)\n\nfor k in K:\n print(total-(hashmap[k]-1))", "jacc_sim": 0.9736842105263158, "before_after_length": [131, 122], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "if v>=2:\n \t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u830881690", "n_user": "u830881690", "pos": "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n B[i] += 1\nsum_original = sum([j*(j-1)//2 for j in B])\nfor k in range(N):\n print(sum_original - B[A[k]] + 1)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n B[i] += 1\nsum_original = sum(j*(j-1)//2 for j in B)\nfor k in range(N):\n print(sum_original - (B[A[k]]+1)\n", "jacc_sim": 1.0, "before_after_length": [92, 94], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "[]( \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u180528413", "n_user": "u180528413", "pos": "from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\na_ = set(a)\nx = Counter(a)\ny = {i:x[i]*(x[i]-1)//2 for i in a_}\n\nres = sum(y.values())\nfor i in a:\n t = x[i]\n t_ = y[i]\n print(res-t_+(t-1)*(t-2)//2)", "neg": "from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\na_ = set(a)\nx = Counter(a)\ny = []\nfor i in a_:\n t = x[i]\n y.append(t*(t-1)//2)\nres = sum(y)\nfor i in a:\n t = x[i]\n t_ = y[i-1]\n print(res-t_+(t-1)*(t-2)//2)", "jacc_sim": 0.9024390243902439, "before_after_length": [122, 129], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "{i:xi\n*(x[i]-1)//2 :} t = x[i]res= sum(vpplusnd))\nfor i in a:\n = x[i]\n t_ = y[i]\n print(res-t_+(t-1)1)////\nres = sum(y)\nfor i in a:\n t = x[i]\n t_ = y[i-1]\n print(res-t_+(t-1)*(t-//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u394244719", "n_user": "u394244719", "pos": "import sys\n\n\ninint = lambda: int(sys.stdin.readline())\ninintm = lambda: map(int, sys.stdin.readline().split())\ninintl = lambda: list(inintm())\ninstr = lambda: sys.stdin.readline()\ninstrm = lambda: map(str, sys.stdin.readline().split())\ninstrl = lambda: list(instrm())\n\nn = inint()\nA = inintl()\n\nc = 0\ncnt = [0]*n\n\nfor i in range(n):\n A[i] -= 1\n\nfor i in range(n):\n cnt[A[i]] += 1\n\ndef combinations(n):\n return n*(n-1)//2\n\nfor i in range(n):\n c += combinations(cnt[i])\n\nfor i in range(n):\n ans = c\n ans -= combinations(cnt[A[i]])\n ans += combinations(cnt[A[i]]-1)\n print(ans)\n\n", "neg": "import sys\n\n\ninint = lambda: int(sys.stdin.readline())\ninintm = lambda: map(int, sys.stdin.readline().split())\ninintl = lambda: list(inintm())\ninstr = lambda: sys.stdin.readline()\ninstrm = lambda: map(str, sys.stdin.readline().split())\ninstrl = lambda: list(instrm())\n\nn = inint()\nA = inintl()\n\nc = 0\ncnt = [0]*n\n\nfor i in range(n):\n cnt[A[i]] += 1\n\ndef combinations(n):\n return n*(n-1)//2\n\nfor i in range(n):\n c += combinations(cnt[i])\n\nfor i in range(n):\n ans = c\n ans -= combinations(cnt[A[i]])\n ans += combinations(cnt[A[i]]-1)\n print(ans)\n\n", "jacc_sim": 1.0, "before_after_length": [247, 230], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "\n\nfor i in range(n):\n A[i] -= 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u840579553", "n_user": "u840579553", "pos": "from collections import defaultdict\nN = int(input())\nA = list(map(int, input().split()))\n\nd = defaultdict(int)\nfor i in range(N):\n d[A[i]] += 1\n# print(d)\nans = 0\nfor key in d:\n ans += d[key]*(d[key]-1)//2\n\nfor i in range(N):\n print(ans - (d[A[i]] - 1))\n", "neg": "from collections import defaultdict\nN = int(input())\nA = list(map(int, input().split()))\n\nd = defaultdict(int)\nfor i in range(N):\n d[A[i]] += 1\n# print(d)\nans = 0\nfor i in range(N):\n ans += d[A[i]]*(d[A[i]]-1)/2\n\nfor i in range(N):\n print(ans - (d[A[i]]- 1))\n", "jacc_sim": 0.9714285714285714, "before_after_length": [111, 117], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "ki in rang(N)y in dkeyA[i]keyA[i]/ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u694422786", "n_user": "u694422786", "pos": "import collections\nfrom collections import defaultdict\n\nn = int(input())\nl = list(map(int, input().split()))\n\ndict = defaultdict(int)\nfor i in l:\n dict[i]+=1\n\nans = 0\nfor v in dict.values():\n ans += int((v*(v-1)) // 2)\n\nfor k in l:\n print(ans - (dict[k] - 1))\n", "neg": "import collections\nfrom collections import defaultdict\n\nn = int(input())\nl = list(map(int, input().split()))\n\ndict = defaultdict(int)\nfor i in l:\n dict[i]+=1\nprint(dict)\n\nans = 0\nfor v in dict.values():\n ans += int((v*(v-1)) // 2)\n\nfor k in l:\n print(ans - (dict[k] - 1))\n", "jacc_sim": 1.0, "before_after_length": [101, 106], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "\nprint(dict)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u375681664", "n_user": "u375681664", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nnsum=0\nfor i in range(n):\n b[a[i]]+=1\nfor k in range(n+1):\n nsum+=max(b[k]*(b[k]-1)//2,0)\n\nfor j in range(n):\n print((nsum+1-b[a[j]]))\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nnsum=0\nfor i in range(n):\n b[a[i]]+=1\nfor k in range(n):\n nsum+=max(b[k]*(b[k]-1)//2,0)\n\n\nfor j in range(n):\n print((nsum+1-b[a[j]]))\n", "jacc_sim": 1.0, "before_after_length": [115, 110], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "(+1)+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u789199177", "n_user": "u789199177", "pos": "import math\nimport collections\n\nn = int(input())\na = list(map(int, input().split()))\nnum_list = []\nans_total = 0\n\nc = collections.Counter(a)\n\nfor d in c:\n if not c[d] == 1:\n ans_total += int(math.factorial(c[d])/(2*math.factorial(c[d]-2)))\n\nfor i in range(n):\n print(ans_total-c[a[i]]+1)", "neg": "import math\nimport collections\n\nn = int(input())\na = list(map(int, input().split()))\nnum_list = []\nans_total = 0\n\nc = collections.Counter(a)\n\nfor d in c:\n ans_total += int(math.factorial(c[d])/(2*math.factorial(c[d]-2)))\n\nfor i in range(n):\n print(ans_total-c[a[i]]+1)", "jacc_sim": 0.9473684210526315, "before_after_length": [126, 115], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "if not c[d] == 1:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u192042624", "n_user": "u192042624", "pos": "import math\n \ndef permutations_count(n, r):\n if r == 2:\n return int( (n*(n-1) ) / r )\n if r == 1:\n return n\n \n \nN = int(input())\nA = list(map(int,input().split()))\n \ndata = [0] * (N+1)\n \nfor i in range(N):\n data[A[i]] += 1\n \ntotal = 0\n \nfor i in range(N+1):\n if data[i] >= 2:\n total += permutations_count(data[i],2)\n \n \n \nfor i in range(N):\n if data[A[i]] - 1 > 0 :\n print( total - permutations_count(data[A[i]]-1,1) )\n else:\n print(total)\n\n", "neg": "import math\n \ndef permutations_count(n, r):\n if r == 2:\n return int( (n*(n-1) ) / r )\n if r == 1:\n return n\n \n \nN = int(input())\nA = list(map(int,input().split()))\n \ndata = [0] * (N+1)\n \nfor i in range(N):\n data[A[i]] += 1\n \ntotal = 0\n \nfor i in range(N+1):\n if data[i] >= 2:\n total += permutations_count(data[i],2)\n \n \n \nfor i in range(N):\n if data[A[i]] - 1 > 0 :\n print( total - permutations_count(data[A[i]]-1,1) )\n else:\n print(total)\n\nprint(permutations_count(3,1))", "jacc_sim": 0.975, "before_after_length": [208, 219], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "print(permutations_count(3,1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u517724953", "n_user": "u517724953", "pos": "n = int(input())\na = list(input().split())\n\na_dict = dict()\nfor x in a:\n if x not in a_dict:\n a_dict[x] = 1\n else:\n a_dict[x] += 1\n\nsum = 0\nfor k, v in a_dict.items():\n sum += v*(v-1)//2\n a_dict[k] = (v*(v-1)//2)-((v-1)*(v-2)//2)\n\nfor i in a:\n print(int(sum-a_dict[i]))\n", "neg": "n = int(input())\na = list(input().split())\n\na_dict = dict()\nfor x in a:\n if x not in a_dict:\n a_dict[x] = 1\n else:\n a_dict[x] += 1\n\nsum = 0\nfor k, v in a_dict.items():\n print(v)\n print((v-2)/v)\n sum += v*(v-1)//2\n a_dict[k] = (v*(v-1)//2)-((v-1)*(v-2)//2)\n\nfor i in a:\n print(int(sum-a_dict[i]))\n", "jacc_sim": 1.0, "before_after_length": [146, 162], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "print(v)\n print((v-2)/v)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u626217906", "n_user": "u626217906", "pos": "n = int(input())\na = list(map(int,input().split()))\n\na_2 = [0 for i in range(n)]\nfor i in range(n):\n a_2[a[i]-1] += 1\n\nal = [0 for i in range(n)]\nc = 0\nfor i in a_2:\n if i > 1:\n al[c] += i * (i-1) / 2\n c += 1\n\nsine = sum(al)\nfor i in range(n):\n f = a[i]\n t = a_2[f-1] - 1\n print(int(sine-(al[f-1]-t*(t-1)/2)))\n \n", "neg": "n = int(input())\na = list(map(int,input().split()))\n\na_2 = [0 for i in range(n)]\nfor i in range(n):\n a_2[a[i]-1] += 1\n\nal = [0 for i in range(n)]\nc = 0\nfor i in a_2:\n if i > 1:\n al[c] += i * (i-1) / 2\n c += 1\n\nfor i in range(n):\n f = a[i]\n t = a_2[f-1] - 1\n #print(int(sum(al)-(al[f-1]-t*(t-1)/2)))\n \n", "jacc_sim": 0.9459459459459459, "before_after_length": [178, 172], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "sfor i rang(n):\n f a[i]\n t = a_2[f-1] - 1\n #print(int(\nfor i in range(n):\n f = a[i]\n t = a_2[f-1] - 1\n print(int(sine", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u163501259", "n_user": "u163501259", "pos": "N = int(input())\nA = list(map(int, input().split()))\nCNT = [0]*(N+1)\n# IND = list(set(A))\n# CNT = [A.count(x) for x in IND]\nfor i in A:\n CNT[i] += 1\n# print(IND)\n# print(CNT)\n# CONB = [A.count(x)*(A.count(x)-1)//2 for x in IND]\nCONB = [CNT[x]*(CNT[x]-1)//2 for x in range(len(CNT))]\n# print(CONB)\nSUM = sum(CONB)\nfor i in A:\n ans = SUM - CNT[i] + 1\n print(ans)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nIND = list(set(A))\nCNT = [A.count(x) for x in IND]\n# print(IND)\n# print(CNT)\n# CONB = [A.count(x)*(A.count(x)-1)//2 for x in IND]\nCONB = [CNT[x]*(CNT[x]-1)//2 for x in range(len(CNT))]\n# print(CONB)\nSUM = sum(CONB)\nfor i in A:\n ans = SUM - CNT[i-1] + 1\n print(ans)", "jacc_sim": 0.9736842105263158, "before_after_length": [190, 162], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "CNT = [0]*(N+1)\n# # \nfor i in A:\n CNT[i] += 1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u157020659", "n_user": "u157020659", "pos": "from collections import Counter\n\nn = int(input())\na_li = list(map(int, input().split()))\n\nans_sum = 0\n\ncounter = Counter(a_li)\n\nfor i in counter.values():\n ans_sum += i*(i - 1) // 2\n\nfor a in a_li:\n count = counter[a]\n if count == 1:\n print(ans_sum)\n else:\n print(ans_sum - count*(count - 1) // 2 + (count - 1)*(count - 2) // 2)\n", "neg": "from collections import Counter\n\nn = int(input())\na_li = list(map(int, input().split()))\n\nans_sum = 0\n\ncounter = Counter(a_li)\nprint(counter)\n\nfor i in counter:\n ans_sum += i*(i - 1)//2\n\nfor a in a_li:\n count = counter[a]\n if count == 1:\n print(ans_sum)\n else:\n print(ans_sum - count*(count - 1) // 2 + (count - 1)*(count - 2) // 2)", "jacc_sim": 0.972972972972973, "before_after_length": [135, 137], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "print(counter)\n.values() \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u785578220", "n_user": "u785578220", "pos": "n = int(input())\nA = list(map(int,input().split()))\nfrom collections import Counter\n\nc = Counter(A)\n# print(c)\ncou = 0\nfor x in c:\n # print(x,c[x])\n if c[x]>1:\n y = c[x]\n cou+=y*(y-1)//2\n\n\n\nfor i in A:\n X = c[i]\n ans = cou - X*(X-1)//2 + (X-1)*(X-2)//2\n print(ans)\n", "neg": "n = int(input())\nA = list(map(int,input().split()))\nfrom collections import Counter\n\nc = Counter(A)\nprint(c)\ncou = 0\nfor x in c:\n if c[x]>1:\n y = c[x]\n cou+=y*(y-1)//2\n else:\n break\n\n\nfor i in A:\n X = c[i]\n ans = cou - X*(X-1)//2 + (X-1)*(X-2)//2\n print(ans)\n", "jacc_sim": 0.926829268292683, "before_after_length": [145, 139], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "# \n # print(x,c[x]) else:\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u657901243", "n_user": "u657901243", "pos": "N = int(input())\nA = list(map(int, input().split()))\ncnt = [0 for _ in range(N)]\nfor i in range(N):\n cnt[A[i]-1] += 1\nS = 0\nfor i in range(N):\n S += cnt[i]*(cnt[i]-1)/2\nfor i in range(N):\n if cnt[A[i]-1] == 1:\n print(int(S))\n else:\n print(int(S+(3-2*cnt[A[i]-1])/2))\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\ncnt = [0 for _ in range(N)]\nfor i in range(N):\n cnt[A[i]-1] += 1\nS = 0\nfor i in range(N):\n S += cnt[i]*(cnt[i]-1)/2\nfor i in range(N):\n if cnt[A[i]] == 1:\n print(S)\n else:\n print(int(S+(3-2*cnt[A[i]-1])/2))\n", "jacc_sim": 1.0, "before_after_length": [143, 138], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "-] == ]:\n==1:\n int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u152554456", "n_user": "u152554456", "pos": "n = int(input())\na_list = list(map(int, input().split()))\n\nimport collections\ncount_dic = collections.Counter(a_list)\n\ncount_dic_new = {}\nfor key, value in count_dic.items():\n if value == 1:\n count_dic_new[key] = 0\n elif value == 2:\n count_dic_new[key] = 1\n else: \n count_dic_new[key] = (value * (value - 1)) // 2\n\nfund_values = sum(list(count_dic_new.values()))\n\nfor a in a_list:\n if count_dic[a] == 1:\n a_value = fund_values\n elif count_dic[a] == 2:\n a_value = fund_values - 1\n else:\n n = count_dic[a]\n a_value = fund_values + (((n-1) * (n-2)) // 2) - (((n) * (n-1)) // 2) \n\n print(a_value)\n", "neg": "n = int(input())\na_list = list(map(int, input().split()))\n\nimport collections\ncount_dic = collections.Counter(a_list)\n\ncount_dic_new = {}\nfor key, value in count_dic.items():\n if value == 1:\n count_dic_new[key] = 0\n elif value == 2:\n count_dic_new[key] = 1\n else: \n count_dic_new[key] = (value * (value - 1)) // 2\n\nfund_values = sum(list(count_dic_new.values()))\n\nfor a in a_list:\n if count_dic[a] == 1:\n a_value = fund_values\n elif count_dic[a] == 2:\n a_value = fund_values - 1\n else:\n n = count_dic[a]\n a_value = fund_values + (n-1)\n\n print(a_value)\n", "jacc_sim": 1.0, "before_after_length": [262, 238], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "(( * (n-2)) // 2) - (((n) * (n-1)) // 2) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u283605799", "n_user": "u283605799", "pos": "from collections import Counter\n\nn = int(input())\na = list(map(int,input().split()))\n\n#table = set(a)\ncon = Counter(a)\ndic = {}\n#for i in table:\n# con[i] = a.count(i)\n# dic[i] = -1\n\nfor x in a:\n if x not in dic:\n ex = (con[x] - 1) * (con[x] - 2) / 2\n no = (con[x]) * (con[x] - 1) / 2\n dic[x] = (int(no), int(ex))\n\nsu = sum([int(x[0]) for x in dic.values()])\n\nfor i,x in enumerate(a):\n print(su - (dic[x][0] - dic[x][1]))\n", "neg": "from collections import Counter\n\nn = int(input())\na = list(map(int,input().split()))\n\ntable = set(a)\n\ncon = {}\ndic = {}\nans = []\n\ncon = Counter(a)\ndic = {}\n#for i in table:\n# con[i] = a.count(i)\n# dic[i] = -1\n\nfor x in a:\n if dic[x] == None:\n ex = (con[x] - 1) * (con[x] - 2) / 2\n no = (con[x]) * (con[x] - 1) / 2\n dic[x] = (int(no), int(ex))\n\nsu = sum([int(x[0]) for x in dic.values()])\n\nfor i,x in enumerate(a):\n print(su - (dic[x][0] - dic[x][1]))\n", "jacc_sim": 0.9375, "before_after_length": [203, 218], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "#\n = Counter(a)\ndicdic = {}\nans = []\n\ncon = Counter(a)\ndic = {}\ndic[]== Noeot in dic", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u217627525", "n_user": "u217627525", "pos": "def main():\n n=int(input())\n a=list(map(int,input().split()))\n cnt=[0]*n\n for i in range(n):\n cnt[a[i]-1]+=1\n res=0\n for i in range(n):\n if cnt[i]>1:\n res+=cnt[i]*(cnt[i]-1)//2\n ans=[0]*n\n for i in range(n):\n if cnt[i]>=1:\n ans[i]=res-(cnt[i]-1)\n for i in range(n):\n print(ans[a[i]-1])\n \nif __name__==\"__main__\":\n main()", "neg": "def main():\n n=int(input())\n a=list(map(int,input().split()))\n cnt=[0]*n\n for i in range(n):\n cnt[a[i]-1]+=1\n res=0\n for i in range(n):\n if cnt[i]>1:\n res+=cnt[i]*(cnt[i]-1)//2\n ans=[0]*n\n for i in range(n):\n if cnt[i]>=1:\n ans[i]=res-(cnt[i]-1)\n print(cnt)\n print(ans)\n for i in range(n):\n print(ans[a[i]-1])\n \nif __name__==\"__main__\":\n main()", "jacc_sim": 1.0, "before_after_length": [180, 192], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "for i in range(n):\n cnt)\n print(ans)\n for i in range(n):\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u075012704", "n_user": "u075012704", "pos": "from collections import defaultdict\nN = int(input())\nA = list(map(int, input().split()))\n\nD = defaultdict(int)\nfor a in A:\n D[a] += 1\n\nans_base = 0\nfor v in D.values():\n ans_base += v * (v - 1) // 2\n\nfor a in A:\n print(ans_base - (D[a] * (D[a] - 1) // 2) + ((D[a] - 1) * (D[a] - 2) // 2))\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n \nD = defaultdict(int)\nfor a in A:\n D[a] += 1\n \nans_base = 0\nfor v in D.values():\n ans_base += v * (v - 1) // 2\n \nfor a in A:\n print(ans_base - (D[a] * (D[a] - 1) // 2) + ((D[a] - 1) * (D[a] - 2) // 2))", "jacc_sim": 0.9117647058823529, "before_after_length": [131, 128], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "from collections import defaultdict\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u626337957", "n_user": "u626337957", "pos": "N = int(input())\nnums = list(map(int, input().split()))\ncounts = [0 for _ in range(N+1)]\nfor num in nums:\n counts[num] += 1\ncombination = 0\nfor count in counts:\n if count >= 2:\n combination += (count*(count-1))//2\nfor num in nums:\n print(combination-counts[num]+1)\n", "neg": "N = int(input())\nnums = list(map(int, input().split()))\ncounts = [0 for _ in range(N+1)]\nfor num in nums:\n counts[num] += 1\ncombination = 0\nfor count in counts:\n if count >= 2\n combination += (count*(count-1))//2\nfor i in range(1, N+1):\n print(combination-counts[i]+1)\n", "jacc_sim": 0.9705882352941176, "before_after_length": [99, 104], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": ":i iumirage(1,N+1)numsinum", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u954153335", "n_user": "u954153335", "pos": "import math\nimport collections\ndef calc_combi2(n):\n if n<=1:\n return 0\n return math.factorial(n)/(math.factorial(n-2)*math.factorial(2))\nn=int(input())\ndata=list(map(int,input().split()))\ndata_cnt=collections.Counter(data)\ncount=0\nfor i in data_cnt.values():\n count+=calc_combi2(i)\nfor i in data:\n ans=count-data_cnt[i]+1\n print(int(ans))", "neg": "import math\nimport collections\ndef calc_combi2(n):\n if n<=1:\n return 0\n return math.factorial(n)/(math.factorial(n-2)*math.factorial(2))\nn=int(input())\ndata=list(map(int,input().split()))\ndata_cnt=collections.Counter(data)\ncount=0\nfor i in data_cnt.values():\n if 2<=i:\n count+=calc_combi2(i)\nfor i in data:\n if i<=1:\n print(count)\n else:\n ans=count+(calc_combi2(data_cnt[i]-1)-calc_combi2(data_cnt[i]))\n print(int(ans))", "jacc_sim": 0.975609756097561, "before_after_length": [140, 187], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "count+=calc_combf (<=)\nfor i in dataa cous=coun-data_cnt[i]=calc_combi2(i)\nfor i in data:\n if i<=: count)\n else:\n ans=count+(calc_comb2(data_c[i]-1)-calc_combi2dta_ct[i]))\n print(int(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u072717685", "n_user": "u072717685", "pos": "import sys\ninput = sys.stdin.readline\n\nfrom math import factorial\nfrom itertools import combinations\nfrom collections import Counter\nfrom copy import deepcopy\nfrom operator import mul\nfrom functools import reduce\n\ndef cmb(n,r):\n r = min(n-r,r)\n if r == 0: return 1\n over = reduce(mul, range(n, n - r, -1))\n under = reduce(mul, range(1,r + 1))\n return over // under\n\ndef main():\n n = int(input())\n a = list(map(int, input().split()))\n a_c = Counter(a)\n a_c_sum = 0\n for c in a_c:\n if a_c[c] >= 2:\n a_c_sum += cmb(a_c[c], 2)\n\n for ea in a:\n if a_c[ea] <= 1:\n sa = 0\n elif a_c[ea] == 2:\n sa = 1\n else:\n sa = cmb(a_c[ea], 2) - cmb(a_c[ea] - 1, 2)\n print(a_c_sum - sa)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\ninput = sys.stdin.readline\n\nfrom math import factorial\nfrom itertools import combinations\nfrom collections import Counter\nfrom copy import deepcopy\nfrom operator import mul\nfrom functools import reduce\n\ndef cmb(n,r):\n r = min(n-r,r)\n if r == 0: return 1\n over = reduce(mul, range(n, n - r, -1))\n under = reduce(mul, range(1,r + 1))\n return over // under\n\ndef main():\n n = int(input())\n a = list(map(int, input().split()))\n a_c = Counter(a)\n a_c_sum = 0\n for c in a_c:\n a_c_sum += cmb(a_c[c], 2)\n\n for ea in a:\n if a_c[ea] <= 1:\n sa = 0\n elif a_c[ea] == 2:\n sa = 1\n else:\n sa = cmb(a_c[ea], 2) - cmb(a_c[ea] - 1, 2)\n print(a_c_sum - sa)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9841269841269841, "before_after_length": [307, 295], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "if a_c[c] >= 2:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u228232845", "n_user": "u228232845", "pos": "import collections\nn = int(input())\n*a, = map(int, input().split())\ncounter = collections.Counter(a)\nd = {key: (value * (value - 1)) // 2 for key, value in counter.items()}\n#print(d)\nall_sum = sum(d.values())\n#print(all_sum)\n\nsum_d = {}\nfor k in range(n):\n if a[k] not in sum_d:\n if d[a[k]] > 0:\n tmp = ((counter[a[k]] - 1) * (counter[a[k]] - 2)) // 2\n sum_d[a[k]] = all_sum - d[a[k]] + tmp\n print(sum_d[a[k]])\n else:\n print(all_sum)\n else:\n print(sum_d[a[k]])", "neg": "import collections\nn = int(input())\n*a, = map(int, input().split())\ncounter = collections.Counter(a)\nd = {}\nfor key, value in counter.items():\n d[key] = (value * (value - 1)) // 2\n\nsum_d = {}\nfor k in range(n):\n if a[k] not in sum_d:\n if d[a[k]] > 0: tmp = ((counter[a[k]] - 1) * (counter[a[k]] - 2)) // 2\n sum_d[a[k]] = sum(d.values()) - d[a[k]] + tmp\n print(sum_d[a[k]])\n else:\n print(sum_d[a[k]])", "jacc_sim": 0.9565217391304348, "before_after_length": [214, 184], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "}\nkey: (value * (value - 1)) // 2 }\n#print(d)\nall_sum = sum(d.values())\n#print(all_sum)\n\nsum_d = {}\nfor k in range(n)ifd[key]= (vl[k] not in sm_d:\n if d[a[k]] > 0:\n tmp = ((countr[a[k]] - 1)covalntr[a[k]]12\nsum_d={}\nforkinr sum_d[[k]] = all_sum - d[a[k]] + tmp\n pritgensum_d[a[k]]\n elseifa[k]notinsum print(alldsum)\n elseif d[a[k]] > 0: tm = ((counte[a[k]] - 1) * (counter[a[k]] - 2)) // 2\n sum_d[a[k]] = sum(d.values()) - d[a[k]] + tmp\n pr\n else:\n print(sum_d[a[k]])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u798675549", "n_user": "u798675549", "pos": "def com(n):\n return n*(n-1)//2\nans=0\nn=int(input())\na=list(map(int,input().split()))\ncoun=[0]*(n+1)\nfor i in range(n):\n coun[a[i]]+=1\nfor i in range(n+1):\n ans+=com(coun[i])\nfor i in range(n):\n m=com(coun[a[i]]-1)\n o=com(coun[a[i]])\n print(ans-o+m)", "neg": "def com(n):\n return n*(n-1)//2\nans=0\nn=int(input())\na=list(map(int,input().split()))\ncoun=[0]*n\nfor i in range(n):\n coun[a[i]]+=1\nfoi i in range(n):\n ans+=com(coun[i])\nfor i in range(n):\n m=com(coun[a[i]]-1)\n o=com(coun[a[i]])\n print(ans-o+m)\n ", "jacc_sim": 0.9714285714285714, "before_after_length": [142, 139], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "(+1)ir+1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u922449550", "n_user": "u922449550", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nans = 0\nfor a in d:\n n = d[a]\n ans += n * (n-1) // 2\n\nfor a in A:\n n = d[a]\n if n >= 2:\n print(ans - n + 1)\n else:\n print(ans)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nans = 0\nfor a in d:\n n = d[a]\n ans += n * (n-1) // 2\n\nprint(ans)\nfor a in A:\n n = d[a]\n if n >= 2:\n print(ans - n + 1)\n else:\n print(ans)", "jacc_sim": 1.0, "before_after_length": [133, 137], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "print(ans)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u452512115", "n_user": "u452512115", "pos": "def choose2(n):\n return n * (n - 1) // 2\n\na = int(input())\nA = list(map(int, input().split())) \nd = {}\nfor k in A:\n if k in d:\n d[k] += 1\n else:\n d[k] = 1\n \nres = 0\nfor k in d.values():\n res += choose2(k)\n\nfor k in A:\n temp = res\n m = d[k]\n temp -= choose2(m)\n\n d[k] -= 1\n temp += choose2(d[k])\n print(temp)\n d[k] += 1\n", "neg": "def choose2(n):\n return n * (n - 1) // 2\n\na = int(input())\nA = list(map(int, input().split())) \nd = {}\nfor k in A:\n if k in d:\n d[k] += 1\n else:\n d[k] = 1\n \nres = 0\nfor k in d.values():\n res += choose2(k, 2)\n\nfor k in A:\n temp = res\n m = d[k]\n temp -= choose2(m, 2, mod)\n\n d[k] -= 1\n temp += choose2(d[k], 2, mod)\n print(temp)\n d[k] += 1\n", "jacc_sim": 0.975, "before_after_length": [165, 175], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": ", 2, 2, mod, 2, mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u059940903", "n_user": "u059940903", "pos": "from copy import deepcopy\ndp = {0: 0}\n\nN = int(input())\nA = list(map(int, input().split()))\n\nballs = {}\nfact = 1\nfor (i, a) in enumerate(A):\n count = i+1\n dp[count] = count * (count-1) // 2\n if a in balls:\n balls[a] += 1\n else:\n balls[a] = 1\n\nres = 0\nfor count in balls.values():\n res += dp[count]\n\nfor a in A:\n print(res - dp[balls[a]] + dp[balls[a]-1])", "neg": "from copy import deepcopy\ndp = {}\n\nN = int(input())\nA = list(map(int, input().split()))\n\nballs = {}\nfact = 1\nfor (i, a) in enumerate(A):\n count = i+1\n dp[count] = count * (count-1) // 2\n if a in balls:\n balls[a] += 1\n else:\n balls[a] = 1\n\nres = 0\nfor count in balls.values():\n res += dp[count]\n\nfor a in A:\n print(res - dp[balls[a]] + dp[balls[a]-1])", "jacc_sim": 1.0, "before_after_length": [162, 158], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": " = {0: 0}\n\nN = int(input())\nA = list(map(int, input().split()))\n\nballs\nN = int(input())\nA = list(map(int, input().split()))\n\nballs = {}\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u085772923", "n_user": "u085772923", "pos": "from math import factorial\n\nn = int(input())\nA = list(map(int,input().split()))\ndict = {}\n\nfor i,a in enumerate(A):\n if a in dict:\n dict[a].append(i)\n else:\n dict[a]=[i]\n\nans = 0 \n \nfor k,v in dict.items():\n if len(v) >= 2:\n ans += len(v) * (len(v)-1) //2\n#print(ans)\n\n \nfor i in range(n):\n wnum = A[i]\n l=dict[wnum]\n# print('l',l)\n if 2 < len(dict[wnum]):\n# print(ans)\n# print('x',(len(v)-1) * (len(v)-2) // 2 )\n# print('y',len(v) * (len(v)-1) // 2 )\n print(int(ans -(len(l) * (len(l)-1) //2) + (len(l)-1) * (len(l)-2) //2))\n elif 2 == len(dict[wnum]):\n print(int(ans - 1))\n else:\n print(int(ans))", "neg": "from math import factorial\n\nn = int(input())\nA = list(map(int,input().split()))\nprint(len(A))\ndict = {}\n\nfor i,a in enumerate(A):\n if a in dict:\n dict[a].append(i)\n else:\n dict[a]=[i]\n\nans = 0 \n \nfor k,v in dict.items():\n if len(v) >= 2:\n ans += len(v) * (len(v)-1) //2\n\n \nfor i in range(n):\n wnum = A[i]\n l=dict[wnum]\n if 2 < len(dict[wnum]):\n print(int(ans -(len(v) * (len(v)-1) //2) + len(v) * (len(v)-1) //2))\n elif 2 == len(dict[wnum]):\n print(int(ans - 1))\n else:\n print(int(ans))", "jacc_sim": 0.9245283018867925, "before_after_length": [307, 242], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "))\nprint(len(A#print(ans)\n# print('l',l)\n#int()\n#-(le prit'x',(len()-12) // 2 )\n# print('y',len(v) * (len(v)- 2 )\n print(int(ans -(len(l) * (len(l)-1) //lenvlen(l)-1vl12", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u124498235", "n_user": "u124498235", "pos": "import collections\nMOD = 10**18+9\nn = int(input())\na = list(map(int, input().split()))\nb = [[0 for j in range(2)] for i in range(n)]\nc = collections.Counter(a)\ns = 0\ndef nCr(nn, r, mod):\n\tr = min(r, nn-r)\n\tnumer = denom = 1\n\tfor i in range(1, r+1):\n\t\tnumer = numer * (nn+1-i) % mod\n\t\tdenom = denom * i % mod\n\treturn numer * pow(denom, mod-2, mod) % mod\nfor i in c:\n\tif c[i] < 2:\n\t\tb[i-1][0] = 0\n\telse:\n\t\tb[i-1][0] = nCr(c[i],2,MOD)\n\t\ts += b[i-1][0]\n\tif c[i]-1 < 2:\n\t\tb[i-1][1] = 0\n\telse:\n\t\tb[i-1][1] = nCr(c[i]-1,2,MOD)\nfor i in a:\n\tans = s-b[i-1][0] + b[i-1][1]\n\tprint (ans)", "neg": "import collections\nMOD = 10**15+7\nn = int(input())\na = list(map(int, input().split()))\nb = [[0 for j in range(2)] for i in range(n)]\nc = collections.Counter(a)\ns = 0\ndef nCr(nn, r, mod):\n\tr = min(r, nn-r)\n\tnumer = denom = 1\n\tfor i in range(1, r+1):\n\t\tnumer = numer * (nn+1-i) % mod\n\t\tdenom = denom * i % mod\n\treturn numer * pow(denom, mod-2, mod) % mod\nfor i in c:\n\tif c[i] < 2:\n\t\tb[i-1][0] = 0\n\telse:\n\t\tb[i-1][0] = nCr(c[i],2,MOD)\n\t\ts += b[i-1][0]\n\tif c[i]-1 < 2:\n\t\tb[i-1][1] = 0\n\telse:\n\t\tb[i-1][1] = nCr(c[i]-1,2,MOD)\nfor i in a:\n\tans = s-b[i-1][0] + b[i-1][1]\n\tprint (ans)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [312, 313], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "5879\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02732", "p_user": "u602773379", "n_user": "u602773379", "pos": "from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\n\ndef ch_2(n):\n\t# print(n)\n\treturn n*(n-1)/2\n\ncount=Counter(A)\n\nans=0\nfor i in count.values():\n\tans+=ch_2(i)\n\nfor j in range(N):\n\tttl=ans\n\tttl-=ch_2(count[A[j]])\n\tttl+=ch_2(count[A[j]]-1)\n\tprint(int(ttl))\n\n\n\n\n\n", "neg": "from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\n\ndef ch_2(n):\n\treturn n*(n-1)/2\n\ncount=Counter(A)\nans=0\nfor i in range(len(count)):\n\tans+=ch_2(count[i])\nfor j in range(N):\n\tprint(ans-ch_2(count[A[j]]-1))\n\n\n\n\n\n", "jacc_sim": 0.9047619047619048, "before_after_length": [145, 113], "nl": "You are given N balls, each labeled with an integer Ai. For each k from 1 to N, find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball, such that the integers written on them are equal. Constraints: 3 \u2264 N \u2264 2 \u00d7 10^5, 1 \u2264 Ai \u2264 N. Input is given as N followed by A1, A2, ..., AN. For each k from 1 to N, print the answer. Example: Input: 5, 1 1 2 1 2. Output: 2 2 3 2 3.", "diff_info": "\n\t# print(n)\ncount.values():\n\tans+=ch_2(i)\n\nfor j in Nlen(count)ttl=\n\tttl-=ch_2(count[A[j]])\n\tttlch_2(count[i])\nfor j in range(N):\n\tprint(ans-)\tprint(int(ttl))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u619631862", "n_user": "u619631862", "pos": "def i1():\n return int(input())\ndef i2():\n return [int(i) for i in input().split()]\n[n,p]=i2()\ns=input()\n\n \nif p==2 or p==5:\n x1=0\n for i in range(n):\n if int(s[i])%p==0:\n x1+=i+1 \n print(x1)\nelse:\n t=0\n x2=0\n d={0:1}\n a=1\n for i in range(n)[::-1]:\n t+=int(s[i])*a\n t%=p\n a*=10\n a%=p\n if t in d:\n x2+=d[t]\n d[t]+=1\n else:\n d[t]=1\n print(x2)", "neg": "def i1():\n return int(input())\ndef i2():\n return [int(i) for i in input().split()]\n[n,p]=i2()\ns=input()\n\n \nif p==2 or p==5:\n x1=0\n for i in range(n):\n if int(s[i])%p==0:\n x1+=i+1 \n print(x1)\nelse:\n t=0\n x2=0\n d={0:1}\n a=1\n for i in range(n)[::-1]:\n t+=int(s[i])*a\n t%=p\n a*=10\n a%=10\n if t in d:\n x2+=d[t]\n d[t]+=1\n else:\n d[t]=1\n print(x2)", "jacc_sim": 1.0, "before_after_length": [218, 218], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "p10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u499381410", "n_user": "u499381410", "pos": "from collections import defaultdict, deque, Counter\nfrom heapq import heappush, heappop, heapify\nimport math\nimport bisect\nimport random\nfrom itertools import permutations, accumulate, combinations, product\nimport sys\nimport string\nfrom bisect import bisect_left, bisect_right\nfrom math import factorial, ceil, floor\nfrom operator import mul\nfrom functools import reduce\nimport pprint\nsys.setrecursionlimit(10 ** 9)\n\n\nINF = 10 ** 20\ndef LI(): return list(map(int, sys.stdin.buffer.readline().split()))\ndef I(): return int(sys.stdin.buffer.readline())\ndef LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split()\ndef S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8')\ndef IR(n): return [I() for i in range(n)]\ndef LIR(n): return [LI() for i in range(n)]\ndef SR(n): return [S() for i in range(n)]\ndef LSR(n): return [LS() for i in range(n)]\ndef SRL(n): return [list(S()) for i in range(n)]\ndef MSRL(n): return [[int(j) for j in list(S())] for i in range(n)]\nmod = 1000000007\n\n\nn, p = LI()\nD = defaultdict(int)\nD[0] += 1\ns = S()\nans = 0\nrem = 0\nif p == 2 or p == 5:\n for i in range(n - 1, -1, -1):\n if int(s[i]) % p == 0:\n ans += i + 1\n print(ans)\n exit()\n\n\nk = 1\nfor i in range(n - 1, -1, -1):\n d = int(s[i])\n rem = (k * d + rem) % p\n k = k * 10 % p\n ans += D[rem]\n D[rem] += 1\n\n\nprint(ans)\n", "neg": "from collections import defaultdict, deque, Counter\nfrom heapq import heappush, heappop, heapify\nimport math\nimport bisect\nimport random\nfrom itertools import permutations, accumulate, combinations, product\nimport sys\nimport string\nfrom bisect import bisect_left, bisect_right\nfrom math import factorial, ceil, floor\nfrom operator import mul\nfrom functools import reduce\nimport pprint\nsys.setrecursionlimit(10 ** 9)\n\n\nINF = 10 ** 20\ndef LI(): return list(map(int, sys.stdin.buffer.readline().split()))\ndef I(): return int(sys.stdin.buffer.readline())\ndef LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split()\ndef S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8')\ndef IR(n): return [I() for i in range(n)]\ndef LIR(n): return [LI() for i in range(n)]\ndef SR(n): return [S() for i in range(n)]\ndef LSR(n): return [LS() for i in range(n)]\ndef SRL(n): return [list(S()) for i in range(n)]\ndef MSRL(n): return [[int(j) for j in list(S())] for i in range(n)]\nmod = 1000000007\n\n\nn, p = LI()\nD = defaultdict(int)\nD[0] += 1\ns = S()\nans = 0\nrem = 0\nif p == 2 or 5:\n for i in range(n - 1, -1, -1):\n if int(s[i]) % p == 0:\n ans += i + 1\n print(ans)\n exit()\n\nk = 1\nfor i in range(n - 1, -1, -1):\n d = int(s[i])\n rem = (k * d + rem) % p\n k = k * 10 % p\n ans += D[rem]\n D[rem] += 1\n\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [486, 483], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "p == \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u906501980", "n_user": "u906501980", "pos": "def main():\n n, p = map(int, input().split())\n s = input()\n mu = [None]*n\n ans = 0\n c = [0]*p\n if 10%p == 0:\n ss = map(int, s)\n ss = list(ss)\n for i in range(n):\n if ss[i]%p == 0:\n ans += i+1\n print(ans)\n return\n sr = s[::-1]\n ssr = map(int, sr)\n tens = 1\n v = 0\n for i, si in enumerate(ssr):\n v = (v + (si%p)*tens)%p\n mu[i] = v\n c[v] += 1\n tens *= 10\n tens %= p\n c[0] += 1\n for i in c:\n if i:\n ans += ((i-1)*i)//2\n \n print(ans)\n \n\nif __name__ == \"__main__\":\n main()", "neg": "def main():\n n, p = map(int, input().split())\n s = input()\n mu = [None]*n\n ans = 0\n c = [0]*p\n if 10%p == 0:\n ss = map(int, s)\n ss = list(ss)\n for i in range(n):\n if ss[i]%p == 0:\n ans += i+1\n print(ans)\n return\n sr = s[::-1]\n ssr = map(int, sr)\n v = 0\n for i, si in enumerate(ssr):\n v = (v + si%p)%p\n mu[i] = v\n c[v] += 1\n c[0] += 1\n for i in c:\n if i:\n ans += ((i-1)*i)//2\n \n print(ans)\n \n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9791666666666666, "before_after_length": [255, 233], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "tens = 1\n ()*tens tens *= 10\n tens %= p\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u195054737", "n_user": "u195054737", "pos": "n, p = map(int, input().split())\ns = input()\n\nans = 0\nif p in (2, 5):\n for i, j in enumerate(s):\n if int(j) % p == 0:\n ans += i + 1\n\nelse:\n cnt = [0] * p\n cnt[0] = 1\n now = 0\n for i, j in enumerate(reversed(s)):\n now = (int(j) * pow(10, i, p) + now) % p\n ans += cnt[now]\n cnt[now] += 1\n\nprint(ans)", "neg": "n, p = map(int, input().split())\ns = input()\n\nans = 0\nif p in (2, 5):\n for i, j in enumerate(s):\n if int(j) % p == 0:\n ans += i + 1\n\nelse:\n cnt = [0] * p\n cnt[0] = 1\n now = 0\n for i, j in enumerate(reversed(s)):\n now = (int(s) * pow(10, i, p) + now) % p\n ans += cnt[now]\n cnt[now] += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [147, 147], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "sj", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u971124021", "n_user": "u971124021", "pos": "n,p = list(map(int,input().split()))\nS = input()\n\nif p == 2 or p == 5:\n ans = 0\n for i,s in enumerate(S):\n if int(s)%p == 0:\n ans += i+1\n print(ans)\n exit()\n\ndef MS(i,s,pre):\n pre += int(s)*i\n return pre%p\n \nM = [0]*p\nM[0] = 1\ni = 1\npre = 0\nfor s in S[::-1]:\n pre = MS(i,int(s),pre)\n M[pre] += 1\n i = i*10%p\n\nans = sum(map(lambda m:(m*(m-1))//2, M))\nprint(ans)\n", "neg": "n,p = list(map(int,input().split()))\nS = input()\n\nif p == 2 or p == 5:\n ans = 0\n for i,s in enumerate(S):\n if int(s)%p == 0:\n ans += i+1\n print(ans)\n exit()\n\nM = [0]*p\npre = 0\nans = 0\ni = 1\nfor s in S[::-1]:\n pre += s*i\n pre %= p\n M[pre] += 1\n i *= 10\n\nM[0] += 1\nans = sum(map(lambda m:(m*(m-1))//2, M))\nprint(ans)\n\n", "jacc_sim": 0.9318181818181818, "before_after_length": [196, 168], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "\ndef MS(i,s,pre):\n pre += int(s)*i\n return pre%p\n M[pre = ]\nans0\ni = \ni = 1\npre = 0= MS(i,int(s),pre)\n M[pre] s1\n i = i10i\n pre = M[pre] += 1\n i *= 10\n\nM[0] += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u872887731", "n_user": "u872887731", "pos": "ii = lambda : int(input())\nmi = lambda : map(int,input().split())\nli = lambda : list(map(int,input().split()))\n\nn,p = mi()\ns = input()\nsrev = s[::-1]\n\nif p == 2 or p == 5:\n ans = 0\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i +1\n print(ans)\n exit()\n\nacum = []\nfrom collections import defaultdict\nd = defaultdict(lambda :0)\nd = [0] * p\nnum = 0\ntenpow = 1\nfor i in range(0,n):\n a = int(srev[i])\n a = num + a *tenpow \n tenpow = tenpow * 10 % p\n modd = a % p\n num = modd\n d[modd] += 1\n acum.append((modd,d[modd]))\nans = d[0]\nfor i in range(n):\n ans += d[acum[i][0]] - acum[i][1]\nprint(ans)\n\n", "neg": "ii = lambda : int(input())\nmi = lambda : map(int,input().split())\nli = lambda : list(map(int,input().split()))\n\nn,p = mi()\ns = input().strip()\nsrev = s[-1]\n\nif p == 2 or p == 5:\n ans = 0\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i +1\n print(ans)\n exit()\n\nacum = []\nfrom collections import defaultdict\nd = defaultdict(lambda :0)\nfor i in range(1,n+1):\n a = int(srev[:i])\n modd = a % p\n d[modd] += 1\n acum.append((modd,d[modd]))\nans = d[0]\nfor i in range(n):\n ans += d[acum[i][0]] - acum[i][1]\nprint(ans)\n\n\n", "jacc_sim": 0.9019607843137255, "before_after_length": [276, 235], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": ".strip()::d = [0] * p\nnum = 0\ntenpow = 1\n0,n):\n a = int(srev[i])\n a = num + a *tenpow \n tenpow = tenpow * 0 % p\n modd = a % p\n num = modd\n d[modd] += 1\n acum.append((moddd[modd]))\nas = d[0]\nfor i in range(n):\n ans = d[acum[i][0]] - acum[i][):\n a = int(srev[:i) modd = a % \n d[modd] += 1\n acum.append((modd,d[modd]))\nans = d[0]\nfo i range(n):\n ans += d[acum[i][0]] - acum[i][1]\nprin\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u619819312", "n_user": "u619819312", "pos": "n,p=map(int,input().split())\ns=input()\nif p==2 or p==5:\n a=0\n for i in range(n):\n if int(s[i])%p==0:\n a+=i+1\n print(a)\nelse:\n a=0\n g=[0]*(n+1)\n t=[0]*p\n t[0]=1\n d=1\n for i in range(n-1,-1,-1):\n g[i]=(g[i+1]+int(s[i])*d)%p\n a+=t[g[i]]\n t[g[i]]+=1\n d*=10\n d%=p\n print(a)", "neg": "n,p=map(int,input().split())\ns=input()\nif p==2 or p==5:\n a=0\n for i in range(n):\n if int(s[i])%p==0:\n ans+=n\n print(a)\nelse:\n a=0\n g=[0]*(n+1)\n t=[0]*p\n t[0]=1\n for i in range(n-1,-1,-1):\n g[i]=(g[i+1]*10+int(s[n-i-1]))%p\n a+=t[g[i]]\n t[g[i]]+=1\n print(a)", "jacc_sim": 0.9459459459459459, "before_after_length": [189, 173], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "nsni+1d=1\n +int(s[i])d10+int(s[n-i-1]) d*=10\n d%=\n p", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u075595666", "n_user": "u075595666", "pos": "import sys\ninput = sys.stdin.readline\nn,p = [int(i) for i in input().split()]\ns = input()\nans = 0\n\nif p == 2 or p == 5:\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i + 1\n print(ans)\n exit()\n\nelse:\n chk = [0]*p\n chk[0] = 1\n m = 0\n for i in range(n)[::-1]:\n m = (int(s[i])*pow(10,n-1-i,p)+m)%p\n chk[m] += 1\n for i in chk:\n ans += i*(i-1)/2\n print(int(ans))", "neg": "import sys\ninput = sys.stdin.readline\nn,p = [int(i) for i in input().split()]\ns = input()\nans = 0\n\nif p == 2 or p == 5:\n s = list(s)\n for i,si in enumerate(s):\n if int(si)%p == 0:\n ans += i+1\n print(int(ans))\nelse:\n chk = [0]*p\n chk[0] = 1\n m = 0\n for i in range(n)[::-1]:\n m = (int(s[i])*pow(10,n-1-i)+m)%p\n chk[m] += 1\n for i in chk:\n ans += i*(i-1)/2\n print(int(ans))", "jacc_sim": 0.9090909090909091, "before_after_length": [189, 192], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "s=list(s)\n ,sienumete(s):\n if itgensi:\n if int(s[i]) pp==== 1\n1\n int(\n exit(\n,p", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u123872895", "n_user": "u123872895", "pos": "from collections import Counter\n\nn, p = list(map(int, input().split()))\n\ns = input()\n\n\na = 0\nt = list(map(int, list(s)))\nt.reverse()\n\n\nif p == 2:\n for i in range(n):\n if t[i] % 2 == 0:\n a += len(t) - i \nelif p == 5:\n for i in range(n):\n if t[i] % 5 == 0:\n a += len(t) - i \n\nelse:\n u = []\n k = 1\n l = 0\n for i in t:\n l = (l + i*k) % p\n u.append(l)\n k = k * 10 % p\n\n c = Counter(u)\n a += c[0]\n for i in c.values():\n if i > 1:\n a += i * (i-1) // 2\n\n\nprint(a)\n\n\n", "neg": "from collections import Counter\n\nn, p = list(map(int, input().split()))\n\ns = input()\n\n\na = 0\nt = list(map(int, list(s)))\nt.reverse()\n\n\nif p == 2:\n for i in range(n):\n if t[i] % 2 == 0:\n a += len(t) - i \nelif p == 5:\n for i in range(n):\n if t[i] % 5 == 0:\n a += len(t) - i \n\nelse:\n u = []\n k = 1\n for i in t:\n l = 0\n if i == 0:\n l = i*k % p\n u.append(k)\n else:\n l = (l + i*k) % p\n u.append(l)\n k = k * 10 % p\n\n c = Counter(u)\n a += c[0]\n for i in c.values():\n if i > 1:\n a += i * (i-1) // 2\n\n\nprint(a)\n\n\n", "jacc_sim": 1.0, "before_after_length": [241, 269], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "for i in t:\n ior==in0t (l +) u.append(k)\n else:\n l = (l + i*k) % p\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u698176039", "n_user": "u698176039", "pos": "import sys\n\n\nN,P = map(int,input().split())\nS = list(input())\n\nA = [0]*(N)\nA[-1] = int(S[-1])\nA[-1] %= P\nbase = 10 % P\nfor i in reversed(range(N-1)):\n A[i] = A[i+1] + base*int(S[i])\n A[i] %= P\n base *= 10\n base %= P\n\n\nans = 0\nif P==2 or P==5:\n for i in reversed(range(N)):\n if int(S[i])%P==0:\n ans += i+1\nelse:\n nums = {}\n for a in A:\n if not (a in nums):\n nums[a] = 1\n else:\n nums[a] += 1\n \n for n in nums.keys():\n k = nums[n]\n if n==0:\n ans += k*(k+1)//2\n else:\n ans += k*(k-1)//2\n \nprint(ans) \n\n", "neg": "\nimport sys\ninput = sys.stdin.readline\n\nN,P = map(int,input().split())\nS = list(input())\n\nA = [0]*(N)\nA[-1] = int(S[-1])\nA[-1] %= P\nbase = 10\nfor i in reversed(range(N-1)):\n A[i] = A[i+1] + base*int(S[i])\n A[i] %= P\n base *= 10\n\n\nans = 0\nif P==2 or P==5:\n for i in reversed(range(N)):\n if int(S[i])%P==0:\n ans += i+1\nelse:\n nums = {}\n for a in A:\n nums[a] = 0\n for a in A:\n nums[a] += 1\n \n for n in nums.keys():\n k = nums[n]\n if n==0:\n ans += k*(k+1)//2\n else:\n ans += k*(k-1)//2\n \nprint(ans) \n\n", "jacc_sim": 0.94, "before_after_length": [269, 265], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "\ninput = sys.stdin.readline % P base %= P\ninums[a] = 0\n nrt(Anums) nums[a] = 1\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u425184437", "n_user": "u425184437", "pos": "N,P=map(int,input().split())\nS=input()\nlist=[0 for _ in range(P)]\nlist[0]=1\nnow=0\na=0\nif P==2 or P==5:\n M=len(S)\n S=reversed(S)\n l=0\n for s in S:\n if int(s)%P==0:\n a+=M-l\n l+=1\n else:\n l+=1\n print(a)\n \n\nelse:\n b=1\n h=0\n for s in reversed(S):\n h=h+b*int(s)\n list[h%P]+=1\n b=b*10%P\n \n c=0\n for i in range(len(list)):\n c+=list[i]*(list[i]-1)/2\n print(int(c))", "neg": "N,P=map(int,input().split())\nS=input()\nlist=[0 for _ in range(P)]\nlist[0]=1\nnow=0\na=0\nif P==2 or P==5:\n for s in reversed(S):\n if int(s)==P:\n a+=1\n print(a*(a+1)/2)\n \n\nelse:\n b=1\n h=0\n for s in reversed(S):\n h=h+b*int(s)\n list[h%P]+=1\n b=b*10%P\n \nc=0\nfor i in range(len(list)):\n c+=list[i]*(list[i]-1)/2\nprint(int(c))\n ", "jacc_sim": 0.9555555555555556, "before_after_length": [225, 190], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "M=lefor s i(S)\n S=:l if int(s)0=P:fo a+=1\n p s S:\n if insa*(a+1/2%P==0:\n a+=M-l\n l+=1\n else:\n l+=1\n print(a \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u212786022", "n_user": "u212786022", "pos": "N, P = map(int, input().split())\nS = list(map(int,list(input())))\nmod = P\nCum = []\nS.reverse()\n\nif 10%P!=0: \n temp = 0\n power = 1\n for i in range(N):\n temp += (S[i]*power)%mod\n temp %= mod\n power *= 10\n power %= mod\n Cum.append(temp)\n\n from collections import Counter\n\n counter=Counter(Cum)\n\n counter[0]+=1\n\n ans = 0\n for i in counter:\n ans += int(counter[i]*(counter[i]-1)/2)\n print(ans) \n\nelse:\n ans = 0\n S.reverse()\n for i in range(N):\n if S[i]%P==0:\n ans += (i+1) \n print(ans)\n", "neg": "N, P = map(int, input().split())\nS = list(map(int,list(input())))\nmod = P\nCum = []\nS.reverse()\n\nif 10%P!=0: \n temp = 0\n for i in range(N):\n temp += (S[i]*(10**i))%mod\n temp = temp%mod\n Cum.append(temp)\n\n from collections import defaultdict\n\n counter = defaultdict(int)\n for x in Cum:\n counter[x] += 1\n\n counter[0]+=1\n\n ans = 0\n for i in counter:\n ans += int(counter[i]*(counter[i]-1)/2)\n print(ans)\nelse:\n print(0)\n", "jacc_sim": 0.9148936170212766, "before_after_length": [225, 186], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "power = 1\n (power)%mod\n temp %= mod\n power *= **i))\n power mod\n temp temp%defaultdict\n\n counter = defaultdict(int)\n for x in um:\n c\n\n[x]+=1 counter=Counter(Cum) \naprit(s = ) S.reverse()\n for i in range(N):\n if S[i]%P==0:\n ans += (i+1) \n print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u653837719", "n_user": "u653837719", "pos": "n, p = map(int, input().split())\n\nif p == 2:\n s = input()\n ans = 0\n for i in range(n):\n if int(s[i]) % 2 == 0:\n ans += i + 1\n print(ans)\n\nelif p == 5:\n s = input()\n ans = 0\n for i in range(n):\n if int(s[i]) % 5 == 0:\n ans += i + 1\n print(ans)\n\nelse:\n s = input()[::-1]\n mod = 0\n c = [0] * p\n c[0] = 1\n ten = 1\n for i in s:\n mod = (mod + ten * int(i)) % p\n ten = ten * 10 % p\n c[mod] += 1\n\n ans = 0\n for i in c:\n ans += i * (i - 1) // 2\n print(ans)", "neg": "n, p = map(int, input().split())\ns = input()[::-1]\nans = 0\n\nif p == 2:\n for i in range(n):\n if s[i] % 2 == 0:\n ans += i + 1\n print(ans)\n\nelif p == 5:\n for i in range(n):\n if s[i] % 5 == 0:\n ans += i + 1\n print(ans)\n\nelse:\n mod = 0\n c = [0] * p\n c[0] = 1\n ten = 1\n for i in s:\n mod = (mod + ten * int(i)) % p\n ten = ten * 10 % p\n c[mod] += 1\n\n for i in c:\n ans += i * (i - 1) // 2\n print(ans)", "jacc_sim": 1.0, "before_after_length": [234, 206], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "\nif p == 2:\n \n ans = 0\n for i in range(n):\n if int(si]) % 2 == 0:\n ans += i + 1\n print(ans)\n\nelif p == 5:\n s = input()\n ans = 0\n for i in range(n):\n if int(s[i]) % 5 == 0:\n ans += i + 1\n print(ans)\n\nelse:\n s = input()[\nans = 0\n\nif p == 2:\n for i in range(n):\n if s[i] % 2 == 0:\n ans += i + 1\n print(ans)\n\nelif p == 5:\n for i in range(n):\n if s[i] % 5 == 0:\n ans += i + 1\n print(ans)\n\nelse:ans = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u353797797", "n_user": "u353797797", "pos": "from collections import Counter\nimport sys\n\nsys.setrecursionlimit(10 ** 6)\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\ndef II(): return int(sys.stdin.readline())\ndef MI(): return map(int, sys.stdin.readline().split())\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(rows_number): return [LI() for _ in range(rows_number)]\ndef SI(): return sys.stdin.readline()[:-1]\n\ndef main():\n n,p=MI()\n s=SI()\n if p==2 or p==5:\n ans=0\n for i,c in enumerate(s):\n if int(c)%p==0:ans+=i+1\n print(ans)\n exit()\n aa=[int(c) for c in s[::-1]]\n cc=[0]\n ten=1\n for a in aa:\n cc.append((cc[-1]+a*ten)%p)\n ten=ten*10%p\n cnt=Counter(cc)\n ans=0\n for v in cnt.values():\n ans+=v*(v-1)//2\n print(ans)\n\nmain()", "neg": "from collections import Counter\nimport sys\n\nsys.setrecursionlimit(10 ** 6)\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\ndef II(): return int(sys.stdin.readline())\ndef MI(): return map(int, sys.stdin.readline().split())\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(rows_number): return [LI() for _ in range(rows_number)]\ndef SI(): return sys.stdin.readline()[:-1]\n\ndef main():\n n,p=MI()\n s=SI()\n if p==2 or p==5:\n ans=0\n for i,c in enumerate(s):\n if int(c)%p==0:ans+=i+1\n print(ans)\n exit()\n aa=[int(c) for c in s[::-1]]\n cc=[0]\n ten=1\n for a in aa:\n cc.append((cc[-1]+a*ten)%p)\n ten=ten*10%p\n cnt=Counter(cc)\n print(cc)\n print(cnt)\n ans=0\n for v in cnt.values():\n ans+=v*(v-1)//2\n print(v,ans)\n print(ans)\n\nmain()", "jacc_sim": 1.0, "before_after_length": [320, 340], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "print(cc)\n print(cnt)\n v, print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u484902431", "n_user": "u484902431", "pos": "n, p = map(int, input().split())\ns = list(reversed(list(map(int, input()))))\nif p == 2:\n ans = 0\n s = list(reversed(s))\n for i in range(n):\n if s[i] % 2 == 0:\n ans += i + 1\n print(ans)\n exit()\nif p == 5:\n ans = 0\n s = list(reversed(s))\n for i in range(n):\n if s[i] % 5 == 0:\n ans += i + 1\n print(ans)\n exit()\ncur = 1\nc = [0] * (n + 1)\nans = 0\nt = [0] * p\nt[c[0]] += 1\nfor i in range(n):\n c[i + 1] = (c[i] + cur * s[i]) % p\n ans += t[c[i + 1]]\n t[c[i + 1]] += 1\n cur = cur * 10 % p\nprint(ans)\n", "neg": "n, p = map(int, input().split())\ns = list(reversed(list(map(int, input()))))\nif p == 2:\n ans = 0\n s = list(reversed(s))\n for i in range(n):\n if s[i] % 2 == 0:\n ans += i + 1\n print(ans)\n exit()\nif p == 5:\n ans = 0\n s = list(reversed(s))\n for i in range(n):\n if s[i] % 5 == 0:\n ans += i + 1\n print(ans)\n exit()\ncur = 1\nc = [0] * (n + 1)\nans = 0\nt = [0] * p\nt[c[0]] += 1\nfor i in range(n):\n c[i + 1] = (c[i] + cur * s[i]) % p\n ans += t[c[i + 1]]\n print(t, c, ans)\n t[c[i + 1]] += 1\n cur = cur * 10 % p\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [257, 266], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "print(t, c, ans)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u737298927", "n_user": "u454472984", "pos": "n, p = map(int, input().split())\n\ns = list(input())\n\nans = 0\nif p == 2 or p == 5:\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i + 1\nelse:\n d = [0] * (n + 1)\n ten = 1\n for i in range(n - 1, -1, -1):\n a = int(s[i]) * ten % p\n ten *= 10\n ten %= p\n d[i - 1] = (d[i] + a) % p\n cnt = [0] * p\n for i in range(n, -1, -1):\n ans += cnt[d[i]]\n cnt[d[i]] += 1\n\nprint(ans)\n", "neg": "n, p = map(int, input().split())\n \ns = list(input())\nans = 0\nif p == 2 or p == 5:\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i + 1\nelse:\n d = [0] * (n + 1)\n ten = 1\n for i in range(n - 1, -1, -1):\n a = int(s[i]) * ten % p\n sum+=a\n ten *= 10\n ten %= p\n d[i]= sum % p\n cnt = [0] * p\n for i in range(n, -1, -1):\n cnt[d[i]] += 1\n for i in cnt:\n ans+=i*(i-1)/2\nprint(d)\nprint(int(ans))", "jacc_sim": 0.95, "before_after_length": [197, 209], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": " \nsum+=a\n ]=sum- 1] = (d[i] + a)ans += += 1foriin[:\n ans+=i*(i-1)/2\nprint([)\nprnt(]] += 1\n\npr)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u997641430", "n_user": "u997641430", "pos": "N, P = map(int, input().split())\nS = [int(_) for _ in list(input())]\nif P == 2 or P == 5:\n ans = 0\n for n in range(N):\n if S[n] % P == 0:\n ans += n + 1\n print(ans)\nelse:\n S = [(S[n] * pow(10, N - n - 1, P)) % P for n in range(N)]\n S.reverse()\n T = [0]\n for s in S:\n T.append((T[-1] + s) % P)\n lst = {i: 0 for i in range(P)}\n ans = 0\n for t in T:\n ans += lst[t]\n lst[t] += 1\n print(ans)\n", "neg": "N, P = map(int, input().split())\nS = [int(_) for _ in list(input())]\nif P == 2 or P == 5:\n ans = 0\n for n in range(N):\n if S[n] % P == 0:\n ans += n + 1\n print(ans)\nelse:\n S = [(S[n] * 10**(N - n - 1)) % P for n in range(N)]\n S.reverse()\n T = [0]\n now = 0\n for s in S:\n now += s\n T.append((now) % P)\n dct = {i: 0 for i in range(P)}\n ans = 0\n for t in T:\n ans += dct[t]\n dct[t] += 1\n print(dct)\n print(ans)\n", "jacc_sim": 0.9148936170212766, "before_after_length": [197, 206], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "pow(, **(, Pnow = 0\n \n now += snowT[-1] + sdclsdclsdclsdct)\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u123525541", "n_user": "u123525541", "pos": "n, p = map(int, input().split())\ns = input()\n\n\ndef solve1(s, p):\n v = 0\n pow10 = 1\n ans = 0\n cnt = [0] * p\n cnt[0] = 1\n\n for i in range(n - 1, -1, -1):\n v = (pow10 * int(s[i]) + v) % p\n pow10 = (pow10 * 10) % p\n ans += cnt[v]\n cnt[v] += 1\n return ans\n\n\ndef solve25(s, p):\n cnt = 0\n ans = 0\n for i in range(len(s) - 1, -1, -1):\n if int(s[i]) % p == 0:\n cnt += 1\n ans += cnt\n return ans\n\n\n\nif p in (2,5):\n print(solve25(s, p))\nelse:\n print(solve1(s, p))\n", "neg": " n, p = map(int, input().split())\n s = input()\n\n\n def solve1(s, p):\n v = 0\n pow10 = 1\n ans = 0\n cnt = [0] * p\n cnt[0] = 1\n\n for i in range(n - 1, -1, -1):\n v = (pow10 * int(s[i]) + v) % p\n pow10 = (pow10 * 10) % p\n ans += cnt[v]\n cnt[v] += 1\n return ans\n\n\n def solve25(s, p):\n cnt = 0\n ans = 0\n for i in range(len(s) - 1, -1, -1):\n if int(s[i]) % p == 0:\n cnt += 1\n ans += cnt\n return ans\n\n\n\n if p in (2,5):\n print(solve25(s, p))\n else:\n print(solve1(s, p))", "jacc_sim": 1.0, "before_after_length": [238, 243], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": " \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u765758367", "n_user": "u765758367", "pos": "N, P = map(int, input().split())\n\nS = input()\n\nans = 0\nif P == 2 or P == 5:\n for i, s in enumerate(S):\n if int(s) % P == 0:\n ans += i + 1\nelse:\n counts = [0] * P\n h = 0\n d = 1\n for s in reversed(S):\n m = int(s) * d % P\n h = (h + m) % P\n counts[h] += 1\n d = (d * 10) % P\n ans = counts[0]\n for i in counts:\n ans += (i*(i-1))//2\n\nprint(ans)\n", "neg": "N, P = map(int, input().split())\n\nS = input()\n\nans = 0\nif P == 2 or P == 5:\n for i, s in enumerate(S):\n if int(s) % P == 0:\n ans += i + 1\nelse:\n counts = [0] * P\n h = 0\n d = 1\n for s in reversed(S):\n m = int(s) * d % P\n h = (h + m) % P\n counts[h] += 1\n d = (d * 10) % P\n ans = counts[0]\n for i in counts:\n ans += (i*i-1)//2\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [171, 171], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": " ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u788703383", "n_user": "u788703383", "pos": "n,p = map(int,input().split())\ns = input()\nnum = 0\ns1 = [0]*(n+1)\nans = 0\nif p == 2 or p == 5:\n\tfor i in range(len(s)):\n\t\tif int(s[i])%p == 0:\n\t\t\tans += i+1\t\n\tprint(ans)\n\texit()\nans = 0\narr = [0]*p\ns = s[::-1]\nz = 1\nfor i in range(n):\n\ts1[i+1] = s1[i] + int(s[i])*z\n\tz = z * 10 %p\n\ts1[i+1] %=p\n\tarr[s1[i]] += 1\narr[s1[n]]+=1\n#print(s1)\nfor i in range(p):\n\tans += arr[i] * (arr[i] - 1) // 2\nprint(ans)\n", "neg": "n,p = map(int,input().split())\ns = input()\nnum = 0\ns1 = [0]*(n+1)\nans = 0\nif p == 2 or p == 5:\n\tfor i in range(len(s)):\n\t\tif int(s[i])%p == 0:\n\t\t\tans += i+1\t\n\tprint(ans)\n\texit()\nans = 0\narr = [0]*p\ns = s[::-1]\nz = 1\nfor i in range(n):\n\ts1[i+1] = s1[i] + int(s[i])*z\n\tz *=10 %p\n\ts1[i+1] %=p\n\tarr[s1[i]] += 1\narr[s1[n]]+=1\nprint(s1)\nfor i in range(p):\n\tans += arr[i] * (arr[i] - 1) // 2\nprint(ans)\n", "jacc_sim": 0.975, "before_after_length": [231, 228], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "= z = #", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u918601425", "n_user": "u918601425", "pos": "N,P=[int(s) for s in input().split()]\nS=list(input())\nif P!=2 and P!=5:\n ls=[0 for _ in range(N)]\n mod=[0 for _ in range(P)]\n d=10\n ls[0]=int(S[-1])%P\n mod[ls[0]]+=1\n for i in range(1,N):\n ls[i]=(ls[i-1]+d*int(S[-1-i]))%P\n d=(d*10)%P\n mod[ls[i]]+=1\n #print(ls)\n #print(mod) \n ans=mod[0]\n for i in range(N):\n m=ls[i]\n mod[ls[i]]-=1\n ans+=mod[ls[i]]\nelse:\n ans=0\n for i in range(N):\n if int(S[i])%P==0:\n ans+=i+1\nprint(ans)\n \n", "neg": "N,P=[int(s) for s in input().split()]\nS=list(input())\nif P!=2 and P!=5:\n ls=[0 for _ in range(N)]\n mod=[0 for _ in range(P)]\n d=10\n ls[0]=int(S[-1])\n mod[ls[0]]+=1\n for i in range(1,N):\n ls[i]=(ls[i-1]+d*int(S[-1-i]))%2019\n d=(d*10)%2019\n mod[ls[i]]+=1\n #print(ls)\n #print(mod) \n ans=mod[0]\n for i in range(N):\n m=ls[i]\n mod[ls[i]]-=1\n ans+=mod[ls[i]]\nelse:\n ans=0\n for i in range(N):\n if int(S[i])%P==0:\n ans+=i+1\nprint(ans)\n \n", "jacc_sim": 0.9761904761904762, "before_after_length": [254, 254], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "%PP2019P2019", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u346812984", "n_user": "u346812984", "pos": "import sys\n\nsys.setrecursionlimit(10 ** 6)\nINF = float(\"inf\")\nMOD = 10 ** 9 + 7\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\ndef main():\n N, P = map(int, input().split())\n S = input()\n\n if P == 2 or P == 5:\n ans = 0\n for i in range(N):\n if int(S[i]) % P == 0:\n ans += i + 1\n else:\n val = [0] * P\n cur = 0\n tenfactor = 1\n val[cur] += 1\n for i in range(N):\n cur = (cur + int(S[N - i - 1]) * tenfactor) % P\n tenfactor *= 10\n tenfactor %= P\n val[cur] += 1\n\n ans = 0\n for v in val:\n ans += v * (v - 1) // 2\n\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\n\nsys.setrecursionlimit(10 ** 6)\nINF = float(\"inf\")\nMOD = 10 ** 9 + 7\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\ndef main():\n N, P = map(int, input().split())\n S = input()\n\n if P == 2 or P == 5:\n ans = 0\n for i in range(N):\n if int(S[i]) % P == 0:\n ans += i + 1\n else:\n val = [0] * P\n cur = 0\n tenfactor = 1\n val[cur] += 1\n for i in range(N):\n cur = (cur + int(S[N - i - 1]) * tenfactor) % P\n tenfactor *= 10\n tenfactor %= 10\n val[cur] += 1\n\n ans = 0\n for v in val:\n ans += v * (v - 1) // 2\n\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [254, 254], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "P10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u761320129", "n_user": "u761320129", "pos": "N,P = map(int,input().split())\nS = input()\n\nif P in (2,5):\n ans = 0\n for i,c in enumerate(S):\n c = int(c)\n if c%P==0:\n ans += (i+1)\n print(ans)\nelse:\n ans = 0\n a = [0]\n j = 1\n for c in S[::-1]:\n c = int(c)\n a.append((a[-1] + j*c) % P)\n j *= 10\n j %= P\n from collections import Counter\n ctr = Counter(a)\n for k,v in ctr.items():\n ans += v*(v-1)//2\n print(ans)", "neg": "N,P = map(int,input().split())\nS = input()\n\nif P in (2,5):\n ans = 0\n for i,c in enumerate(S):\n c = int(c)\n if c%P==0:\n ans += (i+1)\n print(ans)\nelse:\n ans = 0\n a = [0]\n zsq = 0\n for c in S:\n c = int(c)\n if c==0:\n zsq += 1\n else:\n ans += zsq*(zsq+1)//2\n zsq = 0\n a.append((a[-1]*10+c) % P)\n ans += zsq*(zsq+1)//2\n from collections import Counter\n ctr = Counter(a)\n for k,v in ctr.items():\n ans += v*(v-1)//2\n print(ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [185, 222], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "jzsq1\n for c in S[::-1]:\n c = int(c)\n a.append((a[-1] + j*c) % P)\n j *= 1forcinS:\nj% c Pint(c) iromollection==0:\n zq import Counter\n ctr = Counter(a)\n for k,v in ctr.items():\n ansv1\n else:\n ans += zsqv-zsq+ zsq = 0\n a.apend((a[-1]*10+c) % P)\n ans += zsq*(zsq+1)//2\n fom collectos impor Counter\n ctr = Counter)\n for k,v i ctr.item(:\n ans += v*(v-1)//2\n print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u886633618", "n_user": "u886633618", "pos": "N, P = map(int, input().split())\nS = input()\n\nif P != 2 and P != 5:\n p_array = [0] * P\n mod = 0\n amari = 1\n for i, s in enumerate(S[::-1]):\n s = int(s)\n mod = (mod + s * amari) % P\n amari = amari * 10 % P\n p_array[mod] += 1\n\n ans = 0\n for i, p in enumerate(p_array):\n if i == 0:\n ans += p\n ans += (p * (p-1) // 2)\n\n print(int(ans))\n\nelse:\n ans = 0\n for i, s in enumerate(S):\n if int(s) % P == 0:\n ans += (i+1)\n print(ans)\n", "neg": "N, P = map(int, input().split())\nS = input()\nif P != 2 and P != 5:\n p_array = [0] * P\n\n mod = 0\n for s in S:\n s = int(s)\n mod = (mod * 10 + s) % P\n p_array[mod] += 1\n\n ans = 0\n for i, p in enumerate(p_array):\n if i == 0:\n ans += p\n ans += (p * (p-1) // 2)\n\n print(int(ans))\n\nelse:\n ans = 0\n for i, s in enumerate(S):\n if int(s) % P == 0:\n ans += (i+1)\n print(ans)\n", "jacc_sim": 0.975, "before_after_length": [212, 185], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "\n\namari = 1\n s n,s in enumerate([::-1])+ s amari) % P\n amari = amari * + s) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u723792785", "n_user": "u723792785", "pos": "n, mod = map(int, input().split())\nS = input()\n\ntotal = 0\nif mod == 2 or mod == 5:\n\tfor i, q in enumerate(S):\n\t\tif int(q)%mod == 0:\n\t\t\ttotal += i+1\nelse:\n\tcounts = [0]*mod\n\tcounts[0] = 1\n\th = 0\n\t\n\td = 1\n\tfor s in reversed(S):\n\t\tm = int(s)*d%mod\n\t\th = (h+m)%mod\n\t\ttotal += counts[h]\n\t\tcounts[h] += 1\n\t\td = (d*10)%mod\n\nprint(total)", "neg": "n, mod = map(int, input().split())\ns = input()\n\ntotal = 0\nif mod == 2 or mod == 5:\n\tfor i, q in enumerate(s):\n\t\tif int(q)%mod == 0:\n\t\t\ttotal += i+1\nelse:\n\tcounts = [0]*mod\n\tcounts[0] = 1\n\th = 0\n\t\n\td = 1\n\tfor t in reversed(s):\n\t\tm = int(s)*d%mod\n\t\th = (h+m)%mod\n\t\ttotal += counts[h]\n\t\tcounts[h] += 1\n\t\td = (d*10)%mod\n\nprint(total)", "jacc_sim": 0.95, "before_after_length": [164, 164], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "sSsStssS", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u905203728", "n_user": "u905203728", "pos": "from collections import Counter\nn,p=map(int,input().split())\ns=input()\nDP=[0]\nans=0\n\nif p==2 or p==5:\n for i,j in enumerate(s):\n if int(j)%p==0:\n ans +=i+1\nelse:\n num,point=0,1\n for i in s[::-1]:\n num +=int(i)*point\n num %=p\n DP.append(num)\n point *=10\n point %=p\n\n DP=Counter(DP)\n for v,m in DP.items():\n if m>=2:ans +=m*(m-1)//2\nprint(ans)", "neg": "from collections import Counter\nn,p=map(int,input().split())\ns=input()[::-1]\nDP=[0]\n\nif p==2 or p==5:\n if s[0]%p==0:print(n*(n+1)//2)\n else:print(0)\nelse:\n num,point=0,1\n for i in s:\n num +=int(i)*point\n num %=p\n DP.append(num)\n point *=10\n point %=p\n \n ans=0\n DP=Counter(DP)\n for v,m in DP.items():\n if m>=2:ans +=m*(m-1)//2\n print(ans)", "jacc_sim": 0.9574468085106383, "before_after_length": [173, 178], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "\nDP=[0]\nans=0\n\nif p==2 or p==5:\n for i,j in enumerate(s):\n if int(j)%p==0:\n ans +=i+1\nelse:\n num,point=0,1\n for i in s: num +=int(i)*point\n num %=p\n .append(num)\n point *[1]\nif oint %p\n\n DP=Counter(DP)\n for v,m in DP.items():\n if m> or p==5a\n if s[0]%p==0:prit(ns +=mn+m-) else:0)\nelse:\n num,point=0,1\n for i in s:\n num +=int(i)*point\n num %=p\n DP.pped(num)\n point *=10\n point %=p\n \n an=0\n DP=Counter(DP\n for v,m in DP.items():\n if m>=2:ans +=m*(m-1)//2\n print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u021019433", "n_user": "u021019433", "pos": "I = lambda s:map(int, s)\n\np = int(input().split()[1])\ns = input()\nif 10 % p == 0:\n r = sum(i for i, x in enumerate(I(s), 1) if x % p == 0)\nelse:\n d = [1] + [0] * (p - 1)\n t, y = 0, 1\n for i, x in enumerate(I(reversed(s)), 1):\n t = (t + x * y) % p\n d[t] += 1\n y = y * 10 % p;\n r = sum(i * (i - 1) // 2 for i in d)\nprint(r)\n", "neg": "p = int(input().split()[1])\ns = input()\nif 10 % p:\n s = reversed(s)\na = enumerate(s, 1)\nif 10 % p == 0:\n r = sum(i for i, x in a if x % p == 0)\nelse:\n d = [1] + [0] * (p - 1)\n t, y = 0, 1\n for i, x in a:\n t = (t + x * y) % p\n d[t] += 1\n y = y * 10 % p;\n r = sum(i * (i - 1) // 2 for i in d)\nprint(r)\n", "jacc_sim": 0.9024390243902439, "before_after_length": [169, 162], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "I = lambda s:map(int, s)\n\n == 0srsum(i for i, x in enumerate(I(s), 1) if x % p == 0)\nelse:\n d = [1] + [0] * (p - 1)\n t, y = 0, 1\n for i, x in enumerate(I(\na = enumerate(s, 1\nif 10 % p == 0:\n r = sum(i for ix in a if x % p == 0)\nelse:\n d = [] + [0] * (p - 1\n t, y = 0, 1\n for i, x in a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u834471595", "n_user": "u834471595", "pos": "n, p = map(int, input().split())\ns = input()\nr = set()\nlast = 0\nd = {0: 0}\ntotal = 0\nrem = 0\nif p == 2:\n for i in range(0, len(s)):\n if int(s[i]) % 2 == 0:\n total += i + 1\n print(total)\nelif p == 5:\n for i in range(0, len(s)):\n if int(s[i]) % 5 == 0:\n total += i + 1\n print(total)\n\n\n\nelse:\n power = 1\n for i in range(len(s) - 1, -1, -1): # handling of 0's as n and rem\n n = int(s[i]) * power + rem\n power *= 10\n power = power % p\n rem = n % p\n if rem in d.keys():\n d[rem] += 1\n else:\n d[rem] = 1\n total += d[rem] - 1\n print(total + d[0])", "neg": "n,p=map(int,input().split())\ns=input()\nr=set()\nlast=0\nd={0:0}\ntotal=0\nrem=0\nif p==2:\n for i in range(0,len(s)):\n if int(s[i])%2==0:\n total+=i+1\n print(total)\nelif p==5:\n for i in range(0,len(s)):\n if int(s[i])%5==0:\n total+=i+1\n print(total)\n \n \n \nelse:\n power=1\n for i in range(len(s)-1,-1,-1):#handling of 0's as n and rem\n n=int(s[i])*power+rem\n power*=10\n power=power%p\n rem=n%p\n if rem in d.keys():\n d[rem]+=1\n else:\n d[rem]=1\n total+=d[rem]-1\nprint(total+d[0])\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [260, 265], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": " =0\nrem=0\nifp 0\nrem 0\nif p == ==0:\n total+i+1\n print(total)\nelif p 0:\n total + i + 1\n print(total)\nelif p == ==0:\n total+=i+1\n0 print(total)\n \n \n \nelse total += i + 1\n print(total)\n\n\n\nelse:\n p\np\n +=1\n+=1 else: else:\n =1\n total+ 1\n total += \n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u671455949", "n_user": "u671455949", "pos": "from collections import deque\n\nimport numpy as np\n\nn, p = map(int, input().split())\nd = deque(input())\n\nans = 0\nif p == 2 or p == 5:\n for i in range(n):\n k = int(d.popleft())\n if k % p == 0:\n ans += i + 1\nelse:\n sub = [0 for i in range(n)]\n wk = 0\n for i in range(n):\n k = int(d.pop())\n wk = (wk + k * pow(10, i, p)) % p\n sub[i] = wk\n ans = 0\n dic = {}\n for i in range(n):\n if sub[i] == 0:\n ans += 1\n if sub[i] in dic.keys():\n ans += dic[sub[i]]\n dic[sub[i]] = dic[sub[i]] + 1\n else:\n dic[sub[i]] = 1\n\nprint(ans)", "neg": "from collections import deque\n\nimport numpy as np\n\nn, p = map(int, input().split())\nd = deque(input())\n\nans = 0\nif p == 2 or p == 5:\n for i in range(n):\n k = int(d.popleft())\n if n % p == 0:\n ans += i + 1\nelse:\n sub = [0 for i in range(n)]\n wk = 0\n for i in range(n):\n k = int(d.pop())\n wk = (wk + k * pow(10, i, p)) % p\n sub[i] = wk\n print(sub)\n ans = 0\n dic = {}\n for i in range(n):\n if sub[i] == 0:\n ans += 1\n if sub[i] in dic.keys():\n ans += dic[sub[i]]\n dic[sub[i]] = dic[sub[i]] + 1\n else:\n dic[sub[i]] = 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [242, 248], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": "nk\n print(sub)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02757", "p_user": "u330661451", "n_user": "u024782094", "pos": "n,p = map(int,input().split())\ns = input()\nl = [0 for i in range(p)]\nl[0] = 1\nten = 1\ncnt = 0\n\nans = 0\nif p == 2 or p == 5:\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i+1\nelse:\n for i in range(n):\n cnt = (cnt + int(s[-i-1]) * ten) % p\n l[cnt] += 1\n ten = (ten * 10) % p\n for i in l:\n if i > 1:\n ans += i * (i - 1) // 2\n\nprint(ans)", "neg": " n,p = map(int,input().split())\n s = input()\n l = [0 for i in range(p)]\n l[0] = 1\n ten = 1\n cnt = 0\n \n ans = 0\n if p == 2 or p == 5:\n for i in range(n):\n if int(s[i]) % p == 0:\n ans += i+1\n else:\n for i in range(n):\n cnt = (cnt + int(s[-i-1]) * ten) % p\n l[cnt] += 1\n ten = (ten * 10) % p\n for i in l:\n if i > 1:\n ans += i * (i - 1) // 2\n \n print(ans)", "jacc_sim": 1.0, "before_after_length": [173, 182], "nl": "Takahashi has a string S of length N consisting of digits from 0 through 9. He loves the prime number P. He wants to know how many non-empty (contiguous) substrings of S are divisible by P when regarded as integers written in base ten. Substrings starting with a 0 also count, and substrings originated from different positions in S are distinguished, even if they are equal as strings or integers. Compute this count to help Takahashi.\n\nConstraints:\n1 \u2264 N \u2264 2 \u00d7 10^5\nS consists of digits.\n|S| = N\n2 \u2264 P \u2264 10000\nP is a prime number.\n\nInput:\nInput is given from Standard Input in the following format:\nN P\nS\n\nOutput:\nPrint the number of non-empty (contiguous) substrings of S that are divisible by P when regarded as an integer written in base ten.\n\nSample Input 1:\n4 3\n3543\n\nSample Output 1:\n6\n\nSample Input 2:\n4 2\n2020\n\nSample Output 2:\n10\n\nSample Input 3:\n20 11\n33883322005544116655\n\nSample Output 3:\n68", "diff_info": " ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u752522099", "n_user": "u752522099", "pos": "n=int(input())\n\nans=int(n/2)\n\nif n%2==0:\n print(ans)\nelse:\n print(ans+1)\n\n", "neg": "n = int(input())\n\nans = n /2\n\nif n % == 0:\n print(ans)\nelse:\n print(ans+1)", "jacc_sim": 1.0, "before_after_length": [44, 38], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " i t(n) 2 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u955691979", "n_user": "u060569392", "pos": "n = input()\n\nn = int(n)\nif(n==2):\n print(1)\nelif(n%2==0):\n print(int(n/2))\nelse:\n print(int(n/2)+1)", "neg": "n=int(input()\nprint(n//2)\n\nif n % 2 = 0:\n print(n/2)\nelse:\n print(n/2+1)", "jacc_sim": 0.9411764705882353, "before_after_length": [60, 43], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " int(pr\nn = //2\n (== % ) = 0 1)\nelif(n%2==0):\n print(int() int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u609814378", "n_user": "u891945807", "pos": "N = int(input())\nif N % 2 == 0:\n print(int(N/2))\nelse:\n print(int(N//2)+1)", "neg": "N = int(input())\n\nif N % 2 == 0:\n res = N/2\nelse:\n res = N//2 + 1\n\nprint(res)", "jacc_sim": 0.9411764705882353, "before_after_length": [39, 40], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "\n pes = int(int())res=N//2 + 1\n\nresint(N//2+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u316055872", "n_user": "u979126665", "pos": "n = int(input())\ncount = n // 2\nif n % 2 == 0 :\n print(count)\nelse :\n count = count + 1\n print(count) ", "neg": "n = int(input())\nif n % 2 == 0:\n print(n//2)\nelse:\n print(n//2)+1", "jacc_sim": 0.9411764705882353, "before_after_length": [43, 34], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "count = n // 2\n cout//2 \n count = count + 1cout//2+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u403547519", "n_user": "u403547519", "pos": "n = int(input())\na=int(-(-n//2))\nprint(a)", "neg": "n=int(input())\na=-(-n//2)\nprint(n)", "jacc_sim": 1.0, "before_after_length": [21, 19], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " int()na", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u923270446", "n_user": "u443972048", "pos": "N = int(input())\nif N % 2 == 0:\n print(int(N / 2))\nelse:\n print(int(N / 2 + 1))", "neg": "N = int(input())\n\nif N % 2 != 0:\n print(N/2)\nelse:\n print((N/2)+1)", "jacc_sim": 0.9411764705882353, "before_after_length": [39, 36], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "\n!=int( )int ) )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u063246610", "n_user": "u063246610", "pos": "n=int(input())\nsei=int(n/2)\ntmp=n%2\nif tmp==0:\n sei=sei\nelse:\n sei=sei+1\nprint(sei)", "neg": "n=input()\nsei=n/2\ntmp=n%2\nif tmp==0:\n \nelse:\n sei=sei+1\nprint(sei)", "jacc_sim": 0.9444444444444444, "before_after_length": [53, 43], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "int()int()sei=sei", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u119148115", "n_user": "u119148115", "pos": "N = int(input())\nif N % 2 == 0:\n print(int(N/2))\nelse:\n print(int((N+1)/2))", "neg": "N == input()\nif N % 2 == 0:\n print(N/2)\nelse:\n print((N+1)/2)", "jacc_sim": 0.9375, "before_after_length": [39, 33], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "=int()int()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u228232845", "n_user": "u105290050", "pos": "n = int(input())\nif n%2 == 0: print(n//2)\nelse: print((n+1)//2)", "neg": "n=int(input())\nif n%2==0:\n print(n/2)\nelse:\n print(n//2+1)", "jacc_sim": 1.0, "before_after_length": [32, 35], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " \n print(n/2)\nelse:\n )\nelse: print((n//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u666964944", "n_user": "u555356625", "pos": "n = int(input())\nprint(n//2+1 if n%2!=0 else n//2)", "neg": "n = int(input())\n\nprint(n/2) if n%2 == 0 else print(n/2+1)", "jacc_sim": 0.9375, "before_after_length": [26, 29], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "\n/)+1 != print(/+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u053105324", "n_user": "u053105324", "pos": "import bisect, collections\n\ndef solution():\n n = input().strip()\n print((int(n)+1)//2)\n \n\n \n\ndef main(): \n # T = int(input().strip())\n for _ in range(1):\n solution()\n \n\nmain()", "neg": "import bisect, collections\n\ndef solution():\n n = input().strip()\n print(n//2)\n \n\n \n\ndef main(): \n # T = int(input().strip())\n for _ in range(1):\n solution()\n \n\nmain()", "jacc_sim": 0.9629629629629629, "before_after_length": [71, 66], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "(it(n)+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u476604182", "n_user": "u476604182", "pos": "N = int(input())\nans = N//2 if N%2==0 else N//2 + 1\nprint(ans)\n", "neg": "N = int(input())\nans = N//2 if N%2==0 else N//2+1\nprint(N//2)\n", "jacc_sim": 1.0, "before_after_length": [30, 32], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " ansN//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u216136179", "n_user": "u216136179", "pos": "import math\n \nN = float(input())\nprint(math.ceil(N/2))", "neg": "import math\n\nN = input()\nprint(math.ceil(N/2))", "jacc_sim": 0.9230769230769231, "before_after_length": [23, 20], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " float()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u951814007", "n_user": "u383508661", "pos": "n = int(input())\n\nimport math\n\nprint(math.ceil(n/2))", "neg": "import math \nn=int(input())\nprint(math.ceil(n/2)", "jacc_sim": 1.0, "before_after_length": [23, 22], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "nimport=math\nn=\n\nimport math\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u547115759", "n_user": "u547115759", "pos": "N = int(input())\nprint(int((N+1)/2))\n", "neg": "N = int(input())\nn = int(N/2)\nprint(n+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [18, 22], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "n = int(N/2)\nit((N/2))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u571832343", "n_user": "u571832343", "pos": "i = int(input())\n\nif i % 2 == 0:\n print(int(i/2))\nelse:\n print(int(i/2) +1)", "neg": "i = int(input())\n\nif i // 2 == 0:\n print(int(i/2))\nelse:\n print(int(i/2 + 1))", "jacc_sim": 0.9375, "before_after_length": [41, 40], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "%//) )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u782930273", "n_user": "u119148115", "pos": "N = int(input())\nprint(N // 2 if N % 2 == 0 else (N + 1) // 2)", "neg": "N = int(input())\nif N % 2 == 0:\n print(N/2)\nelse:\n print((N+1)/2)\n", "jacc_sim": 0.9375, "before_after_length": [27, 36], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "print(N // 2 :\n print(N/2)\n:\n print( / \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u131464432", "n_user": "u131464432", "pos": "N = int(input())\nA = N / 2\nA = int(A)\nB = (N + 1) / 2\nB = int(B)\nif N % 2 == 0:\n print(A)\nelse:\n print(B)\n\n", "neg": "N = input()\nN = int(S)\nA = N / 2\nB = (N + 1) / 2\nif N % 2 == 0:\n print(A)\nelse:\n print(B)\n", "jacc_sim": 0.9473684210526315, "before_after_length": [61, 51], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "N = input()\nSinput()\nA = int(A)\nB = int(B)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u556069480", "n_user": "u556069480", "pos": "print( int( (int(input()) + 1 )/2 ) )", "neg": "print(int((int(input()+1))/2))", "jacc_sim": 1.0, "before_after_length": [16, 14], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " ) ) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u905329882", "n_user": "u152402277", "pos": "N = int(input())\n\nif N%2==0:\n print(int(N/2))\nelse:\n print(int((N+1)/2))", "neg": "N =int(input())\nif N%2 == 0:\n print(N/2)\nelse:\n print(int(N/2)+1)", "jacc_sim": 1.0, "before_after_length": [40, 37], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " \n int()(+1)+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u744521311", "n_user": "u744521311", "pos": "n=int(input())\n\nif n%2==0:\n n=n/2\n print(int(n))\nelse:\n n=n//2+1\n print(int(n))", "neg": "n=int(input())\n\nif 0==n/2:\n n=n/2\n print(n)\nelse:\n n=n//2+1\n print(n)", "jacc_sim": 0.9375, "before_after_length": [50, 46], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "0n%20n/2it(n)int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u203694953", "n_user": "u368563078", "pos": "N = int(input())\nif N % 2 == 0:\n N = N / 2\nelse:\n N = (N + 1) / 2\nprint(int(N))", "neg": "if N%2 == 0:\n print(int(N/2))\nelse:\n print(int(N+1/2))", "jacc_sim": 0.9375, "before_after_length": [43, 32], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "N = int(input())\n N = N / 2\nelse:\n N = (N + 1) / 2\n/2\nelse:\n print(int(N+1/2))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u076303440", "n_user": "u076303440", "pos": "N = input()\nintN=int(N)\nif intN%2 == 0:\n print(intN//2)\nelse:\n print(intN//2 +1)", "neg": "N = input()\nif N%2 ==0:\n print(N/2)\nelse:\n print(N/2 + 1)", "jacc_sim": 0.9375, "before_after_length": [44, 33], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "ntN=int(N)\niint int/ int/ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u131946248", "n_user": "u793666115", "pos": "n = int(input())\nif (n % 2 == 0):\n print(n//2)\nelse:\n print(n//2+1)", "neg": "n = int(input())\n\nif n % 2 == 0:\n print(n/2)\nelse:\n print((n//2) +1)", "jacc_sim": 1.0, "before_after_length": [36, 37], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "\n()/() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u053404471", "n_user": "u363892646", "pos": "n = int(input())\nif n%2:\n print(int(n/2) + 1)\nelse:\n print(int(n/2))", "neg": "n = int(input())\nif (n % 2 == 1):\n print(n // 2 + 1)\nelse:\n print(n / 2)", "jacc_sim": 1.0, "before_after_length": [38, 36], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "( == 1) i t(n/ ) i t(n )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u501451051", "n_user": "u523957440", "pos": "N = int(input())\n\nif N%2 == 0:\n print(int(N/2))\nelse:\n print(int((N/2))+1)", "neg": "N=int(input())\na=N%2\nif a == 0:\n print(N/2)\nelse:\n print((N+1)/2)", "jacc_sim": 0.9411764705882353, "before_after_length": [41, 39], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " a=N%2aN%2int()int(/2))/2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u994988729", "n_user": "u301319173", "pos": "N=int(input())\nans =(N+1)//2\nprint(ans)", "neg": "N=int(input())\nans=N//2+1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [21, 19], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " (+1)+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u947327691", "n_user": "u947327691", "pos": "n=int(input())\n\nif n % 2 == 0:\n print(int(n/2))\nelse:\n print(int((n-1)/2+1))", "neg": "n=int(input())\n\nif n % 2 ==0:\n print(n/2)\nelse:\n print((n-1)/2+1)", "jacc_sim": 1.0, "before_after_length": [42, 38], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " int()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u089786098", "n_user": "u089786098", "pos": "N = int(input())\n\nif N % 2 == 1:\n print(int(N/2+1))\nelif N % 2 == 0:\n print(int(N/2))", "neg": "N = int(input())\nif N % ==1:\n print(int(N/2+1))\nelif N % ==0:\n print(int(N/2))", "jacc_sim": 1.0, "before_after_length": [46, 44], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": "\n2 2 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02759", "p_user": "u589969467", "n_user": "u982594421", "pos": "n = int(input())\nprint(n//2+n%2)\n", "neg": "n = int(input())\nprint(n // 2 + n % 1)", "jacc_sim": 0.9166666666666666, "before_after_length": [18, 17], "nl": "Takahashi wants to print a document with N pages double-sided, where two pages of data can be printed on one sheet of paper. The task is to determine the minimum number of sheets of paper he needs. Constraints: N is an integer, 1 \u2264 N \u2264 100. Input is given as N, and the output should be the answer. For example, if N is 5, the output should be 3, as the first sheet prints pages 1 and 2, the second sheet prints pages 3 and 4, and the third sheet prints page 5.", "diff_info": " 2 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u732061897", "n_user": "u732061897", "pos": "N,R= map(int,input().split())\nif N > 9:\n print(R)\nelse:\n print(R+100*(10-N))", "neg": "N,R= map(int,input().split())\nif N > 9:\n print(R)\nelse:\n print(R-10*(10-N))", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "-+0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u460745860", "n_user": "u669729085", "pos": "N, R = input().split()\nprint(R if int(N) >= 10 else int(R)+100*(10-int(N)))\n", "neg": ", R = map(int, input().split())\n\nif N > 10:\n print(R)\nelse:\n print(R+100*(10-N))", "jacc_sim": 0.9047619047619048, "before_after_length": [33, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "N map(int,)\nif N > 10:\n if int(N\n >= 10 :\n pr)int()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u398175819", "n_user": "u578462133", "pos": "N,R = map(int,input().split())\nif N < 10:\n print(R + (100*(10-N)))\nelse:\n print(R)", "neg": "N, R = map(int, input().split())\n\nif N < 10:\n print(R - 100 * (10 - N))\nelse:\n print(R)", "jacc_sim": 0.9523809523809523, "before_after_length": [40, 41], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n+- 100 * 0*(10 )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u328364772", "n_user": "u521866787", "pos": "n, r = map(int, input().split())\n\nif n < 10:\n print(r + (10-n) * 100)\nelse:\n print(r)\n", "neg": "n,r=map(int,input().split())\nif n<=10:\n print(r-100*(10-n))\nelse:\n print(r)", "jacc_sim": 0.9523809523809523, "before_after_length": [43, 40], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n = + -100* * 100 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u870684607", "n_user": "u489762173", "pos": "N,R = map(int,input().split())\nif N > 10: print (R)\nelse:\n print (R+(100*(10-N)))", "neg": "N,R = list(map(int,input().split()))\n\nif N >= 10:\n print(R)\nelse:\n print(100*(10-N))", "jacc_sim": 0.9090909090909091, "before_after_length": [38, 41], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "list()\n=\n (R+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u549579601", "n_user": "u637138924", "pos": "n, r = map(int, input().split())\n\nif n <= 10:\n print(100 * (10 - n) + r)\nelse:\n print(r)", "neg": "n,r = map(int,input().split())\nif n < 10:\n print(r+100*(10-n))\nelse:\n print(n)", "jacc_sim": 1.0, "before_after_length": [42, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n=r+ + rnr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u242196904", "n_user": "u082861480", "pos": "n, r = map(int, input().split())\n\nif n > 10:\n print(r)\nelse:\n print(r + 100 * (10 - n))", "neg": "n,r = map(int,input().split())\nprint(r if n >= 10 else r - 100*(10-n))", "jacc_sim": 0.9047619047619048, "before_after_length": [41, 29], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \nif n > 10:\n print(r)\nelse:\n +if n >= 10 else r - ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u669770320", "n_user": "u669770320", "pos": "n,m = map(int,input().split())\nif n < 10:\n print(m+(100*(10-n)))\nelse:\n print(m)", "neg": "\nn,m = map(int.input().split())\nif n < 10:\n print(m+(100*(10-n)))\nelse:\n print(m)", "jacc_sim": 1.0, "before_after_length": [40, 41], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "\n.,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u737451238", "n_user": "u835924161", "pos": "n, r = map(int,input().split())\nprint(r) if n >= 10 else print(100 * (10 - n) + r)", "neg": "n,r=map(int,input().split())\nif n>10:\n\tprint(r)\nelse:\n\tprint(r-1000+100*n)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [34, 40], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " if n>10:\n\t\n if n >= 10 :\n\tr-0+ * (0* - \n + r)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u758475901", "n_user": "u702786238", "pos": "N,R =map(int,input().split())\n\nif N >= 10:\n print(R)\n \nelse:\n print(R + 100*(10-N))", "neg": "N, R = map(int, input().split())\n\nif N >= 10:\n print(R)\nelse:\n print(R-(100*(10-N)))", "jacc_sim": 0.9523809523809523, "before_after_length": [43, 41], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n-( + )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u214561383", "n_user": "u106181248", "pos": "n,r = map(int, input().split())\nif n <10:\n print(r + (10-n)*100)\nelse:\n print(r)", "neg": "n, r = map(int,input().split())\n\nif r<10:\n print(100*(10-n))\nelse:\n print(r)", "jacc_sim": 0.9523809523809523, "before_after_length": [40, 38], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \nrn 100*r + *100 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u902361509", "n_user": "u902361509", "pos": "a, b = input().split()\nif int(a) <= 9:\n ans = int(b) + 100 * (10 - int(a))\n print(ans)\nelse:\n print(b)\n ", "neg": "a, b = input().split()\nif int(a) < 9:\n ans = int(b) - 100 * (10 - int(a))\n print(ans)\nelse:\n print(b)\n\n", "jacc_sim": 0.9545454545454546, "before_after_length": [52, 52], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "=-+\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u709799578", "n_user": "u924783770", "pos": "N, R = map(int, input().split())\nif N >= 10:\n print(R)\nelse:\n print(R + (1000 - (100 * N)))", "neg": "N,R=map(int,input().split())\n\nif N>=10:\n print(R)\nelse:\n print(100*(10-N))", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n R + (*0 - -0 * )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u496184631", "n_user": "u496184631", "pos": "a = list(map(int, input().split()))\nif a[0]< 10:\n print (a[1]+100*(10-a[0]))\nelse:\n print (a[1])", "neg": "a= list(map(int, input().split()))\nif a[0]<10:\n print(a[1]-100*(10-a[0])\nelse:\n print(a[1])", "jacc_sim": 0.96, "before_after_length": [49, 50], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " -+) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u435480265", "n_user": "u617659131", "pos": "n,r = map(int,input().split())\nif n >=10:\n print(r)\nelse:\n print(r+100*(10-n))", "neg": "n, r = map(int, input().split())\nif n >= 10:\n print(r)\nelse:\n print(r + 100 * (10 - r))", "jacc_sim": 1.0, "before_after_length": [39, 40], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " n r", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u492749916", "n_user": "u296101474", "pos": "n,r = map(int, input().split())\n\nif n>= 10:\n print (r)\nelse:\n print (r+100*(10-n))", "neg": "n, r = map(int, input().split())\n\nif n >= 10:\n print(r)\nelse:\n print(r - (100*(10 - n)))\n", "jacc_sim": 0.9523809523809523, "before_after_length": [41, 42], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " + - ( )\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u682860781", "n_user": "u729627789", "pos": "n, r = map(int, input().split())\n\nif n >= 10:\n print(r)\nelse:\n rate = r + 100 * (10 - n)\n print(rate)\n", "neg": "n, r = map(int, input().split())\nif n >= 10:\n print(r)\nelse:\n print(100*(10-n))", "jacc_sim": 0.9090909090909091, "before_after_length": [48, 37], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "\nrate = r + 100 * (10 - n)\n rate100*(10-n)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u624075921", "n_user": "u624075921", "pos": "n, r = map(int, input().split())\n\nif n >= 10:\n print(r)\nelse:\n print(r + ((10 - n) * 100))\n", "neg": "n,r = map(int,input().split())\nif n >= 10:\n print(r)\nelse:\n ans = r+ (100*(10-k))\n print(ans)", "jacc_sim": 0.9130434782608695, "before_after_length": [43, 46], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n ans = r+ (100*(10-k))\nar + ((10 - s * 100))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u193657135", "n_user": "u371132735", "pos": "N,R=map(int,input().split())\n\nif N >= 10:\n print(R)\nelse:\n ans = R+100*(10-N)\n print(ans)\n", "neg": "N, R = map(int,input().split())\nif N >= 10 :\n print(R)\nelse:\n print(100*(10-R))\n\n", "jacc_sim": 0.9090909090909091, "before_after_length": [47, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n pri at(s = R+NR) print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u485286322", "n_user": "u485286322", "pos": "i = input().split()\nn = int(i[0])\nr = int(i[1])\n\nif n >= 10:\n print(r)\nelse:\n print(r + 100*(10-n))", "neg": "i = input().split()\nn = int(i[0])\nr = int(i[1])\n\nif n >= 10:\n print(n)\nelse:\n print(r + 100*(10-n))", "jacc_sim": 1.0, "before_after_length": [52, 52], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "nr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u868981240", "n_user": "u868981240", "pos": "from sys import stdin\n\nN, R = [int(x) for x in stdin.readline().rstrip().split()]\n\nif N >= 10:\n print(R)\nelse:\n print(R + (100*(10 - N)))\n\n", "neg": "from sys import stdin\n\nN, R = [int(x) for x in stdin.readline().rstrip().split()]\n\nif N >= 10:\n print(R)\nelse:\n print(R - (100*(10 - N)))\n \n", "jacc_sim": 0.9666666666666667, "before_after_length": [60, 61], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "-+ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u984276646", "n_user": "u194472175", "pos": "N, R = map(int, input().split())\nif N < 10:\n print(R + 100*(10-N))\nelse:\n print(R)", "neg": "N,R = map(int,input().split())\nif N >= 10:\n print(R)\nelse:\n print(R+100*(100-N))\n ", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 41], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " <>= + 100*(10-N)+100*(100-N)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u836743234", "n_user": "u653837719", "pos": "n,r=map(int,input().split())\nif n>=10 :\n print(r)\nelse : \n print(r+100*(10-n))", "neg": "n, r = map(int, input().split())\n\nif n >= 10:\n print(r)\nelse:\n print(r + 100 * (10 - 2n))\n", "jacc_sim": 0.9545454545454546, "before_after_length": [40, 43], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n 2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u760794812", "n_user": "u669742612", "pos": "N,R = map(int,input().split())\nif N >=10:\n print(R)\nelse:\n print(R+100*(10-N))", "neg": "N,R=map(int,input().split())\nif N>=10:\n print(R)\nelse:\n print(R-100*(10-N))", "jacc_sim": 0.9523809523809523, "before_after_length": [39, 40], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " -+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u676939443", "n_user": "u998867748", "pos": "n, r = map(int, input().split())\n\nif n >= 10:\n print(r)\nelse:\n a = 100 * (10 - n)\n print(r + a)", "neg": "n,r = map(int,input().split())\n\nif n > =10:\n print(r)\n\nelse:\n print(r-100*(10-n))", "jacc_sim": 0.9090909090909091, "before_after_length": [47, 42], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " == \n a = 100 * (10 - n)\n + a-100*(10-n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u317779196", "n_user": "u932225778", "pos": "n,r = map(int, input().split())\nif n < 10:\n ans = r + 100 * (10 - n)\nelse:\n ans = r\nprint(ans)", "neg": "n,r = map(int(input(),split()))\nif n < 10 :\n print(100 * (10 - n) + r)\nelse:\n print(r)", "jacc_sim": 0.9090909090909091, "before_after_length": [44, 42], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "(, ,.) p ans = + int( + r) ans = r\nrans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u659302753", "n_user": "u659302753", "pos": "from sys import stdin\n\n\ndef get_result(data):\n N, R = data\n if N < 10:\n return R + 100 * (10 - N)\n \n return R\n\nif __name__ == '__main__':\n data = list(map(int, stdin.readline().split(' ')))\n result = get_result(data)\n print(result)\n", "neg": "from sys import stdin\n\n\ndef get_result(data):\n print(data)\n N, R = data\n return int(N + 100 * (10 - R))\n\nif __name__ == '__main__':\n data = list(map(int, stdin.readline().split(' ')))\n result = get_result(data)\n print(result)\n", "jacc_sim": 0.9696969696969697, "before_after_length": [93, 88], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": "\n print(data)return f nt(< 10:\n return R N)\n \n return ))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u844646164", "n_user": "u735975757", "pos": "n, r = map(int, input().split())\nif n >= 10:\n print(r)\nelse:\n print(100*(10-n)+r)\n", "neg": "n,r = map(int,input().split())\n\nif n >= 10:\n\tprint(r)\nelse:\n\tr -= 100*(10-n)\n print(r)", "jacc_sim": 0.9523809523809523, "before_after_length": [40, 44], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n\t \t p -= int(+\n print(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u623687794", "n_user": "u167205647", "pos": "n,r=map(int,input().split())\nif n>=10:\n print(r)\nelse:print(r+100*(10-n))\n", "neg": "n,r = map(int,input().split())\nif n >= 10:\n print(r)\nelse :\n print(r-100*(10-n))", "jacc_sim": 0.9523809523809523, "before_after_length": [39, 39], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n -+\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02765", "p_user": "u893185398", "n_user": "u573144253", "pos": "N,R = map(int,input().split())\nif N < 10:\n print(R+(10-N)*100)\nelse:\n print(R)", "neg": "N,R = map(int, input().split())\n\nif N < 10:\n print(R)\nelse:\n print(100*(10-K))", "jacc_sim": 0.9090909090909091, "before_after_length": [40, 38], "nl": "Takahashi, a member of the programming competition site ButCoder, has an Inner Rating and a Displayed Rating. The Displayed Rating is equal to the Inner Rating if the member has participated in 10 or more contests. Otherwise, the Displayed Rating is the Inner Rating minus 100 times the difference between 10 and the number of contests participated. Given the number of contests Takahashi participated in (N) and his Displayed Rating (R), find his Inner Rating. Constraints: N is between 1 and 100, R is between 0 and 4111. Input format: N R. Output: Print Takahashi's Inner Rating. Example: For input 2 2919, the output is 3719. For input 22 3051, the output is 3051.", "diff_info": " \n+(10-N)*100R100*(10-K)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u432853936", "n_user": "u263438842", "pos": "n,k= map(int,input().split())\nans = 0\nwhile n >= 1:\n n = n//k\n ans +=1\nprint(ans)\n", "neg": "n, k = map(int, input().split())\nres = 0\nwhile n >= k:\n res += 1\n n //= k\n print(res+1)", "jacc_sim": 0.9047619047619048, "before_after_length": [40, 41], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " reank1re n = n//k\n an n //= k\n rean+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u978933721", "n_user": "u978933721", "pos": "import numpy as np\nN, K = map(int, input().split())\n\nres = 0\nM = N\nwhile M >= 1:\n M /= K\n res += 1\nprint(res)\n", "neg": "import numpy as np\nN, K = map(int, input().split())\n\nres = 0\nM = N\nwhile M > 1:\n M /= 3\n res += 1\nprint(res)", "jacc_sim": 0.9615384615384616, "before_after_length": [48, 47], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "=3K\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u968846084", "n_user": "u444722572", "pos": "n,k=map(int,input().split())\na=0\nwhile n>=k:\n n=n//k\n a=a+1\nprint(a+1)", "neg": "n,k=map(int,input().split())\ni=0\nwhile (n>0):\n n/=k\n i+=1\nprint(i)", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 40], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "ia(0)=k n==/ ia=a=ia+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u636683284", "n_user": "u225845681", "pos": "N, K = map(int, input().split())\nfor i in range(10**9):\n if K**(i) <= N < K**(i+1):\n print(i+1)\n exit()", "neg": "N,K = map(int,input().split())\nfor i in range(10**9):\n print(K**i)\n if K**i <= N < K**(i+1):\n print(i+1)\n break", "jacc_sim": 0.9230769230769231, "before_after_length": [52, 57], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " print(K**i)\n ()brakxit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u243061947", "n_user": "u243061947", "pos": "def Digits(N, K):\n if not N:\n return 1\n digits = 0\n while N:\n N = N // K\n digits += 1\n return digits\n \nN, K = map(int, input().split())\nprint (Digits(N, K))\n", "neg": "def Digits(N, K):\n if N:\n return 1\n digits = 0\n while N:\n N = N // K\n digits += 1\n return digits\n\nN, K = map(int, input().split())\nprint (Digits(N, K))", "jacc_sim": 0.9583333333333334, "before_after_length": [69, 66], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " not \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u969190727", "n_user": "u446371873", "pos": "n,k=map(int,input().split())\nans=0\nwhile n>0:\n ans+=1\n n//=k\nprint(ans)", "neg": "n,k = map(int,input().split())\nans = 0\nwhile int(n / k) != 0:\n ans += 1\n n = int(n / k)\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 47], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " i>t(n / k) != // int(n / )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u862920361", "n_user": "u862920361", "pos": "N,K=(int(x) for x in input().split())\nb=1\na=1\nif N==1:\n print(1)\nelse:\n while a<=N:\n b=b+1\n a=K**b\n else:\n print(b)\n", "neg": "N,K=(int(x) for x in input().split())\nb=1\na=1\nwhile a= A:\n cnt += 1\n A = K**(cnt+1)-1\n print(cnt+1)", "neg": "N,K= map(int, input().split())\nA = 0\ncnt = -1\nif N == 0:\n print(1)\nelse:\n while N >= A:\n cnt += 1\n A = K**(cnt+1)-1\n print(A)\n print(cnt+1)", "jacc_sim": 0.96, "before_after_length": [70, 74], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "=<0K-1= print(A)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u218487926", "n_user": "u218487926", "pos": "n, k = [int(i) for i in input().split()]\ndef decNbin(t, n):\n a = []\n while t!= 0:\n a.append(t % n)\n t = t // n\n a.reverse()\n return a\nprint(len(str(\"\".join(map(str, decNbin(n, k))))))\n", "neg": "n, k = [int(i) for i in input().split()]\ndef decNbin(t, n):\n a = []\n while t!= 0:\n a.append(t % n)\n t = t // n\n a.reverse()\n return a\n\"\".join(map(str, decNbin(n, k)))", "jacc_sim": 0.9428571428571428, "before_after_length": [93, 85], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "print(len(str()))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u483896240", "n_user": "u483896240", "pos": "# -*- coding: utf-8 -*-\n\nn, k = map(int, input().split())\n\nres = 0\nwhile n > 0:\n res += 1\n n //= k\nprint(res)", "neg": "# -*- coding: utf-8 -*-\n\nn, k = map(int, input().split())\n\nres = 0\nwhile n > 0:\n res += 1\n n //= k\n print(res, n, k)\nprint(res)", "jacc_sim": 1.0, "before_after_length": [53, 63], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " print(res, n, k)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u548303713", "n_user": "u388297793", "pos": "n,k=map(int,input().split())\nans=0\nwhile 0=0:\n n//k\n ans+=1\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [40, 39], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "0<>=0\n n//k n=n//k\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u607729897", "n_user": "u607729897", "pos": "import itertools\nN,K = map(int,input().split())\n\nfor i in itertools.count(0):\n if N//(K**i)0:\n n//=k\n ans+=1\nprint(ans)", "neg": "n,k=map(int,input().split())\ncount=0\nwhile (n/k)>=1:\n n/=k\n count+=1\n\nprint(count)", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 45], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "acouts(/k)0=1/acouts\nacouts", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u856564576", "n_user": "u856564576", "pos": "n, k = map(int, input().split())\n\nans = 1\nwhile(True):\n n = n//k\n if(n == 0):\n break\n ans += 1\n\nprint(ans)", "neg": " = map(int, input().split())\n\nans = 1\nwhile(True):\n n = n//k\n if(n == 0):\n break\n ans += 1\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [51, 49], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "n, k\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u924828749", "n_user": "u924828749", "pos": "n,k = [int(x) for x in input().split()]\nres = 0\nwhile n > 0:\n n //= k\n res += 1\nprint(res)", "neg": "n,k = [int(x) for x in input().split()]\nres = 0\nwhile n > 0:\n n // k\n c += 1\nprint(res)", "jacc_sim": 0.96, "before_after_length": [43, 42], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "=cres", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u673338219", "n_user": "u673338219", "pos": "n,k = map(int,input().split())\nc = 0\nwhile n > 0:\n n = n//k\n c += 1\nprint(c)", "neg": "n,k = map(int,input().split())\nc = 0\nwhile n > 0:\n n = n//7\n c += 1\nprint(c)\n ", "jacc_sim": 0.9523809523809523, "before_after_length": [39, 41], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "7k\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u628583308", "n_user": "u628583308", "pos": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int, K: int):\n count = 0\n while True:\n N = N // K\n if N >= 1:\n count += 1\n else:\n break\n print (count+1)\n return\n\n\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n solve(N, K)\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int, K: int):\n count = 0\n while True:\n N = N // K\n if N >= 1:\n count += 1\n else:\n break\n print (cont)\n return\n\n\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n K = int(next(tokens)) # type: int\n solve(N, K)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9859154929577465, "before_after_length": [220, 218], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "u+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u776557412", "n_user": "u776557412", "pos": "def Base_10_to_n(X, n):\n if (int(X/n)):\n return Base_10_to_n(int(X/n), n)+str(X%n)\n return str(X%n)\n \nN, K = map(int, input().split())\nif K!=10:\n N = Base_10_to_n(N, K)\nprint( len(str(N)) )", "neg": "def Base_10_to_n(X, n):\n if (int(X/n)):\n return Base_10_to_n(int(X/n), n)+str(X%n)\n return str(X%n)\n\nN, K = map(int, input().split())\nif K!=10:\n N = Base_10_to_n(N, K)\nprint( N )", "jacc_sim": 0.9615384615384616, "before_after_length": [106, 100], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " len(str( ) )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u436725550", "n_user": "u436725550", "pos": "N, K = map(int, input().split())\ncout = 1\nfor i in range(N):\n if N= k:\n n //= k\n cnt += 1\n \nprint(cnt + 1)", "neg": "n,k=map(int,input().split())\nans=0\nwhile n>k:\n n/=k\n n=int(n)\n ans+=1\n\nprint(ans+1)", "jacc_sim": 0.9047619047619048, "before_after_length": [42, 50], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " acst = / cn=i(n) += 1 ans+=1\nacst ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u103915901", "n_user": "u103915901", "pos": "n,k=map(int,input().split())\nans=0\nwhile n!=0:\n if n//k!=0:\n ans=ans+1\n elif n%k!=0:\n ans=ans+1\n n=n//k\nprint(ans)", "neg": "n,k=map(int,input().split())\nans=0\nwhile n!=0:\n if n//k!=0:\n ans=ans+1\n elif n%k!=0:\n ans=ans+1\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [69, 63], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": " n=n//k\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u189604332", "n_user": "u189604332", "pos": "def calculate_num(m, n):\n integer = m\n base = n\n result = ''\n digit = 0\n while integer > 0:\n result += str(integer%base)\n integer = integer//base\n digit = len(result)\n return digit\n\ndef main():\n num = input()\n num_list = num.split()\n number = int(num_list[0])\n base = int(num_list[1])\n result = calculate_num(number, base)\n print(result)\nmain()", "neg": "def calculate_num(m, n):\n integer = m\n base = n\n result = ''\n while integer > 0:\n result += str(integer%base) + result\n integer = integer//base\n print(integer)\n return result\n\ndef main():\n num = input()\n num_list = num.split()\n number = int(num_list[0])\n base = int(num_list[1])\n result = calculate_num(number, base)\n print(int(result))\nmain()", "jacc_sim": 0.9428571428571428, "before_after_length": [131, 128], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "digit = 0\n + resultdprnt(inteier)\n reurn= resuen(result)\n return digiint()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u554039145", "n_user": "u554039145", "pos": "input = input()\n\narr = input.split(\" \")\nN = int(arr[0])\nK = int(arr[1])\n\ndef Base_10_to_n(X, n):\n X_dumy = X\n out = ''\n while X_dumy>0:\n out = str(X_dumy%n)+out\n X_dumy = int(X_dumy/n)\n return out\n\nR = Base_10_to_n(N, K)\n\nprint(len(str(R)))", "neg": "input = input()\n\narr = input.split(\" \")\nN = int(arr[0])\nK = int(arr[1])\n\ndef Base_10_to_n(X, n):\n X_dumy = X\n out = ''\n while X_dumy>0:\n out = str(X_dumy%n)+out\n X_dumy = int(X_dumy/n)\n return out\n\nR = Base_10_to_n(11, 2)\n\nprint(len(str(R)))", "jacc_sim": 0.9428571428571428, "before_after_length": [129, 129], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "N112K", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u289288647", "n_user": "u289288647", "pos": "N, K = map(int, input().split())\ndef transform(X, n):\n if (int(X/n)):\n return transform(int(X/n), n)+str(X%n)\n return str(X%n)\n\nprint(len(transform(N, K)))\n", "neg": "N, K = map(int, input().split())\ndef transform(X, n):\n print(int(X/n))\n if (int(X/n)):\n return transform(int(X/n), n)+str(X%n)\n return str(X%n)\n\nprint(len(transform(N, K)))\n", "jacc_sim": 1.0, "before_after_length": [72, 82], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "\n print(int(X/n))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u018258333", "n_user": "u018258333", "pos": "n,k = map(int,input().split())\nn2 = k\ncount = 0\nwhile n2 <= n:\n n2*=k\n count+=1\nprint(count+1)", "neg": "n,k = map(int,input().split())\nn2 = k\ncount = 0\nwhile n2 <= n:\n n2*=k\n count+=1\nprint(n2)\nprint(count+1)", "jacc_sim": 1.0, "before_after_length": [48, 54], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "n2)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u993435350", "n_user": "u993435350", "pos": "N,K = map(int,input().split())\n\nans = \"\"\n\nwhile True:\n r = str(N % K)\n ans += r\n N = N // K\n if N < K:\n ans += str(N % K)\n break\n\nans = ans[::-1]\nif ans[0] == \"0\":\n ans = ans[1:] \n\nprint(len(ans))", "neg": "N,K = map(int,input().split())\n\nans = \"\"\n\nwhile True:\n r = str(N % K)\n ans += r\n N = N // K\n if N < K:\n ans += str(N % K)\n ans = ans[::-1]\n if ans[0] == \"0\":\n ans = ans[1:]\n break\n \nprint(len(ans))", "jacc_sim": 1.0, "before_after_length": [100, 102], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "break\n\n \n break ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u433380437", "n_user": "u433380437", "pos": "N,K = map(int,input().split())\nfor i in range(N):\n if N >=K**i and N =2**i and N <2**(i+1):\n print(i+1)", "jacc_sim": 0.9230769230769231, "before_after_length": [49, 46], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "2K2K\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u509516894", "n_user": "u509516894", "pos": "def Base_10_to_n(X, n):\n if (int(X/n)):\n return Base_10_to_n(int(X/n), n)+str(X%n)\n return str(X%n)\nx2 = 0\nx10, n = input().split()\nx10 = int(x10)\nn = int(n)\nx2 = Base_10_to_n(x10, n)\nprint(len(x2))", "neg": "def Base_10_to_n(X, n):\n if (int(X/n)):\n return Base_10_to_n(int(X/n), n)+str(X%n)\n return str(X%n)\nx2 = 0\nx10, n = input().split()\nprint(int(x10), int(n))\nx10 = int(x10)\nn = int(n)\nx2 = Base_10_to_n(x10, n)\nprint( len(x2) )", "jacc_sim": 1.0, "before_after_length": [114, 127], "nl": "You are given an integer N. Find the number of digits that N has in base K. The input is given as N and K, and the output should be the number of digits that N has in base K. All input values are integers, and N ranges from 1 to 10^9 while K ranges from 2 to 10.", "diff_info": "print(int(x10), int(n))\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02766", "p_user": "u185405877", "n_user": "u185405877", "pos": "i= list(map(int, input().split()))\nj=1\nwhile i[0]>=i[1]**j:\n j+=1\nprint(j)", "neg": "i = list(map(int, input().split()))\nj=1\nwhile i[0]=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u124498235", "n_user": "u752522099", "pos": "s = input()\na = len(s)\nprint (\"x\"*a)", "neg": "s = input()\na = len(s)\nprint(\"x\" * s)", "jacc_sim": 1.0, "before_after_length": [19, 19], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " a s", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u904081717", "n_user": "u904081717", "pos": "S = str(input())\nresult = []\n \nfor i in range(len(S)):\n result.append('x')\n \nresult = ''.join(result)\nprint(result)", "neg": "S = str(input())\nresult = []\n\nfor i in range(len(S)):\n result.append(x)\n\nresult = ''.join(result)\nprint(result)", "jacc_sim": 1.0, "before_after_length": [47, 45], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " '' ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u189604332", "n_user": "u189604332", "pos": "def main():\n S=input()\n nums = len(S)\n xs = ''\n for num in range(nums):\n xs += \"x\"\n print(xs)\nmain()", "neg": "def main():\n S=input()\n nums = len(S)\n print(type(nums))\n xs = ''\n for num in range(nums):\n xs += \"x\"\n print(xs)\nmain()", "jacc_sim": 0.95, "before_after_length": [47, 55], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": ")\n print(type(nums)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u417014669", "n_user": "u417014669", "pos": "s=input()\nnum=len(s)\nprint(\"x\"*(num))", "neg": "s=input()\nnum=len(s)\u00e5\nprint(\"x\"*(num))", "jacc_sim": 0.9166666666666666, "before_after_length": [19, 21], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\u00e5", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u757274384", "n_user": "u085595890", "pos": "s = input()\nprint(\"x\"*(len(s)))", "neg": "s=len(input())\n2 print('x' * len(s))", "jacc_sim": 0.9090909090909091, "before_after_length": [14, 17], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " len()2 '\"\"' ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u740047492", "n_user": "u740047492", "pos": "s=input()\nS=\"\"\nfor i in range(len(s)):\n S+=\"x\"\nprint(S)", "neg": "s=input()\nS=''\nfor i in range(len(s))\n S+='x'\nprint(S)", "jacc_sim": 0.9375, "before_after_length": [31, 30], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "''\"\":'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u507145838", "n_user": "u507145838", "pos": "S = input()\n \nS_len = len(S)\n \nprint(\"x\" * S_len)", "neg": "S = input()\n\nS_len = len(S)\n\nprint(x* S_len)", "jacc_sim": 0.9090909090909091, "before_after_length": [27, 24], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " \"\" ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u189089176", "n_user": "u189089176", "pos": "S = input()\nans = []\n\nfor i in range(len(S)):\n ans.append(\"x\")\n\nprint(\"\".join(ans))", "neg": "S = input()\nS.replace()\n\nans = []\n\nfor i in range(len(s)):\n ans.append(\"x\")\n\nprint(\"\".join(ans))", "jacc_sim": 0.9090909090909091, "before_after_length": [37, 43], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\nS.replace()\nsS", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u731196764", "n_user": "u731196764", "pos": "S = str(input())\nans = ''\nfor i in range(len(S)):\n ans += 'x'\nprint(ans)\n", "neg": "S = str(input())\nprint(len(S))\nans = ''\nfor i in range(len(S)):\n ans += 'x'\n", "jacc_sim": 1.0, "before_after_length": [34, 36], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "))\nprint(len(Sprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u844196583", "n_user": "u844196583", "pos": "S=input()\nlist_s = list(S)\nfor i in range(0, len(list_s)):\n list_s[i] = \"x\"\n\nprint(''.join(list_s))", "neg": "S=input()\nlist_s = list(S)\nfor i in range(0, len(list_s)):\n list_s[i] = \"x\"\nprint(list_s)", "jacc_sim": 0.9090909090909091, "before_after_length": [51, 47], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\n(''.join)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u989089752", "n_user": "u989089752", "pos": "S = input()\nfor i in range(len(S)):\n print('x', end=\"\")", "neg": "S = input()\nfor i in len(S):\n print(x, end=\"\")", "jacc_sim": 0.9375, "before_after_length": [24, 21], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "range()''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u827261928", "n_user": "u827261928", "pos": "S=input()\na=[]\nfor i in range(len(S)):\n a.append('x')\nprint(''.join(a))", "neg": "S=input()\na=[]\nfor i in range(len(S)):\n a.append('\u00d7')\nprint(''.join(a))", "jacc_sim": 0.9047619047619048, "before_after_length": [35, 36], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\u00d7x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u753092134", "n_user": "u753092134", "pos": "g=str(input())\nprint(\"x\"*len(g))\n", "neg": "g=str(input())\nprint(\"x\"*len(s))", "jacc_sim": 0.9166666666666666, "before_after_length": [17, 16], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "sg\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u745687363", "n_user": "u745687363", "pos": "s = input()\nn = len(s)\nX = \"x\" *n\nprint(X)", "neg": "s = input()\nn = len(s)\nX = x*n\nprint(X)", "jacc_sim": 0.9166666666666666, "before_after_length": [24, 22], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\"\" ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u493130708", "n_user": "u111365362", "pos": "s = str(input())\nl = len(s)\n \nprint(\"x\"*l)", "neg": "s = input()\nl = len(input())\nprint('x'*l)", "jacc_sim": 0.9166666666666666, "before_after_length": [23, 19], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "str()sinput()\n '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u403331159", "n_user": "u403331159", "pos": "s=input()\nt=\"\"\nfor i in range(len(s)):\n t+=\"x\"\nprint(t)", "neg": "s=input()\nfor i in range(len(s)):\n t=\"x\"\nprint(t)", "jacc_sim": 0.9375, "before_after_length": [31, 26], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\nt=\"\"+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u825078825", "n_user": "u825078825", "pos": "a=input()\nA=len(a)\nb=\"x\"\nfor i in range(A-1):\n b=b+\"x\"\nprint(b)", "neg": "a=input()\nA=len(a)\nb=x\nfor i in A-1:\n b=b+'x'\nprint(b)", "jacc_sim": 0.9473684210526315, "before_after_length": [39, 36], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\"\"range()'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u961867404", "n_user": "u685726146", "pos": "S = input()\nprint(\"x\" *len(S))", "neg": "S = input()\nprint(S)\nprint(\"x\"*len(S))\n\n", "jacc_sim": 1.0, "before_after_length": [14, 21], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "S)\nprint( \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u450147945", "n_user": "u907515644", "pos": "S = input()\n\nS = [i for i in S]\n\ns = len(S)\n\nfor i in range(s):\n S[i] = 'x'\n\nprint(''.join(S))", "neg": "S = input()\nprint(S[0])\ns = []\nfor i in range(len(S)):\n s.append('x')\nprint(''.join(s))", "jacc_sim": 0.9047619047619048, "before_after_length": [51, 42], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "p\nS = [i fo i t([0)\n[]len(S)\nslen(S)S[i] = s.append()\nsS", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u032955959", "n_user": "u032955959", "pos": "s=input()\na=\"\"\n\nl=len(s)\n\nfor i in range (l):\n a=a+\"x\"\nprint(a)", "neg": "s=input()\n\nl=len(s)\na=\"\"\nfor i in range(l):\n a+\"x\"\n \n \nprint(a)", "jacc_sim": 1.0, "before_after_length": [38, 38], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\na=\"\"a=\"\" =a\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u659302753", "n_user": "u659302753", "pos": "from sys import stdin\n\n\ndef get_result(data):\n# return 'x' * len(data[0])\n return 'x' * len(data)\n\n\nif __name__ == '__main__':\n# data = list(map(str, stdin.readline().split(' ')))\n data = input()\n result = get_result(data)\n print(result)\n", "neg": "from sys import stdin\n\n\ndef get_result(data):\n return 'x' * len(data[0])\n\nif __name__ == '__main__':\n data = list(map(str, stdin.readline().split(' ')))\n # result = get_result(data)\n print('x' * len(data[0]))\n", "jacc_sim": 0.9696969696969697, "before_after_length": [95, 82], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "# return 'x' * len(data)\n\n# #data = input()\n r'x' * lsuln(daa[0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u181668771", "n_user": "u181668771", "pos": "S = input()\nl = len(S)\nans = \"x\" * l\nprint(ans)", "neg": "S = input()\nl = len(S)\nans = \"*\" * l\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [24, 22], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "*x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u654035739", "n_user": "u654035739", "pos": "A = input().strip()\nn = len(A)\nfor i in range(1, n+1):\n if i == n:\n print(\"x\")\n else:\n print(\"x\", end=\"\")", "neg": "n = input().strip()\nfor i in range(1, n+1):\n if i == n:\n print(\"x\")\n else:\n print(\"x\", end=\"\")", "jacc_sim": 0.9130434782608695, "before_after_length": [51, 44], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "nA)\nn = len(A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u919017918", "n_user": "u200228637", "pos": "s = len(input())\n\nprint('x' *s )", "neg": "s = input()\n\na = x\n\nprint('x' * len(s))", "jacc_sim": 0.9090909090909091, "before_after_length": [15, 20], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "len()\n\na = xslen(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u656341025", "n_user": "u189479417", "pos": "S = input()\nfor i in range(len(S)):\n print('x', end='')", "neg": "S = input()\nfor i in range(len(S)):\n print(x,end=\"\")", "jacc_sim": 1.0, "before_after_length": [24, 24], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " '' \"\"''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u927807968", "n_user": "u927807968", "pos": "mozi = str(input())\ns = str()\nfor i in range(len(mozi)):\n s += str(\"x\")\nprint(s)", "neg": "mozi = str(input())\ns = str(x)\nfor i in range(len(mozi)):\n s += \"x\"\nprint(s)", "jacc_sim": 1.0, "before_after_length": [39, 40], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "xstr()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u780698286", "n_user": "u780698286", "pos": "s = input()\nfor i in range(len(s)):\n print(\"x\",end=\"\")", "neg": "s = input()\nfor i in len(s):\n print(x,end=\"\")\n", "jacc_sim": 0.9375, "before_after_length": [24, 22], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "range()\"\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u964521959", "n_user": "u964521959", "pos": "S = input()\nS_list = list(S)\n\nfor i in range(len(S_list)):\n S_list[i] = \"x\"\n\nprint(*S_list, sep=\"\")", "neg": "S = input()\nS_list = list(S)\n\nfor i in range(len(S_list)):\n S_list[i] = \"x\"\n\nprint(*S_list)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [50, 48], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": ", sep=\"\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u735975757", "n_user": "u735975757", "pos": "S = list(input())\nprint(\"x\" * len(S))", "neg": "S = list(input())\nprint(x*len(S))", "jacc_sim": 0.9090909090909091, "before_after_length": [16, 15], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": "\"\" ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02778", "p_user": "u578462133", "n_user": "u578462133", "pos": "S = input()\n \nA = 'x'*(len(S))\nprint(A)", "neg": "S = input()\n\nA = 'x'*(len(S))", "jacc_sim": 0.9090909090909091, "before_after_length": [22, 16], "nl": "Score: 200 points\n\nProblem Statement:\nGiven is a string S. Replace every character in S with 'x' and print the result.\n\nConstraints:\n- S is a string consisting of lowercase English letters.\n- The length of S is between 1 and 100 (inclusive).\n\nInput:\nInput is given from Standard Input in the following format:\nS\n\nOutput:\nReplace every character in S with 'x' and print the result.\n\nSample Input 1:\nsardine\n\nSample Output 1:\nxxxxxxx\nReplacing every character in S with 'x' results in 'xxxxxxx'.\n\nSample Input 2:\nxxxx\n\nSample Output 2:\nxxxx\n\nSample Input 3:\ngone\n\nSample Output 3:\nxxxx", "diff_info": " \nprint(A)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u592035627", "n_user": "u592035627", "pos": "n = int(input())\ns = list(map(int,input().split()))\n \ndef count(x):\n if len(s) != len(set(x)):\n return \"NO\"\n else:\n return \"YES\"\nprint(count(s))", "neg": "n = int(input())\ns = list(map(int,input().split()))\n\ndef count(x):\n if len(s) != len(set(x)):\n return print(\"NO\")\n else:\n return print(\"YES\")", "jacc_sim": 1.0, "before_after_length": [66, 60], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " print()\"YES\"\n\"YES\"count(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u781758937", "n_user": "u781758937", "pos": "N = int(input())\nS = [int(i) for i in input().split()]\nS.sort()\n\nflg = 0\nfor i in range(1,N):\n if S[i] == S[i-1]:\n flg = 1\n \nif flg == 1:\n print(\"NO\")\nelse:\n print(\"YES\") ", "neg": "N = int(input())\nS = [int(i) for i in input().split()].sort()\n\nflg = 0\nfor i in range(1,N):\n if S[i] = S[i-1]:\n flg = 1\n \nif flg == 1:\n print(\"NO\")\nelse:\n print(\"YES\") \n", "jacc_sim": 1.0, "before_after_length": [88, 85], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "\nS=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u975485663", "n_user": "u975485663", "pos": "N = int(input())\nA = list(map(int, input().split()))\nS = list(set(A))\n\nif len(A) == len(S):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "N = int(input())\nA = list(map(int, input().split()))\nS = list(set(A))\nif len(A) == len(S):\n return \"YES\"\nelse:\n return \"NO\"", "jacc_sim": 0.9130434782608695, "before_after_length": [56, 55], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "\npein(urn )pein(urn )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u813452457", "n_user": "u813452457", "pos": "input()\nli = list(map(int, input().split()))\nprint('NO' if len(li)>len(set(li)) else 'YES')", "neg": "input()\nli = map(int,input().split())\n\nprint('NO' if len(li) > len(set(li)) else 'YES')", "jacc_sim": 0.95, "before_after_length": [37, 35], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "list( \n) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u275392848", "n_user": "u275392848", "pos": "n=int(input())\nl=list(map(int,input().split()))\nd={}\nflag=0\n\nfor i in range(n):\n if l[i] in d:\n flag=1\n break\n else:\n d[l[i]]=1\n \nif flag==0:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "neg": "n=input()\nl=list(map(int,input().split()))\nd={}\nflag=0\n\nfor i in range(n):\n if l[i] in d:\n flag=1\n break\n \nif flag==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [92, 75], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "int()else:\n d[l[i]]=1\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u572425901", "n_user": "u572425901", "pos": "import sys\nN = int(input())\nA = list(input().split())\ndef has(s):\n return len(s) != len(set(s))\nB = A\nB = has(A) \nif B == False:\n print(\"YES\")\n sys.stdout.flush\nelse:\n print(\"NO\")\n sys.stdout.flush", "neg": "import sys\nN = int(input())\nA = list(input().split())\ndef has(s):\n return len(s) != len(set(s))\nB = has(A)\n\nif B == False:\n print(\"NO\")\n sys.stdout.flush\nelse:\n print(\"YES\")\n sys.stdout.flush", "jacc_sim": 1.0, "before_after_length": [85, 81], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "A\nB = \n lse:\n print(\"NO\")\n sys.stdout.flush\ne\nelse:\n print(\"NO\")\n sys.stdout.flush", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u512099209", "n_user": "u512099209", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nA.sort()\n\nfor i in range(N - 1):\n if A[i] == A[i + 1]:\n print('NO')\n break\nelse:\n print('YES')\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nA.sort()\n\nfor i in range(N - 1):\n if A[i] == A[i + 1]:\n print('NO')\n return\n\nprint('YES')\n", "jacc_sim": 0.9032258064516129, "before_after_length": [70, 67], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "bakturnelse: ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u232027454", "n_user": "u232027454", "pos": "\ninput()\na = [int(i) for i in input().split(' ')]\nb = list(set(a))\n\nprint( 'YES' if len(a)==len(b) else 'NO' ) ", "neg": "a = [int(i) for i in input().split(' ')]\nb = list(set(a))\n\nprint( 'YES' if len(a)==len(b) else 'NO' ) ", "jacc_sim": 1.0, "before_after_length": [52, 48], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "\ninput()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u193264896", "n_user": "u193264896", "pos": "import sys\ninput = sys.stdin.readline\n \n \ndef main():\n n = int(input())\n x = set(map(int, input().split()))\n length = len(x)\n if n == length:\n print('YES')\n else:\n print('NO')\n \n \nif __name__ == '__main__':\n main()", "neg": "import sys\ninput = sys.stdin.readline\n\n\ndef main():\n n = int(input())\n x = tuple(map(int, input().split()))\n length = len(x)\n if n == length:\n print('YES')\n else:\n print('NO')\n \n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9333333333333333, "before_after_length": [89, 87], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " stuplt ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u590825760", "n_user": "u590825760", "pos": "n = int(input())\nli = [int(x) for x in input().split()]\n\nnozoki = list(set(li))\nnozoki.sort()\nli.sort()\nif (nozoki == li):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "n = int(input())\nli = [int(x) for x in input().split()]\n\nnozoki = list(set(li)).sort()\nli.sort()\nif (nozoki == li):\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [73, 68], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "\nnozoki", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u401949008", "n_user": "u401949008", "pos": "import collections\nn=int(input())\na=list(map(int,input().split()))\nb=len(a)\nc=collections.Counter(a)\ne=len(c.values())\nif b==e:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "import collections\nn=int(input())\na=list(map(int,input().split()))\nb=len(a)\nc=collections.Counter(a)\ne=len(c.values())\nprint(e)\nif b==e:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [69, 74], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "print(e)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u284363684", "n_user": "u284363684", "pos": "from collections import Counter\n\n# input\nN = int(input())\nA = list(map(int, input().split()))\n\nif [1] * N == list(Counter(A).values()):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "from collections import Counter\n\n# input\nN = int(input())\nA = list(map(int, input().split()))\n\nif [1 ** N] == Counter(A).values():\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [62, 59], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "]*]list()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u752774573", "n_user": "u752774573", "pos": "N=int(input())\nA=list(map(int, input().split()))\nA.sort()\nif N==1:\n print('YES')\n exit()\nfor i in range(N-1):\n if A[i]==A[i+1]:\n print('NO')\n exit()\nelse:\n print('YES')", "neg": "A=list(map(int, input().split()))\nn=len(A)\nA.sort()\nfor i in range(N-1):\n if A[i]==A[i+1]:\n print('NO')\n exit()\nelse:\n print('YES')", "jacc_sim": 0.9375, "before_after_length": [84, 68], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "N=int(input())\nn=len(A)\nt()\nif N==1:\n print('YES')\n exi", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u907668975", "n_user": "u907668975", "pos": "import sys\nn = int(input())\na = sorted(list(map(lambda x: int(x),input().split())))\nfor i in range(n - 1):\n if a[i] == a[i+1] :\n print('NO')\n sys.exit()\nprint('YES')", "neg": "import sys\nn = int(input())\na = sorted(list(map(lambda x: int(x),input().split())))\nfor i in range(n - 1):\n if a[i] == a[i+1] :\n print('NO')\n sys.exit()\nprint('Yes')\n", "jacc_sim": 0.9411764705882353, "before_after_length": [72, 73], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "esES\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u069868485", "n_user": "u069868485", "pos": "N=(int)(input())\nA=(input()).split()\nA.sort()\n \nfor i in range(N-1):\n if A[i]==A[i+1]:\n print('NO')\n break\n elif i==N-2:\n print('YES')", "neg": "N=(int)(input())\nA=(input()).split()\nA.sort()\n \nfor i in range(N-1):\n if A[i]==A[i+1]:\n print('NO')\n if i==N-2:\n print('YES')", "jacc_sim": 0.9285714285714286, "before_after_length": [69, 66], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " break\n el ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u507456172", "n_user": "u870684607", "pos": "N=int(input())\nA=list(map(int,input().split()))\nif len(A)==len(set(A)):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "N = int(input())\nA = list(map(int,input().split()))\nb = list(set(A))\nif b == A: print ('YES')\nelse: print ('NO')", "jacc_sim": 0.9090909090909091, "before_after_length": [49, 46], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " ifb =isten(A)==len:ifb == A: '\"'\"\n '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u652181492", "n_user": "u661347997", "pos": "n = int(input())\na = input().split()\nif (len(a) == len(set(a))):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "n = int(input())\na = input().split(' ')\n\nif len(set(a)) == n:\n print('YES')\nelse\n print('NO')", "jacc_sim": 1.0, "before_after_length": [43, 40], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "' '\n (len(a) ==) == n'\"'\":'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u724844363", "n_user": "u724844363", "pos": "from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\ncnt = Counter(a)\nflag = [i for i in cnt.values()]\nif len(set(flag)) == 1 and max(flag) == 1:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\ncnt = Counter(a)\nflag = [i for i in cnt.values()]\nif len(set(flag)) == 1:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9444444444444444, "before_after_length": [79, 72], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": ") == 1 and max(flag", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u608088992", "n_user": "u977193988", "pos": "N = int(input())\nA = set(list(map(int, input().split())))\nprint(\"YES\" if len(A) == N else \"NO\")", "neg": "N = int(input())\nA = list(map(int,input().split()))\nprint(A)\nif N==len(A):\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9047619047619048, "before_after_length": [38, 48], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "set( )A)\n\"YES\" N==:\n==N print('YES')\n:\n\" print(''\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u706330549", "n_user": "u706330549", "pos": "n = int(input())\na_n = list(map(int, input().split()))\n\nb_n = sorted(a_n)\nflg = 0\n\nfor i in range(n - 1):\n if b_n[i] == b_n[i + 1]:\n flg = 1\n\nif flg == 1:\n print(\"NO\")\nelse:\n print(\"YES\")", "neg": "n = int(input())\na_n = list(map(int, input().split()))\n\nb_n = sorted(a_n)\nflg = 0\n\nfor i in range(n - 1):\n if b_n[i] == b_n[i + 1]:\n flg = 1\n\nif flg == 1:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [97, 97], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": ":\n print(\"NO\")\nelse\nelse:\n print(\"NO\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u633355062", "n_user": "u294385082", "pos": "n = int(input())\na = list(map(int, input().split()))\nset_a = set(a)\nif len(set_a) == len(a):\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "n = int(input())\na = list(map(int,input().split()))\nse = set(n)\n\nif len(se) == len(a):\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9130434782608695, "before_after_length": [57, 54], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " t_ana\nt_a '\"'\" '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u051331793", "n_user": "u051331793", "pos": "N = int(input())\nP = list(map(int,input().split()))\ndef has_duplicates(seq):\n return str(len(seq) != len(set(seq)))\nif has_duplicates(P) == 'False':\n print('YES')\nelif has_duplicates(P) == 'True':\n print('NO')", "neg": "N = int(input())\nP = list(map(int,input().split()))\ndef has_duplicates(seq):\n return len(seq) != len(set(seq))\nif has_duplicates(P) == 'False':\n print('YES')\nelif has_duplicates(P) == 'True':\n print('NO')", "jacc_sim": 0.9655172413793104, "before_after_length": [81, 79], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "str() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u089925107", "n_user": "u089925107", "pos": "import sys\nN = int(input())\ncc = list(map(int,input().split()))\ndic = set()\nfor i in cc:\n if i in dic:\n print('NO')\n sys.exit()\n else:\n dic.add(i)\nprint('YES')", "neg": "import sys\nN = int(input())\ncc = list(map(int,input().split()))\ndic = set()\nfor i in cc:\n if i in dic:\n print('NO')\n sys.exit()\n else:\n dic.append(i)\nprint('YES')\n\n ", "jacc_sim": 0.9310344827586207, "before_after_length": [70, 73], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "dppen\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u185806788", "n_user": "u185806788", "pos": "N=int(input())\nA=sorted(list(map(int,input().split())))\nflag = False\nfor i in range(1,N):\n if A[i] == A[i-1]:\n flag = True\nif flag:\n print(\"NO\")\nelse:\n print(\"YES\")\n", "neg": "N=int(input())\nA=sorted(list(map(int,input().split())))\nfor i in range(1,N):\n if A[i] == A[i-1]:\n print(\"YES\")\n else:\n print(\"NO\")", "jacc_sim": 0.9032258064516129, "before_after_length": [75, 62], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "lag = False\nfflag = True\nif flag:\n print(\"NO\")\nelse:\n else:\n print(\"NO\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u270467412", "n_user": "u337626942", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nA.sort()\n\nans = \"YES\"\nfor i in range(N-1):\n if A[i] == A[i+1]:\n ans = \"NO\"\n break\nprint(ans)", "neg": "N=int(input())\nA=list(map(int, input().split()))\n\nA.sort()\nfor i in range(N-1):\n if A[i]==A[i+1]:\n print(\"NO\")\n\nprint(\"YES\")", "jacc_sim": 0.9333333333333333, "before_after_length": [72, 62], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": " \nans = \"YES\"\n ans = \"NO\"\npbeakint(\"NO\")\nans\"YES\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u723345499", "n_user": "u723345499", "pos": "n = int(input())\na = list(map(int, input().split()))\na.sort()\n\nfor i in range(len(a)):\n if a[i] == a[i-1]:\n print(\"NO\")\n break\nelse:\n print(\"YES\")", "neg": "n = int(input())\na = list(map(int, input().split()))\na.sort()\n\nfor i in range(len(a)):\n if a[i] == a[i-1]\n print(\"NO\")\nelse:\n print(\"YES\")", "jacc_sim": 0.9666666666666667, "before_after_length": [69, 66], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": ": \n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u907223098", "n_user": "u907223098", "pos": "n=int(input())\na=[int(i) for i in input().split()]\nanswer=\"YES\"\na.sort()\nfor i in range(n-1):\n if a[i]==a[i+1]:\n answer=\"NO\"\n break\nprint(answer)\n", "neg": "n=int(input())\na=[int(i) for i in input().split()]\nanswer=\"YES\"\nfor i in range(n-1):\n if a[i]==a[i+1]:\n answer=\"NO\"\n break\nprint(answer)", "jacc_sim": 0.9629629629629629, "before_after_length": [70, 64], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "\na.sort()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u499106786", "n_user": "u499106786", "pos": "num = input()\nstr_list = input().split(\" \")\n \nyes = True\nnum_dict = {}\nfor s in str_list:\n\tif s in num_dict:\n\t\tyes = False\n\t\tbreak\n\telse:\n\t\tnum_dict[s] = 1\nif yes:\n\tprint(\"YES\")\nelse:\n\tprint(\"NO\")", "neg": "num = int(input())\nstr_list = input.split(\" \")\n \nnum_dict = {}\nyes = True\nfor s in str_list:\n if s in num_dict:\n yes = False\n break\n else:\n num_dict[s] = 1\nif yes:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9655172413793104, "before_after_length": [87, 86], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "t(in)()yes = True\n\nyes = True\t \t\t \t\t \t \t\t \t \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u101442050", "n_user": "u609814378", "pos": "n = int(input())\nA = list(map(int,input().split()))\nif(len(A) == len(set(A))):\n print('YES')\nelse:\n print('NO')", "neg": "import sys\nA = list(map(int, input().split()))\nn = int(input())\n\nif len(A) == len(set(A)):\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9130434782608695, "before_after_length": [50, 53], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": "n = mnt(inuor()) sys n = int(input())\n\n ()\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02779", "p_user": "u211805975", "n_user": "u211805975", "pos": "#154 Distinct or not\nn = int(input())\na = list(map(int,input().split()))\nb = len(set(a))\n\nif len(a) == b:\n print('YES')\nelse:\n print('NO')", "neg": "#154 Distinct or not\nn = int(input())\na = list(map(int,input().split())\nb = set(a)\n\nif len(a) == b:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 1.0, "before_after_length": [61, 58], "nl": "You are given a sequence of integers A_1, A_2, ..., A_N. If the elements are all distinct, print \"YES\"; otherwise, print \"NO\". Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 10^9. Input format: N followed by A_1 to A_N. Output \"YES\" if elements are distinct, \"NO\" otherwise.", "diff_info": ")len() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u069273180", "n_user": "u069273180", "pos": "from sys import stdin\n\nn=int(input())\np=list(map(int,input().split()))\n\na=p[0]\ncnt=1\n\nfor i in range(1,n):\n if p[i]p[i]):\n ans+=1\n mini=p[i]\nprint(ans)\n", "neg": "n=int(input())\np=list(map(int,input().split()))\nans=0\nmini=10e+7\nfor i in range(n):\n if(p[i]>mini):\n ans+=1\n mini=p[i]\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [72, 71], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "76 mini>>mini \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u238987462", "n_user": "u238987462", "pos": "N = int(input())\nM = 0\nfor P in map(int, input().split()):\n if P <= N:\n N = P\n M += 1\nprint(M)", "neg": "N = int(input())\nM = 0\nfor P in map(int, input().split()):\n if P <= N:\n N = x\n M += 1\nprint(M)", "jacc_sim": 0.9545454545454546, "before_after_length": [45, 45], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "xP", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u188827677", "n_user": "u188827677", "pos": "N = int(input())\nP = list(map(int, input().split()))\n\nresult = 0\nm = P[0]\nfor i in range(N):\n if P[i] <= m:\n result += 1\n m = P[i]\nprint(result)", "neg": "N = int(input())\nP = list(map(int, input().split()))\n\nresult = 0\nm = P[0]\nfor i in range(N):\n if P[i] <= m:\n print(P[i], m)\n result += 1\n m = P[i]\nprint(result)", "jacc_sim": 1.0, "before_after_length": [68, 78], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "print(P[i], m)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u230717961", "n_user": "u230717961", "pos": "def solve(n, p_list):\n\n count = 0\n j = 2 * 10**5 +1\n for i in p_list:\n if j > i:\n count += 1\n j = i\n\n return count\n\nif __name__ == \"__main__\":\n\n n = int(input())\n p_list = [int(i) for i in input().split()]\n ans = solve(n, p_list)\n print(ans)", "neg": "def solve(n, p_list):\n\n count = 0\n j = 2 * 10^^5 +1\n for i in p_list:\n if j > i:\n count += 1\n j = i\n\n return count\n\nif __name__ == \"__main__\":\n\n n = int(input())\n p_list = [int(i) for i in input().split()]\n ans = solve(n, p_list)\n print(ans)", "jacc_sim": 0.9722222222222222, "before_after_length": [114, 114], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "^^**", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u284744415", "n_user": "u284744415", "pos": "N = int(input())\np = [int(e) for e in input().split(\" \")]\nlow = p[0]\nc = 0\nfor i in range(N):\n if(p[i] <= low):\n c += 1\n low = p[i]\nprint(c)", "neg": "N = int(input())\np = [int(e) for e in input().split(\" \")]\nlow = p[0]\nc = 0\nfor i in range(N):\n print(p[i], low)\n if(p[i] <= low):\n c += 1\n low = p[i]\nprint(c)", "jacc_sim": 0.9629629629629629, "before_after_length": [71, 81], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "print(p[i], low)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u309753263", "n_user": "u309753263", "pos": "import math as mt\nn=int(input())\na=list(map(int,input().split()))\nans=1001001\nres=0\nfor i in range(n):\n if ans>a[i]:\n res+=1\n ans=min(ans,a[i])\nprint(res)", "neg": "import math as mt\nn=int(input())\na=list(map(int,input().split()))\nans=1001001\nres=0\nfor i in range(n):\n if ans>a[i]:\n res+=1\n ans=min(ans,res)\nprint(res)", "jacc_sim": 1.0, "before_after_length": [75, 73], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "resa[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u864843416", "n_user": "u864843416", "pos": "n=int(input())\nx=list(map(int,input().split()))\n\n\n\nmin_i = [x[0]]\n\nfor i in range(1,n):\n min_i.append(min(min_i[i-1],x[i]))\n\ncount=0\nfor i in range(1,n):\n if min_i[i-1] < x[i]:\n count=count+1\n# if x[i-1]>=x[i]:\n# count=count+1\n \n#if min(x)==x[n-1]:\n# count=count+1\nprint(n-count)\n", "neg": "n=int(input())\nx=list(map(int,input().split()))\n\n\nmin_i = [x[0]]\n\nfor i in range(1,n):\n min_i.append(min(min_i[i-1],x[i]))\n\ncount=0\nfor i in range(0,n-1):\n if min_i[i-1] < x[i]:\n count=count+1\n# if x[i-1]>=x[i]:\n# count=count+1\n \n#if min(x)==x[n-1]:\n# count=count+1\nprint(n-count)\n", "jacc_sim": 1.0, "before_after_length": [160, 161], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "\n01-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u343523553", "n_user": "u343523553", "pos": "n = int(input())\np = [int(s) for s in input().split()]\ncount = 0\nM = p[0]\nfor a in range(n):\n i = p[a]\n if M >=i :\n count+=1\n M = i\nprint(count)", "neg": "n = int(input())\np = [int(s) for s in input().split()]\ncount = 0\nm = p[0]\nfor a in range(n):\n i = p[a]\n if M>=i:\n count+=1\n m = i\n \nprint(count)", "jacc_sim": 0.9629629629629629, "before_after_length": [72, 75], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "mM m M\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u010870870", "n_user": "u010870870", "pos": "N = int(input())\ni = list(map(int, input().split()))\n\nmin = i[0]\ncount = 1\n\nfor n in range(N-1):\n if min >= i[n+1]:\n min = i[n+1]\n count +=1\n else: pass\n\nprint(count)", "neg": "N = int(input())\ni = list(map(int, input().split()))\n\nmin = i[0]\ncount = 1\n\nfor n in range(N-1):\n if min > i[n]:\n min = i[n]\n count +=1\n else: pass\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [80, 76], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "=+1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u904081717", "n_user": "u904081717", "pos": "N = int(input())\nP = list(map(int, input().split()))\n \nresult = 0\nmini = [P[0]]\n \nfor i in range(N-1):\n if mini[i]>P[i+1]:\n mini.append(P[i+1])\n else:\n mini.append(mini[i])\n \nfor i in range(N):\n if P[i]==mini[i]:\n result += 1\n \nprint(result)", "neg": "N = int(input)\nP = list(map(int, input().split()))\n\nresult = 0\nmini = [P[0]]\n\nfor i in range(N-1):\n if mini[i]>P[i+1]:\n mini.append(P[i+1])\n else:\n mini.append(mini[i])\n\nfor i in range(N):\n if P[i]==mini[i]:\n result += 1\n\nprint(result)\n", "jacc_sim": 1.0, "before_after_length": [123, 120], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "() \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u793666115", "n_user": "u793666115", "pos": "n = int(input())\np = list(map(int,input().split()))\nli = [0]*n\nsta = n\n\nfor i in range(n):\n if p[i] <= sta:\n li[i]=1\n sta = p[i]\n\nprint(sum(li))", "neg": "n = int(input())\np = list(map(int,input().split()))\nli = [0]*n\nsta = 1\n\nfor i in range(n):\n if p[i] < sta:\n li[i]=1\n else:\n sta = p[i]\n\nprint(sum(li))", "jacc_sim": 0.9655172413793104, "before_after_length": [77, 81], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "1n=\n else:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u240249402", "n_user": "u240249402", "pos": "n=int(input())\np=list(map(int,input().split()))\nans=0\nm=n+1\n\nfor i in range(n):\n if m>p[i]:\n ans+=1\n m=p[i]\n\nprint(ans)", "neg": "n=int(input())\np=list(map(int,input().split()))\nans=0\nm=max(p)\n\nfor i in range(n):\n if m>p[i]:\n ans+=1\n m=p[i]\n\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [68, 69], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "n+1max(p)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u329407311", "n_user": "u329407311", "pos": "N = int(input())\n\nList = list(map(int,input().split()))\n\nm = 10 ** 10\ncnt = 0\n\nfor i in range(N):\n a = List[i]\n if a <= m :\n cnt += 1\n m = a\n \nprint(int(cnt))\n", "neg": "N = int(input())\n\nList = list(map,input().split())\n\nm = 1\ncnt = 0\n\nfor i in range(N):\n a = List[i]\n if a <= m :\n cnt += 1\n m = a\n \nprint(int(cnt))", "jacc_sim": 0.9333333333333333, "before_after_length": [76, 70], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "(int)0 ** 10\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u950129527", "n_user": "u950129527", "pos": "n = int(input())\nli = list(map(int,input().split()))\n\ni = 0\nj = 0\na = 10**6\nfor i in range(i,n):\n a = min(a,li[i])\n if a == li[i]:\n j = j + 1\n\nprint(j)", "neg": "n = int(input())\nli = list(map(int,input().split()))\n\ni = 0\nj = 0\na = 10**5\nfor i in range(i,n-1):\n a = min(a,li[i])\n if a == li[i]:\n j = j + 1\n\nprint(j)", "jacc_sim": 0.90625, "before_after_length": [79, 81], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "56-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u060432908", "n_user": "u785723272", "pos": "n=int(input())\np=list(map(int,input().split()))\nmin=p[0]\nans=1\nfor i in range(1,n):\n if min>=p[i]:\n ans+=1\n min=p[i]\nprint(ans)", "neg": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\nmin = p[0]\n\nfor i in range(n):\n if min >= p[i]:\n count += 1\n\nprint(count)", "jacc_sim": 0.9285714285714286, "before_after_length": [70, 60], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": " count = 0\n ans=11, acoust min=p[i]acouts", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u160169132", "n_user": "u277312083", "pos": "n = int(input())\np = list(map(int, input().split()))\n\nm = p[0]\ncount = 1\nfor i in range(1,n):\n if m >= p[i]:\n m = p[i]\n count += 1\n \nprint(count)", "neg": "n = int(input())\np = list(map(int, input().split( )))\nc =0\nm = p[0]\nfor i in range(n):\n if m => p[i]:\n c += 1\n m = p[i]\nprint(c)", "jacc_sim": 0.9285714285714286, "before_after_length": [71, 67], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": " c =0\ncount = 11,>>\n c += 1 count += 1\n \nount", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u377834804", "n_user": "u377834804", "pos": "N = int(input())\nP = list(map(int, input().split()))\n \nmmin = P[0]\nans = 0\nfor i in range(N):\n if mmin < P[i]:\n continue\n else:\n mmin = P[i]\n ans += 1\n\nprint(ans)", "neg": "N = int(input())\nP = list(map(int, input().split()))\n\nmmin = P[0]\nans = 0\nfor i in range(N):\n if mmin < P[i]:\n continue\n else:\n mmin >= P[i]:\n mmin = P[i]\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9666666666666667, "before_after_length": [79, 87], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": " >= P[i]:\n mmin ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u703214333", "n_user": "u703214333", "pos": "n=int(input())\nl=list(map(int,input().split()))\nans=0\ntmp=l[0]\nfor i in range(n):\n if tmp>=l[i]:\n tmp=l[i]\n ans+=1\nprint(ans)\n", "neg": "n=int(input())\nl=list(map(int,input().split()))\nans=0\ntmp=0\nfor i in range(1,n):\n if tmp<=l[i]:\n tmp=l[i]\n ans+=1\nprint(ans)\n", "jacc_sim": 0.9285714285714286, "before_after_length": [69, 68], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "l[]1,<>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u027675217", "n_user": "u027675217", "pos": "n=int(input())\np=list(map(int,input().split()))\na=p[0]\ncnt=1\nfor i in range(1,n):\n\tif p[i]=a[i]:\n ans+=1\n st.append(a[i])\nprint(ans)", "neg": "# cook your dish here\nn=int(input())\na=list(map(int,input().split()))\nst=[]\nfor i in range(n):\n if i==0:\n st.append(a[i])\n else:\n if st[-1]>=a[i]:\n ans+=1\n else:\n st.append(a[i])", "jacc_sim": 0.9714285714285714, "before_after_length": [104, 93], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "ans=0\n\n ans+=1else:\n \nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u225493896", "n_user": "u225493896", "pos": "N = int(input())\nP = list(map(int, input().split()))\n\nans=0\np_min=P[0]\nfor i in range(N):\n if p_min >= P[i]:\n ans += 1\n p_min = P[i]\n\nprint(ans)\n", "neg": "N = int(input())\nP = list(map(int, input().split()))\n\nans=0\np_min=S[0]\nfor i in range(N):\n if p_min >= P[i]:\n ans++\n p_min = P[i]\n\nprint(ans)\n", "jacc_sim": 0.9285714285714286, "before_after_length": [75, 74], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "SP += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u258325541", "n_user": "u258325541", "pos": "N = int(input())\nS = list(map(int,input().split()))\ncounter = int(0)\nminNum = S[0]\n\nif N == 1:\n print(\"1\")\n\nelse:\n for i in range(N):\n if minNum >= S[i]:\n minNum = S[i]\n counter = counter + 1\n \n print(counter)", "neg": "N = int(input())\nS = list(map(int,input().split()))\ncounter = int(0)\nminNum = S[0]\n\nif N == 1:\n print(\"1\")\n\nelse:\n for i in range(N):\n if minNum >= S[i]:\n counter = counter + 1\n else:\n minNum = S[i]\n \n print(counter)", "jacc_sim": 1.0, "before_after_length": [95, 99], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "minNum = S[i]\n else: minNum = S[i]\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u297367713", "n_user": "u297367713", "pos": "n = int(input())\np = list(map(int, input().split()))\n\nj = p[0]\ncount = 0\nfor i in range(n):\n if p[i] <= j:\n count += 1\n j = p[i]\nprint(count)", "neg": "n = int(input())\np = list(map(int, input().split()))\n\nj = p[0]\ncount = 0\nfor i in range(n):\n if j == 1:\n break\n if p[i] <= j:\n count += 1\n j = p[i]\nprint(count)", "jacc_sim": 0.9642857142857143, "before_after_length": [68, 78], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "j == 1:\n break\n if ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u132892633", "n_user": "u132892633", "pos": "n = int(input())\np = list(map(int, input().split()))\nc = 0\nm = n + 1\nfor i in p:\n if i < m:\n c += 1\n m = i\nprint(c)", "neg": "n = int(input())\np = list(map(int, input().split()))\nc = 0\nm = n + 1\nfor i in p:\n if i == min(m, i):\n c += 1\nprint(c)", "jacc_sim": 0.92, "before_after_length": [58, 57], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "<==in(m, i) m = i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u500944229", "n_user": "u500944229", "pos": "n = int(input())\np_li = list(map(int,input().split()))\nmin_v = p_li[0]\nans=1\nfor x in p_li:\n if min_v>x:\n min_v=x\n ans+=1\nprint(ans)", "neg": "n = int(input())\np_li = list(map(int,input().split()))\nmin_v = p_li[0]\nans=1\nfor x in p_li:\n if x == 1:\n break\n if min_v>=x:\n min_v=x\n else:\n ans+=1\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [72, 87], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "x == 1:\n break\n if =\n else:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u295294832", "n_user": "u295294832", "pos": "import numpy as np\n\nN = int(input())\nn = [int(x) for x in input().split()]\nn=np.array(n)\n\na=1\npos=0\nfor i in range(1,N):\n if n[pos] > n[i] :\n a+=1\n pos=i\nprint(a)\n", "neg": "import numpy as np\n\nN = int(input())\nn = [int(x) for x in input().split()]\nn=np.array(n)\n\na=1\nfor i in range(1,N):\n if np.min(n[:i]) > n[i] : a+1 \nprint(a)", "jacc_sim": 0.90625, "before_after_length": [86, 78], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "pos=0\n[os.min(n[:i)\n =\n pos=i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u652081898", "n_user": "u652081898", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nminimum = n\n\nfor i in range(n):\n if a[i] <= minimum:\n ans += 1\n minimum = a[i]\n\nprint(ans)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = 0\n\nfor i in range(n):\n if a[n] <= min(a[:n]):\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [67, 59], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "minimum = n\nniimum(a[:n]) minimum = a[i]\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u595952233", "n_user": "u595952233", "pos": "import bisect\nN = int(input())\nP = list(map(int, input().split()))\n\ncount = 0\nlast_min = P[0]\nfor i in range(N):\n last_min = min(last_min, P[i])\n if i == 0:\n count += 1\n elif last_min == P[i]:\n count += 1\nprint(count)", "neg": "import bisect\nN = int(input())\nP = list(map(int, input().split()))\n\ncount = 0\nlast_min = P[i]\nfor i in range(N):\n last_min = min(last_min, P[i])\n if i == 0:\n count += 1\n elif last_min == P[i]:\n count += 1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [94, 94], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "i0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02791", "p_user": "u641460756", "n_user": "u641460756", "pos": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\ns = p[0]\nfor i in range(1, n+1):\n s = min(s, p[i-1])\n if (s == p[i-1]):\n count += 1\nprint(count)", "neg": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\nr = p[0]\nfor i in range(1, n+1):\n s = min(r, p[i-1])\n if (s == p[i-1]):\n count += 1\nprint(count)", "jacc_sim": 0.9655172413793104, "before_after_length": [80, 80], "nl": "You are given a permutation P of 1 to N. Find the number of integers i (1 \u2264 i \u2264 N) that satisfy the condition: For any integer j (1 \u2264 j \u2264 i), P_i should be less than or equal to P_j. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5, P is a permutation of 1 to N, and all input values are integers. Input is given as N followed by P_1 to P_N. Output the number of integers i that satisfy the condition.", "diff_info": "rsrs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u186838327", "n_user": "u186838327", "pos": "n = int(input())\n\nd = [[0]*10 for i in range(10)]\n\nfor i in range(1, n+1):\n i_ = str(i)\n x = int(i_[0])\n y = int(i_[-1])\n d[x][y] += 1\n\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += d[i][j]*d[j][i]\n \nprint(ans)", "neg": "n = int(input())\n\nd = [[0]*10 for i in range(10)]\n\nfor i in range(1, n+1):\n i_ = str(i)\n x = int(i_[0])\n y = int(i_[-1])\n d[x][y] += 1\n \nprint(d)\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += d[i][j]*d[j][i]\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [120, 126], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += d[i][j]*d[j][i]\n d)\n = 0\nfor i in range(10:\n for j in range(10):\n ans += d[i][j]*d[j][i]\n \nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u731448038", "n_user": "u731448038", "pos": "N = int(input())\n \nc = [[0]*10 for _ in range(10)]\nfor i in range(1,N+1):\n\tc[int(str(i)[0])][int(str(i)[-1])] += 1\n \nans = 0\nfor i in range(1, 10):\n\tfor j in range(1, 10):\n\t\tans += c[i][j]*c[j][i]\n\nprint(ans)\n", "neg": "n = int(input())\n\nstr_n = str(n)\n \nc = [[0]*10 for _ in range(10)]\nfor i in range(1,N+1):\n\tc[int(str(i)[0])][int(str(i)[-1])] += 1\n \nans = 0\nfor i in range(1, 10):\n\tfor j in range(1, 10):\n ans += c[i][j]*c[j][i]\n\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [110, 118], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "nN)\n\nstr_n = str(n\t\t \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u963682312", "n_user": "u963682312", "pos": "strN = input()\nN = int(strN)\np = {i: {j: 0 for j in range(1, 10)} for i in range(1, 10)}\nfor k in range(1, N+1):\n strk = str(k)\n i = int(strk[0])\n j = int(strk[-1])\n if i == 0 or j == 0:\n continue\n p[i][j] += 1\n\nans = 0\nfor i in range(1, 10):\n for j in range(1, 10):\n ans += p[i][j] * p[j][i]\n\nprint(ans)\n", "neg": "strN = input()\nN = int(strN)\np = {i: {j: 0 for j in range(1, 10)} for i in range(1, 10)}\nfor i in range(1, 10):\n for j in range(1, 10):\n for k in range(1, N):\n strk = str(k)\n if str(i) == strk[0] and str(j) == strk[-1]:\n p[i][j] += 1\n\nans = 0\nfor i in range(1, 10):\n for j in range(1, 10):\n ans += p[i][j] * p[j][i]\n\nprint(ans)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [158, 166], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "i in range(1, 10):\n for j in range(1, 10):\n for +1 fstr(i) =istrk[0] ad srjstrk[0]\n== j = int(:)ifi==0orj==0:\n continue\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u997641430", "n_user": "u997641430", "pos": "n = int(input())\nX = ['']\nfor i in range(1, 6):\n for j in range(10**i):\n X.append(str(j).zfill(i))\ncnt = 0\nfor a in range(1, n+1):\n x = str(a)[0]\n y = str(a)[-1]\n if x == y:\n cnt += 1\n if y == '0':\n continue\n l, r = -1, len(X)-1\n while r-l > 1:\n c = (l+r)//2\n if int(y+X[c]+x) <= n:\n l = c\n else:\n r = c\n cnt += r\nprint(cnt)\n", "neg": "n = int(input())\nX = ['']\nfor i in range(1, 6):\n for j in range(10**i):\n X.append(str(j).zfill(i))\ncnt = 0\nfor a in range(1, n+1):\n x = str(a)[0]\n y = str(a)[-1]\n if x == y:\n cnt += 1\n if y == '0':\n continue\n l, r = 0, len(X)\n while r-l > 1:\n c = (l+r)//2\n if int(y+X[c]+x) <= n:\n l = c\n else:\n r = c\n cnt += r\nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [182, 180], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "0-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u098968285", "n_user": "u098968285", "pos": "import math\n\ndef makelist(n, m):\n return [[0 for _ in range(m)] for _ in range(n)]\n\nN = int(input())\nsN = str(N)\nl = len(sN)\n\nans = 0\nfor n in range(1, min(10, N+1)):\n sn = str(n)\n ans += 1\n \n cnt = 1\n for i in range(2, l):\n ans += cnt\n cnt *= 10\n\n if l == 2:\n if sN >= sn[-1] + sn[0]:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n if sN[0] == sn[-1]:\n hoge = int(sN[1:-1])\n if sN[-1] < sn[0]:\n hoge -= 1\n ans += hoge + 1\n elif sN[0] > sn[-1]:\n ans += cnt\n\nfor n in range(11, N+1):\n sn = str(n)\n if sn[-1] != \"0\":\n if n > 10 and sn[0] == sn[-1]:\n ans += 1\n\n\n cnt = 1\n for i in range(2, l):\n ans += cnt\n cnt *= 10\n\n if l == 2:\n if sN >= sn[-1] + sn[0]:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n if sN[0] == sn[-1]:\n hoge = int(sN[1:-1])\n if sN[-1] < sn[0]:\n hoge -= 1\n ans += hoge + 1\n elif sN[0] > sn[-1]:\n ans += cnt\n\nprint(ans)\n", "neg": "import math\n\ndef makelist(n, m):\n return [[0 for _ in range(m)] for _ in range(n)]\n\nN = int(input())\nsN = str(N)\nl = len(sN)\n\nans = 0\nfor n in range(1, min(10, N+1)):\n sn = str(n)\n ans += 1\n \n cnt = 1\n for i in range(1, l-1):\n cnt *= 10\n ans += cnt\n\n if l == 2:\n if sN >= sn + sn:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n hoge = int(sN[1:-1])\n if sN[-1] < sn[0] and sN[0] == sn[-1]:\n hoge -= 1\n ans += hoge + 1\n\nfor n in range(11, N+1):\n sn = str(n)\n if sn[-1] != \"0\":\n if n > 10 and sn[0] == sn[-1]:\n ans += 1\n\n\n cnt = 1\n for i in range(2, l-1):\n ans += cnt\n cnt *= 10\n\n if l == 2:\n if sN >= sn[-1] + sn[0]:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n hoge = int(sN[1:-1])\n if sN[-1] < sn[0] and sN[0] == sn[-1]:\n hoge -= 1\n ans += hoge + 1\n\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [448, 408], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "1, l-1):\n cnt *= 10\n ans += cnt\n\n if l == 2:\n if sN >= sn + sn:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n hoge = int(sN[1:-1])\n if sN[-1] < sn[0] and sN[0] == sn[-1]:\n hoge -= 1\n ans += hoge + 1\n\nfor n in range(11, N+1):\n sn = str(n)\n if sn[-1] != \"0\":\n if n > 10 and sn[0] == sn[-1]:\n ans += 1\n\n\n cnt = 1\n for i in range(-1 if sN[0] == sn[-1]:\n :\n hoge -= 1\n ans += hoge + 1\n elif sN[0] > sn[-1]:\n ans += cnt\n\nfor n in range(11, N+1):\n sn = str(n)\n if sn[-1] != \"0\":\n if n > 10n[0] == sn[-1]:\n ans += 1\n\n\n cnt = 1\n for i in range(2, l):\n ans += cnt\n cnt *= 10\n\n if l == 2:\n if sN >= sn[-1] + sn[0]:\n ans += 1\n elif l > 2 and sN[0] >= sn[-1]:\n if s-i1\n at(N[1:-1])\n+= if sN[-1] < sn[0]:\n +-= ans += hoge + 1\n elif sN[0] > sn[-1]:\n ans += cnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u265154666", "n_user": "u265154666", "pos": "\nN = int(input())\n\n\ndef calc(num):\n s = list(str(num))[::-1]\n s2 = int(s[-1])\n s1 = int(s[0])\n\n keta = 0\n while True:\n num = num // 10\n keta += 1\n if num == 0:\n break\n\n if s1 == s2:\n if keta == 1:\n return 1\n elif keta == 2:\n return 1 + 2\n else:\n ans = 0\n for i in range(keta - 3):\n ans += (10 ** (i+1)) * 2\n ans += (int(''.join(s[1:-1][::-1]))+1) * 2 + 3\n return ans\n\n elif s1 > s2:\n if keta == 2:\n return 0\n else:\n ans = 0\n for i in range(keta - 2):\n ans += 10 ** i\n return ans * 2\n else:\n if s1 == 0:\n return 0\n else:\n ans = 0\n for i in range(keta - 1):\n ans += 10 ** i\n return ans * 2\n\n\n# print(10, calc(10))\n\ndp = [0] * (N+1)\n\nfor i in range(1, N+1):\n dp[i] = dp[i-1] + calc(i)\n\n# print(dp)\nprint(dp[N])\n\n", "neg": "\nN = int(input())\n\n\ndef calc(num):\n s = list(str(num))[::-1]\n s2 = int(s[-1])\n s1 = int(s[0])\n\n keta = 0\n while True:\n num = num // 10\n keta += 1\n if num == 0:\n break\n\n if s1 == s2:\n if keta == 1:\n return 1\n elif keta == 2:\n return 1 + 2\n else:\n return int(''.join(s[1:-1][::-1])) * 2 - 1 + 3\n\n elif s1 > s2:\n if keta == 2:\n return 0\n else:\n ans = 0\n for i in range(keta - 2):\n ans += 10 ** i\n return ans * 2\n else:\n if s1 == 0:\n return 0\n else:\n ans = 0\n for i in range(keta - 1):\n ans += 10 ** i\n return ans * 2\n\n\n# print(10, calc(10))\n\ndp = [0] * (N+1)\n\nfor i in range(1, N+1):\n dp[i] = dp[i-1] + calc(i)\n\n# print(dp)\nprint(dp[N])\n\n", "jacc_sim": 1.0, "before_after_length": [368, 330], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "areturs= 0\n for i in range(keta - 3):\n ans += (10 ** (i+1)) * 2\n ans += (+1)- 1 \n return ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u372049077", "n_user": "u372049077", "pos": "import numpy as np\nN = int(input())\n\ncnt = np.zeros((10,10))\n\nfor x in map(str,range(0,N+1)):\n cnt[int(x[0]),int(x[-1])] += 1\n\nans = 0\nfor i in range(1,10):\n for j in range(1,10):\n ans += cnt[i,j] * cnt[j,i]\n\nprint(int(ans))", "neg": "import numpy as np\nN = int(input())\n\ncnt = np.zeros((N,N))\n\nfor x in map(str,range(1,N+1)):\n cnt[int(x[0]),int(x[-1])] += 1\n\nans = 0\nfor i in range(1,10):\n for j in range(1,10):\n ans += cnt[i,j] * cnt[j,i]\n\nprint(int(ans))", "jacc_sim": 1.0, "before_after_length": [112, 112], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "N10N1010", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u334712262", "n_user": "u334712262", "pos": "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom fractions import Fraction\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations, accumulate\nfrom operator import add, mul, sub, itemgetter, attrgetter\n\n\nimport sys\n# sys.setrecursionlimit(10**6)\n# readline = sys.stdin.buffer.readline\nreadline = sys.stdin.readline\n\nINF = 2**62-1\n\n\ndef read_int():\n return int(readline())\n\n\ndef read_int_n():\n return list(map(int, readline().split()))\n\n\ndef read_float():\n return float(readline())\n\n\ndef read_float_n():\n return list(map(float, readline().split()))\n\n\ndef read_str():\n return readline().strip()\n\n\ndef read_str_n():\n return readline().strip().split()\n\n\ndef ep(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.perf_counter()\n ret = f(*args, **kwargs)\n e = time.perf_counter()\n\n ep(e - s, 'sec')\n return ret\n\n return wrap\n\n\n@mt\ndef slv(N):\n c = Counter()\n for i in range(1, N+1):\n s = str(i)\n c[int(s[0])*10+int(s[-1])] += 1\n\n ans = 0\n for i, j in product(range(1, 10), repeat=2):\n ans += c[10*i+j] * c[10*j+i]\n\n return ans\n\n\ndef main():\n N = read_int()\n print(slv(N))\n\n\nif __name__ == '__main__':\n main()\n", "neg": "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom fractions import Fraction\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations, accumulate\nfrom operator import add, mul, sub, itemgetter, attrgetter\n\n\nimport sys\n# sys.setrecursionlimit(10**6)\n# readline = sys.stdin.buffer.readline\nreadline = sys.stdin.readline\n\nINF = 2**62-1\n\n\ndef read_int():\n return int(readline())\n\n\ndef read_int_n():\n return list(map(int, readline().split()))\n\n\ndef read_float():\n return float(readline())\n\n\ndef read_float_n():\n return list(map(float, readline().split()))\n\n\ndef read_str():\n return readline().strip()\n\n\ndef read_str_n():\n return readline().strip().split()\n\n\ndef ep(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.perf_counter()\n ret = f(*args, **kwargs)\n e = time.perf_counter()\n\n ep(e - s, 'sec')\n return ret\n\n return wrap\n\n\n@mt\ndef slv(N):\n c = defaultdict(Counter)\n for i in range(1, N+1):\n s = str(i)\n c[int(s[0])*10+int(s[-1])] += 1\n\n ans = 0\n for i, j in product(range(1, 10), repeat=2):\n ans += c[10*i+j] * c[10*j+i]\n\n return ans\n\n\ndef main():\n N = read_int()\n print(slv(N))\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [508, 510], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "defaultdict((", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u484229314", "n_user": "u484229314", "pos": "N = int(input())\n\ng = [[0] * (10) for _ in range(10)]\nfor i in range(1, N + 1):\n a = int(str(i)[0])\n b = int(str(i)[-1])\n g[a][b] += 1\nans = 0\nfor i in range(1, 10):\n for j in range(1, 10):\n ans += g[i][j]*g[j][i]\n\nprint(ans)", "neg": "N = int(input())\n\ng = [[0] * (N + 1) for _ in range(N + 1)]\nfor i in range(1, N + 1):\n a = int(str(i)[0])\n b = int(str(i)[-1])\n g[a][b] += 1\nans = 0\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n ans += g[i][j]*g[j][i]\n\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [118, 126], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "10) for _ in range(10)]\nfor i in range(1, :\nfor_inr = itgeNstr(i)[0])\n b = int(str(i)[-1])\n g[a][b]=)]\nans = 0N10):\n for j in range(1, 10):\n ans 1):\n a int(str(i)[0])\n b = int(str(i)[-1])\n a][b] += 1\nans = 0\nfor ][ in range(1, N + 1):\n for in range(1, N + 1):\n ans += g[i*g*g[j]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u793666115", "n_user": "u793666115", "pos": "n = int(input())\n\ncount = [[0]*10 for i in range(10)]\n\nfor i in range(1,n+1):\n first = int(str(i)[0])\n last = int(str(i)[-1])\n\n if first == 0 or last == 0:\n continue\n else:\n count[first][last] += 1\n\nans = 0\nfor first in range(1,10):\n for last in range(1,10):\n ans += count[first][last] * count[last][first]\nprint(ans)", "neg": "n = int(input())\n\ncount = [0*[10] for i in range(10)]\n\nfor i in range(1,n+1):\n first = int(str(i)[0])\n last = int(str(i)[-1])\n\n if first == 0 or last == 0:\n continue\n else:\n count[first][last] += 1\n\nans = 0\nfor first in range(1,10):\n ans += count[first][last] * count[last][first]\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [136, 127], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "[][]for last in range(1,10):\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u426108351", "n_user": "u426108351", "pos": "n = int(input())\n\ntable = [[0 for i in range(10)] for j in range(10)]\nfor i in range(1, n+1):\n i = str(i)\n a, b = int(i[0]), int(i[-1])\n table[a][b] += 1\n\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += table[i][j] * table[j][i]\n\nprint(ans)\n", "neg": "n = int(input())\n\ntable = [[0 for i in range(10)] for j in range(10)]\nfor i in range(1, n+1):\n i = str(i)\n a, b = i[0], i[-1]\n table[a][b] += 1\n\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += table[i][j] * table[j][i]\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [121, 116], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "nt(i)nt(i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u896741788", "n_user": "u896741788", "pos": "n=int(input())\nl=[[0 for i in range(10)]for s in range(10)]\nfor i in range(n+1):\n if i%10:\n l[int(str(i)[0])-1][int(str(i)[-1])-1]+=1\nans=0\nfor i in range(9):\n for j in range(9):\n ans+=l[i][j]*l[j][i]\nprint(ans)\n", "neg": "n=int(input())\nl=[[0]*9]*9\nfor i in range(1,n):\n if i%10:\n l[int(str(i)[0])-1][int(str(i)[-1])-1]+=1\nans=0\nfor i in range(9):\n for j in range(9):\n ans+=l[i][j]*l[j][i]\nprint(ans)", "jacc_sim": 0.9310344827586207, "before_after_length": [116, 105], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": " for i in range(10)]for s in range(10)]\nfor i in range(n+1):\n if i%10:\n l[int(str(i)[0])-1][int(str(i)[-1])-1]+=1\nans=0\nfor i in range(9):\n for j in range(9):\n ans+=l[i][j9]*9\nfor i in range(1,n):\n if i%10:\n int(str(i)[0])-1][int(str(i)[-1])-1]+=1\nans=0\nfor i in range(9):\n for in range(9):\n ans+=l[i][j]*l[j\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u900848911", "n_user": "u900848911", "pos": "N = int(input())\nsample = [0] * 100\n\nfor i in range(1,N+1):\n\n num = str(i)\n first = num[0]\n final = num[-1]\n \n sample[int(first+final)] += 1\n\nans = 0\n\nfor i in range(1,10):\n for j in range(1,10):\n ans += sample[int(str(i)+str(j))] * sample[int(str(j)+str(i))]\n\nprint(ans)\n\n\n \n", "neg": "N = int(input())\nsample = [0] * 100\n\nfor i in range(1,N+1):\n\n num = str(i)\n first = num[0]\n final = num[-1]\n print(first)\n print(final)\n\n sample[int(first+final)] += 1\n print(int(first+final))\n\nans = 0\n\nfor i in range(1,10):\n for j in range(1,10):\n ans += sample[int(str(i)+str(j))] * sample[int(str(j)+str(i))]\n\nprint(ans)\n\n\n \n", "jacc_sim": 1.0, "before_after_length": [135, 156], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "print(first)print(final)\n\n \n print(int(first+final))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u864013199", "n_user": "u864013199", "pos": "N = int(input())\nans = 0\ntmp = int(\"0\"+str(N)[1:-1])\nNR = int(str(N)[-1])\nfor i in range(1,N+1):\n L = int(str(i)[0])\n R = int(str(i)[-1])\n if R == 0:\n continue\n if L == R:\n ans += 1\n for j in range(1,6):\n mini = (R*10**j) +L\n maxi = ((R+1)*10**j) +L-10\n if N < mini:\n break\n if maxi <= N:\n ans += 10**(j-1)\n continue\n \n if L <= NR:\n ans += tmp+1\n else:\n ans += tmp\n break\nprint(ans)\n", "neg": "N = int(input())\nans = 0\nfor i in range(1,N+1):\n L = int(str(i)[0])\n R = int(str(i)[-1])\n if R == 0:\n continue\n if L == R:\n ans += 1\n for j in range(1,6):\n mini = R*10**j +L\n maxi = (R+1)*10**j +L-10\n if N < mini:\n break\n if maxi <= N:\n ans += 10**(j-1)\n continue\n tmp = int(str(N)[1:-1])\n if L <= int(str(N)[-1]):\n ans += tmp\n else:\n ans += tmp-1\n break\nprint(ans)\n", "jacc_sim": 0.9459459459459459, "before_after_length": [208, 195], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "for i in range(1,N+1):\n L = in(str(mp = nt(\"0\"+str(N01:-1N iNfor i in range(1,N+1):\n L = int(str(i)[0])\n R = int(str(i)[-1])\n()()\n if L <= NR:\n ans += + = int(str(N)[:-1])elif L <= int(etr(N)[-1])brlse:\n k\nns += tm-1\n beak\npr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u918601425", "n_user": "u918601425", "pos": "dic={}\nfor i in range(1,10):\n for j in range(0,10):\n dic[(i,j)]=0\n\nN=int(input())\nfor i in range(1,min([N+1,10])):\n dic[(i,i)]+=1\nfor i in range(10,min([N+1,100])):\n dic[(i//10,i%10)]+=1\nfor i in range(100,min([N+1,1000])):\n dic[(i//100,i%10)]+=1\nfor i in range(1000,min([N+1,10000])):\n dic[(i//1000,i%10)]+=1\nfor i in range(10000,min([N+1,100000])):\n dic[(i//10000,i%10)]+=1\nfor i in range(100000,N+1):\n dic[(i//100000,i%10)]+=1\n \nans=0\nfor i in range(1,10):\n for j in range(1,10):\n x=dic[(i,j)]\n y=dic[(j,i)]\n ans+=x*y\nprint(ans)\n", "neg": "dic={}\nfor i in range(1,10):\n for j in range(0,10):\n dic[(i,j)]=0\n\nN=int(input())\nfor i in range(1,min([N,10])):\n dic[(i,i)]+=1\nfor i in range(10,min([N,100])):\n dic[(i//10,i%10)]+=1\nfor i in range(100,min([N,1000])):\n dic[(i//100,i%10)]+=1\nfor i in range(1000,min([N,10000])):\n dic[(i//1000,i%10)]+=1\nfor i in range(10000,min([N,100000])):\n dic[(i//10000,i%10)]+=1\nfor i in range(100000,N):\n dic[(i//100000,i%10)]+=1\nans=0\nfor i in range(1,10):\n for j in range(1,10):\n x=dic[(i,j)]\n y=dic[(j,i)]\n ans+=x*y\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [297, 283], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "+1+1+1+1+1+1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u923270446", "n_user": "u923270446", "pos": "n=int(input())\nans=-1\nc=[[0]*10for i in range(11)]\nfor i in range(n+1):c[int(str(i)[0])][int(str(i)[-1])]+=1\nfor i in range(10):\n for j in range(10):ans+=c[i][j]*c[j][i]\nprint(ans)", "neg": "n=int(input())\nans=-1\nc=[[0]*10for i in range(10)]\nfor i in range(n):c[int(str(i)[0])-1][int(str(i)[-1])-1]+=1\nfor i in range(10):\n for j in range(10):ans+=c[i][j]*c[j][i]\nprint(ans)", "jacc_sim": 0.9615384615384616, "before_after_length": [93, 95], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "01+1-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u663093503", "n_user": "u663093503", "pos": "N = int(input())\n\nimport numpy as np\n\nX = np.arange(N+1)\nA = X.copy()\n\nfor i in [1,10,100,1000,10000,100000]:\n A[i:i*10] = X[i:i*10] // i\nB = X % 10\n\nC = np.zeros((10,10), dtype=int)\n\nfor i in range(1,N+1):\n C[A[i], B[i]] += 1\ncount = 0\n\nfor i in range(10):\n for j in range(10):\n count += C[i][j] * C[j][i]\n\nprint(count)", "neg": "N = int(input())\n\nimport numpy as np\n\nX = np.arange(N+1)\nA = X.copy()\n\nfor i in [1,10,100,1000,10000]:\n A[i:i*10] = X[i:i*10] // i\nB = X % 10\nC = np.zeros((10,10), dtype=int)\n\nfor i in range(1,N+1):\n C[A[i], B[i]] += 1\ncount = 0\n\nfor i in range(10):\n for j in range(10):\n count += C[i][j] * C[j][i]\nprint(count)", "jacc_sim": 0.975609756097561, "before_after_length": [166, 161], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": ",100000\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u233588813", "n_user": "u233588813", "pos": "import math\na=int(input())\nans=0\nc=[[0 for i in range(10)] for j in range(10)]\nfor i in range(1,a+1):\n aa=str(i)\n c[int(aa[0])][int(aa[-1])]+=1\nfor i in range(10):\n for j in range(10):\n ans+=c[i][j]*c[j][i]\nprint(ans)", "neg": "import math\na=int(input())\nans=0\nc=[[0 for i in range(10)] for j in range(10)]\nfor i in range(1,a):\n aa=str(i)\n c[int(aa[0])][int(aa[-1])]+=1\nfor i in range(10):\n for j in range(10):\n ans+=c[i][j]*c[j][i]\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [111, 111], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "+1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u078932560", "n_user": "u078932560", "pos": "N = int(input())\nCij = [[0 for _ in range(10)] for _ in range(10)]\nfor i in range(1,N+1):\n a, b = int(str(i)[0]), int(str(i)[-1])\n Cij[a][b] += 1\nprint(sum(Cij[i][j]*Cij[j][i] for i in range(10) for j in range(10)))", "neg": "N = int(input())\nCij = [[0 for _ in range(N)] for _ in range(N)]\nfor i in range(1,N+1):\n a, b = int(str(i)[0]), int(str(i)[-1])\n Cij[a][b] += 1\nprint(sum(Cij[i][j]*Cij[j][i] for i in range(N) for j in range(N)))", "jacc_sim": 0.9642857142857143, "before_after_length": [106, 106], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "N10N10N10N10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u960653324", "n_user": "u960653324", "pos": "N = int(input())\n\nans = 0\nC = [ [0 for i in range(10)] for i in range(10)]\n\nfor i in range(1,N+1):\n first_num = int(str(i)[0])\n last_num = int(str(i)[-1])\n C[first_num][last_num] += 1\n\nfor first_num in range(1,10):\n for last_num in range(1,10):\n ans += C[first_num][last_num] * C[last_num][first_num]\n\nprint(ans)\n", "neg": "N = int(input())\n\nans = 0\nC = [ [0 for i in range(10)] for i in range(10)]\n\nfor i in range(1,N):\n first_num = int(str(i)[0])\n last_num = int(str(i)[-1])\n C[first_num][last_num] += 1\n\nfor first_num in range(10):\n for last_num in range(10):\n ans += C[first_num][last_num] * C[last_num][first_num]\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [145, 139], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "+1,1,1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u248670337", "n_user": "u248670337", "pos": "n=int(input())\nD=[[0 for _ in range(10)] for _ in range(10)]\nfor i in range(1,n+1):\n s=str(i)\n D[int(s[0])][int(s[-1])]+=1\na=0\nfor i in range(10):\n for j in range(10):\n a+=D[i][j]*D[j][i]\nprint(a)", "neg": "n=int(input())\nD=[[0 for _ in range(9)] for _ in range(9)]\nfor i in range(n):\n s=str(n)\n D[s[0]][s[-1]]+=1\na=0\nfor i in range(1,10):\n for j in range(1,10):\n a+=D[i][j]*D[j][i]\nprint(a)", "jacc_sim": 0.9642857142857143, "before_after_length": [108, 104], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "9109101,+1niint()int(),1,1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u516554284", "n_user": "u516554284", "pos": "n=int(input())\na=[[0 for _ in range(9)] for _ in range(9)]\n\nfor i in range(1,n+1):\n x=int(str(i)[0])\n y=int(str(i)[-1])\n if x!=0 and y!=0:\n a[x-1][y-1]+=1\n \nans=0\n \nfor i in range(9):\n for j in range(9):\n if i!=j:\n \n ans+=a[i][j]*a[j][i]\n \n else:\n ans+=(a[i][i]*a[i][i])\n \nprint(ans)", "neg": "[[0 for _ in range(9)] for _ in range(9)]\n\nfor i in range(1,n+1):\n x=int(str(i)[0])\n y=int(str(i)[-1])\n if x!=0 and y!=0:\n a[x-1][y-1]+=1\n \nans=0\n \nfor i in range(9):\n for j in range(9):\n if i!=j:\n \n ans+=a[i][j]*a[j][i]\n \n else:\n ans+=(a[i][i]*a[i][i])\n \nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [172, 163], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "n=int(input())\na=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u459150945", "n_user": "u459150945", "pos": "N = int(input())\n\ncnt = [[0 for _ in range(10)] for _ in range(10)]\n\nfor k in range(1, N+1):\n s = str(k)\n cnt[int(s[0])][int(s[-1])] += 1\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += cnt[i][j] * cnt[j][i]\nprint(ans)\n", "neg": "N = int(input())\n\ncnt = [[0 for _ in range(10)] for _ in range(10)]\n\nfor k in range(1, n+1):\n s = str(k)\n cnt[int(s[0])][int(s[-1])] += 1\nans = 0\nfor i in range(10):\n for j in range(10):\n ans += c[i][j] * c[j][i]\nprint(ans)\n", "jacc_sim": 0.9333333333333333, "before_after_length": [111, 111], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "nNntnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u350997995", "n_user": "u350997995", "pos": "N = int(input())\nans = 0\nfor n in range(1,N+1):\n if n%10==0:continue\n s = str(n)\n if s[0]==s[-1]:ans+=1\n for i in range(10):\n a = int(s[-1]+\"9\"*i+s[0])\n b = int(s[-1]+\"0\"*i+s[0])\n if a<=N:ans+=pow(10,i)\n elif b<=N:\n ans+=(N-b)//10+1\n else:\n break\nprint(ans)", "neg": "N = int(input())\nans = 0\nfor n in range(1,N+1):\n if n%10==0:continue\n s = str(n)\n if s[0]==s[-1]:\n if int(s[0])<=N:ans+=1\n for i in range(10):\n a = int(s[-1]+\"9\"*i+s[0])\n b = int(s[-1]+\"0\"*i+s[0])\n if a<=N:ans+=pow(10,i)\n else:\n if b<=N:ans+=(N-a)//10+1\n break\nprint(ans)", "jacc_sim": 0.9736842105263158, "before_after_length": [155, 166], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": ":\n if int(s[0])<=Nse:\n \n abelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u130900604", "n_user": "u130900604", "pos": "n=int(input())\ncnt=[[0 for i in range(10)] for j in range(10)]\n\nfor i in range(1,n+1):\n s=str(i)\n head=int(s[0])\n tail=int(s[-1])\n cnt[head][tail]+=1\n\nans=0\nfor h in range(0,10):\n for t in range(0,10):\n ans+=cnt[h][t]*cnt[t][h]\nprint(ans)", "neg": "n=int(input())\ncnt=[[0 for i in range(10)] for j in range(n)]\n\nfor i in range(1,n+1):\n s=str(i)\n head=int(s[0])\n tail=int(s[-1])\n cnt[head][tail]+=1\n\nans=0\nfor h in range(0,10):\n for t in range(0,10):\n ans+=cnt[h][t]*cnt[t][h]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [124, 124], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "n10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u872538555", "n_user": "u872538555", "pos": "n = int(input())\ncnt = [[0] * 10 for i in range(10)]\nfor i in range(1,n+1):\n cnt[int(str(i)[0])][int(str(i)[-1])] += 1\n \nans = 0\nfor i in range(10):\n for j in range(10):\n ans += cnt[i][j] * cnt[j][i]\nprint(ans)", "neg": "n = int(input())\ncnt = [[0] * 10 for i in range(10)]\nfor i in range(1,n+1):\n cnt[int(str(i)[0])][int(str(i)[-1])] += 1\n\nprint(cnt)\n \nans = 0\nfor i in range(10):\n for j in range(10):\n ans += cnt[i][j] * cnt[j][i]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [103, 109], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": " \nans = 0\nfor i in range(10):\n for j in range(10):\n ans += cnt[i][j] * cnt[j][i]cnt)\n \n = 0\nfor i in range(10:\n for j in range(10):\n ans += cnt[i][j] * cnt[j][i]\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u518042385", "n_user": "u518042385", "pos": "n=int(input())\nans=0\ndp=[]\nfor i in range(10):\n dp.append(i)\nl=len(str(n))\nfor i in range(10,n+1):\n num1=int(str(i)[0])\n num2=int(str(i)[-1])\n if num2==0:\n dp.append(dp[-1])\n pass\n else: \n num=dp[-1]\n nums=0\n l=len(str(i))\n for j in range(2,l):\n nums+=10**(j-2) \n if num2>num1:\n num4=0\n elif num1>num2:\n num4=10**(l-2)\n else:\n num4=(i-(num2*10**(l-1)+num1))//10\n nums+=num4\n #print(nums)\n num+=nums*2\n if num1==num2:\n num+=3\n dp.append(num)\nprint(dp[n])", "neg": "n=int(input())\nans=0\ndp=[]\nfor i in range(10):\n dp.append(i)\nl=len(str(n))\nfor i in range(11,n+1):\n num1=int(str(i)[0])\n num2=int(str(i)[-1])\n if num2==0:\n dp.append(dp[-1])\n pass\n else: \n num=dp[-1]\n nums=0\n l=len(str(i))\n for j in range(2,l):\n nums+=10**(j-2) \n if num2>num1:\n num4=0\n elif num1>num2:\n num4=10**(l-2)\n else:\n num4=(i-(num2*10**(l-1)+num1))//10\n nums+=num4\n #print(nums)\n num+=nums*2\n if num1==num2:\n num+=3\n dp.append(num)\nprint(dp[-1])\n#print(dp)", "jacc_sim": 0.9772727272727273, "before_after_length": [265, 271], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "10n-1\n#print(dp)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u006883624", "n_user": "u006883624", "pos": "N = int(input())\n\nc = []\nfor i in range(10):\n c.append([0] * 10)\n\nfor i in range(N):\n s = str(i+1)\n i1 = int(s[0])\n i2 = int(s[-1])\n c[i1][i2] += 1\n \ntotal = 0\nfor i in range(10):\n for j in range(10):\n total += c[i][j] * c[j][i]\n \nprint(total)", "neg": "N = int(input())\n\n\nc = []\nfor i in range(10):\n c.append([0] * 10)\n\nfor i in range(1,N):\n s = str(i)\n i1 = int(s[0])\n i2 = int(s[-1])\n c[i1][i2] += 1\n \ntotal = 0\nfor i in range(10):\n for j in range(10):\n total += c[i][j] * c[j][i]\n \nprint(total)", "jacc_sim": 0.9666666666666667, "before_after_length": [130, 131], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "\n1,+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u197922478", "n_user": "u197922478", "pos": "N = int(input()) + 1\n\nans_list = [[0 for i in range(10)] for j in range(10)]\n\nfor i in range(1,N):\n s = str(i)\n ans_list[int(s[0])][int(s[-1])] += 1\n\nans = 0\nfor i in range(0,10):\n for j in range(0,10):\n ans += ans_list[i][j]*ans_list[j][i]\n\nprint(ans)", "neg": "N = int(input())\n\nans_list = [[0 for i in range(10)] for i in range(10)]\n\nfor i in range(N):\n s = str(i)\n ans_list[int(s[0])][int(s[-1])] += 1\n\nans = 0\nfor i in range(1,10):\n for j in range(1,10):\n ans += ans_list[i][j]*ans_list[j][i]\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [123, 119], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "\n\nans_list=+[[0 for i in range(0)] for i in range(10)]for i in rs_list = [[0 for i in ran10)] for j in range(10)]\n\nfor i in range(1,1010", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02792", "p_user": "u500415792", "n_user": "u500415792", "pos": "\nn = int(input())\n\nnumber = [[0]*10 for _ in range(10)]\n\nfor _ in range(1, n+1):\n\n s=str(_)\n i=int(s[0])\n j=int(s[-1])\n\n number[i][j] += 1\n\ncount = 0\nfor i in range(10):\n\n for j in range(10):\n count += number[i][j]*number[j][i]\n\nprint(count)", "neg": "\nn = int(input())\n\nnumber = [[0]*10 for _ in range(10)]\n\nfor _ in range(1, n+1):\n\n s=str(i)\n i=int(s[0])\n j=int(s[-1])\n\n number[i][j] += 1\n\ncount = 0\nfor i in range(10):\n\n for j in range(10):\n count += number[i][j]*number[j][i]\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [119, 120], "nl": "You are given a positive integer N. Find the number of pairs (A, B) of positive integers not greater than N that satisfy the condition: When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B. Constraints: 1 \u2264 N \u2264 2 \u00d7 10^5. Input is given as N, and the output should be the answer. For example, given N = 25, the output is 17, as there are 17 pairs that satisfy the condition.", "diff_info": "i_", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u581403769", "n_user": "u581403769", "pos": "x = int(input())\n\nfor i in range(x, 10**5 + 4):\n flag = True\n for j in range(2, i):\n if (i % j == 0):\n flag = False\n continue\n if flag:\n print(i)\n break\n else:\n continue\n \n", "neg": "x = int(input())\n\nfor i in range(x, 10**5):\n flag = True\n for j in range(2, i):\n if (i % j == 0):\n flag = False\n continue\n if flag:\n print(i)\n break\n else:\n continue\n ", "jacc_sim": 0.9310344827586207, "before_after_length": [79, 76], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": " + 4\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u953379577", "n_user": "u953379577", "pos": "x = int(input())\n\nans = 0\n\ndef prime(x):\n y = x//2+1\n cnt = 0\n for i in range(2,y+1):\n if x%i==0:\n cnt += 1\n \n if x==2:\n return 2\n else:\n if cnt==0:\n return x\n else:\n return 0\n \nwhile ans == 0:\n ans = prime(x)\n x += 1\n \n\nprint(ans)", "neg": "x = int(input())\n\nans = 0\n\ndef prime(x):\n y = x//2+1\n cnt = 0\n for i in range(2,y+1):\n if x%i==0:\n cnt += 1\n \n if cnt == 0:\n return x\n else:\n return 0\n \nwhile ans == 0:\n ans = prime(x)\n x += 1\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [124, 108], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "x==2:\n return 2\n else:\n if \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u250639998", "n_user": "u250639998", "pos": "import math\n\nN = int(input())\n\ndef sosuu(num):\n if num == 2:\n return (True)\n else:\n numsq = int(math.sqrt(num))\n judge = True\n for i in range(numsq):\n if (num % (i + 2) == 0):\n judge = False\n break\n return (judge)\n\nwhile True:\n if (sosuu(N) == False):\n N+=1\n else:\n break;\n\nprint(N)\n", "neg": "import math\n\nN = int(input())\n\ndef sosuu(num):\n numsq = int(math.sqrt(num))\n judge = True\n for i in range(numsq):\n if (num % (i + 2) == 0):\n judge = False\n break\n return (judge)\n\nwhile True:\n if (sosuu(N) == False):\n N+=1\n else:\n break;\n\nprint(N)", "jacc_sim": 1.0, "before_after_length": [133, 115], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "if num == 2:\n return (True)\n else:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u514894322", "n_user": "u514894322", "pos": "n=int(input())\nprime=0\ntmp = n\nwhile prime == 0:\n flag=True\n for i in range(2,int(tmp**0.5)+1):\n if tmp%i==0:\n flag=False\n break\n if flag:\n prime=tmp\n tmp+=1\nprint(prime)\n", "neg": "n=int(input())\nprime=0\ntmp = n\nwhile prime == 0:\n flag=True\n for i in range(2,int(n**0.5)+1):\n \tflag=False\n break\n if frag:\n prime=tmp\n tmp+=1\nprint(prime)\n", "jacc_sim": 0.9333333333333333, "before_after_length": [83, 75], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "ntmp\t if tmp%i==0:\n rl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u054514819", "n_user": "u054514819", "pos": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nX = int(input())\ndouble = X*10+1\ns = set()\nfor i in range(2, double):\n if i in s:\n continue\n if i>=X:\n print(i)\n break\n cnt = 1\n while cnt*i<=double:\n s.add(i*cnt)\n cnt += 1", "neg": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nX = int(input())\ndouble = X*2+1\ns = set()\nfor i in range(2, double):\n if i in s:\n continue\n if i>X:\n print(i)\n break\n cnt = 1\n while cnt*i<=double:\n s.add(i*cnt)\n cnt += 1", "jacc_sim": 1.0, "before_after_length": [129, 128], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "210=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u261103969", "n_user": "u261103969", "pos": "import sys\n\nn = int(input())\n\nwhile True:\n for i in range(2, int(n**0.5+1)):\n if n % i == 0:\n break\n else:\n print(n)\n sys.exit()\n\n n = n + 1", "neg": "import sys\n\nn = int(input())\n\nwhile True:\n if n % 2 != 0:\n for i in range(3, int(n**0.5+1),2):\n if n % i == 0:\n break\n else:\n print(n)\n sys.exit()\n\n n = n + 1", "jacc_sim": 0.9354838709677419, "before_after_length": [71, 81], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "if n % 2 != 0:\n 32,2 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u007299532", "n_user": "u007299532", "pos": "def is_prime(n):\n for p in range(2,n):\n if n % p ==0:\n return True\n\nN =int(input())\np=N\nwhile p <10**7:\n if is_prime(p):\n p +=1\n else:\n print(p)\n break", "neg": "def is_prime(n):\n for p in range(2,n):\n if n % p ==0:\n return True\n\nN =int(input())\np=N\nwhile cnt <10**7:\n if is_prime(p):\n p +=1\n else:\n print(p)\n break", "jacc_sim": 0.96875, "before_after_length": [78, 78], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "pcnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u898058223", "n_user": "u898058223", "pos": "X=int(input())\n\nif X==2:\n print(2)\nelse:\n while 1:\n flag=0\n for i in range(2,X):\n if X%i==0:\n flag=1\n break\n\n if flag==0:\n break\n else:\n X=X+1\n print(X)\n", "neg": "X=int(input())\n\nif X==2:\n print(2)\nelse:\n while 1:\n flag=0\n for i in range(2,X):\n if X%i==0:\n flag=1\n break\n\n if flag==0:\n break\n else:\n X=X+1\n\nprint(X)", "jacc_sim": 1.0, "before_after_length": [89, 88], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u917558625", "n_user": "u917558625", "pos": "import math\ns=int(input())\nif s!=2:\n if s%2==0:\n s+=1\ndef prime(x):\n if x==2:\n return True\n else:\n for i in range(3,int(math.sqrt(s))+1,2):\n if s%i==0:\n return False\n return True\n\nwhile True:\n if prime(s):\n print(s)\n break\n s+=2", "neg": "import math\ns=int(input())\nif s!=2 and s%2==0:\n s+=1\ndef prime(x):\n if x==2:\n return True\n else:\n for i in range(3,int(math.sqrt(s))+1,2):\n if s%i==0:\n return False\n else:\n return True\n\nwhile True:\n if prime(s):\n print(s)\n break\n s+=2", "jacc_sim": 0.9714285714285714, "before_after_length": [118, 119], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": ":\nand if else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u569853645", "n_user": "u569853645", "pos": "import math\nx = int(input())\ni = 0\nflag = True\nwhile flag:\n for k in range(2, int(math.sqrt(x+i)) + 1):\n if (x+i) % k == 0:\n i += 1\n break\n else:\n flag = False\n\nprint(x+i)", "neg": "import math\nx = int(input())\ni = 0\nflag = True\nwhile flag:\n for k in range(2, int(math.sqrt(x+i)) + 1):\n if (x+i) % k == 0:\n i += 1\n print(i)\n break\n else:\n flag = False\n \nprint(x+i)\n ", "jacc_sim": 1.0, "before_after_length": [81, 90], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "print(i)\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u243312682", "n_user": "u243312682", "pos": "from bisect import bisect_right\n\ndef eratosthenes(n):\n A = [i for i in range(2, n+1)]\n P = []\n i = 2\n while i**2 <= n:\n prime = min(A)\n P.append(prime)\n j = 0\n while j < len(A):\n if A[j] % prime == 0:\n A.pop(j)\n continue\n j += 1\n i += 1 \n for a in A:\n P.append(a)\n return P\n \nx = int(input())\nprime_table = eratosthenes(100003)\nprime_set = set(prime_table)\nif x in prime_set:\n print(x)\nelse:\n idx = bisect_right(prime_table, x)\n ans = prime_table[idx]\n print(ans)\n", "neg": "from bisect import bisect_right\n\ndef eratosthenes(n):\n A = [i for i in range(2, n+1)]\n P = []\n i = 2\n while i**2 <= n:\n prime = min(A)\n P.append(prime)\n j = 0\n while j < len(A):\n if A[j] % prime == 0:\n A.pop(j)\n continue\n j += 1\n i += 1 \n for a in A:\n P.append(a)\n return P\n \nx = int(input())\nprime_table = eratosthenes(100003)\nprime_set = set(prime_table)\nif x in prime_set:\n print(x)\nelse:\n idx = bisect_left(prime_table, x)\n ans = prime_table[idx]\n print(ans)", "jacc_sim": 0.9803921568627451, "before_after_length": [220, 219], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "lefrigh\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u171255092", "n_user": "u171255092", "pos": "li = []\n\ndef is_prime(n):\n for m in li:\n if m * m > n: \n return True\n if n % m == 0:\n return False\n return True\n\nn = int(input())\nfor i in range(2, n):\n if is_prime(i):\n li.append(i)\n\nwhile True:\n if is_prime(n):\n print(n)\n break\n n += 1", "neg": "li = []\n\ndef is_prime(n):\n return False\n for m in li:\n if m * m > n: \n return True\n if n % m == 0:\n return False\n return True\n\nn = int(input())\nfor i in range(2, n):\n if is_prime(i):\n li.append(i)\n\nwhile True:\n if is_prime(n):\n print(n)\n break\n n += 1", "jacc_sim": 1.0, "before_after_length": [112, 116], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "for m in li:\n if m * m > n: \n return True\n if n % m == 0:\n for m in li:\n if m * m > n: \n return True\n if n % m == 0:\n return False\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u608726540", "n_user": "u608726540", "pos": "from math import sqrt\nn=int(input())\nfor i in range(n,n*10000):\n a=1\n if i%2!=0:\n a=0\n for j in range(3,round(sqrt(n))+1,2):\n if i%j==0:\n a+=1\n break\n elif i==2:\n print(2)\n break\n if a==0:\n print(i)\n break\n", "neg": "from math import sqrt\nn=int(input())\nfor i in range(n,n*10000):\n a=1\n if i%2!=0:\n a=0\n for j in range(3,round(sqrt(n))+1,2):\n if i%j==0:\n a+=1\n break\n if a==0:\n print(i)\n break\n", "jacc_sim": 0.96875, "before_after_length": [114, 98], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "elai02i2 if a==0:\n print(i)\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u347134705", "n_user": "u347134705", "pos": "X = int(input()) \n\nwhile(1):\n if X == 2:\n break\n for i in range(2,X):\n if X%i == 0:\n X += 1\n break\n if i == X-1:\n break\n\nprint(X)", "neg": "X = input()\n\nwhile(1):\n for i in range(2,X):\n if X%i == 0:\n X += 1\n break\n if i == X-1:\n break\n\nprint(X)", "jacc_sim": 0.9545454545454546, "before_after_length": [68, 56], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "int() \n if X == 2:\n break ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u150641538", "n_user": "u150641538", "pos": "import math\nx=int(input())\n\ndef is_prime(x):\n ma = math.ceil(math.sqrt(x))\n for i in range(2,ma):\n if x%i==0:\n return False\n else:\n return True\n\nwhile(1):\n if x==1:\n x+=1\n continue\n if is_prime(x):\n print(x)\n break\n x+=1", "neg": "import math\nx=int(input())\n\ndef is_prime(x):\n ma = math.ceil(math.sqrt(x))\n for i in range(2,ma+1):\n if x%i==0:\n return False\n else:\n return True\n\nwhile(1):\n if is_prime(x):\n print(x)\n break\n x+=1", "jacc_sim": 0.9705882352941176, "before_after_length": [111, 97], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "):\n if x%i==0:\n return False\n else:\n return True\n\nwhile(1):\n if x==1:\n x1):\n if x%i=0:\n return False\n else:\n return True\n\nwhile():\n continue", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u005317312", "n_user": "u005317312", "pos": "from math import sqrt\ndef judge(num):\n if num < 2:\n return False\n elif num == 2:\n return True\n elif num % 2 == 0:\n return False\n else:\n for i in range(3,int(sqrt(num))+1,2):\n if num % i == 0:\n return False\n return True\ns = int(input()) \nwhile(1):\n if judge(s):\n print(s)\n break\n else:\n s += 1", "neg": "from math import sqrt\ndef judge(num):\n if num <= 2:\n return False\n elif num % 2 == 0:\n return False\n else:\n for i in range(3,int(sqrt(num))+1,2):\n if num % i == 0:\n return False\n return True\ns = int(input()) \nwhile(1):\n if judge(s):\n print(s)\n break\n else:\n s += 1", "jacc_sim": 1.0, "before_after_length": [126, 115], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "=e\n elif num == 2:\n return Tru", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u541475502", "n_user": "u541475502", "pos": "def com(_x):\n _flg = 1\n mx = int(_x**0.5)\n for i in range(2, mx+1):\n if _x % i == 0:\n _flg = 0\n break\n return _flg\n\n\ndef main():\n x = int(input())\n flg = 0\n while flg == 0:\n #print(\"a\")\n flg = com(x)\n if flg == 0:\n x+=1\n print(x)\n\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "def com(_x):\n _flg = 1\n mx = int(_x**0.5)\n for i in range(2, mx+1):\n if _x % i == 0:\n _flg = 0\n break\n return _flg\n\n\nx = int(input())\nflg = 0\n while flg == 0:\n #print(\"a\")\n flg = com(x)\n if flg == 0:\n x+=1\nprint(x)", "jacc_sim": 0.918918918918919, "before_after_length": [146, 121], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "def main():\n flg= flg = ifflg==ifflg == \n\n\n\nif __name__ == \"__main__\":\n main()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u697601622", "n_user": "u697601622", "pos": "def isPrime(n):\n for i in range(2,N):\n if N%i == 0:\n return False\n return True\n \n \ndef find_next_prime(n):\n return find_prime_in_range(n, 2*n)\n\ndef find_prime_in_range(a, b):\n for p in range(a, b):\n for i in range(2, p):\n if p % i == 0:\n break\n else:\n return p\n return None\n\nN = int(input())\nif(isPrime(N)):\n print(str(N))\nelse:\n print(str(find_next_prime(N+1)))\n", "neg": "def isPrime(n):\n for i in range(2,N):\n if N%i == 0:\n return False\n \ndef find_next_prime(n):\n return find_prime_in_range(n, 2*n)\n\ndef find_prime_in_range(a, b):\n for p in range(a, b):\n for i in range(2, p):\n if p % i == 0:\n break\n else:\n return p\n return None\n\nN = int(input())\nif(isPrime(N)):\n print(str(N))\nelse:\n print(str(find_next_prime(N+1)))\n", "jacc_sim": 0.9722222222222222, "before_after_length": [171, 165], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "return True\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u652569315", "n_user": "u652569315", "pos": "x=int(input())\nimport math\n\ndef is_prime(n):\n for k in range(2, int(math.sqrt(n)) + 1):\n if n % k == 0:\n return False\n return True\nfor i in range(x,10**6):\n if is_prime(i)==True:\n print(i)\n exit()", "neg": "x=int(input())\nimport math\n\ndef is_prime(n):\n for k in range(2, int(math.sqrt(n)) + 1):\n if n % k == 0:\n return False\n return True\nfor i in range(x,10**5):\n if is_prime(i)==True:\n print(i)\n exit()\n ", "jacc_sim": 0.9428571428571428, "before_after_length": [89, 91], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "56\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u281494025", "n_user": "u281494025", "pos": "def is_prime(n):\n if n == 1:\n return False\n for i in range(2,int(n**0.5)+1):\n if n % i == 0:\n return False\n return True\n\ndef main(X):\n if is_prime(X) == True:\n print(X)\n else:\n return main(X+1)\n\nif __name__ == '__main__':\n X = int(input())\n main(X)", "neg": "X = int(input())\n\ndef is_prime(n):\n if n == 1:\n return False\n for i in range(2,int(n**0.5)+1):\n if n % i == 0:\n return False\n return True\n\ndef main():\n if is_prime(X) == True:\n print(X)\n else:\n return is_prime(X+1)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [117, 115], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "X = int(input())\n\nXis_prieainmaX = tinput()\n main(X)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u368270116", "n_user": "u368270116", "pos": "n=int(input())\nfor i in range(n,10**6):\n for j in range(2,int(i**0.5)+1):\n if i%j==0:\n break\n else:\n print(i)\n break", "neg": "n=int(input())\nif n==2:\n print(n)\nelse:\n cost=0\n for i in range(n,10**6):\n for j in range(2,int(i**0.5))+1):\n if i%j==0:\n cost+=1\n if cost==0:\n print(i)\n break", "jacc_sim": 0.9642857142857143, "before_after_length": [62, 90], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "if n==2:\n print(n)\nelse:\n cost=0\n ) break cost+=1el if coet==0 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u282813849", "n_user": "u282813849", "pos": "isprime = [True] * 100201\n\ndef seive(n): \n isprime[0] = isprime[1] = False\n p = 2\n while (p*p <= n):\n if isprime[p]:\n for i in range(p*p, n+1, p):\n isprime[i] = False \n p += 1\n \n prime = [j for j in range(n) if isprime[j]]\n return prime\n\n\t\t\ndef program():\n x = int(input())\n N = 100200\n prime = seive(N) \n \n for i in range(len(prime)):\n if prime[i] >= x:\n return prime[i]\n break\n\t\t\nprint(program())\n", "neg": "isprime = [True] * 20001\n\ndef seive(n): \n isprime[0] = isprime[1] = False\n p = 2\n while (p*p <= n):\n if isprime[p]:\n for i in range(p*p, n+1, p):\n isprime[i] = False \n p += 1\n \n prime = [j for j in range(n) if isprime[j]]\n return prime\n\n\t\t\ndef program():\n x = int(input())\n N = 10100\n prime = seive(N) \n \n for i in range(len(prime)):\n if prime[i] >= x:\n return prime[i]\n break\n\t\t\nprint(program())\n", "jacc_sim": 0.9047619047619048, "before_after_length": [183, 183], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "10000102", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u498136917", "n_user": "u498136917", "pos": "X = int(input())\ni = int(X**0.5)\n\nwhile i >= 2:\n if X % i == 0:\n X += 1\n i = int(X**0.5)\n else:\n i -= 1\n \nprint(X)", "neg": "X = int(input())\ni = int(n**0.5)\n\nwhile i >= 2:\n if X % i == 0:\n X += 1\n i = int(X**0.5)\n else:\n i -= 1\n \nprint(X)", "jacc_sim": 0.9565217391304348, "before_after_length": [66, 66], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "nX", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u082550248", "n_user": "u082550248", "pos": "import math\nX = int(input())\nfor i in range(X,10**6):\n flag = True\n for j in range(2,int(i**0.5+1)):\n if (i%j) == 0:\n flag = False\n \n break\n if flag:\n print(i)\n exit()", "neg": "import math\nX = int(input())\nfor i in range(X,10**6):\n flag = True\n for j in range(2,int(i**0.5+1)):\n if (i%j) == 0:\n flag = False\n print('F',i,j)\n break\n if flag:\n print(i)\n exit()", "jacc_sim": 0.9411764705882353, "before_after_length": [82, 90], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "\n break\n if flag:\n 'F',i,j)\n break\n if flag:\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u798260206", "n_user": "u798260206", "pos": "import math\n \nx = int(input())\n\nif x == 2:\n print(2)\n exit()\n \nwhile True:\n f = True\n g = math.ceil(math.sqrt(x))\n for i in range(2,g+1):\n if x%i == 0:\n f = False\n break\n if f == True:\n print(x)\n exit()\n x += 1", "neg": "import math\n \nx = int(input())\nf = True\nif x == 2:\n print(2)\n exit()\n \nwhile True:\n g = math.ceil(math.sqrt(x))\n for i in range(2,g+1):\n if x%i == 0:\n f = False\n break\n if f == True:\n print(x)\n exit()\n x += 1", "jacc_sim": 1.0, "before_after_length": [106, 104], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "\nix = 2:\n print(2)\n exit()\n \nwhile\nif x == 2fprint(2)\n= exit()\n \nwhile:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u690037900", "n_user": "u690037900", "pos": "X = int(input())\n\nwhile True:\n for i in range(2, X):\n if X % i == 0:\n break\n else:\n break\n X += 1\n\nprint(X)", "neg": "X = int(input())\n\nwhile True:\n for i in range(2, X):\n if X % i == 0:\n print(i)\n break\n else:\n break\n X += 1\n\nprint(X)", "jacc_sim": 1.0, "before_after_length": [52, 58], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "print(i)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u995004106", "n_user": "u995004106", "pos": "X=int(input())\nn = 200000\nprimes = set(range(2, n+1))\nfor i in range(2, int(n**0.5+1)):\n primes.difference_update(range(i*2, n+1, i))\nprimes=list(primes)\nfor i in range(len(primes)-1):\n if X==2:\n print(\"2\")\n break\n elif (primes[i] 2:\n while b == 0:\n s = int(np.sqrt(x))\n for i in range(s):\n if x % (i+2) == 0:\n a = 1\n x += 1\n break\n if a == 0:\n b = 1\n else:\n a = 0\nprint(x)", "neg": "import numpy as np\nx=int(input())\na = 0\nb = 0\nwhile b == 0:\n s = int(np.sqrt(x))\n print(s,x)\n for i in range(s):\n if x % (i+2) == 0:\n a = 1\n x += 1\n break\n print(a)\n if a == 0:\n b = 1\n else:\n a = 0\nprint(x)", "jacc_sim": 0.9375, "before_after_length": [105, 112], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "if x > 2:\n print(s,x)\n print(a)\n a= a = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u201387466", "n_user": "u201387466", "pos": "import sys\ninput=sys.stdin.readline\nimport math\nX = int(input())\nif X == 2:\n print(2)\nelse:\n x = math.ceil(math.sqrt(X))\n for i in range(X,X+1000):\n c = 0\n for j in range(2,x+1):\n if i % j == 0:\n c = 1\n break\n if c == 0:\n print(i)\n break", "neg": "import sys\ninput=sys.stdin.readline\nimport math\nX = int(input())\nif X == 2:\n print(2)\nx = math.ceil(math.sqrt(X))\nfor i in range(X,X+1000):\n c = 0\n for j in range(2,x+1):\n if i % j == 0:\n c = 1\n break\n if c == 0:\n print(i)\n break", "jacc_sim": 0.9696969696969697, "before_after_length": [115, 110], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": "else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02819", "p_user": "u780475861", "n_user": "u780475861", "pos": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nx=int(readline())\ndef a(n):\n for i in range(2, int(n ** 0.5 + 1)):\n if n % i == 0:\n return False\n return True\n \n\nwhile True:\n if a(x):\n print(x)\n quit()\n x+=1", "neg": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nx=int(readline())\ndef a(n):\n for i in range(2, int(n ** 0.5 + 1)):\n if n % i == 0:\n return False\n return True\n \n \nn=x+1\nwhile True:\n if a(n):\n pint(n)\n quit()\n n+=1", "jacc_sim": 0.9459459459459459, "before_after_length": [117, 125], "nl": "Score: 300 points\nProblem Statement\nFind the minimum prime number greater than or equal to X.\nNotes\nA prime number is an integer greater than 1 that cannot be evenly divided by any positive integer except 1 and itself.\nFor example, 2, 3, and 5 are prime numbers, while 4 and 6 are not.\nConstraints\n- 2 \u2264 X \u2264 10^5\n- All values in input are integers.\nInput\nInput is given from Standard Input in the following format:\nX\nOutput\nPrint the minimum prime number greater than or equal to X.\nSample Input 1\n20\nSample Output 1\n23\nThe minimum prime number greater than or equal to 20 is 23.\nSample Input 2\n2\nSample Output 2\n2\nX itself can be a prime number.\nSample Input 3\n99992\nSample Output 3\n100003", "diff_info": " \nn=x+1nxrnxnx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u197300773", "n_user": "u197300773", "pos": "import sys\n\ndef f(x):\n if a[x]+m=m*v: return 1\n else: return 0\n\nn,m,v,p=map(int,input().split())\na=list(map(int,input().split()))\na.sort(reverse=True)\n\nl,r=0,n-1\nif f(r)==1: print(n);sys.exit()\nwhile r-l>0:\n if r-l==1 and f(l)==1 and f(r)==0: break\n tmp=(l+r)//2\n if f(tmp)==1: l=tmp\n else: r=tmp\nprint(l+1)", "neg": "import sys\n\ndef f(i):\n if v<=p+n-2-i: return 1\n elif a[i]+m=m*v: return 1\n else: return 0\n\nn,m,v,p=map(int,input().split())\na=list(map(int,input().split()))\na.sort(reverse=True)\n\nprint(a)\nprint([f(i) for i in range(n)])\nl,r=0,n-1\nif f(r)==1: print(n);sys.exit()\nwhile r-l>1:\n tmp=(l+r)//2\n if f(tmp)==1: l=tmp\n else: r=tmp\nprint(r)\n", "jacc_sim": 0.9272727272727272, "before_after_length": [240, 235], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "ixif a[x]+m1:\n\tmid=(ok+ng)//2\n\tif a[mid]+m>=a[p-1] and (a[mid]+m)*(mid-p+1)-(acc[mid-1]-acc[p-2])>=m*(v-(p-1)-(n-mid)):\n\t\tok=mid\n\telse:\n\t\tng=mid\nprint(ok+1)", "neg": "from itertools import *\nn, m, v, p, *a = map(int, open(0).read().split())\na.sort(reverse=True)\nacc = list(accumulate(a)) + [0]\nok, ng = p - 1, n\nwhile ng - ok > 1:\n\tmid = (ok + ng) // 2\n\tif a[mid] + m > a[p - 1] and (a[mid] + m) * (mid - p + 1) - (acc[mid - 1] - acc[p - 2]) >= m * (\n\t\t\tv - (p - 1) - (n - mid)):\n\t\tok = mid\n\telse:\n\t\tng = mid\nprint(ok + 1)", "jacc_sim": 1.0, "before_after_length": [164, 172], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": " = \n\t\t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u585482323", "n_user": "u585482323", "pos": "#!usr/bin/env python3\nfrom collections import defaultdict, deque\nfrom heapq import heappush, heappop\nfrom itertools import permutations, accumulate\nimport sys\nimport math\nimport bisect\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n,m,v,p = LI()\n a = LI()\n a.sort()\n l = -1\n r = n-1\n while l+1 < r:\n i = (l+r) >> 1\n A = a[i]+m\n ri = bisect.bisect_right(a,A)\n j = n-ri\n if j >= p:\n l = i\n continue\n s = m\n for j in range(n-p+1):\n if i == j:\n continue\n s += min(m,A-a[j])\n s += m*(p-1)\n if s >= m*v:\n r = i\n else:\n l = i\n print(n-r)\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "neg": "#!usr/bin/env python3\nfrom collections import defaultdict, deque\nfrom heapq import heappush, heappop\nfrom itertools import permutations, accumulate\nimport sys\nimport math\nimport bisect\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n,m,v,p = LI()\n a = LI()\n a.sort()\n l = -1\n r = n-1\n print(a)\n while l+1 < r:\n i = (l+r) >> 1\n A = a[i]+m\n ri = bisect.bisect_right(a,A)\n j = n-ri\n if j >= p:\n l = i\n continue\n li = bisect.bisect_right(a,a[i])\n res = v-j-li\n if res <= 0:\n r = i\n continue\n res -= (p-j-1)\n s = 0\n for j in range(li,ri-(p-j-1)):\n s += A-a[j]\n if s >= res*m:\n r = i\n else:\n l = i\n print(n-r)\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "jacc_sim": 0.9655172413793104, "before_after_length": [454, 495], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "print(a)\n li = bi = m\n for j in rang(n-p+1):\n if i == j:\n on.bsnuct_r\n s += mnghtama[i])\n res = v-j-li\n if res <= 0:\n r = i\n continue\n res -= (p-j-1)\n s = 0\n for j in range(li,ri-(p-j-1)):\n s += )\n s += m*(p-1)mresmv", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u490642448", "n_user": "u490642448", "pos": "n,m,v,p = map(int,input().split())\na = list(map(int,input().split()))\n\na.sort(reverse=True)\n\nhigher = a[p-1]\nfor i in range(p,n):\n if(a[i] == a[i-1]):\n higher += a[i]\n continue\n\n if(a[p-1]- a[i] > m):\n print(i)\n exit()\n\n if(higher - a[i]*(i-p+1) > min(n-v,i-p+1)*m):\n print(i)\n exit()\n\n higher += a[i]\n\nprint(n)", "neg": "n,m,v,p = map(int,input().split())\na = list(map(int,input().split()))\n\na.sort(reverse=True)\n\nhigher = a[p-1]\nfor i in range(p,n):\n if(a[i] == a[p-1]):\n higher += a[i]\n continue\n\n if(a[p-1]- a[i] > v):\n print(i)\n exit()\n\n if(higher - a[i]*(i-p+1) > min(n-v,p-1)*m):\n print(i)\n exit()\n\n higher += a[i]\n\nprint(n)", "jacc_sim": 1.0, "before_after_length": [176, 174], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "pim):\n print(i)\n exit()\n\n if(higher - a[i]*(i-p+1) > min(n-,i-p+1)*mif(- a[i]*(i-p1) > min(n-v,p-1)*m):\n print(i)\n exit()\n\n higher +", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u316341119", "n_user": "u316341119", "pos": "def check_pickedup(N: int, M: int, V: int, P: int, A: list, accum_score: list, i: int) -> bool:\n th_score = A[P-1]\n if A[i] >= th_score:\n return True\n sum_surplus = (accum_score[i-1] - (accum_score[P-2] if P-2 >=0 else 0)) - ((i-1)-(P-2))*A[i]\n #print('i: ', i)\n #print('th_score: ', th_score)\n #print('sum_surplus: ', sum_surplus)\n #print('th_score - A[i]: ', th_score - A[i])\n if th_score - A[i] <= M and sum_surplus <= M*(N-V):\n return True\n return False\n\ndef main():\n N, M, V, P = map(int, input().split())\n A = list(map(int, input().split()))\n \n A.sort(reverse=True)\n \n accum_score = [A[0]] * N\n for i in range(1, N):\n accum_score[i] = accum_score[i-1] + A[i]\n \n # Reduce N-V scores each judge\n ans = 0\n was_checked = {}\n for i, a in enumerate(A):\n # Check a will be picked up\n if a in was_checked:\n ans += 1\n continue\n if check_pickedup(N, M, V, P, A, accum_score, i):\n ans += 1\n was_checked[a] = True\n else:\n break\n print(ans)\n\nif __name__ == '__main__':\n main()\n ", "neg": "def check_pickedup(M: int, V: int, P: int, A: list, accum_score: list, i: int) -> bool:\n th_score = A[P-1]\n if A[i] >= th_score:\n return True\n sum_surplus = accum_score[i-1] - accum_score[P-2]\n if th_score - A[i] <= M and sum_surplus <= M*V:\n return True\n return False\n\ndef main():\n N, M, V, P = map(int, input().split())\n A = list(map(int, input().split()))\n \n A.sort(reverse=True)\n \n accum_score = [A[0]] * N\n for i in (1, N):\n accum_score[i] = accum_score[i-1] + A[i]\n \n # Reduce N-V scores each judge\n ans = 0\n was_checked = {}\n for i, a in enumerate(A):\n # Check a will be picked up\n if a in was_checked:\n ans += 1\n continue\n if check_pickedup(M, V, P, A, accum_score, i):\n ans += 1\n was_checked[a] = True\n else:\n break\n print(ans)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9850746268656716, "before_after_length": [446, 345], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "N: int, (( if P-2 >=0 else 0)) - ((i-1)-(P-2))*A[i]\n #print('i: ', i)\n #print('th_score: ', th_score)\n #print('sum_surplus: ', sum_surplus)\n #print('th_score - A[i]: ', th_score - A[i])(N-)rangeN, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u798316285", "n_user": "u798316285", "pos": "n,m,v,p=map(int,input().split())\nA=list(map(int,input().split()))\nA.sort(reverse=True)\nans=p\nS=[A[p-1]]\nfor i in range(p,n):\n S.append(S[-1]+A[i])\nfor i in range(p,n):\n if v<=p+n-i-1:\n if A[p-1]-A[i]<=m:\n ans+=1\n else:\n if A[p-1]-A[i]<=m and S[i-p]-A[i]*(i-p+1)<=(n-v)*m:\n ans+=1\n else:\n break\nprint(ans)", "neg": "n,m,v,p=map(int,input().split())\nA=list(map(int,input().split()))\nA.sort(reverse=True)\nans=p\nS=[A[p-1]]\nfor i in range(p,n):\n S.append(S[-1]+A[i])\nfor i in range(p,n):\n if v<=p+n-i-1:\n if A[i]-A[p-1]<=m:\n ans+=1\n else:\n if A[i]-A[p-1]<=m and S[i-p]-A[i]*(i-p+1)<=(n-v)*m:\n ans+=1\n else:\n break\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [190, 190], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "i]-A[]-A[ii]-A[]-A[i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u619819312", "n_user": "u619819312", "pos": "from bisect import bisect_right as br\nn,m,v,p=map(int,input().split())\na=sorted(list(map(int,input().split())))\nl,r=n,-1\nwhile l-r>1:\n t=(l+r)//2\n s=a[t]+m\n w=a[:]\n k=m*(v-1)\n for i in range(n):\n if i!=t:\n if i=s:\n break\n else:\n c=min(k,s-w[i])\n k-=c\n w[i]+=c\n if k==0:\n break\n if k>0:\n for j in range(n-1,-1,-1):\n if j!=t:\n g=min(k,m-w[j]+a[j])\n w[j]+=g\n k-=g\n if k==0:\n break\n w.pop(t)\n w=sorted(w)\n if n-br(w,s)<=p:\n l=t\n else:\n r=t\nprint(n-l)", "neg": "from bisect import bisect_right as br\nn,m,v,p=map(int,input().split())\na=sorted(list(map(int,input().split())))\nl,r=n,0\nwhile l-r>1:\n t=(l+r)//2\n s=a[t]+m\n w=a[:]\n k=m*v\n for i in range(n-1):\n if i!=t:\n if s>=w[i]:\n r=min(s-w[i],m)\n k-=r\n w[i]+=r\n if k==0:\n break\n if k>=0:\n for j in range(n-1,-1,-1):\n if j!=t:\n w[j]+=min(k,m-w[j]+a[j])\n k-=min(k,m-w[j]+a[j])\n if k==0:\n break\n if n-br(w,s)<=p:\n l=t\n else:\n r=t\nprint(n-r+1)", "jacc_sim": 0.9454545454545454, "before_after_length": [328, 278], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "0-1(-1)-1s>=w[]=s:\n break\n else:\n c=min(k,s-w[i])\n k-=c\n w[i]+=c\n =g=min(k,m-=min(k,m-a[j])\n a[j])\n k-min(g\n ,m=gw[j]+a[j])w.pop(t)\n w=sorted(w)\n lr+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u608088992", "n_user": "u608088992", "pos": "import sys\nfrom bisect import bisect\n\ndef solve():\n input = sys.stdin.readline\n N, M, V, P = map(int, input().split())\n A = [int(a) for a in input().split()]\n A.sort()\n border = A[N - P]\n\n low, high = -1, N\n while high - low > 1:\n mid = (low + high) //2\n point = A[mid] + M\n if point < border: low = mid\n elif mid >= N - P: high = mid\n else:\n space = (mid + P) * M\n for i in range(mid + 1, N - P + 1 ): space += point - A[i]\n if space >= M * V: high = mid\n else: low = mid\n print(N - low - 1)\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "neg": "import sys\nfrom bisect import bisect\n\ndef solve():\n input = sys.stdin.readline\n N, M, V, P = map(int, input().split())\n A = [int(a) for a in input().split()]\n A.sort()\n border = A[N - P]\n\n low, high = 0, N\n while high - low > 1:\n mid = (low + high) //2\n point = A[mid] + M\n if point < border: low = mid\n elif mid >= N - P: high = mid\n else:\n space = (mid + P) * M\n for i in range(mid + 1, N - P + 1): space -= point - A[i]\n if space >= M * V: high = mid\n else: low = mid\n print(N - low - 1)\n return 0\n\nif __name__ == \"__main__\":\n solve()", "jacc_sim": 1.0, "before_after_length": [226, 223], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "0-1 -+\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u054514819", "n_user": "u054514819", "pos": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nN, M, V, P = mapint()\nAs = list(mapint())\nAs.sort(reverse=True)\n\nthreshold = As[P-1]\nl, r = P-1, N\nwhile l+1=a:\n continue\n if i==half:\n continue\n rest_sum += min(M, a-As[i])\n if M*V > rest_sum+P*M:\n r = half\n else:\n l = half\nprint(l+1)", "neg": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nN, M, V, P = mapint()\nAs = list(mapint())\nAs.sort(reverse=True)\n\nthreshold = As[P-1]\nl, r = P, N\nwhile l+1=a:\n continue\n rest_sum += min(M, a-As[i])\n if M*V > rest_sum+P*M:\n r = half\n else:\n l = half\nprint(l+1)", "jacc_sim": 1.0, "before_after_length": [231, 219], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "-1:\n continue\n if i==half", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u201928947", "n_user": "u201928947", "pos": "n,m,v,p = map(int,input().split())\na = list(map(int,input().split()))\na.sort(reverse = True)\nans = p\nborder = a[p-1]\nto_border = 0\nfor i in range(p,n):\n new_border = a[i] + m\n if new_border < border:\n print(ans)\n exit()\n possible_votes = 0\n possible_votes += (n+p-i-1)*m\n possible_votes += to_border\n possible_votes += (new_border-border)*(i-p+1)\n if possible_votes >= m*v:\n ans += 1\n to_border += border-a[i]\n else:\n print(ans)\n exit()\nprint(ans)\nexit()\n", "neg": "n,m,v,p = map(int,input().split())\na = list(map(int,input().split()))\na.sort(reverse = True)\nans = p\nborder = a[p]\nto_border = 0\nfor i in range(p,n):\n new_border = a[i] + m\n if new_border < border:\n print(ans)\n exit()\n possible_votes = 0\n possible_votes += (p+n-i-1)*m\n possible_votes += to_border\n possible_votes += (new_border-border)*(i-p)\n print((i,possible_votes))\n if possible_votes >= m*v:\n ans += 1\n to_border += border-a[i]\n else:\n print(ans)\n exit()\nprint(ans)\nexit()", "jacc_sim": 1.0, "before_after_length": [202, 207], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "]\nto_border = 0\nfor i in range(p,n):\n new_border = a[i] + m\n if new_border < border:\n print(ans)\n exit()\n possible_votes = 0\n possible_votes += (p+n-i]\nto_border = 0\nfor i in range(p,n):\n new_border = a[i] + m\n if new_border < border:\n print(ans)\n exit()\n possible_votes = 0\n possible_votes += (n+p-i-1+1)\n print((i,possible_votes)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u497952650", "n_user": "u497952650", "pos": "def check(n):\n\n if n <= P-1:\n return True\n \n if A[n]+M < A[P-1]:\n return False\n \n votes = (P+N-1-n)*M + sum([A[n]+M-A[i] for i in range(P-1,n)])\n\n if votes < M*V:\n return False\n else:\n return True\n\nN,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nA.sort(reverse=True)\n\nright = N-1\nleft = 0\n\nif check(right):\n print(N)\n exit()\n\nwhile abs(right-left) > 1 and check(left) and not check(right):\n\n mid = (right+left)//2\n\n if check(mid):\n left = mid\n else:\n right = mid\n\nprint(left+1)", "neg": "def check(n):\n \"\"\"\n if n <= P-1:\n return True\n \"\"\"\n\n if A[n]+M < A[P-1]:\n return False\n \n votes = (P+N-1-n)*M + sum([A[n]+M-A[i] for i in range(P-1,n)])\n\n if votes < M*V:\n return False\n else:\n return True\n\nN,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nA.sort(reverse=True)\n\nright = N\nleft = P\n\n\n##\n\"\"\"\nif check(right):\n print(N)\n exit()\n\"\"\"\nwhile abs(right-left) > 1:\n\n mid = (right+left)//2\n print(mid)\n\n if check(mid):\n left = mid\n else:\n right = mid\n\nprint(left+1)", "jacc_sim": 0.9074074074074074, "before_after_length": [237, 241], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": " \"\"\"\"\"\"\n-1P0\n\n##\n\"\"\"\"\"\" and check(left) and not check(right) print(mid)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u532966492", "n_user": "u532966492", "pos": "def main():\n n, m, v, p = list(map(int, input().split()))\n a = sorted(list(map(int, input().split())))\n # print(a)\n\n def value(i):\n if i+p >= n:\n return True\n if a[n-p] > a[i]+m:\n return False\n b = list(reversed([a[i]+m-j for j in a[:i] + a[i+1:n]]))[p-1:]\n #print(b)\n if b[0] < 0:\n return False\n rest = v-n+len(b)\n if rest <= 0:\n return True\n #print(rest)\n\n c = [min(m, i) for i in b]\n d = [i for i in c][:-rest]\n e = [m-i for i in c][-rest:]\n #print(d, e)\n if sum(d) < sum(e):\n return False\n else:\n return True\n\n def b_search(a, b, value):\n while a+1 < b:\n med = (a+b)//2\n if value(med):\n b = med\n else:\n a = med+1\n if a == b:\n return a\n else:\n if value(a):\n return a\n else:\n return b\n\n #print(value(1))\n\n print(n-b_search(0, n-1, value))\n\n\nmain()", "neg": "def main():\n n, m, v, p = list(map(int, input().split()))\n a = sorted(list(map(int, input().split())))\n # print(a)\n\n def value(i):\n if i+p >= n:\n return True\n if a[n-p] > a[i]+m:\n return False\n b = list(reversed([a[i]+m-j for j in a[:i] + a[i+1:n]]))[p-2:]\n # print(b)\n if b[0] < 0:\n return False\n rest = v-n+len(b)\n if rest <= 0:\n return False\n # print(rest)\n\n c = [min(m, i) for i in b]\n d = [i for i in c][:-rest]\n e = [m-i for i in c][-rest:]\n #print(d, e)\n if sum(d) < sum(e):\n return False\n else:\n return True\n\n def b_search(a, b, value):\n while a+1 < b:\n med = (a+b)//2\n if value(med):\n b = med\n else:\n a = med+1\n if a == b:\n return a\n else:\n if value(a):\n return a\n else:\n return b\n\n # print(value(2))\n\n print(n-b_search(0, n-1, value))\n\n\nmain()\n", "jacc_sim": 1.0, "before_after_length": [384, 385], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "21 TruFals 21\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u628583308", "n_user": "u628583308", "pos": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int, M: int, V: int, P: int, A: \"List[int]\"):\n P -= 1\n A = sorted(A, reverse=True)\n\n result = 0\n\n cumsum = [0 for i in range(N+1)]\n for n in range(N-1):\n cumsum[n+1] = A[n] + cumsum[n]\n\n for n in range(N):\n if n < P:\n result += 1\n elif A[n] + M < A[P]:\n continue\n else:\n affords = M * V - M - M * (P-1)\n if affords <= 0:\n result += 1\n continue\n \n sunmmation = A[n] * (n-P) + M * (n-P) - (cumsum[n] - cumsum[P])\n affords -= sunmmation\n affords -= (N-n) * M\n\n if affords <= 0:\n result += 1\n continue\n print(result)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n M = int(next(tokens)) # type: int\n V = int(next(tokens)) # type: int\n P = int(next(tokens)) # type: int\n A = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n solve(N, M, V, P, A)\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int, M: int, V: int, P: int, A: \"List[int]\"):\n P -= 1\n A = sorted(A, reverse=True)\n\n result = 0\n for n in range(N):\n if n < P:\n result += 1\n elif A[n] + M < A[P]:\n continue\n else:\n affords = M * V - M - M * P\n if affords <= 0:\n result += 1\n continue\n \n affords -= sum([min(A[n] + M - A[p], M) for p in range(P, n)])\n affords -= (N-n-1) * M\n \n if affords <= 0:\n result += 1\n continue\n print(result)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n M = int(next(tokens)) # type: int\n V = int(next(tokens)) # type: int\n P = int(next(tokens)) # type: int\n A = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n solve(N, M, V, P, A)", "jacc_sim": 0.9101123595505618, "before_after_length": [488, 413], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "\n\n cumsum = [0 for i in range(N+1)]\n for n in range(N-1):\n cumsum[n+1] = A[n] + cumsum[n]\n(-1)afford -= sm([mi(mmation = * (n-P) * (nP)A- (cumsumpn,-M)cumsum[for p in range(, n)\n affords -= sunmmation-1 \n\nif __name__ == '__main__':\n main()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u332906195", "n_user": "u332906195", "pos": "N, M, V, P = map(int, input().split())\nA = sorted(list(map(int, input().split())), reverse=True) + [-10 ** 10]\nL, R, sA, lP = 0, N, [A[P - 1]], A[P - 1]\nfor i in range(P, N):\n sA.append(sA[-1] + A[i])\n\nwhile R - L > 1:\n mid = L + (R - L) // 2\n if mid < P:\n L = mid\n elif A[mid] + M < lP:\n R = mid\n else:\n mi = mid - P + 1\n if M * (N - mi) + (A[mid] + M) * mi - sA[mi - 1] >= M * V:\n L = mid\n else:\n R = mid\nprint(L + 1)\n", "neg": "N, M, V, P = map(int, input().split())\nA = sorted(list(map(int, input().split())), reverse=True) + [-10 ** 10]\nL, R, sA, lP = 0, N, [A[P - 1]], A[P - 1]\nfor i in range(P, N):\n sA.append(sA[-1] + A[i])\n\nwhile R - L > 1:\n mid = L + (R - L) // 2\n if mid < P:\n L = mid\n elif A[mid] + M <= A[P - 1]:\n R = mid\n else:\n mi = mid - P + 1\n if M * (N - mi) + (A[mid] + M - 1) * (mi + 1) - sA[mi] >= M * V:\n L = mid\n else:\n R = mid\nprint(L + 1)\n", "jacc_sim": 1.0, "before_after_length": [219, 226], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "=lA[ - 1] - 1(+ 1) - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u726615467", "n_user": "u726615467", "pos": "N, M, V, P = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\nsumtab = [0] * (N + 1)\ntmp_tab = 0\nfor i, Ai in enumerate(A):\n tmp_tab += Ai\n sumtab[i + 1] = tmp_tab\n\nl = 0\nr = N\nwhile True:\n i = l + (r - l) // 2\n # print(\"#\", l, r, i)\n #\n B = list(A)\n # everyone vote: i\n score_i = A[i] + M\n B[i] += M\n M_tmp = M * (V - 1)\n #\n rslt = False\n # print(\"#\", i, B)\n for j in list(range(N))[::-1]:\n # print(\"##\", j, M_tmp, B)\n if j == i:\n continue # me\n elif j > N - P:\n # make stronger problems stronger as possible\n tmp = min(M, M_tmp)\n #\n M_tmp -= tmp\n B[j] += tmp\n else:\n # make weaker problems weaker as possible\n if A[j] > score_i:\n break\n if A[j] + M <= score_i:\n tmp = min(M, M_tmp)\n else:\n tmp = min(score_i - A[j], M_tmp)\n #\n M_tmp -= tmp\n B[j] += tmp\n #\n if M_tmp <= 0: break\n #\n # print(\"##\", 'e', M_tmp, B)\n if i >= N - P:\n r = i\n elif M_tmp <= 0 and score_i >= B[N - P]:\n r = i\n else:\n l = i + 1\n #\n if l >= r: break\n \nprint(N - l)", "neg": "A = list(map(int, input().split()))\n\nA.sort()\nsumtab = [0] * (N + 1)\ntmp_tab = 0\nfor i, Ai in enumerate(A):\n tmp_tab += Ai\n sumtab[i + 1] = tmp_tab\n\nl = 0\nr = N\nwhile True:\n i = l + (r - l) // 2\n # print(\"#\", l, r, i)\n #\n B = list(A)\n # everyone vote: i\n score_i = A[i] + M\n B[i] += M\n M_tmp = M * (V - 1)\n #\n rslt = False\n # print(\"#\", i, B)\n for j in list(range(N))[::-1]:\n # print(\"##\", j, M_tmp, B)\n if j == i:\n continue # me\n elif j > N - P:\n # make stronger problems stronger as possible\n tmp = min(M, M_tmp)\n #\n M_tmp -= tmp\n B[j] += tmp\n else:\n # make weaker problems weaker as possible\n if A[j] + M <= score_i:\n tmp = min(M, M_tmp)\n else:\n tmp = min(score_i - A[j], M_tmp)\n #\n M_tmp -= tmp\n B[j] += tmp\n #\n if M_tmp <= 0: break\n #\n # print(\"##\", 'e', M_tmp, B)\n if M_tmp <= 0 and score_i >= B[N - P]:\n r = i\n else:\n l = i + 1\n #\n if l >= r: break\n \nprint(N - l)", "jacc_sim": 1.0, "before_after_length": [489, 443], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "N, M, V, P = map(int, input().split())\n>+ M <=btmp = min(M, M_tmp)\n else:\n tmp = min(sco_iak\n- if + M <= score_i:\n tmp = min(M, M_tmp)\n else:\n tmp = min(score_i - A[j]i >= N - P:\n r = i\n elif ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u518378780", "n_user": "u518378780", "pos": "n, m, v, p = [int(_) for _ in input().split()]\nl = [int(_) for _ in input().split()]\n\nl = sorted(l, reverse=True)\n\n# print(l)\n\ns = [0]\n\n\nfor i in range(1, n+1):\n s.append(s[-1] + l[-i])\ns = sorted(s, reverse=True)\n\n# print(s)\n\nfor i in range(p, n):\n if l[i] + m < l[p - 1]:\n ans = i\n break\n x = (l[i] + m) * (i - p + 1) - (s[p - 1] - s[i])\n # print('i',i)\n # print('(l[i] + m)', (l[i] + m))\n # print('(i - p + 1)', (i - p + 1))\n # print('(s[p - 1] - s[i])', (s[p - 1] - s[i]))\n # print('x',x)\n y = 0\n if v >= (n - i) + (p - 1):\n y = v - (n - i) - (p - 1)\n\n # print('y * m', y * m)\n\n if x < y * m:\n ans = i\n break\n\n if i == n-1:\n ans = n\n\nprint(ans)\n", "neg": "n, m, v, p = [int(_) for _ in input().split()]\nl = [int(_) for _ in input().split()]\n\nl = sorted(l, reverse=True)\n\n# print(l)\n\ns = [0]\n\nfor i in range(1, n+1):\n s.append(s[-1] + l[-i])\ns = sorted(s, reverse=True)\n\n# print(s)\n\nfor i in range(p, n):\n x = (l[i] + m) * (i - p + 1) - (s[p - 1] - s[i])\n # print('i',i)\n # print('(l[i] + m)', (l[i] + m))\n # print('(i - p + 1)', (i - p + 1))\n # print('(s[p - 1] - s[i])', (s[p - 1] - s[i]))\n # print('x',x)\n y = 0\n if v >= (n - i) + (p - 1):\n y = v - (n - i) - (p - 1)\n\n # print('y * m', y * m)\n\n if x < y * m:\n ans = i\n break\nprint('ans', ans)\n", "jacc_sim": 1.0, "before_after_length": [358, 319], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "\nif l[i] + m < l[p - 1]:\n ans = i\n break\n print('ans', ans) if i == n-1:\n ans = n\n\nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u509368316", "n_user": "u509368316", "pos": "N,M,V,P=map(int,input().split())\nimport numpy as np\nA=np.array(sorted(map(int,input().split())))\nng,ok=-1,N-P+1\nwhile ng+1= 0 and cnt >= M * V\n\nok = 0\nng = N\nwhile ng - ok > 1:\n mid = (ok + ng) // 2\n if isOk(mid):\n ok = mid\n else:\n ng = mid\nprint(ng)\n", "neg": "N, M, V, P = map(int, input().split())\nA = list(map(int, input().split()))\nA.sort()\n\ndef isOk(i):\n x = A[i] + M\n B = [x - a for a in A[i + 1:-(P - 1)]]\n if not B:\n return True\n K = V - i\n return min(B) >= 0 and sum(B) <= K * M\n\nok = N\nng = -1\nwhile ok - ng > 1:\n mid = (ok + ng) // 2\n if isOk(mid):\n ok = mid\n else:\n ng = mid\n\nprint(N - ok)\n", "jacc_sim": 0.9074074074074074, "before_after_length": [186, 172], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "reverse=Trueimax(0,+P -:-(P - 1: i\nKcnt sum(B) + (P - 1) * M + (N - i) * M\n return min(B) >= 0 and cnt >= M * - i\nok return min(B) > and sum(B) <= K * Mng\nok\nng = -1okngngok\nngN - ok", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u572142121", "n_user": "u572142121", "pos": "N,M,V,P=map(int,input().split())\nA=list(map(int,input().split()))\nA=sorted(A)[::-1]\nP-=1\ndef f(x):\n if x<=P:\n return True\n elif A[x]+M=x+1:\n c+=M\n else:\n c+=A[x]+M-A[i]\n return c>=M*V\n\nl,r=0,N\nwhile l+1!=r:\n m=(l+r)//2\n if f(m):\n l=m\n else:\n r=m\nprint(l+1)", "neg": "N,M,V,P=map(int,input().split())\nA=list(map(int,input().split()))\nA=sorted(A)[::-1]\nP-=1\ndef f(x):\n if x<=P:\n return True\n elif A[x]+M=M*V\n\nl,r=0,N\nwhile l+1!=r:\n m=(l+r)//2\n if f(m):\n l=m\n else:\n r=m\nprint(l+1)\n ", "jacc_sim": 0.96, "before_after_length": [199, 181], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "if i

=x+1:\n min(,\n else:\n c+=)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u106778233", "n_user": "u106778233", "pos": "def main():\n import sys \n input= sys.stdin.readline\n n,m,v,p=map(int,input().split())\n a=list(map(int,input().split()))\n a.sort(reverse=True)\n cnt=p\n #from bisect import bisect_left\n #print(a[5]+m)\n s=sum(a[p-1:p])\n for i in range(p,n):\n if (a[i]+m )=v*m\n try: s+=a[i]\n except: continue \n print(cnt)\n\nif __name__=='__main__':\n main()", "neg": "def main():\n import sys \n input= sys.stdin.readline\n n,m,v,p=map(int,input().split())\n a=list(map(int,input().split()))\n a.sort(reverse=True)\n cnt=p\n #from bisect import bisect_left\n #print(a[5]+m)\n for i in range(p,n):\n if (a[i]+m )=v*m:\n \n print(cnt)\n\nif __name__=='__main__':\n main()", "jacc_sim": 0.9298245614035088, "before_after_length": [218, 197], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "s=sum(a[p-1:p])\n \n um(a[p-1:i]):try: s+=a[i]\n except: continue", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u054274920", "n_user": "u054274920", "pos": "N,M,V,P=map(int,input().split())\nB = sorted(list(map(int, input().split())))[::-1]\ncount=P\ndif=0\nfor i in range(P,N):\n dif+=B[i-1]\n if V<=(P-1)+(N-i) and B[P-1]<=B[i]+M:\n count+=1\n elif dif-B[i]*(i-P+1)<=M*(N-V) and B[P-1]<=B[i]+M:\n count+=1\nprint(count)", "neg": "N,M,V,P=map(int,input().split())\nB = sorted(list(map(int, input().split())))[::-1]\ncount=P\ndif=0\nfor i in range(P,N):\n dif=+B[i-1]\n if V<=(P-1)+(N-i) and B[P-1]<=B[i]+M:\n count+=1\n elif M*(V-((P-1)+(N-i)))+dif<=(B[i]+M)*(i-P+1):\n count+=1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [152, 147], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "==Mdif-B[i]i-P+1)<=M*(N--((P-1+(N-i)))+dif<=(B[i]+M)*(i-P+1):\na cout+=d B[P-\npr]<=B[nt(]+M:\n +=1\nprint(count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u761320129", "n_user": "u971456934", "pos": "\nN,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\nA.sort()\n\ndef is_ok(i):\n if i<0: return False\n cur,rival = A[i]+M, A[N-P]\n if cur < rival: return False\n rem_p = V - P - i\n if rem_p <= 0: return True\n j = 0\n for k in range(i+1,N-P+1):\n z = min(M, cur-A[k])\n j += z\n if j >= rem_p * M: return True\n return False\n\nok = N-P\nng = -1\nwhile ok-ng > 1:\n m = (ok+ng)//2\n if is_ok(m):\n ok = m\n else:\n ng = m\n\nprint(N-ok)", "neg": "N,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\nA.sort()\n \ndef is_ok(i):\n if i<0: return False\n cur,rival = A[i]+M, A[N-P]\n if cur < rival: return False\n rem_p = V - P - i\n if rem_p <= 0: return True\n j = 0\n for k in range(i+1,N-P+1):\n z = min(M, cur-A[k])\n j += z\n if j >= rem_p * M: return True\n return False\n \nok = N-P\nng = -1\nwhile ok-ng > 1:\n m = (ok+ng)//2\n if is_ok(m):\n ok = m\n else:\n ng = m\n \nprint(N-ok)", "jacc_sim": 1.0, "before_after_length": [225, 227], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "\n ok=m\nok=melse: else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u667024514", "n_user": "u667024514", "pos": "n,m,v,p = map(int,input().split())\nlis = list(map(int,input().split()))\nlis.sort(reverse=True)\nans = 0\ntrash = 0\nfor i in range(n):\n if i+1 <= p:\n ans += 1\n else:\n if lis[i] + m >= lis[p-1]:\n if (lis[i]+m)*(i-(p-1))-trash >= m * (v-(p-1)-(n-i)):\n # print(lis[i]+m,i-(p-1)-trash,m*(v-(p-1)-(n-i)))\n ans += 1\n if i+1 >= p:\n trash += lis[i]\nprint(ans)\n", "neg": "n,m,v,p = map(int,input().split())\nlis = list(map(int,input().split()))\nlis.sort(reverse=True)\nans = 0\ntrash = 0\nprint(lis)\nfor i in range(n):\n if i+1 <= p:\n ans += 1\n else:\n if lis[i] + m >= lis[p-1]:\n if (lis[i]+m)*(i-(p-1))-trash >= m * (v-(p-1)-(n-i)):\n # print(lis[i]+m,i-(p-1)-trash,m*(v-(p-1)-(n-i)))\n ans += 1\n if i+1 >= p:\n trash += lis[i]\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [196, 202], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "\nprint(lis)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u093041722", "n_user": "u093041722", "pos": "from collections import Counter\nimport numpy as np\nimport bisect\nN,M,V,P = (int(x) for x in input().split())\nA = list(map(int, input().split()))\ndtype = [('points','int64'),('number','int64')]\nc = np.array([x for x in Counter(A).items()],dtype=dtype)\nc.sort(order='points')\nvalue = [c[-i][1] for i in range(1,len(c)+1)]\ncs = np.cumsum(value)\nbs = bisect.bisect_left(cs,P)\nthr = c[-bs-1][0]\nlimit = np.cumsum([(thr-c[i][0])*c[i][1] for i in range(len(c)-bs-1)])\nbroke = False\nif bs == len(cs) - 1:\n print(N)\nelse:\n for i in range(len(cs)-bs-1):\n point = c[-bs-2-i][0]\n points_needed = thr - point\n if points_needed > M:\n print(cs[bs+i])\n broke = True\n break\n else:\n questions_raised = V - (N - cs[bs+i])\n if questions_raised >= P:\n points_overflowed = M * (questions_raised-(P-1))\n points_limit = limit[-1] - limit[-1-i] + (point+M-thr) * (cs[bs+i]-P+1)\n if points_overflowed > points_limit:\n print(cs[bs+i])\n broke = True\n break\n if broke == False:\n print(N)", "neg": "from collections import Counter\nimport numpy as np\nimport bisect\nN,M,V,P = (int(x) for x in input().split())\nA = list(map(int, input().split()))\ndtype = [('points','int64'),('number','int64')]\nc = np.array([x for x in Counter(A).items()],dtype=dtype)\nc.sort(order='points')\nvalue = [c[-i][1] for i in range(1,len(c)+1)]\ncs = np.cumsum(value)\nbs = bisect.bisect_left(cs,P)\nthr = c[-bs-1][0]\nlimit = np.cumsum([(thr-c[i][0])*c[i][1] for i in range(len(c)-bs-1)])\nbroke = False\nif bs == len(cs) - 1:\n print(N)\nelse:\n for i in range(len(cs)-bs-1):\n point = c[-bs-2-i][0]\n points_needed = thr - point\n if points_needed > M:\n print(cs[bs+i])\n broke = True\n break\n else:\n questions_raised = V - (N - cs[bs+i])\n if questions_raised >= P:\n points_overflowed = M * (questions_raised-(P-1))\n points_limit = limit[-1] - limit[-1-i] + (point+M-thr) * (cs[bs+i]-cs[bs-1])\n print(points_overflowed)\n print(points_limit)\n if points_overflowed > points_limit:\n print(cs[bs+i])\n broke = True\n break\n if broke == False:\n print(N)", "jacc_sim": 1.0, "before_after_length": [421, 440], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "P+cs[bs-]prf nt()\n> print()\n if points_overflowed > points_limit", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u144913062", "n_user": "u144913062", "pos": "def check(n):\n x = A[n] + M\n if P == 1:\n B = A[:n] + A[n+1:]\n else:\n B = A[:n] + A[n+1:-(P-1)]\n scores = M * (V - P)\n if x < B[-1]:\n return False\n for b in B:\n if b + M <= x:\n scores -= M\n else:\n scores -= x - b\n if scores <= 0:\n return True\n return False\n\n\nN, M, V, P = map(int, input().split())\nA = list(map(int, input().split()))\nA.sort()\n\nleft = 0\nright = N - P\nwhile left < right:\n mid = (left+right) // 2\n if check(mid):\n right = mid\n else:\n left = mid + 1\nprint(N - left)\n", "neg": "def check(n):\n x = A[n] + M\n B = A[:n] + A[n+1:-(P-1)]\n scores = M * (V - P)\n if x < B[-1]:\n return False\n for b in B:\n if b + M <= x:\n scores -= M\n else:\n scores -= x - b\n if scores <= 0:\n return True\n return False\n\n\nN, M, V, P = map(int, input().split())\nA = list(map(int, input().split()))\nA.sort()\nprint(A)\nleft = 0\nright = N - P\nwhile left < right:\n mid = (left+right) // 2\n if check(mid):\n right = mid\n else:\n left = mid + 1\nprint(N - left)\n", "jacc_sim": 1.0, "before_after_length": [230, 208], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": " if P == 1:\n B = A[:n] + A[n+1:]\n else:\n print(A)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u540799318", "n_user": "u540799318", "pos": "import sys\nfrom math import factorial\nfrom fractions import Fraction\nimport heapq, bisect, fractions\nimport math\nimport itertools\nsys.setrecursionlimit(10 ** 5 + 10)\nINF = 10**15 +5\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nMOD = 10**9 + 7\n\nn, m, v, p = MAP()\na = LIST()\na = sorted(a, reverse=True)\n\ndef hantei(i):\n if i < p: return True\n if a[p-1] > a[i] + m: return False\n if ((i-p+1)*(a[i]+m)-sum(a[p-1:i]))+m*(p-1+n-i) < m*v: return False\n return True\n\ndef check(x):\n if (n-x)<=p:\n return True\n \n x_score = a[x]+m\n total_v = (v-x-p)*m\n \n if(a[n-p]>x_score):\n return False\n \n for i in range(x+1,n-p+1):\n total_v -= min(m,(x_score -a[i]))\n if total_v <= 0:\n return True\n else:\n return False\n\nif hantei(n-1):\n print(n)\n sys.exit()\nright = n-1\nleft = 0\n\nwhile right-left > 1:\n mid = (right+left)//2\n if hantei(mid):\n left = mid\n else:\n right = mid\n\nprint(right)", "neg": "import sys\nfrom math import factorial\nfrom fractions import Fraction\nimport heapq, bisect, fractions\nimport math\nimport itertools\nsys.setrecursionlimit(10 ** 5 + 10)\nINF = 10**15 +5\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nMOD = 10**9 + 7\n\nn, m, v, p = MAP()\na = LIST()\na = sorted(a, reverse=True)\n\ndef hantei(i):\n if i < p: return True\n if a[p-1] > a[i] + m: return False\n if ((i-p+1)*(a[i]+m)-sum(a[p-1:i]))+m*(p-1+n-i) < m*v: return False\n return True\n\ndef check(x):\n if (n-x)<=p:\n return True\n \n x_score = a[x]+m\n total_v = (v-x-p)*m\n \n if(a[n-p]>x_score):\n return False\n \n for i in range(x+1,n-p+1):\n total_v -= min(m,(x_score -a[i]))\n if total_v <= 0:\n return True\n else:\n return False\n\nright = n-1\nleft = 0\n\nwhile right-left > 1:\n mid = (right+left)//2\n if check(mid):\n left = mid\n else:\n right = mid\n\nprint(right)\n", "jacc_sim": 0.9868421052631579, "before_after_length": [434, 411], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "if hantei(n-1):\n print(n)\n sys.exit()\ncantick\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u223646582", "n_user": "u223646582", "pos": "N, M, V, P = map(int, input().split())\nA = sorted([int(i) for i in input().split()], reverse=True)\n\n\nans = P\nS = A[P-1]\nfor i in range(P, N):\n if A[i]+M < A[P-1]:\n continue\n if V <= P-1+N-i:\n if A[i]+M >= A[P-1]:\n ans += 1\n else:\n if S+M*(V-P+1-N+i) <= (A[i]+M)*(i-(P-1)):\n ans += 1\n S += A[i]\nprint(ans)\n", "neg": "N, M, V, P = map(int, input().split())\nA = sorted([int(i) for i in input().split()], reverse=True)\n\n\nans = P\nS = A[P-1]\nfor i in range(P, N):\n if V <= P-1+N-i:\n if A[i]+M >= A[P-1]:\n ans += 1\n else:\n if S+M*(V-P+1-N+i)/(i-(P-1)) <= (A[i]+M):\n ans += 1\n S += A[i]\nprint(ans)\n", "jacc_sim": 0.9459459459459459, "before_after_length": [170, 151], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "A[i]+M < A[P-1]:\n continue\n if /(i-(P-1))*(i-(P-1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u557494880", "n_user": "u557494880", "pos": "N,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\nA = sorted(A)\nS = sum(A)\nfor i in range(P-1):\n x = A.pop()\n S -= x\ntotal_score = M*(V-P+1)\nkazu = N - P + 1\nfor i in range(N-P+1):\n a = A.pop(0)\n total_score -= M\n S -= a\n kazu -= 1\n T = (M+a)*kazu - S\n if i == N - P:\n ans = P\n else:\n if (a+M) >= A[-1]:\n if T >= total_score:\n ans = kazu + P\n break\nprint(ans)\n", "neg": "N,M,V,P = map(int,input().split())\nA = list(map(int,input().split()))\nA = sorted(A)\nS = sum(A)\nfor i in range(P-1):\n x = A.pop()\n S -= x\ntotal_score = M*(V-P+1)\nkazu = N - P + 1\nfor i in range(N-P+1):\n a = A.pop(0)\n total_score -= M\n S -= a\n kazu -= 1\n T = (M+a)*kazu - S\n if (a+M) > A[-1]:\n if T >= total_score:\n ans = kazu + P\n break\nprint(ans)", "jacc_sim": 0.9761904761904762, "before_after_length": [203, 184], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "i == N - P:\n ans = P\n else:\n if = \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u858748695", "n_user": "u858748695", "pos": "#!/usr/bin/env python3\nfrom itertools import accumulate\n\nn, m, v, p = map(int, input().split())\na = sorted(map(int, input().split()))\ncs = [0] + list(accumulate(a))\nans = p\nrv = n - v\nrp = n - p\nfor i in range(rp):\n if a[i] + m < a[rp]:\n continue\n l = rp - i\n if (cs[rp + 1] - cs[i + 1]) + (l - rv) * m <= (a[i] + m) * l:\n ans += 1\nprint(ans)\n", "neg": "#!/usr/bin/env python3\nfrom itertools import accumulate\n\nn, m, v, p = map(int, input().split())\na = sorted(map(int, input().split()))\ncs = [0] + list(accumulate(a))\nans = p\nrv = n - v\nrp = n - p\nfor i in range(rp):\n l = rp - i\n if l >= rv and (cs[rp + 1] - cs[i + 1]) + (l - rv) * m <= (a[i] + m) * l:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.94, "before_after_length": [157, 144], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "l = rp - i\n l >= rv [i] + m < a[rp]:\n codtinue\n l = rp - i\n if", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02824", "p_user": "u191874006", "n_user": "u191874006", "pos": "#!/usr/bin/env python3\n\nimport sys\nimport math\nfrom bisect import bisect_right as br\nfrom bisect import bisect_left as bl\nsys.setrecursionlimit(2147483647)\nfrom heapq import heappush, heappop,heappushpop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9 + 7\ninf = float('inf')\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\n\nn,m,v,p = LI()\na = LI()\na.sort(reverse=True)\nx = a[p-1]\na = a[p-1:]\nl = list(accumulate(a))\nans = p\n\nfor i in range(n-p):\n if a[i+1] + m < x:\n continue\n s = (n-(p+i+1))*m + p*m\n s += (a[i+1] + m) * (i+1)\n s -= l[i]\n if s >= m*v:\n ans += 1\nprint(ans)", "neg": "#!/usr/bin/env python3\n\nimport sys\nimport math\nfrom bisect import bisect_right as br\nfrom bisect import bisect_left as bl\nsys.setrecursionlimit(2147483647)\nfrom heapq import heappush, heappop,heappushpop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9 + 7\ninf = float('inf')\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\n\nn,m,v,p = LI()\na = LI()\na.sort(reverse=True)\na = a[p-1:]\nl = list(accumulate(a))\nans = p\n\nfor i in range(n-p):\n s = (n-p-(i+1))*m + p*m\n s += (a[i] + m) * i\n s -= (l[i] - a[i])\n if s >= m*v:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9634146341463414, "before_after_length": [297, 272], "nl": "You are given N problems with initial scores. M judges will each choose V problems to increase their scores by 1. After sorting by score, the first P problems will be chosen. Determine how many problems have a chance to be chosen. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^9, 1 \u2264 V \u2264 N - 1, 1 \u2264 P \u2264 N - 1, 0 \u2264 Ai \u2264 10^9. Input format: N M V P, followed by N integers. Output the number of problems with a chance to be chosen.", "diff_info": "x = a[p-1]\nif a[i+1] + m < x:\n continue\n (+i+1))*m + p*m\n s += (a[i+1] + m) * (i+1)\n s (i+1))*m + p*m\n s +l(a + m) * i\n s -= (l[i] - a[i])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u343977188", "n_user": "u345483150", "pos": "n=int(input())\na=map(int,input().split())\n\nj=1\nk=0\nfor i in a:\n if i==j:\n k+=1\n j+=1\n\nif k>0:\n print(n-k)\nelse: print(-1)", "neg": "n=int(input())\na=map(int,input().split())\ni=1\nfor k in a:\n if k==i: i+=1\n1-=1\nprint(N-i if i>0 else -1)", "jacc_sim": 0.9230769230769231, "before_after_length": [73, 57], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "i\nj\nk=0kikiij\ni k1- j+\nif k>0:\n Nnk)\ni if i>0 :print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u746849814", "n_user": "u746849814", "pos": "n = int(input())\na = list(map(int, input().split()))\n\n\nif a == [i for i in range(1, n+1)]:\n print(0)\n \nelse:\n b = 0\n number = 1\n for i in range(n):\n if a[i] == number:\n number += 1\n else:\n b += 1\n if number == 1:\n print(-1)\n elif b == (n - number + 1):\n print(b)\n else:\n print(-1) ", "neg": "n = int(input())\na = list(map(int, input().split()))\n\n\nif a == [i for i in range(1, n+1)]:\n print(0)\n \nelse:\n b = 0\n number = 1\n for i in range(n):\n if a[i] == number:\n number += 1\n else:\n b += 1\n if b == (number - 1):\n print(b)\n else:\n print(-1) ", "jacc_sim": 0.9655172413793104, "before_after_length": [136, 121], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "b == (== 1:\n print( : print(b)\n se:\n prntf b == n 1)number+1):\n print(b)\n else:\n print(-1) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u669141618", "n_user": "u669141618", "pos": "n = int(input())\nlst = list(map(int, input().split()))\nx = 0\nfor i in lst:\n if i == x + 1:\n \tx = x + 1\nif x == 0:\n print(-1)\nelse:\n print(n-x)\n", "neg": "n = int(input())\nlst = list(map(int, intput().split()))\nx = 0\nfor i in lst:\n if i == x + 1:\n \tx = x + 1\n\nprint(n-x)\n", "jacc_sim": 0.92, "before_after_length": [71, 57], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "tif x == 0: print(-1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u754339480", "n_user": "u754339480", "pos": "def getdata_input():\n while True:\n yield input()\n\nit=getdata_input()\nN=int(next(it))\narr=[-1]*N\narr[0],*arr[1:]=map(int,next(it).split())\nn=1\nout=[]\ni=-1\nwhile True:\n try:\n i=arr.index(n,i+1)\n out.append(i)\n n+=1\n except ValueError:\n if i1 :\n out.append(N)\n break\nif len(out) ==0: \n print(-1)\nelse:\n i,j=0,0\n total=0\n for x in out:\n j=x\n total+=(j-i)\n i=j+1\n \n print(total)", "neg": "def getdata_input():\n while True:\n yield input()\n\nit=getdata_input()\nN=int(next(it))\narr=[-1]*N\narr[0],*arr[1:]=map(int,next(it).split())\nn=1\nout=[]\ni=-1\nwhile True:\n try:\n i=arr.index(n,i+1)\n out.append(i)\n n+=1\n except ValueError:\n if(i1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u238940874", "n_user": "u238940874", "pos": "n=int(input())\na=list(map(int,input().split()))\ntmp=1\nblock=[]\nfor i in range(n):\n if a[i]==tmp:\n block.append(a[i])\n tmp+=1\nif len(block)>0:\n print(n-len(block))\nelse:\n print(-1)", "neg": "n=int(input())\na=list(map(int,input().split()))\ntmp=1\nblock=[]\nfor i in range(n):\n if a[i]==tmp:\n block.append(a[i])\n tmp+=1\nprint(n-len(block))", "jacc_sim": 0.9032258064516129, "before_after_length": [90, 71], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if len(block)>0:\n \nelse:\n print(-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u662615460", "n_user": "u662615460", "pos": "N = int(input())\nAli = list(map(int,input().split()))\ns = 1\nres = 0\n\nfor i in range(N):\n if Ali[i] == s:\n s += 1\n else:\n res += 1\n \nif s == 1:\n print(-1)\nelse:\n print(res)", "neg": "N = int(input())\nAli = list(map(int,input().split()))\ns = 1\nres = 0\n\nfor i in range(N):\n if Ali[i] == s:\n s += 1\n else:\n res += 1\n \nprint(res)", "jacc_sim": 0.9642857142857143, "before_after_length": [86, 70], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if s == 1:\n print(-1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u917441099", "n_user": "u917441099", "pos": "N = int(input())\nAr =list(map(int,input().split()))\n\ncnt=1\nfor i in range(N):\n if Ar[i]==cnt:\n cnt+=1\n\nif cnt==1:\n print(-1)\nelse:\n print(N-cnt+1)", "neg": "N = int(input())\nAr =list(map(int,input().split()))\n\ncnt=1\nfor i in range(N):\n if Ar[i]==cnt:\n cnt+=1\nprint(N-cnt+1)", "jacc_sim": 0.9615384615384616, "before_after_length": [75, 58], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "\nif cnt==1:\n print(-1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u986190948", "n_user": "u986190948", "pos": "n=int(input())\nA=list(map(int,input().split()))\n#print(A)\nf=0\ng=1\nfor i in range(0,n):\n if A[i]!=g:\n f+=1\n else:\n g+=1\n#printf(\"%d %d\\n\",f,g)\nif g!=1:\n print(f)\nelse:\n print(-1)", "neg": "n=int(input())\nA=list(map(int,input().split()))\nf=0\ng=1\nfor i in range(0,n):\n if A[i]!=g:\n f++\n else:\n g++\n #printf(\"%d %d\\n\",f,g)\nif g!=1:\n print(f)\nelse:\n print(-1)\n ", "jacc_sim": 1.0, "before_after_length": [107, 100], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "#print(A)\n =1\n else:\n g=1 else:\n g++\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u761638117", "n_user": "u761638117", "pos": "n = int(input())\nblock = [int(x) for x in input().split()]\ns = 1\nc = 0\nfor i in range(n):\n if block[i] == s:\n s += 1\n else:\n c += 1\nif block == [1]:\n print(c)\nelif s == 1:\n print(-1)\nelse:\n print(c)", "neg": "n = int(input())\nblock = [int(x) for x in input().split()]\ns = 1\nc = 0\nfor i in range(n):\n if block[i] == s:\n s += 1\n else:\n c += 1\nif s == 0:\n print(-1)\nelse:\n print(c)", "jacc_sim": 0.9629629629629629, "before_after_length": [97, 83], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "sblock0[1]:\n print(c)\nelif s == 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u573754721", "n_user": "u573754721", "pos": "n=int(input())\nA=list(map(int,input().split()))\n\nbef=1\nans=0\n\nif 1 not in A:\n print(-1)\n exit()\n\nfor i in range(n):\n if A[i]==bef:\n bef+=1\n ans+=1\nprint(n-ans) ", "neg": "n=int(input())\nA=list(map(int,input().split()))\n\nbef=1\nans=0\nfor i in range(n):\n if A[i]==bef:\n bef+=1\n ans+=1\nprint(n-ans) \n ", "jacc_sim": 0.9310344827586207, "before_after_length": [89, 71], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "\n\nif 1 not in A:\n print(-1)\n exit()\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u216136179", "n_user": "u216136179", "pos": "N = int(input())\na = list(map(int,input().split()))\ncount = currentnum = 0\n\nif a==(list(i+1 for i in range(N))):\n print(0)\n exit()\n\nfor i in a:\n if i!=currentnum+1: count+=1\n else: currentnum+=1\nprint(-1 if currentnum==0 else count)", "neg": "N = int(input())\na = list(map(int,input().split()))\ncount = currentnum = 0\n\nfor i in a:\n if i!=currentnum+1: count+=1\n else: currentnum+=1\nprint(-1 if count==0 else count)", "jacc_sim": 0.9285714285714286, "before_after_length": [99, 69], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if a==(list(i+1 for i in range(N))):\n print(0)\n exit()\n\norrenum", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u209561309", "n_user": "u209561309", "pos": "n=int(input())\na=list(int(x) for x in input().split())\n\ncount=0\nz=True\nj=0\n\nif 1 not in a:\n print(-1)\nelse:\n for k in range(j,n):\n if a[k]==count+1:\n j=k\n count=count+1\n\n print(n-count)", "neg": "n=int(input())\na=list(int(x) for x in input().split())\n\ncount=0\nz=True\nj=0\n\nif 1 not in a:\n print(-1)\n\nfor k in range(j,n):\n if a[k]==count+1:\n j=k\n count=count+1\n\nprint(n-count)", "jacc_sim": 0.967741935483871, "before_after_length": [97, 93], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "else: ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u375695365", "n_user": "u375695365", "pos": "n=int(input())\na=list(map(int,input().split()))\ncount=1\nsum1=0\nfor i in range(n):\n if a[i]==count:\n count+=1\n else:\n sum1+=1\nif n==sum1:\n print(\"-1\")\nelse:\n print(sum1)\n ", "neg": "n=int(input())\na=list(map(int,input().split()))\ncount=1\nsum1=0\nfor i in range(n):\n if a[i]==count:\n count+=1\n else:\n sum1+=1\nif n==sum:\n print(\"-1\")\nelse:\n print(sum1)", "jacc_sim": 0.9666666666666667, "before_after_length": [90, 87], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u773440446", "n_user": "u773440446", "pos": "n = int(input())\na = list(map(int,input().split()))\n\nans = 1\ncnt = 0\n\nif ans not in a:\n print(-1)\n exit()\nfor i in a:\n if i == ans:\n ans += 1\n continue\n cnt += 1\n \nprint(cnt)", "neg": "n = int(input())\na = list(map(int,input().split()))\n\nans = 1\ncnt = 0\n\nif ans not in a:\n print(-1)\n exit()\nfor i in range(n):\n if i == ans:\n ans += 1\n continue\n cnt += 1\n \nprint(cnt)", "jacc_sim": 0.9642857142857143, "before_after_length": [80, 82], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "rnge(n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u021019433", "n_user": "u021019433", "pos": "n = int(input())\nk = 0\nfor x in map(int, input().split()):\n if x == k + 1:\n k += 1\nprint(n-(k or n+1))\n", "neg": "n = int(input()) - 1\nk = 1\nfor x in map(int, input().split()):\n if x == k:\n k += 1\nprint(n-(k or n+1))", "jacc_sim": 0.9545454545454546, "before_after_length": [50, 49], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": " - 110 + 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u252828980", "n_user": "u252828980", "pos": "n = int(input())\nL = list(map(int,input().split()))\ni = 0\nnum = 1\ncnt = 0\nwhile i <=n-1:\n if L[i] == num:\n num +=1 \n else:\n cnt +=1\n i+= 1\nif num == 1:\n print(-1)\nelse:\n print(cnt)", "neg": "n = int(input())\nL = list(map(int,input().split()))\ni = 0\nnum = 1\ncnt = 0\nwhile i <=n-1:\n if L[i] == num:\n num +=1 \n else:\n cnt +=1\n i+= 1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [91, 75], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if num == 1:\n -1)\nelse:\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u555767343", "n_user": "u555767343", "pos": "n = int(input())\nA = list(map(int, input().split()))\n\nnow = 1\nhit = 0\nfor a in A:\n if a != now:\n hit += 1\n else:\n now += 1\nif hit == n:\n print(-1)\nelse:\n print(hit)", "neg": "n = int(input())\nA = list(map(int, input().split()))\n\nnow = 1\nhit = 0\nfor a in A:\n if a != now:\n hit += 1\n else:\n now += 1\nprint(hit)", "jacc_sim": 0.9615384615384616, "before_after_length": [77, 61], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if hit == n:\n print(-1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u798557584", "n_user": "u798557584", "pos": "# abc148_d.py\nfrom sys import stdin\nN = int(stdin.readline().rstrip())\na = [int(x) for x in stdin.readline().rstrip().split()]\n#print(a)\ncnt = 0\nidx = 1\n#flg = 1\nfor i in a:\n\tif i == idx:\n\t\tidx = idx + 1\n\t\t#flg = 0\n\telse:\n\t\tcnt = cnt + 1\n\t\t#if idx != 1:\n\t\t\t#flg = 1\n\nif cnt == N:\n\tprint(-1)\nelse:\n\tprint(cnt)\n\n", "neg": "# abc148_d.py\nfrom sys import stdin\nN = int(stdin.readline().rstrip())\na = [int(x) for x in stdin.readline().rstrip().split()]\nprint(a)\ncnt = 0\nidx = 1\nflg = 1\nfor i in a:\n\tif i == idx:\n\t\tidx = idx + 1\n\t\tflg = 0\n\telse:\n\t\tcnt = cnt + 1\n\t\tif idx != 1:\n\t\t\tflg = 1\n\nif flg == 1:\n\tprint(-1)\nelse:\n\tprint(cnt)\n\n", "jacc_sim": 1.0, "before_after_length": [149, 145], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "#####flgcnt1N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u671211357", "n_user": "u671211357", "pos": "import sys\ninput = sys.stdin.readline\nN = int(input())\nA = list(map(int,input().split()))\ncount = 0\nk=0\nt=0\n\nwhile t0:\n print(n-cnt)\nelse:\n print(-1)", "neg": "n=int(input())\na=list(map(int,input().split()))\nk=1\ncnt=0\nfor i in range(n):\n if a[i]==k:\n k+=1\n cnt+=1\nprint(n-cnt)", "jacc_sim": 0.9310344827586207, "before_after_length": [81, 65], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "if cnt>0:\n \nelse:\n print(-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u521518741", "n_user": "u521518741", "pos": "def resolve():\n N = int(input())\n arr = list(map(int, input().split()))\n exp = 1\n for num in arr:\n if exp == num:\n exp += 1\n\n if exp == 1:\n print('-1')\n else:\n print(N - (exp - 1))\n\nresolve()", "neg": "N = int(input())\narr = list(map(int, input().split()))\nexp = 1\nfor num in arr:\n if exp == num:\n exp += 1\nif exp == 1:\n print('-1')\nelse:\n print(N-exp)", "jacc_sim": 0.9230769230769231, "before_after_length": [84, 66], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "def resolve():\n exp= exp = if exp == 1: if exp == 1:\n ( - 1)\n\nresolve()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02832", "p_user": "u117193815", "n_user": "u117193815", "pos": "a = int(input())\nl=list(map(int ,input().split()))\np=0\nu=1\nfor i in range(a):\n if l[i]==u:\n u+=1\n else:\n p+=1\nif p==a:\n print(-1)\nelse:\n print(p)", "neg": "a = int(input())\nl=list(map(int ,input().split()))\np=0\nu=1\nfor i in range(a):\n if l[i]==u:\n u+=1\n else:\n p+=1 \nprint(p)", "jacc_sim": 0.9642857142857143, "before_after_length": [83, 68], "nl": "You have N bricks arranged in a row from left to right, each with an integer written on it. You can break at most N-1 bricks. Snuke will be satisfied if, for each integer i (1 \u2264 i \u2264 K), the i-th brick from the left has the integer i written on it. Find the minimum number of bricks you need to break to satisfy Snuke's desire. If his desire is unsatisfiable, print -1 instead. All values in input are integers. 1 \u2264 N \u2264 200000 and 1 \u2264 a_i \u2264 N. Input is given as N followed by a_1, a_2, ..., a_N. Print the minimum number of bricks that need to be broken to satisfy Snuke's desire, or print -1 if his desire is unsatisfiable.", "diff_info": "\nif p==a:\nprint(-1)else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u281745878", "n_user": "u398988238", "pos": "S = input()\ncount = 0\nfor i in range(len(S) // 2):\n if S[i] != S[len(S)- i - 1]:\n count += 1\n\nprint(count)", "neg": "S=input()\ncount=0\nfor i in range(len(S)):\n if S[i]!=S[-i-1]:\n count+=1\nprint(count)", "jacc_sim": 0.9130434782608695, "before_after_length": [50, 45], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": " // 2 len(S) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u480264129", "n_user": "u480264129", "pos": "s=input()\nn=len(s)\nans=0\nfor i,j in zip(s[:n//2],s[:n//2-1:-1]):\n if i!=j:\n ans+=1\nprint(ans)", "neg": "s=input()\nn=len(s)\nans=0\nfor i,j in zip(s[:n//2-1],s[n:n//2-1:-1]):\n if i!=j:\n ans+=1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [60, 64], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "-1n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u920103253", "n_user": "u920103253", "pos": "s=input()\nn=len(s)\n \nc=0\ni=0\nwhile i= d:\n if x[b] == a[b]:\n c = c\n b = b + 1\n else:\n c = c + 1\n b = b + 1\nc = int(c/2)\nprint(c)", "jacc_sim": 0.9230769230769231, "before_after_length": [94, 91], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "int(\n)>+ 1 <", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u965095643", "n_user": "u965095643", "pos": "S = input()\ncount=0\n\nmid = len(S)//2\n\nfor i in range(mid):\n if S[i] != S[-i-1]:\n count+=1\nprint(count)", "neg": "S = input()\ncount=0\n\nmid = len(S)//2\n\nfor i in range(mid):\n print(S[i], S[-i-1])\n if S[i] != S[-i-1]:\n count+=1\nprint(count)", "jacc_sim": 0.96, "before_after_length": [52, 66], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "print(S[i], S[-i-1])\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u030314915", "n_user": "u214561383", "pos": "s = input()\ncount = 0\nfor i in range(len(s)//2):\n if s[i]!=s[len(s)-i-1]:\n count += 1\nprint(count)", "neg": "s = input()\nans = 0\nfor i in range(len(s)//2):\n if s[i] != s[-i-1]:\n print(s[i])\n ans+=1\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [50, 54], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "acoust len(s)pricou(s[i])\n ans acoust", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u138781768", "n_user": "u138781768", "pos": "s = input()\ni = len(s) // 2\nflont = 0\nback = -1\nmiss = 0\nfor n in range(i):\n if s[flont] != s[back]:\n miss += 1\n flont += 1\n back -= 1\nprint(miss)", "neg": "s = input()\ni = len(s) // 2\nflont = 0\nback = -1\nmiss = 0\nfor n in range(i):\n if s[flont] != s[back]:\n miss += 1\nprint(miss)", "jacc_sim": 1.0, "before_after_length": [69, 58], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": " flont += 1\n back -= 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u777283665", "n_user": "u148218179", "pos": "s = input()\ncnt = 0\nfor i in range(len(s)//2):\n if s[i] != s[-(i+1)]:\n cnt += 1\nprint(cnt)", "neg": "s=list(input())\nn=len(s)\ncnt=0\nfor i in range(n//2):\n if s[i] != s[n-i]: cnt+=1\nprint(cnt)", "jacc_sim": 0.92, "before_after_length": [47, 50], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": " list()\nn=len(s) le(s) n(+1)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u781262926", "n_user": "u781262926", "pos": "bun = input()\nnub = list(reversed(bun))\nn = int(len(bun) / 2)\n\ni = hug = 0\nwhile i < n:\n if bun[i] != nub[i]:\n hug += 1\n i += 1\nprint(hug)", "neg": "bun = input()\nnub = reversed(S)\nn = int(len(S) / 2)\n\ni = hug = 0\nwhile i < n:\n if bun[i] != nub[i]:\n hug += 1\n i += 1\nprint(hug)", "jacc_sim": 0.9259259259259259, "before_after_length": [75, 70], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "list(Sbun)Sbun", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u192433528", "n_user": "u192433528", "pos": "a = input()\nhl = int(len(a)/2)\nfirst = a[:hl]\nlast = a[:hl+(len(a)%2-1):-1]\nans = 0\n# print(first)\n# print(last)\nfor fi,la in zip(first,last):\n if fi != la :\n ans += 1\nprint(ans)", "neg": "a = input()\nhl = int(len(a)/2)\nfirst = a[:hl]\nlast = a[:hl:-1]\nans = 0\nfor fi,la in zip(first,last):\n if fi != la :\n ans += 1\nprint(ans)", "jacc_sim": 0.9354838709677419, "before_after_length": [87, 65], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "+(len(a)%2-1)\n# print(first)\n# print(last)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u626881915", "n_user": "u626881915", "pos": "s = input()\ncount = 0\nfor i in range(len(s)):\n if s[i] != s[len(s)-1-i]:\n count += 1\nprint(count//2)\n", "neg": "s = input()\ncount = 0\nfor i in range(len(s)):\n if s[i] != s[len(n)-1-i]:\n count += 1\nprint(count//2)", "jacc_sim": 0.9583333333333334, "before_after_length": [50, 49], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "ns\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u325119213", "n_user": "u325119213", "pos": "def actual(s):\n N = len(s)\n count_operation = 0\n\n for i in range(N):\n head = s[i]\n tail = s[N - 1 - i]\n\n if head != tail:\n count_operation += 1\n\n return int(count_operation / 2)\n\ns = input()\nprint(actual(s))\n", "neg": "def actual(s):\n N = len(s)\n count_operation = 0\n\n for i in range(N):\n head = s[i]\n tail = s[N - 1 - i]\n\n if head != tail:\n count_operation += 1\n\n return count_operation / 2\n\ns = input()\nprint(actual(s))", "jacc_sim": 0.9666666666666667, "before_after_length": [91, 87], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "int(\n\ns = input(\nprint(actual( = input(\nprint(actual(s)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u492026192", "n_user": "u958154834", "pos": "s=input()\nl=len(s)\ncount=0\nfor i in range(l//2):\n if s[i]!=s[-1-i]:\n count+=1\nprint(count)", "neg": "s = input()\n\ncount = 0\n\nfor i in range(len(s) // 2):\n if s[i] != s[-i]:\n count += 1\n \nprint(count)", "jacc_sim": 0.9583333333333334, "before_after_length": [51, 47], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": " l=len(s) \nen(s) -1 \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u843909647", "n_user": "u843909647", "pos": "from math import modf\nword=input()\nword=list(word)\nn=len(word)/2\ndecimal,integer=modf(n)\ninteger=int(integer)\ncount=0\nfor i in range(integer):\n if word[i]!=word[-i-1]:\n word[-i-1]=word[i]\n count+=1\nprint(count)", "neg": "from math import modf\nword=input()\nword=list(set(word))\nn=len(word)/2\ndecimal,integer=modf(n)\ninteger=int(integer)\ncount=0\nprint(integer)\nfor i in range(integer):\n if word[i]!=word[-i-1]:\n word[-i-1]=word[i]\n count+=1\nprint(count)", "jacc_sim": 0.9705882352941176, "before_after_length": [93, 100], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "set()for i in range(integer):\n if word[i]!=word[-i-1]:\n word[-i-1]=word[i]\n count+=1\ninteger)\nfor i in range(integer):\n if word[i]!=word[-i-1]:\n word[-i-1]=word[i]\n +=1\nprint(count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u513844316", "n_user": "u546157297", "pos": "S=input()\n\nc=0\n\nfor i in range(len(S)//2):\n if S[i]!=S[len(S)-1-i]:\n c+=1\n\nprint(c)\n", "neg": "S = input()\nc = 0\nfor n in range(len(S)//2):\n if(S[n] != S[-n]):\n c = c + 1\nprint(c)", "jacc_sim": 0.9166666666666666, "before_after_length": [55, 47], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": " \n \nni(S[n] !=i]!=S[len(S)n1-i) + c + \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u528748570", "n_user": "u528748570", "pos": "s = input()\n\ncnt = 0\ns = list(s)\nfor i in range(len(s)//2):\n if s[i] != s[-i-1]:\n cnt += 1\n s[-i-1] = s[i]\nprint(cnt)\n", "neg": "s = input()\n\ncnt = 0\nfor i in range(len(s)//2):\n if s[i] != s[-i-1]:\n cnt += 1\n s[-i-1] = s[i]\nprint(cnt)\n", "jacc_sim": 0.9583333333333334, "before_after_length": [67, 60], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "\ns = list(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u708890186", "n_user": "u708890186", "pos": "S=input()\nhug=0\nfor i in range(len(S)//2):\n if S[i]!=S[len(S)-i-1]:\n hug+=1\nprint(hug)", "neg": "S=input()\nhug=0\nfor i in range(len(S)//2):\n if S[i]!=S[-i]:\n hug+=1\nprint(hug)", "jacc_sim": 1.0, "before_after_length": [54, 48], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "len(S)-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u842170774", "n_user": "u842170774", "pos": "s=input();print(sum(s[i]!=s[len(s)-i-1] for i in range(len(s)))//2)", "neg": "s=input();n=len(s)-1;print(sum(s[i]!=s[n-i]for i in range(n+1))//2)s=input();n=len(s)-1;print(sum(s[i]!=s[n-i]for i in range(n+1))//2)", "jacc_sim": 0.9090909090909091, "before_after_length": [36, 80], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": ";n=len(s)-1le(s)-1 le+1(s)s=input();n=len(s)-1;print(sum(s[i]!=s[n-i]for i in range(n+1))//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u796708718", "n_user": "u796708718", "pos": "S = list(input())\n\ncnt = 0\n\nif len(S)%2 == 0:\n for i in range(0,int(len(S)/2)):\n if S[i] != S[-1-i]:\n cnt +=1\nelse:\n for i in range(0,int(len(S)/2)):\n if S[i] != S[-1-i]:\n cnt +=1\n\nprint(cnt)\n ", "neg": "S = list(input())\n\ncnt = 0\n\nif len(S)%2 == 0:\n for i in range(0,int(len(S)/2+1)):\n if S[i] != S[-1-i]:\n cnt +=1\nelse:\n for i in range(0,int(len(S)/2)):\n if S[i] != S[-1-i]:\n cnt +=1\n\nprint(cnt)\n \n\n", "jacc_sim": 1.0, "before_after_length": [108, 112], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "+1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u353402627", "n_user": "u873736356", "pos": "s = input()\n\nlength = len(s)\n\nans = 0\n\nfor i in range(length // 2):\n if s[i] != s[-(i+1)]:\n ans += 1\n\nprint(ans)\n", "neg": "s = input()\nl = len(s)\nans = 0\n\nfor i in range(l // 2):\n if s[i]!=s[-i]:\n ans += 1\n\nprint(ans)\n", "jacc_sim": 0.92, "before_after_length": [56, 51], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "\nength\nength (+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u388464140", "n_user": "u388464140", "pos": "import sys\n\ns = sys.stdin.read().strip()\nc = 0\nl = len(s)\nfor i in range(int(l/2)):\n if s[i] != s[l-i-1]:\n c += 1\nprint(c)", "neg": "import sys\n\ns = sys.stdin.read().strip()\nc = 0\nl = len(s)\nprint(int(l/2))\nfor i in range(int(l/2)):\n if s[i] != s[l-i-1]:\n c += 1\nprint(c)\n", "jacc_sim": 1.0, "before_after_length": [64, 74], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": ")\nprint(int(l/2)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02836", "p_user": "u357751375", "n_user": "u357751375", "pos": "s = input()\nn = len(s) // 2\np = n\nj = -1\n\nfor i in range(n):\n if s[i] == s[j]:\n p -= 1\n j -= 1\n\nprint(p)", "neg": "s = input()\nn = len(s) // 2\np = n\nj = -1\n\nfor i in range(n):\n if n[i] == n[j]:\n p -= 1\n j -= 1\n\nprint(p)", "jacc_sim": 1.0, "before_after_length": [59, 59], "nl": "Takahashi loves palindromes and wants to make a given string palindromic by changing one character at a time. The task is to find the minimum number of changes needed to achieve this. The input string consists of lowercase English letters and has a length between 1 and 100. The program should output the minimum number of changes required to make the string a palindrome. For example, given the input \"redcoder,\" the output should be 1, as changing the fourth character to \"o\" results in the palindrome \"redooder.\" If the input is \"vvvvvv,\" the output should be 0, as no changes are needed.", "diff_info": "nsns", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u840988663", "n_user": "u840988663", "pos": "kotae=[]\nN = int(input())\nSst=input()\nS = list(Sst)\nL=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','A','B','C']\n\nfor i in range(len(Sst)):\n for j in range(26):\n if S[i] == L[j]:\n kotae.append(L[j+N])\n\nSed = \"\".join(kotae)\nprint(Sed)", "neg": "kotae=[]\nN = int(input())\nSst=input()\nS = list(Sst)\nL=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','Q','V','W','X','Y','Z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','Q','V','W','X','Y','Z','A','B','C']\n\nfor i in range(len(Sst)):\n for j in range(26):\n if S[i] == L[j]:\n kotae.append(L[j+N])\n\nSed = \"\".join(kotae)\nprint(Sed)", "jacc_sim": 0.9811320754716981, "before_after_length": [207, 207], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "U','V','W','X','Y','Z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','V','W','X','Y','Z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','QU", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u305917597", "n_user": "u305917597", "pos": "def shiftText(plain_text, key):\n plain_text.lower\n encoded_text = \"\"\n for i in plain_text:\n char = ord(i)+key\n if (char > 90):\n char -= 26\n encoded_text += chr(char)\n else:\n encoded_text += chr(char)\n return encoded_text\n\n\nkey = int(input())\nplain_text = input()\n\nprint(shiftText(plain_text, key))\n", "neg": "def shiftText(plain_text, key):\n plain_text.lower\n encoded_text = \"\"\n for i in plain_text:\n char = ord(i)+key\n if (char > 122):\n char -= 26\n encoded_text += chr(char)\n else:\n encoded_text += chr(char)\n return encoded_text\n\n\nkey = int(input())\nplain_text = input()\n\nprint(shiftText(plain_text, key))\n", "jacc_sim": 0.9375, "before_after_length": [115, 115], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "90122", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u774197297", "n_user": "u774197297", "pos": "n = int(input())\ns = list(input())\n\nfor i in range(len(s)):\n ascii = ord(s[i])\n if((ascii+n)>90):\n print(chr(64+(ascii+n-90)),end='')\n else:\n print(chr(ascii+n),end='')", "neg": "n = int(input())\ns = list(input())\n\nfor i in range(len(s)):\n ascii = ord(s[i])\n if((ascii+n)>90):\n print(chr(65+(ascii+n-90)),end='')\n else:\n print(chr(ascii+n),end='')\n\n", "jacc_sim": 0.9354838709677419, "before_after_length": [82, 84], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "54\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u106778233", "n_user": "u106778233", "pos": "def main():\n n=int(input())\n s=input()\n sum=''\n model='ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ'\n m=list(model)\n for i in range(len(s)):\n now=m.index(s[i])\n sum=sum+m[now+n]\n print(sum)\n\n\nif __name__=='__main__':\n main() ", "neg": "def main():\n n=int(input())\n s=input()\n sum=''\n model='ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ'\n m=list(model)\n for i in range(len(s)):\n now=m.index(s[i])\n sum=sum+m[now+n]\n print(sum)\n\n\nif __name__=='__main__':\n main() def main():\n ", "jacc_sim": 1.0, "before_after_length": [118, 123], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "def main():\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u774985302", "n_user": "u774985302", "pos": "N = int(input())\nS = input()\nA = ''\nfor i in range(len(S)):\n if ord(S[i])+N <= 90:\n A += chr(ord(S[i])+N)\n \n else:\n A += chr(ord(S[i])+N-26)\n \nprint(A)", "neg": "N = int(input())\nS = input()\nA = ''\nfor i in range(len(S)):\n if ord(S[i])+N <= 90:\n A += chr(ord(S[i])+N)\n print(A)\n else:\n A += chr(ord(S[i])+N-26)\n print(A)\nprint(A)", "jacc_sim": 1.0, "before_after_length": [85, 93], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": " print(A)print(A)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u921483220", "n_user": "u921483220", "pos": "a = input()\nb = input()\n\nN = int(a)\nS = b\n\nalpha_dict = {chr(c): i+1 for i, c in enumerate(range(ord('A'), ord('Z')+1))}\n\nst =\"\"\n\nfor c in S:\n n = alpha_dict[c]\n n = n + N\n if (n > 26):\n n = n - 26\n keys = [k for k, v in alpha_dict.items() if v == n]\n st += str(keys[0])\n \nprint(st)", "neg": "a = input().splitlines()\n\nN = int(a[0])\nS = a[1]\n\nalpha_dict = {chr(c): i+1 for i, c in enumerate(range(ord('A'), ord('Z')+1))}\n\nst =\"\"\n\nfor c in S:\n n = alpha_dict[c]\n n = n + N\n if (n > 26):\n n = n - 26\n keys = [k for k, v in alpha_dict.items() if v == n]\n st += str(keys[0])\n \nprint(st)", "jacc_sim": 0.9545454545454546, "before_after_length": [139, 142], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "\nb = input()\n\nN = int(a)\nS = b\n\nalpha_dict = {chr(c): i+1 for i, c in enumerate(range(ord('A'), ord('Z')+1))}\n\nst =\"\"\n\nfor c in S:\n n = alpha_dict[c]\n n = n + N\n if (n > 26):\n n = n - 26\n keys = [k for k, v in alpha_dictspllinm\n\nN= f v == ]\n s += strakeysS=a[1]\n\nalpha_dict={chr(c): i+1 for i, c in enumerate(range(ord('A'), ord('Z')+1))}\nst =\"\"\n\nfor c in S:\n n = alha_dict[c]\n n = n + N\n if (n > 26):\n n = n - 26\n keys = [k fo k, v alpha_dic.items) if v == n]\n += str(keys[0]\n \nprint(st)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u667469290", "n_user": "u667469290", "pos": "# -*- coding: utf-8 -*-\n\ndef solve():\n N = int(input())\n S = input()\n d = {chr(65+s):chr(65+(s+N)%26) for s in range(26)}\n table = str.maketrans(d)\n res = S.translate(table)\n return res\n\nif __name__ == '__main__':\n print(solve())\n", "neg": "# -*- coding: utf-8 -*-\n\nprint(chr(65))\ndef solve():\n N = int(input())\n S = input()\n d = {chr(65+s):chr(65+(s+N)%26) for s in range(26)}\n table = str.maketrans(d)\n res = S.translate(table)\n return res\n \n\n\n\nif __name__ == '__main__':\n print(solve())\n", "jacc_sim": 1.0, "before_after_length": [106, 117], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "\nprint(chr(65)) \n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u987164499", "n_user": "u987164499", "pos": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ns = stdin.readline().rstrip()\n\nS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'*2\n\nsn = \"\"\n\nfor i in s:\n sn += S[S.index(i)+n]\n\nprint(sn)", "neg": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ns = stdin.readline().rstrip()\n\nS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'*2\n\nsn = \"\"\n\nfor i in s:\n sn += S[S.index(i)+2]\n\nprint(sn)", "jacc_sim": 1.0, "before_after_length": [81, 81], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "2n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u868576171", "n_user": "u868576171", "pos": "num = int(input())\ns = input()\nres = \"\"\nfor x in s:\n loc = ord(x) + num\n res += chr(loc - 26 if loc > 90 else loc)\nprint(res)", "neg": "\nnum = input()\ns = input()\nres = \"\"\nfor x in s:\n loc = ord(x) + num\n res += chr(loc - 26 if loc > 90 else loc)\nprint(res)", "jacc_sim": 0.9583333333333334, "before_after_length": [52, 51], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "\nt(in)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u436611990", "n_user": "u436611990", "pos": "N = int(input())\nS = input()\ncodePoint = []\n\nsplitedInput = list(S)\nwordCount = len(splitedInput)\nfor i in range(wordCount):\n convertAscii = ord(splitedInput[i]) + N\n if convertAscii > ord(\"Z\"):\n convertAscii = convertAscii - ord(\"Z\") + ord(\"A\") - 1\n conversion = chr(convertAscii)\n codePoint.append(conversion)\n\nans = \"\".join(codePoint)\nprint(ans)", "neg": "N = int(input())\nS = input()\ncodePoint = []\n\nsplitedInput = list(S)\nwordCount = len(splitedInput)\nfor i in range(wordCount):\n convertAscii = ord(splitedInput[i]) + N\n if convertAscii > ord(\"Z\"):\n convertAscii = convertAscii - ord(\"Z\") + ord(\"A\") - 1\n conversion = chr(convertAscii)\n codePoint.append(conversion)\n\nprint(codePoint)", "jacc_sim": 0.95, "before_after_length": [123, 114], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "aprits = \"\".join\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u958973639", "n_user": "u958973639", "pos": "N=int(input())\nS=list(input())\n \nans=[]\nfor i in S:\n if ord(i)+N>90:\n temp=chr(ord(i)+N-26)\n ans.append(temp)\n else:\n temp=chr(ord(i)+N)\n ans.append(temp)\n \nf=''.join(ans)\n \nprint(f)", "neg": "N=int(input)\nS=list(input())\n\nans=[]\nfor i in S:\n if ord(i)+N>90:\n temp=chr(ord(i)+N-26)\n ans.append(temp)\n else:\n temp=chr(ord(i)+N)\n ans.append(temp)\n\nf=''.join(ans)\n\nprint(f)", "jacc_sim": 1.0, "before_after_length": [99, 96], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u517388115", "n_user": "u517388115", "pos": "n=int(input())\ns=str(input())\nl=list(s)\nt=len(s)\n\nfor i in range(t):\n if ord(l[i])+n<65+26:\n l[i]=chr(ord(l[i])+n)\n else:\n l[i]=chr(ord(l[i])+n-26)\nans=\"\".join(l)\nprint(ans)", "neg": "n=int(input())\ns=str(input())\nl=list(s)\nt=len(s)\n\nfor i in range(t):\n if ord(l[i])+2<65+26:\n l[i]=chr(ord(l[i])+2)\n else:\n l[i]=chr(ord(l[i])+2-26)\nans=\"\".join(l)\nprint(ans)\n", "jacc_sim": 0.9705882352941176, "before_after_length": [107, 108], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "2n2n2n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u744683641", "n_user": "u744683641", "pos": "N = int(input())\nS = input()\nalphabets = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\"\ndef get_str_leading_n(string, alphabets, N):\n index_ = (alphabets.index(string.upper()) + N) % 26\n return alphabets[index_]\noutput = \"\".join(list(map(lambda p: get_str_leading_n(p, alphabets, N), S)))\nprint(output)\n", "neg": "N = int(input())\nS = input()\nalphabets = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\"\ndef get_str_leading_n(string, alphabets, N):\n index_ = (alphabets.index(string.upper()) + N) // 26\n return alphabets[index_]\noutput = \"\".join(list(map(lambda p: get_str_leading_n(p, alphabets, N), S)))\nprint(output)", "jacc_sim": 0.9393939393939394, "before_after_length": [117, 116], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "%//\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u189089176", "n_user": "u189089176", "pos": "# B - ROT N\n# https://atcoder.jp/contests/abc146/tasks/abc146_b\n\nN = int(input())\nS = input()\n\ntmp = \"\"\n\nfor s in S:\n unicode_point = ord(s) + N\n\n if unicode_point > 90:\n unicode_point = 64 + (unicode_point - 90)\n\n tmp += chr(unicode_point)\n\nprint(tmp)", "neg": "# B - ROT N\n# https://atcoder.jp/contests/abc146/tasks/abc146_b\n\nN = int(input())\nS = input()\n\ntmp = \"\"\n\nfor s in S:\n unicode_point = ord(s) + N\n\n if unicode_point >= 90:\n unicode_point = 65 + (unicode_point - 90)\n\n tmp += chr(unicode_point)\n\nprint(tmp)", "jacc_sim": 0.9444444444444444, "before_after_length": [106, 106], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "=54", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u054825571", "n_user": "u054825571", "pos": "N=int(input())\nS=input()\nans=\"\"\nfor s in S:\n if ord(\"Z\") < ord(s)+N:\n ans+=chr(ord(\"A\")+ord(s)+N-ord(\"Z\")-1)\n else:\n ans+=chr(ord(s)+N)\nprint(ans)", "neg": "N=int(input())\nS=input()\nans=\"\"\nfor s in S:\n if ord(\"Z\") < ord(s)+N:\n ans+=chr(ord(\"A\")+ord(\"Z\")-(ord(s)+N))\n else:\n ans+=chr(ord(s)+N)\nprint(ans)", "jacc_sim": 0.9583333333333334, "before_after_length": [82, 81], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "s)+N-ord(1(ord(s)+N)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u224590796", "n_user": "u224590796", "pos": "n=input()\n\ns=input()\ns=s.lower()\n\nlist=[\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\",\"i\",\"j\",\"k\",\"l\",\"m\",\"n\",\"o\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\"]\nlength=len(s)\nexport=\"\"\nfor i in range(length):\n num=list.index(s[i])\n num=(num+int(n))%26\n export+=list[num]\n \nexport=export.upper()\nprint(export)\n\n", "neg": "n=input()\n\ns=input()\ns=s.lower()\n\nlist=[\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\",\"i\",\"j\",\"k\",\"l\",\"m\",\"n\",\"o\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\"]\nlength=len(s)\nprint(length)\nexport=\"\"\nfor i in range(length):\n num=list.index(s[i])\n num=(num+int(n))%26\n export+=list[num]\n \nexport=export.upper()\nprint(export)\n", "jacc_sim": 1.0, "before_after_length": [142, 146], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": ")\nprint(length\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u419963262", "n_user": "u419963262", "pos": "N=int(input())\nS=input()\nANS=\"\"\nfor i in range(len(S)):\n ANS+=chr(65+((ord(S[i])+N)-65)%26)\nprint(ANS)", "neg": "N=int(input())\nS=input()\nANS=\"\"\nfor i in range(len(S)):\n ANS+=chr(64+((ord(S[i])+N)-64)%26)\nprint(ANS)", "jacc_sim": 0.9230769230769231, "before_after_length": [56, 56], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "4545", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u440478998", "n_user": "u440478998", "pos": "n = int(input())\ns = input()\nout = \"\"\nfor i in s:\n if ord(i) + n > 90:\n out += chr(64+n-(90-ord(i)))\n else: \n out += chr(ord(i)+n)\n\nprint(out)", "neg": "n = int(input())\ns = input()\nfor i in s:\n if ord(i) + n > 90:\n print(chr(64+n-(90-ord(i))))\n else: \n print(chr(ord(i)+n))", "jacc_sim": 0.9130434782608695, "before_after_length": [73, 64], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "\nout = \"\"ouprin( += )ouprin( += \n\nprint(out", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u920103253", "n_user": "u920103253", "pos": "n=int(input())\ns=input()\n \nt=[]\nfor i in range(len(s)):\n num=ord(s[i])+n\n if num>90:\n num-=26\n t.append(chr(num))\n\nprint(\"\".join(t))", "neg": "n=int(input())\ns=input()\n\nt=[]\nfor i in range(len(s)):\n num=ord(s[i])+n\n if num>122:\n num-=26\n t.append(chr(num))\n\nprint(\"\".join(t))", "jacc_sim": 0.9354838709677419, "before_after_length": [72, 71], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": " 90122", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u581603131", "n_user": "u581603131", "pos": "N = int(input())\nS = input()\nans = str()\nfor i in S:\n\tm = (ord(i) - ord('A') + N) % 26\n\tans += chr(m + ord('A'))\nprint(ans)", "neg": "N = int(input())\nS = input()\nfor i in S:\n\tm = (ord(i) - ord('A') + N) % 26\n ans += chr(m +ord('A'))\nprint(ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [58, 53], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "()\nans = str\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u703890795", "n_user": "u703890795", "pos": "a = [\"A\",\"B\",\"C\",\"D\",\"E\",\"F\",\"G\",\n \"H\",\"I\",\"J\",\"K\",\"L\",\"M\",\"N\",\n \"O\",\"P\",\"Q\",\"R\",\"S\",\"T\",\"U\",\n \"V\",\"W\",\"X\",\"Y\",\"Z\"]\nN = int(input())\nS = input()\no = \"\"\nfor s in S:\n o += a[(a.index(s)+N)%26]\n\nprint(o)", "neg": "a = [\"A\",\"B\",\"C\",\"D\",\"E\",\"F\",\"G\",\n \"H\",\"I\",\"J\",\"K\",\"L\",\"M\",\"N\",\n \"O\",\"P\",\"Q\",\"R\",\"S\",\"T\",\"U\",\n \"V\",\"W\",\"X\",\"Y\",\"Z\"]\nN = int(input())\nS = input()\nfor s in S:\n print(a.index(s))\n", "jacc_sim": 0.9148936170212766, "before_after_length": [110, 93], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "o = \"\"\nprinto += a[+N%26]\nprint(o)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u798073524", "n_user": "u798073524", "pos": "N = int(input())\nS = input()\nAnswer_list = []\nfor i in list(S):\n num = ord(i)+N\n if num >= 65 and num <= 90:\n Answer_list.append(chr(num))\n elif num > 90:\n Answer_list.append(chr(num - 26))\nprint(''.join(Answer_list))", "neg": "N = int(input())\nS = input()\nAnswer_list = []\n\nfor i in list(S):\n num = ord(i)+N\n if num >= 65 || num =< 90:\n Answer_list.append(chr(num))\n elif num < 90:\n Answer_list.append(chr(num - 26) \nprint(''.join(Answer_list))", "jacc_sim": 0.9411764705882353, "before_after_length": [88, 91], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "\na|| dum=num =<>) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u145600939", "n_user": "u145600939", "pos": "n = int(input())\ns = input()\nans = ''\nfor i in s:\n ans += chr((ord(i)-ord('A')+n)%26 + ord('A'))\nprint(ans)\n", "neg": "n = int(input())\ns = input()\nans = ''\nfor i in s:\n ans += chr((ord(i)+n-1 - ord('A'))%26 + 1 + ord('A'))\nprint(ans)\n", "jacc_sim": 0.9545454545454546, "before_after_length": [51, 54], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "+n1 - +n + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u235364677", "n_user": "u235364677", "pos": "n = int(input())\ninp_string = input()\nresult = \"\"\nfor char in inp_string:\n value = ord(char)\n value += n\n if value > 90:\n value = 64 + (value - 90)\n result += chr(value)\nprint(result)\n", "neg": "n = int(input())\ninp_string = input()\nresult = \"\"\nfor char in inp_string:\n value = ord(char)\n value += n\n print(char,value)\n if value > 90:\n value = 64 + (value - 90)\n print(value,chr(value))\n result += chr(value)\nprint(result)", "jacc_sim": 0.9583333333333334, "before_after_length": [70, 87], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "print(char,value)\n print(value,chr(value))\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u678505520", "n_user": "u678505520", "pos": "n = int(input())\ns = list(input())\n'''\nalp = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']\n\nfor i in range(len(s)):\n s[i] = alp[(int(alp.index(s[i])) + n) % len(alp)]\n\nprint(''.join(s))\n'''\n\nfor i in range(len(s)):\n s[i] = chr((ord(s[i]) + n - 65)%26 +65)\n\nprint(''.join(s))", "neg": "n = int(input())\ns = list(input())\n\nalp = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']\n\nprint(alp.index('F'))\n\nfor i in range(len(s)):\n s[i] = alp[(int(alp.index(s[i])) + n) % len(alp)]\n\nprint(''.join(s))", "jacc_sim": 0.9107142857142857, "before_after_length": [172, 134], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "'''\n\nprint(alp.index('F'))\n'''\n\nfor i in range(len(s)):\n s[i] = chr((ord(s[i]) + n - 65)%26 +65)\n\nprint(''.join(s))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u460386402", "n_user": "u460386402", "pos": "n=int(input())\ns=input()\nnum=len(s)\nnew=\"\"\nfor i in range(num):\n a=ord(s[i])\n b=a+n\n if b>90:\n new+=chr(b-26)\n else:\n new+=chr(b)\nprint(new)", "neg": "n=int(input())\ns=input()\nnum=len(s)\nnew=\"\"\nfor i in range(num):\n a=ord(s[i])\n b=a+n\n if b>90:\n new+=chr(b-24)\n else:\n new+=chr(b)\nprint(new)", "jacc_sim": 0.9354838709677419, "before_after_length": [83, 83], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "46", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u931489673", "n_user": "u931489673", "pos": "n=int(input())\nS=input()\n\ndef forward(s, n):\n A_id = ord('A')\n num_AtoZ = ord('Z') - ord('A') + 1\n return chr(A_id + (ord(s) - A_id + n) % (num_AtoZ))\n\nprint(''.join([forward(s, n) for s in S]))", "neg": "n=int(input())\nS=input()\n\ndef forward(s, n):\n A_id = ord('A')\n num_AtoZ = ord('Z') - ord('A') + 1\n return chr(A_id + (ord(s) + n) % (A_id + num_AtoZ))\n\nprint(''.join([forward(s, n) for s in S]))\n", "jacc_sim": 1.0, "before_after_length": [96, 97], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "- A_id A_id + \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u412298345", "n_user": "u412298345", "pos": "import sys\n\ndef main():\n input = sys.stdin.readline\n n = int(input())\n s = input().rstrip()\n first = ord(\"A\") - 1\n last = ord(\"Z\")\n increment = lambda x: chr(ord(x)+n) if ord(x)+n <= last else chr(first + (ord(x)+n - last))\n new_s = \"\".join(map(increment, s))\n print(new_s, end=\"\")\n \n\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\n\ndef main():\n input = sys.stdin.readline\n n = int(input())\n s = input()\n first = ord(\"A\") - 1\n last = ord(\"Z\")\n increment = lambda x: chr(ord(x)+n) if ord(x)+n <= last else chr(first + (ord(x)+n - last))\n new_s = \"\".join(map(increment, s))\n print(new_s)\n \n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.95, "before_after_length": [135, 129], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "().rstrip, end=\"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u450983668", "n_user": "u450983668", "pos": "N = int(input())\nS = input()\n\nalphabet = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\"\n\nnewS = S.translate(str.maketrans(alphabet, alphabet[N:]+alphabet[:N]))\nprint(newS)", "neg": "N = int(input())\nS = input()\n\nalphabet = \"ABCDEFGHIJKLMNOPQUSTUVWXYZ\"\n\nnewS = S.translate(str.maketrans(alphabet, alphabet[N:]+alphabet[:N]))\nprint(newS)", "jacc_sim": 0.9090909090909091, "before_after_length": [65, 66], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "UR", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02848", "p_user": "u861886710", "n_user": "u861886710", "pos": "a = list(\"ABCDEFGHIJKLMNOPQRSTUVWXYZ\")\nN = int(input())\nS = input()\n \nfor i in S:\n b = a.index(i) + N\n if b <= 25:\n print(a[b], end=\"\")\n else:\n print(a[b-26], end=\"\")\n", "neg": "a = list(\"ABCDEFGHIJKLMNOPQRSTUVWXYZ\")\nS = input()\nN = int(input())\n\nfor i in S:\n b = a.index(i) + N\n if b<=25:\n print(a[b], end=\"\")\n else:\n print(a[b-25], end=\"\")\n", "jacc_sim": 0.9666666666666667, "before_after_length": [85, 85], "nl": "You are given a string of uppercase English letters and an integer N. Shift each character of the string by N in alphabetical order (assuming A follows Z) and print the resulting string. Constraints: 0 \u2264 N \u2264 26, 1 \u2264 |S| \u2264 10^4, and S consists of uppercase English letters. Input is given as N followed by S. Output the shifted string. Example: Input: 2, ABCXYZ. Output: CDEZAB.", "diff_info": "S = input()\nS = input()\n 56", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u945181840", "n_user": "u945181840", "pos": "import sys\nfrom collections import deque\nread = sys.stdin.read\n\nN, *ab = map(int, read().split())\ngraph = [[] for _ in range(N + 1)]\n\nfor a, b in zip(*[iter(ab)] * 2):\n graph[a].append(b)\n\ncolor = [0] * (N + 1)\nqueue = deque([1])\ncolor_v = [set() for _ in range(N + 1)]\n\nwhile queue:\n V = queue.popleft()\n number = 1\n for v in graph[V]:\n if number in color_v[V]:\n number += 1\n color[v] = number\n color_v[V].add(number)\n color_v[v].add(number)\n queue.append(v)\n number += 1\n\nprint(max(color))\nfor a, b in zip(*[iter(ab)] * 2):\n print(color[b])", "neg": "import sys\nfrom collections import deque\nread = sys.stdin.read\n\nN, *ab = map(int, read().split())\ngraph = [[] for _ in range(N + 1)]\n\nfor a, b in zip(*[iter(ab)] * 2):\n graph[a].append(b)\n\ncolor = [0] * (N + 1)\nqueue = deque([1])\ncolor_v = [0] * (N + 1)\n\nwhile queue:\n V = queue.popleft()\n number = 1\n for v in graph[V]:\n if number == color_v[V]:\n number += 1\n color[v] = number\n queue.append(v)\n number += 1\n\nprint(max(color))\nfor a, b in zip(*[iter(ab)] * 2):\n print(color[b])", "jacc_sim": 0.9583333333333334, "before_after_length": [229, 202], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "0]set()*for_ in range]==incolor_v[V].add(number)\n color_v[v].add(number)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u254871849", "n_user": "u254871849", "pos": "import sys\nfrom collections import deque\n\ndef main():\n n = int(sys.stdin.readline().rstrip())\n ab = map(int, sys.stdin.read().split())\n ab = list(zip(ab, ab))\n\n G = [[] for _ in range(n + 1)]\n for a, b in ab:\n G[a].append(b)\n G[b].append(a)\n \n q = deque([1]) # root = 1\n parent = [None] * (n + 1)\n color = [0] * (n + 1) # color of the edge(parent[y], y)\n\n while q:\n x = q.popleft()\n ng = color[x]\n c = 1\n for y in G[x]:\n if y == parent[x]:\n continue\n parent[y] = x\n if c == ng:\n c += 1\n color[y] = c\n q.append(y)\n c += 1\n \n print(max(color))\n\n for a, b in ab:\n if a == parent[b]:\n print(color[b])\n else:\n print(color[a])\n\nif __name__ == '__main__':\n main()", "neg": "import sys\nfrom collections import deque\n\ndef main():\n n = int(sys.stdin.readline().rstrip())\n ab = map(int, sys.stdin.read().split())\n ab = list(zip(ab, ab))\n\n G = [[] for _ in range(n + 1)]\n for a, b in ab:\n G[a].append(b)\n G[b].append(a)\n \n q = deque([1]) # root = 1\n parent = [None] * (n + 1)\n color = [0] * (n + 1) # color of the edge(parent[y], y)\n\n while q:\n x = q.popleft()\n ng = color[x]\n c = 1\n for y in G[x]:\n if y == parent[x]:\n continue\n parent[y] = x\n if c == ng:\n c += 1\n color[y] = c\n q.append(y)\n c += 1\n \n k = max(color)\n\n for a, b in ab:\n if a == parent[b]:\n print(color[b])\n else:\n print(color[a])\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9838709677419355, "before_after_length": [307, 307], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "k = print()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u043048943", "n_user": "u043048943", "pos": "#coding:utf-8\nimport sys\nsys.setrecursionlimit(10**6)\nwrite = sys.stdout.write\ndbg = lambda *something : print(*something) if DEBUG else 0\nDEBUG = False\ndef main(given = sys.stdin.readline):\n input = lambda : given().rstrip()\n LMIIS = lambda : list(map(int,input().split()))\n II = lambda : int(input())\n XLMIIS = lambda x : [LMIIS() for _ in range(x)]\n\n N = II()\n from collections import defaultdict\n num_c = defaultdict(int)\n E = defaultdict(lambda:defaultdict(int))\n inputE = []\n for i in range(N-1):\n ai,bi = LMIIS()\n if bi < ai:\n ai,bi = bi,ai\n num_c[ai] += 1\n num_c[bi] += 1\n E[ai][bi]= -1\n inputE.append((ai,bi))\n max_c = max(num_c.values())\n \n\n\n def colour(e1,c):\n tmpc = 0\n for e2 in E[e1].keys():\n tmpc += 1\n if tmpc == c:\n tmpc += 1\n E[e1][e2] = tmpc\n colour(e2,tmpc)\n\n \n pass\n \n colour(1,0)\n # print(E)\n print(max_c)\n\n\n for ai,bi in inputE:\n if E[ai][bi] != -1:\n print(E[ai][bi])\n\n\n\nif __name__ == '__main__':\n main()", "neg": "#coding:utf-8\nimport sys\nsys.setrecursionlimit(10**6)\nwrite = sys.stdout.write\ndbg = lambda *something : print(*something) if DEBUG else 0\nDEBUG = False\ndef main(given = sys.stdin.readline):\n input = lambda : given().rstrip()\n LMIIS = lambda : list(map(int,input().split()))\n II = lambda : int(input())\n XLMIIS = lambda x : [LMIIS() for _ in range(x)]\n\n N = II()\n from collections import defaultdict\n num_c = defaultdict(int)\n E = defaultdict(lambda:defaultdict(int))\n inputE = []\n for i in range(N-1):\n ai,bi = LMIIS()\n if bi < ai:\n ai,bi = bi,ai\n num_c[ai] += 1\n num_c[bi] += 1\n E[ai][bi]= -1\n inputE.append((ai,bi))\n max_c = max(num_c.values())\n \n\n\n def colour(e1,e2,c):\n E[e1][e2] = c\n tmpc = 0\n for e22 in E[e2].keys():\n tmpc += 1\n if tmpc == c:\n tmpc += 1\n colour(e2,e22,tmpc)\n\n \n pass\n\n colour(1,2,1)\n print(max_c)\n\n\n for ai,bi in inputE:\n print(E[ai][bi])\n\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9615384615384616, "before_after_length": [417, 404], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "c):\n tmpc = 0\n for e2 in E[e1].keys():\n tmpc += 1\n if tmpc == c:\n tmpc += 1\n E[e1][e2] = tmpc\n colour(c):\n E[e1][e2] = c\n = 0\n for e22 in E[e2].keys(: tmpc += 1if tmpc == c: tmc += 1\n colour(e2,e22,tmpc)\n\n \n p 20)\n # print(E)\n print(max_c)\n\n\n for aibi in inputE:\n if E[ai][bi] != -):print(max_c)\n\n\nforai,biin inurin(:\n print(E", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u207097826", "n_user": "u207097826", "pos": "from collections import deque\nimport sys\nsys.setrecursionlimit(20000000)\n\nN = int(input())\nab = [list(map(int, input().split())) for _ in range(N-1)]\nroutes = [[] for _ in range(N)]\n\nfor i in range(len(ab)):\n routes[ab[i][0]-1].append([ab[i][1]-1, i])\n routes[ab[i][1]-1].append([ab[i][0]-1, i])\n\nroute_color = [-10e+10 for _ in range(len(ab))]\n\nroute_num = [0]*N\nmax_route = 0\nfor i in range(N):\n num = len(routes[i])\n route_num[i] = num\n if max_route < num:\n max_route = num\n\nseen = [False for _ in range(N)]\n\ndef function(num,pre_color):\n color_num = -1\n for route in routes[num]:\n color_num += 1\n if color_num == pre_color:\n color_num+=1\n if route_color[route[1]] != -10e+10:\n color_num-=1\n pass\n else:\n route_color[route[1]] = color_num\n \n if seen[route[0]] == False:\n seen[route[0]] = True\n function(route[0],route_color[route[1]])\n return\n\nfunction(0,-1)\nprint(max_route)\nfor color in route_color:\n print(color+1)", "neg": "from collections import deque\nimport sys\nsys.setrecursionlimit(20000000)\n\nN = int(input())\nab = [list(map(int, input().split())) for _ in range(N-1)]\nroutes = [[] for _ in range(N)]\n\nfor i in range(len(ab)):\n routes[ab[i][0]-1].append([ab[i][1]-1, i])\n routes[ab[i][1]-1].append([ab[i][0]-1, i])\n\nroute_color = [-10e+10 for _ in range(len(ab))]\n\nroute_num = [0]*N\nmax_route = 0\nfor i in range(N):\n num = len(routes[i])\n route_num[i] = num\n if max_route < num:\n max_route = num\n\nseen = [False for _ in range(N)]\n\ndef function(num):\n color_num = 0\n for route in routes[num]:\n if route_color[route[1]] != -10e+10:\n color_num+=1\n else:\n route_color[route[1]] = color_num\n color_num+=1\n if seen[route[0]] == False:\n seen[route[0]] = True\n function(route[0])\n return\n\nfunction(0)\nprint(max_route)\nfor color in route_color:\n print(color+1)", "jacc_sim": 0.9649122807017544, "before_after_length": [396, 356], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": ",pre_color0-1color_num += 1\n if color_num == pre_color:\n color_num+=1\n -=1\n pass\n else:\n route_color[route[1]] = color_num\n \n if seen[route[0]] == False:\n seen[route[0]] = True\n function(route[0],route_color[route[1]])\n return\n\nfunction(0,-1)\nprint(max_route)\nfor color in route_color:\n print(color=\n else:\n route_color[route[1]] = color_num\n color_num+=1\n if seen[route[0]] == False:\n seen[route[0]] = True\n function(route[0]\n return\n\nfunction(0)\nprint(max_route)\nfor color in route_color:\n print(color+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u969850098", "n_user": "u969850098", "pos": "from collections import deque\n\ndef main():\n N = int(input())\n path = [[] for _ in range(N)]\n ab = []\n ans = {}\n visited = [False] * N\n visited[0] = True\n for _ in range(N-1):\n a, b = map(int, input().split())\n path[a-1].append(b-1)\n path[b-1].append(a-1)\n # ab.append(str(a-1)+str(b-1))\n ab.append((a-1, b-1))\n \n que = deque([(0, 0)])\n while que:\n # k = 1\n k = 0\n pre, c = que.popleft()\n for next_node in path[pre]:\n if visited[next_node]:\n continue\n k += 1\n if c == k:\n k += 1\n visited[next_node] = True\n # ans[str(pre)+str(next_node)] = k\n ans[(pre, next_node)] = k\n que.append((next_node, k))\n \n\n print(max(ans.values()))\n for key in ab:\n print(ans[key])\n\nif __name__ == '__main__':\n main()", "neg": "from collections import deque\n\ndef main():\n N = int(input())\n # path = [[] for _ in range(N)]\n path = [[] for _ in range(N-1)]\n ab = []\n ans = {}\n visited = [False] * N\n visited[0] = True\n for _ in range(N-1):\n a, b = map(int, input().split())\n path[a-1].append(b-1)\n # path[b-1].append(a-1)\n ab.append((a-1, b-1))\n \n que = deque([(0, 0)])\n while que:\n k = 1\n pre, c = que.popleft()\n for next_node in path[pre]:\n if visited[next_node]:\n continue\n \n if c == k:\n k += 1\n visited[next_node] = True\n ans[(pre, next_node)] = k\n que.append((next_node, k))\n k += 1\n \n\n print(max(ans.values()))\n for key in ab:\n print(ans[key])\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9824561403508771, "before_after_length": [320, 297], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "# pbth[\n ans = {}\n visited = [False] * N\n visited[0] = True\n ]\n ab = []\n ans = {}\n visited = [False] * N\n visited[0] = True\n for _ in range(N-1)# # str, )+str( ab.append((a-1, b-1))\n # k = 0\n k += 1# ans[str(pre)+str(next_node)] = k\n \n k += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u863442865", "n_user": "u863442865", "pos": "def main():\n import sys\n input = sys.stdin.readline\n sys.setrecursionlimit(10**7)\n from collections import Counter, deque\n #from collections import defaultdict\n from itertools import combinations, permutations, accumulate, groupby\n #from itertools import product\n from bisect import bisect_left,bisect_right\n import heapq\n from math import floor, ceil\n #from operator import itemgetter\n\n #inf = 10**17\n #mod = 10**9 + 7\n\n n = int(input())\n ab = [list(map(int, input().split())) for _ in range(n-1)]\n\n adj = [[] for _ in range(n)]\n order = []\n for a,b in ab:\n adj[a-1].append(b-1)\n order.append(b-1)\n\n \n\n c = [0]*n\n d = deque([0])\n while d:\n v = d.popleft()\n cnt = 1\n for nv in adj[v]:\n if c[v] == cnt:\n cnt += 1\n c[nv] = cnt\n cnt += 1\n d.append(nv)\n\n print(max(c))\n\n for i in order:\n print(c[i])\n\nif __name__ == '__main__':\n main()", "neg": "def main():\n import sys\n input = sys.stdin.readline\n sys.setrecursionlimit(10**7)\n from collections import Counter, deque\n #from collections import defaultdict\n from itertools import combinations, permutations, accumulate, groupby\n #from itertools import product\n from bisect import bisect_left,bisect_right\n import heapq\n from math import floor, ceil\n #from operator import itemgetter\n\n #inf = 10**17\n #mod = 10**9 + 7\n\n n = int(input())\n ab = [list(map(int, input().split())) for _ in range(n-1)]\n\n adj = [[] for _ in range(n)]\n order = []\n for a,b in ab:\n adj[a-1].append(b-1)\n order.append(b-1)\n\n k = 0\n for i in adj:\n k = max(k, len(i))\n print(k)\n\n c = [0]*n\n d = deque([0])\n while d:\n v = d.popleft()\n cnt = 1\n for nv in adj[v]:\n if c[v] == cnt:\n cnt += 1\n c[nv] = cnt\n cnt += 1\n d.append(nv)\n\n for i in order:\n print(c[i])\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9746835443037974, "before_after_length": [326, 345], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "k = 0\n for i in adj:\n k = max(k, len(i))\n print(k)print(max(c))\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u276204978", "n_user": "u276204978", "pos": "import sys\nsys.setrecursionlimit(500000)\n\nN = int(input())\nE = [[] for _ in range(N+1)]\nfor i in range(N-1):\n a, b = map(int, input().split())\n E[a].append((b, i))\n E[b].append((a, i))\n\nK = max(len(e) for e in E)\nprint(K)\n\nAns = [-1] * (N-1)\ndef dfs(v, pc=-1, p=-1):\n c = 1\n for u, idx in E[v]:\n if (u == p):\n continue\n if (c == pc): \n c += 1\n Ans[idx] = c\n dfs(u, c, v)\n c += 1\n\ndfs(1)\nprint(\"\\n\".join(map(str, Ans)))", "neg": "N = int(input())\nE = [[] for _ in range(N+1)]\nfor i in range(N-1):\n a, b = map(int, input().split())\n E[a].append((b, i))\n E[b].append((a, i))\n\nK = max(len(e) for e in E)\nprint(K)\n\nAns = [-1] * (N-1)\ndef dfs(v, pc=-1, p=-1):\n c = 1\n for u, idx in E[v]:\n if (u == p):\n continue\n if (c == pc): \n c += 1\n Ans[idx] = c\n c += 1\n dfs(u, c, v)\n \ndfs(1)\nprint(\"\\n\".join(map(str, Ans)))", "jacc_sim": 0.9215686274509803, "before_after_length": [214, 201], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "import sys\nsys.setrecursionlimit(500000)\n\ndfs(u, c, v)\n dfs(u, c, v)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u278356323", "n_user": "u278356323", "pos": "# ABC146d\nans = 1\n\n\ndef main():\n import sys\n input = sys.stdin.readline\n sys.setrecursionlimit(10**6)\n\n # map(int,input().split())\n\n n = int(input())\n\n edges = [list() for _ in range(n)]\n colors = [-1] * (n - 1)\n\n for i in range(n - 1):\n a, b = map(int, input().split())\n edges[a - 1].append((b - 1, i))\n edges[b - 1].append((a - 1, i))\n\n def dfs(i, color, pre):\n nc = 0 if color != 0 else 1\n for e in edges[i]:\n if e[0] == pre:\n continue\n global ans\n if ans < len(edges[i]):\n ans = len(edges[i])\n colors[e[1]] = nc\n dfs(e[0], nc, i)\n nc += 1\n if nc == color:\n nc += 1\n dfs(0, -1, -1)\n print(ans)\n for i in colors:\n print(i+1)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "# ABC146d\nans = 1\n\n\ndef main():\n import sys\n input = sys.stdin.readline\n sys.setrecursionlimit(10**6)\n\n # map(int,input().split())\n\n n = int(input())\n\n edges = [list() for _ in range(n)]\n colors = [-1]*(n-1)\n\n for i in range(n - 1):\n a, b = map(int, input().split())\n edges[a - 1].append((b - 1, i))\n edges[b - 1].append((a - 1, i))\n\n def dfs(i, color, pre):\n for e in edges[i]:\n if e[0] == pre:\n continue\n global ans\n if ans < len(edges[i]):\n ans = len(edges[i])\n nc = 0\n for j in range(ans):\n if j == color:\n continue\n nc = j\n colors[e[1]] = nc\n dfs(e[0], nc, i)\n dfs(0, 0, -1)\n print(ans)\n for i in colors:\n print(i+1)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9482758620689655, "before_after_length": [307, 306], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": " nc = 0 if color != 0 else 1\n nolors[e[1]]nc\n dfs(e[\n], for j ic,irange(ans\n nc += 1\n if nc == colorif j == color:\n cotinue\n n+j\n colors[e[]] = nc e[]-1nc, i)\n dfs(0, 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u242196904", "n_user": "u242196904", "pos": "n=int(input())\ng=[[] for _ in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n g[a-1].append((b-1,i))\n\nvc=[0] * n\nec=[-1]*(n-1)\nfor p,ci in enumerate(g):\n color = 1\n for c, i in ci:\n if vc[p] == color:\n color += 1\n vc[c] = color\n ec[i] = color\n color += 1\n \n\nprint(max(ec))\nfor i in range(n-1):\n print(ec[i])\n", "neg": "n=int(input())\ng=[[] for _ in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n g[a-1].append((b-1,i))\n\nvc=[0] * n\nec=[-1]*(n-1)\nfor p,ci in enumerate(g):\n color = 1\n for c, i in ci:\n if vc[p] == c:\n color += 1\n vc[c] = color\n ec[i] = color\n color += 1\n \n\nprint(max(ec))\nfor i in range(n-1):\n print(ec[i])\n", "jacc_sim": 1.0, "before_after_length": [165, 165], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "olor", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u970899068", "n_user": "u970899068", "pos": "import collections\nfrom collections import deque\ndef tree(s):\n\n INF=-10**9\n dis = [INF for i in range(n)]\n ans = [INF for i in range(n)]\n dis[s]=0\n def bfs():\n d = deque()\n d.append(s)\n\n while len(d):\n x = d.popleft()\n cnt=1\n\n for i in range(len(b[x])):\n y=b[x][i]\n if dis[y] == INF:\n d.append(y)\n dis[y]=dis[x]+1\n if ans[x]!=cnt:\n ans[y]=cnt\n cnt+=1\n else:\n cnt+=1\n ans[y]=cnt\n cnt+=1\n\n return ans\n return bfs()\n\nn=int(input())\na = [list(map(int, input().split())) for i in range(n-1)]\nb = [[] for i in range(n)]\n\nfor i in range(n-1):\n b[a[i][0]-1].append(a[i][1]-1)\n\nx=tree(0)\nprint(max(x))\nfor i in range(n-1):\n print(x[a[i][1]-1])", "neg": "import collections\nfrom collections import deque\ndef tree(s):\n\n INF=-10**9\n dis = [INF for i in range(n)]\n ans = [INF for i in range(n)]\n dis[s]=0\n def bfs():\n d = deque()\n d.append(s)\n\n while len(d):\n x = d.popleft()\n cnt=1\n\n for i in range(len(b[x])):\n y=b[x][i]\n if dis[y] == INF:\n d.append(y)\n dis[y]=dis[x]+1\n if ans[x]!=cnt:\n ans[y]=cnt\n cnt+=1\n else:\n cnt+=1\n ans[y]=cnt\n cnt+=1\n\n return ans\n return bfs()\n\nn=int(input())\na = [list(map(int, input().split())) for i in range(n-1)]\nb = [[] for i in range(n)]\n\nfor i in range(n-1):\n b[a[i][0]-1].append(a[i][1]-1)\n\nx=tree(0)\nprint(max(x))\nfor i in range(1,n):\n print(x[a[i][1]-1])", "jacc_sim": 1.0, "before_after_length": [331, 331], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "1,-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u686036872", "n_user": "u686036872", "pos": "from queue import deque\n\nN = int(input())\n\nA = []\nB = [[]for i in range(N)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n A.append([a, b])\n \nfor i, j in A:\n B[i-1].append(j-1)\n\nq = deque([0])\ncolor = [-1]*N\nans = {}\nsaidai = 0\nwhile q:\n nord = q.popleft()\n c = 0\n for i, v in enumerate(B[nord]):\n if color[nord] == i:\n c += 1\n color[v] = c + i \n ans[(nord, v)] = c + i\n q.append(v)\n saidai = max(saidai,i+c+1)\n\nprint(saidai)\n\nfor i, j in A:\n print(1+ans[(i-1, j-1)])", "neg": "from queue import deque\n\nN = int(input())\n\nA = []\nB = [[]for i in range(N)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n A.append([a, b])\n B[a-1].append(b-1)\n\nX = max(len(i) for i in B)\n\nprint(X)\n\nq = deque([0])\ncolor = [[-1]*N]\nans = {}\nwhile q:\n nord = q.popleft()\n c = 0\n for i, v in enumerate(B[nord]):\n if color[v] == i:\n c += 1\n color[i] = c + i \n ans[(nord, i)] = c + i\n q.append(v)\n\nfor i, j in B:\n print(ans[(i-1, j-1)]+1)", "jacc_sim": 0.9387755102040817, "before_after_length": [248, 228], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "\nfor i, j in A:\n aibjXqmaxdeque[0])\ncoen(i) fi in B)\n\nprint(X)\n\nq deque([0])\ncolor = []saidai = 0\nnord] == i:\n c += 1\n color[=c + \n ans[(nord, v)] = c + i\n q.append(v)\n saidai = max(saidai,i+c+1)\n\nprint(saidai)\n\nfor i, j in Aprint(1 c = 1\n color[i] = c + i \n ans[(nord, i)] = c + i\n q.append(v)\n\nfor i, j in B:\n print(+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u625046108", "n_user": "u625046108", "pos": "from collections import deque\n\nN = int(input())\n\ndic = {i:[] for i in range(1,N+1)}\n\nrlt = [0]*(N-1)\n\nfor i in range(N-1):\n a,b = map(int, input().split())\n dic[a].append((b,i))\n dic[b].append((a,i))\n \nh = deque([(1,1)])\n\nwhile h:\n j = 1\n c = 0\n t = h.popleft()\n for k in dic[t[0]]:\n if k[0] == t[1]:\n c = rlt[k[1]]\n break\n for k in dic[t[0]]:\n if k[0] == t[1]:\n continue\n if c == j:\n j += 1\n rlt[k[1]] = j\n h.append((k[0],t[0]))\n j += 1\n \nprint(max(rlt)) \nfor l in rlt:\n print(l) ", "neg": "from collections import deque\n\nN = int(input())\n\ndic = {i:[] for i in range(1,N+1)}\n\nrlt = [0]*(N-1)\n\nfor i in range(N-1):\n a,b = map(int, input().split())\n dic[a].append((b,i))\n dic[b].append((a,i))\n \nh = deque([(1,1)])\n\nwhile h:\n j = 1\n c = 0\n t = h.popleft()\n for k in dic[t[0]]:\n if k[0] == t[1]:\n c = rlt[k[1]]\n break\n for k in dic[t[0]]:\n if k[0] == t[1]:\n continue\n if c == j:\n j += 1\n rlt[k[1]] = j\n h.append((k[0],t[0]))\n j += 1\n \nprint(rlt)", "jacc_sim": 0.9565217391304348, "before_after_length": [262, 245], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": " max() \nfor l in rlt:\n print(l) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u296518383", "n_user": "u296518383", "pos": "import sys\ninput = sys.stdin.buffer.readline\n\nN = int(input())\nAB = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N + 1)]\nfor a, b in AB:\n graph[a].append(b)\n graph[b].append(a)\n \ndef make_tree(graph, root) -> (list, list, list):\n INF = 10 ** 15\n dist = [INF] * len(graph)\n parent = [-1] * len(graph)\n stack = [root]\n dist[root] = 0\n order = []\n parent[root] = root\n while stack:\n s = stack.pop()\n order.append(s)\n for g in graph[s]:\n if dist[g] > dist[s] + 1:\n dist[g] = dist[s] + 1\n parent[g] = s\n stack.append(g)\n return dist, parent, order\n \ndist, parent, order = make_tree(graph, 1)\n\ncolor = [-1] * (N + 1)\nfor s in order:\n ng = color[s]\n c = 1\n for g in graph[s]:\n if parent[s] == g:\n continue\n if c == ng:\n c += 1\n color[g] = c\n c += 1\n\nanswer = []\nfor a, b in AB:\n if parent[a] == b:\n answer.append(color[a])\n else:\n answer.append(color[b])\n\nprint(max(answer))\nfor a in answer:\n print(a)", "neg": "import sys\ninput = sys.stdin.buffer.readline\n\nN = int(input())\nAB = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N + 1)]\nfor a, b in AB:\n graph[a].append(b)\n graph[b].append(a)\n \ndef make_tree(graph, root) -> (list, list, list):\n INF = 10 ** 15\n dist = [INF] * len(graph)\n parent = [-1] * len(graph)\n stack = [root]\n dist[root] = 0\n order = []\n parent[root] = root\n while stack:\n s = stack.pop()\n order.append(s)\n for g in graph[s]:\n if dist[g] > dist[s] + 1:\n dist[g] = dist[s] + 1\n parent[g] = s\n stack.append(g)\n return dist, parent, order\n \ndist, parent, order = make_tree(graph, 1)\n\ncolor = [-1] * (N + 1)\nfor s in order:\n ng = color[s]\n c = 1\n for g in graph[s]:\n if parent[s] == g:\n continue\n if c == ng:\n c += 1\n color[g] = c\n c += 1\nprint(color)\n\nanswer = []\nfor a, b in AB:\n if parent[a] == b:\n answer.append(color[a])\n else:\n answer.append(color[b])\n\nprint(max(answer))\nfor a in answer:\n print(a)", "jacc_sim": 1.0, "before_after_length": [412, 417], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "print(color)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u474423089", "n_user": "u474423089", "pos": "import sys\nsys.setrecursionlimit(500000)\nN = int(input())\nE = [[] for i in range(N + 1)]\nfor i in range(N - 1):\n a, b = map(int, input().split(' '))\n E[a].append((b, i))\n E[b].append((a, i))\nK = max(len(e) for e in E)\nprint(K)\nans = [-1] * (N - 1)\n\n\ndef dfs(v=1, p=0, p_col=-1):\n col = 1\n for u, idx in E[v]:\n if u != p:\n if col == p_col:\n col += 1\n ans[idx] = col\n dfs(u, v, col)\n col += 1\n\n\ndfs()\nfor i in ans:\n print(i)\n", "neg": "N = int(input())\nE = [[] for i in range(N+1)]\nfor i in range(N-1):\n a,b = map(int,input().split(' '))\n E[a].append((b,i))\n E[b].append((a,i))\nK = max(len(e) for e in E)\nprint(K)\nans = [-1]*(N-1)\ndef dfs(v=1, p=0, p_col=-1):\n col = 1\n for u, idx in E[v]:\n if u != p:\n if col == p_col:\n col += 1\n ans[idx] = col\n dfs(u, v, col)\n col += 1\ndfs()\nfor i in ans[1:]:\n print(i)", "jacc_sim": 0.9148936170212766, "before_after_length": [212, 196], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "import sys\nsys.setrecursionlimit(500000)\n \n\ndfs()\ndor i in an[1()\nfor i in ans]:\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u561992253", "n_user": "u561992253", "pos": "words = lambda t : list(map(t, input().split()))\nn = int(input())\n\nvs = [[] for i in range(n)]\nfor i in range(n-1):\n s,e = words(int)\n vs[s-1].append((e-1,i))\n\nimport queue\nq = queue.Queue()\nq.put(0)\ncolor = [0] * (n-1)\ncolor_par = [0] * (n)\ncolor_par[0] = -1\nwhile not q.empty():\n v = q.get()\n cur_c = 1\n for (c,i) in vs[v]:\n if color_par[v] == cur_c:\n cur_c +=1\n color[i] = cur_c\n color_par[c] = cur_c\n cur_c += 1\n q.put(c)\n\nprint(max(color))\nfor i in range(n-1):\n print(color[i])\n", "neg": "words = lambda t : list(map(t, input().split()))\nn = int(input())\n\nvs = [[] for i in range(n)]\nfor i in range(n-1):\n s,e = words(int)\n vs[s-1].append(e-1)\n\nimport queue\nq = queue.Queue()\nq.put(0)\ncolor = [0] * n\ncolor[0] = 1\nwhile not q.empty():\n v = q.get()\n cur_c = 1\n for c in vs[v]:\n if color[v] == cur_c:\n cur_c +=1\n color[c] = cur_c\n cur_c += 1\n q.put(c)\n\nfor i in range(n):\n print(color[i])\n", "jacc_sim": 0.9574468085106383, "before_after_length": [244, 196], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "(,i)(-1)_par = =*(n)\ncolor_par[0] = -(,i)_pari] = cur_c\n color_par[print(max(color))\n-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u095562538", "n_user": "u095562538", "pos": "# coding: utf-8\n# Here your code !\n\nimport sys\nsys.setrecursionlimit(10**6)\nN = int(input())\nv = [[] for i in range(N)]\nfor i in range(N-1):\n a,b = map(int,input().split())\n a,b = a-1,b-1\n v[a].append([b,i])\n \nans = [None] * (N-1)\n \ndef decide_colord(cur,color):\n cnt = 1\n for (to,j)in v[cur]:\n if cnt == color:\n cnt += 1\n ans[j] = cnt\n decide_colord(to,cnt)\n cnt += 1\ndecide_colord(0,0)\nprint(max(ans))\n[print(a) for a in ans]", "neg": "# coding: utf-8\n# Here your code !\n\nimport sys\nsys.setrecursionlimit(10**6)\nN = int(input())\nv = [[] for i in range(N)]\nfor i in range(N-1):\n a,b = map(int,input().split())\n a,b = a-1,b-1\n v[a].append([b,i])\n print(v)\n \nans = [None] * (N-1)\n \ndef decide_colord(cur,color):\n cnt = 1\n for (to,j)in v[cur]:\n if cnt == color:\n cnt += 1\n ans[j] = cnt\n decide_colord(to,cnt)\n cnt += 1\ndecide_colord(0,0)\nprint(max(ans))\n[print(a) for a in ans]", "jacc_sim": 1.0, "before_after_length": [205, 211], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": " print(v)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u783506895", "n_user": "u783506895", "pos": "from collections import deque\n\nif __name__ == \"__main__\":\n\tN = int(input())\n\tAB = []\n\tfor _ in range(N - 1):\n\t\ta, b = map(int, input().split())\n\t\tAB.append((a, b))\n\n\tgraph = [[] for _ in range(N + 1)]\n\tfor a, b in AB:\n\t\tgraph[a].append(b)\n\t\tgraph[b].append(a)\n\n\troot = 1\n\tparent = [0] * (N + 1)\n\torder = []\n\tstack = [root]\n\t# make ordered tree\n\twhile stack:\n\t\tx = stack.pop()\n\t\torder.append(x)\n\t\tfor y in graph[x]:\n\t\t\tif parent[x] == y:\n\t\t\t\tcontinue\n\t\t\tparent[y] = x\n\t\t\tstack.append(y)\n\n\t# assign color\n\tcolor = [-1] * (N + 1)\n\tfor x in order:\n\t\tng = color[x] # cannot assign the color of edge(x, parent[x])\n\t\tc = 1\n\t\tfor y in graph[x]:\n\t\t\tif parent[x] == y:\n\t\t\t\tcontinue\n\t\t\tif c == ng:\n\t\t\t\tc += 1\n\t\t\tcolor[y] = c\n\t\t\tc += 1\n\n\tanswer = []\n\tfor a, b in AB:\n\t\tif parent[a] == b:\n\t\t\tanswer.append(color[a])\n\t\telse:\n\t\t\tanswer.append(color[b])\n\tK = max(answer)\n\tprint(K)\n\tprint('\\n'.join(map(str, answer)))\n", "neg": "from collections import deque\n\nif __name__ == \"__main__\":\n\tN = int(input())\n\tAB = []\n\tfor _ in range(N - 1):\n\t\ta, b = map(int, input().split())\n\t\tAB.append((a, b))\n\n\tgraph = [[] for _ in range(N + 1)]\n\tfor a, b in AB:\n\t\tgraph[a].append(b)\n\t\tgraph[b].append(a)\n\n\troot = 1\n\tparent = [0] * (N + 1)\n\torder = []\n\tStack = deque()\n\t# make ordered tree\n\twhile Stack:\n\t\tx = Stack.pop()\n\t\torder.append(x)\n\t\tfor y in graph[x]:\n\t\t\tif parent[x] == y:\n\t\t\t\tcontinue\n\t\t\tparent[y] = x\n\t\t\tStack.append(y)\n\n\t# assign color\n\tcolor = [-1] * (N + 1)\n\tfor x in order:\n\t\tng = color[x] # cannot assign the color of edge(x, parent[x])\n\t\tc = 1\n\t\tfor y in graph[x]:\n\t\t\tif parent[x] == y:\n\t\t\t\tcontinue\n\t\t\tif c == ng:\n\t\t\t\tc += 1\n\t\t\tcolor[y] = c\n\t\t\tc += 1\n\n\tanswer = []\n\tfor a, b in AB:\n\t\tif parent[a] == b:\n\t\t\tanswer.append(color[a])\n\t\telse:\n\t\t\tanswer.append(color[b])\n\tK = max(answer)\n\tprint(K)\n\tprint('\\n'.join(map(str, answer)))\n", "jacc_sim": 0.9696969696969697, "before_after_length": [407, 406], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "Ss[root]deque()SsSsSs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u250828304", "n_user": "u250828304", "pos": "from collections import deque\n\ndef bfs(idx,k,colored):\n q = deque()\n visited[idx] = True\n q.append(idx)\n while q:\n r = q.pop()\n color = 0\n for n in graph[r].keys():\n if not visited[n]:\n if color == colored[r]: color+=1\n colored[n] = color\n graph[r][n] = color\n graph[n][r] = color\n color += 1\n\n visited[n] = True\n q.append(n)\n\n \nN = int(input())\ngraph = {}\ncolored = [-1]*(N+1)\nvisited = [False]*(N+1)\nfor i in range(N+1):\n graph[i] = {}\nab = []\nfor i in range(N-1):\n a,b = map(int,input().split())\n ab.append((a,b))\n graph[a][b] = -1\n graph[b][a] = -1\n \nk = max([len(graph[i]) for i in range(1,N+1)])\n\nbfs(1,k,colored)\nprint(k)\nfor a,b in ab:\n print(graph[a][b]+1)\n", "neg": "from collections import deque\n\ndef bfs(idx,k):\n q = deque()\n visited[idx] = True\n q.append(idx)\n color = 0\n while q:\n r = q.pop()\n for n in graph[r].keys():\n if not visited[n]:\n if color not in graph[r].values():\n graph[r][n] = color\n graph[n][r] = color\n color = (color+1)%k\n else:\n color = (color+1)%k\n graph[r][n] = color\n graph[n][r] = color\n color = (color+1)%k\n visited[n] = True\n q.append(n)\n\n \nN = int(input())\ngraph = {}\nvisited = [False]*(N+1)\nfor i in range(N+1):\n graph[i] = {}\nab = []\nfor i in range(N-1):\n a,b = map(int,input().split())\n ab.append((a,b))\n graph[a][b] = -1\n graph[b][a] = -1\n \nk = 0\nfor i in range(1,N+1):\n k = max(k,len(graph[i]))\n\nbfs(1,k)\nprint(k)\nfor i in range(N-1):\n a,b = ab[i]\n print(graph[a][b]+1)\n\n \n\n\n \n", "jacc_sim": 0.9285714285714286, "before_after_length": [317, 365], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": ",coloredcolor = 0\n color = 0\n ==notcoin graph[r].vauors()d[r]\n graph[r][n] = color\n graph[n][r] = color\n color = (1)%k\n else:\n color 1\n( ed[n] = color\n graph[r][n] = color\n graph[n][r] = color\n color 1)%k\n graph[r][n] color\n graph[n][r] = color\n color = (color+\n)%kcovisited = [Fasord = [-1vfor stn rangd = [False]*\nfor i in range(N+1)0\nmax([len(graph[i]) ])\n\nbfs(1,k,colored)\nprint(k)\nfor a,b in abk = max(k,len(graph[i]))\n\nbfs(1,k)\nprint(k)\nfor i in range(N-1):\n a,b = ab[i]\n \n \n\n\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u021548497", "n_user": "u021548497", "pos": "from collections import deque\nimport sys\n\ndef main():\n input = sys.stdin.readline\n n = int(input())\n \n node = [0]*(n-1)\n next_node = [[] for _ in range(n)]\n for i in range(n-1):\n a, b = map(int, input().split())\n node[i] = (a-1, b-1)\n next_node[a-1].append(b-1)\n next_node[b-1].append(a-1)\n \n ans = 0\n for i in range(n):\n if ans < len(next_node[i]):\n ans = len(next_node[i])\n print(ans)\n \n not_yet = deque([])\n already = [False]*n\n parent = [0]*n\n ans_list = dict()\n k = 1\n \n already[0] = True\n for value in next_node[0]:\n not_yet.append(value)\n ans_list[(0, value)] = k\n parent[value] = k\n already[value] = True\n k += 1\n \n \n while not_yet:\n k = 1\n key = not_yet.popleft()\n for value in next_node[key]:\n if already[value]:\n continue\n already[value] = True\n not_yet.append(value)\n if k == parent[key]:\n k += 1\n parent[value] = k\n p, q = min([key, value]), max([key, value])\n ans_list[(p, q)] = k\n k += 1\n \n \n for value in node:\n print(ans_list[value])\n\n\nif __name__ == \"__main__\":\n main()", "neg": "from collections import deque\nimport sys\n\ndef main():\n input = sys.stdin.readline\n n = int(input())\n \n node = [0]*(n-1)\n next_node = [[] for _ in range(n)]\n for i in range(n-1):\n a, b = map(int, input().split())\n node[i] = (a-1, b-1)\n next_node[a-1].append(b-1)\n next_node[b-1].append(a-1)\n \n ans = 0\n for i in range(n):\n if ans < len(next_node[i]):\n ans = len(next_node[i])\n print(ans)\n \n not_yet = deque([])\n already = [False]*n\n parent = [1]*n\n ans_list = dict()\n k = 1\n \n already[0] = True\n for value in next_node[0]:\n not_yet.append(value)\n ans_list[(0, value)] = k\n parent[value] = k\n already[value] = True\n k += 1\n \n \n while not_yet:\n k = 1\n key = not_yet.popleft()\n for value in next_node[key]:\n if already[value]:\n continue\n if k == parent[key]:\n k += 1\n parent[value] = k\n p, q = min([key, value]), max([key, value])\n ans_list[(p, q)] = k\n k += 1\n for sub in next_node[value]:\n if already[sub]:\n continue\n not_yet.append(sub)\n already[sub] = True\n for value in node:\n print(ans_list[value])\n\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9841269841269841, "before_after_length": [447, 464], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "10already[value] = True\n not_yet.append(value)\n for sub in next_node[value]: if already[sub]:\n continue\n not_yet.append(sub)\n already[sub] = True", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u557282438", "n_user": "u557282438", "pos": "from collections import deque\nimport sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nab = [list(map(int,input().split())) for i in range(N-1)]\nE = [[] for _ in range(N+1)]\nfor i in range(N-1):\n E[ab[i][0]].append(ab[i][1])\ncolor = [0]*(N+1)\n\nstart = 1\nq = deque([start])\nwhile(q):\n v = q.pop()\n c = 0\n for u in E[v]:\n c += 1 + (c + 1 == color[v])\n color[u] = c\n q.append(u)\nprint(max(color))\nfor i in range(N-1):\n print(color[ab[i][1]])", "neg": "from collections import deque\nimport sys\nsys.setrecursionlimit(10**7)\nN = int(input())\nab = [list(map(int,input().split())) for i in range(N-1)]\nE = [[] for _ in range(N+1)]\nfor i in range(N-1):\n E[ab[i][0]].append(ab[i][1])\ncolor_num = max(len(E[i]) for i in range(N+1))\nprint(color_num)\ncolor = [0]*(N+1)\n\nstart = 1\nq = deque([start])\nwhile(q):\n v = q.pop()\n c = 0\n for u in E[v]:\n c += 1 + (c + 1 == color[v])\n color[u] = c\n q.append(u)\nfor i in range(N-1):\n print(color[ab[i][1]])", "jacc_sim": 0.9574468085106383, "before_after_length": [203, 225], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "_num = max(len(E[i]) for i in range(N+1))\nprint(color_num)\ncolorprint(max(color))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u824237520", "n_user": "u824237520", "pos": "from sys import setrecursionlimit\nsetrecursionlimit(10 ** 6)\n\nn = int(input())\nab = [list(map(lambda x:int(x)-1, input().split())) for _ in range(n-1)]\n\ne = [[] for _ in range(n)]\n\np = [0] * n\nc = [0] * n\nd = [0] * n\n\nfor a, b in ab:\n e[a].append(b)\n e[b].append(a)\n\nme = 0\n\nq = [0]\np[0] = -1\n\nwhile q:\n x = q.pop()\n temp = c[x]\n color = 1\n me = max(me, len(e[x]))\n #print(x, temp)\n for y in e[x]:\n if color == temp:\n color += 1\n if d[y] == 0:\n q.append(y)\n c[y] = color\n p[y] = x\n color += 1\n d[x] = 1\n\n#print(c)\n#print(p)\n\nprint(me)\n\nfor a, b in ab:\n if p[a] == b:\n print(c[a])\n else:\n print(c[b])", "neg": "from sys import setrecursionlimit\nsetrecursionlimit(10 ** 6)\n\nn = int(input())\nab = [list(map(lambda x:int(x)-1, input().split())) for _ in range(n-1)]\n\ne = [[] for _ in range(n)]\n\np = [0] * n\nc = [0] * n\nd = [0] * n\n\nfor a, b in ab:\n e[a].append(b)\n e[b].append(a)\n\nme = 0\n\nq = [0]\np[0] = -1\n\nwhile q:\n x = q.pop()\n temp = c[x]\n color = 1\n me = max(me, len(e[x]))\n for y in e[x]:\n if color == temp:\n color += 1\n if d[y] == 0:\n q.append(y)\n c[y] = color\n p[y] = x\n color += 1\n d[x] = 1\n\nprint(me)\n\nfor a, b in ab:\n if p[a] == b:\n print(c[a])\n else:\n print(c[b])", "jacc_sim": 0.9807692307692307, "before_after_length": [316, 294], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "#print(x, temp)\n #print(c)\n#print(p)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u327466606", "n_user": "u327466606", "pos": "from sys import setrecursionlimit\n\nsetrecursionlimit(100000)\n\nN = int(input())\n\nadj = [list() for _ in range(N)]\n\nfor i in range(N-1):\n a,b = map(int,input().split())\n a,b = a-1,b-1\n adj[a].append((b,i))\n adj[b].append((a,i))\n\n\nres = [None]*(N-1)\n\nC = max(len(l) for l in adj)\n\ndef rec(v, used):\n global res\n c = 0\n for u,i in adj[v]:\n if c == used:\n c += 1\n if res[i] is None:\n res[i] = c\n rec(u, c)\n c += 1\nrec(0, -1)\nprint(C)\nfor c in res:\n print(c+1)\n", "neg": "from sys import setrecursionlimit\n\nsetrecursionlimit(100000)\n\nN = int(input())\n\nadj = [list() for _ in range(N)]\n\nfor i in range(N-1):\n a,b = map(int,input().split())\n a,b = a-1,b-1\n adj[a].append((b,i))\n adj[b].append((a,i))\n\nC,s = max((len(l),v) for v,l in enumerate(adj))\n\nres = [None]*(N-1)\n\ndef rec(v, used):\n global res\n c = 0\n for u,i in adj[v]:\n if c == used:\n c += 1\n if res[i] is None:\n res[i] = c\n rec(u, c)\n c += 1\nrec(s, -1)\nprint(C)\nfor c in res:\n print(c+1)\n", "jacc_sim": 0.9607843137254902, "before_after_length": [227, 234], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "C,s = max((len(l),v) for v,l in enumerate(adj))\nC = max(len(l) for l in adj)\n\n s0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u010090035", "n_user": "u010090035", "pos": "from collections import deque\nn=int(input())\ng=[[] for _ in range(n+1)]\ne=[]\nfor i in range(n-1):\n a,b=map(int,input().split())\n g[a-1].append(b-1)\n e.append(b-1)\n\nq=deque([0])\n\ncolor=[0 for _ in range(n)]\nwhile(len(q)>0):\n ei=q.popleft()\n c=1\n for x in g[ei]:\n if c == color[ei]:\n c+=1\n\n color[x]=c\n c+=1\n q.append(x)\n\nprint(max(color))\nfor i in e:\n print(color[i])", "neg": "from collections import deque\nn=int(input())\ng=[[] for _ in range(n+1)]\ne=[]\nfor i in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n e.append(b)\n\nq=deque([0])\n\ncolor=[0 for _ in range(n)]\nwhile(len(q)>0):\n ei=q.popleft()\n c=1\n for x in g[ei]:\n if c == color[ei]:\n c+=1\n\n color[x]=c\n c+=1\n q.append(x)\n\nprint(max(color))\nfor i in e:\n print(color[i])", "jacc_sim": 1.0, "before_after_length": [192, 186], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "-1-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u312025627", "n_user": "u312025627", "pos": "def main():\n import sys\n readline = sys.stdin.buffer.readline\n read = sys.stdin.buffer.read\n N = int(readline())\n R = [[int(i) for i in r.split()] for r in read().rstrip().split(b'\\n')]\n G = [[] for _ in range(N)]\n edge = {}\n ans_key = []\n for a, b in R:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n edge[(a-1, b-1)] = -1\n ans_key.append((a-1, b-1))\n max_g = max(len(g) for g in G)\n\n def dfs(max_g):\n todo = [0]\n seen = [False]*N\n seen[0] = True\n par = [-1]*N\n while todo:\n u = todo.pop()\n k = 0\n c = edge[(par[u], u)] if u != 0 else 0\n for v in G[u]:\n if seen[v]:\n continue\n seen[v] = True\n todo.append(v)\n par[v] = u\n k += 1\n if k == c:\n k += 1\n if max_g < k:\n k = 1\n if u < v:\n edge[(u, v)] = k\n else:\n edge[(v, u)] = k\n\n dfs(max_g)\n print(max_g)\n for k in ans_key:\n print(edge[k])\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n import sys\n readline = sys.stdin.buffer.readline\n read = sys.stdin.buffer.read\n N = int(readline())\n R = [[int(i) for i in r.split()] for r in read().rstrip().split(b'\\n')]\n G = [[] for _ in range(N)]\n edge = {}\n ans_key = []\n for a, b in R:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n edge[(a-1, b-1)] = -1\n ans_key.append((a-1, b-1))\n max_g = max(len(g) for g in G)\n\n def dfs(max_g):\n todo = [0]\n seen = [False]*N\n seen[0] = True\n par = [-1]*N\n while todo:\n u = todo.pop()\n k = 1\n c = edge[(par[u], u)] if u != 0 else 0\n for v in G[u]:\n if seen[v]:\n continue\n seen[v] = True\n todo.append(v)\n par[v] = u\n if u < v:\n edge[(u, v)] = k\n else:\n edge[(v, u)] = k\n k += 1\n if k == c:\n k += 1\n\n dfs(max_g)\n print(max_g)\n for k in ans_key:\n print(edge[k])\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [418, 404], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "0\n c = edge[(par[u], u)] if u != 0 else 0\n for v in G[u]:\n if seen[v]:\n continue\n seen[v] = True\n todo.append(v)\n par[v] = u\n k += if k == = edge[(par[u], u)] if u != 0 else 0\n for v in G[u]ifseen[v] k += 1\n if max_g < kcontinue\nk seen[v] 1True\n todo.append(v)\n par[v] = u k += 1\n if k == c:\n k += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u907414670", "n_user": "u907414670", "pos": "from collections import deque\n\nN = int(input())\ngraph = [[] for _ in range(N)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n graph[a].append([b, i])\n graph[b].append([a, i])\n\nans = [0] * (N - 1)\nq = deque([[1, 0, -1]])\nwhile q:\n node, pcol, p_node = q.popleft()\n cnt = 1\n for n_node in graph[node]:\n if n_node[0] == p_node: continue\n if cnt == pcol: cnt += 1\n ans[n_node[1]] = cnt\n q.append([n_node[0], cnt, node])\n cnt += 1\nprint(max(ans))\nprint(*ans, sep=\"\\n\")", "neg": "from collections import deque\n\nN = int(input())\ngraph = [[] for _ in range(N)]\n\nfor i in range(N-1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n graph[a].append([b, i])\n graph[b].append([a, i])\nprint(graph)\n\nans = [0] * (N - 1)\nq = deque([[1, 0, -1]])\nwhile q:\n node, pcol, p_node = q.popleft()\n cnt = 1\n for n_node in graph[node]:\n if n_node[0] == p_node: continue\n if cnt == pcol: cnt += 1\n ans[n_node[1]] = cnt\n q.append([n_node[0], cnt, node])\n cnt += 1\nprint(ans)\nprint(max(ans))\nprint(*ans, sep=\"\\n\")", "jacc_sim": 1.0, "before_after_length": [222, 232], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "print(graph)\nans)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u608088992", "n_user": "u608088992", "pos": "import sys\nfrom collections import deque\n\ndef solve():\n input = sys.stdin.readline\n N = int(input())\n edge = [[] for _ in range(N)]\n order = dict()\n for i in range(N-1):\n a, b = map(int, input().split())\n edge[a-1].append(b-1)\n edge[b-1].append(a-1)\n order[(min(a-1, b-1), max(a-1, b-1))] = i\n K = 0\n for i in range(N): K = max(K, len(edge[i]))\n \n q = deque()\n col = [-1] * N\n col[0] = 0\n colE = [-1] * (N - 1)\n colPointer = 1\n for next in edge[0]: \n q.append((0, next))\n col[next] = colPointer\n colE[order[(0, next)]] = colPointer\n colPointer += 1\n while q:\n parentNode, nowNode = q.popleft()\n colPointer = 1\n for nextNode in edge[nowNode]:\n if nextNode != parentNode:\n q.append((nowNode, nextNode))\n if colPointer == col[nowNode]: colPointer += 1\n col[nextNode] = colPointer\n colE[order[(min(nowNode, nextNode), max(nowNode, nextNode))]] = colPointer\n colPointer += 1\n\n print(K)\n for c in colE: print(c)\n\n return 0\n\nif __name__ == \"__main__\":\n solve()", "neg": "import sys\nfrom collections import deque\n\ndef solve():\n input = sys.stdin.readline\n N = int(input())\n edge = [[] for _ in range(N)]\n order = dict()\n for i in range(N-1):\n a, b = map(int, input().split())\n edge[a-1].append(b-1)\n edge[b-1].append(a-1)\n order[(min(a-1, b-1), max(a-1, b-1))] = i\n K = len(edge[0])\n for i in range(1, N): K = max(K, len(edge[i]))\n \n par = [-1] * N\n q = deque()\n col = [-1] * N\n col[0] = 0\n colE = [-1] * (N - 1)\n colPointer = 1\n for next in edge[0]: \n q.append((0, next))\n col[next] = colPointer\n colE[order[(0, next)]] = colPointer\n colPointer += 1\n while q:\n parentNode, nowNode = q.popleft()\n par[nowNode] = parentNode\n colPointer = 1\n for nextNode in edge[nowNode]:\n if nextNode != parentNode:\n q.append((nowNode, nextNode))\n while colPointer == col[parentNode] or colPointer == col[nowNode]: colPointer += 1\n col[nextNode] = colPointer\n colE[order[(min(nowNode, nextNode), max(nowNode, nextNode))]] = colPointer\n colPointer += 1\n\n print(K)\n for c in colE: print(c)\n\n return 0\n\nif __name__ == \"__main__\":\n solve()", "jacc_sim": 0.967741935483871, "before_after_length": [398, 432], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "le0\n for i i(ed ran(N[0]\n:K=m for i in rx(K, le(ed(1, N): K = max(K, len(edge\n par = [-1] * Npar[nowNode] = parentNode\n whfle colPointer == col[parentNode] or", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u669173971", "n_user": "u669173971", "pos": "from collections import deque\nn=int(input())\narr=[[] for _ in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n arr[a-1].append([b-1,i])\n arr[b-1].append([a-1,i])\n\nque=deque([0])\nans=[0]*(n-1)\npar=[0]*n\npar[0]=-1\nwhile que:\n x=que.popleft()\n p=par[x]\n color=1\n for tup in arr[x]:\n if p==color:\n color+=1\n if ans[tup[1]]==0:\n ans[tup[1]]=color\n par[tup[0]]=color\n color+=1\n que.append(tup[0])\nprint(max(ans))\nprint(*ans,sep='\\n')", "neg": "from collections import deque\nn=int(input())\narr=[[] for _ in range(n)]\nfor i in range(n-1):\n a,b=map(int,input().split())\n arr[a-1].append([b-1,i])\n arr[b-1].append([a-1,i])\nprint(arr)\n\nque=deque([0])\nans=[0]*(n-1)\npar=[0]*n\npar[0]=-1\nwhile que:\n x=que.popleft()\n p=par[x]\n color=1\n for tup in arr[x]:\n if p==color:\n color+=1\n if ans[tup[1]]==0:\n ans[tup[1]]=color\n par[tup[0]]=color\n color+=1\n que.append(tup[0])\nprint(max(ans))\nprint(*ans,sep='\\n')", "jacc_sim": 1.0, "before_after_length": [227, 232], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "print(arr)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u046187684", "n_user": "u046187684", "pos": "from collections import deque\n\n\ndef solve(string):\n n, *ab = map(int, string.split())\n # i != j => (ai, bi) != (aj, bj)\n next_ = [dict([]) for _ in range(n + 1)]\n color = [set([]) for _ in range(n + 1)]\n queue = deque([1])\n for a, b in zip(*[iter(ab)] * 2):\n next_[a][b] = 0\n next_[b][a] = 0\n while len(queue) > 0:\n c = queue.popleft()\n _next = next_[c].items()\n use = set(range(1, len(_next) + 1)) - color[c]\n _next = (k for k, v in _next if v == 0)\n for _n, u in zip(_next, use):\n queue.append(_n)\n next_[c][_n] = u\n next_[_n][c] = u\n color[c].add(u)\n color[_n].add(u)\n return str(\"{}\\n{}\".format(max(map(lambda x: len(x.keys()), next_)),\n \"\\n\".join(str(next_[a][b]) for a, b in zip(*[iter(ab)] * 2))))\n\n\nif __name__ == '__main__':\n import sys\n print(solve(sys.stdin.read().strip()))\n", "neg": "from collections import deque\n\n\ndef solve(string):\n n, *ab = map(int, string.split())\n # i != j => (ai, bi) != (aj, bj)\n next_ = [dict([]) for _ in range(n + 1)]\n color = [set([]) for _ in range(n + 1)]\n queue = deque([1])\n for a, b in zip(*[iter(ab)] * 2):\n next_[a][b] = 0\n next_[b][a] = 0\n while len(queue) > 0:\n c = queue.popleft()\n _next = next_[c].items()\n use = set(range(1, len(_next) + 1)) - color[c]\n _next = (k for k, v in _next if v == 0)\n for _n, u in zip(_next, use):\n print(_n, u)\n queue.append(_n)\n next_[c][_n] = u\n next_[_n][c] = u\n color[c].add(u)\n color[_n].add(u)\n return str(\"{}\\n{}\".format(max(map(lambda x: len(x.keys()), next_)),\n \"\\n\".join(str(next_[a][b]) for a, b in zip(*[iter(ab)] * 2))))\n\n\nif __name__ == '__main__':\n import sys\n print(solve(sys.stdin.read().strip()))\n", "jacc_sim": 1.0, "before_after_length": [361, 369], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "\n print(_n, u)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u946996108", "n_user": "u946996108", "pos": "import math\nimport time\nfrom collections import deque\nfrom collections import defaultdict\nfrom copy import deepcopy\n\nt = time.time()\ndef iip():\n ret = [int(i) for i in input().split()]\n if len(ret) == 1:\n return ret[0]\n return ret\n\nn = iip()\nel = defaultdict(lambda :[])\nfor i in range(n-1):\n a, b = iip()\n el[a-1].append((b-1, i))\n el[b-1].append((a-1, i))\n\n#print(el)\n\ndef main():\n color = [None for i in range(n-1)]\n cmax = 0\n que = deque()\n que.append((0, 0))\n\n while que:\n parent, used_color =que.popleft()\n children = el[parent]\n cn = 1\n\n for child, edge_num in children:\n el[child].remove((parent, edge_num))\n\n if cn == used_color:\n cn += 1\n color[edge_num] = cn\n cmax = max(cn, cmax)\n que.append((child, cn))\n \n cn += 1\n\n\n\n print(cmax)\n for i in color:\n print(i)\n\n\n\nmain()", "neg": "import math\nimport time\nfrom collections import deque\nfrom collections import defaultdict\nfrom copy import deepcopy\n\nt = time.time()\ndef iip():\n ret = [int(i) for i in input().split()]\n if len(ret) == 1:\n return ret[0]\n return ret\n\nn = iip()\nel = defaultdict(lambda :[])\nfor i in range(n-1):\n a, b = iip()\n el[a-1].append((b-1, i))\n el[b-1].append((a-1, i))\n\nprint(el)\n\ndef main():\n color = [None for i in range(n-1)]\n cmax = 0\n que = deque()\n que.append((0, 0))\n\n while que:\n parent, used_color =que.popleft()\n children = el[parent]\n cn = 1\n\n for child, edge_num in children:\n el[child].remove((parent, edge_num))\n\n if cn == used_color:\n cn += 1\n color[edge_num] = cn\n cmax = max(cn, cmax)\n cn += 1\n\n que.append((child, cn))\n\n print(cmax)\n for i in color:\n print(i)\n\n\n\nmain()", "jacc_sim": 0.9827586206896551, "before_after_length": [328, 324], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "#que.append((child, cn))\n \n que.append((child, cn))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02850", "p_user": "u417365712", "n_user": "u417365712", "pos": "import sys\nfrom collections import deque\ninputs = sys.stdin.readlines()\n\nn = int(inputs[0])\nedges = [tuple(map(int, x.split())) for x in inputs[1:]]\nB = [e[1] for e in edges] \n\nE = [[] for _ in range(n + 1)]\nfor a, b in edges:\n E[a].append(b)\n\nQ = deque([1])\nC = [0] * (n + 1)\nwhile Q:\n v = Q.popleft()\n c = 0\n for u in E[v]:\n c += 1 + (c + 1 == C[v])\n C[u] = c\n Q.append(u)\n\nprint(max(C))\nfor b in B:\n print(C[b])", "neg": "import sys\nfrom collections import deque\ninputs = sys.stdin.readlines()\n\nn = int(inputs[0])\nedges = [tuple(map(int, x.split())) for x in inputs[1:]]\nB = [e[1] for e in edges] \n\nE = [[] for _ in range(N + 1)]\nfor a, b in edges:\n E[a].append(b)\n\nQ = deque([1])\nC = [0] * (N + 1)\nwhile Q:\n v = Q.popleft()\n c = 0\n for u in E[v]:\n c += 1 + (c + 1 == C[v])\n C[u] = c\n Q.append(u)\n\nprint(max(C))\nfor b in B:\n print(C[b])", "jacc_sim": 0.9787234042553191, "before_after_length": [196, 196], "nl": "You are given a tree with N vertices, numbered from 1 to N, and edges connecting these vertices. The task is to color the edges so that for each vertex, the incident edges have different colors. Find the minimum number of colors needed for this task. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 a_i < b_i \u2264 N. Input format: N, followed by pairs of vertices. Output: Number of colors used (K), followed by the color of each edge. If multiple colorings satisfy the condition, any of them is accepted.", "diff_info": "NnNn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u745243184", "n_user": "u745243184", "pos": "n = int(input())\ns = input()\n\nans = \"Yes\" if (n ^ 1) and s[0:int(n / 2)] == s[int(n / 2):n] else \"No\"\nprint(ans)\n", "neg": "n = int(input())\ns = input()\n\nans = \"Yes\" if (n & 1) and s[0:int(n / 2)] == s[int(n / 2):n] else \"No\"\nprint(ans)\n", "jacc_sim": 0.9166666666666666, "before_after_length": [56, 56], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "&^", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u692054751", "n_user": "u692054751", "pos": "N = int(input())\nstr_input = input()\n \nif N % 2 != 0:\n print('No')\nelse:\n print('Yes') if str_input[:N//2] == str_input[(N//2):] else print('No')", "neg": "import sys\n\nN = int(input())\nstr_input = input()\n\nif N % 2 != 0:\n print('No')\nelse:\n print('Yes') if str_input[:N/2] == str_input[:N] else print('No')\n", "jacc_sim": 0.9130434782608695, "before_after_length": [63, 63], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "import sys\n\n /(N//2)N\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u490489966", "n_user": "u490489966", "pos": "n=int(input())\nli=list(input())\nif n%2==0:\n t=int(n/2)\n a=li[:t]\n b=li[-t:]\n if a==b:\n print('Yes')\n else:\n print('No')\nelse:\n print('No')", "neg": "n=int(input())\nli=list(input())\nif n%2==0:\n t=int(n/2)\n print(t)\n a=li[:t]\n t=t-1\n b=li[:-t-1]\n if a==b:\n print('Yes')\n else:\n print('No')\nelse:\n print('No')", "jacc_sim": 0.9615384615384616, "before_after_length": [79, 95], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "print(t)\n t=t-1\n ::-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u841021102", "n_user": "u841021102", "pos": "n = int(input())\ns = input()\na = (len(s)//2)\ncount = 0\nif n % 2 == 0:\n for i in range (a):\n if s[i] == s[a + i]:\n count += 1\n if count == n/2:\n print('Yes')\n else:\n print('No')\nelse: \n print('No')\n", "neg": "n = int(input())\ns = input()\na = (len(s)//2)\ncount = 0\nif len(s) == n:\n for i in range (len(s)//2):\n if s[i] == s[a + i]:\n count += 1\n if count == n//2:\n print('Yes')\n else:\n print('No')\nelse: \n print('No')\n", "jacc_sim": 0.9655172413793104, "before_after_length": [97, 103], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "le(s)%==n2 == 0alen(s/:\n if s[i] == s[a + i]:\n count += 1\n if count == n):\n if s[i] == s[a + i]:\n count += 1\n if count == n//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u257226830", "n_user": "u257226830", "pos": "N = int(input())\nS = input()\nS1 = ''\nS2 = ''\nif N%2==1:\n print('No')\nelse:\n for i in range(N//2):\n S1 += S[i]\n for j in range(N//2,N):\n S2 += S[j]\n if S1==S2:\n print('Yes')\n else:\n print('No')", "neg": "N = int(input())\nS = input()\nif N%2==1:\n print('No')\nelse:\n for i in range(N//2):\n S1 += S[i]\n for j in range(N//2,N):\n S2 += S[j]\n if S1==S2:\n print('Yes')\n else:\n print('No')", "jacc_sim": 1.0, "before_after_length": [105, 95], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "\nS1 = ''\nS2 = ''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u505834829", "n_user": "u505834829", "pos": "# coding: utf-8\nn = int(input())\ns = input()\nif n % 2:\n\tprint('No')\nelse:\n\tif s[0:int(n/2)] == s[int(n/2):n]:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')", "neg": "# coding: utf-8\nn = int(input())\ns = input()\nif n % 2:\n\tprint('No')\nelse:\n\tif s[0:(n/2)] == s[(n/2):n]:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')", "jacc_sim": 1.0, "before_after_length": [75, 73], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "intint", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u302818391", "n_user": "u302818391", "pos": "N = int(input())\nlist = list(input())\nn = 0\nif N % 2 != 0:\n\tprint(\"No\")\nelse:\n for i in range(N//2):\n if not list[i] == list[i+ N//2]:\n print(\"No\")\n break\n n += 1\n if n == N//2:\n print(\"Yes\")\n", "neg": "N = int(input())\nlist = list(input())\nn = 0\nif N % 2 != 0:\n\tprint(\"No\")\nelse:\n for i in range(N//2):\n\t if not list[i] == list[i+ N//2]:\n print(\"No\")\n break\n n += 1\n if n == N//2 - 1:\n print(\"Yes\")\n", "jacc_sim": 0.967741935483871, "before_after_length": [92, 95], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "\t - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u130860911", "n_user": "u236592202", "pos": "N = int(input())\nS = input()\n\nif N%2==1:\n print('No')\nelse:\n N2 = N//2\n if S[:N2]==S[N2:]:\n print('Yes')\n else:\n print('No')\n", "neg": "N=int(input())\nS=input()\nif N%2==1:\n print(\"No\")\nif S[:N//2]==S[N//2:]:\n print(\"Yes\")\nelse:\n print(\"No\")\n ", "jacc_sim": 0.9523809523809523, "before_after_length": [69, 58], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " \n\"''\")\nif S[:N//2]==S[N//2:]:\n print(\"Yes\"N2 = N//2\n if S[:N2]==S[N2:]:\n \"No\"'Yes'else:\n print('No')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u144096725", "n_user": "u144096725", "pos": "import re\na = [input() for i in range(2)]\nlength, string = int(a[0]), a[1]\npattern = string[0:int(length/2)]\ncond1 = len(string) == length and len(string)%2==0\ncond2 = re.match(r\"^[a-z]+$\", string)\ncond3 = len(re.findall(pattern, string)) == 2\nif cond1 and cond2 and cond3:\n print(\"Yes\")\nelse:\n print('No')", "neg": "import re\na = [input() for i in range(2)]\nlength, string = int(a[0]), a[1]\npattern = string[0:int(length/2)]\ncond1 = len(string) == length\ncond2 = re.match(r\"^[a-z]+$\", string)\ncond3 = len(re.findall(pattern, string)) == 2\nif cond1 and cond2 and cond3:\n print(\"Yes\")\nelse:\n print('No')", "jacc_sim": 0.9772727272727273, "before_after_length": [126, 117], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " and len(string)%2==0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u450904670", "n_user": "u450904670", "pos": "n = int(input())\ns = input()\nif(n % 2 == 0):\n if(s[0:n // 2] == s[n // 2: n]):\n print(\"Yes\")\n exit()\nprint(\"No\")", "neg": "n = int(input())\ns = input()\nif(n % 2 == 0):\n print(s[0:n // 2], s[n // 2: n])\n if(s[0:n // 2] == s[n // 2: n]):\n print(\"Yes\")\n exit()\nprint(\"No\")", "jacc_sim": 0.9523809523809523, "before_after_length": [57, 77], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "\n print(s[0:n // 2], s[n // 2: n])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u026155812", "n_user": "u026155812", "pos": "import sys\nN = int(input())\ns = input()\nif N%2 ==1:\n print('No')\n sys.exit()\nif s[:N//2] == s[N//2:]:\n print('Yes')\nelse:\n print('No')", "neg": "import sys\nN = int(input())\ns = input()\nif N%2 != 1:\n print('No')\n sys.exit()\nif s[:N//2] == s[N//2+1:]:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9230769230769231, "before_after_length": [65, 67], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "! =+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u151163404", "n_user": "u151163404", "pos": "n = int(input())\ns = input()\n\nif s[0:int(n/2)] == s[int(n/2):n]:\n print(\"Yes\")\nelse: print(\"No\")\n", "neg": "n = int(input())\ns = input()\n\nprint(s[0:int(n/2)], s[int(n/2):n])\n\nif s[0:int(n/2)] == s[int(n/2):n]:\n print(\"Yes\")\nelse: print(\"No\")\n", "jacc_sim": 0.95, "before_after_length": [49, 74], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": ")\n\nprint(s[0:int(n/2)], s[int(n/2):n]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u870178975", "n_user": "u870178975", "pos": "import sys\nn=int(input())\ns=list(str(input()))\nif n%2==1:\n print(\"No\")\nelse:\n for i in range(int(n/2)):\n if s[i]!=s[i+int(n/2)]:\n print(\"No\")\n exit()\n print(\"Yes\")", "neg": "n=int(input())\ns=list(str(input()))\nif n%2==1:\n print(\"No\")\nelse:\n for i in range(int(n/2)):\n if s[i]!=s[i+int(n/2)]:\n print(\"No\")\n print(\"Yes\")", "jacc_sim": 0.9032258064516129, "before_after_length": [86, 79], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "import sys\n exit()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u961945062", "n_user": "u961945062", "pos": "import math\nN = int(input())\nS = str(input())\n\nif N == 1:\n print('No')\n exit()\nif N%2 == 1:\n print('No')\n exit()\n\nn = (N//2)\nj = True\n\n\nfor i in range(n):\n if S[i] != S[i + n]:\n j = False\n\nif j:\n print('Yes')\nelse:\n print('No')", "neg": "N = int(input())\nS = str(input())\n\nif N%2 == 1:\n print('No')\n exit()\n\nn = (N/2)\nj = True\n\n\nfor i in range(n):\n if S[i] != S[i + n]:\n j = False\n\nif j:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 0.9411764705882353, "before_after_length": [113, 95], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "import math\n\nif N == 1:\n print('No')\n exit()/\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u335038698", "n_user": "u335038698", "pos": "# -*- coding utf-8 -*-\n\nMOD = 10 ** 9 + 7\n\nn = int(input())\ns = input()\n\nif n % 2 ==0:\n ans = 'Yes' if s[:n//2] == s[n//2:] else 'No'\nelse:\n ans = 'No'\n\nprint(ans)\n\n", "neg": "# -*- coding utf-8 -*-\n\nMOD = 10 ** 9 + 7\n\nn = int(input())\ns = input()\nprint(s[:n//2], s[n//2:])\n\nif n % 2 ==0:\n ans = 'Yes' if s[:n//2] == s[n//2:] else 'No'\nelse:\n ans = 'No'\n\nprint(ans)\n\n", "jacc_sim": 0.9696969696969697, "before_after_length": [85, 101], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": ")\nprint(s[:n//2], s[n//2:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u223555291", "n_user": "u223555291", "pos": "n=int(input())\ns=input()\nimport sys\na=0\nif n==1:\n print('No')\n sys.exit()\nif n%2!=0:\n print('No')\n sys.exit()\nelse:\n for i in range(n//2):\n if s[i]==s[i+(n//2)]:\n pass\n else:\n a=1\n break\nif a==0:\n print('Yes') \nelse:\n print('No') ", "neg": "n=int(input())\ns=input()\nimport sys\na=0\nsys.exit()\nif n==1:\n print('No')\n sys.exit()\nif n%2!=0:\n print('No')\n sys.exit()\nelse:\n for i in range(n//2):\n if s[i]==s[i+(n//2)]:\n pass\n else:\n a=1\n break\nif a==0:\n print('Yes') \nelse:\n print('No') ", "jacc_sim": 1.0, "before_after_length": [127, 132], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "\nsys.exit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u540799318", "n_user": "u540799318", "pos": "import sys\nfrom math import factorial\nfrom fractions import Fraction\nimport heapq, bisect\nimport math\nimport itertools\nsys.setrecursionlimit(10 ** 5 + 10)\nINF = 10**15 +5\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\n\nn = INT()\ns = input()\n\nif n%2 == 1:\n print('No')\nelse:\n flag = True\n for i in range(n//2):\n if s[i] != s[n//2 + i]:\n flag = False\n if flag:\n print('Yes')\n else:\n print('No')\n", "neg": "from math import factorial\nfrom fractions import Fraction\nimport heapq, bisect\nimport math\nimport itertools\nsys.setrecursionlimit(10 ** 5 + 10)\nINF = 10**15 +5\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\n\nn = INT()\ns = input()\n\nif n %2 == 0:\n print('No')\nelse:\n flag = True\n for i in range(n):\n if s[i] != s[n//2 + i]:\n flag = False\n if flag:\n print('Yes')\n else:\n print('No')", "jacc_sim": 0.9661016949152542, "before_after_length": [188, 182], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "import sys\n 01n):\n if s[i] != s[):\n if s[i] != s[n//2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u909716307", "n_user": "u909716307", "pos": "n=int(input())\ns=input()\nprint('Yes'if s[:len(s)//2]==s[len(s)//2:] else 'No')", "neg": "n=int(input())\ns=input()\nprint('Yes'if s[:len(s)//2]==s[len(s)//2:] else 'No')\nprint(s[:len(s)//2], s[len(s)//2:])\n", "jacc_sim": 0.95, "before_after_length": [40, 63], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "\nprint(s[:len(s)//2], s[len(s)//2:])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u556086333", "n_user": "u556086333", "pos": "N = int(input())\nS = str(input())\nS = list(S)\n\nif N%2 != 0:\n print('No')\n exit()\n\nS1, S2 = [], []\nfor i, s in enumerate(S):\n if i < (N/2):\n S1.append(s)\n else:\n S2.append(s)\n\ns1 = ' '\nfor s in S1:\n s1 += s\n\ns2 = ' '\nfor s in S2:\n s2 += s\n\nif s1 == s2:\n print('Yes')\nelse:\n print('No')\n", "neg": "N = int(input())\nS = str(input())\nS = list(S)\n\nif N%2 != 0:\n print('No')\n exit()\n\nS1, S2 = [], []\nfor i, s enumerate(S):\n if i < (N/2):\n s1.append(s)\n else:\n s2.append(s)\n\ns1, s2 = ' ', ' '\nfor s in S1:\n s1 += s\n\nfor s in S2:\n s2 += s\n\nif s1 ==s2:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 1.0, "before_after_length": [157, 155], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "in sSsS,s2 ' ',s2 = ' '\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u842964692", "n_user": "u842964692", "pos": "N=int(input())\nS=list(input())\n \nif N%2!=0:\n print('No')\nelse:\n if S[:N//2]==S[N//2:]:\n print('Yes')\n else:\n print('No')", "neg": "N=input()\nS=list(input())\n\nif len(N)%2!=0:\n print('No')\nelse:\n if S[:N/2]==S[N/2]:\n print('Yes')\n else:\n print('No')", "jacc_sim": 0.9130434782608695, "before_after_length": [66, 65], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "int() len() //: ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u318165580", "n_user": "u318165580", "pos": "a=int(input())\nS=input()\nif a%2 != 0:\n print(\"No\")\nelse:\n b=0\n while\tb<=a//2-1 and 0<=b:\n if S[b]==S[a//2+b]:\n b=b+1\n else:\n b=-1\n if b==a//2:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "a=int(input())\nS=input()\nif a%2 != 0:\n print(\"No\")\nelse:\n b=0\n while\tb<=a//2-1:\n S[b]==S[a//2+b]\n b=b+1\n if b==a//2:\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.9642857142857143, "before_after_length": [108, 93], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": ":\nand0<=b:\n if: else:\n b=-1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u483600495", "n_user": "u483600495", "pos": "n = int(input())\ns = input()\n\nif n % 2 != 0:\n print('No')\nelse:\n t = s[0:int(n / 2)]\n if t * 2 == s:\n print('Yes')\n else:\n print('No')\n", "neg": "n = int(input())\ns = input()\n\nif n % 2 != 0:\n print('No')\nelse:\n t = s[0:int(n / 2)]\n if t * 2 == s:\n print('Yes')\n else:\n print('No')\n =\n", "jacc_sim": 1.0, "before_after_length": [69, 71], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " =\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u588276267", "n_user": "u588276267", "pos": "r = int(input())\ns = input()\n \ni = int(r/2)\nbefore = s[i:]\nafter = s[:i]\n \nif before == after:\n\tprint('Yes')\nelse:\n \tprint('No')\n", "neg": "r = int(input())\ns = input()\n\ni = int(r/2)\nbefore = s[i:]\nafter = s[:i]\n\nif before == after:\n\tprint('Yes')\nelse:\n \tprint('no')\n", "jacc_sim": 0.9090909090909091, "before_after_length": [61, 59], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " nN", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u338821626", "n_user": "u338821626", "pos": "N = int(input())\nS = str(input())\nn = 0\nA = []\nB = []\nif N % 2 == 0:\n n = int(N / 2)\n for i in range(0, n):\n A.append(S[i])\n B.append(S[n+i])\n\nif A == B and N % 2 == 0:\n print('Yes')\nelse:\n print('No')", "neg": "N = int(input())\nS = str(input())\nn = 0\nA = []\nB = []\nif N % 2 == 0:\n n = int(N / 2)\n for i in range(0, n):\n A.append(S[i])\n B.append(S[n+i])\n\nif A == B:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9696969696969697, "before_after_length": [104, 98], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " and N % 2 == 0 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u428397309", "n_user": "u216136179", "pos": "# -*- coding: utf-8 -*-\n\nN = int(input())\nS = input()\n\nif S[:N//2] == S[N//2:]:\n print('Yes')\nelse:\n print('No')\n", "neg": "# coding: utf-8\nN=int(input())\nS=input()\nif S[:N/2]==S[N/2:]: print(\"Yes\")\nelse: print(\"No\")", "jacc_sim": 0.9583333333333334, "before_after_length": [58, 45], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": " -*- -*-\n \n/ /\n \"'\"'\n \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u322763702", "n_user": "u322763702", "pos": "def main():\n N = int(input())\n S = input()\n if N % 2 == 1:\n print(\"No\")\n quit()\n n = N // 2\n yesno = \"Yes\" if S[:n] == S[n:] else \"No\"\n print(yesno)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "def main():\n N = int(input())\n S = input()\n if N % 2 == 1:\n print(\"No\")\n quit()\n yesno = \"Yes\" if S[:N / 2] == S[N / 2:] else \"No\"\n print(yesno)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9629629629629629, "before_after_length": [89, 86], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "n = N // 2\n nN / 2nN / 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u553824105", "n_user": "u553824105", "pos": "N = int(input())\nS = input()\nl = len(S)\nflg = 0\nif l%2 == 1:\n\tflg = 1\n\tprint(\"No\")\nelse:\n\tfor i in range(int(l/2)):\n\t\tif S[i] != S[i+int(l/2)]:\t\n\t\t\tprint(\"No\")\n\t\t\tflg = 1\n\t\t\tbreak\nif flg == 0:\n\tprint(\"Yes\")", "neg": "N = int(input())\nS = input()\nl = len(S)\nflg = 0\nif l%2 == 0:\n\tflg = 1\n\tprint(\"No\")\nelse:\n\tfor i in range(l/2):\n\t\tif S[i] != S[i+l/2]:\t\n\t\t\tprint(\"No\")\n\t\t\tflg = 1\n break\nif flg == 0:\n\tprint(\"Yes\")", "jacc_sim": 1.0, "before_after_length": [112, 105], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "01int()int()\t\t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u696543571", "n_user": "u696543571", "pos": "l = int(input())\ns = input()\ns1 = s[:l // 2]\ns2 = s[l//2:]\nif s1 == s2:\n print('Yes')\nelse:\n print('No')\n", "neg": "len = int(input())\ns = input()\ns1 = s[:len / 2]\ns2 = s[len/2:]\nif s1 == s2:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9047619047619048, "before_after_length": [55, 54], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "enen//en \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u875449556", "n_user": "u875449556", "pos": "N = int(input())\nS = input()\n\nif N % 2 != 0:\n print(\"No\")\nelse:\n a = S[:N//2]\n b = S[N//2:]\n if a == b:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "N = int(input())\nS = input()\n\nif N % 2 != 0:\n print(\"No\")\nelse:\n a = S[0;N/2]\n b = S[N/2;]\n if a == b:\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.9583333333333334, "before_after_length": [72, 75], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": ":0;//;:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02860", "p_user": "u089230684", "n_user": "u353919145", "pos": "n=int(input())\ns=input()\nif n%2==0:\n i=int(n/2)\n s1=s[:i]\n s2=s[i:]\n if s1==s2:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n print(\"No\")", "neg": "n=int(input())\ns=input()\nif n%2==0:\n s1=s[:n/2]\n s2=s[n/2:]\n if s1==s2:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n print(\"No\")", "jacc_sim": 0.9565217391304348, "before_after_length": [81, 75], "nl": "Score: 200 points\n\nProblem Statement:\nGiven a positive integer N and a string S of length N consisting of lowercase English letters, determine whether the string is a concatenation of two copies of some string (i.e., whether there is a string T such that S = T + T).\n\nConstraints:\n- 1 <= N <= 100\n- S consists of lowercase English letters\n- |S| = N\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nIf S is a concatenation of two copies of some string, print \"Yes\"; otherwise, print \"No\".\n\nSample Input 1:\n6\nabcabc\n\nSample Output 1:\nYes\nLet T = \"abc\", and S = T + T.\n\nSample Input 2:\n6\nabcadc\n\nSample Output 2:\nNo\n\nSample Input 3:\n1\nz\n\nSample Output 3:\nNo", "diff_info": "i=int(n/2)\n in/2in/2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u536034761", "n_user": "u536034761", "pos": "S = input()\nans = 0\nS = S.replace(\"><\", \">,<\").split(\",\")\nfor s in S:\n a = s.count(\">\")\n b = s.count(\"<\")\n ans += a * (a - 1) // 2 + b * (b - 1) // 2 + max(a, b)\nprint(ans)", "neg": "S = input()\nans = 0\nS = S.repace(\"><\"/, \">,<\").split(\",\")\nfor s in S:\n a = s.count(\">\")\n b = s.count(\"<\")\n ans += a * (a - 1) // 2 + b * (b - 1) // 2 + max(a, b)\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [86, 89], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "l/", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u711539583", "n_user": "u711539583", "pos": "s = input()\na = [-1 for i in range(len(s)+1)]\nfor i in range(len(s)-1):\n if s[i] == '>' and s[i+1] == \"<\":\n a[i+1] = 0\nif s[0] == \"<\":\n a[0] = 0\nif s[-1] == \">\":\n a[-1] = 0\ndef plus(i):\n j = i -1\n while j >= 0 and s[j] == '>':\n a[j] = max(a[j+1] + 1, a[j])\n j -= 1\n j = i\n if j == len(a) -1:\n return\n while s[j] == '<':\n a[j+1] = max(a[j] + 1, a[j+1])\n j += 1\n if j == len(a) - 1:\n break\nfor i in range(len(a)):\n if a[i] == 0:\n plus(i)\nprint(sum(a))\n", "neg": "s = input()\na = [-1 for i in range(len(s)+1)]\nfor i in range(len(s)-1):\n if s[i] == '>' and s[i+1] == \"<\":\n a[i+1] = 0\nif s[0] == \"<\":\n a[0] = 0\nif s[-1] == \">\":\n a[-1] = 0\ndef plus(i):\n j = i - 1\n while s[j] == '>':\n a[j] = max(a[j+1] + 1, a[j])\n j -= 1\n if j < 0:\n break\n j = i\n while s[j] == '<':\n a[j+1] = max(a[j] + 1, a[j+1])\n j += 1\n if j == len(a) - 1:\n break\nfor i in range(len(a)):\n if a[i] == 0:\n plus(i)\nprint(sum(a))\n", "jacc_sim": 0.9696969696969697, "before_after_length": [259, 250], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": " j >= 0 and if < 0:\n break\n j \n if j == len(a) -1:\n return", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u148551245", "n_user": "u148551245", "pos": "s = input()\nn = len(s) + 1\nv = [0]*n\n\nfor i in range(n-1):\n if s[i] == \"<\":\n v[i+1] = v[i] + 1\n\nfor j in range(n-1):\n if s[-j-1] == \">\":\n if v[-j-2] <= v[-j-1]:\n v[-j-2] = v[-j-1] + 1\n\nprint(sum(v))", "neg": "s = input()\nn = len(s) + 1\nv = [0]*n\n\nfor i in range(n-1):\n if s[i] == \"<\":\n v[i+1] = v[i] + 1\n\nfor j in range(n-1):\n if s[-j-1] == \">\":\n v[-j-2] = v[-j-1] + 1\n\nprint(sum(v))", "jacc_sim": 1.0, "before_after_length": [120, 104], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "if v[-j-2] <= v[-j-1]:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u017415492", "n_user": "u017415492", "pos": "s=input()\nn=len(s)\nans=[0]*(n+1)\n \nfor i in range(0,n):\n if s[i]=='<':\n ans[i+1]=ans[i]+1\nfor i in range(n-1,-1,-1):\n if s[i]=='>':\n ans[i]=max(ans[i+1]+1,ans[i])\nprint(sum(ans))", "neg": "s=input()\nn=len(s)\nans=[0]*(n+1)\n \nfor i in range(0,n):\n if s[i]=='<':\n ans[i+1]=ans[i]+1\nfor i in range(n-1,-1,-1):\n if s[i]=='>':\n ans[i]=max(ans[i+1]+1,ans[i])\nprint(ans)\nprint(sum(ans))", "jacc_sim": 1.0, "before_after_length": [111, 116], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "ans)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u966311314", "n_user": "u966311314", "pos": "S = input()\na = [0] * (len(S) + 1)\n\nfor i in range(len(S)):\n if S[i] == '<':\n a[i + 1] = max(a[i + 1], a[i] + 1)\nfor i in reversed(range(len(S))):\n if S[i] == '>':\n a[i] = max(a[i], a[i + 1]+1)\nans = sum(a)\n\nprint(ans)", "neg": "S = input()\na = [0]*(len(S)+1)\n\nfor i in range(len(S)):\n if S[i] == '<':\n a[i+1] = max(a[i+1], a[i]+1)\nfor i in reversed(range(len(S))):\n if S[i] == '>':\n a[i] = max(a[i], a[i+1]-1)\nans = sum(a)\n\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [122, 120], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": " -+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u123756661", "n_user": "u123756661", "pos": "s=input()\nans=chk=0\nans=[-1]*(len(s)+1)\nif s[0]==\"<\":\n ans[0]=0\nif s[-1]==\">\":\n ans[-1]=0\nfor i in range(len(s)-1):\n if s[i]==\">\" and s[i+1]==\"<\":\n ans[i+1]=0\nfor i in range(len(s)):\n if s[i]==\"<\":\n ans[i+1]=ans[i]+1\nfor i in range(-1,-len(s)-1,-1):\n if s[i]==\">\":\n ans[i-1]=max(ans[i-1],ans[i]+1)\nprint(sum(ans))\n", "neg": "s=input()\nans=chk=0\nans=[-1]*(len(s)+1)\nif s[0]==\"<\":\n ans[0]=0\nif s[-1]==\">\":\n ans[-1]=0\nfor i in range(len(s)-1):\n if s[i]==\">\" and s[i+1]==\"<\":\n ans[i+1]=0\nfor i in range(len(s)):\n if s[i]==\"<\":\n ans[i+1]=ans[i]+1\nfor i in range(-1,-len(s)-1,-1):\n if s[i]==\">\":\n ans[i-1]=ans[i]+1\nprint(sum(ans))\n", "jacc_sim": 0.9655172413793104, "before_after_length": [192, 183], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "mx(a-]+],ans[i]+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u802963389", "n_user": "u802963389", "pos": "s = list(input())\n\nlens = len(s)\nif lens == 1:\n print(1)\n exit()\n \nli = [0] * (len(s) + 1)\nfor itr, val in enumerate(s):\n if itr == 0:\n if val == \"<\":\n li[0] = 0\n else:\n if (s[itr - 1] == \"<\" and s[itr] == \"<\"):\n li[itr] = li[itr - 1] + 1\n# elif s[itr - 1] == \">\" and s[itr] == \"<\":\n# li[itr] = 0\n if s[itr] == \"<\" and itr == lens - 1:\n li[itr + 1] = li[itr] + 1\n\nfor itr, val in enumerate(reversed(s)):\n if itr == 0:\n if val == \">\":\n li[lens] = 0\n else:\n if s[lens - itr - 1] == \">\" and s[lens - itr] == \">\":\n li[lens - itr] = li[lens - itr + 1] + 1\n if s[0] == \">\":\n li[0] = li[1] + 1\n \nfor itr, val in enumerate(s):\n if itr > 0:\n if s[itr - 1] == \"<\" and s[itr] == \">\":\n li[itr] = max(li[itr - 1],li[itr + 1]) + 1 \n\nprint(sum(li))", "neg": "s = list(input())\n\nlens = len(s)\nif lens == 1:\n print(1)\n exit()\n \nli = [0] * (len(s) + 1)\nfor itr, val in enumerate(s):\n if itr == 0:\n if val == \"<\":\n li[0] = 0\n else:\n if (s[itr - 1] == \"<\" and s[itr] == \"<\"):\n li[itr] = li[itr - 1] + 1\n# elif s[itr - 1] == \">\" and s[itr] == \"<\":\n# li[itr] = 0\n if s[itr] == \"<\" and itr == lens - 1:\n li[itr + 1] = li[itr] + 1\n\nfor itr, val in enumerate(reversed(s)):\n if itr == 0:\n if val == \">\":\n li[lens] = 0\n else:\n if s[lens - itr - 1] == \">\" and s[lens - itr] == \">\":\n li[lens - itr] = li[lens - itr + 1] + 1\n if s[0] == \">\":\n li[0] = li[1] + 1\n \nfor itr, val in enumerate(s):\n if itr > 0:\n if s[itr - 1] == \"<\" and s[itr] == \">\":\n li[itr] = max(li[itr - 1],li[itr + 1]) + 1 \n\nprint(li)\nprint(sum(li))", "jacc_sim": 1.0, "before_after_length": [368, 373], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "li)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u555458045", "n_user": "u555458045", "pos": "s = str(input())\n#s = \"<>>><<><<<<<>>><\"\nans = 0\ndef leftmore(ln):\n ret = [0]\n cur = 0\n for c in ln:\n if c == \"<\":\n cur += 1\n else:\n cur = 0\n \n ret.append(cur)\n return ret\n\ndef rightless(ln):\n revl = reversed(ln)\n ret = [0]\n cur = 0\n for c in revl:\n if c == \">\":\n cur += 1\n else:\n cur = 0\n ret.append(cur)\n return list(reversed(ret))\n\nlm = leftmore(s)\nrl = rightless(s)\nfor i in range(len(s)+1):\n ans += max(lm[i],rl[i])\nprint(ans)", "neg": "s = str(input())\nans = 0\ndef leftmore(ln):\n ret = [0]\n cur = 0\n for c in ln:\n if c == \"<\":\n cur += 1\n else:\n cur = 0\n \n ret.append(cur)\n return ret\n\ndef rightless(ln):\n revl = reversed(ln)\n ret = [0]\n cur = 0\n for c in revl:\n if c == \">\":\n cur += 1\n else:\n cur = 0\n ret.append(cur)\n return list(reversed(ret))\n\nlm = leftmore(s)\nrl = rightless(s)\nprint(lm)\nprint(rl)\nfor i in range(len(s)+1):\n ans += max(lm[i],rl[i])\nprint(ans)", "jacc_sim": 0.9761904761904762, "before_after_length": [209, 205], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "\n#s = \"<>>><<><<<<<>>><\"print(lm)\nprint(rl)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u169138653", "n_user": "u169138653", "pos": "s=input()\nn=len(s)+1\nl=[0]*n\nr=[0]*n\nfor i in range(n-1):\n if s[i]=='<': \n l[i+1]=l[i]+1\n if s[n-2-i]=='>': \n r[n-2-i]=r[n-1-i]+1\nans=0\nfor i in range(n):\n ans+=max(l[i],r[i])\nprint(ans)\n", "neg": "s=input()\nn=len(s)+1\nl=[0]*n\nr=[0]*n\nfor i in range(n-1):\n if S[i]=='<': \n l[i+1]=l[i]+1\n if S[n-2-i]=='>': \n r[n-2-i]=r[n-1-i]+1\nans=0\nfor i in range(N):\n ans+=max(l[i],r[i])\nprint(ans)\n", "jacc_sim": 0.9375, "before_after_length": [125, 125], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "SsSsNn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u402342597", "n_user": "u402342597", "pos": "S = input()\na = [0]*(len(S)+1)\n\nfor i in range(len(S)):\n if S[i] is '<':\n a[i+1] = max(a[i+1], a[i]+1)\n \n\nfor i in range(1, len(S)+1):\n if S[-i] is '>':\n a[-(i+1)] = max(a[-(i+1)], a[-i]+1)\n \nprint(sum(a))", "neg": "S = input()\na = [0]*(len(S)+1)\n\nfor i in range(len(S)):\n if S[i] is '<':\n a[i+1] = max(a[i+1], a[i]+1)\n print(a)\n\nfor i in range(1, len(S)):\n if S[-i] is '>':\n a[-(i+1)] = max(a[-(i+1)], a[-i]+1)\n print(a)\nprint(sum(a))", "jacc_sim": 1.0, "before_after_length": [124, 131], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "print(a)+1print(a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u327179339", "n_user": "u327179339", "pos": "def main():\n s = input().rstrip('\\n')\n n = len(s)\n dp = [0] * (1 + n)\n for i,c in enumerate(s):\n if c == '<':\n dp[i+1] = dp[i] + 1\n for i in range(n-1, -1, -1):\n if s[i] == '>':\n dp[i] = max(dp[i], dp[i+1] + 1)\n return sum(dp)\n\nprint(main())", "neg": "def main():\n s = input().rstrip('\\n')\n n = len(s)\n dp = [0] * (1 + n)\n for i,c in enumerate(s):\n if c == '<':\n dp[i+1] = dp[i] + 1\n for i in range(n-1, -1, -1):\n if s[i] == '>':\n dp[i] = dp[i+1] + 1\n return sum(dp)\n\nprint(main())", "jacc_sim": 0.9722222222222222, "before_after_length": [131, 124], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "dp[i+1] + 1\n return su(dp)\n\nprint(mxindp[i], dp[i+1] + 1\n return sum(dp\n\nprint(main())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u281610856", "n_user": "u281610856", "pos": "S = input()\nn = len(S) + 1\nnum = [0] * n\nfor i in range(n-1):\n if S[i] == '<':\n num[i + 1] = max(num[i] + 1, num[i + 1])\nfor i in range(n - 2, -1, -1):\n if S[i] == '>':\n num[i] = max(num[i + 1] + 1, num[i])\nprint(sum(num))", "neg": "S = input()\nn = len(S) + 1\nnum = [0] * n\nfor i in range(n-1):\n if S[i] == '<':\n num[i + 1] = max(num[i] + 1, num[i + 1])\nfor i in range(n - 2, -1, -1):\n if S[i] == '>':\n num[i] = max(num[i + 1] + 1, num[i])\nprint(sum(num))\nprint(num)\n", "jacc_sim": 1.0, "before_after_length": [120, 126], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "\nprint(num)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u802341442", "n_user": "u802341442", "pos": "s = input()\nn = len(s) + 1\na = [0 for _ in range(n)]\nfor i in range(n-1):\n if s[i] == '<':\n a[i+1] = a[i] + 1\nfor i in reversed(range(1, n)):\n if s[i-1] == '>':\n a[i-1] = max(a[i-1], a[i]+1)\nprint(sum(a))", "neg": "s = input()\nn = len(s) + 1\na = [0 for _ in range(n)]\nfor i in range(n-1):\n if s[i] == '<':\n a[i+1] = a[i] + 1\nfor i in reversed(range(1, n)):\n if s[i-1] == '>':\n a[i-1] = a[i]+1\nprint(sum(a))", "jacc_sim": 0.9655172413793104, "before_after_length": [115, 106], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "mx(a-]+], a[i]+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u403331159", "n_user": "u403331159", "pos": "S=input()\nN=len(S)\nL=[0]*(N+1)\nfor i in range(len(S)):\n if S[i]==\"<\":\n L[i+1]+=L[i]+1\n\nfor i in range(len(S)-1,-1,-1):\n if S[i]==\">\":\n L[i]=max(L[i+1]+1,L[i])\nprint(sum(L))", "neg": "S=input()\nN=len(S)\nL=[0]*(N+1)\nfor i in range(len(S)):\n if S[i]==\"<\":\n L[i+1]+=L[i]+1\n\nfor i in range(len(S)-1,-1,-1):\n if S[i]==\">\":\n L[i]=max(L[i+1]+1,L[i])\nprint(L)\nprint(sum(L))", "jacc_sim": 1.0, "before_after_length": [113, 118], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "L)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u059940903", "n_user": "u059940903", "pos": "S = input()\nnums = [0] * (len(S)+1)\npos = 0\ncount = 0\npre_count = 0\nnow = '>'\nfor (i, s) in enumerate(S):\n if s != now:\n if s == '<':\n nums[pos] = max(pre_count, count)\n while pos != i:\n pos += 1\n count -= 1\n nums[pos] = count\n else:\n pos = i\n pre_count = count+1\n count = 1\n now = s\n else:\n count += 1\n if s == '<':\n nums[i] = count\nif now == '<':\n nums[i+1] = count+1\n\nif s == '>':\n nums[pos] = max(pre_count, count)\n while pos != i+1:\n pos += 1\n count -= 1\n nums[pos] = count\n\nprint(sum(nums))", "neg": "S = input()\nnums = [0] * (len(S)+1)\npos = 0\ncount = 0\npre_count = 0\nnow = '>'\nfor (i, s) in enumerate(S):\n if s != now:\n if s == '<':\n nums[pos] = max(pre_count, count)\n while pos != i:\n pos += 1\n count -= 1\n nums[pos] = count\n else:\n pos = i\n pre_count = count+1\n count = 1\n now = s\n else:\n count += 1\n if s == '<':\n nums[i] = count\nif now == '<':\n nums[i+1] = count+1\n\nprint(sum(nums))", "jacc_sim": 1.0, "before_after_length": [229, 180], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "prf nt(um( == '>':\n [pos] = max(pre_count, count\n while pos != i+1:\n pos += 1\n count -= 1\n nums[pos] = count\n\nprint(sum(nums)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u339199690", "n_user": "u339199690", "pos": "S = list(input())\nN = len(S)\n\na = [0] * (N + 1)\nfor i in range(N):\n if S[i] == '<':\n a[i + 1] = max(a[i + 1], a[i] + 1)\n # print(a)\n\nfor i in reversed(range(N)):\n if S[i] == '>':\n a[i] = max(a[i], a[i + 1] + 1)\n # print(a)\n\nprint(sum(a))\n# print(a)\n", "neg": "S = list(input())\nN = len(S)\n\na = [0] * (N + 1)\nfor i in range(N):\n if S[i] == '<':\n a[i + 1] = max(a[i + 1], a[i] + 1)\n print(a)\n\nfor i in reversed(range(N)):\n if S[i] == '>':\n a[i] = max(a[i], a[i + 1] + 1)\n print(a)\n\nprint(sum(a))\nprint(a)\n", "jacc_sim": 0.9666666666666667, "before_after_length": [141, 138], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "# ## ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u377989038", "n_user": "u377989038", "pos": "s = input() + \"<\"\n\na = 0\nb = 0\nans = 0\npre = s[0]\n\nfor i in s:\n if i == \">\":\n a += 1\n if pre == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\n pre = i\n if i == \"<\":\n if pre == \">\":\n if b <= a:\n ans += ((1 + a) * a) // 2\n else:\n ans += ((1 + a - 1) * (a - 1)) // 2 + b\n a = 0\n b = 0\n b += 1\n pre = i\nif i == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\nprint(ans)\n", "neg": "s = input() + \"<\"\n\na = 0\nb = 0\nans = 0\npre = s[0]\n\nfor i in s:\n print(ans, a, b)\n if i == \">\":\n a += 1\n if pre == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\n pre = i\n if i == \"<\":\n if pre == \">\":\n if b <= a:\n ans += ((1 + a) * a) // 2\n else:\n ans += ((1 + a - 1) * (a - 1)) // 2 + b\n a = 0\n b = 0\n b += 1\n pre = i\nif i == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [187, 196], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "if i == \">\":\n a += 1\n if pre == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\n pre = i\n if i == \"<\":\n if pre == \">\":\n if b <= a:\n ans += ((1 + a) * a) // 2\n else:\n ans += ((1 + a - 1) * (a - 1)) // 2 + b\n a = 0\n b = 0\n b += 1\n pre = i\nif i == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\n, a, b if i == \">\":\n a += 1\n if pre == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\n pre = i\n if i == \"<\":\n if pre == \">\":\n if b <= a:\n ans += ((1 + a) * a) // 2\n else:\n ans += ((1 + a - 1) * (a - 1)) // 2 + b\n a = 0\n b = 0\n b += 1\n pre = i\nif i == \"<\":\n ans += ((1 + b - 1) * (b - 1)) // 2\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u836984617", "n_user": "u277104886", "pos": "s = input()\na = [0] * (len(s)+1)\n\nfor i in range(len(s)):\n if s[i] == \"<\":\n a[i+1] = a[i] + 1\n\nfor i in range(len(s)-1, -1, -1):\n if s[i] == \">\":\n a[i] = max(a[i], a[i+1]+1)\n\nprint(sum(a))", "neg": "s = input()\nn = len(s)\na = [0]*(n+1)\nfor i in range(n):\n if s[i] == '<':\n a[i+1] = a[i] + 1\nfor i in range(-1, -n, -1):\n if s[i] == '>':\n a[i-1] = a[i] + 1\nprint(sum(a))", "jacc_sim": 0.9285714285714286, "before_after_length": [113, 101], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "n = len(s)\n le(s)\nle(s) '\"'\" \nlen(s)n1 '\"'\" -1max(,a[i ]+1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u021019433", "n_user": "u021019433", "pos": "from itertools import groupby, chain, islice\n \ndef pairs(t):\n a = True\n while a:\n a =[sum(1 for _ in g) for k, g in islice(t, 2)]\n if a:\n yield sum(x * (x - 1) // 2 for x in a) + max(a)\n \ns = input()\nt = groupby(s)\nd = [(0, ())]\nif s[0] == '>':\n t = chain(d, t)\nif s[-1] == '<':\n t = chain(t, d)\nprint(sum(pairs(t)))\n", "neg": "from itertools import groupby, chain\n\ndef pairs(t):\n while True:\n x, y = next(t), next(t)\n a =[sum(1 for _ in g) for k, g in (x, y)]\n yield sum(x * (x - 1) // 2 for x in a) + max(a)\n\ns = input()\nt = groupby(s)\nd = [(0, ())]\nif s[0] == '<':\n t = chain(d, t)\nif s[-1] == '>':\n t = chain(t, d)\nprint(sum(pairs(t)))\n\n", "jacc_sim": 0.9333333333333333, "before_after_length": [152, 150], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": ",\n\ndefparlice\n \ndef pairs\n a = TrueaTrue\n x, y = next(t), next(t)islicexty2 if a:\n <>><\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u356701928", "n_user": "u356701928", "pos": "a=input()\nn=len(a)\np=0\nq=0\nr=0\ni=0\nwhile i\":\n i+=1\n q+=1\n if i==n:\n break\n r+=p*(p+1)//2+q*(q+1)//2-min(p,q)\n p=0\n q=0\nprint(r)", "neg": "n=int(input())\na=input()\np=0\nq=0\nr=0\ni=0\nwhile i\":\n i+=1\n q+=1\n if i==n-1:\n break\n r+=p*(p+1)//2+q*(q+1)//2-min(p,q)\n p=0\n q=0\nprint(r)", "jacc_sim": 0.9375, "before_after_length": [159, 165], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "naint()a=iput=lena-1-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u697690147", "n_user": "u697690147", "pos": "s = input() + \".\"\ncomp = []\n\ncur = s[0]\nstreak = 0\ncount = 0\n\nfor i in range(len(s)):\n if s[i] == cur:\n streak += 1\n else:\n if (len(comp) == 0):\n if cur == \">\":\n count += streak*(streak+1)//2\n elif i == (len(s) - 1):\n count += streak*(streak+1)//2\n elif cur == \">\":\n prevStreak = comp[-1][1]\n count += (prevStreak*(prevStreak+1) + streak*(streak+1)) // 2\n count -= min(streak, prevStreak)\n elif i == (len(s) - 1):\n if cur == \"<\":\n count += streak*(streak+1)//2\n\n comp.append((cur, streak))\n streak = 1\n cur = s[i]\n\nprint(count)", "neg": "s = input()\ncomp = []\n\ncur = s[0]\nstreak = 0\ncount = 0\n\nfor i in range(len(s)):\n if s[i] == cur:\n streak += 1\n else:\n if (len(comp) == 0):\n if cur == \">\":\n count += streak*(streak+1)//2\n else:\n if cur == \">\":\n prevStreak = comp[-1][1]\n count += (prevStreak*(prevStreak+1) + streak*(streak+1)) // 2\n count -= min(streak, prevStreak)\n\n comp.append((cur, streak))\n streak = 1\n cur = s[i]\n\n if i == (len(s) - 1):\n if (len(comp) == 0):\n if cur == \">\":\n count += streak*(streak+1)//2\n\n if cur == \"<\":\n count += streak*(streak+1)//2\n\nprint(count)", "jacc_sim": 0.972972972972973, "before_after_length": [242, 251], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": " + \".\"else:\nelifi==(len(s)-1):\n count += streak*(streak+1)//2\n el elif i == (len(s) - 1):\n if cur == \"<\":\n count += streak*(streak+1)//2\n if i == (len(s) - 1):\n if (len(com) == 0):\n if cu == \">\":\n count += streak*(streak+1)//2\n\n f cur == \"<\":\n cou += streak*streak+1)//2\n\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u121161758", "n_user": "u121161758", "pos": "S = input()\n#print(len(S))\n\nif len(S) == 1:\n print(\"1\")\n exit()\n\ns_list = []\nhead_num = 10**6 if S[0] == \">\" else 0\ns_list.append(head_num)\nfor i in range(len(S)-1):\n if S[i] == \">\" and S[i+1] == \"<\":\n s_list.append(0)\n elif S[i] == \"<\":\n s_list.append(s_list[i]+1)\n else:\n s_list.append(s_list[i]-1)\nif S[len(S)-1] == \"<\":\n s_list.append(s_list[len(S)-1] +1)\nelse:\n s_list.append(s_list[len(S)-1] -1)\n\n#print(s_list)\ncount = 1\ns_list[len(s_list)-1] = 0 if s_list[len(s_list)-1] < 0 else s_list[len(s_list)-1] \n#print(s_list)\nfor i in range(len(S)-1,0,-1):\n if S[i] == \">\" and S[i-1] == \">\":\n #if S[i] == \">\":\n s_list[i] = count\n count += 1\n elif S[i] == \">\" and S[i-1] == \"<\":\n s_list[i] = max(s_list[i-1], s_list[i+1]) + 1\n else:\n count = 1\n\nif S[0] == \">\":\n s_list[0] = s_list[1] + 1\nif S[len(S)-1] == \">\":\n s_list[len(s_list)-1] = 0\n\n#print(len(s_list))\n#print(s_list)\n\nsum = 0\nfor i in range(len(s_list)):\n sum += s_list[i]\n\nprint(sum)\n ", "neg": "S = input()\n#print(len(S))\ns_list = []\nhead_num = 10**6 if S[0] == \">\" else 0\ns_list.append(head_num)\nfor i in range(len(S)-1):\n if S[i] == \">\" and S[i+1] == \"<\":\n s_list.append(0)\n elif S[i] == \"<\":\n s_list.append(s_list[i]+1)\n else:\n s_list.append(s_list[i]-1)\nif S[len(S)-1] == \"<\":\n s_list.append(s_list[len(S)-1] +1)\nelse:\n s_list.append(s_list[len(S)-1] -1)\n\n#print(s_list)\ncount = 1\nfor i in range(len(S)-1,-1,-1):\n if S[i] == \">\" and S[i-1] == \">\":\n s_list[i] = count\n count += 1\n else:\n count = 1\n#print(len(s_list))\n#print(s_list)\n\nsum = 0\nfor i in range(len(s_list)):\n sum += s_list[i]\n\nprint(sum)\n ", "jacc_sim": 0.9473684210526315, "before_after_length": [509, 320], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "\n\nif len(S) == 1:\n print(\"1\")\n exit()\ns_list[len(s_list)-1] = 0 if s_list[len(s_list)-1] < 0 else s_list[len(s_list)-1] \n#print(s_list)\n0-1] == \">\":\n #if S[iif S[i] == \">\" and S[i-1] == \"<\":\n s_list[i] = max(s_list[i-1], s_list[i+1]) + 1\n el\nif S[0] == \">\":\n s_list[0] = s_list[1] + 1\nif S[len(S)-1] == \">\":\n s_list[len(s_list)-1] = 0\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u306412379", "n_user": "u306412379", "pos": "s = input()\nn = len(s) #length s\naa = ['.'] * (n + 1)\n\nif s[0] == '<':\n aa[0] = 0\nif s[-1] == '>':\n aa[-1] = 0\n\nfor i in range(n-1):\n if s[i] == '>' and s[i+1] == '<':\n aa[i+1] = 0 \n elif s[i] == '<' and s[i+1] == '>':\n aa[i+1] = n\n \nz = [i for i,x in enumerate(aa) if x == 0]\nm = [i for i, x in enumerate(aa) if x == n]\n\n\nfor i in range(len(z)-1):\n aa[m[i]] = max(m[i]-z[i], z[i+1]-m[i])\n aa[m[i]+1] = z[i+1]-m[i]-1\n for j in range(z[i]+1, m[i]):\n aa[j] = aa[j-1] +1\n for k in range(m[i]+2,z[i+1]):\n \n aa[k] = aa[k-1]-1\nfor i in range(z[-1], n+1):\n if aa[i] == '.':\n aa[i] = aa[i-1]+1\nfor i in range(z[0]):\n if aa[i] == '.':\n aa[i] = z[0] - i\n \n\nprint(sum(aa))", "neg": "s = input()\nn = len(s) #length s\naa = ['.'] * (n + 1)\n\nif s[0] == '<':\n aa[0] = 0\nif s[-1] == '>':\n aa[-1] = 0\n\nfor i in range(n-1):\n if s[i] == '>' and s[i+1] == '<':\n aa[i+1] = 0 \n elif s[i] == '<' and s[i+1] == '>':\n aa[i+1] = n\n \nz = [i for i,x in enumerate(aa) if x == 0]\nm = [i for i, x in enumerate(aa) if x == n]\n\n\nfor i in range(len(z)-1):\n aa[m[i]] = max(m[i]-z[i], z[i+1]-m[i])\n aa[m[i]+1] = z[i+1]-m[i]-1\n for j in range(z[i]+1, m[i]):\n aa[j] = aa[j-1] +1\n for k in range(m[i]+2,z[i+1]):\n \n aa[k] = aa[k-1]-1\nfor i in range(z[-1], n+1):\n if aa[i] == '.':\n aa[i] = aa[i-1]+1\nfor i in range(z[0]):\n if aa[i] == '.':\n aa[i] = z[0] - i", "jacc_sim": 0.95, "before_after_length": [392, 382], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "\n \n\nprint(sum(aa))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u306950978", "n_user": "u306950978", "pos": "s = input()\nn = len(s) + 1\nans = 0\nl = 0\nr = 0\nif s[0] == \">\":\n p = 0\nelif s[0] == \"<\":\n p = 1\nfor i in range(n-1):\n if p == 0:\n if s[i] == \">\":\n l += 1\n elif s[i] == \"<\":\n p = 1\n ans += l*(l+1)//2\n if l < r:\n ans -= l\n elif l >= r:\n ans -= r \n l = 0\n r = 1\n elif p == 1:\n if s[i] == \"<\":\n r += 1\n elif s[i] == \">\":\n l += 1\n p = 0\n ans += r*(r+1)//2\nif p == 0:\n ans += l*(l+1)//2\n if l < r:\n ans -= l\n elif l >= r:\n ans -= r\nelif p == 1:\n ans += r*(r+1)//2\n \nprint(ans)", "neg": "s = input()\nn = len(s) + 1\nans = 0\nl = 0\nr = 0\nif s[0] == \">\":\n p = 0\nelif s[0] == \"<\":\n p = 1\nfor i in range(n-1):\n if p == 0:\n if s[i] == \">\":\n l += 1\n elif s[i] == \"<\":\n p = 1\n ans += l*(l+1)//2\n if l < r:\n ans -= l\n elif l >= r:\n ans -= r \n l = 0\n r = 1\n elif p == 1:\n if s[i] == \"<\":\n r += 1\n elif s[i] == \">\":\n l += 1\n p = 0\n ans += r*(r+1)//2\nif r != 0:\n ans += r*(r+1)//2\n\nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [269, 225], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "rp! 0:\n ans +r0:\n ans += lrl if l < r:\n ans -= l\n elif l >= r:\n ans -= r\nelif p == 1:\n ans += r*(r+1)//2\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u244416763", "n_user": "u244416763", "pos": "s = str(input())\nans = [0 for _ in range(len(s)+1)]\nfor i in range(len(s)):\n if(s[i] == '<'):\n ans[i+1] = ans[i]+1\nfor i in range(len(s),0,-1):\n if(s[i-1] == '>'):\n ans[i-1] = max(ans[i-1],ans[i]+1)\nprint(sum(ans))", "neg": "s = str(input())\nnum = [0 for _ in range(len(s)+1)]\nfor i in range(len(s)):\n if (s[i] == \"<\"):\n num[i+1] = num[i]+1\nfor i in range(len(s),1,-1):\n if (s[i-1] == \">\"):\n num[i-1] == max(num[i-1],num[i]+1)\nprint(sum(num))", "jacc_sim": 0.9310344827586207, "before_after_length": [116, 116], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "as = [0 for _ in range(len(s)+1)]\nfor i in range(len(s)):\n if(s[i] == '<'):\n ans[i+1] = ans[i]+1\nfor i in range(len(s),0,-1):\n if(s[i-1] == '>'):\n ans[i-1] = max(ans[i-1],ans[i]+1)\nprint(s = [0 for _ in rangelen(s)+1)]\nfor i in rge(len(:\n if (s[i] == \"<\"):\n num[i+1] = num[i]+1\nfor i in range(len(s),1,-1):\n if (s[i-1] == \">\"):\n num[i-1] == max(num[i-1],num[i]+1)\nprint(sum(num))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u123648284", "n_user": "u123648284", "pos": "def calc(n):\n return n * (n+1) / 2\n\nS = list(input())\n\nprev = S[0]\nseries = 1\nl = []\n\nfor i in range(1, len(S)):\n if prev == S[i]:\n series += 1\n else:\n l.append((prev, series))\n prev = S[i]\n series = 1\n\nl.append((prev, series))\n\nprev_max = l[0][1]\nprev = calc(prev_max)\nres = prev\n\nfor s, n in l[1::]:\n if s == '<':\n prev = calc(n)\n prev_max = n\n res += prev\n else:\n if n >= prev_max:\n res -= prev_max\n prev = calc(n)\n res += prev\n else:\n prev = calc(n-1)\n res += prev\n\nprint(int(res))\n", "neg": "def calc(n):\n return n * (n+1) / 2\n\nS = list(input())\n\nprev = S[0]\nseries = 1\nl = []\n\nfor i in range(1, len(S)):\n if prev == S[i]:\n series += 1\n else:\n l.append((prev, series))\n prev = S[i]\n series = 1\n\nl.append((prev, series))\n\nprev_max = l[0][1]\nprev = calc(prev_max)\nres = prev\n\nprint(l)\n\nfor s, n in l[1::]:\n if s == '<':\n prev = calc(n)\n prev_max = n\n res += prev\n else:\n if n >= prev_max:\n res -= prev_max\n prev = calc(n)\n res += prev\n else:\n prev = calc(n-1)\n res += prev\n\n print(res)\n\nprint(int(res))\n", "jacc_sim": 1.0, "before_after_length": [231, 244], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "print(l)\n\n res)\n\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u910632349", "n_user": "u910632349", "pos": "s=input()\nsl=len(s)\na=[]\ncount=1\nfor i in range(sl-1):\n if s[i+1]==s[i]:\n count+=1\n else:\n a.append(count)\n count=1\na.append(count)\nans=0\nal=len(a)\nif s[0]==\"<\":\n for i in range(0,al-1,2):\n m,n=max(a[i],a[i+1]),min(a[i],a[i+1])\n ans+=(m*(m+1)+n*(n-1))/2\n if al%2==1:\n ans+=a[-1]*(a[-1]+1)/2\nelif s[0]==\">\":\n ans+=a[0]*(a[0]+1)/2\n for i in range(1,al-1,2):\n m,n=max(a[i],a[i+1]),min(a[i],a[i+1])\n ans+=(m*(m+1)+n*(n-1))/2\n if al%2==0:\n ans+=a[-1]*(a[-1]+1)/2\nprint(int(ans))", "neg": "s=input()\nsl=len(s)\na=[]\ncount=1\nfor i in range(sl-1):\n if s[i+1]==s[i]:\n count+=1\n else:\n a.append(count)\n count=1\na.append(count)\nans=0\nal=len(a)\nif s[0]==\"<\":\n for i in range(0,al-1,2):\n m,n=max(a[i],a[i+1]),min(a[i],a[i+1])\n print(m,n)\n ans+=(m*(m+1)+n*(n-1))/2\n if al%2==1:\n ans+=a[-1]*(a[-1]+1)/2\nelif s[0]==\">\":\n ans+=a[0]*(a[0]+1)/2\n for i in range(1,al-2,2):\n m,n=max(a[i],a[i+1]),min(a[i],a[i+1])\n ans+=m*(m+1)*n*(n-1)/2\n if al%2==0:\n ans+=a[-1]*(a[-1]+1)/2\nprint(int(ans))", "jacc_sim": 1.0, "before_after_length": [309, 316], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "print(m,n)\n 21m*+1)n*n-m+)+n*(n-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u826188728", "n_user": "u826188728", "pos": "s = input()\ns0 = s[0]\ncount = 1\nnodes = []\nans = 0\nfor i in range(1, len(s)):\n if s0 == s[i]:\n count += 1\n elif s0 == '>':\n s0 = s[i]\n nodes.append(-count)\n count = 1\n else:\n s0 = s[i]\n nodes.append(count)\n count = 1\nif s0 == '>':\n nodes.append(-count)\nelse:\n nodes.append(count)\n\nfor i in range(1, len(nodes)):\n if nodes[i] < 0:\n if abs(nodes[i]) > abs(nodes[i - 1]):\n nodes[i] = abs(nodes[i])\n nodes[i - 1] -= 1\n else:\n nodes[i] = abs(nodes[i])\n nodes[i] -= 1\nnodes[0] = abs(nodes[0])\nfor i in nodes:\n ans += (i * (i + 1)) // 2\nprint(ans)", "neg": "s = input()\ns0 = s[0]\ncount = 1\nnodes = []\nans = 0\nfor i in range(1, len(s)):\n if s0 == s[i]:\n count += 1\n elif s0 == '>':\n s0 = s[i]\n nodes.append(-count)\n count = 1\n else:\n s0 = s[i]\n nodes.append(count)\n count = 1\nif s0 == '>':\n nodes.append(-count)\nelse:\n nodes.append(count)\nprint(nodes)\n\nfor i in range(1, len(nodes)):\n if nodes[i] < 0:\n if abs(nodes[i]) > abs(nodes[i - 1]):\n nodes[i] = abs(nodes[i])\n nodes[i - 1] -= 1\n else:\n nodes[i] = abs(nodes[i])\n nodes[i] -= 1\nnodes[0] = abs(nodes[0])\nprint(nodes)\nfor i in nodes:\n ans += (i * (i + 1)) // 2\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [262, 272], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "p\nfo i t(nodes)\n\nfo i in r)\nprint(nodes", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u540761833", "n_user": "u540761833", "pos": "S = input()\nans = 0\na = []\nup = True\ncount = 0\nfor i in S:\n if up:\n if i == '>':\n a.append(count)\n count = 1\n up = False\n else:\n count += 1\n else:\n if i == '<':\n a.append(count)\n count = 1\n up = True\n else:\n count += 1\na.append(count)\nif len(a)%2 == 1:\n a.append(0)\nfor i in range(0,len(a),2):\n u,d = max(a[i],a[i+1]), min(a[i],a[i+1])-1\n ans += u*(u+1)//2 + d*(d+1)//2\nprint(ans)\n ", "neg": "S = input()\nans = 0\na = []\nup = True\ncount = 0\nfor i in S:\n if up:\n if i == '>':\n a.append(count)\n count = 1\n up = False\n else:\n count += 1\n else:\n if i == '<':\n a.append(count)\n count = 1\n up = True\n else:\n count += 1\na.append(count)\na.append(0)\nfor i in range(0,len(a),2):\n u,d = max(a[i],a[i+1]), min(a[i],a[i+1])-1\n ans += u*(u+1)//2 + d*(d+1)//2\nprint(ans)\n ", "jacc_sim": 0.975, "before_after_length": [204, 192], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "if len(a)%2 == 1:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02873", "p_user": "u572373398", "n_user": "u572373398", "pos": "S = input()\n\nans = [0] * (len(S) + 1)\nfor i in range(len(S)):\n if S[i] == '<':\n ans[i + 1] = ans[i] + 1\n\nfor i in range(len(S)-1, -1, -1):\n if S[i] == '>':\n ans[i] = max(ans[i + 1] + 1, ans[i])\nprint(sum(ans))\n", "neg": "S = input()\n\nans = [0] * (len(S) + 1)\nfor i in range(len(S)):\n if S[i] == '<':\n ans[i + 1] = ans[i] + 1\n\nprint(ans)\n\nfor i in range(len(S)-1, -1, -1):\n if S[i] == '>':\n ans[i] = max(ans[i + 1] + 1, ans[i])\nprint(ans)\nprint(sum(ans))\n", "jacc_sim": 1.0, "before_after_length": [115, 126], "nl": "You are given a string S of length N-1, where each character in S is either \"<\" or \">\". A sequence of N non-negative integers, a_1, a_2, ..., a_N, is considered \"good\" if the following condition is satisfied for all i (1 \u2264 i \u2264 N-1): If S_i = \"<\", then a_i < a_{i+1}; if S_i = \">\", then a_i > a_{i+1}. Find the minimum possible sum of the elements of a good sequence of N non-negative integers. Constraints: 2 \u2264 N \u2264 5 \u00d7 10^5. The input is given as the string S, and the output should be the minimum possible sum of the elements of a good sequence of N non-negative integers.", "diff_info": "print(ans)\n\n)\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u978962055", "n_user": "u978962055", "pos": "input = int(input())\nfor i in range(1, 10):\n for j in range(1, 10):\n if i*j==input:\n print(\"Yes\")\n exit()\n else:\n continue\nprint(\"No\")", "neg": "input = int(input())\nfor i in range(1, 10):\n for j in range(1, 10):\n if i*j==input:\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.9130434782608695, "before_after_length": [58, 52], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " exit()\n continue\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u405832869", "n_user": "u135116520", "pos": "N = int(input())\nlist = []\nfor i in range(1,10):\n for j in range(i,10):\n list.append(i*j)\nif N in list:\n print('Yes')\nelse:\n print('No')\n\n ", "neg": "N=int(input())\nlist=[]\nfor i in range(1:10):\n for j in range(1:10):\n list.append(i*j)\nif N in list:\n print(\"Yes\")\n else:\n print(\"No\")\n ", "jacc_sim": 0.9629629629629629, "before_after_length": [65, 64], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " :,1:i, \"'\"' \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u537217069", "n_user": "u537217069", "pos": "def solve():\n N = int(input())\n flag = False\n\n for i in range(9):\n for j in range(9):\n if((i+1)*(j+1) == N):\n print(\"Yes\")\n flag = True\n if flag:\n break\n else:\n print(\"No\")\n\n\nif __name__ == \"__main__\":\n solve()\n", "neg": "def solve():\n N = int(input())\n flag = False\n\n for i in range(9):\n for j in range(9):\n if((i+1)+(j+1) == N):\n print(\"Yes\")\n flag = True\n if flag:\n break\n else:\n print(\"No\")\n\n\nif __name__ == \"__main__\":\n solve()", "jacc_sim": 0.9666666666666667, "before_after_length": [97, 96], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "+*\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u629350026", "n_user": "u629350026", "pos": "n=int(input())\nfor i in range(1,10):\n if n%i==0:\n if n/i>=1 and n/i<=9:\n print(\"Yes\")\n break\nelse:\n print(\"No\")\n", "neg": "n=int(input())\nfor i in range(0,9):\n if n%i==0 and n/i>=1 and n/i<=9:\n print(\"Yes\")\n break\nelse:\n print(\"No\")\n", "jacc_sim": 0.9642857142857143, "before_after_length": [61, 58], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "1,1,9:\nand if ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u490489966", "n_user": "u490489966", "pos": "n=int(input())\na=0\nfor i in range(1,10):\n for j in range(1,10):\n if i*j==n:\n a+=1\nif a>0:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n=int(input())\nfor i in range(1,9):\n for j in range(9):\n if i*j==n:\n a+=1\nif a>0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9259259259259259, "before_after_length": [67, 61], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "\na=091091,10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u163501259", "n_user": "u163501259", "pos": "n = int(input())\nflag = False\nfor i in range(1,10):\n if n%i == 0 and 0 < n/i < 10:\n flag = True\n break\nif flag:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = int(input())\nflag = false\nfor i in range(1,10):\n if n%i == 0 and 0 < n/i < 10:\n flag = True\n break\nif flag:\n print(\"Yes\")\nelse\n print(\"No\")", "jacc_sim": 0.9333333333333333, "before_after_length": [64, 63], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "fF:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u884601206", "n_user": "u884601206", "pos": "n=int(input())\nt=False\n\nfor i in range(1,10):\n for j in range(1,10):\n if i*j==n:\n t=True\n break\nif t:\n print('Yes')\nelse:\n print('No')\n\n", "neg": "n=input(n)\nt=False\n\nfor i in range(1,10):\n for j in range(1,10):\n if i*j==n:\n t=True\n break\nif t:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 0.9615384615384616, "before_after_length": [70, 69], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "int(n)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u064563749", "n_user": "u064563749", "pos": "import sys\nn=int(input())\nfor j in range(2):\n for i in range(1,10):\n if n%(10-i)==0:\n n=n/(10-i)\n break\nif n==1:\n print('Yes')\nelse:\n print('No')", "neg": "import sys\nn=int(input())\nfor j in range(2):\n for i in range(1,10):\n if n%(10-i)==0:\n n=n/(10-i)\n sys.exit()\nif n==1:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9032258064516129, "before_after_length": [75, 78], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "brsys.akxit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u249853239", "n_user": "u249853239", "pos": "n = int(input())\nbl = 0\nfor i in range(1,10):\n for j in range(1,10):\n if n == (i * j):\n bl = 1\n break\nif bl == 1:\n print (\"Yes\")\nelse:\n print (\"No\")", "neg": "n = int(input())\nbl = 0\nfor i in range(1,9):\n for j in range(1,9):\n if n == i * j:\n bl = 1\n break\n\nif bl == 1:\n print (\"Yes\")\nelse:\n print (\"No\")", "jacc_sim": 0.9230769230769231, "before_after_length": [70, 70], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "910910()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u454866339", "n_user": "u454866339", "pos": "n = int(input())\na = 0\nfor x in range(1, 9 + 1):\n for y in range(1, 9 + 1):\n if x * y == n:\n a = True\n\nif a:\n print('Yes')\nelse:\n print('No')", "neg": "n = int(input())\n\nfor x in range(1, 9 + 1):\n for y in range(1, 9 + 1):\n if x * y == n:\n a = True\n\nif a:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9615384615384616, "before_after_length": [69, 66], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "a = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u175746978", "n_user": "u175746978", "pos": "n = int(input())\nl = []\nfor i in range(1,10):\n for j in range(1, 10):\n l.append(i * j)\nfor k in l:\n if n == k:\n print(\"Yes\")\n break\nelse:\n print(\"No\")\n", "neg": "n = int(input())\nl = []\nfor i in range(1,10):\n for j in range(1, 10):\n l.append(i * j)\nfor k in l:\n if i == n:\n print(\"Yes\")\n break\nelse:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [73, 73], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "innk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u128539234", "n_user": "u128539234", "pos": "n = int(input())\nlist = [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,\n 24,25,27,28,30,32,35,36,40,42,45,48,49,54,\n 56,63,64,72,81]\n\nif n in list:\n print('Yes')\nelse:\n print('No')", "neg": "n = int(input())\nlist = [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,\n 24,25,27,28,30,32,35,36,40,42,45,48,49,54,\n 56,63,64,72,81]\n\nif list in n:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [108, 108], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "n in in n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u539123425", "n_user": "u539123425", "pos": "import sys\nN = int(input())\n\nfor i in range(1,10):\n for j in range(1,10):\n if(N == i*j):\n print(\"Yes\")\n sys.exit()\nprint(\"No\")", "neg": " import sys\n N = int(input())\n \n for i in range(1,10):\n for j in range(1,10):\n if(N == i*j):\n print(\"Yes\")\n sys.exit()\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [58, 63], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u413632062", "n_user": "u413632062", "pos": "n=int(input())\ndef c():\n for i in range(1,10):\n for s in range(1,10):\n if i*s==n:\n print(\"Yes\")\n return\n print(\"No\")\nc()", "neg": "n=int(input())\ndef c():\n for i in range(1,10):\n for s in range(1,11-i):\n if i*s==n:\n print(\"Yes\")\n return\n print(\"No\")\nc()", "jacc_sim": 0.9230769230769231, "before_after_length": [59, 61], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "01-i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u757117214", "n_user": "u322297639", "pos": "n = int(input())\nflg = False\nfor i in range(1,10):\n if flg:\n break\n for j in range(1,10):\n if i*j == n:\n flg = True\n break\nprint(\"Yes\" if flg else \"No\") ", "neg": "n = int(input())\nflg = False\nfor i in range(1, 10):\n for j in range(1, 10):\n if n == i * j:\n print(\"Yes\")\n flg = True\n else:\n continue\n break\nif not flg:\n print(\"No\")", "jacc_sim": 0.9285714285714286, "before_after_length": [72, 75], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " if flg:\n break\n ni*jni * j print(\"Yes\")\n else:\n continue\n if not flg:\n Yes\" if flg else \" ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u311636831", "n_user": "u311636831", "pos": "dic={}\n\nfor i in range(1,10):\n for j in range(1,10):\n if dic.get(i*j,None)==None:\n dic[i*j]=1\n else:\n dic[i*j]+=1\n\nN = int(input())\n\nif dic.get(N,None)==None:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "dic={}\n\nfor i in range(9):\n for j in range(9):\n if dic.get(i*j,None)==None:\n dic[i*j]=1\n else:\n dic[i*j]+=1\n\nN = int(input())\n\nif dic.get(N,None)==None:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9375, "before_after_length": [101, 97], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "91,1091,10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u884795391", "n_user": "u884795391", "pos": "n = int(input())\n\na = 0\n\nfor i in range(1, 10):\n for j in range(1,10):\n if n/i==j:\n print(\"Yes\")\n exit()\n a +=1\n else:\n continue\n\nif a == 0:\n print(\"No\")\nelse:\n exit()", "neg": "n = int(input())\n\na = 0\n\nfor i in range(1, 10):\n for j in range(1,10):\n if n/i==j:\n print(\"Yes\")\n exit()\n a +=1\n else:\n continue\n\nprint(\"No\")\n\nif a == 0:\n print(\"No\")\nelse:\n exit()", "jacc_sim": 1.0, "before_after_length": [84, 90], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "print(\"No\")\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u557565572", "n_user": "u557565572", "pos": "# import bisect\n# import heapq\n# from copy import deepcopy\n# from collections import deque\n# from collections import Counter\n# from itertools import accumulate\n# from itertools import permutations\n# import numpy as np\nimport math\n# mod = 10**9 + 7\n\n# n = int(input())\n# a = list(map(int, input().split()))\nn = int(input())\n\n\nif n > 81:\n print('No')\n exit()\n\nelse:\n for i in range(1,10):\n if n % i == 0 and 1<= (n // i) <=9:\n print('Yes')\n exit()\n\nprint('No')\n", "neg": "# import bisect\n# import heapq\n# from copy import deepcopy\n# from collections import deque\n# from collections import Counter\n# from itertools import accumulate\n# from itertools import permutations\n# import numpy as np\nimport math\n# mod = 10**9 + 7\n\n# n = int(input())\n# a = list(map(int, input().split()))\nn = int(input())\n\n\nif n > 81:\n print('No')\n exit()\n\nelse:\n for i in range(1,10):\n if n % i == 0:\n print('Yes')\n exit()\n\nprint('No')\n ", "jacc_sim": 0.9454545454545454, "before_after_length": [157, 147], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " and 1<= (n // i) <=9 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u698902360", "n_user": "u698902360", "pos": "N = int(input())\n\nhoge = [0] * 81\n\nfor i in range(9):\n for j in range(9):\n hoge[9*i+j] = (i+1)*(j+1)\n\nif N in hoge:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\n\nhoge = [0] * 81\n\nfor i in range(9):\n for j in range(9):\n hoge[9*i+j] = (i+1)*(j+1)\n\nif N in hoge:\n print(\"Yes\")\nelse:\n print(\"No\")\n\nprint(hoge)", "jacc_sim": 1.0, "before_after_length": [82, 90], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "\n\nprint(hoge)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u480887263", "n_user": "u480887263", "pos": "N=int(input())\nlst=[]\nfor i in range(1,10):\n for j in range(1,10):\n lst.append(i*j)\n\nif N in lst:\n print(\"Yes\")\nelse:\n print(\"No\")\n ", "neg": "N=int(input())\nlst=[]\nfor i in range(1,9):\n for j in range(1,9):\n lst.append(i*j)\n\nprint(\"Yes\" if N in lst else \"No\")\n ", "jacc_sim": 0.9285714285714286, "before_after_length": [65, 57], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "910910if N in lst:\n )\n if N in lst :\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u274504193", "n_user": "u274504193", "pos": "n = int(input())\nlabel = 'No'\nfor i in range(1, 10):\n for j in range(1, 10):\n if n == i*j:\n label = 'Yes'\n break\n else:\n continue\n break\nprint(label)\n", "neg": "n = int(input())\nfor i in range(1, 10):\n for j in range(1, 10):\n if n == i*j:\n print('Yes')\n break\n else:\n continue\n break", "jacc_sim": 0.92, "before_after_length": [68, 55], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "\nlabel = 'No'print(label = )\nprint(label)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u382907940", "n_user": "u472696272", "pos": "x = int(input())\nfor i in range(1,10):\n for j in range(1,10):\n if i*j==x:\n print(\"Yes\")\n exit()\nprint(\"No\")", "neg": "n = int(input())\nfor i in range(1,10):\n for i in range(1,10):\n if i*j == n:\n print('Yes')\n exit()\nprint('No') \n", "jacc_sim": 0.9130434782608695, "before_after_length": [51, 52], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "nxij x n'\"'\"'\"'\" \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u428416104", "n_user": "u428416104", "pos": "N = int(input())\nflag = 0\n\nfor i in range(9):\n atai = N / (i + 1) \n for j in range(9):\n if atai == j + 1:\n flag = 1\n break\n if flag == 1:\n break\nif flag == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\nflag = 0\n\nfor i in range(10):\n atai = N / (i + 1) \n for j in range(10):\n if atai == j:\n flag = 1\n break\nif flag == 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9259259259259259, "before_after_length": [92, 81], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "910910:\n+ flag = : flag = 1\n break\n if flag == 1:\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u708890186", "n_user": "u708890186", "pos": "list=[]\nfor i in range(1,10):\n for j in range(1,10):\n list.append(i*j)\na=int(input())\nif a in list:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "list=[]\nfor i in range(1,9):\n for j in range(i+1,10):\n list.append(i*j)\na=int(input())\nif a in list:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9310344827586207, "before_after_length": [63, 65], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "910i+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u140191608", "n_user": "u140191608", "pos": "N = int(input())\nans = ''\nif N > 81 or N < 1:\n ans = 'No'\nelse:\n a = [i for i in range(1,10)]\n for i in a:\n q, mod = divmod(N, i)\n if q < 10 and mod == 0:\n ans = 'Yes'\n break\nif ans == 'No' or ans == '':\n print('No')\nelse:\n print('Yes')", "neg": "N = int(input())\nans = ''\nif N > 81 or N < 1:\n ans = 'No'\nelse:\n a = [i for i in range(1,10)]\n for i in a:\n q, mod = divmod(N, i)\n if q < 10 and mod == 0:\n ans = 'Yes'\n break\nif ans == 'No':\n print('No')\nelse:\n print('Yes')", "jacc_sim": 1.0, "before_after_length": [112, 107], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " or ans == ''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u860002137", "n_user": "u860002137", "pos": "n = int(input())\nprint(\"Yes\" if sum([n == x * y for x in range(1, 10) for y in range(1, 10)]) else \"No\")", "neg": "print(\"Yes\" if sum([int(input()) == x * y for x in range(1, 10) for y in range(1, 10)]) else \"No\")", "jacc_sim": 0.9583333333333334, "before_after_length": [42, 38], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "n = int(input())\nit(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u357230322", "n_user": "u357230322", "pos": "n=int(input())\nfor a in range(1,10):\n for b in range(1,10):\n if n==a*b:\n print(\"Yes\")\n exit()\nelse:\n print(\"No\")", "neg": "n=int(input())\nfor a in range(1,10):\n for b in range(1,10):\n if n==a*b:\n break\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.9166666666666666, "before_after_length": [56, 55], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": " break\n exit()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u583276018", "n_user": "u583276018", "pos": "kuku = []\nfor i in range(1, 10):\n for j in range(1, 10):\n kuku.append(i * j)\nnum = set(kuku)\nn = int(input())\nif(n in num):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "kuku = []\nfor i in range(1, 10):\n for j in range(1, 10):\n kuku.append(i * j)\nnum = set(kuku)\nn = input()\nif(n in kuku):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9655172413793104, "before_after_length": [76, 76], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "t(in)knmku", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u395894569", "n_user": "u395894569", "pos": "n = int(input())\nfor i in range(1, 10):\n for j in range(1, 10):\n if i * j == n:\n print('Yes')\n exit()\nelse:print('No')", "neg": "n = int(input())\nfor i in range(1, 10):\n for j in range(1, 10):\n print(i,j)\n if i * j == n:\n print('Yes')\n exit()\nelse:print('No')", "jacc_sim": 1.0, "before_after_length": [53, 61], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "\n print(i,j)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02880", "p_user": "u228232845", "n_user": "u228232845", "pos": "n = int(input())\nans = 'No'\nfor i in range(1, 10):\n if n % i == 0 and 1 <= n // i <= 9:\n ans = 'Yes'\n break\nprint(ans)", "neg": "n = int(input())\nans = 'No'\nfor i in range(1, 9):\n if n % i == 0 and n // i <= 9:\n ans = 'Yes'\n break\nprint(ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [54, 52], "nl": "Score: 200 points\n\nProblem Statement:\nHaving learned the multiplication table, Takahashi can multiply two integers between 1 and 9 (inclusive) together. Given an integer N, determine whether N can be represented as the product of two integers between 1 and 9. If it can, print \"Yes\"; if it cannot, print \"No\".\n\nConstraints:\n1 \u2264 N \u2264 100\nN is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\n\nOutput:\nIf N can be represented as the product of two integers between 1 and 9 (inclusive), print \"Yes\"; if it cannot, print \"No\".\n\nSample Input 1:\n10\n\nSample Output 1:\nYes\n10 can be represented as, for example, 2 x 5.\n\nSample Input 2:\n50\n\nSample Output 2:\nNo\n50 cannot be represented as the product of two integers between 1 and 9.\n\nSample Input 3:\n81\n\nSample Output 3:\nYes", "diff_info": "910 1 <=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u348805958", "n_user": "u348805958", "pos": "#!python3\n\niim = lambda: map(int, input().rstrip().split())\n\ndef resolve():\n S = input()\n K = int(input())\n\n ls = len(S)\n\n if ls == 1:\n print(K//2)\n return\n\n if ls == 2:\n print(0 if S[0] != S[1] else K)\n return\n\n if S[0] == S[-1]:\n c0 = S[0]\n for i in range(1, ls):\n if c0 != S[i]:\n break\n else:\n print(ls*K//2)\n return\n i0 = i\n else:\n i = i0 = 0\n\n ans = 0\n c0 , cn = \"\", 0\n for i in range(i, ls):\n c1 = S[i]\n if c1 == c0:\n cn += 1\n else:\n if cn > 1:\n ans += cn // 2\n cn = 1\n c0 = c1\n\n if i0 == 0:\n if cn > 1:\n ans += cn // 2\n ans *= K\n else:\n ans = ans * K + ((i0+cn)//2) * (K-1) + i0//2 + cn//2\n\n\n print(ans)\n\nif __name__ == \"__main__\":\n resolve()\n", "neg": "#!python3\n\niim = lambda: map(int, input().rstrip().split())\n\ndef resolve():\n S = input()\n K = int(input())\n\n ls = len(S)\n\n if ls == 1:\n print(K//2)\n return\n\n if ls == 2:\n print(0 if S[0] != S[1] else K)\n return\n\n if S[0] == S[-1]:\n c0 = S[0]\n for i in range(1, ls):\n if c0 != S[i]:\n break\n else:\n print(ls*K//2)\n return\n i0 = i\n else:\n i = i0 = 0\n\n ans = 0\n c0 , cn = \"\", 0\n for i in range(i, ls):\n c1 = S[i]\n if c1 == c0:\n cn += 1\n else:\n if cn > 1:\n ans += cn // 2\n cn = 1\n c0 = c1\n\n if i0 == 0:\n ans *= K\n else:\n print(i0, cn)\n ans = ans * K + ((i0+cn)//2) * (K-1) + i0//2 + cn//2\n\n\n print(ans)\n\nif __name__ == \"__main__\":\n resolve()\n", "jacc_sim": 1.0, "before_after_length": [346, 341], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "if cn > 1:\n ans += cn // 2\n \n print(i0, cn)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u123756661", "n_user": "u123756661", "pos": "s=input()\nk=int(input())\nd=[]\nw=\"\"\ncnt=0\nfor i in s:\n if w!=i:\n w=i\n if cnt:\n d.append(cnt)\n cnt=1\n else:\n cnt+=1\nd.append(cnt)\nt=len(d)\nif t==1:\n print(d[0]*k//2)\nelse:\n ans=0\n for i in range(t):\n if i==0 and s[0]!=s[-1] and d[0]>1:\n ans+=d[0]//2*k\n elif i==0 and s[0]==s[-1] and d[0]>1:\n ans+=d[0]//2\n elif i==t-1 and s[0]==s[-1]:\n ans+=(d[0]+d[-1])//2*(k-1)\n ans+=d[-1]//2\n elif i==t-1 and s[0]!=s[-1]:\n ans+=d[-1]//2*k\n elif d[i]>1:\n ans+=d[i]//2*k\n print(ans)", "neg": "s=input()\nk=int(input())\nd=[]\nw=\"\"\ncnt=0\nfor i in s:\n if w!=i:\n w=i\n if cnt:\n d.append(cnt)\n cnt=1\n else:\n cnt+=1\nd.append(cnt)\nt=len(d)\nif t==1:\n print(d[0]*k//2)\nelse:\n ans=0\n for i in range(t):\n if i==0 and s[0]!=s[-1]:\n ans+=(d[0]*k)//2\n elif i==0 and s[0]==s[-1]:\n ans+=d[0]*k//2\n elif i==t-1 and s[0]==s[-1]:\n ans+=(d[0]+d[-1])*(k-1)//2\n ans+=d[-1]//2\n elif i==t-1 and s[0]!=s[-1]:\n ans+=d[-1]*k//2\n else:\n ans+=d[i]//2\n print(ans)\n", "jacc_sim": 0.972972972972973, "before_after_length": [302, 279], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": ":\n s+=( d>1:\n ans+=d[0]//2)\n elif i==0 and s[0]==s[-1] and d[0]>1:\n ans+=d[0]t0 and s[0]==s[]:\n s+= s==s[-1]:\n ans+=(d[0]+d[-1])//2*(k-1)\n ans+=d[-1]//2\n elif i==t-1 and s[0]!=s[-1]:\n ans+=d[-1]//2\n elif d[i]>1:\n ans+=d[i]\n elif i==t-1 and s[0]==s[-1]:\n ans+=(d[0]+d[-1])*(k-1)//2\n ans+=d[-1]//2\n elif i==t-1 and s[0]!=s[-1]:\n ans+=d[-1]//2\n else:\n ans+=d[i]//2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u641406334", "n_user": "u641406334", "pos": "def cal(S):\n tmp, a, cnt = S[0], 1, 0\n flag = True\n for s in S[1:]:\n if S[0]!=s: flag=False\n if flag: a+=1\n if tmp[-1]==s:\n s = '*'\n cnt += 1\n tmp += s\n return a, cnt\n\n\nS = input().replace('\\n', '')\nk = int(input())\nans = 0\nif len(list(set(S)))==1:\n ans = len(S)*k//2\nelse:\n a, cnt = cal(S)\n b, _ = cal(S[::-1])\n ans = cnt*k\n if S[0]==S[-1]:\n ans -= ((a//2)+(b//2)-((a+b)//2))*(k-1)\nprint(ans)", "neg": "def cal(S):\n tmp, a, cnt = S[0], 1, 0\n flag = True\n for s in S[1:]:\n if S[0]!=s: flag=False\n if flag: a+=1\n if tmp[-1]==s:\n s = '*'\n ans += 1\n tmp += s\n return a, cnt\n\n\nS = input().replace('\\n', '')\nk = int(input())\nans = 0\nif len(list(set(S)))==1:\n ans = len(S)*k//2\nelse:\n a, cnt = cal(S)\n b, _ = cal(S[::-1])\n ans = cnt*k\n if S[0]==S[-1]:\n ans -= ((a//2)+(b//2)-((a+b)//2))*(k-1)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [215, 215], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "acst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u346395915", "n_user": "u346395915", "pos": "s = list(input())\nk = int(input())\n\ncheck = \"\"\ncheck_cnt = 0\nans1 = 0\nfor i in range(len(s)):\n if check_cnt == 0:\n check = s[i]\n check_cnt += 1\n continue\n if check == s[i]:\n check_cnt += 1\n continue\n else:\n check = s[i]\n if check_cnt == 1:\n pass\n elif check_cnt%2 == 0:\n ans1 += check_cnt//2\n else:\n ans1 += (check_cnt - 1)//2\n check_cnt = 1\nelse:\n if check_cnt == 1:\n pass\n elif check_cnt%2 == 0:\n ans1 += check_cnt//2\n else:\n ans1 += (check_cnt - 1)//2\n \ncnt2 = 0\ncnt3 = 0\n\ntemp = s[0]\nfor i in range(len(s)):\n if temp == s[i]:\n cnt2 += 1\n else:\n break\n \nfor i in range(1,len(s)+1):\n if temp == s[-i]:\n cnt3 += 1\n else:\n break\n\nadd = 0\nif cnt2%2 == 1 and cnt3%2 == 1:\n add = 1\n \nsame = s[0]\nfor i in range(len(s)):\n if same == s[i]:\n continue\n else:\n break\nelse:\n t = len(s) * k\n if t%2 == 0:\n print(t//2)\n else:\n print((t-1)//2)\n exit()\n \nprint(ans1 * k + add * (k-1))", "neg": "s = list(input())\nk = int(input())\n\ncheck = \"\"\ncheck_cnt = 0\nans1 = 0\nfor i in range(len(s)):\n if check_cnt == 0:\n check = s[i]\n check_cnt += 1\n continue\n if check == s[i]:\n check_cnt += 1\n continue\n else:\n check = s[i]\n if check_cnt == 1:\n pass\n elif check_cnt%2 == 0:\n ans1 += check_cnt//2\n else:\n ans1 += (check_cnt - 1)//2\n check_cnt = 1\nelse:\n if check_cnt == 1:\n pass\n elif check_cnt%2 == 0:\n ans1 += check_cnt//2\n else:\n ans1 += (check_cnt - 1)//2\n \ncnt2 = 0\ncnt3 = 0\n\ntemp = s[0]\nfor i in range(len(s)):\n if temp == s[i]:\n cnt2 += 1\n else:\n break\n \nfor i in range(1,len(s)+1):\n if temp == s[-i]:\n cnt3 += 1\n else:\n break\n\nadd = 0\nif cnt2%2 == 1 and cnt3%2 == 1:\n add = 1\n \nsame = s[0]\nfor i in range(len(s)):\n if same == s[i]:\n continue\n else:\n break\nelse:\n t = len(s) * k\n if k%2 == 0:\n print(t//2)\n else:\n print((t-1)//2)\n exit()\n \nprint(ans1 * k + add * (k-1))", "jacc_sim": 1.0, "before_after_length": [432, 432], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "kt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u322354465", "n_user": "u322354465", "pos": "def check_subseq(s):\n subseq_list = []\n tmp_length = 1\n for i in range(1, len(s)):\n if s[i - 1] == s[i]:\n tmp_length += 1\n else:\n if tmp_length >= 2:\n subseq_list.append(tmp_length)\n tmp_length = 1\n \n if tmp_length >= 2:\n subseq_list.append(tmp_length)\n\n return subseq_list\n\n\ns = input()\nk = int(input())\n\nif s[0] == s[-1]:\n if len(set(s)) == 1:\n ans = len(s) * k // 2\n else:\n i = 1\n while True:\n if s[i] != s[-1]:\n first_subseq_length = i\n break\n i += 1\n\n i = 1\n while True:\n if s[-(i + 1)] != s[0]:\n last_subseq_length = i\n break\n i += 1\n\n # print(first_subseq_length, last_subseq_length)\n s = s[first_subseq_length:] + s[:first_subseq_length]\n subseq_list = check_subseq(s)\n ans = sum(map(lambda x: x // 2, subseq_list)) * k\n ans += first_subseq_length // 2 + last_subseq_length // 2 - subseq_list[-1] // 2\nelse:\n subseq_list = check_subseq(s)\n ans = sum(map(lambda x: x // 2, subseq_list)) * k\nprint(ans)\n\n", "neg": "def check_subseq(s):\n subseq_list = []\n tmp_length = 1\n for i in range(1, len(s)):\n if s[i - 1] == s[i]:\n tmp_length += 1\n else:\n if tmp_length >= 2:\n subseq_list.append(tmp_length)\n tmp_length = 1\n \n if tmp_length >= 2:\n subseq_list.append(tmp_length)\n\n return subseq_list\n\n\ns = input()\nk = int(input())\n\nif s[0] == s[-1]:\n if len(set(s)) == 1:\n print(len(s) * k // 2)\n exit()\n\n i = 1\n while True:\n if s[i] != s[-1]:\n first_subseq_length = i\n break\n i += 1\n\n i = 1\n while True:\n if s[-(i + 1)] != s[0]:\n last_subseq_length = i\n break\n i += 1\n\n print(first_subseq_length, last_subseq_length)\n s = s[first_subseq_length:] + s[:first_subseq_length]\n subseq_list = check_subseq(s)\n ans = sum(map(lambda x: x // 2, subseq_list)) * k\n ans += first_subseq_length // 2 + last_subseq_length // 2 - subseq_list[-1] // 2\nelse:\n subseq_list = check_subseq(s)\n ans = sum(map(lambda x: x // 2, subseq_list)) * k\nprint(ans)\n\n", "jacc_sim": 0.9583333333333334, "before_after_length": [417, 418], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "aprit(s = ) lse:xit()\ni= i = first_subseq_length= frst_subseq_length = i i= i = last_subseq_length= last_subseq_length = # ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u682467216", "n_user": "u682467216", "pos": "\n\ndef main():\n s = list(input())\n k = int(input())\n lst = []\n cnt = 1\n flg = 0\n ans = 0\n prev = s[0]\n for i in range(1, len(s)):\n if prev == s[i]:\n cnt += 1\n else:\n lst.append(cnt)\n cnt = 1\n prev = s[i]\n flg = 1\n lst.append(cnt)\n if len(lst) == 1:\n ans = len(s) * k // 2\n else:\n ans += sum(list(map(lambda x: x // 2, lst[1:len(lst)-1]))) * k\n # for l in lst[1: len(lst) - 1]:\n # ans += l // 2 * k\n if s[-1] == s[0]:\n ans += (lst[0] + lst[-1]) // 2 * (k - 1)\n ans += lst[0] // 2 + lst[-1] // 2\n else:\n ans += (lst[0] // 2 + lst[-1] // 2) * k\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "\n\ndef main():\n s = list(input())\n k = int(input())\n lst = []\n cnt = 1\n flg = 0\n ans = 0\n prev = s[0]\n for i in range(1, len(s)):\n if prev == s[i]:\n cnt += 1\n else:\n lst.append(cnt)\n cnt = 1\n prev = s[i]\n flg = 1\n lst.append(cnt)\n if len(lst) == 1:\n ans = s * k // 2\n else:\n # ans += sum(list(map(lambda x: x // 2, lst[1:len(lst)-1]))) * k\n for l in lst[1: len(lst) - 1]:\n ans += l // 2 * k\n if s[-1] == s[0]:\n ans += (lst[0] + lst[-1]) // 2 * (k - 1)\n ans += lst[0] // 2 + lst[-1] // 2\n else:\n ans += (lst[0] // 2 + lst[-1] // 2) * k\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [300, 295], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "len() ## #", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u372173285", "n_user": "u372173285", "pos": "S = input()\nK = int(input())\n\na = S[0]\nc = 0\ng = []\n\nfor i in range(len(S)):\n if a == S[i]:\n c += 1\n else:\n g.append(c)\n a = S[i]\n c = 1\n\ng.append(c)\n\nif len(g) == 1:\n c = len(S) * K / 2\nelif S[0] == S[-1]:\n c = int(g[0] / 2)\n c += int(g[-1] / 2)\n c += int((g[0]+g[-1]) / 2) * (K-1)\n\n for i in range(1, len(g) - 1):\n c += int(g[i] / 2) * K\nelse:\n c = 0\n for i in g:\n c += int(i / 2) * K\n\n\nprint(int(c))\n\n", "neg": "S = input()\nK = int(input())\n\na = S[0]\nc = 0\ng = []\n\nfor i in range(len(S)):\n if a == S[i]:\n c += 1\n else:\n g.append(c)\n a = S[i]\n c = 1\n\ng.append(c)\n\nif len(g) == 1:\n c = len(S) * K / 2\nelif S[0] == S[-1]:\n c = int(g[0] / 2)\n c += int(g[-1] / 2)\n\n for i in range(1, len(g) - 1):\n c += int(g[i] / 2) * K\nelse:\n c = 0\n for i in g:\n c += int(i / 2) * K\n\n\nprint(int(c))\n\n", "jacc_sim": 1.0, "before_after_length": [239, 216], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": " c += int((g[0]+g[-1]) / 2) * (K-1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u609061751", "n_user": "u609061751", "pos": "def main():\n S = input()\n K = int(input())\n a = list(S)\n cnt = 0\n if len(set(a))==1:\n cnt = (len(a)*K)//2\n elif a[0] != a[-1]:\n for l in range(len(a)-1):\n if a[l+1] == a[l]:\n a[l+1] = str(l)\n cnt += 1\n cnt *= K\n else:\n temp = 1\n temp_2 = 1\n i = 0\n while a[i] == a[i+1]:\n temp += 1\n i += 1\n j = len(a) - 1\n while a[j] == a[j-1]:\n temp_2 += 1\n j -= 1\n for k in range(i+1,j-1):\n if a[k+1] == a[k]:\n a[k+1] = str(k)\n cnt += 1\n cnt *= K\n cnt += temp//2\n cnt += temp_2//2\n temp_3 = (temp + temp_2)//2\n cnt += temp_3 * (K-1)\n\n\n print(cnt)\n\n \nif __name__ == '__main__':\n main()\n", "neg": "def main():\n S = input()\n K = int(input())\n a = list(S)\n cnt = 0\n if len(set(a))==1 and len(a) != 1:\n cnt = (len(a)*K)//2\n print(cnt)\n elif len(a) ==1:\n cnt += K//2\n print(cnt)\n else:\n temp = 0\n temp_2 = 0\n i = 0\n while a[i] == a[i+1]:\n temp += 1\n i += 1\n j = len(a) - 1\n while a[j] == a[j-1]:\n temp_2 += 1\n j -= 1\n for k in range(i+1,j-1):\n if a[k+1] == a[k]:\n a[k+1] = str(k)\n cnt += 1\n cnt *= K\n cnt += temp//2\n cnt += temp_2//2\n \n if a[0] == a[-1]:\n temp_3 = (temp + temp_2)//2\n cnt += temp_3 * (K-1)\n\n print(cnt)\n\n \nif __name__ == '__main__':\n main()", "jacc_sim": 0.9565217391304348, "before_after_length": [320, 306], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "1 and len(a) != elifa[0]!=a[-1]:\np foint(cnt)\n e in range(len(a)-1):\n len([l) ==1:\n cnt 1] == a[l]:\n a[l+1] = str(l)\n cnt += 1\n cnt *//\n else:\n temp = 1\n temp_\n print(cnt)\n else:\n temp 10\n temp_2 = 0\n if a[0] == a[-1]:\n \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u823885866", "n_user": "u823885866", "pos": "import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: map(str, sys.stdin.buffer.readline().split())\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.buffer.readline().split())\nrl = lambda: list(map(int, sys.stdin.buffer.readline().split()))\n\ns = rr()\nk = ri()\ncnt = 0\ni = 0\nif len(set(s)) == 1:\n print(int(len(s)*k/2))\n exit()\nwhile i < len(s)-1:\n if s[i] == s[i+1]:\n cnt += 1\n i += 1\n i += 1\ncnt1 = 0\ni1 = 0\ns *= 2\nwhile i1 < len(s)-1:\n if s[i1] == s[i1+1]:\n cnt1 += 1\n i1 += 1\n i1 += 1\nprint((cnt1 - cnt)*(k-1) + cnt)\n\n", "neg": "import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: map(str, sys.stdin.buffer.readline().split())\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.buffer.readline().split())\nrl = lambda: list(map(int, sys.stdin.buffer.readline().split()))\n\ns = rr()\nk = ri()\ncnt = 0\ni = 0\nif len(set(s)) == 1:\n print(int(s*k/2))\n exit()\nwhile i < len(s)-1:\n if s[i] == s[i+1]:\n cnt += 1\n i += 1\n i += 1\nprint(cnt)\ncnt1 = 0\ni1 = 0\ns *= 2\nwhile i1 < len(s)-1:\n if s[i1] == s[i1+1]:\n cnt1 += 1\n i1 += 1\n i1 += 1\nprint(cnt1)\nprint((cnt1 - cnt)*(k-1) + cnt)\n\n", "jacc_sim": 1.0, "before_after_length": [280, 289], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "len()print(cnt)\ncnt1)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u623687794", "n_user": "u623687794", "pos": "s=input()\nk=int(input())\na=set(s)\nif len(a)==1:print(k*len(s)//2)\nelse:\n V=[]\n unit=0\n for i in s:\n if len(V)==0 or V[-1][0]!=i:\n V.append([i,1])\n else:\n V[-1][1] += 1\n for i in V:\n unit+=i[1]//2\n ans=unit*k\n if s[0]==s[-1]:\n ans=ans-(V[0][1]//2+V[-1][1]//2-(V[0][1]+V[-1][1])//2)*(k-1)\n print(ans)\n", "neg": "s=input()\nk=int(input())\na=set(s)\nif len(a)==1:print(k*len(s)//2)\nelse:\n V=[]\n unit=0\n for i in s:\n\tif len(V)==0 or V[-1][0]!=i:\n\t\tV.append([i,1])\n\telse:\n\t\tV[-1][1] += 1\n for i in V:\n unit+=i[1]//2\n ans=unit*k\n if s[0]==s[-1]:\n ans=ans-(V[0][1]//2+V[-1][1]//2-(V[0][1]+V[-1][1])//2)*(k-1)\n print(ans)", "jacc_sim": 1.0, "before_after_length": [192, 193], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "\t \t\t \t \t\t \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u780465569", "n_user": "u780465569", "pos": "import sys, math; readline = sys.stdin.readline; from collections import deque;\n\nS = readline().rstrip()\nK = int(readline())\n\na = []\n\n_c = None\n_count = 0\nfor c in S:\n if c == _c:\n a[-1] += 1\n else:\n a.append(1)\n _c = c\ntotal = 0\n\nif len(a) >= 2:\n for x in a[1:-1]:\n total += x // 2 * K\n\n if S[0] == S[-1]:\n total += (a[0] + a[-1]) // 2 * (K - 1)\n total += a[0] // 2 + a[-1] // 2\n else:\n total += (a[0] // 2 + a[-1] // 2) * K\nelse:\n total = (a[0] * K) // 2\n\nprint(total)", "neg": "import sys, math; readline = sys.stdin.readline; from collections import deque;\n\nS = readline().rstrip()\nK = int(readline())\n\na = []\n\n_c = None\n_count = 0\nfor c in S:\n if c == _c:\n a[-1] += 1\n else:\n a.append(1)\n _c = c\ntotal = 0\n\nif len(a) >= 2:\n for x in a[1:-1]:\n total += x // 2 * K\n\n if S[0] == S[-1]:\n total += (a[0] + a[-1]) // 2 * (K - 1)\n total += a[0] // 2 + a[-1] // 2\n else:\n total += (a[0] // 2 + a[-1] // 2) * K\nelse:\n total = a[0] // 2\n\nprint(total)", "jacc_sim": 1.0, "before_after_length": [227, 223], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "( * K)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u298633786", "n_user": "u298633786", "pos": "S = input()\nK = int(input())\n\ncurr = S[0]\ntmp = \"\"\nT = []\nfor s in S:\n if s == curr:\n tmp += s\n else:\n T.append(tmp)\n curr = s\n tmp = s\nT.append(tmp)\n\nif len(T) == 1:\n res = (len(S) * K) // 2\n print(res)\n exit(0)\n\nres = 0\nt_first = T[0]\nt_last = T[-1]\n\nif t_first[0] != t_last[0]:\n res += (len(t_first) // 2) * K\n res += (len(t_last) // 2) * K\nelse:\n res += len(t_first) // 2\n res += len(t_last) // 2\n res += (len(t_first + t_last) // 2) * (K - 1)\n\nfor t in T[1:-1]:\n res += (len(t) // 2) * K\n\nprint(res)\n", "neg": "S = input()\nK = int(input())\n\ncurr = S[0]\ntmp = \"\"\nT = []\nfor s in S:\n if s == curr:\n tmp += s\n else:\n T.append(tmp)\n curr = s\n tmp = s\nT.append(tmp)\n\nif len(T) == 1:\n t = T[0]\n res = 0\n if len(t) == 1:\n res = K // 2\n elif len(t) == 2 and t[0] != t[1]:\n res = 0\n elif len(t) == 2 and t[0] == t[1]:\n res = K\n elif len(t) % 2 == 0:\n res = (len(t) // 2) * K\n else:\n res = (len(t) // 2) * K\n res += K - 1\n print(res)\n exit(0)\n\nres = 0\n\nt_first = T[0]\nt_last = T[-1]\n\nif t_first[0] != t_last[0]:\n res += len(t_first) // 2\n res += len(t_last) // 2\nelse:\n if len(t_first) == 1:\n res += K - 1\n res += (len(t_last) // 2) * K\n elif len(t_last) == 1:\n res += K - 1\n res += (len(t_first) // 2) * K\n elif len(t_first) % 2 != 0 and len(t_last) % 2 != 0:\n res += (len(t_first) // 2) * K\n res += (len(t_last) // 2) * K\n res += K - 1\n else:\n res += (len(t_first) // 2) * K\n res += (len(t_last) // 2) * K\n\nfor t in T[1:-1]:\n res += (len(t) // 2) * K\n\nprint(res)\n", "jacc_sim": 0.9230769230769231, "before_after_length": [265, 495], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "tresT[(len(S) * K) // 2\n print(res)\n exit(])\n \n if len(t) == 1:\n res = K // 2\n elif len(t) == 2 and t[0] != t[1]:\n res = 0\n elif len(t) == 2 and t[0] == t[1]:\n res = K\n elif len(t) % 2 == 0:\n res = (len(t) // 2) * K\n else:\n res = (len(t) // 2) * K\n res += K - 1\n print(res)\n exit(0)\n\nres = 0\nlent_first) // 2\n res += last) // 2\nelse:\n i len(t_f// 2) * K\n res + (len(t_last) // 2) * K\nelse:\n res + len(t_first) // 2\n res += len(t_last) // 2\n res += (len(t_first + t_last) // 2) * (K -:\n res += K - 1\n res += (len(t_last // 2) * K\n elif len(t_last) == 1:\n res += K - 1\n res += (len(t_first) // 2) * K\n elif len(t_first) % 2 != 0 and len(t_last) % 2 != 0:\n res += (len(t_first) // 2) * K\n res += (len(t_last) // 2) * K\n res += K - 1\n else:\n res += (len(t_first) // 2) * K\n res += (len(t_last) // 2) * K", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u377989038", "n_user": "u377989038", "pos": "s = list(input())\nk = int(input())\nans = 0\n\nif s[0] != s[-1]:\n for i in range(len(s)-1):\n if s[i] == s[i + 1]:\n s[i+1] = \"OK\"\n ans += 1\n print(ans * k)\n\nelse:\n if len(set(s)) == 1:\n if len(s) % 2 == 0:\n print((len(s) // 2) * k)\n else:\n print(len(s) * (k // 2) if k %\n 2 == 0 else len(s) * (k // 2) + (len(s) // 2))\n else:\n mae = 1\n for i in range(len(s) - 1):\n if s[i] == s[i + 1]:\n mae += 1\n else:\n break\n\n ushiro = 1\n for i in range(len(s) - 1, 0, -1):\n if s[i] == s[i - 1]:\n ushiro += 1\n else:\n break\n\n for i in range(len(s)-1):\n if s[i] == s[i + 1]:\n s[i+1] = \"OK\"\n ans += 1\n\n ans_ = 0\n for i in range(mae, len(s) - ushiro):\n if s[i] == \"OK\":\n ans_ += 1\n print(((mae + ushiro) // 2 * (k - 1)) + ans_ * (k - 1) + ans)", "neg": "s = list(input())\nk = int(input())\nans = 0\n\nif s[0] != s[-1]:\n for i in range(len(s)-1):\n if s[i] == s[i + 1]:\n s[i+1] = \"OK\"\n ans += 1\n print(ans * k)\n\nelse:\n if len(set(s)) == 1:\n if len(s) % 2 == 0:\n print((len(s) // 2) * k)\n else:\n print(len(s) * (k // 2) if k %\n 2 == 0 else len(s) * (k // 2) + (len(s) // 2))\n else:\n mae = 1\n for i in range(len(s) - 1):\n if s[i] == s[i + 1]:\n mae += 1\n else:\n break\n\n ushiro = 1\n for i in range(len(s) - 1, 0, -1):\n if s[i] == s[i - 1]:\n ushiro += 1\n else:\n break\n\n for i in range(len(s)-1):\n if s[i] == s[i + 1]:\n s[i+1] = \"OK\"\n ans += 1\n\n ans_ = 0\n for i in range(mae, len(s) - ushiro):\n if s[i] == \"OK\":\n ans_ += 1\n print(((mae + ushiro) // 2 * (k - 1)), ans_ * (k - 1), ans)\n print(((mae + ushiro) // 2 * (k - 1)) + ans_ * (k - 1) + ans)\n", "jacc_sim": 1.0, "before_after_length": [395, 427], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": ", +,ans)\n print(((mae ushiro) // 2 * (k - 1)) + _ * (k - 1 + ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u131464432", "n_user": "u131464432", "pos": "S = input()\nK = int(input())\n\nif len(set(S)) == 1:\n print(len(S)*K//2)\n exit()\n\nb = [1]\nfor i in range(len(S)-1):\n if S[i] == S[i+1]:\n b[-1] += 1\n else:\n b.append(1)\n\nans = 0\nfor i in b:\n ans += i//2\nans *= K\n\nif S[0] == S[-1] and b[0]%2 == b[-1]%2 == 1:\n ans += K - 1\nprint(ans)", "neg": "S = input()\nK = int(input())\n\nif len(set(s)) == 1:\n print(len(S)*K//2)\n exit()\n\nb = [1]\nfor i in S[:-1]:\n if S[i] == S[i+1]:\n b[-1] += 1\n else:\n b.append(1)\n\nans = 0\nfor i in b:\n ans += i//2\nans *= K\n\nif S[0] == S[-1] and b[0]%2 == b[-1]%2 == 1:\n ans += K - 1\nprint(ans)", "jacc_sim": 0.9411764705882353, "before_after_length": [155, 152], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "sSrange(len()[:])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u386131832", "n_user": "u386131832", "pos": "s = input()\nk = int(input())\n\nif len(s) == 1:\n print(k//2)\n exit(0)\n\nif len(list(set(s))) == 1 and len(s)%2 == 1:\n print((len(s)//2)*k+k//2)\n exit(0)\n\ncount = 0\n \nngo = 1\nfor i in range(len(s)-1):\n if s[i] == s[i+1]:\n ngo+=1\n else:\n count += ngo//2\n ngo=1\ncount += ngo//2\n\nngongo = 0\nwhile ngongo < len(s) and s[len(s)-ngongo-1] == s[-1]:\n ngongo+=1\n\nngongongo = 0\nwhile ngongongo < len(s) and s[ngongongo] == s[0]:\n ngongongo += 1\n \nf = 0\nif ngongo %2 == 1 and ngongongo %2 == 1 and s[0] == s[-1]:\n count += 1\n f += 1\n\nprint(count*k-f)", "neg": "s = input()\nk = int(input())\n\nif len(s) == 1:\n print(k//2)\n exit(0)\n\nif len(list(set(s))) == 1:\n print((len(s)//2)*(k+1))\n exit(0)\n\ncount = 0\n \nngo = 1\nfor i in range(len(s)-1):\n if s[i] == s[i+1]:\n ngo+=1\n else:\n count += ngo//2\n ngo=1\ncount += ngo//2\n\nngongo = 0\nwhile ngongo < len(s) and s[len(s)-ngongo-1] == s[-1]:\n ngongo+=1\n\nngongongo = 0\nwhile ngongongo < len(s) and s[ngongongo] == s[0]:\n ngongongo += 1\n \nf = 0\nif ngongo %2 == 1 and ngongongo %2 == 1 and s[0] == s[-1]:\n count += 1\n f += 1\n\nprint(count*k-f)", "jacc_sim": 1.0, "before_after_length": [278, 268], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": " and len(s)%2 == 1(1)k//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u652414768", "n_user": "u652414768", "pos": "s = [c for c in input()]\nk = int(input())\n\nimport copy\n\nif len(s) == 1:\n print(k//2)\n\nelif len(s) == len(set(s)):\n print(0)\n \nelif s[0] != s[-1]:\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c + 1\n s[i] = 'Z'\n print(c*k)\n\nelse: # s[0]==s[-1]\n s2 = copy.copy(s)\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c + 1\n s[i] = 'Z'\n if s[-1] == 'Z':\n print(c*k)\n else:\n c2 = 1\n s2[0] = 'Z'\n for i in range(1, len(s)):\n if s2[i-1] == s2[i]:\n s2[i] = 'Z'\n c2 = c2 + 1\n if s2[-1] == 'Z':\n if k % 2 == 0:\n print(int((c+c2)*(k/2)))\n else:\n print(int((c+c2)*((k-1)/2)+c))\n else:\n print(c + c2*(k-1))\n", "neg": "s = [c for c in input()]\nk = int(input())\n\nimport copy\n\nif len(s) == 1:\n print(k-1)\n\nelif len(s) == len(set(s)):\n print(0)\n \nelif s[0] != s[-1]:\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c + 1\n s[i] = 'Z'\n print(c*k)\n\nelse: # s[0]==s[-1]\n c = 0\n s2 = copy.copy(s)\n for i in range(1, len(s)):\n if s2[i-1] == s2[i]:\n c = c + 1\n s2[i] = 'Z'\n print(s2)\n if s2[-1] == 'Z':\n print(c*k)\n else:\n c2 = 1\n s[0] = 'Z'\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n s[i] = 'Z'\n c2 = c2 + 1\n print(s)\n if s[-1] == 'Z':\n if k % 2 == 0:\n print(int((c+c2)*(k/2)))\n else:\n print(int((c+c2)*((k-1)/2)+c))\n else:\n if k%2 ==0:\n print(int(((c+c2)*(k/2))))\n else:\n print(int((c+c2)*((k-1)/2) + c))", "jacc_sim": 1.0, "before_after_length": [377, 428], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "(k//2)\n\nelif len(s) == len(set(s)):\n print(0)\n \nelif s[0] != s[-1]:\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c + 1\n s[i] = 'Z'\n print(c*k)\n\nelse: # s[0]==s[-1]\n s2 = copy.copy(s)\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c + 1\n s[i] = 'Z'\n if s[-1] == 'Z':\n print(c*k)\n else:\n c2 = 1\n s2[0] = 'Z'\n for i in range(1, len(s)):\n if s2[i-1] == s2[i]:\n s2[i] = 'Z'\n c2 = c2 + 1\n if s2[-1] == 'Z':\n if k % 2 == 0:\n print(int((c+c2)*(k/2)))\n else:\n print(int((c+c2)*(/2\n\nelif len(s == len(set(s)):\n print(0)\n \nelif s[0] != s[-1]:\n c = 0\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n c = c 1\n s[i] = 'Z'\n print())\n else:\n print(c + c2k)\n\nelse: # s[0]==s[-1]\n c = 0\n s2 = copy.copy(s)\n for i in range(1, len(s)):\n if s2[i-1] == s2[i]:\n c = c + 1\n s2[i] = 'Z'\n print(s2)\n if s2[-1] == 'Z':\n print(c*k)\n else:\n c2 = 1\n s[0] = 'Z'\n for i in range(1, len(s)):\n if s[i-1] == s[i]:\n s[i] = 'Z'\n c2 = c2 + 1\n print(s)\n if s[-1] == 'Z':\n if k % 2 == 0:\n print(int((c+c2)*(k/2)))\n else:\n print(int((c+c2)*(/2+c)) else:\n if k%2 ==0:\n print(int(((c+c2)*(k/2))))\n else:\n print(int((c+c2)*((k-1)/2) + c))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u088552457", "n_user": "u088552457", "pos": "def input_list():\n return list(map(int, input().split()))\n\n\ndef main():\n s = list(input())\n k = int(input())\n if len(set(s)) == 1:\n print(int(len(s)*(k/2)))\n exit()\n \n sw = [s[0]]\n num = 0\n numbers = [num]\n for i in range(1, len(s)):\n if s[i-1] != s[i]:\n num += 1\n numbers.append(num)\n if num == 0 and sw[0] == s[i]:\n sw.append(s[i])\n\n num = 0\n end_w = s[-1]\n ew = []\n for i in range(len(s)-1, -1, -1):\n if end_w != s[i]:\n num += 1\n if num == 0 and end_w == s[i]:\n ew.append(s[i])\n nc = collections.Counter(numbers)\n \n a = 0\n for n,c in nc.items():\n if c == 1:\n continue\n if c % 2 == 0:\n a += c // 2\n else:\n a += (c-1)//2\n \n ans = a * k\n b = 0\n if ew[0] == sw[0]:\n haji = len(sw) + len(ew)\n if haji % 2 == 0:\n print(a * k + (k-1))\n exit()\n print(ans - b)\n \nimport math\nimport fractions\nimport collections\nimport itertools\nfrom functools import reduce\nmain()", "neg": "def input_list():\n return list(map(int, input().split()))\n\n\ndef main():\n s = list(input())\n k = int(input())\n sw = [s[0]]\n num = 0\n numbers = [num]\n for i in range(1, len(s)):\n if s[i-1] != s[i]:\n num += 1\n numbers.append(num)\n if num == 0 and sw[0] == s[i]:\n sw.append(s[i])\n\n num = 0\n end_w = s[-1]\n ew = []\n for i in range(len(s)-1, -1, -1):\n if end_w != s[i]:\n num += 1\n if num == 0 and end_w == s[i]:\n ew.append(s[i])\n nc = collections.Counter(numbers)\n \n a = 0\n for n,c in nc.items():\n if c == len(s):\n print(len(s))\n if c == 1:\n continue\n if c % 2 == 0:\n a += c // 2\n else:\n a += (c-1)//2\n \n ans = a * k\n b = 0\n if ew[0] == sw[0]:\n haji = len(sw) + len(ew)\n if haji == 2:\n print(ans + haji)\n exit(0)\n \n b = int(len(sw)/2 + len(ew)/2) - haji//2\n print(ans - b)\n \nimport math\nimport fractions\nimport collections\nimport itertools\nfrom functools import reduce\nmain()", "jacc_sim": 0.9841269841269841, "before_after_length": [409, 417], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "\n if len(set(s)) == 1:\n print(int(len(s)*(k/2)))\n exit()\n \n if c == len(s):\n print(len(s))%==:\n==0:\n ns * k(k-1))\n exit()\n print(ans - b)\n \nimport mataji) ext(0)\n \n b = int(len(sw)/2 + len(ew)/2) - haji//2\n print(ans - b)\n \nimath\nimport ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u196697332", "n_user": "u196697332", "pos": "import sys\nstring = input()\nK = int(input())\n\nif len(set(string)) == 1:\n print((K * len(string)) // 2)\n sys.exit()\n\n\nf = string[0]\nl = string[-1]\nif f == l:\n first = 1\n for i in range(1, len(string)):\n if string[i] == f:\n first += 1\n else:\n break\n last = 1\n for i in range(len(string) - 2, 0, -1):\n if string[i] == l:\n last += 1\n else:\n break\nelse:\n first = 0\n last = 0\n\nans = 0\nfinal = 0\nif (first + last) % 2 == 0 and first % 2 and last % 2:\n final = K - 1\n\nstring = string + '_'\n\ncount = 1\nfor n in range(1, len(string)):\n if string[n - 1] == string[n]:\n count += 1\n elif string[n - 1] != string[n] or n == len(string) - 1:\n if count >= 2:\n ans += (count // 2)\n #print(f'n: {n}')\n #print(count)\n #print(ans)\n count = 1\nprint(ans * K + final)\n\n", "neg": "import sys\nstring = input()\nK = int(input())\n\nif len(set(string)) == 1:\n print((K * len(string)) // 2)\n sys.exit()\n\n\nf = string[0]\nl = string[-1]\nif f == l:\n first = 1\n for i in range(1, len(string)):\n if string[i] == f:\n first += 1\n else:\n break\n last = 1\n for i in range(len(string) - 2, 0, -1):\n if string[i] == l:\n last += 1\n else:\n break\nans = 0\nfinal = 0\nif (first + last) % 2 == 0 and first % 2 and last % 2:\n final = K - 1\n\nstring = string + '_'\n\ncount = 1\nfor n in range(1, len(string)):\n if string[n - 1] == string[n]:\n count += 1\n elif string[n - 1] != string[n] or n == len(string) - 1:\n if count >= 2:\n ans += (count // 2)\n #print(f'n: {n}')\n #print(count)\n #print(ans)\n count = 1\nprint(ans * K + final)", "jacc_sim": 1.0, "before_after_length": [330, 314], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "else:\n first = 0\n last = 0\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u390618988", "n_user": "u390618988", "pos": "from sys import stdin\n\nS = stdin.readline().rstrip()\nK = int(stdin.readline().rstrip())\nans_odd = 0\nans_even = 0\nchanged_odd = [False] * len(S)\nchanged_even = [False] * len(S)\n\nif len(S) == 1:\n print(K // 2)\n exit()\n\ncnt = 1\nans = 0\nbegin = 0\nend = 0\n\nstart = 0\nfor i in range(1, len(S)):\n if S[i - 1] != S[i]:\n if start == 0:\n begin += cnt\n else:\n if cnt >= 2:\n ans += cnt // 2\n cnt = 1\n start = i\n else:\n cnt += 1\n if i == len(S) - 1:\n if start == 0:\n print((cnt * K) // 2)\n exit()\n end += cnt\n break\n\nif S[0] != S[-1]:\n print(ans * K + (begin // 2) * K + (end // 2) * K)\nelse:\n print(ans * K + begin // 2 + end // 2 + ((begin + end) // 2) * (K - 1))", "neg": "from sys import stdin\n\nS = stdin.readline().rstrip()\nK = int(stdin.readline().rstrip())\nans_odd = 0\nans_even = 0\nchanged_odd = [False] * len(S)\nchanged_even = [False] * len(S)\n\nif len(S) == 1:\n print(K // 2)\n exit()\n\ncnt = 1\nans = 0\ni = 0\nbegin = 0\nend = 0\n\nstart = 0\nfor i in range(1, len(S)):\n if S[i - 1] != S[i]:\n if start == 0:\n begin += cnt\n else:\n if cnt >= 2:\n print(cnt)\n ans += cnt // 2\n cnt = 1\n start = i\n else:\n cnt += 1\n if i == len(S) - 1:\n end += cnt\n break\n\nif S[0] != S[-1]:\n print(ans * K + (begin // 2) * K + (end // 2) * K)\nelse:\n print(ans * K + begin // 2 + end // 2 + ((begin + end) // 2) * (K - 1))", "jacc_sim": 1.0, "before_after_length": [298, 286], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "i = 0\nans += cnt // 2\n cnt = 1\n start = i\n else:\n cnt += 1\n if i == len(S) - 1:\n if start == 0:\n cnt)\n ans += cnt // 2\n cnt = 1\n start = i\n else:\n cnt += 1\n if i == lenS)cnt-*1:K) // 2)\n exit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u332657092", "n_user": "u332657092", "pos": "s = input()\nk = int(input())\nimport sys\n\n\nif s.count(s[0]) == len(s):\n print((len(s) * k) // 2)\n sys.exit()\n\nc_c = 0\nc_e = 0\ncounter = 1\n\nfor i in range(-1, -len(s)-1, -1):\n# print(counter)\n if s[0] == s[i]:\n counter += 1\n else:\n break\nif counter % 2 == 0:\n c_e = 1\n#print(c_e)\n#print()\n\nfor i in range(len(s) - 1):\n if s[i] != s[i+1]:\n counter = 1\n else:\n counter += 1\n if counter % 2 == 0:\n c_c += 1\n# print(s[i+1], counter, c_c)\n\ncounter = 1\nc_f = 0\nfor i in range(len(s) - 1):\n if s[i] != s[i+1]:\n counter = 1\n else:\n counter += 1\n if counter % 2 == 0:\n c_f += 1\n# print(c_f)\n# print()\n\nans = (c_c + c_e) * (k-1) + c_f\nprint(ans)", "neg": "s = input()\nk = int(input())\nimport sys\n\nif s.count(s[0]) == len(s):\n print((len(s) * k) // 2)\n sys.exit()\n\nc_c = 0\nc_e = 0\ncounter = 1\n\nfor i in range(-1, -len(s)-1, -1):\n print(s[i])\n if s[0] == s[i]:\n counter += 1\n else:\n break\nif counter % 2 == 0:\n c_e = 1\n\nfor i in range(len(s) - 1):\n \n if s[i] != s[i+1]:\n counter = 1\n else:\n counter += 1\n if counter % 2 == 0:\n c_c += 1\n\nans = c_c * k + c_e * (k-1)\nprint(ans)", "jacc_sim": 0.95, "before_after_length": [330, 216], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "\n#s[i]counter#print(c_e)\n#print()\n\n # print(s[i+1], counter, c_c)\ncounter = 1\nc_f = 0\nfor i in rgs = c_c * k + c_(len(s) - 1):\n if s[i] != s[i+1]:\n counter = 1\n else:\n counter += 1\n if counter % 2 == 0:\n c_f += 1\n# print(c_f)\n# print()\n\nans = (c_c + c_e) + c_f", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u262801165", "n_user": "u262801165", "pos": "import sys\ns = input()\nk = int(input())\n\nif len(s) == 1:\n print(int((len(s) * k) / 2))\n sys.exit()\n\n\nl = 0\nwhile (True):\n if s[l] != s[l+1]:\n break\n if l == len(s) - 2:\n print(int((len(s) * k) / 2))\n sys.exit()\n l += 1\n\n\n\nj = 0\ncounta = 1\nwhile (j<=len(s)-2):\n if s[j] == s[j+1]:\n counta += 1\n j += 1\n continue\n else:\n break\n\n\nif counta % 2 == 0:\n flaga = 0\nelse:\n flaga = 1\n \n\n\ncountb = 0\nfor i in range(len(s)-1):\n if s[i] == s[i+1]:\n s = s[:i+1] + \"0\" + s[i+2:]\n countb += 1\n\n\nflagb = 0\nif s[len(s)-1] == s[0]:\n if flaga == 1:\n countb += 1\n flagb = 1\n \n \n\n\nif flagb == 0:\n print(countb * k)\nelse:\n print(countb * k - 1)\n\n\n\n\n\n\n\n\n\n\n \n\n \n\n\n \n\n\n\n\n \n\n\n\n\n \n\n\n \n\n\n\n\n\n\n\n \n\n", "neg": "import sys\ns = input()\nk = int(input())\n\nif len(s) == 1:\n print(int((len(s) * k) / 2))\n sys.exit()\n\n\nl = 0\nwhile (True):\n if s[l] != s[l+1]:\n break\n if l == len(s)-2:\n print(int((len(s) * k) / 2))\n sys.exit()\n l += 1\n\n\n\nj = 0\ncounta = 1\nwhile (j<=len(s)-2):\n if s[j] == s[j+1]:\n counta += 1\n j += 1\n continue\n else:\n break\n\nprint(counta)\nif counta % 2 == 0:\n flaga = 0\nelse:\n flaga = 1\n \n\n\ncountb = 0\nfor i in range(len(s)-1):\n if s[i] == s[i+1]:\n s = s[:i+1] + \"0\" + s[i+2:]\n countb += 1\n\n\nflagb = 0\nif s[len(s)-1] == s[0]:\n if flaga == 1:\n countb += 1\n flagb = 1\n \n \n\n\nif flagb == 0:\n print(countb * k)\nelse:\n print(countb * k - 1)\n\n\n\n\n\n\n\n\n\n\n \n\n \n\n\n \n\n\n\n\n \n\n\n\n\n \n\n\n \n\n\n\n\n\n\n\n \n\n", "jacc_sim": 1.0, "before_after_length": [382, 386], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": " - 2:\n print(int((len(s) * k) / 2))\n sys.exit()\n l += 1\n\n\n\nj = 0\ncounta = 1\nwhile (j<=len(s):\n print(int((len(s:\n* if s[j] == s[j+1]:\n counta += 1\n j += 1\n continue\n else:\n brea) / 2)) sys.exit() l += 1\n\n\n\nj = 0\ncounta = 1\nwhile (j<=len(s)-2):\n if s[j] == s[j+1]:\n counta += 1\n j += 1\n continue\n else:\n break\n\nprint(counta)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u907223098", "n_user": "u907223098", "pos": "s=input()\nk=int(input())\nc=1\nb=[]\nl=1\nr=0\nfor i in range(len(s)-1):\n if s[i]==s[i+1]:\n c+=1\n else:\n b.append(c)\n l=0\n c=1\nif s[0]==s[-1]:\n b.append(c)\n c+=b[0]\nelse:\n b.append(c)\n c=0\nif l==1:\n print((len(s)*k)//2)\nelse:\n if s[0]==s[-1]:\n if len(b)>=2:\n for i in range(len(b)-2):\n r+=(b[i+1]//2)*k\n print(r+b[0]//2+b[-1]//2+(c//2)*(k-1))\n else:\n for i in range(len(b)):\n r+=((b[i]//2)*k)\n print(r)", "neg": "s=input()\nk=int(input())\nc=0\nb=[]\nl=1\nr=0\nfor i in range(len(s)-1):\n if s[i]==s[i+1]:\n c+=1\n else:\n b.append(c)\n l=0\nif s[0]==s[-1]:\n c+=b[0]\nelse:\n b.append(c)\n c=0\nif l==1:\n print((len(s)*k)//2)\nelse:\n if s[0]==s[-1]:\n for i in range(len(b)-1):\n r+=(b[i+1]//2)*k\n print(r+b[0]+b[-1]+(c//2)*(k-1))\n else:\n for i in range(len(b)):\n r+=((b[i]//2)*k)\n print(r)", "jacc_sim": 0.96875, "before_after_length": [265, 235], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "01ifs[0] c=s[-\nif s[0==s[-1]\n b.append(c)if len(b)>=2:\n 12 //2//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u970449052", "n_user": "u970449052", "pos": "def p(st):\n l=len(st)\n tc=1\n ac=0\n p=s[0]\n for i in range(1,l):\n if st[i]==p:\n tc+=1\n else:\n ac+=tc//2\n tc=1\n p=st[i]\n else:\n ac+=tc//2\n return ac\n\ns=input()\nk=int(input())\nn=len(s)\nif n==1:\n print(k//2)\n exit()\nif n==2:\n if s[0]==s[1]:\n print(k)\n else:\n print(0)\n exit()\nac=p(s)\nif k>1:\n ac4=p(s+s+s+s)\n if ac*4==ac4:\n print(ac*k)\n elif ac4-ac*4==3:\n print(ac*k+(k-1))\n elif ac4-ac*4==2:\n print(ac*k+(k//2))\nelse:\n print(ac)", "neg": "def p(st):\n l=len(st)\n tc=1\n ac=0\n p=s[0]\n for i in range(1,l):\n if st[i]==p:\n tc+=1\n else:\n ac+=tc//2\n tc=1\n p=st[i]\n else:\n ac+=tc//2\n return ac\n\ns=input()\nk=int(input())\nn=len(s)\nif n==1:\n print(k//2)\n exit()\nif n==2:\n if s[0]==s[1]:\n print(k)\n else:\n print(0)\n exit()\nac=p(s)\nif k>1:\n ac2=p(s+s)\n if ac==ac2:\n print(ac*k)\n elif ac2-ac==1:\n print(ac*k+(k-1))\n elif ac2-ac==2:\n print(ac*k+(k//2))\nelse:\n print(ac)", "jacc_sim": 0.9024390243902439, "before_after_length": [280, 270], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "4=p(s+s+s+s)\n if ac*4==ac4:\n print(ac*k)\n elif ac4-ac*4==3:\n print(ac*k+(k-1))\n elif ac4-ac*4==:=p(s+s)if print(==ac*k+(k//:\n print(ac*k\n elif ac2-ac==1:\n print(ac*k+(k-1) if ac2-ac==2:\n print(ac*k+(k//2))\nel", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u515052479", "n_user": "u515052479", "pos": "s = input()\nk = int(input())\nsign = 1\n\nnum_s = len(list(s))\ncount = 0\ntemp_count = 1\ncount_1 = 0\ncount_2 = 0\n\nif s[0] != s[-1]:\n for i in range(1,num_s):\n if s[i-1] == s[i]:\n temp_count += 1\n elif s[i-1] != s[i]:\n count += temp_count//2\n temp_count = 1\n \n ans = (count+temp_count//2)*k\n \nelif s[0] == s[-1]:\n for i in range(1,num_s):\n if s[i-1] == s[i]:\n temp_count += 1\n elif s[i-1] != s[i]:\n if sign == 1:\n count_1 = temp_count\n sign = 0\n elif sign == 0:\n count += temp_count//2\n \n temp_count = 1\n\n count_2 = temp_count\n \n ans = count*k + ((count_1 + count_2)//2)*(k-1) + (count_1//2) + (count_2//2)\n\n if sign == 1:\n ans = (k*num_s)//2\n \nif num_s == 1:\n ans = k//2\n \nprint(ans)", "neg": "s = input()\nk = int(input())\nsign = 1\n\nnum_s = len(list(s))\ncount = 0\ntemp_count = 1\ncount_1 = 0\ncount_2 = 0\n\nif s[0] != s[-1]:\n for i in range(1,num_s):\n if s[i-1] == s[i]:\n temp_count += 1\n elif s[i-1] != s[i]:\n count += temp_count//2\n temp_count = 1\n ans = count*k\n \nelif s[0] == s[-1]:\n for i in range(1,num_s):\n if s[i-1] == s[i]:\n temp_count += 1\n elif s[i-1] != s[i]:\n if sign == 1:\n count_1 += temp_count\n sign = 0\n elif sign == 0:\n count += temp_count//2\n \n temp_count = 1\n\n count_2 += temp_count\n \n ans = count*k + (count_1 + count_2)*(k-1)//2 + (count_1 //2) + (count_2//2)\n\n if sign == 1:\n ans = (k//2)*2*(num_s//2)\n if k%2 == 1:\n ans += num_s//2\n \nif num_s == 1:\n ans = k//2\n \nprint(ans)", "jacc_sim": 0.9722222222222222, "before_after_length": [346, 358], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": " \n (+temp_count//2)+temp_count=1\n\n counemp2count+= 1\n\n count_2 (2)////2 //2)2*(//2//2\n num_s == 1:\n ans =%// == 1: \nprint( += num_s//2\n \nif num_s == 1:\n ans = k//2\n \nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u291278680", "n_user": "u291278680", "pos": "s = input()\nk = int(input())\n\n\nlis = []\ni = 0\ncnt = 1\n\nfor i in range(0, len(s)-1):\n if s[i] == s[i+1]:\n cnt += 1\n else:\n lis.append(cnt)\n cnt = 1\nelse:\n lis.append(cnt)\n\nres = 0\n\nif len(lis) == 1:\n res += (lis[0]*k)//2\nelse:\n if s[0] == s[len(s)-1]:\n for a in lis[1:-1]:\n res += ((a)//2)*k\n res += ((lis[0])//2)*1\n res += ((lis[-1])//2)*1\n res += ((lis[0]+lis[-1])//2)*(k-1)\n else:\n for a in lis:\n res += ((a)//2)*k\n\nprint(res)\n", "neg": "s = input()\nk = int(input())\n\n\nlis = []\ni = 0\ncnt = 1\n\nfor i in range(0, len(s)-1):\n if s[i] == s[i+1]:\n cnt += 1\n else:\n lis.append(cnt)\n cnt = 1\nelse:\n lis.append(cnt)\n\nres = 0\nif s[0] == s[len(s)-1]:\n for a in lis[1:-1]:\n res += ((a)//2)*k\n res += ((lis[0])//2)*(k-1)\n res += ((lis[-1])//2)*(k-1)\n res += ((lis[0]+lis[-1])//2)*(k-1)\nelse:\n for a in lis:\n res += ((a)//2)*k\n\nprint(res)\n", "jacc_sim": 1.0, "before_after_length": [244, 222], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "\nlen(lis) == 1:\n res += (lis[0]*k)//2\nelse:\n if res+=((li re += ((lis])//2)*1\n res += ((lis[-1])//2)*1\n res += ((lis[0]+lis[-1rs += ((i[-1])//2)*(k-1)\n rs += ((lis[0]+lis[-1])//2)*(k-1)\nelse ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u695625981", "n_user": "u695625981", "pos": "S = list(input())\nK = int(input())\nL = len(S)\n\nsum = 0\nx = 1\nif L == 1:\n print(K//2)\nelif L == 2 and S[0] == S[1]:\n print(K)\nelif S[0] != S[-1]:\n for i in range(0, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2)*K\n x = 1\n sum += (x // 2)*K\n print(sum)\nelse:\n for i in range(0, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2)\n break\n if x == L:\n print((L * K) // 2)\n else:\n y = x\n x = 1\n for i in range(y, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2) * K\n x = 1\n sum += (x // 2)\n sum += ((x+y) // 2) * (K-1)\n print(sum)", "neg": "S = input()\nK = int(input())\nL = len(S)\n \nsum = 0\nx = 1\nif S[0] != S[-1]:\n for i in range(0, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2)*K\n x = 1\n sum += (x // 2)*K\n print(sum)\nelse:\n for i in range(0, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2)\n break\n y = x\n x = 1\n for i in range(y, L-1):\n if S[i] == S[i+1]:\n x += 1\n else:\n sum += (x // 2)*K\n x = 1\n sum += (x // 2)\n sum += ((x+y) // 2) * (K-1)\n print(sum)\n", "jacc_sim": 0.9142857142857143, "before_after_length": [312, 252], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "list() if L == 1:\n print(K//2)\nelif L == 2 and S[0] == S[1]:\n print(K)\nelif x == L:\n print((L * K) // 2)\n else:\n x=x = ifS[i]== S[f+1]:\nS[i] x + 1\n else:\n sum +(xS[i+1]:\n// x += 1\n else:\n sum += (x // K\nK x = 1sum+=(x//2) x = 1 sum += (x // 2)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u126227204", "n_user": "u126227204", "pos": "s = input()\nk = int(input())\n\nsame = 1\nfor i in range(1, len(s)):\n if s[i-1] == s[i]:\n same += 1\n else:\n break\n\nif same == len(s):\n print((len(s) * k )// 2)\n exit()\n\nre_same = 1\nfor i in range(len(s)-2, -1, -1):\n if s[i+1] == s[i]:\n re_same += 1\n else:\n break\n\n\nf = 0\ncount = 0\nfor i in range(1, len(s)):\n if f == 1:\n f = 0\n continue\n\n if s[i-1] == s[i]:\n f = 1\n count += 1\n\n\nif (re_same + same) % 2 == 0 and s[0] == s[len(s)-1]:\n print(count*k + k - 1)\nelse:\n print(count*k)\n\n\n\n", "neg": "s = input()\nk = int(input())\n\nsame = 1\nfor i in range(1, len(s)):\n if s[i-1] == s[i]:\n same += 1\n else:\n break\n\nif same == len(s):\n print((len(s) * k )// 2)\n exit()\n\nre_same = 1\nfor i in range(len(s)-2, -1, -1):\n if s[i+1] == s[i]:\n re_same += 1\n else:\n break\n\n\nf = 0\ncount = 0\nfor i in range(1, len(s)):\n if f == 1:\n f = 0\n continue\n\n if s[i-1] == s[i]:\n f = 1\n count += 1\n\nprint(count)\n\nif (re_same + same) % 2 == 0 and s[0] == s[len(s)-1]:\n print(count*k + k - 1)\nelse:\n print(count*k)\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [254, 259], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "\nif (re_same + same) % 2 == 0 and s[0] == s[len(s)-1]:\n *k)\n\nif (re_sameksame)% 2 == 0 and s[0] == s[len(s) ])\nelse + k - 1else: print(count*k)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u474925961", "n_user": "u474925961", "pos": "import numpy as np\ns=input()\nk=int(input())\ncnt=1\na=[]\nss=s+\".\"\nfor i in range(len(s)):\n if ss[i]==ss[i+1]:\n cnt+=1\n else:\n a.append(cnt)\n cnt=1\n\npp=0\nif s[0]==s[len(s)-1]:\n pp=a[0]+a[-1]\n \n b=[]\n if len(a)>1:\n b.append(pp)\n b+=a[1:len(a)-1]\n\n else:\n a=[len(s)*k]\n b=[]\n\nelse:\n \n b=a\narr=np.array(a)\narr2=np.array(b)\n\na=arr//2\nb=arr2//2\nif len(s)>=2:\n print(np.sum(a)+int((k-1)*np.sum(b)))\nelse:\n print(k//2)", "neg": "import numpy as np\ns=input()\nk=int(input())\ncnt=1\na=[]\nss=s+\".\"\nfor i in range(len(s)):\n if ss[i]==ss[i+1]:\n cnt+=1\n else:\n a.append(cnt)\n cnt=1\n\npp=0\nif s[0]==s[len(s)-1]:\n pp=a[0]+a[-1]\n \nb=[]\nb.append(pp)\nb+=a[1:n-2]\n \narr=np.array(a)\narr2=np.array(b)\n\na=arr//2\nb=arr//2\nprint(np.sum(a)+(k-1)*np.sum(b))", "jacc_sim": 0.9534883720930233, "before_after_length": [257, 189], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": " if len(a)>1:\n le(a)21\nelse:\n a=[len(s)*k]\n b=[]\n\nelse:\n \n b=a////2if len(s)>=2:\n int()\nelse:\n print(k//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u760569096", "n_user": "u760569096", "pos": "s = input()\nss = s + s\nsss = s + s + s\nk = int(input())\nn = 0\nnn = 0\nnnn = 0\ns = list(s)\nfor i in range(1,len(s)):\n if s[i-1] == s[i]:\n n += 1\n s[i] = '.'\nss = list(ss)\nfor i in range(1,len(ss)):\n if ss[i-1] == ss[i]:\n nn += 1\n ss[i] = '.'\nsss = list(sss)\nfor i in range(1,len(sss)):\n if sss[i-1] == sss[i]:\n nnn += 1\n sss[i] = '.'\na = nn-n*2\nif nnn == n*3+a*2:\n print(n*k+a*(k-1))\nelse:\n print((len(s)*k)//2)", "neg": "s = input()\nss = s + s\nsss = s + s + s\nk = int(input())\nn = 0\nnn = 0\nnnn = 0\ns = list(s)\nfor i in range(1,len(s)):\n if s[i-1] == s[i]:\n n += 1\n s[i] = '.'\nss = list(ss)\nfor i in range(1,len(ss)):\n if ss[i-1] == ss[i]:\n nn += 1\n ss[i] = '.'\nsss = list(sss)\nfor i in range(1,len(sss)):\n if sss[i-1] == sss[i]:\n nn += 1\n sss[i] = '.'\na = nn-n*2\nif sss == n*3+a*(2):\n print(n*k+a*(k-1))\nelse:\n print((len(s)*k)//2)", "jacc_sim": 1.0, "before_after_length": [238, 237], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "nsssnnn()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02891", "p_user": "u380772254", "n_user": "u380772254", "pos": "S = input()\nK = int(input())\n\nsumarr = list()\ncnt = 1\nfor i in range(1, len(S)):\n if S[i] == S[i - 1]:\n cnt += 1\n else:\n sumarr.append(cnt)\n cnt = 1\nsumarr.append(cnt)\n\nif len(sumarr) == 1:\n print(int(len(S) * K / 2))\n exit(0)\n\n\ndef to_cnt(num):\n if num < 2:\n return 0\n else:\n return int(num / 2)\n\n\nans = 0\nif S[0] == S[len(S) - 1]:\n ans += to_cnt(sumarr[0])\n ans += to_cnt(sumarr[len(sumarr) - 1])\n connection = to_cnt(sumarr[0] + sumarr[len(sumarr) - 1])\n cnt = sum(map(to_cnt, sumarr[1: len(sumarr) - 1]))\n ans += cnt * K\n ans += connection * (K - 1)\nelse:\n ans += sum(map(to_cnt, sumarr)) * K\n\nprint(ans)\n", "neg": "S = input()\nK = int(input())\n\nsumarr = list()\ncnt = 1\nfor i in range(1, len(S)):\n if S[i] == S[i - 1]:\n cnt += 1\n else:\n sumarr.append(cnt)\n cnt = 1\nsumarr.append(cnt)\n\nprint(sumarr)\n\nif len(sumarr) == 1:\n print(int(len(S) * K / 2))\n exit(0)\n\n\ndef to_cnt(num):\n if num < 2:\n return 0\n else:\n return int(num / 2)\n\n\nans = 0\nif S[0] == S[len(S) - 1]:\n ans += to_cnt(sumarr[0])\n ans += to_cnt(sumarr[len(sumarr) - 1])\n connection = to_cnt(sumarr[0] + sumarr[len(sumarr) - 1])\n cnt = sum(map(to_cnt, sumarr[1: len(sumarr) - 1]))\n ans += cnt * K\n ans += connection * (K - 1)\nelse:\n ans += sum(map(to_cnt, sumarr)) * K\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [295, 302], "nl": "You are given a string S. Let T be the concatenation of K copies of S. You can repeatedly replace a character in T with a different character. Find the minimum number of operations required to ensure that any two adjacent characters in T are different. Constraints: 1 \u2264 |S| \u2264 100, S consists of lowercase English letters, 1 \u2264 K \u2264 10^9, and K is an integer. Input is given as S and K. Output the minimum number of operations required. Example: Input: \"issii\", 2. Output: 4. Example 2: Input: \"qq\", 81. Output: 81. Example 3: Input: \"cooooooooonteeeeeeeeeest\", 999993333. Output: 8999939997.", "diff_info": "print(sumarr)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u506858457", "n_user": "u506858457", "pos": "N=int(input())\nL=list(map(int,input().split()))\nNL=[0]*N\nfor i in range(N):\n NL[L[i]-1]=i+1\nfor i in range(N):\n print(NL[i],end=' ')", "neg": "N=int(input())\nL=list(map(int,input().split()))\nNL=[0]*N\nfor i in range(N):\n NL[L[i]-1]=i+1\nprint(NL)", "jacc_sim": 0.9285714285714286, "before_after_length": [68, 54], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "for i in range(N):\n [i],end=' '", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u067151927", "n_user": "u067151927", "pos": "n = input()\na = list(map(int,input().split()))\nb = []\nfor i, j in enumerate(a):\n b.append([i + 1,j])\nb.sort(key=lambda x:x[1])\nfor i, p in enumerate(b):\n if i + 1 == n:\n print(p[0])\n else:\n print(p[0], end= \" \")", "neg": "n = input()\na = list(map(int,input().split()))\nb = []\nfor i, j in enumerate(a):\n b.append([i + 1,j])\nprint(b)\nb.sort(key=lambda x:x[1])\nprint(b)\nfor i in b:\n print(i[0],end=\" \")", "jacc_sim": 0.9142857142857143, "before_after_length": [101, 85], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "print(b)\n)\nprint(b,in b:\n r enumeraeb):\n f i + 1 == n:\n print(p)\n else:\n print(p[0] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u366541443", "n_user": "u366541443", "pos": "import math\nn = int(input())\na = list(map(int, input().split()))\n\nb = [[i+1,a[i]] for i in range(n)]\nb.sort(key=lambda x: x[1])\nc = []\nfor i in range(n):\n c.append(b[i][0])\nprint(' '.join(map(str, c)))\n", "neg": "import math\nn = int(input())\na = list(map(int, input().split()))\n\nb = [[i+1,a[i]] for i in range(n)]\nb.sort(key=lambda x: x[1])\nc = []\nfor i in range(n):\n c.append(b[i][0])\nprint(c)", "jacc_sim": 0.9142857142857143, "before_after_length": [94, 86], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "' '.join(map(str, ))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u605327527", "n_user": "u605327527", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nlist = [0]*N\n\nfor i in range(N):\n list[A[i]-1] = i+1\n\nfor i in range(N):\n print(list[i], end=\" \")", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nlist = [0]*N\n\nfor i in range(N):\n list[A[i]-1] = i+1\n \nprint(list)", "jacc_sim": 0.9259259259259259, "before_after_length": [72, 59], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "\nfor i in range(N):\n\n[i], end=\" \"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u715355213", "n_user": "u715355213", "pos": "\nN = int(input())\nlis = []\nlis = list(map(int,input().split()))\nfirst = [0]*N\n\nfor i in range(N):\n num = lis[i] - 1\n first[num] = i\n\nfor i in range(N):\n print(first[i]+1,end=' ')\nprint()", "neg": "N = int(input())\n\nlis = []\n\nlis = list(map(int,input().split()))\n\nfirst = []*N\n\nfor i in range(N):\n num = lis[i]\n first[num] = i + 1\n \nfor i in range(N):\n print(first[i],end=' ')", "jacc_sim": 0.9310344827586207, "before_after_length": [87, 84], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "\n\n\n\n0 - 1 + 1 +1\nprint()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u333242657", "n_user": "u333242657", "pos": "import numpy as np\n \nN = int(input())\nA_i = np.array(list(map(int, input().split())))\nstu = [[nums+1,student] for nums, student in enumerate(A_i)]\n \nemp = np.full(N, np.nan)\nfor i, j in stu:\n emp[j-1] = i\n\nprint(*emp.astype('int'), sep=\" \")", "neg": "import numpy as np\n\nN = int(input())\nA_i = np.array(list(map(int, input().split())))\nstu = [[nums+1,student] for nums, student in enumerate(A_i)]\n\nemp = np.full(N, np.nan)\nfor i, j in stu:\n emp[j-1] = i\n \nprint(emp.astype('int')) ", "jacc_sim": 0.9487179487179487, "before_after_length": [104, 101], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": " *),sep=\" \")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u113107956", "n_user": "u113107956", "pos": "n=int(input())\na=list(map(int,input().split()))\nans=[0]*n\nfor i in range(n):\n ans[a[i]-1]=i+1\nprint(*ans)", "neg": "n=int(input())\na=list(map(int,input().split()))\nans=[]\nfor i in range(n):\n ans[a[i]-1]=i+1\nprint(*ans)", "jacc_sim": 0.9615384615384616, "before_after_length": [54, 52], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "0*n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u222668979", "n_user": "u766393261", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = [0] * n\nfor i in range(n):\n ans[a[i]-1]=i+1\nprint(*ans)", "neg": "n=int(input())\na=list(map(int,input().split()))\nNumber=[0]*n\nfor i in range(n):\n Number[a[i]-1]=i+1\nprint(Number)", "jacc_sim": 0.9259259259259259, "before_after_length": [56, 54], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": " ans Number ansNumber*ansNumber", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u571999153", "n_user": "u571999153", "pos": "n = int(input())\nline = list(map(int, input().split()))\nans = ['0' for i in range(n)]\nfor i in range(n):\n ans[line[i]-1] = str(i+1)\nprint(' '.join(ans))", "neg": "n = int(input())\nline = list(map(int, input()))\nans = [0 for i in range(n)]\nfor i in range(n):\n ans[line[i-1]] = i+1\nprint(' '.join(ans))", "jacc_sim": 0.9285714285714286, "before_after_length": [67, 60], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": ".split()'']]str()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u700705777", "n_user": "u716043626", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = [0]*n\n\nfor i in range(0, n):\n b[a[i]-1] = i + 1\n\n\nprint(' '.join(map(str, b)))", "neg": "n = int(input())\na = list(map(int,input().split()))\nb = [0]*n\nfor i in range(n):\n b[i] = str(a[a[i]-1])\n\nb = ' '.join(b)\nprint(b)", "jacc_sim": 0.9655172413793104, "before_after_length": [67, 68], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": " \n0, i] = str(a[)\n\nbi + 1\n\n\nprint(map(str, \nprint(b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u938892722", "n_user": "u938892722", "pos": "N = int(input())\n\nA = list(map(int, input().split()))\n\nans = [0]*N\nfor i,j in enumerate(A):\n ans[j-1]=i+1\nprint(*ans)", "neg": "N = int(input())\n\nA = list(map(int, input().split()))\n\nans = [0]*N\n[ans[j-1]=i+1 for i,j in enumerate(A)]\nprint(*ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [56, 55], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "[ans[j-1]=i+1 :\n ans[j-1=i+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u156931988", "n_user": "u156931988", "pos": "_ = input()\ns = map(int,input().split())\nans = []\ndi = {}\nfor ind,num in enumerate(s):\n di[num] = ind+1\nfor key,value in sorted(di.items(),key=lambda x:x[0]):\n ans.append(str(value))\nprint(\" \".join(ans))\n", "neg": "_ = input()\ns = map(int,input().split())\nans = \"\"\ndi = {}\nfor ind,num in enumerate(s):\n di[num] = ind+1\nfor key,value in sorted(di.items(),key=lambda x:x[0]):\n ans += str(value)\nprint(ans)\n", "jacc_sim": 0.9459459459459459, "before_after_length": [84, 79], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "\"\"[] += .append(\nprint(ansprint(\" \".join(ans))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u527261492", "n_user": "u527261492", "pos": "n=int(input())\nA=list(map(int,input().split()))\na=[]\nfor i in range(n):\n a.append([i+1,A[i]])\nb=sorted(a,key=lambda x:x[1])\nlst=[]\nfor k in range(n):\n lst.append(b[k][0])\nprint(*lst)\n \n", "neg": "n=int(input())\nA=list(map(int,input().split()))\na=[]\nfor i in range(n):\n a.append([i+1,A[i]])\nb=sorted(a,key=lambda x:-x[1])\nlst=[]\nfor k in range(n):\n lst.append(b[k][0])\nprint(lst)\n \n", "jacc_sim": 0.9411764705882353, "before_after_length": [94, 95], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "-*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u963944915", "n_user": "u963944915", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nfor i,j in enumerate(a,1):\n b[j-1]=i\nprint(*b)\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=a\nk=1\nfor i,j in enumerate(a,1):\n b[j-1]=i\nprint(*b)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [54, 56], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "a\nk=1[0]*n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u618750827", "n_user": "u618750827", "pos": "def func(N, A_i):\n array = [0]*N\n for i in range(N):\n array[A_i[i]-1] = i+1\n ans = str(array[0])\n for i in range(N-1):\n ans += \" \" + str(array[i+1])\n return ans\n\nN = int(input())\nA_i = list(map(int, input().split(\" \")))\nprint(func(N, A_i))", "neg": "def func(N, A_i):\n ans = [0]*N\n for i in range(N):\n ans[A_i[i]-1] = i+1\n return ans\n\nN = int(input())\nA_i = list(map(int, input().split(\" \")))\nprint(func(N, A_i))", "jacc_sim": 0.9375, "before_after_length": [119, 83], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "nsrraynsrrayans = str(array[0])\n for i in range(N-1):\n ans += \" \" + str(array[i+1])\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u526094365", "n_user": "u526094365", "pos": "N = int(input())\nA = list(map(int, input().split()))\nans = [0] * N\nfor i in range(N):\n ans[A[i]-1] = i+1\n\nprint(*ans)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nans = [-1] * N\n\nfor i in range(N):\n ans[A[i] - 1] = A.index(A[i])+1\n\nprint(ans)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [58, 67], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "\n0-1\n A.ndex(A[i])*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u523545435", "n_user": "u523545435", "pos": "N=int(input())\n\nvalues=list(map(int,input().split()))\n\nkeys=[i for i in range(1,N+1)]\n\nkeys_values_dict=dict(zip(keys,values))\n\nkeys_values_dict_sorted_as_list=sorted(keys_values_dict.items(),key=lambda x:x[1])\n\nans=[str(keys_values_dict_sorted_as_list[i][0]) for i in range(N)]\nans=' '.join(ans)\nprint(ans)", "neg": "N=int(input())\n\nvalues=list(map(int,input().split()))\n\nkeys=[i for i in range(1,N+1)]\n\nkeys_values_dict=dict(zip(keys,values))\n\nkeys_values_dict_sorted_as_list=sorted(keys_values_dict.items(),key=lambda x:x[1])\n\nans=[keys_values_dict_sorted_as_list[i][0] for i in range(N)]\n\nprint(ans)", "jacc_sim": 0.918918918918919, "before_after_length": [128, 119], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "str()\nprint(=' '.join(ans\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u882370611", "n_user": "u320511454", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nb = [0]*n\n\nfor i in range(n):\n b[a[i] - 1 ] = i + 1\n \nprint(*b)\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=[0 for _ in range(n)]\nfor i in range(n):\n b[a[i]-1] = i+1\nprint(b)", "jacc_sim": 0.9259259259259259, "before_after_length": [60, 59], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": " \n ]* for _ i\n range(n)] \n *\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u498136917", "n_user": "u498136917", "pos": "n = int(input())\na = list(map(int, input().split()))\nalist = [0]*n\n\nfor i in range(n):\n alist[a[i]-1] = str(i+1)\n\nprint(\" \".join(alist))", "neg": "n = int(input())\na = list(map(int, input().split()))\nalist = [0]*n\n\nfor i in range(1, n+1):\n alist[a[i]-1] =str(i+1)\n\nprint(\" \".join(alist))", "jacc_sim": 1.0, "before_after_length": [66, 70], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "1, +1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u850969677", "n_user": "u850969677", "pos": "n = int(input())\nattendance_book = list(map(int, input().split()))\nattendance_order = [0 for i in range(n)]\nfor i in range(n):\n j = attendance_book[i]-1\n attendance_order[j] = i+1\nprint(' '.join(map(str, attendance_order)))", "neg": "n = int(input())\nattendance_book = list(map(int, input().split()))\nattendance_order = []\nfor i in range(n):\n j = attendance_book[i]-1\n attendance_order.insert(j, i+1)\nprint(' '.join(map(str, attendance_order)))", "jacc_sim": 0.9333333333333333, "before_after_length": [92, 86], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "0 for i in range(n)[.insert(,] =)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u194297606", "n_user": "u194297606", "pos": "from collections import deque\nN = int(input())\nA = [int(i) for i in input().split()]\nvalues = [str(i+1) for i in range(N)]\ndic = {key: val for key, val in zip(A, values)}\ndic_s = deque(sorted(dic.items()))\ns =deque()\nfor i in range(N):\n s.append(dic_s[i][1])\n\nans = ' '.join(list(s))\nprint(ans)", "neg": "N = int(input())\nA = [int(i) for i in input().split()]\nvalues = [str(i+1) for i in range(N)]\ndic = {key: val for key, val in zip(A, values)}\ndic_s = deque(sorted(dic.items()))\ns =[]\nfor i in range(N):\n s.append(dic_s[i][1])\n\nans = ' '.join(s)\nprint(ans)", "jacc_sim": 0.9024390243902439, "before_after_length": [121, 112], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "from collections import deque\n[]deque()ls)\nprnt(ant(s)\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u592248346", "n_user": "u343150957", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nfor i in range(n):\n b[a[i]-1]+=i+1\nprint(*b)", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = [0] * n\nfor i in range(n):\n ans[(a[i]-1)] = i + 1\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [54, 57], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": " bans b ans() + *bans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u050584166", "n_user": "u050584166", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = []\nindex = list(range(1, n+1))\ndic_a = dict(zip(a, index))\n#print(dic_a)\nsorted_dic_a = dict(sorted(dic_a.items()))\nfor i in sorted_dic_a.values():\n print(i,end=\" \")\nprint()", "neg": "n = int(input())\na = list(map(int, input().split()))\nb = []\nindex = list(range(1, n+1))\ndic_a = dict(zip(a, index))\n#print(dic_a)\nsorted_dic_a = dict(sorted(dic_a.items()))\nfor i in sorted_dic_a.values():\n b.append(i)\nprint(b)", "jacc_sim": 0.9142857142857143, "before_after_length": [100, 101], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "b.apend(i)\npbi,end=\" \"\nprint()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u600935366", "n_user": "u600935366", "pos": "n = int(input())\na = [i for i in map(int, input().split())]\nstu = [{'no' : i, 'arv':a[i]} for i in range(n)]\n\nstu.sort(key=lambda x: x['arv'])\n\nres = []\nfor i in stu:\n res.append(i['no'] + 1)\n\nfor i in res:\n print(i, end=\" \")", "neg": "n = int(input())\na = [i for i in map(int, input().split())]\nstu = [{'no' : i, 'arv':a[i]} for i in range(n)]\nprint(n, a, stu)\n\nstu.sort(key=lambda x: x['arv'])\nprint(stu)\n\nres = []\nfor i in stu:\n res.append(i['no'] + 1)\n\nprint(res)", "jacc_sim": 0.9705882352941176, "before_after_length": [107, 113], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "\nprint(n, a, stu)print(stu)\npfo i t(:\n print(i, end=\" \"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u225355598", "n_user": "u225355598", "pos": "N = int(input())\nA = list(map(int, input().split(' ')))\nA_indexed = [(a, index+1) for index, a in enumerate(A)]\nA_indexed.sort(key=lambda a_indexed : a_indexed[0])\nprint(' '.join('{}'.format(a_indexed[1]) for a_indexed in A_indexed))", "neg": "N = int(input())\nA = list(map(int, input().split(' ')))\nA_indexed = [(a, index+1) for index, a in enumerate(A)]\nA_indexed.sort(key=lambda a_indexed : a_indexed[1])\nprint(' '.join('{}'.format(a_indexed[0]) for a_indexed in A_indexed))", "jacc_sim": 1.0, "before_after_length": [88, 88], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "a_indexed[0])\nprint(' '.join('{}'.format(\nprint(''.join('{}'.mat(a_indexed[0])for ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u434966508", "n_user": "u434966508", "pos": "N=int(input())\nA=list(map(int,input().split()))\nt=[0]*N\nfor idx,i in enumerate(A):\n t[i-1]=idx+1\n\nprint(*t)", "neg": "N=int(input())\nA=list(map(int,input().split()))\nt=[0]*N\nfor idx,i in enumerate(N):\n t[i-1]=idx+1\n \n print(t[i],end=' ')", "jacc_sim": 0.9310344827586207, "before_after_length": [54, 61], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "NA *[i],end=' '", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u720384347", "n_user": "u720384347", "pos": "N = int(input())\nA = input().split()\nimport numpy as np\nA = [int(a) for a in A]\ns = \"\"\ntoukou = list(np.argsort(np.array(A)))\nfor i in range(N):\n num = int(toukou[i])+1\n if(s == \"\"):\n s = str(num)\n else:\n s += \" \"+str(num)\nprint(s)", "neg": "N = int(input())\nA = input().split()\nimport numpy as np\nA = [int(a) for a in A]\ns = \"\"\ntoukou = list(np.argsort(np.array(A)))\nprint(A)\nprint(toukou)\nfor i in range(N):\n num = toukou[i]+1\n s += \" \"+str(num)\nprint(s[1:])", "jacc_sim": 0.9411764705882353, "before_after_length": [110, 102], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": ")\nprint(A)\nprint(toukouint()if(s == \"\"):\n s = str(num)\n else:\n [1:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u426108351", "n_user": "u426108351", "pos": "n = int(input())\na = list(map(int,input().split()))\nb = []\nfor i in range(n):\n b.append([a[i], i+1])\nb.sort()\nans = []\nfor i in range(n):\n ans.append(b[i][1])\nprint(' '.join(map(str, ans)))", "neg": "n = int(input())\na = list(map(int,input().split()))\nb = []\nfor i in range(n):\n b.append(a[i], i+1)\nb.sort()\nans = []\nfor i in range(n):\n ans.append(b[i][1])\nprint(''.join(map(str, ans)))", "jacc_sim": 1.0, "before_after_length": [87, 87], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "[] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u096983897", "n_user": "u096983897", "pos": "a = int(input())\narray = list(map(int, input().split()))\n \narray2 = [0] * a\n \nfor i in range(a):\n\tarray2[array[i]-1] = i + 1\n \nfor i in range(len(array2)):\n\tprint(\"{}\".format(array2[i]), end = \" \")", "neg": "a = int(input())\narray = list(map(int, input().split()))\n \narray2 = [0] * a\n \nfor i in range(len(array)):\n\tarray2[array[i]-1] = i + 1\n \nfor i in range(len(array2)):\n\tprint(\"{}\".format(i), end = \" \")", "jacc_sim": 1.0, "before_after_length": [90, 89], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "len(rray)array2[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02899", "p_user": "u113971909", "n_user": "u113971909", "pos": "N = int(input())\nA = list(map(int,input().split()))\nB = list(range(1,N+1,1))\nC = zip(A,B)\nD = sorted(C)\na, b = zip(*D)\nprint(\" \".join(str(x) for x in b))", "neg": "N = int(input())\nA = list(map(int,input().split()))\nB = list(range(1,N+1,1))\nC = zip(A,B)\nC.sort()\na, b = zip(*C)\nprint(\" \".join(str(x) for x in b))", "jacc_sim": 0.9032258064516129, "before_after_length": [75, 73], "nl": "Score: 300 points\n\nProblem Statement:\nTakahashi is a teacher responsible for a class of N students. The students are given distinct student numbers from 1 to N. Today, all the students entered the classroom at different times. According to Takahashi's record, there were A_i students in the classroom when student number i entered the classroom (including student number i). From these records, reconstruct the order in which the students entered the classroom.\n\nConstraints:\n- 1 \u2264 N \u2264 10^5\n- 1 \u2264 A_i \u2264 N\n- A_i \u2260 A_j (i \u2260 j)\n- All values in input are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN\nA_1 A_2 ... A_N\n\nOutput:\nPrint the student numbers of the students in the order the students entered the classroom.\n\nSample Input 1:\n3\n2 3 1\n\nSample Output 1:\n3 1 2\nFirst, student number 3 entered the classroom. Then, student number 1 entered the classroom. Finally, student number 2 entered the classroom.\n\nSample Input 2:\n5\n1 2 3 4 5\n\nSample Output 2:\n1 2 3 4 5\n\nSample Input 3:\n8\n8 2 7 3 4 5 6 1\n\nSample Output 3:\n8 2 4 5 6 7 3 1", "diff_info": "C.D = edCCD", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u328858746", "n_user": "u328858746", "pos": "def gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append(i)\n if temp!=1:\n arr.append(temp)\n if arr==[]:\n arr.append(n)\n return arr\nif __name__ == \"__main__\":\n A,B = map(int,input().split())\n d = gcd(A,B)\n if d == 1:\n print(1)\n else:\n D = factorization(d)\n print(len(D)+1)", "neg": "def gcd(a,b):\n while b!=0:\n a,b=b,a%b\n return a\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n if temp!=1:\n arr.append([temp])\n if arr==[]:\n arr.append([n])\n return arr\nif __name__ == \"__main__\":\n A,B = map(int,input().split())\n d = gcd(A,B)\n D = factorization(d)\n print(len(D)+1)\n", "jacc_sim": 0.9795918367346939, "before_after_length": [218, 204], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "[, cnt][][]if d == 1:\n print(1)\n else:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u314050667", "n_user": "u314050667", "pos": "import math\n\nA, B = map(int, input().split())\n\ndef gcd(a,b):\n\tif b == 0:\n\t\treturn a\n\n\treturn gcd(b, a%b)\n\n\nG = gcd(A,B)\n\n\ndef sosuhantei(n):\n\td = math.floor(n**(1/2))\n\tcond = True\n\tfor i in range(2,d+1):\n\t\tif n % i == 0:\n\t\t\tcond = False\n\t\t\tbreak\n\treturn cond \n\n\nsosu = []\ng = math.ceil(G**(1/2)) \n\nyaku = []\n\nfor i in range(1,g+1):\n\tif G % i == 0:\n\t\tyaku.append(i)\n\t\tyaku.append(G//i)\n\nyaku = list(set(yaku))\n\ncnt = 0\nfor i in range(len(yaku)):\n\tif sosuhantei(yaku[i]):\n\t\tcnt += 1\n\nprint(cnt)", "neg": "import math\n\nA, B = map(int, input().split())\n\ndef gcd(a,b):\n\tif b == 0:\n\t\treturn a\n\n\treturn gcd(b, a%b)\n\n\nG = gcd(A,B)\n\n\ndef sosuhantei(n):\n\td = math.floor(n**(1/2))\n\tcond = True\n\tfor i in range(2,d+1):\n\t\tif n % i == 0:\n\t\t\tcond = False\n\t\t\tbreak\n\treturn cond \n\n\nsosu = []\ng = math.ceil(G**(1/2)) \n\nyaku = []\n\nfor i in range(2,g+1):\n\tif G % i == 0:\n\t\tyaku.append(i)\n\t\tyaku.append(G//i)\n\nyaku = list(set(yaku))\n\ncnt = 0\nfor i in range(len(yaku)):\n\tif sosuhantei(yaku[i]):\n\t\tcnt += 1\n\nprint(cnt + 2)", "jacc_sim": 1.0, "before_after_length": [266, 268], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "21 + 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u093041722", "n_user": "u093041722", "pos": "A,B = (int(x) for x in input().split())\ndef make_divisors(n):\n divisors = set()\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.add(i)\n if i != n // i:\n divisors.add(n//i)\n return divisors\na = make_divisors(A)\nb = make_divisors(B)\nc = a & b\ncount = 1\nif 2 in c:\n count += 1\nfor x in c:\n if x % 2 == 1:\n if len(make_divisors(x)) == 2:\n count += 1\nprint(count)", "neg": "A,B = (int(x) for x in input().split())\ndef make_divisors(n):\n divisors = set()\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.add(i)\n if i != n // i:\n divisors.add(n//i)\n return divisors\na = make_divisors(A)\nb = make_divisors(B)\nc = a & b\ncount = 2\nfor x in c:\n if x % 2 == 1:\n if len(make_divisors(x)) == 2:\n count += 1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [183, 172], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "1\nif in c:\n count += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u243714267", "n_user": "u243714267", "pos": "def factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n return arr\n\na, b = map(int, input().split())\nfa = factorization(a)\nfb = factorization(b)\n\ni = 0\nj = 0\ncnt = 1\nwhile i < len(fa) and j < len(fb):\n if fa[i][0] == fb[j][0]:\n cnt += 1\n i += 1\n j += 1\n elif fa[i][0] < fb[j][0]:\n i += 1\n else:\n j += 1\n\nprint(cnt)", "neg": "def factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\na, b = map(int, input().split())\nfa = factorization(a)\nfb = factorization(b)\n\ni = 0\nj = 0\ncnt = 1\nwhile i < len(fa) and j < len(fb):\n if fa[i] == fb[j]:\n cnt += 1\n i += 1\n j += 1\n elif fa[i] < fb[j]:\n i += 1\n else:\n j += 1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [233, 242], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "if arr==[]:\n arr.append([n, 1])\n\n [0][0][0][0]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u539367121", "n_user": "u539367121", "pos": "import math\na,b=map(int,input().split())\ngcd=math.gcd(a,b)\n\ndef prime_factorization(n):\n i=2\n prime=[]\n while i*i<=n:\n if n%i:\n i+=1\n else:\n n//=i\n prime.append(i)\n while n%i==0:\n n//=i\n if n>1:\n prime.append(n)\n return prime\n\nprint(len(prime_factorization(gcd))+1)\n#print(prime_factorization(gcd))", "neg": "import math\na,b=map(int,input().split())\ngcd=math.gcd(a,b)\n\ndef prime_factorization(n):\n i=2\n prime=[]\n if n%i:\n i+=1\n else:\n n//=i\n prime.append(2)\n while n%i==0:\n n//=i\n while i*i<=n:\n if n%i:\n i+=2\n else:\n n//=i\n prime.append(i)\n while n%i==0:\n n//=i\n if n>1:\n prime.append(n)\n return prime\n\nprint(len(prime_factorization(gcd))+1)", "jacc_sim": 0.9743589743589743, "before_after_length": [152, 186], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "while i*i<=n:\n 2i while i*i<=n:\n if n%i:\n i+=2\n else:\n n//=i\n prime.append(i)\n while n%i==0:\n n//=i\n \n#print(prime_factorization(gcd))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u926181697", "n_user": "u926181697", "pos": "A, B = map(int,input().split())\ndef gcd(a,b):\n if a < b:\n a,b = b,a\n if b == 0: return a\n r = a % b\n return gcd(b,r)\n\nL = [1]\n\ng = gcd(A, B)\ng_copy = gcd(A, B)\ni = 2\nwhile g > 1:\n if i > g_copy ** (1/2) :\n if g != 1:\n L.append(i)\n break\n if g % i == 0:\n if L[-1] != i:\n L.append(i)\n g /= i\n else:\n i += 1\nprint(len(L))\n", "neg": "A, B = map(int,input().split())\ndef gcd(a,b):\n if a < b:\n a,b = b,a\n if b == 0: return a\n r = a % b\n return gcd(b,r)\n\nL = [1]\n\ng = gcd(A, B)\ni = 2\nwhile g > 1:\n if i > g ** (1/2): break\n if g % i == 0:\n if L[-1] != i:\n L.append(i)\n g /= i\n else:\n i += 1\nprint(len(L))\n", "jacc_sim": 0.9761904761904762, "before_after_length": [181, 150], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "g_copy = gcd(A, B)\n_copy \n if g != 1:\n L.append(i)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u504562455", "n_user": "u504562455", "pos": "import math\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n if a == 0:\n return b\n else:\n return gcd(a, b % a)\n\n# N = int(input())\nA, B = [int(_) for _ in input().split()]\n\ngcd_ab = gcd(A, B)\ncds = []\nfor k in range(1, math.ceil(math.sqrt(gcd_ab)) + 1):\n if gcd_ab % k == 0:\n cds.append(k)\n cds.append(gcd_ab // k)\ncds = list(set(cds))\ncds.sort()\n\nans = []\nfor cd in cds[1:]:\n for a in ans:\n if cd % a == 0:\n break\n else:\n ans.append(cd)\n\nprint(len(ans) + 1)\n", "neg": "import math\ndef gcd(a, b):\n if a > b:\n a, b = b, a\n if a == 0:\n return b\n else:\n return gcd(a, b % a)\n\n# N = int(input())\nA, B = [int(_) for _ in input().split()]\n\ngcd_ab = gcd(A, B)\ncds = []\nfor k in range(1, math.ceil(math.sqrt(gcd_ab) + 1)):\n if gcd_ab % k == 0:\n cds.append(k)\n cds.append(gcd_ab // k)\n\nans = []\nfor cd in cds[1:]:\n for a in ans:\n if cd % a == 0:\n break\n else:\n ans.append(cd)\n\nprint(len(ans) + 1)\n", "jacc_sim": 0.9375, "before_after_length": [227, 211], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "))cds = list(set(cds))\ncds.sort()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u813098295", "n_user": "u813098295", "pos": "def gcd(x, y):\n while y != 0:\n x, y = y, x % y\n return x\n\n\ndef prime_factor(n):\n ret, p = [], 2\n\n while p*p <= n:\n if n % p != 0:\n p += 1\n continue\n\n exp = 0\n while n%p == 0:\n exp += 1\n n //= p\n ret.append( [ret, exp] )\n\n p += 1\n\n if n != 1: ret.append( [n, 1] )\n\n return ret\n\n\na, b = map(int, input().split())\ng = gcd(a, b)\n\nprint( len(prime_factor(g)) + 1)\n", "neg": "def gcd(x, y):\n while y != 0:\n x, y = y, x % y\n return x\n\n\ndef prime_factor(n):\n ret, p = [], 2\n\n while p*p <= n:\n if n % p != 0:\n p += 1\n continue\n\n exp_v = 0\n while n%p == 0:\n exp += 1\n n //= p\n ret.append( [ret, exp_v] )\n\n p += 1\n\n if n != 1: ret.append( [n, 1] )\n\n return ret\n\n\na, b = map(int, input().split())\ng = gcd(a, b)\n\nprint( len(prime_factor(g)) + 1)", "jacc_sim": 0.975609756097561, "before_after_length": [182, 185], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "_v_v\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u777923818", "n_user": "u777923818", "pos": "# -*- coding: utf-8 -*-\nfrom math import sqrt\nimport sys\n#input = sys.stdin.readline\ndef inpl(): return list(map(int, input().split()))\nA, B = inpl()\n\ndef primes(N):\n sieve = [1]*(N+1)\n sieve[:2] = [0, 0]\n P = []\n for i in range(2, N+1):\n if sieve[i]:\n P.append(i)\n for j in range(2*i, N+1, i):\n sieve[j] = 0\n return P\n\nP = primes(10**6)\n\nans = 1\n\next = []\n\nais = True\nbis = True\n\nS = min(A, B)\nfor p in P:\n if p > min(A, B):\n break\n ans += int(A%p == B%p == 0)\n while A%p == 0:\n A //= p\n while B%p == 0:\n B //= p\nelse:\n if A > 1:\n ans += int(B%A == 0)\n elif B > 1:\n ans += int(A%B == 0)\n\nprint(ans)", "neg": "# -*- coding: utf-8 -*-\nfrom math import sqrt\nimport sys\n#input = sys.stdin.readline\ndef inpl(): return list(map(int, input().split()))\nA, B = inpl()\nA = B = (10**9 + 7)*6\n\ndef primes(N):\n sieve = [1]*(N+1)\n sieve[:2] = [0, 0]\n P = []\n for i in range(2, N+1):\n if sieve[i]:\n P.append(i)\n for j in range(2*i, N+1, i):\n sieve[j] = 0\n return P\n\nP = primes(10**6)\n\nans = 1\n\next = []\n\nais = True\nbis = True\n\nS = min(A, B)\nfor p in P:\n if p > min(A, B):\n break\n ans += int(A%p == B%p == 0)\n while A%p == 0:\n A //= p\n while B%p == 0:\n B //= p\nelse:\n if A > 1:\n ans += int(B%A == 0)\n elif B > 1:\n ans += int(A%B == 0)\n\nprint(ans)", "jacc_sim": 0.9696969696969697, "before_after_length": [308, 321], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "\nA = B = (10**9 + 7)*6", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u000623733", "n_user": "u000623733", "pos": "A, B = map(int, input().split())\n\ndef GCD(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n = n // i\n table.append(i)\n i += 1\n if n > 1:\n table.append(n)\n return list(set(table))\n\n\ngcd = GCD(A, B)\ndivs = prime_decomposition(gcd)\nprint(1 + len(divs))", "neg": "A, B = map(int, input().split())\n\ndef GCD(a, b):\n while b:\n a, b = b, a % b\n return a\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= i\n table.append(i)\n i += 1\n if n > 1:\n table.append(n)\n return table\n\n\ngcd = GCD(A, B)\ndivs = prime_decomposition(gcd)\n\nprint(1 + len(divs))", "jacc_sim": 0.9512195121951219, "before_after_length": [159, 153], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "= n =/tabist(st(table))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u044220565", "n_user": "u044220565", "pos": "# coding: utf-8\nimport sys\n#from operator import itemgetter\nsysread = sys.stdin.buffer.readline\nread = sys.stdin.buffer.read\n#from heapq import heappop, heappush\n#from collections import defaultdict\nsys.setrecursionlimit(10**7)\nimport math\nfrom itertools import product, accumulate, combinations, product\n#import bisect# lower_bound etc\n#import numpy as np\n#from copy import deepcopy\n#from collections import deque\n\ndef run():\n A,B = map(int, sysread().split())\n K = math.gcd(A,B)\n factorials = []\n L = int(max(A,B)**0.5)\n for i in range(2, L+1):\n done = False\n limit = int(i ** 0.5)\n for j in factorials:\n if j > limit:break\n if not i % j:\n done = True\n break\n if not done:\n factorials.append(i)\n\n factors = [1]\n for f in factorials:\n if f > K:break\n if not K % f:\n factors.append(f)\n while not K % f:\n K = K // f\n\n if K != 1:\n factors.append(K)\n print(len(factors))\n\n\n #print(factorials)\nif __name__ == \"__main__\":\n run()", "neg": "# coding: utf-8\nimport sys\n#from operator import itemgetter\nsysread = sys.stdin.buffer.readline\nread = sys.stdin.buffer.read\n#from heapq import heappop, heappush\n#from collections import defaultdict\nsys.setrecursionlimit(10**7)\nimport math\nfrom itertools import product, accumulate, combinations, product\n#import bisect# lower_bound etc\n#import numpy as np\n#from copy import deepcopy\n#from collections import deque\n\ndef run():\n A,B = map(int, sysread().split())\n K = math.gcd(A,B)\n factorials = []\n for i in range(2, 10 ** 6):\n done = False\n limit = int(i ** 0.5)\n for j in factorials:\n if j > limit:break\n if not i % j:\n done = True\n break\n if not done:\n factorials.append(i)\n\n factors = []\n for f in factorials:\n if not K % f:\n factors.append(f)\n if factors:\n print(len(factors)+ 1)\n else:\n print(2)\n\n\n #print(factorials)\nif __name__ == \"__main__\":\n run()", "jacc_sim": 0.9222222222222223, "before_after_length": [349, 308], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "L = int(max(A,B)**0.5)\n L+0):\n done = False\n limit = int(i6):\n done = False\n limit = int(i ** 1notf >:break\n if not Kiffactors:\nwh prnt( (factrs)+t K % f:\n K = K // f\n\n if K !=)\n elsefacprinors.append2K)\n print(len(factors)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u574922408", "n_user": "u574922408", "pos": "def divisor(n):\n i = 1\n table = []\n\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n // i)\n i += 1\n table = list(set(table))\n\n return table\n\n\ndef common_divisor(a, b):\n table = []\n for i in a:\n if i in b:\n table.append(i)\n return table\n\n\ndef resolve():\n A, B = map(int, input().split())\n a_list = divisor(A)\n b_list = divisor(B)\n common_list = common_divisor(a_list, b_list) if len(a_list) < len(b_list) else common_divisor(b_list, a_list)\n common_list.sort()\n i = 1\n while i < len(common_list):\n j = i + 1\n while j < len(common_list):\n if common_list[j] % common_list[i] == 0:\n del common_list[j]\n else:\n j += 1\n i += 1\n\n print(len(common_list))\n \nresolve()\n", "neg": "def divisor(n):\n i = 1\n table = []\n\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n // i)\n i += 1\n table = list(set(table))\n\n return table\n\n\ndef common_divisor(a, b):\n table = []\n for i in a:\n if i in b:\n table.append(i)\n return table\n\n\ndef resolve():\n A, B = map(int, input().split())\n a_list = divisor(A)\n b_list = divisor(B)\n common_list = common_divisor(a_list, b_list) if len(a_list) < len(b_list) else common_divisor(b_list, a_list)\n common_list.sort()\n print(common_list)\n i = 1\n while i < len(common_list):\n j = i + 1\n while j < len(common_list):\n if common_list[j] % common_list[i] == 0:\n del common_list[j]\n else:\n j += 1\n i += 1\n\n print(len(common_list))\n \nresolve()\n", "jacc_sim": 1.0, "before_after_length": [304, 312], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": ")\n print(common_list", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u741397536", "n_user": "u741397536", "pos": "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10 ** 7)\n\nA, B = map(int, input().split())\n\ndef is_prime(n):\n rn = int(n**0.5) + 1 \n for i in range(2, rn):\n if n % i == 0:\n return False\n return True\n\ndef divisor(a, b):\n if a < b:\n b, a = a, b\n res = []\n ra = int(a**0.5) + 1 \n for i in range(1, ra):\n if a % i == 0:\n if b % i == 0:\n res.append(i)\n if i != a / i and b % (a/i) == 0:\n res.append(int(a / i))\n else:\n if i != a / i and b % (a/i) == 0:\n res.append(int(a / i))\n return sorted(res)\n\nY = divisor(A, B)\n\nans = 0\nfor i in range(len(Y)):\n if is_prime(Y[i]):\n ans += 1\n\nprint(ans)", "neg": "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10 ** 7)\n\nA, B = map(int, input().split())\n\ndef is_prime(n):\n rn = int(n**0.5) + 1 \n for i in range(2, rn):\n if n % i == 0:\n return False\n return True\n\ndef divisor(a, b):\n if a < b:\n b, a = a, b\n res = []\n ra = int(a**0.5) + 1 \n for i in range(1, ra):\n if a % i == 0:\n if b % i == 0:\n res.append(i)\n if i != a / i and b % (a/i) == 0:\n res.append(int(a / i))\n else:\n if i != a / i and b % (a/i) == 0:\n res.append(int(a / i))\n return sorted(res)\n\nY = divisor(A, B)\nprint(Y)\nans = 0\nfor i in range(len(Y)):\n if is_prime(Y[i]):\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [290, 294], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "print(Y)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u291766461", "n_user": "u291766461", "pos": "import math\n\ndef is_prime(n):\n if n == 1: return True\n\n for k in range(2, int(math.sqrt(n)) + 1):\n if n % k == 0:\n return False\n\n return True\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\nA, B = map(int, input().split())\ndiv1 = make_divisors(A)\n# print(div1)\ndiv2 = make_divisors(B)\nnums = list(set(div1).intersection(set(div2)))\n# print(nums)\nnums = [x for x in nums if is_prime(x)]\n# print(nums)\ncnt = len(nums)\nif cnt > 1:\n print(cnt)\nelse:\n print(1)", "neg": "import math\n\ndef is_prime(n):\n if n == 1: return True\n\n for k in range(2, int(math.sqrt(n)) + 1):\n if n % k == 0:\n return False\n\n return True\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n # divisors.sort()\n return divisors\n\nA, B = map(int, input().split())\ndiv1 = make_divisors(A)\nprint(div1)\ndiv2 = make_divisors(B)\nnums = list(set(div1).intersection(set(div2)))\nprint(nums)\nnums = [x for x in nums if is_prime(x)]\nprint(nums)\ncnt = len(nums)\nif cnt > 1:\n print(cnt * (cnt - 1) // 2)\nelse:\n print(1)", "jacc_sim": 0.9821428571428571, "before_after_length": [270, 275], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "# # # * (cnt - 1) // 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u593761424", "n_user": "u593761424", "pos": "from collections import defaultdict\n\n\ndef gcd(a, b):\n if a > b:\n return gcd(b, a)\n # a <= b\n if a == 0:\n return b\n else:\n r = b % a\n return gcd(r, a)\n\n\ndef prime_factorization(n):\n factors = defaultdict(int)\n i = 1\n n_sub = n\n while True:\n i += 1\n if i * i > n or n_sub == 1:\n break\n\n while n_sub % i == 0:\n n_sub = n_sub // i\n factors[i] += 1\n\n if n_sub != 1:\n factors[n_sub] = 1\n return factors\n\n\ndef main():\n a, b = map(int, input().split())\n g = gcd(a, b)\n if g == 1:\n return 1\n primes = prime_factorization(g)\n # add \"1\"\n return len(primes) + 1\n \n\nprint(main())\n", "neg": "from collections import defaultdict\n\n\ndef gcd(a, b):\n if a > b:\n return gcd(b, a)\n # a <= b\n if a == 0:\n return b\n else:\n r = b % a\n return gcd(r, a)\n\n\ndef prime_factorization(n):\n factors = defaultdict(int)\n i = 1\n n_sub = n\n while True:\n i += 1\n if i * i > n or n_sub == 1:\n break\n\n while n_sub % i == 0:\n n_sub = n_sub // i\n factors[i] += 1\n\n if len(factors) == 0:\n factors[n] = 1\n return factors\n\n\ndef main():\n a, b = map(int, input().split())\n g = gcd(a, b)\n if g == 1:\n return 1\n primes = prime_factorization(g)\n # add \"1\"\n return len(primes) + 1\n \n\nprint(main())\n", "jacc_sim": 0.98, "before_after_length": [260, 259], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "le_(factor)ub!=01_sub", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u728615412", "n_user": "u728615412", "pos": "A,B = map(int,input().split())\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\nlis = list(factorization(A))\ncounter = 0\nfor i in range(len(lis)):\n jud = B/lis[i][0]\n if jud.is_integer():\n counter += 1\nif A == 1 or B == 1:\n print(1)\nelse:\n print(counter+1)", "neg": "A,B = map(int,input().split())\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\nlis = list(factorization(A))\ncounter = 0\nfor i in range(len(lis)):\n jud = B/lis[i][0]\n if jud.is_integer():\n counter += 1\nprint(counter+1)", "jacc_sim": 0.9574468085106383, "before_after_length": [222, 202], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "if A == 1 or B == 1:\n print(1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u123648284", "n_user": "u123648284", "pos": "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort()\n return divisors\n\n\nA, B = map(int, input().split())\ndivided_1 = min(A, B)\ndivided_2 = max(A, B)\n\ndivisors = make_divisors(divided_1)\ncd = []\nfor d in divisors:\n if divided_2 % d == 0:\n cd.append(d)\n\nres = []\nfor e in cd:\n flg = True\n for i in range(1, len(res)):\n r = res[i]\n if e % r == 0:\n flg = False\n break\n if flg:\n res.append(e)\n\nprint(len(res))", "neg": "def make_divisors(n):\n divisors = []\n for i in range(1, n//2+1):\n if n % i == 0:\n divisors.append(i)\n \n divisors.sort()\n return divisors\n \n \nA, B = map(int, input().split())\ndivided_1 = min(A, B)\ndivided_2 = max(A, B)\n \ndivisors = make_divisors(divided_1)\ncd = []\nfor d in divisors:\n if divided_2 % d == 0:\n cd.append(d)\n \nres = []\nfor e in cd:\n flg = True\n for i in range(1, len(res)):\n r = res[i]\n if e % r == 0:\n flg = False\n break\n if flg:\n res.append(e)\n \nprint(len(res))", "jacc_sim": 0.92, "before_after_length": [256, 235], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "it(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n 2+1):\n f n % i == 0divisors.append(i)\n divisors.append(n//i)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u325282913", "n_user": "u325282913", "pos": "import math\ndef trial_division(n):\n a = [1]\n for i in range(2,int(math.sqrt(n)) + 1):\n while n % i == 0:\n n //= i\n a.append(i)\n a.append(n)\n return a\nA, B = map(int, input().split())\nans = set(trial_division(A)) & set(trial_division(B))\nprint(len(ans))", "neg": "import fractions\nimport math\n\ndef trial_division(n):\n a = []\n for i in range(2,int(math.sqrt(n)) + 1):\n while n % i == 0:\n n //= i\n a.append(i)\n a.append(n)\n return a\n\n\nA, B = map(int, input().split())\nmax_n = fractions.gcd(A,B)\n\nans = set(trial_division(max_n))\n\nprint(len(ans))", "jacc_sim": 0.9047619047619048, "before_after_length": [115, 129], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "math\nderactions\nimport math\n\ndef1\n\nmxns = set(trialn = fractions.gcivision,)) & set(trial_division(\n\nans = set(trial_division(max_n)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u374103100", "n_user": "u374103100", "pos": "import sys\nsys.setrecursionlimit(12345678)\nimport itertools\nfrom collections import Counter\nfrom collections import defaultdict\nfrom collections import deque\nimport bisect\nfrom heapq import heappush, heappop\n\n\ndef primes(n):\n pl = [1]\n if n == 2:\n pl.append(2)\n return pl\n if n == 3:\n pl.append(3)\n return pl\n\n i = 2\n while i * i <= n:\n if n % i == 0:\n pl.append(i)\n while n % i == 0:\n n //= i\n i += 1\n if n > 1:\n pl.append(n)\n return pl\n\n\ndef main():\n a, b = map(int, input().split())\n ap = set(primes(a))\n bp = set(primes(b))\n # print(ap)\n # print(bp)\n # print(ap & bp)\n print(len(ap & bp))\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\nsys.setrecursionlimit(12345678)\nimport itertools\nfrom collections import Counter\nfrom collections import defaultdict\nfrom collections import deque\nimport bisect\nfrom heapq import heappush, heappop\n\n\ndef primes(n):\n pl = [1]\n if n == 2:\n pl.append(2)\n return pl\n if n == 3:\n pl.append(3)\n return pl\n\n i = 2\n while i * i <= n:\n if n % i == 0:\n pl.append(i)\n while n % i == 0:\n n //= i\n i += 1\n return pl\n\n\ndef main():\n a, b = map(int, input().split())\n ap = set(primes(a))\n bp = set(primes(b))\n # print(ap)\n # print(bp)\n print(len(ap & bp))\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9827586206896551, "before_after_length": [263, 239], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "if n > 1:\n pl.append(n)\n bp)\n # print(ap & ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u568595296", "n_user": "u568595296", "pos": "def trial_division(n,b):\n a = []\n if n%2==0 and b%2==0:\n a.append(2)\n while n % 2 == 0:\n n /= 2\n f = 3\n while f*f <= n:\n if n % f == 0: \n if b%f == 0:\n a.append(f)\n n /= f\n else:\n f += 2 \n if n != 1 and b%n==0: \n a.append(n)\n return a\nA,B = (lambda x: (min(x),max(x)))(list(map(int,input().split())))\nprint(len(set(trial_division(A,B)))+1)", "neg": "def trial_division(n):\n a = [] \n while n % 2 == 0:\n a.append(2)\n n /= 2\n f = 3\n while f*f <= n:\n if n % f == 0:\n a.append(f)\n n /= f\n else:\n f += 2 \n if n != 1: a.append(n)\n return a\nA,B = (lambda x: (min(x),max(x)))(list(map(int,input().split())))\nprint(len(set(trial_division(A),trial_division(B)))+1)", "jacc_sim": 0.9545454545454546, "before_after_length": [180, 151], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": ",b\n if n%2==0 and b%2==0:\n a.append(2)a.append(2)\n if b%f == 0:\n and b%n==0 \n )trial_division(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u651663683", "n_user": "u651663683", "pos": "def gcd(a,b):\n while b:\n a,b=b,a%b\n return a\na,b=map(int,input().split())\ng=gcd(a,b)\n\nc=1\nfor i in range(2,10**6+1):\n if g%i==0:\n c+=1\n while g%i==0:\n g//=i\nif g!=1:\n c+=1\nprint(c)", "neg": "def gcd(a,b):\n while b:\n a,b=b,a%b\n return a\na,b=map(int,input().split())\ng=gcd(a,b)\n\nc=1\nfor i in range(2,10**6+1):\n if g%i==0:\n c+=1\n while g%i==0:\n g//=i\nif g:\n c+=1\nprint(c)", "jacc_sim": 0.9705882352941176, "before_after_length": [117, 114], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "!=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u767432305", "n_user": "u767432305", "pos": "import math\n\nA,B=map(int,input().split())\n\ndef func(n):\n num=1\n for i in range(2,int(math.sqrt(n) + 1e-9) +3):\n if n%i==0 and n!=i:\n num=0\n break\n else:\n continue\n return num\n\np=min(A,B)\nq=max(A,B)\n\nans=0\ncheck=[]\nfor i in range(1, int(math.sqrt(p)+ 1e-9)+3):\n if p%i==0:\n if i not in check:\n check.append(i)\n if p//i not in check:\n check.append(p//i)\n\nfor i in check:\n if q%i==0:\n ans+=func(i)\n\nprint(ans)", "neg": "import math\n\nA,B=map(int,input().split())\n\ndef func(n):\n num=1\n for i in range(2,int(math.sqrt(n) + 1e-9) +3):\n if n%i==0 and n!=i:\n num=0\n break\n else:\n continue\n return num\n\np=min(A,B)\nq=max(A,B)\n\nans=0\ncheck=[]\nfor i in range(1, int(math.sqrt(p)+ 1e-9)+3):\n if p%i==0:\n check.append(i)\n check.append(p/i)\n\nfor i in check:\n if q%i==0:\n ans+=func(i)\n\nprint(ans)", "jacc_sim": 0.9803921568627451, "before_after_length": [214, 196], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "if i not in check:\n if p//i not in check:\n /", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u870178975", "n_user": "u870178975", "pos": "a, b= map(int, input().split())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\nk=gcd(a,b)\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\nm=make_divisors(k)\nx=len(m)\nn=len(m)\n\nfor _ in range(n-1):\n for i in range(1,len(m)):\n if gcd(m[i],m[0])!=1:\n x-=1\n m.pop(0)\n break\n if i+1 == len(m):\n m.pop(0)\n break\nprint(x)\n ", "neg": "a, b= map(int, input().split())\n\ndef gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\nk=gcd(a,b)\nif k==1:\n print(1)\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\nm=make_divisors(k)\nx=len(m)\nn=len(m)\n\n\n\nfor _ in range(n-1):\n for i in range(1,len(m)):\n if gcd(m[i],m[0])!=1:\n x-=1\n m.pop(0)\n break\n if i+1 == len(m):\n m.pop(0)\n break\nprint(x)\n ", "jacc_sim": 1.0, "before_after_length": [265, 279], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": ")\nif k==1:\n print(1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u387774811", "n_user": "u387774811", "pos": "def factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n if temp!=1:\n arr.append([temp, 1])\n if arr==[]:\n arr.append([n, 1])\n return arr\n\nC=1\nA,B=map(int,input().split())\na=factorization(A)\nb=factorization(B)\nfor i in range(len(a)):\n a[i][1]=0\nfor i in range(len(b)):\n b[i][1]=0\nfor i in range(len(a)):\n if a[i] in b:\n if a[i][0]>1:\n C+=1\nprint(C)\n", "neg": "def factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n if temp!=1:\n arr.append([temp, 1])\n if arr==[]:\n arr.append([n, 1])\n return arr\n\nC=1\nA,B=map(int,input().split())\na=factorization(A)\nb=factorization(B)\nprint(len(a))\nprint(len(b))\nfor i in range(len(a)):\n a[i][1]=0\nfor i in range(len(b)):\n b[i][1]=0\nfor i in range(len(a)):\n if a[i] in b:\n if a[i][0]>1:\n C+=1\nprint(C)\n", "jacc_sim": 1.0, "before_after_length": [235, 249], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "print(len(a))\nprint(len(b))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u553308611", "n_user": "u553308611", "pos": "import numpy as np\ndef p(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\nA, B = map(int, input().split())\nM = np.min([A, B])\na = p(A)\nb = p(B)\nt = set(a) & set(b)\nprint(len(t) + 1)\n", "neg": "import numpy as np\ndef p(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\nA, B = map(int, input().split())\nM = np.min([A, B])\na = p(A)\nb = p(B)\nt = a and b\nprint(len(t) + 1)\n", "jacc_sim": 0.9361702127659575, "before_after_length": [164, 158], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "set()&andset()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u148425972", "n_user": "u148425972", "pos": "A, B = map(int, input().split())\n\ndef gcd(a, b):\n if b == 0: return a\n return gcd(b, a % b)\n\nnum = gcd(A, B)\n\nif num < 2:\n print(1)\n quit()\n\nlength = int(num ** 0.5) + 2\nisPrime = [True for i in range(length)]\nisPrime[2] = True\nfor i in range(2, length):\n if isPrime[i]:\n for j in range(2 * i, length, i):\n isPrime[j] = False\n\ncount = 1\n\ncur = 2\nwhile num != 1 and cur < length:\n if isPrime[cur] and num % cur == 0:\n while num % cur == 0:\n num //= cur\n count += 1\n cur += 1\n\nprint(count + (num != 1))\n", "neg": "A, B = map(int, input().split())\n\ndef gcd(a, b):\n if b == 0: return a\n return gcd(b, a % b)\n\nnum = gcd(A, B)\n\nisPrime = [True for i in range(num + 1)]\nisPrime[2] = True\nfor i in range(2, num+1):\n if isPrime[i]:\n for j in range(2 * i, num+1, i):\n isPrime[j] = False\n\ncount = 1\n\ncur = 2\nwhile num != 1:\n if isPrime[cur] and num % cur == 0:\n while num % cur == 0:\n num //= cur\n count += 1\n cur += 1\n\nprint(count)\n", "jacc_sim": 0.9148936170212766, "before_after_length": [217, 184], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "\nif num < 2:\n print(1)\n quit()\n\nlength = int(num ** 0.5) + 2legthum + 1legthum+1legthum+1 and cur < length + (num != 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u408314432", "n_user": "u408314432", "pos": "C,D = [int(e) for e in input().split()]\n\nif C <= D:\n m = D\n n = C\nelse:\n m = C\n n = D\n\nwhile n != 0 :\n a = m%n\n m = n\n n = a\n\nJ = []\n\nfor i in range(1,int(m**0.5)+1):\n if m % i == 0:\n J.append(i)\n if i != m//i:\n J.append(m//i)\n\n\nJ.sort()\n\nN = int(len(J))\nM = [1]\nI = []\n\nfor i in range(1,N):\n for p in range(1,int(J[i]**0.5)+1):\n if J[i]%p == 0:\n I.extend([J[i]])\n if int(len(I)) >=2:\n break\n if int(len(I)) == 1:\n M.extend([J[i]])\n I = []\n\n\nM = int(len(M))\n\nprint(M)", "neg": "C,D = [int(e) for e in input().split()]\n\nif C <= D:\n m = D\n n = C\nelse:\n m = C\n n = D\n\nwhile n != 0 :\n a = m%n\n m = n\n n = a\n\nJ = []\nfor i in range(1, int(m**0.5)+1):\n if m % i == 0:\n J.append(i)\n if i != m//i:\n J.append(m//i)\n\n\nJ.sort()\n\nN = int(len(J))\nprint(J)\nM = [1]\nI = []\n\nfor i in range(1,N):\n for p in range(1,J[i]+1):\n if J[i]%p == 0:\n I.extend([J[i]])\n if int(len(I)) == 2:\n M.extend([J[i]])\n I = []\n\n\nM = int(len(M))\n\nprint(M)", "jacc_sim": 0.9565217391304348, "before_after_length": [275, 257], "nl": "You are given two positive integers A and B. You need to choose a number of positive common divisors of A and B, where any two chosen divisors must be coprime. Find the maximum number of divisors that can be chosen. A common divisor of integers x and y divides both x and y. Integers x and y are coprime when they have no positive common divisors other than 1. The input is given as A and B, and the output should be the maximum number of divisors that can be chosen to satisfy the condition.", "diff_info": "\n print(J)\nJ[nt(J[i**0.5) >= break\n if int(len(I)) == 1:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02900", "p_user": "u366482170", "n_user": "u366482170", "pos": "#import sys\n\n#input = sys.stdin.readline\n\n#import heapq\nimport math\n#import fractions\n\ndef sosuhante(n):\n for k in range(2, int(math.sqrt(n))+1):\n if n% k ==0:\n return False\n return True\n\ndef main():\n# h,w,a,b = map(int, input().split())\n a,b=map(int,input().split())\n m=4\n k=1\n count=0\n\n if a>b:\n a,b=b,a\n sosu={1}\n# a = fractions.gcd(a,b)\n if a%2==0:\n sosu.add(2)\n while a%2==0:\n a//=2\n if a%3==0:\n sosu.add(3)\n while a%3==0:\n a//=3\n# print(d)\n c=math.sqrt(a)+1\n # print(c)\n while m<=c and m!=1:\n if a%m==0:\n sosu.add(m)\n while a%m==0:\n a//=m\n\n m+=1\n# print(sosu)\n if a!=1:\n sosu.add(a)\n# print(sosu)\n\n for i in sosu:\n if b%i==0:\n count+=1\n print(count)\n# for i in range(h):\n# print(aaa)\n\nif __name__ == \"__main__\":\n main()", "neg": "#import sys\n\n#input = sys.stdin.readline\n\n#import heapq\nimport math\nimport fractions\n\ndef sosuhante(n):\n for k in range(2, int(math.sqrt(n))+1):\n if n% k ==0:\n return False\n return True\n\ndef main():\n# h,w,a,b = map(int, input().split())\n a,b=map(int,input().split())\n m=2\n k=1\n\n count=1\n if a>b:\n a,b=b,a\n sosu=set()\n #d = math.gcd(a,b)\n# print(d)\n c=math.sqrt(a)+1\n # print(c)\n while m0 and A[i]-1 == A[i-1]:\n point += C[A[i-1]-1]\nprint(point)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\npoint = 0\n\nfor i in range(N):\n count+= B[A[i]]\n if i>0 and A[i] = A[i-1]:\n count += C[A[i-1]]\nprint(count)", "jacc_sim": 0.967741935483871, "before_after_length": [114, 107], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "c pui -1 -1=c pui-1cpui", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u194845444", "n_user": "u194845444", "pos": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\npt = 0\nfor i in range(N):\n pt += B[A[i]-1]\n if i > 0 and (A[i]-1) == A[i-1]:\n pt += C[A[i-1]-1]\nprint(str(pt))", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\npt = 0\nfor i in range(N):\n pt += B[A[i]-1]\n if i > 1 and (A[i]-1) == A[i-1]:\n pt += C[i-2]\nprint(str(pt))", "jacc_sim": 0.96875, "before_after_length": [117, 112], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "10A[21-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u739843002", "n_user": "u739843002", "pos": "N = int(input())\nA = list(map(lambda a: int(a), input().split(\" \")))\nB = list(map(lambda b: int(b), input().split(\" \")))\nC = list(map(lambda c: int(c), input().split(\" \")))\n \nsatis = 0\n \nfor i in range(len(A)):\n satis += B[A[i] - 1]\n if i >= 1 and A[i] - A[i-1] == 1:\n satis += C[A[i - 1] - 1]\n \nprint(satis)", "neg": "N = int(input())\nA = list(map(lambda a: int(a), input().split(\" \")))\nB = list(map(lambda b: int(b), input().split(\" \")))\nC = list(map(lambda c: int(c), input().split(\" \")))\n\nsatis = 0\n\nfor i in range(len(A)):\n satis += B[A[i]]\n if i >= 1 and A[i] - A[i-1] == 1:\n satis += C[i-1]\n\nprint(satis)", "jacc_sim": 1.0, "before_after_length": [145, 134], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": " - 1A[ - 1] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u403551852", "n_user": "u403551852", "pos": "n = int(input())\naa = list(map(int,input().split()))\nbb = list(map(int,input().split()))\ncc = list(map(int,input().split()))\nans = 0\nCnum = 0\ncur_a = 100\nfor a in aa:\n ans += bb[a-1]\n if a == cur_a+1:\n ans += cc[cur_a-1]\n Cnum += 1\n cur_a = a\nprint(ans)\n", "neg": "n = int(input())\naa = list(map(int,input().split()))\nbb = list(map(int,input().split()))\ncc = list(map(int,input().split()))\nans = 0\nCnum = 0\ncur_a = 100\nfor a in aa:\n ans += bb[a-1]\n if a == cur_a+1:\n ans += cc[Cnum]\n Cnum += 1\n cur_a = a\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [121, 118], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "cur_a-1]\n ]\n Cnum ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u601235270", "n_user": "u601235270", "pos": "n = int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\nma=sum(b)\nfor i in range(0,n-1):\n if a[i+1]-a[i]==1:\n ma+=c[a[i]-1]\nprint(ma)", "neg": "n = int(input())\na,b,c = list(map(int, input().split()))\nma=sum(b)\nfor i in range(0,n-1):\n if a[i+1]-a[i]==1:\n ma+=c[a[i]-1]\nprint(ma)", "jacc_sim": 1.0, "before_after_length": [103, 79], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "=list(map(intinput().split()))\n=list(map(intinput().split()))\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u007263493", "n_user": "u007263493", "pos": "n = int(input())\nA=list(map(int,input().split()))\nB=list(map(int,input().split()))\nC=list(map(int,input().split()))\n\nans=B[int(A[0])-1]\n\nfor i in range(1,n):\n if A[i-1]+1==A[i]:\n ans += B[int(A[i])-1]+C[int(A[i-1])-1]\n else:\n ans += B[int(A[i])-1]\n \nprint(ans)", "neg": "n = int(input())\nA=list(map(int,input().split()))\nB=list(map(int,input().split()))\nC=list(map(int,input().split()))\nprint(A[0])\nans=B[int(A[0])-1]\n\nfor i in range(1,n):\n if A[i-1]+1==A[i]:\n ans += B[int(A[i])-1]+C[int(A[i-1])-1]\n else:\n ans += B[int(A[i]-1)]\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [143, 149], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "print(A[0])-1-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u190405389", "n_user": "u211805975", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = list(map(int, input().split()))\nc = list(map(int, input().split()))\n\nans = sum(b)\n\nfor i in range(n-1):\n if a[i]+1==a[i+1]:\n ans += c[a[i]-1]\nprint(ans)\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\n\nans=sum(b)\n\nfor i in range(n-1):\n k=a[i]\n if a[i+1]==k+1:\n ans+=c[i]\n else:\n ans+=0\nprint(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [101, 113], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": " k=a[i]\n]]ka[i] i]\n else:\n ns+=0[i]-1]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u357230322", "n_user": "u357230322", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\nx=0\nfor i in range(0,n-1):\n if a[i]+1==a[i+1]:\n x+=c[a[i]-1]\ny=sum(b)\nprint(x+y)", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\nx=0\nfor i in range(0,n-1):\n if a[i]=a[i+1]:\n x+=c[a[i]-1]\ny=sum(b)\nprint(x+y)", "jacc_sim": 1.0, "before_after_length": [107, 106], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "+1=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u746419473", "n_user": "u746419473", "pos": "n=int(input())\na=list(map(int, input().split()))\nb=list(map(int, input().split()))\nc=list(map(int, input().split()))\n\nans=0\nfor i in range(n):\n r=a[i]-1\n if i > 0 and r == prev+1:\n ans+=b[r]+c[r-1]\n else :\n ans+=b[r]\n prev=r\n\nprint(ans)\n", "neg": "n=int(input())\na=list(map(int, input().split()))\nb=list(map(int, input().split()))\nc=list(map(int, input().split()))\n\nans=0\nj=0\nfor i in range(n):\n r=a[i]-1\n if i > 0 and r == prev+1:\n ans+=b[r]+c[j]\n j+=1\n else :\n ans+=b[r]\n prev=r\n\nprint(ans)\n", "jacc_sim": 0.9705882352941176, "before_after_length": [124, 132], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "=0\njr-j]\n j+=]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u692498898", "n_user": "u692498898", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\n\nm=0\nfor i in range(n-1):\n if a[i+1]==a[i]+1:\n m=m+c[a[i]-1]\n\nprint(sum(b)+m)", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\n\nm=0\nfor i in range(n):\n if a[i+1]==a[i]+1:\n m=m+c[i]\n\nprint(sum(b)+m)", "jacc_sim": 0.9655172413793104, "before_after_length": [104, 97], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "-1a[]-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u499832992", "n_user": "u499832992", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = list(map(int, input().split()))\nc = list(map(int, input().split()))\n\ntmp = -1\nsum = 0\nfor i in range(n):\n sum += b[i]\n if a[i] == tmp + 1:\n sum += c[tmp-1]\n tmp = a[i]\nprint(sum)", "neg": "n = int(input())\na = list(map(int, input().split()))\nb = list(map(int, input().split()))\nc = list(map(int, input().split()))\n\ntmp = -1\nsum = 0\nfor i in range(n):\n sum += b[i]\n if a[i] == tmp + 1:\n sum += c[i]\n tmp = a[i]\nprint(sum)", "jacc_sim": 1.0, "before_after_length": [109, 107], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "itmp-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u603661230", "n_user": "u603661230", "pos": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\nmanzoku = 0\nfor i in range(N):\n manzoku += B[A[i]-1]\n if i < N - 1 and A[i] + 1 == A[i + 1]:\n manzoku += C[A[i]-1]\nprint(manzoku)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\nmanzoku = 0\nfor i in range(N):\n manzoku += B[A[i]-1]\n if i == N - 2 and A[i] + 1 == A[i + 1]:\n manzoku += C[A[i]-1]\nprint(manzoku)", "jacc_sim": 0.9354838709677419, "before_after_length": [122, 122], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "<==21", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u172010803", "n_user": "u172010803", "pos": "n = int(input())\na = list(map(int,input().split(\" \")))\nb = list(map(int,input().split(\" \")))\nc = list(map(int,input().split(\" \")))\nm,j = [0,-1]\nfor i in a:\n m += b[i-1]\n if i == j + 1:\n m += c[j-1]\n j = i\nprint(m)", "neg": "n = int(input())\na = list(map(int,input().split(\" \")))\nb = list(map(int,input().split(\" \")))\nc = list(map(int,input().split(\" \")))\nm,j = [0,0]\nfor i in a:\n m += b[i-1]\n if i == j + 1:\n m += c[i-2]\n j = i\nprint(m)", "jacc_sim": 0.9666666666666667, "before_after_length": [107, 106], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "0-1ij21", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u776393937", "n_user": "u776393937", "pos": "n = int(input())\nlist_a = list(map(int, input().split()))\nlist_b = list(map(int, input().split()))\nlist_c = list(map(int, input().split()))\n \nb_sum = sum(list_b)\n \nsatis = 0\nfor i in range(n-1):\n if list_a[i+1] == list_a[i] + 1:\n satis += list_c[list_a[i]-1]\n \nresult = b_sum + satis\n\nprint(result)", "neg": "n = int(input())\nlist_a = list(map(int, input().split()))\nlist_b = list(map(int, input().split()))\nlist_c = list(map(int, input().split()))\n\nb_sum = sum(list_b)\n\nsatis = 0\nfor i in range(n-1):\n if list_a[i+1] == list_a[i] + 1:\n satis += list_c[i]\n\nresult = b_sum + satis\nprint(result)", "jacc_sim": 1.0, "before_after_length": [140, 129], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": " list_a[-1] \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u211236379", "n_user": "u211236379", "pos": "N = int(input())\nA = list(map(int,input().split()))\nB = list(map(int,input().split()))\nC = list(map(int,input().split()))\n\nanswer = sum(B)\nfor i in range(len(A)-1):\n if A[i+1] == A[i]+1:\n answer += C[A[i]-1]\n\nprint(answer)\n ", "neg": "N = int(input())\nA = list(map(int,input().split()))\nB = list(map(int,input().split()))\nC = list(map(int,input().split()))\n\nanswer = sum(B)\nfor i in range(len(B)):\n if B[i+1] = B[i]+1:\n answer += C[i]\n\nprint(answer)\n ", "jacc_sim": 0.9655172413793104, "before_after_length": [105, 99], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "BA-1BA=BAA[]-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u187894032", "n_user": "u187894032", "pos": "n = int(input())\na_list = list(map(int, input().split()))\nb_list = list(map(int, input().split()))\nc_list = list(map(int, input().split()))\n\ndef main(a_list, b_list, c_list):\n before_element = 999\n result = 0\n for element in a_list:\n result += b_list[element-1]\n if element == before_element + 1:\n result += c_list[before_element-1]\n before_element = element\n return result\n\nprint(main(a_list, b_list, c_list))", "neg": "n = int(input())\na_list = list(map(int, input().split()))\nb_list = list(map(int, input().split()))\nc_list = list(map(int, input().split()))\n\ndef main(a_list, b_list, c_list):\n before_element = 999\n result = 0\n for element in a_list:\n result += b_list[element-1]\n print('b', result)\n if element == before_element + 1:\n result += c_list[before_element-1]\n print('c', result)\n before_element = element\n return result\n\nprint(main(a_list, b_list, c_list))", "jacc_sim": 0.9142857142857143, "before_after_length": [158, 174], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "print('b', result)\n befo pie_eleme = element\n return result\n\nprint'main(a_list, b_list, ', result)\n beforeeement = element\n return result\n\nprnt(main(a_li, b_list, c_list", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u395761272", "n_user": "u546853743", "pos": "n = int(input())\na = list(map(int,input().split()))\nb = list(map(int,input().split()))\nc = list(map(int,input().split()))\nd = 0\n\nb_sum = sum(b)\nfor i in range(n-1):\n if a[i]+1 == a[i+1]:\n d = c[a[i]-1] + d\n\nprint(b_sum + d)", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\ns=0\ns += sum(b)\nfor i in range(n-1):\n if a[i]==a[i+1]+1:\n s += c[i-1]\nprint(s)", "jacc_sim": 0.9032258064516129, "before_after_length": [112, 100], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": " sd \nb_um+==a[i] == a[i]sd+a[] + d\nb_um + d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u169138653", "n_user": "u169138653", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\ns=b[a[0]-1]\nfor i in range(1,n):\n if a[i]==a[i-1]+1:\n s+=b[a[i]-1]+c[a[i-1]-1]\n else:\n s+=b[a[i]-1]\nprint(s)\n", "neg": "a=list(map(int,input().split()))\nb=list(map(int,input().split()))\nc=list(map(int,input().split()))\ns=a[0]\nfor i in range(1,n):\n if a[i]==a[i-1]+1:\n s+=a[i]+c[i-1]\n else:\n s+=a[i]\nprint(s)", "jacc_sim": 1.0, "before_after_length": [135, 107], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "n=int(input())\nb[]-1aba[]-1a[-1]aba[]-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u116124892", "n_user": "u116124892", "pos": "n = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\nres = 0\nfor i in range(n - 1):\n res += B[i]\n if A[i] + 1 == A[i + 1]:\n res += C[A[i] - 1]\nprint(res + B[-1])\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\nres = 0\nfor i in range(N - 1):\n res += B[i]\n if A[i] + 1 == A[i + 1]:\n\t\tres += C[A[i] - 1]\nprint(res)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [109, 106], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "NnNn\t\t + B[-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u168333670", "n_user": "u168333670", "pos": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\ntotal = sum(B)\n\nfor i in range(N - 1):\n if A[i + 1] - A[i] == 1:\n total += C[A[i] - 1]\n\nprint(total)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\ntotal = sum(B)\n\nfor i in range(N - 1):\n if A[i + 1] - A[i] == 1:\n total += C[i]\n\nprint(total)", "jacc_sim": 1.0, "before_after_length": [103, 98], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": "A[] - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02916", "p_user": "u417096287", "n_user": "u135116520", "pos": "N = int(input())\nA = list(map(int, input().split()))\nB = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\nsatisfy = 0\nfor i in range(N):\n if A[i] == A[i - 1] + 1 and i >= 1:\n satisfy += C[A[i - 1] - 1]\n satisfy += B[A[i] - 1]\nprint(satisfy)", "neg": "N=int(input())\nA=list(map(int,input().split()))\nB=list(map(int,input().split()))\nC=list(map(int,input().split()))\ns=0\nfor i in range(N):\n s+=B[A[i]-1]\n if i>=1 and A[i]==A[i-1}+1:\n s+=C[i]\nprint(s)", "jacc_sim": 0.90625, "before_after_length": [119, 110], "nl": "Takahashi went to an all-you-can-eat buffet with N kinds of dishes and ate all of them once. Each dish eaten gives satisfaction points, and eating consecutive dishes gives additional satisfaction points. The task is to find the sum of the satisfaction points gained. Constraints include integer inputs, N ranging from 2 to 20, unique dish numbers, and satisfaction points within 1 to 50. The input format includes N, dish numbers, and satisfaction points, while the output is the sum of satisfaction points as an integer. Sample inputs and outputs are provided for illustration.", "diff_info": " \natisfy s if A[i] == A[i - 1] 1 and i > 1:\n satisfy += C[A[i - 1] - 1]\n satisfy += -1]\n if i>=1 and A[i]==A[i1}+1:\n1 s+=C[iatisfy", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u304029456", "n_user": "u304029456", "pos": "import math\na,b=map(int,input().split())\nif b==1:\n print(0)\nelse:\n if a>=b:\n c=1\n else:\n c=math.ceil((b-1)/(a-1))\n print(c)", "neg": "import math\na,b=map(int,input().split())\nb=b-1\nif a>b:\n c=0\nelse:\n c=math.ceil(b/a)\nprint(c)", "jacc_sim": 1.0, "before_after_length": [71, 53], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "if =b-: print(0)\nelse:\n = 01 (-1)(-1) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u917558625", "n_user": "u917558625", "pos": "s=list(map(int,input().split()))\na=0\nb=s[0]-1\nif s[1]==1:\n print(a)\nelse:\n a=a+1\n while s[1]>s[0]:\n a=a+1\n s[0]=s[0]+b\n print(a)", "neg": "s=list(map(int,input().split()))\na=0\nif s[1]<=1:\n print(a)\nelse:\n while s[1]>0:\n a=a+1\n s[1]=s[1]-s[0]\n print(a)", "jacc_sim": 0.9230769230769231, "before_after_length": [88, 75], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "b=s[0]-1\n<=a=a+1\n s[]101]-s[+b ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u947327691", "n_user": "u947327691", "pos": "a,b=map(int,input().split())\n\nresult=1\ncount=0\nwhile result < b:\n result += a-1\n count += 1\n\nprint(count)", "neg": "a,b=map(int,input().split())\n\nresult=a\ncount=1\nwhile result =< b:\n result += a-1\n count += 1\n\nprint(count)", "jacc_sim": 0.9523809523809523, "before_after_length": [45, 46], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "a110=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u646989285", "n_user": "u646989285", "pos": "A, B = [int(i) for i in input().split()]\nresult = 1\nrequire_socket = B - A\n\nresult += require_socket // (A - 1)\nif (require_socket / (A - 1)).is_integer() is False:\n result += 1\n\nprint(result)", "neg": "A, B = [int(i) for i in input().split()]\nresult = 1\nrequire_socket = B - A\n\nif B == 1:\n print(0)\nelse:\n result += require_socket // A - 1\n if (require_socket / A - 1).is_integer() is False:\n result += 1\n\nprint(result)", "jacc_sim": 0.9310344827586207, "before_after_length": [73, 86], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "if B == 1:\n print(0)\nelse:\n () () ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u925364229", "n_user": "u925364229", "pos": "A, B = map(int, input().split(\" \"))\nif (B - 1) % (A - 1) == 0:\n print((B - 1) // (A - 1))\nelse:\n print(((B - 1) // (A - 1)) + 1)\n", "neg": "A, B = map(int, input().split(\" \"))\nif (B - 1) % A == 0:\n print((B - 1) // A)\nelse:\n print(((B - 1) // A) + 1)\n", "jacc_sim": 1.0, "before_after_length": [66, 56], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "( - 1)( - 1)( - 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u657329920", "n_user": "u657329920", "pos": "x = input().split()\nA, B = int(x[0]), int(x[1])\nn = 1\nt = 0\nwhile n < B:\n n += A - 1\n t += 1\nprint(t)\n", "neg": "x = input().split()\nA, B = x[0], x[1]\nn = 1\nt = 0\nwhile n <= B:\n n += A - 1\n t += 1\nprint(t)", "jacc_sim": 0.9565217391304348, "before_after_length": [56, 50], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "int()int()=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u796842765", "n_user": "u796842765", "pos": "A, B = map(int,input().split())\npuragu = 1\nif B == 1:\n print(0)\n exit()\nif A >= B:\n print(1)\n exit()\n\nresult = 0\n\nwhile puragu < B:\n puragu += A-1\n result += 1\n\nprint(result)\n", "neg": "A, B = map(int,input().split())\npuragu = 1\nif A >= B:\n print(1)\n exit()\n\nresult = 0\n\nwhile puragu <= B:\n puragu += A-1\n result += 1\n\nprint(result)\n", "jacc_sim": 1.0, "before_after_length": [85, 69], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "\nif B == 1:\n print(0)\n exit()=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u382639013", "n_user": "u453500284", "pos": "import math\nA, B = map(int, input().split())\n\nprint(math.ceil((B -1) / (A - 1)))", "neg": "import math\nA, B = map(int, input().split())\nprint(math.ceil((B - 1)//(A - 1)))\n", "jacc_sim": 1.0, "before_after_length": [34, 34], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "\n / \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u175746978", "n_user": "u175746978", "pos": "a, b = map(int, input().split())\nkuchi = 1\ncnt = 0\nif kuchi <= b:\n for i in range(1, 20):\n if kuchi >= b:\n break\n else:\n for j in range(1, a ** i):\n if kuchi >= b:\n break\n else:\n if j < a ** i:\n cnt += 1\n kuchi = kuchi - 1 + a\n else:\n kuchi = kuchi * a\n cnt += kuchi / a \nprint(cnt)\n", "neg": "a, b = map(int, input().split())\nkuchi = 1\ncnt = 0\nif kuchi >= b:\n break\nelse:\n for i in range(1, 20):\n if kuchi >= b:\n break\n else:\n for j in range(1, a ** i):\n if kuchi >= b:\n break\n else:\n if j < a ** i:\n cnt += 1\n kuchi = kuchi - 1 + a\n else:\n kuchi = kuchi * a\n cnt += kuchi / a \nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [145, 149], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " ><:\n break\nelse\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u843318346", "n_user": "u843318346", "pos": "a,b = map(int,input().split())\nprint(int(-(-(b-1)//(a-1))))\n", "neg": "a,b = map(int,input().split())\nprint(int(-(-a//b)))", "jacc_sim": 0.9333333333333333, "before_after_length": [31, 22], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "a(b-1)b(a-1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u642883360", "n_user": "u840958781", "pos": "a, b = map(int, input().split())\nprint(0 if b == 1 else ((b - 1) + (a - 2)) // (a - 1))\n", "neg": "a,b=map(int,input().split())\nif (b-2)%(a-1)==0:\n print((b-2)//(a-1)+1)\nelse:\n print((b-2)//(a-1))", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 60], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " if (b-2)%(a-1)==0:\n (0 if == -2)//(a- )+1)\n:\n print 1) + (a - ) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u911518795", "n_user": "u911518795", "pos": "A, B = map(int, input().split())\n\namari = (B-1)%(A-1)\n\nif amari == 0:\n ans = (B-1)/(A-1)\nelse:\n ans = (B-1)//(A-1) + 1\n\nans2 = int(ans)\n\nprint(ans2)", "neg": "A, B = map(int, input().split())\n\namari = (B-1)%(A-1)\n\nif amari == 0:\n ans = (B-1)/(A-1)\nelse:\n ans = (B-1)//(A-1) + 1\n\nprint(ans)", "jacc_sim": 0.9583333333333334, "before_after_length": [85, 75], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "ans2 = int(ans)\n\n2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u116722061", "n_user": "u391066416", "pos": "A, B = map(int, input().split())\nprint((-(-(B-A)//(A-1)))+1)", "neg": "A, B = map(int, input().split())\nprint((B+1)//(A-1))", "jacc_sim": 1.0, "before_after_length": [32, 25], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " -(-(+1-A)+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u956891850", "n_user": "u956891850", "pos": "A = input().split()\ncount = 1\na = int(A[0])\nb = int(A[1])\nc = a\n\nif b == 1:\n print(0)\nelse:\n while a < b:\n a += c - 1\n count += 1\n if a > b:\n break\n print(count)\n", "neg": "A = input().split()\ncount = 1\na = int(A[0])\nb = int(A[1])\nc = a\nwhile a < b:\n a += c - 1\n count += 1\n print(a)\n if a >= b:\n break\n\nprint(count)\n", "jacc_sim": 0.9615384615384616, "before_after_length": [84, 73], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "\nif b == 1:\n print(0)\nelse:\n p if a > b:\n beint()kpif a >= b:\n beak\n\npr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u851704997", "n_user": "u851704997", "pos": "A,B = map(int,input().split())\ntap = 1\nans = 0\nwhile(tap < B):\n ans += 1\n tap = tap + A - 1\nprint(str(ans))\n", "neg": "A,B = map(int,input().split())\ntap = 1\nans = 0\nwhile(tap < B):\n ans += 1\n if(tap == 1):\n tap = tap + A\n else:\n tap = tap + A - 1\nprint(str(ans))", "jacc_sim": 0.9166666666666666, "before_after_length": [49, 67], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "if(tap == 1):\n tap = tap + A\n else:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u682997551", "n_user": "u682997551", "pos": "A, B = map(int, input().split())\n\nans = 0\ntaps = 1\nwhile taps < B:\n taps += A - 1\n ans += 1\n\nprint(ans)", "neg": "A, B = map(int, input().split())\n\nans = 0\ntaps = 1\nwhile taps < B:\n print(taps)\n taps += A - 1\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [48, 55], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "print(taps)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u252210202", "n_user": "u748311048", "pos": "A, B = map(int, input().split())\nK = 0\n\nwhile (A-1)*K+1 < B:\n K = K+1\nprint(K)", "neg": "A,B=map(int, input().split())\ncount=0\n\nwhile B<(A-1)*count+1:\n count+=1\n \nprint(count)", "jacc_sim": 0.9090909090909091, "before_after_length": [42, 43], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " K count B c:\n c += a-1\n \n count += 1\nprint(count)\n", "neg": "a,b = map(int,input().split())\n\nif a >= b:\n print(1)\nelse:\n c = 1\n count=0\n while b > c:\n c + = a-1\n \n count += 1\n print(count)\n", "jacc_sim": 0.9130434782608695, "before_after_length": [47, 67], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "if a >= b:\n print(1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u412563426", "n_user": "u952968889", "pos": "a, b = map(int, input().split())\n\nif b == 1:\n print(0)\n exit()\n\nif a >= b:\n print(1)\n exit()\nb -=a\nprint(1 + -(-b//(a-1)))", "neg": "a, b = map(int, input().split())\n\nif b == 1:\n print(0)\n exit()\n\nif a >= b:\n print(1)\nelse:\n b -= a\n print(1 + b//a)", "jacc_sim": 0.9545454545454546, "before_after_length": [64, 60], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " else:\n exit()\n -(-(-1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u876616721", "n_user": "u876616721", "pos": "s = input().split()\na = int(s[0])\nb = int(s[1])\n#print(a,b)\nout = 1\nn = 0\nwhile b > out:\n out += a-1\n n +=1\nprint(n)", "neg": "s = input().split()\na = int(s[0])\nb = int(s[1])\n#print(a,b)\nout = 1\nn = 1\nwhile b > out:\n out += a-1\n n +=1\nprint(n) ", "jacc_sim": 1.0, "before_after_length": [63, 64], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "10 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u090406054", "n_user": "u090406054", "pos": "a,b=map(int,input().split())\nc=(b-1)/(a-1)\nif c-int(c)==0:\n print(int(c))\n\nelse:\n print(int(c)+1)", "neg": "a,b=map(int,input().split())\nc=(b-1)//(a-1)\nif c-int(c)=0:\n print(str(c))\n \nelse:\n print(c+1)\n \n", "jacc_sim": 0.9545454545454546, "before_after_length": [57, 59], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "/=sinr int()\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u480138356", "n_user": "u480138356", "pos": "a, b = map(int, input().split())\n\nnow = 1\nans = 0\nwhile now < b:\n ans += 1\n now += a-1\nprint(ans)\n", "neg": "a, b = map(int, input().split())\n\nnow = 1\nans = 0\nif now >= b:\n print(ans)\nans += 1\nnow += a\nif now >= b:\n print(ans)\nwhile now < b:\n ans += 1\n now += a-1\nprint(ans)", "jacc_sim": 0.9130434782608695, "before_after_length": [45, 76], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "if now >= b:\n print(ans)\nans += 1\nnow += a\nif now >= b:\n print(ans)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u876742094", "n_user": "u996434204", "pos": "a,b = map(int,input().split())\nif (b-1)%(a-1)==0:\n print((b-1)//(a-1))\nelse:\n print((b-1)//(a-1)+1)\n", "neg": "a,b=map(int, input().split())\n\nif a==b:\n print(1)\nelse:\n print((b-1)//(a-1)+1)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [61, 45], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " \n(b-1)%(-1)b0(b-)//(a-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u571999153", "n_user": "u571999153", "pos": "a,b = map(int, input().split())\ncount = 1\nif b == 1:\n print(0)\nelse:\n while True:\n if b <= (a-1)*(count-1) + a:\n break\n count += 1\n print(count)", "neg": "a,b = map(int, input().split())\ncount = 0\nif b == 1:\n print(0)\nelse:\n while True:\n if b <= (a-1)*count + a:\n break\n count += 1\n print(count)\n", "jacc_sim": 1.0, "before_after_length": [68, 65], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "01(-1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u433532588", "n_user": "u433532588", "pos": "\n\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**6)\n##############################\n\nA, B = map(int, input().split())\n\nif B == 1:\n print(0)\n exit()\n\nif A >= B:\n print(1)\n exit()\n\ncount = 2\nB -= (A-1)\nwhile True:\n if A >= B:\n print(count)\n exit()\n\n count += 1\n B -= (A-1)\n", "neg": "\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**6)\n##############################\n\nA, B = map(int, input().split())\n\nif B == 1:\n print(0)\n exit()\n\nif A >= B:\n print(1)\n exit()\n\ncount = 2\nB -= (A-1)\nwhile True:\n if A >= B:\n print(count)\n exit()\n\n count += 1\n B -= (A-2)", "jacc_sim": 1.0, "before_after_length": [126, 124], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "\n21\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u398846051", "n_user": "u502731482", "pos": "a, b = map(int, input().split())\nports = 1\ncnt = 0\nwhile ports < b:\n ports += (a-1)\n cnt += 1\nprint(cnt)", "neg": "\na, b = map(int, input().split())\ncnt = 0\n\nwhile(a <= b):\n cnt += 1\n a += a\n\nprint(cnt)", "jacc_sim": 0.9047619047619048, "before_after_length": [45, 41], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "\nports = 1\n\n(a ports=)ports += (a-1)\n a += a\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u363599046", "n_user": "u363599046", "pos": "a, b = map(int,input().split())\ni=0\nd= 1\nwhile d < b:\n\td -= 1\n\td += a\n\ti+=1\nprint(i)", "neg": "a, b = map(int,input().split())\ni=1\nd=0\nwhile d < b:\n\t\n\td = i*(a-1) + a\n\ti+=1\nprint(i)", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 51], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": "100 1d -= 1+ i*(a-1) +", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u586759271", "n_user": "u625864724", "pos": "a,b=map(int,input().split())\nprint(-( (-b+1)//(a-1) ))", "neg": "a, b = map(int,input().split())\nprint((b + a - 2)//(a - 1))\n", "jacc_sim": 0.9411764705882353, "before_after_length": [28, 28], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " - (- 1 a - 2 \n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02922", "p_user": "u015467545", "n_user": "u091051505", "pos": "a,b=map(int,input().split())\nif (b-1)%(a-1)==0:\n print((b-1)//(a-1))\nelse:\n print((b-1)//(a-1)+1)", "neg": "a, b = map(int, input().split())\nif b % a == 0:\n ans = b // a\nelse:\n ans = (b // a) + 1\n print(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [60, 47], "nl": "Takahashi's house has only one socket. He wants to extend it with some number of power strips, each with A sockets, into B or more empty sockets. One power strip with A sockets can extend one empty socket into A empty sockets. Find the minimum number of power strips required. All values in input are integers. 2 \u2264 A \u2264 20 and 1 \u2264 B \u2264 20. Input is given as A and B. Output the minimum number of power strips required.", "diff_info": " ( -1) ( -1) aprit((s = -1) (-1)) ans = (b // a) + 1\n (b-1)//(ns-1+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u228232845", "n_user": "u228232845", "pos": "from collections import Counter\nn = int(input())\ns = [input() for _ in range(n)]\ncnt = 0\nd = {}\nfor i in range(n):\n sortsi = ''.join(sorted(s[i]))\n if sortsi in d:\n cnt+=d[sortsi]\n d[sortsi]+=1\n else: \n d[sortsi]=1\nprint(cnt)", "neg": "from collections import Counter\nn = int(input())\ns = [input() for _ in range(n)]\ncnt = 0\nd = {}\nfor i in range(n):\n sortsi = ''.join(sorted(s[i]))\n #print(sortsi)\n if sortsi in d: cnt+=1\n else: d[sortsi]=1\nprint(cnt)", "jacc_sim": 0.9714285714285714, "before_after_length": [100, 91], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "#print(sortsi)\n \n d[sortsi]\n d[sortsi]+=\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u231685196", "n_user": "u231685196", "pos": "d = {}\nn = int(input())\nfor i in range(n):\n temp = [0 for i in range(26)]\n s = input()\n for c in s:\n t = ord(c)-97\n temp[t]+=1\n for i in range(26):\n temp[i] = str(temp[i])\n txt = \",\".join(temp)\n if txt not in d:\n d[txt] = 1\n else:\n d[txt] += 1\nans = 0\nfor k in d:\n if d[k] != 1:\n ans += d[k]*(d[k]-1)/2\nprint(int(ans))\n", "neg": "d = {}\nfor i in range(n):\n temp = [0 for i in range(26)]\n s = input()\n for c in s:\n t = ord(c)-97\n temp[t]+=1\n for i in range(26):\n temp[i] = str(temp[i])\n txt = \",\".join(temp)\n if txt not in d:\n d[txt] = 1\n else:\n d[txt] += 1\nans = 0\nfor k in d:\n if d[k] != 1:\n ans += d[k]*(d[k]-1)/2\nprint(int(ans))\n", "jacc_sim": 1.0, "before_after_length": [166, 159], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\nn = int(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u842388336", "n_user": "u842388336", "pos": "n = int(input())\ncheck = {}\nlst = []\n\nfor _ in range(n):\n s = list(input())\n s.sort()\n s = \"\".join(s)\n lst.append(s)\n try:\n check[s]+=1\n except:\n check.update({s:1})\n \ncnt=0\ncheck_set = set(lst)\nfor c in check_set:\n temp_cnt = check[c]\n cnt += temp_cnt*(temp_cnt-1)/2\nprint(int(cnt))", "neg": "n = int(input())\ncheck = {}\nlst = []\n\nfor _ in range(n):\n s = list(input())\n s.sort()\n s = \"\".join(s)\n lst.append(s)\n try:\n check[s]+=1\n else:\n check.update({s:1})\n \ncnt=0\ncheck_set = set(lst)\nfor c in check_set:\n temp_cnt = check[c]\n cnt += temp_cnt*(temp_cnt-1)/2\nprint(int(cnt))", "jacc_sim": 0.9512195121951219, "before_after_length": [137, 137], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "lsxcpt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u606146341", "n_user": "u606146341", "pos": "import collections\n\nn = int(input())\nlists = [str(input()) for i in range(n)]\n\nlists2 = [\"\".join(sorted(i)) for i in lists]\nl = collections.Counter(lists2)\nc = l.values()\n \nprint(int(sum([i * (i - 1)/ 2 for i in c])))", "neg": "import itertools\nimport collections\n \nn = int(input())\nlists = [str(input()) for i in range(n)]\n \nlists2 = [\"\".join(sorted(i)) for i in lists]\nl = collections.Counter(lists2)\nc = l.values()\n \nprint(sum([i * (i - 1)/ 2 for i in c]))", "jacc_sim": 0.9696969696969697, "before_after_length": [84, 86], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "itertools\nimport int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u820357030", "n_user": "u820357030", "pos": "N = int(input())\nS = [input() for i in range(N)]\nd = {}\nS_trans = [''.join(sorted(list(s))) for s in S]\ncount = 0\nfor s in S_trans:\n if s in d:\n count += d[s]\n d[s] += 1\n else:\n d[s] = 1\nprint(count)", "neg": "N = int(input())\nS = [input() for i in range(N)]\n\nd = {}\n\nS_trans = [''.join(sorted(list(s))) for s in S]\n\ncount = 0\nfor s in S_trans:\n if s in d:\n d[s] += 1\n else:\n d[s] = 1\n count += d[s]\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [96, 100], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\n\n\nd[s]countd[s]\n d[s] += print( += d[s]\n\nprint(count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u671352108", "n_user": "u671352108", "pos": "# Green Bin\nn = int(input())\ns = [input() for i in range(n)]\nm = 0\nlist = {}\nfor i in s:\n i = ' '.join(sorted(i))\n if i in list:\n list[i] = list[i] + 1\n else:\n list[i] = 1\nfor i in list.values():\n l = i -1\n m = m + int(((l * (l + 1)) / 2))\nprint(m)", "neg": "# Green Bin\nn = int(input())\ns = [input() for i in range(n)]\nm = 0\nlist = {}\nfor i in s:\n i = ' '.join(sorted(i))\n if i in list:\n list[i] = list[i] + 1\n else:\n list[i] = 1\nfor i in list.values():\n l = i -1\n m = m + int(((l * (l + 1)) / 2))\nprint(list)", "jacc_sim": 1.0, "before_after_length": [120, 120], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "mlist", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u756604554", "n_user": "u756604554", "pos": "N = int(input())\n\nstrings = {}\n\nans = 0\n\nfor _ in range(N):\n s = sorted(list(input()))\n join_s = ''.join(s)\n if join_s in strings:\n strings[join_s] += 1\n ans += strings[join_s]\n else:\n strings[join_s] = 0\n\nprint(ans)", "neg": "N = int(input())\n\nstrings = {}\n\nfor _ in range(N):\n s = sorted(list(input()))\n join_s = ''.join(s)\n if join_s in strings:\n strings[join_s] += 1\n else:\n strings[join_s] = 0\n \nprint(strings)", "jacc_sim": 0.9666666666666667, "before_after_length": [97, 83], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\n\nans = 0 ans += strings[join_s]\n astrig", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u720384347", "n_user": "u720384347", "pos": "N = int(input())\ns = sorted([\"\".join(sorted((input()))) for i in range(N)])\ncount = 0\n\nnum=1\nfor i in range(N-1):\n if(s[i]==s[i+1]):\n num += 1\n elif(num>1):\n count += num*(num-1)/2\n num = 1\n \nif(num>1):\n count += num*(num-1)/2\nprint(int(count))", "neg": "N = int(input())\ns = sorted([sorted((input())) for i in range(N)])\ncount = 0\n\nfor i in range(N-1):\n num=0\n if(s[i]==s[i+1]): \n num += 1\n elif(num>0):\n count += num*(num-1)/2\n \nprint(count)", "jacc_sim": 0.9032258064516129, "before_after_length": [119, 92], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\"\".join()\nnum=1num=0\n 01num = 1\n \nif(num>1):\n count += num*(num-1)/2icou(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u747309718", "n_user": "u747309718", "pos": "from collections import *\n \nn = int(input())\ndic = defaultdict(int)\nfor i in range(n):\n dic[\"\".join(sorted(input()))] += 1\n \nans = 0\nfor k,v in dic.items(): \n ans += int(v*(v-1)/2)\n #ans += v*(v-1)//2\nprint(ans)", "neg": "from collections import *\n \nn = int(input())\ndic = defaultdict(int)\nfor i in range(n):\n dic[\"\".join(sorted(input()))] += 1\n#print(dic.items())\n \nans = 0\nfor k,v in dic.items(): \n #print(v)\n ans += (v-1)\n #ans += v*(v-1)//2\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [92, 102], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "#print(dic.items())\n#print(v)\n int(v*)/2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u441254033", "n_user": "u441254033", "pos": "import sys\n\nn = int(input())\n\nd = {}\ncnt = 0\n\nfor i in range(n):\n s = ''.join(sorted(input()))\n if s in d.keys():\n d[s] += 1\n cnt += d[s]\n else:\n d[s] = 0\n \n \nprint(cnt) ", "neg": "import sys\n\nn = int(input())\n\ndd = {'a1':0}\ncnt = 0\n\nfor i in range(n):\n s = ''.join(sorted(input()))\n if s in dd.keys():\n dd[s] += 1\n cnt += 1\n else:\n dd[s] = 0\n \n \nprint(cnt) ", "jacc_sim": 0.9090909090909091, "before_after_length": [87, 89], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "d'a1':0dd1d[s]d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u782930273", "n_user": "u782930273", "pos": "from collections import Counter\n\nN = int(input())\nS = []\nfor _ in range(N):\n S.append(\"\".join(sorted(input())))\n\nc = Counter(S)\nprint(sum([k*(k-1)//2 for k in c.values()]))", "neg": "from collections import Counter\n\nN = int(input())\nS = [\"\".join(sorted(input()[:-1])) for _ in range(N)]\nc = Counter(S)\nprint(c)\nprint(sum([k*(k-1)//2 for k in c.values()]))", "jacc_sim": 0.9696969696969697, "before_after_length": [67, 68], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "]\nfor _ in range(N):\n S.append([:-1] for _ in range(N]\n)\nprint(c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u785795721", "n_user": "u785795721", "pos": "n = int(input())\nS = [''.join(sorted(input())) for _ in range(n)]\nd = {}\nfor i in S:\n d.setdefault(i, 0)\n d[i] += 1\nans = 0\nfor value in d.values():\n ans += value * (value - 1) // 2\nprint(ans)", "neg": "n = int(input())\nS = [\"\".join(sorted(input())) for _ in range(n)]\nd = []\nfor i in S:\n d.setdefault(i, 0)\n d[i] += 1\nans = 0\nfor value in d.values:\n ans = value * (value) / 2\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [85, 83], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\"\"''[]{} ()ans ans + - 1/", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u215630013", "n_user": "u215630013", "pos": "from math import factorial, ceil\nn = int(input())\nd = {}\nfor i in range(n):\n s = input()\n ns = ''.join(sorted(s))\n if ns not in d.keys():\n d[ns] = 1\n else:\n d[ns] += 1\nans = 0\nfor i, v in d.items():\n if v != 1:\n ans += factorial(v) /(factorial(v-2)*2)\nprint(int(ans))", "neg": "from math import factorial\nn = int(input())\nd = {}\nfor i in range(n):\n s = input()\n ns = ''.join(sorted(s))\n if ns not in d.keys():\n d[ns] = 1\n else:\n d[ns] += 1\nans = 0\nfor i, v in d.items():\n if v != 1:\n ans += factorial(v) /(factorial(v-2)*2)\nprint(str(ans)[:-2])", "jacc_sim": 0.9555555555555556, "before_after_length": [122, 124], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "l, ceiistr(at(an[:-2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u986985627", "n_user": "u986985627", "pos": "from sys import stdin, exit\nfrom math import factorial\ninput = stdin.readline\nlmi = lambda: list(map(int, input().split()))\nmi = lambda: map(int, input().split())\nsi = lambda: input().strip('\\n')\nssi = lambda: input().strip('\\n').split()\n\ndef choose(x):\n return factorial(x)/(2*factorial(x-2))\n\nwords = {}\n\nfor i in range(int(input())):\n s = \"\".join(sorted(si()))\n if s not in words:\n words[s] = 1\n else:\n words[s] += 1\nans = 0\nfor i in words:\n if words[i] == 1: continue\n ans += choose(words[i])\nprint(int(ans))", "neg": "from sys import stdin, exit\nfrom math import factorial\ninput = stdin.readline\nlmi = lambda: list(map(int, input().split()))\nmi = lambda: map(int, input().split())\nsi = lambda: input().strip('\\n')\nssi = lambda: input().strip('\\n').split()\n\ndef choose(x):\n return factorial(x)/(2*factorial(x-2))\n\nwords = {}\n\nfor i in range(int(input())):\n s = \"\".join(sorted(si()))\n if s not in words:\n words[s] = 1\n else:\n words[s] += 1\nans = 0\nprint(words)\nfor i in words:\n ans += choose(words[i])\nprint(int(ans))", "jacc_sim": 0.9824561403508771, "before_after_length": [198, 192], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "print(words)\n\n if words[i] == 1: continue", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u917092881", "n_user": "u917092881", "pos": "N = int(input())\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\nm = {}\n\ndef sort_str(s):\n return \"\".join(sorted(list(s)))\n\nfor i in range(N):\n s = str(input())\n ss = sort_str(s)\n\n if ss in m:\n m[ss] += 1\n else:\n m[ss] = 1\n\n\ncount = 0\n\nfor c in m.values():\n if c > 1:\n count += cmb(c, 2)\n\nprint(count)", "neg": "N = int(input())\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\nm = {}\n\ndef sort_str(s):\n return \"\".join(sorted(list(s)))\n\nfor i in range(N):\n s = str(input())\n ss = sort_str(s)\n\n if ss in m:\n m[ss] += 1\n else:\n m[ss] = 1\n\n\ncount = 0\n\nfor c in m.values():\n count += cmb(c, 2)\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [320, 313], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "if c > 1:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u442877951", "n_user": "u442877951", "pos": "from collections import Counter\nN = int(input())\nS = [input() for _ in range(N)]\nans = 0\ncheck_box = []\nfor s in S:\n s = sorted(s)\n s = ''.join(s)\n check_box.append(s)\nC = Counter(check_box)\nfor i in C:\n ans += C[i]*(C[i]-1)//2\nprint(ans)", "neg": "from collections import Counter\nN = int(input())\nS = [input() for _ in range(N)]\nans = 0\ncheck_box = []\nfor s in S:\n s = sorted(s)\n s = ''.join(s)\n check_box.append(s)\nC = Counter(check_box)\nfor i in C:\n ans += C[i]\nprint(ans-1)", "jacc_sim": 0.9166666666666666, "before_after_length": [106, 98], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "*\nprintansC[i]//2\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u434872492", "n_user": "u434872492", "pos": "N = int(input())\nS = []\nfor i in range(N):\n s = input()\n S.append(s)\nfor i in range(N):\n S[i] = ''.join(sorted(S[i]))\n\ncount = 0\nt = dict()\nfor i in range(N):\n if S[i] in t:\n t[S[i]] += 1\n else:\n t[S[i]] = 1\nans = 0\nfor key in t:\n ans += (t[key]*(t[key]-1)) // 2\n\n\nprint(ans)", "neg": "N = int(input())\nS = []\nfor i in range(N):\n s = input()\n S.append(s)\nfor i in range(N):\n S[i] = ''.join(sorted(S[i]))\n\ncount = 0\nt = dict()\nfor i in range(N):\n if S[i] in t:\n t[S[i]] += 1\n else:\n t[S[i]] = 1\nans = 0\nfor key in t:\n ans += (t[key]*(t[key]-1))/2\n\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [145, 145], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": " / ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u440129511", "n_user": "u440129511", "pos": "import collections\nimport math\nn=int(input())\ns=[]\nfor i in range(n):\n sl=list(input())\n sl.sort()\n s.append(\"\".join(sl))\n\nl=list(collections.Counter(s).values())\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nc=0\nfor i in range(len(l)):\n k=int(l[i])\n if k!=1:c+=combinations_count(k,2)\nprint(c)", "neg": "import collections\nimport math\nn=int(input())\ns=[''.join(list(input()).sort()) for _ in range(n)]\nl=collections.Counter(s).values()\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nc=0\nfor i in range(len(l)):\n if l[i]!=1:c+=combinations_count(l[i],2)\nprint(c)", "jacc_sim": 0.9148936170212766, "before_after_length": [154, 130], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "'']\nfor i in range(n):\n sl=list(input())\n sl.sort()\n s.append(\"\"lit(input()).sort()) for _ in range(n)]\n))\n\nllist()k=f nt()\n if kkl[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u768135953", "n_user": "u768135953", "pos": "n = int(input())\nmap = {}\nfor i in range(n):\n str = ''.join(sorted(input()))\n if str in map:\n map[str] += 1\n else:\n map[str] = 1\n\nans = 0\nfor value in map.values():\n ans += value * (value - 1) // 2\n\nprint(ans)", "neg": "n = int(input())\nmap = {}\nfor i in range(n):\n str = ''.join(sorted(input()))\n print(str)\n if str in map:\n map[str] += 1\n else:\n map[str] = 1\n\nans = 0\nfor value in map.values():\n ans += value * (value - 1) // 2\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [90, 96], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "print(str)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u425019904", "n_user": "u425019904", "pos": "from math import factorial\nN = int(input())\nP = {}\nans = 0\ndef counter(s):\n ret = [0]*26\n for ss in s:\n ret[ord(ss)-ord('a')] += 1\n return tuple(ret)\nfor _ in range(N):\n s = input()\n c = counter(s)\n if not c in P.keys():\n P[c] = 1\n else:\n P[c] += 1\nfor v in P.values():\n if v > 1:\n ans += factorial(v) // factorial(2) // factorial(v-2)\nprint(ans)\n", "neg": "from math import factorial\nN = int(input())\nP = {}\nans = 0\ndef counter(s):\n ret = [0]*26\n for ss in s:\n ret[ord(ss)-ord('a')] += 1\n return tuple(ret)\nfor _ in range(N):\n s = input()\n c = counter(s)\n if not c in P.keys():\n P[c] = 1\n else:\n P[c] += 1\nfor v in P.values():\n ans += factorial(v) / factorial(2) / factorial(v-2)\nprint(int(ans))\n", "jacc_sim": 0.9795918367346939, "before_after_length": [159, 154], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "if v > 1:\n //int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u325282913", "n_user": "u325282913", "pos": "import math\n\ndef P(n, r):\n return math.factorial(n)//math.factorial(n-r)\n\ndef C(n, r):\n return P(n, r)//math.factorial(r)\n\nN = int(input())\narr = {}\nans = 0\nfor _ in range(N):\n S = input()\n tmp_arr = []\n for i in range(10):\n tmp_arr.append(S[i])\n tmp_arr.sort()\n moji_sorted = ''\n for i in tmp_arr:\n moji_sorted += i\n if moji_sorted in arr:\n arr[moji_sorted] += 1\n else:\n arr[moji_sorted] = 1\n# print(arr)\n\nfor i in arr.values():\n if i-2 >= 0:\n ans += C(i,2)\n\nprint(ans)\n\n\n\n", "neg": "import math\n\ndef P(n, r):\n return math.factorial(n)//math.factorial(n-r)\n\ndef C(n, r):\n return P(n, r)//math.factorial(r)\n\nN = int(input())\narr = {}\nans = 0\nfor _ in range(N):\n S = input()\n tmp_arr = []\n for i in range(10):\n tmp_arr.append(S[i])\n tmp_arr.sort()\n moji_sorted = ''\n for i in tmp_arr:\n moji_sorted += i\n if moji_sorted in arr:\n arr[moji_sorted] += 1\n else:\n arr[moji_sorted] = 1\n# print(arr)\n\nfor i in arr.values():\n ans += C(i,2)\n\nprint(ans)\n\n\n\n", "jacc_sim": 0.9791666666666666, "before_after_length": [228, 219], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "if i-2 >= 0:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u159228113", "n_user": "u159228113", "pos": "from collections import Counter\n#from itertools import combinations\nn = int(input())\nlst = [\"\".join(sorted(list(input()))) for i in range(n)]\n#lst2 = 1#Counter(lst)\n#for i in len(lst):\n# print(i.values)\n\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\n#print(cmb(4,2),0,0,0)\ncnt = 0\nfor i in Counter(lst).values():\n if i == 1:\n continue\n cnt += cmb(i, 2)\n\"\"\"\nfor i in range(len(lst)-1):\n for j in range(i+1,len(lst)):\n #print(0)\n if lst[i]==lst[j]:\n cnt += 1\n\"\"\"\nprint(cnt)", "neg": "from collections import Counter\nfrom itertools import combinations\nn = int(input())\nlst = [str(Counter(input()).values()) for i in range(n)]\n#lst2 = 1#Counter(lst)\n#for i in len(lst):\n# print(i.values)\n\n\ndef cmb(n, r):\n if n - r < r: r = n - r\n if r == 0: return 1\n if r == 1: return n\n\n numerator = [n - r + k + 1 for k in range(r)]\n denominator = [k + 1 for k in range(r)]\n\n for p in range(2,r+1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p-1,r,p):\n numerator[k - offset] /= pivot\n denominator[k] /= pivot\n\n result = 1\n for k in range(r):\n if numerator[k] > 1:\n result *= int(numerator[k])\n\n return result\n\n#print(cmb(4,2),0,0,0)\ncnt = 0\nfor i in Counter(lst).values():\n if i == 1:\n continue\n cnt += cmb(i, 2)\n\"\"\"\nfor i in range(len(lst)-1):\n for j in range(i+1,len(lst)):\n #print(0)\n if lst[i]==lst[j]:\n cnt += 1\n\"\"\"\nprint(cnt)", "jacc_sim": 0.9310344827586207, "before_after_length": [376, 373], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "#\"\"str(Counter(input())joinvaluessorted(list(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u395944336", "n_user": "u395944336", "pos": "Ncount = input()\nstrings = []\ncount_flag = 0\nletters = {}\nfor i in range(int(Ncount)):\n strings.append(''.join(sorted(input())))\n\nfor i in strings:\n if i not in letters:\n letters[i] = 0\n else :\n letters[i] += 1\n count_flag += letters[i]\n\nprint(count_flag)", "neg": "Ncount = int(input())\nstrings = []\ncount_flag = 0\nletters = {}\nletters_count = []\nfor i in range(Ncount):\n strings.append(''.join(sorted(input())))\nprint(strings)\nfor i in strings:\n if i not in letters:\n letters[i] = 0\n else :\n letters[i] += 1\n letters[i] += letters[i] - 1\n\nfor i in letters:\n count_flag += letters[i] \n\nprint(count_flag)", "jacc_sim": 0.9375, "before_after_length": [98, 127], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "t(in)letters_count = []\n(int)print(strings)lecoun_flagters[i] - 1pfo i le(ters:\n += letters[i] \n\nprint(count_flag", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u667024514", "n_user": "u667024514", "pos": "n = int(input())\nlis = []\nfor _ in range(n):\n s = list(str(input()))\n s.sort()\n lis.append(s)\nlis.sort()\nans = 0\nnum = 0\nfor i in range(n-1):\n if lis[i+1] == lis[i]:\n num += 1\n else:\n ans += (num * (num+1))//2\n num = 0\nans += (num * (num+1))//2\nprint(ans)", "neg": "n = int(input())\nlis = []\nfor _ in range(n):\n s = list(str(input()))\n s.sort()\n lis.append(s)\nlis.sort()\nans = 0\nnum = 0\nfor i in range(n-1):\n if lis[i+1] == lis[i]:\n num += 1\n else:\n ans += (num * (num+1))//2\n num = 0\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [131, 118], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "print( += (num * (num+1)//2\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u522506260", "n_user": "u522506260", "pos": "alphabet = \"abcdefghijklmnopqrstuvwxyz\"\n\n\nn = int(input())\nres = dict()\nans = 0\nfor _ in range(n):\n s = str(input())\n s = \"\".join(sorted(s))\n if s not in res.keys():\n res[s] = 1\n else:\n ans += res[s]\n res[s] += 1\nprint(ans)\n ", "neg": "alphabet = \"abcdefghijklmnopqrstuvwxyz\"\n\n\nn = int(input())\nres = dict()\nans = 0\nfor _ in range(n):\n s = str(input())\n s.sort()\n if s not in res.keys():\n res[s] = 1\n else:\n ans += res[s]\n res[s] += 1\nprint(ans)\n ", "jacc_sim": 0.9090909090909091, "before_after_length": [106, 100], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": " = \"\"sjrtinsorted(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u578489732", "n_user": "u578489732", "pos": "import sys\n# ----------------------------------------------------------------\n# Use Solve Function\n\ndef solve(lines):\n def c(n):\n if n == 1:\n return 0\n else:\n return n * (n - 1) // 2\n\n\n N = int(lines.pop(0))\n NLIST = {}\n for i in range(N):\n l = ''.join(sorted(lines.pop(0)))\n if l in NLIST:\n NLIST[l] += 1\n else:\n NLIST[l] = 1\n\n re = 0\n for n in NLIST.values():\n re += c(n)\n print(re)\nlines = [x.strip() for x in sys.stdin.readlines()]\n\n#\n# solve !!\n#\nsolve(lines)", "neg": "import sys\n# ----------------------------------------------------------------\n# Use Solve Function\n\ndef solve(lines):\n def c(n):\n if n == 1:\n return 0\n else:\n return n * (n - 1) // 2\n\n\n N = int(lines.pop(0))\n NLIST = {}\n for i in range(N):\n l = ''.join(sorted(lines.pop(0)))\n print(l)\n if l in NLIST:\n NLIST[l] += 1\n else:\n NLIST[l] = 1\n\n re = 0\n for n in NLIST.values():\n re += c(n)\n print(re)\nlines = [x.strip() for x in sys.stdin.readlines()]\n\n#\n# solve !!\n#\nsolve(lines)", "jacc_sim": 1.0, "before_after_length": [192, 198], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": ")\n print(l", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u334928930", "n_user": "u334928930", "pos": "import math\nimport collections\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nN=int(input())\nstrings=[str(sorted(input())) for a in range(N)]\nc=collections.Counter(strings)\ntp=c.most_common()\nsums=0\nfor thing in tp:\n if thing[1]!=1:\n sums=sums+combinations_count(thing[1],2)\n else:break\n\nprint(sums)", "neg": "import math\nimport _collections\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nN=int(input())\nstrings=[str(sorted(input())) for a in range(N)]\nc=_collections.Counter(strings)\ntp=c.most_common()\nsums=0\nfor thing in tp:\n if tp[1]!=1:\n sums=sums+combinations_count(tp[1],2)\n else:break\n \nprint(sums)", "jacc_sim": 0.9565217391304348, "before_after_length": [140, 143], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "_collections.Counter(strings)\ntp=c.mostllections.Counter(strings)\ntp=c.most_cophingphing ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u331327289", "n_user": "u331327289", "pos": "from collections import Counter\n\n\ndef main():\n n = int(input())\n cnt = Counter()\n ans = 0\n for i in range(n):\n s = \"\".join(sorted(input()))\n if cnt[s] == 0:\n cnt[s] = 1\n else:\n ans += cnt[s]\n cnt[s] += 1\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "from collections import Counter\n\n\ndef main():\n n = int(input())\n cnt = Counter()\n ans = 0\n for i in range(n):\n s = sorted(input())\n\n if cnt[s] == 0:\n cnt[s] = 1\n else:\n ans += cnt[s]\n cnt[s] += 1\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9411764705882353, "before_after_length": [112, 108], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "\"\".join(\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u518042385", "n_user": "u518042385", "pos": "n=int(input())\nl=[]\nfor i in range(n):\n w=sorted(list(input()))\n l.append(w)\nl=sorted(l)\nc=0\nc1=0\nw1=l[0]\nfor i in range(n):\n if w1==l[i]:\n c1+=1\n else:\n w1=l[i]\n c+=c1*(c1-1)//2\n c1=1\n \nc+=c1*(c1-1)//2\nprint(c)", "neg": "n=int(input())\nl=[]\nfor i in range(n):\n w=list(input())\n l.append(w)\nl=sorted(l)\nc=0\nc1=0\nw1=l[0]\nfor i in range(n):\n if w1==l[i]:\n c1+=0\n else:\n c+=c1*(c1-1)//2\n c1=1\nc+=c1*(c1-1)//2\nprint(c)\n", "jacc_sim": 1.0, "before_after_length": [141, 128], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "sorted()01\n w1=l[i] \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02947", "p_user": "u789565565", "n_user": "u789565565", "pos": "from collections import Counter\nn = int(input())\ns = [str(sorted(input())) for i in range(n)]\n\nc = Counter(s)\n\nl = sum((v*(v-1)/2) for v in c.values())\nprint(int(l))", "neg": "from collections import Counter\nn = int(input())\ns = [str(sorted(input())) for i in range(n)]\nprint(s)\nc = Counter(s)\nprint(c)\nl = sum((v*(v-1)/2) for v in c.values())\nprint(l)", "jacc_sim": 1.0, "before_after_length": [65, 71], "nl": "You are given N strings, each of length 10, consisting of lowercase English characters. Find the number of pairs of integers (i, j) (1 \u2264 i < j \u2264 N) such that si is an anagram of sj. If there is no such pair, print 0.", "diff_info": "print(s)print(c)int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u620755070", "n_user": "u496212176", "pos": "a,b,c = (int(i) for i in input().split())\nans = max(c-(a-b),0)\nprint(ans)", "neg": "a, b, c = (int(i) for i in input().split())\nprint(max(0, c - (b - c)))", "jacc_sim": 0.9473684210526315, "before_after_length": [37, 32], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " ans = max(c-(a-b),0)\nmnsx(0, c - (b - c))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u886907961", "n_user": "u886907961", "pos": "a = list(map(int,input().split()))\nprint(max(a[2]-(a[0]-a[1]),0))\n\n", "neg": "a = list(map(int,input().split()))\nprint(a[2]-(a[0]-a[1]))\n", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 32], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "max(,0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u134341470", "n_user": "u994882034", "pos": "a,b,c=map(int,input().split())\na=a-b\nif a>=c:\n print(0)\nelse:\n print(c-a)", "neg": "a,b,c = list(map(int, input().split()))\nd = c-(a-b)\nif d >= 0:\n print(d)\nelse if:\n print(0)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 50], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " list( )ad c-()ad c 0print(d)\nelse if:\nelse:\n print(c-a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u393512980", "n_user": "u727727961", "pos": "\na, b, c = map(int, input().split())\nprint(max(0, c-a+b))", "neg": "a,b,c = map(int,input().split())\nprint(max(0,b+c-a)", "jacc_sim": 1.0, "before_after_length": [28, 27], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "\n b++b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u729133443", "n_user": "u729133443", "pos": "print(max(0,eval('-'+input().replace(*' +'))))", "neg": "print(max(0,eval('-'+input().replace(' ','+')))", "jacc_sim": 0.9285714285714286, "before_after_length": [18, 17], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "*',')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u761989513", "n_user": "u846226907", "pos": "a, b, c = map(int, input().split())\nato = a - b\nprint(max(0, c - ato))", "neg": "a,b,c = map(int,input().split())\n\nprint(max(c-(a-b),0)", "jacc_sim": 0.9411764705882353, "before_after_length": [32, 29], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " ato = a - b0, ( -bto,0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u733734110", "n_user": "u413377603", "pos": "a,b,c=map(int, input().split())\n\nif b + c - a > 0:\n print( b + c - a )\nelse:\n print(0)", "neg": "a,b,c=map(int,input().split())\nm=b-a\nif m>=c:\n print(0)\nelse:\n print(c-m)", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 44], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " m=b-amb + c - a =c 00 b + c - a 0c-m", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u385873134", "n_user": "u385873134", "pos": "array = list(map(int, input().split(' ')))\na = array[0]\nb = array[1]\nc = array[2]\n\nd = a-b\n\nif (c - d) < 0:\n print(0)\nelse:\n print(c-d)", "neg": "array = list(map(int, input().split(' ')))\na = array[0]\nb = array[1]\nc = array[2]\n\nd = a-b\n\nif d > c:\n print(c)\nelse:\n print(d-c)", "jacc_sim": 0.9285714285714286, "before_after_length": [71, 67], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "(c - )>= 0:\n print(d)\nelse:\n print(0)", "neg": "a, b, c = map(int,input().split())\nd = c - (a - b)\nif d >= 0:\n print(d)", "jacc_sim": 0.95, "before_after_length": [45, 36], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "\nelse:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u484948364", "n_user": "u273496671", "pos": "A, B, C = map(int, input().split())\n\nif C >= (A-B):\n print(C-(A-B))\nelse:\n print(0)", "neg": "A,B,C = map(int,input().split())\nif C >= A + B:\n print(C-A+B)\nelse:\n print(0)", "jacc_sim": 0.95, "before_after_length": [44, 41], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " \n(- + )(+-)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u041401317", "n_user": "u455957070", "pos": "def main():\n a,b,c = map(int,input().split())\n if a-b >= c:\n print(0)\n else:\n print(c-a+b)\n\nmain()\n", "neg": "a,b,c = map(int,input().split())\nif(b+c >= a):\nprint(b+c-a)\nelse:\n print(0)", "jacc_sim": 0.9090909090909091, "before_after_length": [53, 41], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "def main():\n ( a-+cca) print(b+c-a)\nelse:\n\n else:\n print(c-a+b)\n\nmain()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u804505290", "n_user": "u804505290", "pos": "A,B,C= map(int, input().split())\nif A>B+C:\n print(0)\nif A<=B+C:\n print(B+C-A)", "neg": "A,B,C= map(int, input().split())\nif A<=B+C:\n print(0)\nif A>B+C:\n print(B+C-A)", "jacc_sim": 1.0, "before_after_length": [47, 47], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "><=><=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u597047658", "n_user": "u125148650", "pos": "A, B, C = map(int, input().split())\n\naccept = A - B\nif C - accept > 0:\n print(C-accept)\nelse:\n print(0)\n", "neg": "A,\u3000B, C, = taple(map(int, input().split()))\nif (A - B) >= C:\n \tprint(0)\nelse:\n \tprint(C - (A - B))", "jacc_sim": 0.9047619047619048, "before_after_length": [47, 54], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "\u3000 ,taple()if\naccept(= )\nif C - accept=C0\t 0C-accept\t 0C - (A - B)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u327466606", "n_user": "u152614052", "pos": "a,b,c = map(int,input().split())\n\nprint(max(0, c-(a-b)))", "neg": "a, b, c = map(int,input().split())\nprint(max(c-a-b),0)", "jacc_sim": 1.0, "before_after_length": [29, 27], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " \n0, (,0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u179778090", "n_user": "u179778090", "pos": "# coding: utf-8\n# Your code here!\nn=input().split(\" \")\nfor i in range(3):\n n[i]=int(n[i])\nans=(n[2]-(n[0]-n[1]))\nif ans < 0:\n\tprint(0)\nelse:\n print(ans)\n \n", "neg": "# coding: utf-8\n# Your code here!\nn=input().split(\" \")\nfor i in range(3):\n n[i]=int(n[i])\nans=(n[2]-(n[1]-n[0])\nif ans <0:\n\tprint(0)\nelse:\n print(ans)\n \n", "jacc_sim": 1.0, "before_after_length": [83, 83], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "1001) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u733774002", "n_user": "u733774002", "pos": "A, B, C = map(int, input().split())\nif C - (A - B) < 0:\n print(0)\nelse:\n print(C - (A - B))", "neg": "A, B, C = map(int, input().split())\nif C < 0:\n print(0)\nelse:\n print(C - (A - B))", "jacc_sim": 1.0, "before_after_length": [46, 40], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " - (A - B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u369796672", "n_user": "u098050227", "pos": "a, b, c = map(int, input().split())\nresult = b + c - a if b + c >= a else 0\nprint(result)", "neg": "a,b,c=map(int,input().split())\n\nprint(a)\n\nif a-b>=c:\n print(0)\nelse:\n print(c-a+b)", "jacc_sim": 0.9047619047619048, "before_after_length": [35, 49], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " result = b + c - a if b + c >= a else 0aresult\n\nif a-b>=c:\n print(0)\nelse:\n print(c-a+b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u271469978", "n_user": "u497046426", "pos": "A, B, C = map(int, input().split())\nprint(max(0, C - A + B))\n", "neg": "A, B, C = map(int, input().split())\nprint(max(C - (A - B)), 0)", "jacc_sim": 0.9411764705882353, "before_after_length": [28, 29], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "0, (-+\n, 0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u392938961", "n_user": "u719886494", "pos": "a,b,c = map(int,input().split())\nif c-(a-b) >= 0:\n print(c-(a-b))\nelse:\n print(0)", "neg": "a,b,c = map(int, input().split)\nif c - (a -b) >= 0:\n print(c - (a -b))\nelse:\n print(0)\n", "jacc_sim": 1.0, "before_after_length": [46, 47], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " () \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u455642216", "n_user": "u821588465", "pos": "A,B,C=map(int,input().split())\nprint(C-min(C,A-B))\n", "neg": "A, B, C = map(int, input().split())\nprint(C - (A-B))", "jacc_sim": 0.9333333333333333, "before_after_length": [28, 24], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " minC,\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u066111527", "n_user": "u066111527", "pos": "A, B, C= map(int, input().split())\nif C < (A-B):\n print(\"0\")\nelse:\n print(C-(A-B))", "neg": "A, B, C= map(int, input().split())\nif C < (A-B):\n print(\"0\")\nelse \n print(C-(A-B))", "jacc_sim": 1.0, "before_after_length": [43, 42], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": ": ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u773440446", "n_user": "u773440446", "pos": "a,b,c = map(int,input().split())\nq = a-b\nans = c-q\n\nif ans < 0:\n ans = 0\n \nprint(ans)", "neg": "a,b,c = map(int,input().split())\nq = a-b\nans = c - ans\n\nif ans < 0:\n ans = 0\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [45, 45], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " q ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u499381410", "n_user": "u519968172", "pos": "a, b, c=list(map(int,input().split()))\nprint(max(c-(a-b), 0))", "neg": "\n\n a,b,c=map(int,input().split())\n print(max(0,c-max(0,a-b)))", "jacc_sim": 0.9411764705882353, "before_after_length": [31, 35], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "\n\n list() 0,max0,, 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u263734237", "n_user": "u263734237", "pos": "a,b,c = map(int, input().split())\nw = (b+c)-a\nif w < 1:\n w = 0\nprint (w)", "neg": "a,b,c = map(int, input().split())\nw = (b+c)-a\nif w:\n w = 0\nprint (w)", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 37], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " < 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u630281418", "n_user": "u629350026", "pos": "a,b,c = map(int, input().split())\nrest = c-(a-b)\nif rest > 0:\n\tprint(rest)\nelse:\n\tprint(0)\n", "neg": "a,b,c=map(int,input().split())\nif b+c>=a:\n print(0)\nelse:\n print(c-a+b)", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 42], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " rest = c-(a-b)\nb+crest =a 0 \tprint(rest)\nelse:\n\telse:\n print(c-a+b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u471499397", "n_user": "u291132512", "pos": "import sys\n\na,b,c=map(int, input().split())\n\nif(a >= (b + c)):\n print(0)\nelse:\n print(c - (a - b))", "neg": "a,b,c = map(int,input().split())\nif a >= c :\n print(0)\nelse:\n print(c-a+b)", "jacc_sim": 0.9090909090909091, "before_after_length": [50, 39], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "import sys\n\n \n ((b + )) (+ - )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u054740484", "n_user": "u054740484", "pos": "a, b, c = map(int, input().split())\n\nif a-b >= c:\n cup2 = 0\n\nelse: \n cup2 = c - (a-b)\n\nprint(cup2)", "neg": "a, b, c = map(int, input().split())\n\nif a-b >= c-b:\n cup2 = 0\n\nelse:\n cup1 = abs(a - b) \n cup2 = c - cup1\n\nprint(cup2)", "jacc_sim": 0.9090909090909091, "before_after_length": [55, 67], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "-b\n cup1 = abs(a - b)cup1(a-b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u835732324", "n_user": "u502247093", "pos": "a,b,c = map(int,input().split())\nd = c - a + b\n\nif d>=0:\n print(d)\n\nelse:\n print(0)", "neg": "a, b, c = map(int, input().split())\nd = c - a - b\nif d > 0:\n print(d)\nelse:\n print(0)", "jacc_sim": 0.9523809523809523, "before_after_length": [46, 43], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": " -+\n = \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u441197772", "n_user": "u498575211", "pos": "a, b, c = list(map(int, input().split()))\n\ntmp = c - (a - b)\n\nif tmp > 0:\n print(tmp)\nelse:\n print(0)\n", "neg": "a b c = list(map(int, input().split()))\nd = c - (a - b)\nif d > 0:\n print(d)\nelse:\n print(0)", "jacc_sim": 0.9090909090909091, "before_after_length": [51, 46], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": ",,d\ntmp\ndtmpdtmp\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02951", "p_user": "u488934106", "n_user": "u488934106", "pos": "def transfer(a, b, c):\n\n return 0 if a > b+c else c+b-a\ndef main():\n a, b, c = map(int, input().split())\n print(transfer(a, b, c))\n\nif __name__ == '__main__':\n main()\n", "neg": "def transfer(a, b, c):\n\n return b+c if a > b+c else a\ndef main():\n a, b, c = map(int, input().split())\n print(transfer(a, b, c))\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9259259259259259, "before_after_length": [74, 72], "nl": "You have two bottles for holding water. Bottle 1 can hold up to A milliliters of water and currently contains B milliliters. Bottle 2 contains C milliliters. You need to transfer water from Bottle 2 to Bottle 1 as much as possible. Determine the amount of water that will remain in Bottle 2. All input values are integers, and the constraints are 1 \u2264 B \u2264 A \u2264 20 and 1 \u2264 C \u2264 20. The input is given in the format A B C, and the output should be an integer representing the remaining amount of water in Bottle 2.", "diff_info": "0b+cc+b-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u498487134", "n_user": "u498487134", "pos": "import sys\ninput = sys.stdin.readline\n\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\n\ndef main():\n mod=10**9+7\n N=I()\n H=LI()\n \n now=0\n \n for i in range(N):\n if H[i]!=now:\n H[i]-=1\n now=H[i]\n \n flag=1\n now=0\n for i in range(N):\n if H[i]=H[i+1]:\n H[i]-=1\n \n flag=1\n now=0\n for i in range(N):\n if H[i]!now:\n +]-=]: now=-=1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u137542041", "n_user": "u137542041", "pos": "N = int(input())\n\nH = list(map(int, input().split()))\n\nfor i in range(N):\n if i == 0:\n H[i] -= 1\n continue\n\n if i == N - 1:\n if H[i] < H[i - 1]:\n print('No')\n exit()\n else:\n break\n\n if H[i + 1] - H[i] <= -2:\n print('No')\n exit()\n\n if H[i + 1] - H[i] <= 0:\n if H[i] > H[i - 1]:\n H[i] -= 1\n elif H[i] < H[i + 1] and H[i - 1] < H[i]:\n H[i] -= 1\n\n if H[i] < H[i - 1]:\n print('No')\n exit()\n\nprint('Yes')\n", "neg": "N = int(input())\n\nH = list(map(int, input().split()))\n\nfor i in range(N):\n if i == 0:\n H[i] -= 1\n continue\n\n if i == N - 1:\n if H[i] < H[i - 1]:\n print('No')\n exit()\n else:\n break\n\n if H[i + 1] - H[i] <= -2:\n print('No')\n exit()\n\n if H[i + 1] - H[i] <= 0:\n if H[i] > H[i - 1]:\n H[i] -= 1\n elif H[i] < H[i + 1]:\n H[i] -= 1\n\n if H[i] < H[i - 1]:\n print('No')\n exit()\n\nprint('Yes')", "jacc_sim": 0.972972972972973, "before_after_length": [224, 211], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": " and H[i - 1] < H[i]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u849229491", "n_user": "u849229491", "pos": "import sys\nn = int(input())\nh = list(map(int,input().split()))\nh = h[::-1]\n\nfor i in range(n-1):\n if h[i] < h[i+1]:\n h[i+1] -= 1\n\nans = 'Yes'\nfor j in range(n-1):\n if h[j] < h[j+1]:\n print('No')\n sys.exit()\n\nprint(ans)", "neg": "import sys\nn = int(input())\nh = list(map(int,input().split()))\nh.sort(reverse=True)\n\nfor i in range(n-1):\n if h[i] < h[i+1]:\n h[i+1] -= 1\n \nans = 'Yes'\nfor j in range(n-1):\n if h[j] < h[j+1]:\n print('No')\n sys.exit()\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [116, 116], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": " .sort(reverseTrue) h[::-1] \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u167647458", "n_user": "u167647458", "pos": "def main():\n n = int(input())\n h = list(map(int, input().split()))\n \n pre = h[0]\n for hh in h:\n if hh < pre-1:\n print('No')\n return\n pre = max(pre, hh)\n \n print('Yes')\n \nif __name__ == '__main__':\n main()", "neg": "def main():\n n = int(input())\n h = list(map(int, input().split()))\n \n pre = h[0]\n for hh in h:\n if hh < pre:\n if hh >= pre - 1:\n pre = hh\n else:\n print('No')\n return\n pre = hh\n \n print('Yes')\n \nif __name__ == '__main__':\n main()", "jacc_sim": 0.9166666666666666, "before_after_length": [95, 106], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": ":\n if hh >= pre pre = hh\n else:\n max(pre, )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u246975555", "n_user": "u246975555", "pos": "n = int(input())\nh = list(map(int,input().split()))\nb = [\"True\"]\n \nif n == 1:\n print(\"Yes\")\nelse:\n for i in range(n-1):\n d = h[i+1] - h[i]\n if d <= -2:\n print(\"No\")\n break\n elif d >= 1:\n b.append(\"False\")\n h[i+1] = h[i+1] - 1\n if i == n-2:\n print(\"Yes\")\n elif d == 0:\n b.append(\"False\")\n if i == n-2:\n print(\"Yes\")\n elif d == -1:\n if b[i] == \"True\":\n h[i] = h[i] - 1\n b.append(\"True\")\n if i == n-2:\n print(\"Yes\")\n else:\n print(\"No\")\n break", "neg": "n = int(input())\nh = list(map(int,input().split()))\nb = [\"True\"]\n\nif n == 1:\n print(\"Yes\")\nelse:\n for i in range(n-1):\n d = h[i+1] - h[i]\n if d <= -2:\n print(\"No\")\n break\n elif d >= 1:\n b.append(\"False\")\n h[i+1] = h[i+1] - 1\n if i == n-2:\n print(\"Yes\")\n elif d == 0:\n b.append(\"True\")\n if i == n-2:\n print(\"Yes\")\n elif d == -1:\n if b[i] == \"True\":\n h[i] = h[i] - 1\n b.append(\"True\")\n if i == n-2:\n print(\"Yes\")\n else:\n print(\"No\")\n break", "jacc_sim": 1.0, "before_after_length": [231, 230], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": " TruFals", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u620806894", "n_user": "u620806894", "pos": "n=int(input())\nhi=list(map(int, input().split()))\n\ndhir={i:hi[n-1-i] for i in range(n)}\n\ncheck=1\nfor i in range(n-1):\n if dhir[i] >= dhir[i+1]:\n continue\n elif dhir[i] == dhir[i+1]-1:\n dhir[i+1]-=1\n continue\n else:\n check=0\n\nif check == 0:\n print(\"No\")\nelse:\n print(\"Yes\")\n", "neg": "n=int(input())\nhi=list(map(int, input().split()))\n\ndhir={i:hi[n-1-i] for i in range(n)}\n#print(dhir)\n\ncheck=1\nfor i in range(n-1):\n if dhir[i] >= dhir[i+1]:\n continue\n elif dhir[i] == dhir[i+1]-1:\n dhir[i+1]-=1\n continue\n else:\n print(i)\n check=0\n\nif check == 0:\n print(\"No\")\nelse:\n print(\"Yes\")\n", "jacc_sim": 0.972972972972973, "before_after_length": [142, 155], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "#print(dhir)\n\n print(i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u721425712", "n_user": "u721425712", "pos": "N = int(input())\nH = list(map(int, input().split()))\n\nfor i in range(N):\n H[i] -= 1\n\nfor j in range(N-1):\n if H[j] > H[j+1]:\n H[j+1] += 1\n\nif H == sorted(H):\n print('Yes')\nelse:\n print('No')", "neg": "N = int(input())\nH = list(map(int, input().split()))\n\nfor i in range(N-1):\n if H[i] >= H[i+1]:\n H[i] -= 1\n\nif H == sorted(H):\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.967741935483871, "before_after_length": [96, 77], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "):\n H[i] =1):\n1\n\n iorH[j n range(N-1):\n if H[j=ijij+1-+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u958141542", "n_user": "u958141542", "pos": "n = int(input())\nh = list(map(int, input().split()))\n\nif n == 1:\n print('Yes')\nelse:\n for i in range(n-1, 0, -1):\n if i == 1:\n print('Yes')\n else:\n if h[i] - h[i-1] == -1:\n h[i-1] -= 1\n elif h[i] - h[i-1] < -1:\n print('No')\n break\n", "neg": "n = int(input())\nh = list(map(int, input().split()))\n\nfor i in range(1, n):\n if h[i] < h[i-1]:\n h[i-1] = h[i-1] -1\n\nfor i in range(1, n):\n if h[i] < h[i-1]:\n print('No')\n break\n if i == n-1:\n print('Yes')", "jacc_sim": 0.9032258064516129, "before_after_length": [125, 111], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "if n == 1:\n print('Yes')\nelse:\n n-0,n):\n-1):\nifh[ f i == 1:\n print('Yes')\n else:\n if h[i] - h[i-1] == -1:\n h[i-1] -= 1\n elif h[i] - h[i-1h[i]h[i-1] = h[i-1] -1\n\nfor i in range(1, n):\n if h[i] < h[i-1]:\n if i == n-1:\n print('Yes')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u282228874", "n_user": "u771167374", "pos": "n = int(input())\nh = list(map(int, input().split()))\nh[0] -= 1\nfor i in range(1,n):\n if (h[i] > h[i - 1]):\n h[i] -= 1\nfor i in range(1,n):\n if (h[i] < h[i - 1]):\n print(\"No\")\n exit()\nprint(\"Yes\")", "neg": "n = int(input())\nh = list(map(int, input().split()))\nfor i in range(1, n):\n if h[i] h[i - 1]):\n h[i] -= 1\nfor i in range(1,n):\n if (h[i] h[i-1]:\n ]=\n if h[i)s[i-1]:\n s[i]-=1\n elif s[i]s[i-1]:\n s[i]-=1\n else:\n b=False\n break\n else:\n s[i]-=1\n elif s[i+1]==s[i]:\n if s[i]>s[i-1]:\n s[i]-=1\n elif s[i+1]-s[i]<-1:\n b=False\n break\nprint(s)\nif b:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9142857142857143, "before_after_length": [111, 206], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "n-,n if(s[i+1]-s[i]==-1):\n if i!=0:\n ifse:\n s[i]s[i-1]:\n s[i]-=1\n elif s[i+1]-s[i]<-1:\n b=False\n break\nprint(s)\n\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u680851063", "n_user": "u680851063", "pos": "n = int(input())\nl = [int(x) for x in input().split()]\n#print(l)\n\nfor i in range(n-1)[::-1]:\n if l[i] - 1 == l[i+1]:\n l[i] = l[i] - 1\n else:\n continue\n \n#print(l)\n\na = 0\nfor j in range(1, n):\n if l[j-1] <= l[j]:\n continue\n else:\n print('No')\n break\nelse:\n print('Yes')\n", "neg": "n = int(input())\nl = [int(x) for x in input().split()]\n#print(l)\n\nfor i in range(1,n)[::-1]:\n if l[i-1] - 1 == l[i]:\n l[i] = l[i] + 1\n else:\n continue\n \nprint(l)\n\na = 0\nfor j in range(1, n):\n if l[j-1] <= l[j]:\n continue\n else:\n print('No')\n break\nelse:\n print('Yes')\n", "jacc_sim": 1.0, "before_after_length": [142, 141], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "1,)[::)]:\n if li-1] - 1 == l[i]:-1\n l[i:\n=l[i] if l[i] - 1 == l[i1]:\n l[i] = l[i] -#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u165509012", "n_user": "u165509012", "pos": "N=int(input())\nk=list(map(int,input().split()))\nb = 0\nfor i in reversed(range(1, N)):\n if(k[i-1] > k[i]):\n k[i-1] -= 1\n if(k[i-1] > k[i]):\n b = 1\n\n\nif(b == 0 or N == 1):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N=int(input())\nk=list(map(int,input().split()))\nb = 0\nfor i in reversed(range(1, N)):\n if(k[i-1] > k[i]):\n k[i-1] -= 1\n if(k[i-1] > k[i]):\n print(i)\n b = 1\n\nif(b == 0):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.96875, "before_after_length": [112, 113], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "print(i)\n \n or N == 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u280978334", "n_user": "u280978334", "pos": "N = int(input())\nH = list(map(int,input().split()))\n\ndef main():\n for i in range(N-1,0,-1):\n if H[i-1] > H[i] + 1:\n print(\"No\")\n return\n elif H[i-1] == H[i] + 1:\n H[i-1] -= 1\n print(\"Yes\")\n return\n\nif __name__ == \"__main__\":\n main()", "neg": "N = int(input())\nH = list(map(int,input().split()))\n\ndef main():\n for i in range(N-1,0,-1):\n if H[i-1] > H[i] + 1:\n print(\"No\")\n return\n print(\"Yes\")\n return\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9714285714285714, "before_after_length": [118, 91], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": " elif H[i-1] == H[i] + 1:\n H[i-1] -= 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u298945776", "n_user": "u298945776", "pos": "N = int(input())\nH = list(map(int, input().split()))\nans = \"Yes\"\nif len(H) == 1:\n print(ans)\nelse:\n for i in range(N-1):\n if H[-i-2] - H[-i-1] >= 2:\n ans = \"No\"\n elif H[-i-2] - H[-i-1] == 1:\n H[-i-2] = H[-i-2] - 1\n print(ans)", "neg": "N = int(input())\nH = list(map(int, input().split()))\nans = \"Yes\"\nif len(H) == 1:\n print(ans)\nelse:\n for i in range(N-1):\n if H[i] - H[i+1] >= 2:\n ans = \"No\"\n break\n print(ans)", "jacc_sim": 0.9117647058823529, "before_after_length": [123, 88], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "i] H[+-2] - H[-i- brlak\n prf H[-i-2] - H[-i-1] == 1:\n H[-i-2] = H[-i-2] - 1\n pri", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u168416324", "n_user": "u168416324", "pos": "n=int(input())\nh=list(map(int,input().split()))\nans=\"Yes\"\nFL=False\nFx=-1\nfor i in range(n-1):\n if n==1:\n break\n if h[i]>=Fx:\n FL=False \n if h[i]-h[i+1]==1:\n if FL:\n ans=\"No\"\n break \n else:\n FL=True\n Fx=h[i]\n elif h[i]-h[i+1]>1:\n ans=\"No\"\n break \n \nprint(ans)", "neg": "n=int(input())\nh=list(map(int,input().split()))\nans=\"Yes\"\nFL=False\nFx=-1\nfor i in range(n-1):\n if n==1:\n break\n if h[i]-h[i+1]==1:\n if FL:\n ans=\"No\"\n break \n else:\n FL=True\n Fx=h[i]\n if h[i]-h[i+1]>1:\n ans=\"No\"\n break \n else:\n if h[i]>=Fx:\n FL=False\nprint(ans)", "jacc_sim": 0.9722222222222222, "before_after_length": [153, 155], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "\n if h[i]>=Fx:\n FL=False elelse:\n if h[i]>=Fx: FL=False\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u935984175", "n_user": "u935984175", "pos": "n = int(input())\nnumbers = list(map(int, input().split()))\n\ndef checkCondition():\n for i in range(n-1):\n if numbers[i] > numbers[i+1]:\n if numbers[i] - numbers[i+1] > 1:\n return False\n for i in range(-1, -n, -1):\n if numbers[i-1] - numbers[i] == 1:\n numbers[i-1] -= 1\n elif numbers[i-1] - numbers[i] > 1:\n return False\n return True\n\nif n == 1:\n print('Yes')\nelse:\n if checkCondition():\n print('Yes')\n else:\n print('No')", "neg": "n = int(input())\nnumbers = list(map(int, input().split()))\n\ndef checkCondition():\n count = 0\n for i in range(n-1):\n if numbers[i] > numbers[i+1]:\n if numbers[i] - numbers[i+1] > 1:\n return False\n else:\n if count == 1:\n return False\n else:\n numbers[i+1] -= 1\n count += 1\n return True\n\nif n == 1:\n print('Yes')\nelse:\n if checkCondition():\n print('Yes')\n else:\n print('No')", "jacc_sim": 0.9210526315789473, "before_after_length": [177, 153], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "count = 0\n else:\n i crunti==in1:\nrange(-1,-n,-1):\n if numbers[i-1] - numbers[i] == 1:\n numbers[i-1] -= 1\n elif numbers[i-1] - numbers[i] > 1:\n\n else:\n numbers[i+1] -= 1\n count += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u337538431", "n_user": "u337538431", "pos": "N = int(input())\nA = list(map(int, input().split()))\nif N > 1:\n A[0] -= 1\n for i in range(N-1):\n if A[i] A[i+1]:\n print(\"No\")\n break\n else:\n print(\"Yes\")\nelif N == 1:\n print(\"Yes\")\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\nif N > 2:\n for i in range(N-2):\n if A[i]>A[i+1]:\n A[i] -= 1\n for i in range(N-2):\n if A[i] > A[i+1]:\n print(\"No\")\n break\n else:\n print(\"Yes\")\nelif N == 2:\n if A[0] <= A[1]:\n print(\"Yes\")\n else:\n print(\"No\")\nelif N == 1:\n print(\"Yes\")\n", "jacc_sim": 0.9705882352941176, "before_after_length": [127, 152], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "21\n A[0] -= 121><+1212:\n if A[0] <= A[] else:\n print(\"No\")\nelif N == 1:\n print(\"Yes\")\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u723345499", "n_user": "u723345499", "pos": "import sys\n\nn = int(input())\nh = list(map(int, input().split()))\nmax_ = h[0]\n\nfor i in range(1, n - 1):\n max_ = max(max_, h[i])\n if max_ - h[i + 1] >= 2:\n print(\"No\")\n sys.exit()\nprint(\"Yes\")", "neg": "n = int(input())\nh = list(map(int, input().split()))\nmax_ = h[0]\n\nfor i in range(1, n - 1):\n max_ = max(max_, h[i])\n if max_ - h[i] >= 2:\n print(\"No\")\n exit()\nprint(\"Yes\")", "jacc_sim": 0.9142857142857143, "before_after_length": [91, 83], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "import sys\n\n + 1sys.", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u648257619", "n_user": "u460009487", "pos": "n=int(input())\nh=list(map(int,input().split()))\nh[0]-=1\nans='Yes'\nfor i in range(1,n):\n if h[i]>h[i-1]:\n h[i]-=1\n if h[i] h[i + 1]:\n\t\tif h[i] - 1 == h[i + 1]:\n\t\t\tprint('Yes')\n\t\t\tbreak\n\t\telse:\n\t\t\tprint ('No')\n\t\t\tbreak\n\telif h[i] < h[i + 1]:\n\t\tif h[i] == h[i + 1] - 1:\n\t\t\tprint ('Yes')\n\t\t\tbreak\n\t\telse:\n\t\t\tprint ('No')\n\t\t\tbreak\n\nif ans == n-1:\n\tprint('Yes')", "jacc_sim": 0.9117647058823529, "before_after_length": [94, 206], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": " h[0]-=1aif s= 1:\n\tprint()\n\nans = 0\n01-1\n\t >h[i-1]:\n== + 1-:\n\t\tans + \tel< > - + \t\tifh[i]-1ans='No'\nh[i+1]: break\t\t\t'Yes')\n\t\t\tbreak\n\t\telse:\n\t\t\tprint ('No')\n\t\t\tbreak\n\telif h[i] < h[i + 1]:\n\t\tif h[i] == h[i + 1] - 1:\n\t\t\tprint ('Yes')\n\t\t\tbreak\n\t\telse:\n\t\t\tprint ('No')\n\t\t\tbreak\n\nif == n-1:\n\tprint('Yes'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u077075933", "n_user": "u077075933", "pos": "N = int(input())\nH = list(map( int, input().split()))\ndef solve():\n for i in range(N-1, 0, -1):\n if H[i-1]-H[i]>1:\n return False\n if H[i-1]-H[i]==1:\n H[i-1]-=1\n return True\n\nprint('Yes' if solve() else 'No')", "neg": "N = int(input())\nH = list(map( int, input().split()))\ndef solve():\n for i in range(N-1, 0, -1):\n if H[i-1]-H[i]>1>\n return False\n return True\n\nprint('Yes' if solve() else 'No')", "jacc_sim": 1.0, "before_after_length": [106, 78], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": ">: if H[i-1]-H[i]==1:\n H[i-1]-=1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u646130340", "n_user": "u646130340", "pos": "N = int(input())\nH = list(map(int, input().split()))\nans = True\nb = 999999\nif ans == True:\n for i, x in enumerate(H[::-1]):\n if i != 0:\n if x <= b:\n b = x\n elif (x-1) <= b:\n b = x-1\n else:\n ans = False\n break\n else:\n b = x\nif ans:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\nH = list(map(int, input().split()))\nans = True\nb = 999999\nif ans == True:\n for i, x in enumerate(H[::-1]):\n if i != 0:\n if x <= b:\n b = x\n elif (x-1) <= b:\n b = x-1\n else:\n ans = False\n break\n else:\n b = x\nprint(ans)", "jacc_sim": 0.9210526315789473, "before_after_length": [128, 114], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "prf nt(:\n print(\"Yes\"\nelse:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u583455893", "n_user": "u875028418", "pos": "n=int(input())\narr=list(map(int,input().split()))\nfor i in range(n-2,-1,-1):\n if arr[i]>arr[i+1]:\n arr[i]-=1\n if arr[i]>arr[i+1]:\n print('No')\n break\nelse:\n print('Yes')", "neg": "n=int(input())\nh=list(map(int,input().split()))\nif n==1:\n print(\"Yes\")\nelse:\n for i in range(n-1):\n if h[i]>h[i+1]+1:\n print(\"No\")\n break\n else:\n print(\"Yes\")\n", "jacc_sim": 0.90625, "before_after_length": [91, 82], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "harrif n==1:\n print(\"Yes\")\nelse:\n 2,-1,-\n if arr[i]>arr[i+1]:\n arr[i]-=1harrharr+1\"'\"' \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u102731033", "n_user": "u102731033", "pos": "N = int(input())\nh = list(map(int,input().split()))\nans = True\nfor i in range(N-2,-1,-1):\n if h[i] > h[i+1]:\n h[i]-=1\nfor i in range(N-1):\n if h[i] <= h[i+1]:\n ans = True\n else:\n ans = False\n break\nif ans:\n print('Yes')\nelse:\n print('No')", "neg": "N = int(input())\nh = list(map(int,input().split()))\nans = True\nfor i in range(N-1):\n if h[i] < h[i+1]:\n h[i]-=1\nfor i in range(N-1):\n if h[i] <= h[i+1]:\n ans = True\n else:\n ans = False\n break\nif ans:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9428571428571428, "before_after_length": [123, 117], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "2,-1,-1):\n if h[i] > h[i+1]:\n h[i]-=1\nfor i in range(N-=ans h[i]-1 True else:\n ans = False\n break\ni ans:\n print('Yes')\nelse:\n print('Nr i in range(N-1):\n if h[i] <= h[i+1]:\n ans = True\n else:\n ans = False\n break\nif ans:\n print(Yes'\nelse:\n print('No')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u767545760", "n_user": "u767545760", "pos": "N = int(input())\ncells = list(map(int, input().split()))\ncount = []\nif N == 1:\n print('Yes')\nelse:\n for i in reversed(range(1, N)):\n if cells[i] <= cells[i - 1] - 2:\n print('No')\n break\n elif cells[i] == cells[i - 1] - 1:\n count.append('o')\n cells[i - 1] = cells[i - 1] - 1\n else:\n count.append('o')\n if len(count) == N - 1:\n print('Yes')", "neg": "N = int(input())\ncells = list(map(int, input().split()))\ncount = []\n\nfor i in range(N-2):\n if cells[N - 1 - i] - cells[N - 2 - i] <= -2:\n print('No')\n break\n elif cells[N - 1 - i] - cells[N - 2 - i] == -1:\n cells[N - 2 - i] = cells[N - 2 - i] - 1\n else:\n count.append('o')\n continue\n\nif len(count) == N - 2:\n print('Yes')", "jacc_sim": 0.9459459459459459, "before_after_length": [151, 146], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "\nioriNin==1:\n print('Yes')\nelse:\n for i in reversed(1, )):\n if cells[i] <= cells[i 1] - )ifcells[ print(' - 1 - i] - cells[N - 2 - i] <= -2:\n print('N N - 1 - - cells[N - 2 - i] -1:\n N - 2 - ]= cells[N 2 - i] - \n]-1 else ontinulls[i - 1] = cells[i - 1] - 1 else: count.append('o')\n 21 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u733774002", "n_user": "u179285430", "pos": "N = int(input())\nH = list(map(int, input().split()))\nans = \"Yes\"\nfor i in range(N - 1, 1, -1):\n if H[i - 1] - H[i] >= 2:\n ans = \"No\"\n elif H[i] < H[i - 1]:\n H[i - 1] -= 1\n\nprint(ans)", "neg": "N = int(input())\nH = list(map(int, input().split()))\nans = (\"Yes\")\n\nfor i in range(N-1):\n if H[i] - H[i+1] == 1:\n H[i+1] -= 1\n elif H[i] - H[i+1] >= 2:\n ans = (\"No\")\n\nprint(ans)", "jacc_sim": 0.9375, "before_after_length": [95, 94], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "()\n - 1, 1, ]H[i+-==1H[i] >= 2ansH[i+1]-1\"No\"-<+1]->=21]ansH[i=-(\"No\")1] -= 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u516554284", "n_user": "u516554284", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=0\nc=a.reverse()\nd=0\nfor i in range(n-1):\n if a[i]-a[i+1]==-1:\n a[i+1]=a[i+1]-1\n elif a[i]-a[i+1]<=-2:\n b+=1\n else:\n d=d\n \nif b==0:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=0\nc=a.reverse()\nd=0\nfor i in range(n-1):\n if a[i]-a[i+1]==1:\n a[i+1]=a[i+1]-1\n elif a[i]-a[i+1]>=2:\n b+=1\n else:\n d=d\n \nif b==0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9459459459459459, "before_after_length": [137, 135], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "1:\n a[i+1]=a[i+1]:elif ]-a[i>a[i+1]-1\n elif a[i]-a[i+1]<=-\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u703890795", "n_user": "u703890795", "pos": "N = int(input())\nH = list(map(int,input().split()))\n\nfor i in range(N-1):\n if H[N-i-1] < H[N-i-2]:\n H[N-i-2] -= 1\n \nf = 0\nfor i in range(N-1):\n if H[N-i-1] < H[N-i-2]:\n f = 1\n \nif f == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\nH = map(int,input().split())\n\nfor i in range(N-1):\n if H(N-i-1) < H(N-i-2):\n H(N-i-2) -= 1\n \nf = 0\nfor i in range(N-1):\n if H(N-i-1) < H(N-i-2):\n f = 1\n \nif f = 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9032258064516129, "before_after_length": [127, 124], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "list()([)]([)]([)]([)]([)]=Yes\")\nelse:\n print(\"\nelse:\n print(\"Yes\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02953", "p_user": "u227085629", "n_user": "u227085629", "pos": "n = int(input())\nhoge_list = list(map(int,input().split()))\nh_list = hoge_list[::-1]\nmae = h_list[0]\ns = 0\nfor h in h_list:\n if h <= mae:\n mae = h\n elif h-1 == mae:\n mae = h-1\n else:\n print('No')\n s += 1\n break\nif s == 0:\n print('Yes')", "neg": "n = int(input())\nhoge_list = list(map(int,input().split()))\nh_list = hoge_list[::-1]\nmae = h_list[-1]\ns = 0\nfor h in h_list:\n if h <= mae:\n mae = h\n elif h-1 = mae:\n mae = h-1\n else:\n print('No')\n s += 1\n break\nif s == 0:\n print('Yes')", "jacc_sim": 1.0, "before_after_length": [123, 123], "nl": "You are given N squares arranged in a row, each with a specific height. For each square, you can either decrease its height by 1 or leave it unchanged. Determine if it's possible to perform these operations in a way that the heights of the squares are non-decreasing from left to right. The input consists of N and the heights of the squares, and the output should be \"Yes\" if it's possible, and \"No\" if it's not. All values are integers, and N ranges from 1 to 10^5, while the height of each square ranges from 1 to 10^9.", "diff_info": "0]\ns = 0\nfor h in h_list:\n if h <= mae:\n mae = h\n elif h]\ns== mae:\n mae = h-1\n else:\n print('No')\n s += 1\n break\nif s =\nfor h in h_list:\n if h <= mae:\n mae = h\n elif h-1 = mae:\n mae = h-1\n else:\n print('No')\n s += 1\n break\nif s == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u782616557", "n_user": "u782616557", "pos": "N=int(input())\np=list(map(int,input().split()))\nfalse_num=0\nfor i in range(N):\n if p[i] != i+1:\n \n false_num+=1\n\nif false_num==0 or false_num==2:\n print('YES')\nelse:\n print('NO')\n \n", "neg": "N=int(input())\np=list(map(int,input().split()))\nfalse_num=0\nfor i in range(N-1):\n if p[i]+1==p[i+1]:\n continue\n else:\n false_num+=1\n\nif false_num=0 or 2:\n print('YES')\nelse:\n print('NO')\n\n\n \n ", "jacc_sim": 0.9117647058823529, "before_after_length": [89, 98], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "-1 != i==p[i:\n \n false_num=]:\niffalse_num==0 cntinue\n else:\n false_num+=1\n\nif false_num=0 ofalse_num==\n\n\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u524870111", "n_user": "u524870111", "pos": "#create date: 2020-07-05 10:48\n\nimport sys\nstdin = sys.stdin\n\ndef ns(): return stdin.readline().rstrip()\ndef ni(): return int(ns())\ndef na(): return list(map(int, stdin.readline().split()))\n\ndef main():\n n = ni()\n p = na()\n for i in range(n-1):\n for j in range(i, n):\n q = p.copy()\n q[i] = p[j]; q[j] = p[i]\n now = q[0]\n f = True\n for qi in q:\n if now > qi:\n f = False\n break\n now = qi\n if f:\n print(\"YES\")\n quit()\n print(\"NO\")\n\n\n\nif __name__ == \"__main__\":\n main()", "neg": "#create date: 2020-07-05 10:48\n\nimport sys\nstdin = sys.stdin\n\ndef ns(): return stdin.readline().rstrip()\ndef ni(): return int(ns())\ndef na(): return list(map(int, stdin.readline().split()))\n\ndef main():\n n = ni()\n p = na()\n for i in range(n-1):\n for j in range(i, n):\n q = p.copy()\n q[i] = p[j]; q[j] = p[i]\n now = q[i]\n f = True\n for qi in q:\n if now > qi:\n f = False\n break\n now = qi\n if f:\n print(\"Yes\")\n quit()\n print(\"No\")\n\n\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9180327868852459, "before_after_length": [213, 213], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "i0esESoO", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u707870100", "n_user": "u707870100", "pos": "# -*- coding: utf-8 -*-\n#B\nimport sys\n#import math\n\n\nn = int(input())\ntmp = input().split()\nhoge = list(map(lambda a: int(a), tmp))\n\n#print(hoge)\n\nfor i in range(0,n-1):\n\tif(hoge[i]2:\n print('NO')\nelse:\n print('YES')", "neg": "n = int(input())\np = list(map(int, input().split()))\n\ns_p=sorted(p, reverse=True)\n\ncnt=0\n\nfor i in range(n-1):\n if p[i]!=s_p[i]:\n cnt +=1\n else:\n pass\n\nif cnt >2:\n print('NO')\nelse:\n print('YES')", "jacc_sim": 0.9210526315789473, "before_after_length": [93, 99], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": ", reverse=True-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u364642100", "n_user": "u364642100", "pos": "n = int(input())\np = list(map(int, input().split()))\ncnt = 0\nfor i in range(len(p)):\n if p[i] != i + 1:\n cnt += 1\nif cnt == 0 or cnt == 2:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "neg": "n = int(input())\np = list(map(int, input().split()))\ncnt = 0\nfor i in range(len(p)):\n if p[i] != i + 1:\n cnt += 1\nif cnt == 0 or 2:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [78, 75], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "cnt == \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u086503932", "n_user": "u086503932", "pos": "import copy\nN=int(input())\np=list(map(int,input().split()))\ns=sorted(p)\nif s==p:\n print('YES')\nelse:\n flag=0\n tmp=[]\n for i in range(N):\n for j in range(i+1,N):\n tmp=copy.deepcopy(p)\n tmp[i],tmp[j]=tmp[j],tmp[i]\n if tmp == s:\n flag=1\n print('NYOE S'[flag::2])", "neg": "import copy\nN=int(input())\np=list(map(int,input().split()))\ns=sorted(p)\nflag=0\ntmp=[]\nfor i in range(N):\n for j in range(i+1,N):\n tmp=copy.deepcopy(p)\n tmp[i],tmp[j]=tmp[j],tmp[i]\n if tmp == s:\n flag=1\nprint('NYOE S'[flag::2])", "jacc_sim": 0.9473684210526315, "before_after_length": [134, 115], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "if s==p:\n print('YES')\nelse:\n tmp=[]\nforitmp=[]in range(N): for i in range(N):\n iftmp==iftmp == ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u117193815", "n_user": "u117193815", "pos": "a = int(input())\nl=list(map(int ,input().split()))\ncount=0\nfor i in range(a):\n if i+1!=l[i]:\n count+=1\nif count<=2:\n print(\"YES\")\nelse:\n print(\"NO\") \n ", "neg": "a = int(input())\nl=list(map(int ,input().split()))\ncount=0\nfor i in range(a-1):\n if l[i]>l[i+1]:\n count+=1\n\nif count<=2:\n print(\"YES\")\nelse:\n print(\"NO\") ", "jacc_sim": 0.9117647058823529, "before_after_length": [75, 78], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "-1l[i]>l[!=l[i\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u186838327", "n_user": "u186838327", "pos": "import itertools\nimport copy\nn = int(input())\nps = list(map(int, input().split()))\n\nc = list(itertools.combinations(range(n), 2))\n\nps_sort = sorted(ps)\nif ps == ps_sort:\n print('YES')\n exit()\nelse:\n for i in range(len(c)):\n nps = copy.copy(ps)\n nps[c[i][0]], nps[c[i][1]] = nps[c[i][1]], nps[c[i][0]]\n if nps == ps_sort:\n print('YES')\n exit()\n else:\n print('NO')\n \n \n ", "neg": "import itertools\nimport copy\nn = int(input())\nps = list(map(int, input().split()))\n\nc = list(itertools.combinations(range(n), 2))\n\nps_sort = sorted(ps)\n\nfor i in range(len(c)):\n nps = copy.copy(ps)\n nps[c[i][0]], nps[c[i][1]] = nps[c[i][1]], nps[c[i][0]]\n if nps == ps_sort:\n print('YES')\n exit()\nelse:\n print('NO')\n \n \n ", "jacc_sim": 1.0, "before_after_length": [177, 155], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "\nioripsin==ps_sotange(len(c)) nps = copy.copy(ps)\n nps[c[i][0]], nps[c[i][1]] = nps[c[i][1]], nps[c[i][0]]\n if nps == ps_sort:\n for i in range(len(c)):\n nps = copy.copy(ps)\n nps[c[i][0]], nps[c[i][1]] = nps[c[i][1]], nps[c[i][0]]\n if nps == ps_sort:\n print('YES')\n exit()\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u631429391", "n_user": "u631429391", "pos": "n = int(input())\np = list(map(int,input().split()))\nnlst = [x for x in range(1,n+1)]\nlst = [0]*n\n#print(nlst,lst)\nfor i in range(n):\n if nlst[i] != p[i]:\n lst[i] = 1\n #print(lst)\nprint('YES' if sum(lst) in [0,2] else 'NO')", "neg": "n = int(input())\np = list(map(int,input().split()))\nnlst = [x for x in range(1,n+1)]\nlst = [0]*n\nfor i in range(n):\n if nlst[i] == p[i]:\n lst[i] = 1\nprint('YES' if sum(lst) in [0,2] else 'NO')", "jacc_sim": 0.9444444444444444, "before_after_length": [109, 93], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "#print(nlst,lst)\nifnlst[i]=if nlst[i] ! \n #print(lst)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u486065927", "n_user": "u486065927", "pos": "import numpy as np\nn = int(input())\np = [int(i) for i in input().split(\" \")]\nc = [0 if p[i]==i+1 else 1 for i in range(n)]\nif np.sum(c) >= 3:\n print(\"NO\")\nelse:\n print(\"YES\")\n ", "neg": "import numpy as np\nn = int(input())\np = [int(i) for i in input().split(\" \")]\nif len(p) == 0:\n print(\"YES\")\nelse:\n c = [0 if p[i]==i+1 else 0 for i in range(n)]\n if np.sum(c) > 3:\n print(\"NO\")\n else:\n print(\"YES\")\n", "jacc_sim": 0.9705882352941176, "before_after_length": [79, 99], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "if len(p) == 0:\n print(\"YES\")\nelse:\n 01 = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u551692187", "n_user": "u551692187", "pos": "N = int(input())\np = list(map(int, input().split()))\n\ncnt = 0\nfor idx, val in enumerate(p):\n if idx + 1 != val:\n cnt += 1\n if cnt == 3:\n print('NO')\n exit()\nprint('YES')\n", "neg": "N = int(input())\np = list(map(int, input().split()))\n\ncnt = 0\nfor idx, val in enumerate(p):\n if idx + 1 != val:\n cnt += 1\n if cnt == 3:\n print('NO')\nprint('YES')", "jacc_sim": 0.9666666666666667, "before_after_length": [72, 67], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": " exit()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u719886494", "n_user": "u719886494", "pos": "cnt = 0\nn = int(input())\np = list(map(int, input().split()))\nfor i in range(1, n + 1):\n if int(i) != p[i - 1] :\n cnt += 1\n if cnt >= 3:\n break\nif cnt <= 2 :\n print(\"YES\")\nelse :\n print(\"NO\")\n", "neg": "cnt = 0\nn = int(input())\np = list(map(int, input().split())\nfor i in range(1, n + 1):\n if int(i) != p[i - 1] :\n cnt += 1\n if cnt >= 2:\n break\nif cnt <= 1 :\n print(\"YES\")\nelse :\n print(\"NO\")\n", "jacc_sim": 0.9722222222222222, "before_after_length": [88, 87], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": ")2312", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u994910167", "n_user": "u994910167", "pos": "N = int(input())\np = list(map(int, input().split()))\ncnt = 0\nl = list()\n\nfor i in range(N-1):\n if p[i] > p[i+1]:\n cnt += 1\n l.append(i)\n\nif cnt > 2:\n print('NO')\nif cnt == 1:\n print('NO')\nif cnt == 0:\n print('YES')\nif cnt == 2:\n p[l[0]], p[l[1]+1] = p[l[1]+1], p[l[0]]\n cnt = 0\n for i in range(N-1):\n if p[i] > p[i+1]:\n cnt += 1\n l.append(i)\n if cnt == 0:\n print('YES')\n else:\n print('NO')", "neg": "N = int(input())\np = list(map(int, input().split()))\ncnt = 0\n\nfor i in range(N-1):\n if p[i] > p[i+1]:\n cnt += 1\n\nif cnt <= 2:\n print('YES')\nelse: print('NO')\n", "jacc_sim": 0.9142857142857143, "before_after_length": [208, 75], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "l = list()\n\nifcnt<= l.append(i)\n\nif cnt >:\n print('NO')\nif cnt == 1:\n print('NO')\nif cnt == 0if cnt == 2:\n p[l[0]], p[l[1]+1] = p[l[1]+1], p[l[0]]\n cnt = 0\n for i in range(N-1):\n if p[i] > p[i+1]:\n cnt += 1\n l.append(i)\n if cnt == 0:\n print('YES')\n \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u465101448", "n_user": "u465101448", "pos": "N=int(input())\nP=[int(x) for x in input().split()]\n \nN_J=list(range(1,N+1))\nans='NO'\nfor i in range(N):\n for j in range(N):\n P_temp=P.copy()\n p_i=P[i]\n p_j=P[j]\n \n P_temp[i]=p_j\n P_temp[j]=p_i\n \n if P_temp==N_J:\n ans='YES'\nprint(ans)", "neg": "N=int(input())\nP=[int(x) for x in input().split()]\n\nN_J=list(range(1,N+1))\nans='NO'\nfor i in range(N):\n for j in range(N):\n P_temp=P.copy()\n p_i=P[i]\n p_j=P[j]\n\n P_temp[i]=p_j\n P_temp[j]=p_i\n \n if P==N_J:\n ans='YES'\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [139, 136], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": " \n P_temp[i]=p_jj]=p_]=p_j\n if _temp[j]=p_i\n \n if P_temp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u170183831", "n_user": "u170183831", "pos": "def solve(n, A):\n def check(L):\n for i in range(1, len(L)):\n if L[i] < L[i - 1]:\n return False\n return True\n if check(A):\n return 'YES'\n for i in range(n):\n for j in range(i + 1, n):\n if check(A[0:i] + [A[j]] + A[i + 1:j] + [A[i]] + A[j + 1:]):\n return 'YES'\n return 'NO'\n\n_n = int(input())\n_A = list(map(int, input().split()))\nprint(solve(_n, _A))", "neg": "n = int(input())\nA = list(map(int, input().split()))\ndef check(L):\n for i in range(1, len(L)):\n if L[i] < L[i - 1]:\n return False\n return True\nfor i in range(n):\n for j in range(i + 1, n):\n if check(A[0:i] + [A[j]] + A[i+1:j] + [A[i]] + A[j+1:]):\n print('YES')\n return\nprint('NO')", "jacc_sim": 0.925, "before_after_length": [171, 137], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "def solve(n, A):\n def check(L):\n for i in range(1, len(L)):\n if L[i] < L[i - 1]:\n return False\n return True\n if check(A):\n return 'YES'\n for i in range(n):\n for j in range(i + 1, n):\n if check(A[0:i] + [A[j]] + A[i + 1:j] + [A[i]] + A[j + 1:]):\n return 'YES'\n return 'NO'\n\n__printdef checksL):\n flvr i in rang1_n_len(L)):\n if L[i] < L[i - 1]:\n return False\n return True\nfor i in range(n):\n for j in range(i + 1, n):\n if check([0:i] + [A[j]] + A[i+1:j] + [A[i]] + A[j+1:]:\n print('YES'\n return\nprint('NO')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u667024514", "n_user": "u667024514", "pos": "n = int(input())\nlis = list(map(int,input().split()))\nli = sorted(lis)\ncou = 0\nfor i in range(n):\n if lis[i] != li[i]:\n cou += 1\n if cou > 2:\n print(\"NO\")\n exit()\nprint(\"YES\")", "neg": "n = int(input())\nlis = list(map(int,input().split()))\nli = sorted(lis)\ncou = 0\nfor i in range(n):\n if lis[i] != li[i]:\n cou += 1\nif cou >= 2:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9428571428571428, "before_after_length": [84, 83], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": " = print(\"NO\")\n exit()\n\nelse:\n print(\"NO\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u508273185", "n_user": "u508273185", "pos": "n = int(input())\np = list(map(int,input().split()))\ncount=0\n#print(p)\np_sorted = sorted(p)\n#print(p_sorted)\n\nfor i in range(n):\n #print(i)\n if p[i]!=p_sorted[i]:\n count+=1\n #print(count)\n\nif count==0 or count==2:\n print(\"YES\")\nelse :\n print(\"NO\")", "neg": "n = int(input())\np = list(map(int,input().split()))\ncount=0\n#print(p)\np_sorted = sorted(p)\nprint(p_sorted)\n\nfor i in range(n):\n #print(i)\n if p[i]!=p_sorted[i]:\n count+=1\n #print(count)\n\nif count==2:\n print(\"YES\")\nelse :\n print(\"NO\")", "jacc_sim": 0.9714285714285714, "before_after_length": [117, 112], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "# count==0 or", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u219086885", "n_user": "u219086885", "pos": "n = int(input())\nxn = [int(x) for x in input().split()]\nk = 0\nfor i in range(1,n+1):\n\tif xn[i-1] != i:k += 1\n \nprint(\"NO\" if k > 2 else \"YES\")", "neg": "n = int(input())\nxn = map(int,input().split())\nk = 0\nfor i in range(1,n+1)\n\tif xn[i-1] != i:\n \tk += 1\nprint(\"NO\" if k > 2 else \"YES\")", "jacc_sim": 0.9393939393939394, "before_after_length": [69, 65], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "[map(,(x) for x in )]:\n \t\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u991269553", "n_user": "u991269553", "pos": "n = int(input())\np = list(map(int,input().split()))\nq = sorted(p)\na = 0\nfor i in range(n):\n if int(p[i]) != int(q[i]):\n a += 1\nif a <= 2:\n print('YES')\nelse:\n print('NO')", "neg": "n = int(input())\np = list(map(int,input().split()))\nq = sort(p)\nfor i in range(1,n):\n if p[i] != q[i]:\n a += 1\nif a <= 2:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9142857142857143, "before_after_length": [84, 77], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "ed\na = 01,int()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u634159866", "n_user": "u681444474", "pos": "N = int(input())\nP = list(map(int, input().split()))\n\nPs = sorted(P)\n\ncnt = 0\nfor i in range(N):\n if Ps[i]!=P[i]:\n cnt+=1\nif cnt==2 or cnt==0:\n print('YES')\nelse:\n print('NO')", "neg": "N=int(input())\nP=list(map(int,input().split()))\nL=sorted(P)\ncnt=0\nfor i in range(N):\n if P[i]!=L[i]:\n cnt+=1\n \nif cnt==2:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9142857142857143, "before_after_length": [85, 81], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": " L\nPs \n sLP \n or cnt==0 \"'\"' \"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u666964944", "n_user": "u666964944", "pos": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\n\nfor i in range(1, n+1):\n if p[i-1] != i:\n count += 1\n \nif count == 0 or count == 2:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "n = int(input())\np = map(int, input().split())\n\nfor i in range(1, n+1):\n if p[i-1] != i:\n count += 1\n \nif count == 0 or count == 2:\n print(\"YES\")\nelse:\n print(\"No\")", "jacc_sim": 0.9117647058823529, "before_after_length": [81, 74], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "list()\ncount = 0oO", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u167681750", "n_user": "u167681750", "pos": "n = int(input())\np = list(map(int, input().split()))\n\nfor i in range(n):\n for j in range(n):\n temp = p.copy()\n temp[i], temp[j] = temp[j], temp[i]\n sorted_temp = sorted(temp)\n\n if sorted_temp == temp:\n print(\"YES\")\n exit()\n\nprint(\"NO\")", "neg": "n = int(input())\np = list(map(int, input().split()))\n\n\nfor i in range(n):\n for j in range(n):\n temp = list(copy(p))\n temp[i], temp[j] = temp[j], temp[i]\n sorted_temp = sorted(temp)\n\n if sorted_temp == temp:\n print(\"YES\")\n exit()\n\nprint(\"NO\")", "jacc_sim": 1.0, "before_after_length": [102, 105], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "\np.list(p)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u982462877", "n_user": "u982462877", "pos": "s = int(input())\n\nnums = list(map(int,input().split()))\n\ncount = 0\n\nfor val in range(s):\n if val+1 != nums[val]:\n count += 1\n\nif count <= 2:\n print('YES')\nelse: \n print('NO')\n", "neg": "\ns = input()\ns = int(s)\n\nnums = list(map(int,input().split()))\n\ncount = 0\n\nfor val in range(s):\n if val+1 != nums[val]:\n count +=1\n\nif count <= 2:\n print('Yes')\nelse: \n print('NO')\n", "jacc_sim": 0.9393939393939394, "before_after_length": [74, 80], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "\ns = input()\nsinput() esES", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u854685063", "n_user": "u854685063", "pos": "n = int(input())\na = [int(k) for k in input().split()]\ncnt = 0\nfor i in range(n):\n if a[i] != i+1:cnt += 1\nprint(\"YES\" if cnt <= 2 else \"NO\")\n", "neg": "n = int(input())\na = [int(k) for k in input().split()]\ncnt = 0\nfor i in range(n):\n if a[i] != i+1:cnt += 1\nprint(\"YES\" if k <= 2 else \"NO\")", "jacc_sim": 1.0, "before_after_length": [63, 62], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "kcnt\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u514383727", "n_user": "u514383727", "pos": "N = int(input())\np = list(map(int, input().split()))\nn = [i+1 for i in range(N)]\nc = 0\nfor i in range(N):\n if n[i] != p[i]:\n c += 1\nif c == 0 or c == 2:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "neg": "N = int(input())\np = list(map(int, input().split()))\nn = [i+1 in range(N)]\nc = 0\nfor i in range(N):\n if n[i] != p[i]:\n c += 1\nif c == 0 or c == 2:\n print(\"YES\")\nelse:\n print(\"NO\")\n\t", "jacc_sim": 1.0, "before_after_length": [89, 88], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "for i \t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u668503853", "n_user": "u668503853", "pos": "N=int(input())\nA=list(map(int,input().split()))\nAA=sorted(A)\nli=[]\nfor i in range(N):\n if A[i]!=AA[i]:\n li.append(A[i])\nif len(li)>2:\n print(\"NO\")\nelse:\n print(\"YES\")\n", "neg": "N=int(input())\nA=list(map(int,input().split()))\nli=[]\nfor i in range(N):\n if A[i]!=AA[i]:\n li.append(A[i])\nif len(li)>2:\n print(\"NO\")\nelse:\n print(\"YES\")", "jacc_sim": 0.9696969696969697, "before_after_length": [87, 79], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": ")\nAA=sorted(A\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u665598835", "n_user": "u665598835", "pos": "N = int(input())\nsuuretsu_str = input().split()\nsuuretsu = [int(i) for i in suuretsu_str]\nsuuretsu_order = [i for i in range(1,N+1)]\ncount = 0\nfor i in range(N):\n if suuretsu[i] != suuretsu_order[i]:\n count += 1\nif count == 2 or count == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "N = int(input())\nsuuretsu_str = input().split()\nsuuretsu = [int(i) for i in suuretsu_str]\nsuuretsu_order = [i for i in range(1,N+1)]\ncount = 0\nfor i in range(N):\n if suuretsu[i] != suuretsu_order[i]\n count += 1\nif count == 2:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.96875, "before_after_length": [122, 118], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": ": or count == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u859448927", "n_user": "u859448927", "pos": "N = int(input())\nlis = list(map(int,input().split()))\ncounter = 0\nfor i in range(N):\n if lis[i] - i-1 != 0:\n counter += 1\nif counter > 2:\n print('NO')\nelse:\n print('YES')\n", "neg": "N = int(input())\nlis = list(map(int,input().split()))\ncounter = 0\nfor i in N:\n if lis[i-1] - N != 0:\n counter += 1\nif counter > 2:\n print('NO')\nelse:\n print('YES')", "jacc_sim": 0.9696969696969697, "before_after_length": [75, 72], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "range()-1Ni-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02958", "p_user": "u046187684", "n_user": "u046187684", "pos": "def solve(string):\n n, *p = map(int, string.split())\n return \"NO\" if sum([i != _p for i, _p in enumerate(p, start=1)]) > 2 else \"YES\"\n\n\nif __name__ == '__main__':\n print(solve('\\n'.join([input(), input()])))\n", "neg": "def solve(string):\n n, *p = map(int, string.split())\n return \"NO\" if sum([i != _p for i, _p in enumerate(p, start=1)]) > 2 else \"YES\"\n\n\nif __name__ == '__main__':\n print(solve(input()))\n", "jacc_sim": 0.95, "before_after_length": [84, 76], "nl": "You are given a sequence p = {p_1, p_2, ..., p_N} which is a permutation of {1, 2, ..., N}. You can perform at most one operation: choose integers i and j (1 \u2264 i < j \u2264 N) and swap p_i and p_j. Print \"YES\" if you can sort p in ascending order using this operation, and \"NO\" otherwise. Constraints: All input values are integers, 2 \u2264 N \u2264 50, and p is a permutation of {1, 2, ..., N}. Input is given as N followed by p_1, p_2, ..., p_N. Output \"YES\" if you can sort p in ascending order as described, and \"NO\" otherwise.", "diff_info": "i'\\put'.join[input(, input(]))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u051401873", "n_user": "u678167152", "pos": "N, D = map(int, input().split())\nprint(-(-N//(2*D+1)))", "neg": "N, D = map(int, input().split())\nprint((N+1)//(2*D+1)+1)", "jacc_sim": 0.9444444444444444, "before_after_length": [26, 29], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " --+1)+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u483331319", "n_user": "u010069411", "pos": "import math\nn, d = map(int, input().split())\nprint(math.ceil(n / (2*d+1)))\n", "neg": "import math\nn,d = map(int, input().split())\nprint(math.ceil((n/((d+1)*2)) + 1))\n", "jacc_sim": 1.0, "before_after_length": [33, 36], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " n / 2*n/((*2)) + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u815304751", "n_user": "u815304751", "pos": "n,d=list(map(int,input().split()))\n\ncnt = n // (2*d+1)\n\nif n%(2*d+1) == 0:\n print(cnt)\nelse:\n print(cnt + 1)", "neg": "n,d=list(map(int,input().split()))\n\ncnt = n // (2*d+1)\n\nif cnt == 0:\n print(cnt)\nelse:\n print(cnt + 1)", "jacc_sim": 0.9583333333333334, "before_after_length": [59, 52], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "ct%(2*d+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u918935103", "n_user": "u983327168", "pos": "n,d = map(int,input().split())\nk = 1 + 2*d\nif n%k == 0:\n print(n//k)\nelse:\n print(n//k+1)", "neg": "n,d=map(int,input().split())\nif n%2==0:\n print(n//(d*2)+1)\nelse:\n print(n//(d+1))\n\n\n", "jacc_sim": 0.9565217391304348, "before_after_length": [49, 50], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " k = 1 + 2*d\n2k k(d*2)+1k(d)\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u945641805", "n_user": "u945641805", "pos": "N, D = map(int, input().split())\n\ni = 1\nleft = 1\nres = 0\nwhile i <= N:\n if i - D == left:\n left = i + D + 1\n res += 1\n i += 1\n\nif left <= N: res += 1\n\nprint(res)", "neg": "N, D = map(int, input().split())\n\ni = 1\nleft = 1\nres = 0\nwhile i <= N:\n if i - D == left:\n print(i, left)\n left = i + D + 1\n res += 1\n i += 1\n\nif left <= N: res += 1\n\nprint(res)", "jacc_sim": 1.0, "before_after_length": [75, 83], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "print(i, left)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u118642796", "n_user": "u562550538", "pos": "N,D = map(int,input().split())\nprint((N+2*D)//(2*D+1))\n", "neg": "N, D = map(int, input().split())\nD = 2*D + 1\nprint(N//D)", "jacc_sim": 1.0, "before_after_length": [30, 27], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " D = 2*D + 1\n(+2*D)(2*+1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u832039789", "n_user": "u240249402", "pos": "n,d = map(int,input().split())\nprint((n + 2 * d) // (2 * d + 1))", "neg": "n,d=map(int,input().split())\nans=n//(2*d+1)+1\nprint(ans)", "jacc_sim": 0.9444444444444444, "before_after_length": [29, 30], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " ans=n//(2*d+1)+1\na(s + 2 * d // (2 * d + 1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u316322317", "n_user": "u060569392", "pos": "n,d=map(int,input().split())\nif n%(2*d+1)==0:\n s=0\nelse:\n s=1\nprint(n//(2*d+1)+s)", "neg": "n,s=map(int,input().split())\n\ncount=n//(2*d+1)\n\nif n%(2*d+1)==0:\n print(count)\nelse:\n print(count+1)", "jacc_sim": 0.9583333333333334, "before_after_length": [52, 56], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "sd\ncount=n//(2*d+1)\n\ns=0print(count)s=1\ncout//(2*d+s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u827141374", "n_user": "u827141374", "pos": "n,d=map(int,input().split())\nd=2*d+1\nprint((n+(d-1))//d)", "neg": "n,d=map(int,input().split())\nprint((n+2*d-1)//(2*d))", "jacc_sim": 1.0, "before_after_length": [33, 29], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "d=2*d+1\n(2*)(2*)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u756399469", "n_user": "u809457879", "pos": "N, D = map(int, input().split())\nprint((2*D+N)//(2*D+1))", "neg": "N,D=map(int,input().split())\nprint((N//(2*D+1))+1)", "jacc_sim": 1.0, "before_after_length": [29, 27], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " 2*D+)+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u825842302", "n_user": "u932868243", "pos": "import math\n\nn,d = map(int,input().split())\n\nk = n/(d*2+1)\nprint(math.ceil(k))", "neg": "import math\nn,d=map(int,input().split())\nprint(math,ceil(n/(d*2+1)))", "jacc_sim": 0.9523809523809523, "before_after_length": [39, 32], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "\n \nk = n/(d*2+1)\n,.kn/(d*2+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u867826040", "n_user": "u178192749", "pos": "from math import ceil\nn,d = map(int,input().split())\nprint(ceil(n/(d*2+1)))", "neg": "import math\nn,d = map(int,input().split())\nprint(math.ceil(n//(d*2+1)))", "jacc_sim": 0.9523809523809523, "before_after_length": [32, 32], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "from math mathceilmath./", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u492447501", "n_user": "u492447501", "pos": "import math\n\nS = input()\n\nS = S.split()\n\nN = int(S[0])\nD = int(S[1])\n\nprint(math.ceil(N/(2*D+1)))\n", "neg": "import math\n\nS = input()\n\nS = S.split()\n\nN = int(S[0])\nD = int(S[1])\n\nprint(math.ceil(N*(2*D+1)))", "jacc_sim": 0.9545454545454546, "before_after_length": [54, 52], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "*/\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u631021475", "n_user": "u631021475", "pos": "n, d = map(int, input().split())\n\nans = (n + 2 * d) / (2 * d + 1) \nprint(int(ans))\n", "neg": "n, d = map(int, input().split())\n\nans = round((n + 2 * d) / (2 * d + 1)) \nprint(ans)\n", "jacc_sim": 0.9473684210526315, "before_after_length": [40, 39], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "round()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u365243017", "n_user": "u365243017", "pos": "N,D = map(int,input().split())\na = N//(2*D+1)\nif N%(2*D+1) == 0:\n\tprint(a)\nelse:\n \tprint(a+1)\n", "neg": "N,D = map(int,input(),split()))\na = (N-1)/(2*D)\nif (N-1)%(2*D)==0:\n\tprint(a)\nelse :\n \tprint((N-1)//2*D+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [56, 66], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": ",.)(/-1)+1(-1)+1 a(N-1)//2*D\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u223555291", "n_user": "u223555291", "pos": "a,b=map(float,input().split())\n\nd=b*2+1\n\nc=a/d\n\nif c>int(c):\n print(int(c)+1)\nelse:\n print(int(c))\n", "neg": "a,b=map(int,input().split())\nd=b*2+1\n\nc=a/d\nif c>b:\n print(c+1)\nelse:\n print(c)", "jacc_sim": 0.9583333333333334, "before_after_length": [59, 50], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "infloa\n\nbint(c)int()int()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u653837719", "n_user": "u653837719", "pos": "n, d = map(int, input().split())\n\nprint((n + 2 * d) // (2 * d + 1))\n", "neg": "n, d = map(int, input().split())\n\nprint(n // (2 * d + 1) + 1)\n", "jacc_sim": 1.0, "before_after_length": [31, 29], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "( + 2 * d) + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u413165887", "n_user": "u413165887", "pos": "nd = list(map(int, input().split(' ')))\n\na = nd[0] // (nd[1]*2+1)\n\nif (nd[0]%(nd[1]*2+1)) != 0:\n a += 1\n\nprint(a)", "neg": "nd = list(map(int, input().split(' ')))\n\na = nd[0] // (nd[1]*2)\n\nif (nd[0]%(nd[1]*2)) != 0:\n a += 1\n\nprint(a)\n", "jacc_sim": 1.0, "before_after_length": [63, 60], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "+1+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u343019314", "n_user": "u343019314", "pos": "import math\n\nn, d = list(map(int, input().split()))\n\nprint(math.ceil(n / (1+2*d)))", "neg": "import math\n\nn,d=list(map(int(input().split()))\n \nprint (math.ceil(n/1+2*d))", "jacc_sim": 1.0, "before_after_length": [37, 37], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " (, ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u562033060", "n_user": "u652300261", "pos": "n, d = map(int, input().split())\nprint(-(-n // (d * 2 + 1)))\n", "neg": "n,d=map(int, input().split())\nprint(n//(2*d+1)+1)\n", "jacc_sim": 0.9444444444444444, "before_after_length": [26, 27], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " -(- d * *d )+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u379959788", "n_user": "u857673087", "pos": "import math\nN, D = map(int, input().split())\nk = 2 * D + 1\nprint(math.ceil(N / k))", "neg": "import math\nN, D = map(int, input().split())\n\nprint(math.ceil(N/(2*D+1))", "jacc_sim": 0.9523809523809523, "before_after_length": [35, 33], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "k = 2 * D + 1 k(2*D+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u235107623", "n_user": "u235107623", "pos": "string = input()\nn, d = string.split(\" \")\nn = int(n)\nd = int(d)\nprint(n // (2*d+1) + int(n % (2*d+1) != 0))", "neg": "n, d = input().split(\" \")\nn = int(n)\nd = int(d)\nprint(n / (2*d+1) + int(n % (2*d+1) != 0))", "jacc_sim": 0.9523809523809523, "before_after_length": [55, 50], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "strig, d\nn, d = string/", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u102242691", "n_user": "u124063060", "pos": "\nn,d = map(int,input().split())\nans = 0\ndis = 2*d +1\n\nif (n % dis) == 0:\n\tans = int(n / dis)\nelse:\n\tans = int((n // dis)+1)\n\nprint(ans)\n", "neg": "n, d = map(int, input().split())\nif n//(2*d+1) % 0:\n print(n/(2*d+1))\nelse:\n print(n//(2*d+1)+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [68, 57], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "\n ans = 0\ndis = 2*d +1\n\n( % //(2*+1is%==\tans= pr (2*is+1)\tans=int((n//dis)+1)\n\nas//(2*d+1\n+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u530606147", "n_user": "u739959951", "pos": "import math\nn,d = map(int,input().split())\n\nprint(math.ceil(n/(2*d+1)))\n", "neg": "n,d=map(int,input().split())\nprint(math.ceil(n/(2*d+1))", "jacc_sim": 0.95, "before_after_length": [34, 29], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "import math\n \n)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u474925961", "n_user": "u474925961", "pos": "a,b = map(int,input().split())\n\nprint(-((-a)//(2*b+1)))", "neg": "a,b = map(int(input().split())\n\nprint(-(a//(2*b+1)))", "jacc_sim": 1.0, "before_after_length": [28, 26], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "(,(-)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u776338097", "n_user": "u776338097", "pos": "def main():\n import sys\n input = sys.stdin.readline\n \n n, d = map(int, input().split())\n d = 2 * d + 1\n print((n + d - 1) // d)\n \n return 0\n\nmain()", "neg": "def main():\n import sys\n input = sys.stdin.readline\n \n n, d = map(int, input().split())\n print((n + d - 1) // d)\n \n return 0\n\nmain()", "jacc_sim": 0.9259259259259259, "before_after_length": [65, 56], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "d = 2 * d + 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u740813346", "n_user": "u375247374", "pos": "N, D = map(int, input().split())\n\nif(N%(D*2+1)==0):\n\tprint(N//(D*2+1))\nelse:\n\tprint(N//(D*2+1)+1)", "neg": "N, D = map(int, input().split())\n\nif (N % (D * 2 + 1)) == 0:\n print(N % (D * 2 + 1))\nelse:\n print(N % (D * 2 + 1) + 1)", "jacc_sim": 0.9545454545454546, "before_after_length": [58, 60], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " ) )\t // % \t // % ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u158344095", "n_user": "u295178043", "pos": "import math\n\nn,d = map(int,input().split(\" \"))\n\nprint(math.ceil(n / (d * 2 + 1)))", "neg": "import math\nn,d = map(int, input().split())\nprint(math.ceil((n-1-d)/(1+2*d))+1)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [36, 40], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": "\n \" \"\nn / n-d * 2 + -d)/(1+2*d+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u813098295", "n_user": "u561339958", "pos": "n, d = map(int, input().split())\nprint( (n + 2*d) // (2*d+1) )", "neg": "n,d = map(int,input().split())\nprint(n // (d*2) + 1)", "jacc_sim": 1.0, "before_after_length": [31, 25], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " ( + 2*d)2**2+1+ 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02970", "p_user": "u638320267", "n_user": "u042716570", "pos": "N, D = map(int,input().split())\nprint((N-1)//(2*D+1)+1)\n", "neg": "N, D = map(int, input().split())\nprint(N//(D*2+1)+1)", "jacc_sim": 0.9444444444444444, "before_after_length": [30, 26], "nl": "You have N apple trees in a row, and one of them will bear golden apples. You need to deploy inspectors so that each tree is inspected. Each inspector will be assigned to a tree and will inspect the trees within a range of i-D to i+D (inclusive). Find the minimum number of inspectors needed to achieve this. Constraints: All values are integers, 1 \u2264 N \u2264 20, 1 \u2264 D \u2264 20. Input is given as N D. Output the minimum number of inspectors needed. Example: Input: 6 2, Output: 2. Example: Input: 14 3, Output: 2. Example: Input: 20 4, Output: 3.", "diff_info": " (-1)2**2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u170319289", "n_user": "u170319289", "pos": "n = int(input())\n\nA = []\n\nfor i in range(n):\n a = int(input())\n A.append(a)\n\nmaxa = max(A)\n\ncopy = A[:]\n\ncopy.remove(maxa)\n\nmaxa2 = max(copy)\n\nfor i in A:\n if i == maxa:\n print(maxa2)\n else:\n print(maxa)\n", "neg": "n = int(input())\n\nA = []\n\nfor i in range(n):\n a = int(input())\n A.append(a)\n\nmaxa = max(A)\n\ncopy = A[:]\ncopy.remove(maxa)\n\nmaxa2 = max(copy)\n\nfor i in A:\n if i == max:\n print(maxa2)\n else:\n print(maxa)\n", "jacc_sim": 1.0, "before_after_length": [106, 104], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "\na", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u733774002", "n_user": "u733774002", "pos": "n = int(input())\na = []\nfor i in range(n):\n a.append(int(input()))\na_max = max(a)\nind_M = a.index(a_max)\ntmpl = a\ntmpl.pop(ind_M)\nfor i in range(n):\n if i != ind_M:\n print(a_max)\n else:\n print(max(tmpl))", "neg": "n = int(input())\na = []\nfor i in range(n):\n a.append(int(input()))\na_max = max(a)\nind_M = a.index(a_max)\ntmpl = a\noth = tmpl.pop(ind_M)\nfor i in range(n):\n if i != ind_M:\n print(a_max)\n else:\n print(oth)", "jacc_sim": 0.9629629629629629, "before_after_length": [101, 101], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "oth = omax(hmpl)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u064408584", "n_user": "u110580875", "pos": "n=int(input())\na=[int(input()) for i in range(n)]\nb=sorted(a)\nfor i in a:\n if i==b[-1]:\n print(b[-2])\n else:\n print(b[-1])", "neg": "n=int(input())\na=[int(input())for _ in range(n)]\nb=sorted(a)\n\nfor a in b:\n if a==b[-1]:\n print(b[-2])\n else:\n print(b[-1])", "jacc_sim": 0.9130434782608695, "before_after_length": [62, 63], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": " _i\naiba ai ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u237316771", "n_user": "u237316771", "pos": "import heapq\n \nn = int(input())\na = [int(input()) for _ in range(n)]\nm1, m2 = heapq.nlargest(2, a)\nfor ai in a:\n print(m1 if ai != m1 else m2)", "neg": "import heapq\n\nn = int(input())\na = [int(input()) for _ in range(n)]\nm1, m2 = heapq.nlargest(2, a)\nfor ai in a:\n print(ai if ai != m1 else m2)\n", "jacc_sim": 1.0, "before_after_length": [65, 64], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": " aim1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u942915776", "n_user": "u942915776", "pos": "n = int(input())\na_list = [int(input()) for _ in range(n)]\nif a_list[0] > a_list[1]:\n i_max = 0\n i_max2 = 1\nelse:\n i_max = 1\n i_max2 = 0\na_max = a_list[i_max]\na_max2 = a_list[i_max2]\nfor i, a in enumerate(a_list):\n if i < 2:\n continue\n if a > a_max:\n i_max2 = i_max\n a_max2 = a_max\n i_max = i\n a_max = a\n elif a > a_max2:\n i_max2 = i\n a_max2 = a\nfor i in range(n):\n if i == i_max:\n print(a_max2)\n else:\n print(a_max)\n", "neg": "n = int(input())\na_list = [int(input()) for _ in range(n)]\nif a_list[0] > a_list[1]:\n i_max = 0\n i_max2 = 1\nelse:\n i_max = 1\n i_max2 = 0\na_max = a_list[i_max]\na_max2 = a_list[i_max2]\nfor i, a in enumerate(a_list):\n if i < 2:\n continue\n if a > a_max:\n i_max2 = i_max\n a_max2 = a_max\n i_max = i\n a_max = a\n elif a > a_max2:\n i_max2 = i\n a_max2 = a\nprint(i_max, a_max)\nprint(i_max2, a_max2)\nfor i in range(n):\n if i == i_max:\n print(a_max2)\n else:\n print(a_max)\n", "jacc_sim": 1.0, "before_after_length": [229, 253], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "for i in range(n):\n if i == i_max:\n i_mx, a2 else:\n i_mx2, a2for i in range(n):\n if i == i_max:\n print(a_max2)\n else:\n print(a_max)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u693933222", "n_user": "u693933222", "pos": "n = int(input())\n\nli = [int(input()) for i in range(n)]\nls = sorted(li, reverse = True)\n\nm1 = ls[0]\nm2 = ls[1]\n\"\"\"\nfor i in range(0,n):\n if(ls[i] != m1):\n m2 = ls[i]\n break\n\"\"\"\n\nfor i in li:\n print(m1 if(i != m1) else m2)", "neg": "n = int(input())\n\nli = [int(input()) for i in range(n)]\nls = sorted(li, reverse = True)\n\nm1 = ls[0]\n\nfor i in range(1,n):\n if(ls[i] != m1):\n m2 = ls[i]\n break\n\nfor i in li:\n print(m1 if(i != m1) else m2)", "jacc_sim": 0.9655172413793104, "before_after_length": [112, 101], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "m2 = ls[1]\n\"\"\"10\"\"\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u259861571", "n_user": "u259861571", "pos": "N = int(input())\nlst = [int(input()) for _ in range(N)]\n\nmx = max(lst)\nclst = sorted(lst)\nmx2 = clst[-2]\n\nfor j in range(N):\n if mx != lst[j]:\n print(mx)\n else:\n print(mx2)", "neg": "N = int(input())\nlst = [int(input()) for _ in range(N)]\n\nmx = max(lst)\nlst = sorted(lst)\nmx2 = lst[-2]\n\nfor j in range(N):\n if mx != lst[j]:\n print(mx)\n else:\n print(mx2)\n", "jacc_sim": 0.9615384615384616, "before_after_length": [81, 80], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "cc\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u669173971", "n_user": "u669173971", "pos": "n=int(input())\na=[int(input()) for i in range(n)] \nm=a[0]\nk=0\n\nfor i in range(n):\n if m= 2:\n for i in range(N):\n print(Max1)\n else:\n for i in range(N):\n ans = Max2 if A[i] == Max1 else Max1\n print(ans)", "neg": "N = int(input())\nA = [input() for i in range(N)]\nans = 0\nMax1 = max(A)\nMax2 = sorted(set(A))[-2]\nindexes = [i for i, x in enumerate(A) if x == Max1]\nfor i in range(N):\n ans = Max2 if len(indexes) < 2 and A[i] == Max1 else Max1\n print(ans)", "jacc_sim": 0.9117647058823529, "before_after_length": [156, 102], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "t(in)indexes = [i for i, x in enumerate(A) if x == Max1]\nif len(A) == len(indexes):\n for i in A:\n print(i)\nelse:\n if len()>2:\n for i in range(N):\n print(Max1)\n else:\n for i in range(N):\n ans = Max2 if A] for i, x in enumerate(A) if x]\nfori in rang(N):\n ans = Max2 if en(indexee) < 2 and A[i] == else Max1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u192088280", "n_user": "u192088280", "pos": "def main():\n N = int(input())\n A = []\n for n in range(N):\n A.append(int(input()))\n\n A_cp = sorted(A)\n max1_A = A_cp.pop(-1)\n max2_A = max(A_cp)\n for a in A:\n if a == max1_A:\n print(max2_A)\n else:\n print(max1_A)\n \n \nif __name__ == '__main__':\n main()\n", "neg": "def main():\n N = int(input())\n A = []\n for n in range(N):\n A.append(int(input()))\n\n A_cp = sorted(A)\n print(id(A_cp), id(A))\n max1_A = A_cp.pop(-1)\n max2_A = max(A_cp)\n for a in A:\n if a == max1_A:\n print(max2_A)\n else:\n print(max1_A)\n \n \nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9428571428571428, "before_after_length": [133, 147], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "print(id(A_cp), id(A))\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u918601425", "n_user": "u918601425", "pos": "N=int(input())\nmaxi=0\nsmaxi=0\nflag=0\nls=[]\nx=0\nfor i in range(N):\n x=int(input())\n ls.append(x)\n if (maxi= 2\n\nsecond = None\nfor Ai in sorted_A:\n if Ai < maxiuam:\n second = Ai\n break\n\nanswer = []\nfor Ai in A:\n if is_there_tow_maximum:\n answer.append(maxiuam)\n elif Ai == maxiuam:\n answer.append(second)\n else:\n answer.append(maxiuam)\nanswer = \"\\n\".join(map(str, answer))\n\nprint(answer)\n", "neg": "import collections\n\n\nN = int(input())\nA = [int(input()) for i in range(N)]\n\n\nsorted_A = list(reversed(sorted(A)))\n\nmaxiuam = sorted_A[0]\nis_there_tow_maximum = A.count(maxiuam) >= 2\n\nif is_there_tow_maximum:\n answer = str(maxiuam * (N - 1))\n print(answer)\n\nsecond = None\nfor Ai in sorted_A:\n if Ai < maxiuam:\n second = Ai\n break\n\nanswer = []\nfor Ai in A:\n if Ai == maxiuam:\n answer.append(second)\n else:\n answer.append(maxiuam)\nanswer = \"\\n\".join(map(str, answer))\n\nprint(answer)\n", "jacc_sim": 0.9166666666666666, "before_after_length": [192, 203], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "if is_there_tow_maximum:\n answer = str(maxiuam * (N - 1))\n print(answer)\n\nif is_there_tow_maximum:\n answer.append(maxiuam)\n el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u173178698", "n_user": "u173178698", "pos": "N = int(input())\nA = [0]*N\n\nfor i in range(N):\n A[i] = int(input())\n\nB = sorted(A,reverse=True)\n\nfor i in range(N):\n if A[i]==B[0]:\n print(B[1])\n else:\n print(B[0])", "neg": "N = int(input())\nA = [0]*N\n\nfor i in range(N):\n A[i] = int(input())\n\nB = sorted(A,reverse=True)\n\nfor i in range(N):\n if A[i]==B[0]:\n print(B[0])\n else:\n print(B[1])\n", "jacc_sim": 1.0, "before_after_length": [86, 87], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "0110\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u647287452", "n_user": "u647287452", "pos": "N=int(input())\nlist=[]\nfor i in range(N):\n list.append(int(input()))\nM=max(list)\nL=[i for i, v in enumerate(list) if v == M]\nn=len(L)\nif n>1:\n for i in range(N):\n print(M)\nelse:\n del list[L[0]]\n M2=max(list)\n for i in range(N):\n if i == L[0]:\n print(M2)\n else:\n print(M)\n", "neg": "N=int(input())\nlist=[]\nfor i in range(N):\n list.append(int(input()))\nM=max(list)\nL=[i for i, v in enumerate(list) if v == M]\nn=len(L)\nif n>1:\n for i in range(N):\n print(M)\nelif:\n del list[L[0]]\n M2=max(list)\n for i in range(N):\n if i == L[0]:\n print(M2)\n elif:\n print(M)", "jacc_sim": 0.9393939393939394, "before_after_length": [139, 139], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "ifseifse\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02971", "p_user": "u598229387", "n_user": "u598229387", "pos": "n=int(input())\na=[int(input()) for i in range(n)]\nma=max(a)\naa=sorted(a,reverse=True)\nfor i in a:\n if i !=ma:\n print(ma)\n else:\n print(aa[1])", "neg": "n=int(input())\na=[int(input()) for i in range(n)]\nma=max(a)\naa=sorted(a,reverse=True)\nfor i in a:\n if i !=ma:\n print(a[i])\n else:\n print(aa[1])", "jacc_sim": 1.0, "before_after_length": [69, 71], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), find the maximum value among the N-1 elements other than A_i in the sequence. Constraints: 2 \u2264 N \u2264 200000, 1 \u2264 A_i \u2264 200000. Input is given as N and the sequence A_1 to A_N. Output N lines, where the i-th line (1 \u2264 i \u2264 N) contains the maximum value among the N-1 elements other than A_i in the sequence.", "diff_info": "m[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u463950771", "n_user": "u463950771", "pos": "N = int(input())\na = list(map(int, input().split()))\n \nb = [ 0 for _ in range(N)]\n#M = 0\nfor i in reversed(range(1, N+1)):\n summ = 0\n for j in range(i, N+1, i):\n summ += b[j-1]\n if summ % 2 != a[i-1]:\n \tb[i-1] = 1\n \n \ncnt = sum(b)\nprint(cnt)\nnot_first = False\nif cnt > 0:\n \n for j in range(N):\n if b[j] == 1:\n if not_first:\n print(\" \", end=\"\")\n print(j+1, end=\"\")\n not_first = True\n print()", "neg": "N = int(input())\na = list(map(int, input().split()))\n \nb = [ 0 for _ in range(N)]\n#M = 0\nfor i in reversed(range(1, N+1)):\n summ = 0\n #b_summ = 0\n for j in range(i, N+1, i):\n summ += b[j-1]\n #b_summ += b[j-1]\n #if summ % 2 != a[i-1]:\n #\tb[i-1] = 1\n #\tM += 1\n divs = summ % 2\n b[i-1] = divs\n \ncnt = sum(b)\nprint(cnt)\nnot_first = False\nif cnt > 0:\n \n for j in range(N):\n if b[j] == 1:\n if not_first:\n print(\" \", end=\"\")\n print(j+1, end=\"\")\n not_first = True\n print()", "jacc_sim": 0.9555555555555556, "before_after_length": [196, 246], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "summ = 0\n #b_if #b_%+=b2 != aji\n #if summ % 2 != a[i-1]##\tM += 1\n divs = summ % 2\n b[i-1] = divs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u628335443", "n_user": "u628335443", "pos": "import sys\n\n\ndef IN_I(): return int(sys.stdin.readline().rstrip())\ndef IN_LI(): return list(map(int, sys.stdin.readline().rstrip().split()))\ndef IN_S(): return sys.stdin.readline().rstrip()\ndef IN_LS(): return list(sys.stdin.readline().rstrip().split())\n\n\nN = IN_I()\na = [0] + IN_LI()\nb = [0] * (N + 1)\nans = []\n\nfor i in range(N, 0, -1):\n tmp = 0\n for j in range(2 * i, N + 1, i):\n tmp += b[j]\n if tmp % 2 != a[i]:\n b[i] = 1\n ans.append(i)\nif len(ans) == 0:\n print(0)\nelse:\n print(len(ans))\n print(' '.join(map(str, ans)))\n", "neg": "import sys\n\n\ndef IN_I(): return int(sys.stdin.readline().rstrip())\ndef IN_LI(): return list(map(int, sys.stdin.readline().rstrip().split()))\ndef IN_S(): return sys.stdin.readline().rstrip()\ndef IN_LS(): return list(sys.stdin.readline().rstrip().split())\n\n\nN = IN_I()\na = IN_LI()\nb = [0] * N\n\nfor i in range(N - 1, -1, -1):\n if a[i] == 1:\n b[i] = 1 - b[i]\n if (i + 1) % 2 == 0:\n b[i // 2] = 1\nans = []\nfor i in range(N):\n if b[i] == 1:\n ans.append(i + 1)\n\nif len(ans) == 0:\n print(0)\nelse:\n print(' '.join(map(str, ans)))\n", "jacc_sim": 0.92, "before_after_length": [234, 239], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "IN_LI()\nb = + IN_LI()\nb = [0] ( + 1)\nans = [], 0,1):\n tmp = 0\n for j in range(2 * i, N +-1, -1):\n )f a[i] == 1 tmp +=ij\n=1- if tmp % 2 != a[i]:\n \n= if (i +)\n%2 ans.append(i)\nif len(ans) b[i // 2] = 1\nans = []\nfor i in range(N):\n if b[i] == 1:\n ans.arpend( + 1)\n\nif letans) == :\n print(0\n print(len(ans))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u189575640", "n_user": "u189575640", "pos": "# from sys import exit, stderr\n# from inspect import currentframe\n# def debug(*args):\n# names = {id(v):k for k,v in currentframe().f_back.f_locals.items()}\n# print(', '.join(names.get(id(arg),'???')+' = '+repr(arg) for arg in args), file=stderr)\n# return\nN = int(input())\na = [int(_) for _ in input().split()]\nb = set()\nout = []\nn = 0\nfor i in range(N-1, -1, -1):\n if a[i] == 1:\n out.append(i + 1)\n n += 1\n # print(i+1)\n for f in range(1, int((i+1)**0.5)+1):\n if (i+1)%f == 0:\n a[f-1] = 0 if a[f-1] == 1 else 1\n if f != (i+1)//f and f != 1:\n a[(i+1)//f-1] = 0 if a[(i+1)//f-1] == 1 else 1\n # debug(a)\nprint(n)\n# print(b)\nif len(out) > 0:\n for i in range(len(out)):\n print(out[i], end=\" \")\n print()\n", "neg": "# from sys import exit, stderr\n# from inspect import currentframe\n# def debug(*args):\n# names = {id(v):k for k,v in currentframe().f_back.f_locals.items()}\n# print(', '.join(names.get(id(arg),'???')+' = '+repr(arg) for arg in args), file=stderr)\n# return\nN = int(input())\na = [int(_) for _ in input().split()]\nb = set()\nout = []\nn = 0\nfor i in range(N-1, -1, -1):\n if a[i] == 1:\n out.append(i + 1)\n for f in range(int(n**0.5)):\n if (i+1)%f == 0:\n a[f-1] = 0 if a[i] else a[i]\n\nprint(n)\n# print(b)\nif len(out) > 0:\n for i in range(len(out)):\n print(out[i], end=\" \")\n print()\n", "jacc_sim": 0.9558823529411765, "before_after_length": [337, 260], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "forfin rage( += 1\n # pri+1)\n for f i range(1, int((i+1)+1 if-1== 1 1\n if f != (i+1)//f and f != 1:\n (+1)//f-1 = 0 if a[(i+1)//f-1] == 1 else 1 # debug(a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u864213970", "n_user": "u864213970", "pos": "\nn = int(input())\narr = [int(x) for x in input().split()]\nballs = {}\nresult = []\nreslen = 0\n\nfor i in range(n, n // 2, -1):\n if arr[i - 1] == 1:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n else:\n balls[i - 1] = 0\n\nfor i in range(n // 2, 0, -1):\n s = sum([balls[i * m - 1] for m in range(2, n // i + 1)])\n if arr[i - 1] == 1:\n if (s % 2) == 1:\n balls[i - 1] = 0\n else:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n if arr[i - 1] == 0:\n if (s % 2) == 0:\n balls[i - 1] = 0\n else:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n\nprint(reslen)\nif reslen != 0:\n print(' '.join(result))\n", "neg": "\nn = int(input())\narr = [int(x) for x in input().split()]\nballs = {}\nresult = []\nreslen = 0\n\nfor i in range(n, n // 2, -1):\n if arr[i - 1] == 1:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n else:\n balls[i - 1] = 0\n\nfor i in range(n // 2, 0, -1):\n s = sum([balls[i * m - 1] for m in range(2, n // i + 1)])\n if arr[i - 1] == 1:\n if (s % 2) == 1:\n balls[i - 1] = 0\n else:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n if arr[i - 1] == 0:\n if (s % 2) == 0:\n balls[i - 1] = 0\n else:\n balls[i - 1] = 1\n result.append(str(i))\n reslen += 1\n\nprint(balls)\nprint('---')\nprint(reslen)\nif reslen != 0:\n print(' '.join(result))\n", "jacc_sim": 1.0, "before_after_length": [306, 317], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "\nprint(balls)\nprint('---')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u700805562", "n_user": "u700805562", "pos": "n = int(input())\na = list(map(int, input().split()))\nres = [0]*n\nans = []\nfor i in range(n-1, -1, -1):\n if sum(res[i::i+1])%2!=a[i]:\n res[i] = 1\n ans.append(i+1)\na.sort()\nprint(len(ans))\nprint(*ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = []\nfor i in range(n-1, -1, -1):\n if sum(a[i:n:i+1])%2!=a[i]:\n a[i]+=1\n ans.append(i+1)\na.sort()\nprint(len(ans))\nprint(*ans)", "jacc_sim": 0.9428571428571428, "before_after_length": [103, 98], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "\nres = [0]*naresnares = 1\n ans.append(i=) nsappend(i+1)\na.", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u904804404", "n_user": "u904804404", "pos": "N = int(input())\nb = list(map(int,input().split()))\nbox = [0 for i in range(N)]\n\nfor i in range(N-1,-1,-1):\n rest = 0\n for j in range(2 * (i+1),N+1,i+1):\n rest += box[j-1]\n box[i] = (b[i] - rest)%2\nprint(sum(box))\nif sum(box):\n for idx,i in enumerate(box):\n if i == 1:\n print(idx+1)", "neg": "N = int(input())\nb = list(map(int,input().split()))\nbox = [0 for i in range(N)]\n\nfor i in range(N-1,-1,-1):\n rest = 0\n for j in range(2 * (i+1),N+1,i+1):\n rest += box[j-1]\n box[i] = (b[i] - rest)%2\nprint(sum(box))", "jacc_sim": 0.9117647058823529, "before_after_length": [142, 110], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "\nif sum(box):\n for idx,i in enumerate(box):\n if i == 1:\n print(idx+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u620868411", "n_user": "u620868411", "pos": "# -*- coding: utf-8 -*-\nn = int(input())\nal = list(map(int, input().split()))\n\nbl = [0]*n\nfor i in range(n,0,-1):\n if i*2>n:\n if al[i-1]>0:\n bl[i-1] = 1\n continue\n\n c = 2\n s = 0\n while i*c<=n:\n s += bl[i*c-1]\n c += 1\n if al[i-1]==1:\n bl[i-1] = 1 if s%2==0 else 0\n else:\n bl[i-1] = 0 if s%2==0 else 1\n\nres = []\nfor i in range(1,n+1):\n if bl[i-1]>0:\n res.append(i)\n\nprint(len(res))\nif len(res)>0:\n print(*res)", "neg": "# -*- coding: utf-8 -*-\nn = int(input())\nal = list(map(int, input().split()))\n\nbl = [0]*n\nfor i in range(n,0,-1):\n if i*2>n:\n if al[i-1]>0:\n bl[i-1] = 1\n continue\n\n c = 2\n s = 0\n while i*c<=n:\n s += bl[i*c-1]\n c += 1\n if al[i-1]==1:\n bl[i-1] = 1 if s%2==0 else 0\n else:\n bl[i-1] = 0 if s%2==0 else 1\n\nprint(*bl)", "jacc_sim": 0.9302325581395349, "before_after_length": [238, 184], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "pes = []\nfor it range*bl1,n+1:\n if bl[i-1]>0:\n res.append(i)\n\nprint(len(res))\nif len(res)>0:\n print(*res)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u466331465", "n_user": "u466331465", "pos": "#import numpy as np\nN = int(input())\na = [0]+list(map(int,input().split()))\nans = [0]*(N+1)\nan = []\nfor i in range(N,0,-1):\n c =0\n b = [i*j for j in range(2,N//i+1)]\n for j in b:\n c +=ans[j]\n c = c%2\n if c!=a[i]:\n ans[i]=1\n an.append(i)\nprint(len(an))\nfor i in range(len(an)):\n print(an[i],end=\" \")", "neg": "import numpy as np\nN = int(input())\na = np.array([0]+list(map(int,input().split())))\nans = []\nfor i in range(N,0,-1):\n b = [i*j for j in range(2,N//i+1)]\n print(b)\n c = sum(a[b])%2+0\n if c!=a[i]:\n ans.append(i)\nprint(len(ans))\nfor i in range(len(ans)):\n print(ans[i],end=\" \")", "jacc_sim": 0.9130434782608695, "before_after_length": [160, 136], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "#np.array() = [0]*(N+1)\nan\n c =0pfo j t():c=sum(c +=nsbj)\n c = c+0[i]=1\n ansss", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u620480037", "n_user": "u620480037", "pos": "N=int(input())\nA=[0]+list(map(int,input().split()))\nB=[0 for i in range(N+1)]\nans=[]\nfor i in range(1,N+1)[::-1]:\n #print(i)\n cnt=0\n for j in range(1,N+1):\n #print(i,j)\n if j*i>N:\n break\n if B[j*i]==1:\n cnt+=1\n if A[i]%2!=cnt%2:\n B[i]=1\n ans.append(i)\nprint(len(ans))\nans.sort()\nprint(*ans)\n#print(A)", "neg": "A=[0]+list(map(int,input().split()))\nB=[0 for i in range(N+1)]\nans=[]\n\n\nfor i in range(1,N+1):\n cnt=0\n n=N+1-i\n for j in range(1,10**5):\n #print(n,n*j)\n if n*j>N:\n break\n else:\n if B[n*j]==1:\n cnt+=1\n if cnt%2!=A[n]:\n B[n]+=1\n ans.append(n)\nans.sort()\nprint(len(ans))\nprint(*ans)\n", "jacc_sim": 0.9069767441860465, "before_after_length": [173, 164], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "N=int(input())\n\n\n[:-1]:\n #print(i)n=N+1-i\n N+0):\n #print(i,j)\n if ji>N:\n break\n if B[j5):\n #prnt(n,n*j)\n if n*j>N:\n break\n else:\n if B[n*j cntA[i]cnt%2:\n B[i]=1\n ans.append(i)\nprint(len(ans))\nans.sort()\nprint(*ans)\n#print([n]:\n B[n]+=1\n ans.append(n\nans.sort()\nprint(len(ans))\nprint(*ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u511379665", "n_user": "u511379665", "pos": "n=int(input())\na=list(map(int,input().split()))\ncnt=[]\ndef divis(n):\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n a[i-1]^=1\n if i != n // i :\n ij=n//i\n a[ij-1]^=1\nfor i in reversed(range(n)):\n if a[i]==1:\n cnt.append(i+1)\n divis(i+1)\nif len(cnt)>0:\n print(len(cnt))\n print(*cnt)\nelse:\n print(0)\n\n", "neg": "n=int(input())\na=list(map(int,input().split()))\ncnt=[]\ndef divis(n):\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n a[i-1]^=1\n if i != n // i :\n ij=n//i\n a[ij-1]^=1\nfor i in reversed(range(n)):\n if a[i]==1:\n cnt.append(i+1)\n divis(i+1)\nif len(cnt)>0:\n print(*cnt)\nelse:\n print(0)\n\n", "jacc_sim": 1.0, "before_after_length": [171, 163], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "len(cnt))\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u025235255", "n_user": "u025235255", "pos": "N = int(input())\na = [0]+list(map(int, input().split())) # 1-indexed\n\nb = [0]*(N+1)\nfor i in range(N,0,-1):\n if N//i == 1:\n b[i] = a[i]\n else:\n tmp = a[i]\n loop = N//i\n index = i*loop\n for j in range(loop):\n if j == loop-1: # end\n b[i] = tmp\n else:\n tmp = (tmp+b[index])%2\n index -= i\nprint(sum(b))\nfor i in range(1,N+1):\n if b[i] == 1:\n print(i, end=\" \")", "neg": "N = int(input())\na = [0]+list(map(int, input().split())) # 1-indexed\n\nb = [0]*(N+1)\nfor i in range(N,0,-1):\n if N//i == 1:\n b[i] = a[i]\n else:\n tmp = a[i]\n loop = N//i\n index = i*loop\n for j in range(loop):\n if j == loop-1: # end\n b[i] = tmp\n else:\n tmp = (tmp+b[index])%2\n index -= i\nfor e in b[1:]:\n print(e, end=\" \")", "jacc_sim": 0.9512195121951219, "before_after_length": [186, 166], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "for e in b[1:]:\n sum(b))\nfor i in rang(1N+1):\n if b[i] == 1:\n print(i,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u879870653", "n_user": "u879870653", "pos": "N = int(input())\nA = list(map(int,input().split()))\nB = [0]*N\nans = []\n\nfor i in range(N-1,-1,-1) :\n num = i+1\n cnt = 0\n for j in range(i+num,N,num) :\n cnt += B[j]\n \n if A[i] != cnt % 2 :\n ans.append(i+1)\n B[i] = 1\n \nprint(len(ans))\nprint(*ans, sep=\"\\n\")\n \n", "neg": "N = int(input())\nA = list(map(int,input().split()))\nans = []\n\nfor i in range(N-1,-1,-1) :\n num = i+1\n cnt = 0\n for j in range(i,N,i+1) :\n cnt += A[i]\n \n if A[i] == 1 :\n if cnt % 2 == 0 :\n ans.append(i+1)\n \n elif A[i] != cnt % 2 :\n ans = -1\n break\nif ans == -1 :\n print(ans)\nelse :\n print(len(ans))\n print(*ans, sep=\"\\n\")\n \n", "jacc_sim": 0.9069767441860465, "before_after_length": [139, 170], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "\nB = [0]*N,N,i1num,N,numB[j]\n \n if \n! \n if A[i] =1cnt % 2if cnt % 2 == 0 :\n \neB[i] = 1\n \nprint(if A[i] != cnt % 2 :\n ans = -1\n brak\nif as == -1 :\n print\nelse :\n print(len(ans) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u471503862", "n_user": "u471503862", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nb =[0]*(n+1)\n\nans = 0\n\nfor i in range(n):\n j = n-i\n sum = 0\n m = 1\n while j*m <= n:\n sum += b[j*m]\n m += 1\n if sum % 2 != a[j-1]:\n b[j] = 1 \n ans += 1\n \n\n\nif not 1 in b:\n print(0)\nelse:\n print(ans)\n for i in range(n+1):\n if b[i] == 1:\n print(i, end =' ')\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nb =[0]*(n+1)\n\nfor i in range(n):\n j = n-i\n sum = 0\n m = 1\n while j*m <= n:\n sum += b[j*m]\n m += 1\n if sum % 2 != a[j-1]:\n b[j] = 1 \n \nprint(1)\n\nans =[]\n\nif not 1 in b:\n print(0)\nelse:\n for i in range(n+1):\n if b[i] == 1:\n print(i, end =' ')\n", "jacc_sim": 1.0, "before_after_length": [171, 164], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "\n\nans = 0 \nprint(1)\n\n+[] 1\n \nprint(ans)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u483331319", "n_user": "u483331319", "pos": "n = int(input())\na = tuple(map(int, input().split()))\nb = [0] * n\nret = 0\nret2 = []\nappend = ret2.append\nfor i in range(n, 0, -1):\n count = 0\n for j in range(i+i, n+1, i):\n count += b[j-1]\n # print((i, count))\n if not (count % 2) == a[i-1]:\n b[i-1] = 1\n ret += 1\n append(i)\n\n# print(b)\nprint(ret)\nif ret == 0:\n exit()\n\n# print(*reversed(ret2))\n\nfor i in range(n):\n if b[i] == 1:\n print('%d ' % (i+1), end=\"\")\n", "neg": "n = int(input())\na = tuple(map(int, input().split()))\nb = [0] * n\nret = 0\nret2 = []\nappend = ret2.append\nfor i in range(n, 0, -1):\n count = 0\n for j in range(i+i, n+1, i):\n count += b[j-1]\n # print((i, count))\n if not (count % 2) == a[i-1]:\n b[i-1] = 1\n ret += 1\n append(i)\n\n# print(b)\nprint(ret)\nif ret == 0:\n exit()\n\n# print(*reversed(ret2))\n\nfor i in range(n-1, -1, -1):\n if b[i] == 1:\n print('%d ' % i, end=\"\")\n", "jacc_sim": 1.0, "before_after_length": [203, 208], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "-1, -1, -1(+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u322229918", "n_user": "u322229918", "pos": "N = int(input())\nAs = list(map(int, input().split()))\n\nres = [0] * N\nfor idx, ai in zip(range(N-1, -1, -1), As[::-1]):\n oe = sum([res[i] for i in range(idx, N, idx+1)]) % 2#\n res[idx] = ai ^ oe\n\nprint(sum(res))\nidxs = []\nfor i, val in enumerate(res):\n if val:\n idxs += [i + 1]\nprint(*idxs)", "neg": "N = int(input())\nAs = list(map(int, input().split()))\n\nres = [0] * N\nfor idx, ai in zip(np.arange(N-1, -1, -1), As[::-1]):\n oe = sum([res[i] for i in range(idx, N, idx+1)]) % 2#\n res[idx] = ai ^ oe\n\nprint(sum(res))\nidxs = []\nfor i, val in enumerate(res):\n if val:\n idxs += [i + 1]\nprint(*idxs)", "jacc_sim": 0.9512195121951219, "before_after_length": [136, 139], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "np.a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u340781749", "n_user": "u340781749", "pos": "n = int(input())\na = [0] + list(map(int, input().split()))\nfor i in range(n // 2, 0, -1):\n a[i] = sum(a[i::i]) % 2\n\ns = [i for i, b in enumerate(a) if b]\nprint(len(s))\nprint(*s)\n", "neg": "n = int(input())\na = [0] + list(map(int, input().split()))\nfor i in range(n // 2, 0, -1):\n a[i] ^= a[i * 2::i]\n\ns = [i for i, b in enumerate(a) if b]\nprint(len(s))\nprint(*s)\n", "jacc_sim": 0.9142857142857143, "before_after_length": [87, 85], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "^sum( * 2) % 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u698176039", "n_user": "u698176039", "pos": "\nN = int(input())\nA = list(map(int,input().split()))\n\n\n\nNumValid = [True] * (N+1)\nans = []\nNumAns = [0] * (N+1)\n\n\nfor i in reversed(range(1,N+1)):\n j = 2 * i\n tmp = 0\n while j < N+1:\n tmp += NumAns[j]\n j += i\n \n if tmp % 2 == 0:\n if A[i-1] == 0:\n NumAns[i] = 0\n else:\n NumAns[i] = 1\n ans.append(i)\n else:\n if A[i-1] == 0:\n NumAns[i] = 1\n ans.append(i)\n else:\n NumAns[i] = 0\n \nprint(len(ans))\nprint(' '.join(map(str,ans)))", "neg": "\nN = int(input())\nA = list(map(int,input().split()))\n\n\n\nNumValid = [True] * (N+1)\nans = []\nNumAns = [0] * (N+1)\n\n\nfor i in reversed(range(1,N+1)):\n j = 2 * i\n tmp = 0\n while j < N+1:\n tmp += NumAns[j]\n j += i\n \n if tmp % 2 == 0:\n if A[i] == 0:\n NumAns[i] = 0\n else:\n NumAns[i] = 1\n ans.append(i)\n else:\n if A[i] == 0:\n NumAns[i] = 1\n ans.append(i)\n else:\n NumAns[i] = 0\n \nprint(len(ans))\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [232, 221], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "-1-1a' '.joi(map(tr,ans))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u598229387", "n_user": "u598229387", "pos": "n=int(input())\na=[int(i) for i in input().split()]\n\n\nli=[0]*(n+1)\nans=[]\nfor i in range(n,0,-1):\n if a[i-1]==1:\n if sum(li[i::i])%2==0:\n li[i]=1\n ans.append(i)\n else:\n if sum(li[i::i])%2==1:\n li[i]=1\n ans.append(i)\n\nprint(len(ans))\nprint(*ans)", "neg": "n=int(input())\na=[int(i) for i in input().split()]\n\n\nli=[]\nfor i in range(n,0,-1):\n if a[i-1]==1:\n if sum(li[i::i])%2==0:\n li.append(i)\n else:\n print(-1)\n exit()\n else:\n if sum(li[i::i])%2==1:\n li.append(i)\n else:\n print(-1)\n exit()\n\nif li:\n print(len(li))\n print(*li)\nelse:\n print(0)", "jacc_sim": 0.9090909090909091, "before_after_length": [143, 160], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "=[0]*(n+1)\nans[i]=1\n ans)\n else:\n print(-1)\n exit([i]=1\n ans else: -1)\n exit()\n\nif i:\n print(llians ali)\nelse:\n prist(0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u755180064", "n_user": "u755180064", "pos": "\nurl = \"https://atcoder.jp//contests/abc134/tasks/abc134_d\"\n\ndef main():\n n = int(input())\n a = [0]\n a.extend(list(map(int, input().split())))\n balls = [0]*(n+1)\n b = {}\n for i in range(n, 0, -1):\n ball = 0\n for j in range(i, n+1, i):\n ball += balls[j]\n if ball % 2 != a[i]:\n b[i] = 1\n balls[i] = 1\n if len(b) == 0:\n print(0)\n exit()\n else:\n print(len(b))\n ks = sorted(b.items(), key=lambda x:x[0])\n for k in ks:\n print(k[0], end=\" \")\n\n\nif __name__ == '__main__':\n main()\n", "neg": "\nurl = \"https://atcoder.jp//contests/abc134/tasks/abc134_d\"\n\ndef main():\n n = int(input())\n a = [0]\n a.extend(list(map(int, input().split())))\n balls = [0]*(n+1)\n b = {}\n for i in range(n, 0, -1):\n ball = 0\n for j in range(i, n, i):\n ball += balls[j]\n if ball % 2 != a[i]:\n if ball % 2 >= 2:\n print(-1)\n exit()\n a[i] = 1\n b[i] = 1\n if len(b) == 0:\n print(0)\n exit()\n else:\n print(len(b))\n ks = sorted(b.items(), key=lambda x:x[0])\n for k in ks:\n print(k, end=\" \")\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9838709677419355, "before_after_length": [236, 250], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": ", i):\n ball 1, i):\n ball +if [all % 2 >= 2:\n pr]nt(-1)\n=1\n balls[i] = 1\n if len(b) == 0:\n print(0)\n a[i] = 1\n b[i] = 1\n if llsn(b) == 0:\n print(0)\n :\n print(len(b))\n ks = sorted(b.items(), key=lambda it()\n elsex[0]\n print(len(b) fors= sorted(b.ntems(),sey=lambda xx[0])for print([0] in ks:\n print(k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u552357043", "n_user": "u552357043", "pos": "N = int(input())\na = list(map(int, input().split()))\nl = [0 for i in range(N)]\nans = []\ncnt = 0\nfor i in reversed(range(N)):\n j = 2\n memo = 0\n while (i+1)*j <= N:\n memo += l[(i+1)*j-1]\n j += 1\n memo = memo%2\n \n if memo != a[i]:\n l[i] = 1\n cnt += 1\n ans.append(str(i+1))\nans.sort()\nprint(cnt)\nprint(\" \".join(ans))", "neg": "N = int(input())\na = list(map(int, input().split()))\nl = [0 for i in range(N)]\nans = []\nmemo = 0\ncnt = 0\nfor i in reversed(range(N)):\n j = 2\n while (i+1)*j <= N:\n memo += a[(i+1)*j-1]\n j += 1\n memo = memo%2\n if memo != a[i]:\n l[i] = 1\n cnt += 1\n ans.append(str(i))\nans.sort()\nprint(cnt)\nprint(\" \".join(ans))", "jacc_sim": 1.0, "before_after_length": [154, 149], "nl": "You are given N empty boxes arranged in a row. Each box is labeled with an integer from 1 to N. Snuke can choose to put a ball in a box or leave it empty. A set of choices is considered good if, for each integer i between 1 and N, the total number of balls in boxes labeled with multiples of i is congruent to a_i modulo 2. You need to determine if a good set of choices exists and, if so, find one. The input is given as N and a list of a_i values. If a good set of choices does not exist, print -1. Otherwise, print the number of boxes containing a ball and the integers written on those boxes. For example, given N=3 and a_i values 1 0 0, the output would be 1 and 1, indicating that putting a ball only in the box labeled 1 satisfies the condition.", "diff_info": "cntmemocfor i it reversed(range(N)):\n j = 2\n memo\nfor i in reversed(range(N)):\n j = 2al\n +1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02972", "p_user": "u566159623", "n_user": "u566159623", "pos": "N = int(input())\na = list(map(int, input().split()))\nb = []\nc = []\nfor i in range(N):\n if i= A[i]:\n X.append(-A[i])\n ans += 1\n else:\n pos = bisect.bisect_right(X,-A[i])\n X[pos] = -A[i]\n\nprint(ans)\n", "neg": "import bisect\n\nN = int(input())\nA = [int(input()) for i in range(N)]\n\nans = 1\nX = [-A[0]]\nfor i in range(1,N):\n if -X[ans-1] > A[i]:\n X.append(-A[i])\n ans += 1\n else:\n pos = bisect.bisect_left(X,-A[i])\n X[pos] = -A[i]\n\nprint(ans)\n", "jacc_sim": 0.9375, "before_after_length": [120, 120], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "=lefrigh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u222668979", "n_user": "u222668979", "pos": "from bisect import bisect\n\nn = int(input())\nma = [-int(input()) for _ in range(n)]\n\nans = [ma[0]]\nfor ai in ma[1:]:\n tmp = bisect(ans, ai)\n if tmp == len(ans):\n ans.append(ai)\n elif tmp < len(ans):\n ans[tmp] = ai\nprint(len(ans))\n", "neg": "from bisect import bisect\n\nn = int(input())\nma = [-int(input()) for _ in range(n)]\n\nans = [ma[0]]\nfor ai in ma[1:]:\n tmp = bisect(ans, ai)\n if tmp == len(ans):\n ans.append(ai)\n elif tmp < len(ans):\n ans[tmp] = ai\n print(ans)\nprint(len(ans))\n", "jacc_sim": 1.0, "before_after_length": [97, 103], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " ans)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u576432509", "n_user": "u576432509", "pos": "from bisect import bisect\n\nicase=1\nif icase==1:\n n=int(input())\n a=[0]*n\n for i in range(n):\n a[i]=-int(input())\nelif icase==2:\n n=5\n a=[-2,-1,-4,-5,-3]\nelif icase==3:\n n=4\n a=[0,0,0,0]\n\ndef loopa():\n\n n=len(a)\n dp = [10**10]*(n+1)\n dp[0] = -10**10\n \n for i in range(n):\n# idx = bisect(dp, a[i]-1)\n idx = bisect(dp, a[i])\n dp[idx] = min(a[i], dp[idx])\n\n# print(\"i:\",i,\"a:\",a,\"dp2:\",dp2) \n return dp\n\ndp=loopa() \n\nprint(bisect(dp, 10**10-1)-1) \n\n", "neg": "from bisect import bisect\n\nicase=1\nif icase==1:\n n=int(input())\n a=[0]*n\n for i in range(n):\n a[i]=-int(input())\nelif icase==2:\n n=5\n a=[-2,-1,-4,-5,-3]\nelif icase==3:\n n=4\n a=[0,0,0,0]\n\ndef loopa():\n\n n=len(a)\n dp = [10**10]*(n+1)\n dp[0] = -10**10\n \n print(n,a,dp)\n for i in range(n):\n# idx = bisect(dp, a[i]-1)\n idx = bisect(dp, a[i])\n dp[idx] = min(a[i], dp[idx])\n print(i,idx,dp)\n\n# print(\"i:\",i,\"a:\",a,\"dp2:\",dp2) \n return dp\n\ndp=loopa() \n\nprint(bisect(dp, 10**10-1)-1) \n\n", "jacc_sim": 1.0, "before_after_length": [262, 282], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "print(n,a,dp)\n print(i,idx,dp)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u709304134", "n_user": "u709304134", "pos": "import bisect\nimport sys\ninput = sys.stdin.readline\nN = int(input())\nA = []\nfor n in range(N):\n A.append(int(input()))\nA = A[::-1]\nINF = int(1e+9 + 10)\nlis = [INF]* (N+1)\nlis[0] = -1\nfor n in range(N):\n i = bisect.bisect(lis, A[n]) \n lis[i] = A[n]\nprint (bisect.bisect_left(lis, INF) - 1)", "neg": "import bisect\nimport sys\ninput = sys.stdin.readline\nN = int(input())\nA = []\nfor n in range(N):\n A.append(int(input()))\nA = A[::-1]\nINF = int(1e+9 + 10)\nlis = [INF]* (N)\nfor n in range(N):\n i = bisect.bisect(lis, A[n]) \n lis[i] = A[n]\n #print (lis)\nprint (bisect.bisect_left(lis, INF)) a", "jacc_sim": 0.918918918918919, "before_after_length": [145, 140], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "+1\nlis[0] = -1 #print (lis)\n)a- 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u645250356", "n_user": "u645250356", "pos": "from collections import Counter,defaultdict,deque\nfrom heapq import heappop,heappush,heapify\nimport sys,bisect,math,itertools,fractions,pprint\nsys.setrecursionlimit(10**8)\nmod = 10**9+7\nmod2 = 998244353\nINF = float('inf')\ndef inp(): return int(sys.stdin.readline())\ndef inpl(): return list(map(int, sys.stdin.readline().split()))\ndef inpln(n): return list(int(sys.stdin.readline()) for i in range(n))\n\nn = inp()\na = inpln(n)\nq = deque([])\n\nfor i,j in enumerate(a):\n if i == 0:\n q.append(j)\n continue\n c = bisect.bisect_left(q,j)\n if c == 0:\n q.appendleft(j)\n else:\n q[c-1] = j\n \nprint(len(q))\n \n", "neg": "from collections import Counter,defaultdict,deque\nfrom heapq import heappop,heappush,heapify\nimport sys,bisect,math,itertools,fractions,pprint\nsys.setrecursionlimit(10**8)\nmod = 10**9+7\nmod2 = 998244353\nINF = float('inf')\ndef inp(): return int(sys.stdin.readline())\ndef inpl(): return list(map(int, sys.stdin.readline().split()))\ndef inpln(n): return list(int(sys.stdin.readline()) for i in range(n))\n\nn = inp()\na = inpln(n)[::-1]\nq = deque([])\n\nfor i,j in enumerate(a):\n if i == 0:\n q.append(j)\n continue\n c = bisect.bisect_left(q,j)\n if c == 0:\n q.appendleft(j)\n else:\n q[c] = j\n \nprint(len(q))\n \n", "jacc_sim": 1.0, "before_after_length": [249, 251], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "\nq = deque(])\n\nfor i,j in enumerate(a)\n if i == 0\n q.append(j)\n continue\n c = bisect.bisect_left(q,j)\n if c == 0:\n q.appendleft(j)\n else:\n q[c\nqdeque([])\n\nfor i, in enumerate(a):ifi== 0: q.apend(j)\n continue\n c = bisect.bisect_left(q,j)\n if c == 0:\n q.appendleft(j)\n else:\n q[c] = j\n \np", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u334712262", "n_user": "u334712262", "pos": "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(100000)\ninput = sys.stdin.readline\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\n# @mt\ndef slv(N, A):\n \n L = [-A.pop(0)]\n ma = L[0]\n for a in A:\n if ma <= -a:\n ma = -a\n L.append(ma)\n continue\n i = bisect.bisect_right(L, -a)\n L[i] = -a\n ma = L[-1]\n return len(L)\n\n\n\ndef main():\n N = read_int()\n A = [read_int() for _ in range(N)]\n print(slv(N, A))\n\n\nif __name__ == '__main__':\n main()\n", "neg": "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(100000)\ninput = sys.stdin.readline\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\n# @mt\ndef slv(N, A):\n \n L = [-A.pop(0)]\n ma = L[0]\n for a in A:\n if ma <= -a:\n ma = -a\n L.append(ma)\n continue\n i = bisect.bisect_right(L, -a)\n L[i] = -a\n ma = L[-1]\n print(L, a)\n return len(L)\n\n\n\ndef main():\n N = read_int()\n A = [read_int() for _ in range(N)]\n print(slv(N, A))\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [488, 496], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " print(L, a)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u316322317", "n_user": "u316322317", "pos": "import bisect\nn=int(input())\nh=[]\nfor i in range(n):\n a=int(input())\n if len(h)==0:\n h.append(-1*a)\n elif (-1)*a>=h[-1]:\n h.append(-1*a)\n else:\n index=bisect.bisect_right(h,-1*a)\n h[index]=-1*a\nprint(len(h))\n", "neg": "import bisect\nn=int(input())\nh=[]\nfor i in range(n):\n a=int(input())\n if len(h)==0:\n h.append(-1*a)\n elif (-1)*a>=h[-1]:\n h.append(-1*a)\n else:\n index=bisect.bisect_right(h,-1*a)\n h[index]=-1*a\n print(h)\nprint(len(h))", "jacc_sim": 1.0, "before_after_length": [115, 120], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " h)\nprint(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u347640436", "n_user": "u347640436", "pos": "from bisect import bisect_right\n\nN = int(input())\nA = [int(input()) for _ in range(N)]\n\nt = [-A[0]]\nfor a in A[1:]:\n if a <= -t[-1]:\n t.append(-a)\n else:\n t[bisect_right(t, -a)] = -a\nprint(len(t))\n", "neg": "from bisect import bisect_right\n\nN = int(input())\nA = [int(input()) for _ in range(N)]\n\nt = deque([-A[0]])\nfor a in A[1:]:\n if -a <= -t[0]:\n t.append(-a)\n else:\n t[bisect_right(t, -a)] = -a\nprint(len(t))\n", "jacc_sim": 0.96875, "before_after_length": [95, 99], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "deque()-0-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u685263709", "n_user": "u685263709", "pos": "import bisect\nN = int(input())\nA = [-int(input()) for i in range(N)]\n\n\ndp = []\nfor a in A:\n i = bisect.bisect_right(dp, a)\n if i >= len(dp):\n dp.append(a)\n else:\n dp[i] = a\n\nprint(len(dp))", "neg": "import bisect\nN = int(input())\nA = [int(input()) for i in range(N)]\n\ndp = []\nfor a in A:\n i = bisect.bisect_right(dp, a)\n if i >= len(dp):\n dp.append(a)\n else:\n dp[i] = a\n\nprint(N-len(dp))", "jacc_sim": 1.0, "before_after_length": [89, 90], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "-\nN-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u677267454", "n_user": "u677267454", "pos": "import bisect\nfrom collections import deque\n\nN = int(input())\nA = []\nfor i in range(N):\n A.append(int(input()))\n\nans = deque([A[0]])\nfor i in range(1, N):\n index = bisect.bisect_left(ans, A[i])\n if index > 0:\n ans[index - 1] = A[i]\n else:\n ans.appendleft(A[i])\n\nprint(len(ans))\n", "neg": "import bisect\nfrom collections import deque\n\nN = int(input())\nA = []\nfor i in range(N):\n A.append(int(input()))\n\nans = deque([A[0]])\nfor i in range(1, N):\n index = bisect.bisect_left(ans, A[i])\n if index > 0:\n ans[index - 1] = A[i]\n else:\n ans.appendLeft(A[i])\n\nprint(len(ans))\n", "jacc_sim": 0.9428571428571428, "before_after_length": [121, 121], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "Left(A[i])\n\nprint(nftansA[i])\nprint(len(ans))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u148079233", "n_user": "u148079233", "pos": "from bisect import bisect\n\n\ndef main():\n N = int(input())\n A = [-int(input()) for _ in range(N)]\n L = [A[0]]\n for a in A[1:]:\n if a >= L[-1]:\n L.append(a)\n else:\n L[bisect(L, a)] = a\n print(len(L))\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "from bisect import bisect\n\n\ndef main():\n N = int(input())\n A = [int(input()) for _ in range(N)]\n L = [A[0]]\n for a in A[1:]:\n if a <= L[-1]:\n L.append(a)\n else:\n i = bisect(L, a)\n L[i] = a\n print(len(L))\n\n \n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.918918918918919, "before_after_length": [113, 119], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "-<>L[i = \n L[i \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u473291366", "n_user": "u797994565", "pos": "from collections import deque\nimport bisect\nN = int(input())\nA = deque()\nfor _ in range(N):\n x = int(input())\n i = bisect.bisect_left(A,x)\n if i == 0:\n A.appendleft(x)\n else:\n A[i-1] = x\n\nprint(len(A))", "neg": "from collections import deque\nfrom bisect import bisect_left\n\nN = int(input())\nA = [int(input()) for _ in range(N)]\n\nq = deque([A[0]])\n\nfor x in A[1:]:\n i = bisect_left(q,x)\n if i == 0:q.appendleft(x)\n else:q[i-1]=x\n print(q)\nprint(len(q))\n", "jacc_sim": 0.9696969696969697, "before_after_length": [89, 107], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "ifroport\nN= nmpor(input())\nA = deque()\nfor _ in range(N):\n x = int(input())\n i =.bisect\n\nN = intinput())\n = [int(input()) for _ in range(N)]\n\nq = deque([A[0]])\n\nfor x in A[1:]:\n i = bisect_left(qq\n Aq\n A=x\n=x print(q)print(len(q))print(len(A))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u638795007", "n_user": "u638795007", "pos": "from collections import deque\nimport bisect\nimport sys\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\nans = int(0)\n\nN = I()\ncolor = []\na = I()\nmaxcolor =deque()\nmaxcolor.append(a)\nlena = 1\nfor i in range(N-1):\n minmaxcolor = maxcolor[0]\n a = I()\n if a<=minmaxcolor:\n maxcolor.appendleft(a)\n# maxcolor.append(a)\n lena += 1\n else:\n acandi = bisect.bisect_left(maxcolor, a)\n maxcolor[acandi-1] = a\n \"\"\"\n aupper = lena-1\n alower = int(0)\n acandi = aupper//2\n \n for _ in range(aupper+1):\n if maxcolor[acandi]>=a:\n alower = acandi\n acandi = (aupper+acandi+1)//2\n else:\n if aupper - alower <= 1:\n maxcolor[acandi] = a\n break\n else:\n aupper = acandi\n acandi = (acandi + alower) // 2\n \"\"\"\n\n#print(maxcolor)\nans = len(maxcolor)\nprint(ans)\n\n", "neg": "import bisect\nimport sys\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\nans = int(0)\n\nN = I()\ncolor = []\na = I()\nmaxcolor =[]\nmaxcolor.append(a)\nlena = 1\nfor i in range(N-1):\n minmaxcolor = a\n a = I()\n if a<=minmaxcolor:\n maxcolor.insert(0,a)\n# maxcolor.append(a)\n lena += 1\n else:\n acandi = bisect.bisect_left(maxcolor, a)\n maxcolor[acandi-1] = a\n \"\"\"\n aupper = lena-1\n alower = int(0)\n acandi = aupper//2\n \n for _ in range(aupper+1):\n if maxcolor[acandi]>=a:\n alower = acandi\n acandi = (aupper+acandi+1)//2\n else:\n if aupper - alower <= 1:\n maxcolor[acandi] = a\n break\n else:\n aupper = acandi\n acandi = (acandi + alower) // 2\n \"\"\"\n\n#print(maxcolor)\nans = len(maxcolor)\nprint(ans)", "jacc_sim": 0.9137931034482759, "before_after_length": [342, 330], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "from collections import deque\n[]deque()mxcolor[0]insapprndlef0,\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u193264896", "n_user": "u193264896", "pos": "import sys\nfrom bisect import bisect_right, bisect_left\nread = sys.stdin.read\nreadline = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 8)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\n\ndef main():\n N = int(readline())\n A = list(int(readline()) for _ in range(N))\n\n LIS = [INF]*N\n A.reverse()\n for a in A:\n i = bisect_right(LIS,a)\n LIS[i] = a\n print(bisect_left(LIS, INF))\n\n\nif __name__ == '__main__':\n main()\n\n", "neg": "import sys\nfrom bisect import bisect_right\nread = sys.stdin.read\nreadline = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 8)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\n\ndef main():\n N = int(readline())\n A = list(int(readline()) for _ in range(N))\n\n LIS = [INF]*N\n A.reverse()\n for a in A:\n i = bisect_right(LIS,a)\n LIS[i] = a\n print(bisect_right(LIS, INF))\n\n\nif __name__ == '__main__':\n main()\n\n", "jacc_sim": 0.9791666666666666, "before_after_length": [170, 166], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "t, bisect_leflefrigh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u087917227", "n_user": "u087917227", "pos": "from bisect import bisect_left\nfrom collections import deque\nn = int(input())\nA=[int(input()) for _ in range(n)]\nq=deque()\nfor a in A:\n i=bisect_left(q,a)\n if not i:\n q.appendleft(a)\n else:\n q[i-1]=a\nprint(len(q))", "neg": "from bisect import bisect_left\nfrom collections import deque\nn = int(input())\nA=[int(input()) for _ in range(n)]\nq=deque()\nfor a in A:\n i=bisect_left(l,a)\n if not i:\n q.appendleft(a)\n else:\n q[i-1]=a\nprint(len(q))", "jacc_sim": 0.9705882352941176, "before_after_length": [94, 94], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "lq", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u930705402", "n_user": "u930705402", "pos": "from collections import deque\nfrom bisect import bisect_left\nN=int(input())\nli=[]\nans=0\nfor i in range(N):\n a=-int(input())\n b=bisect_left(li,a+1)\n if b==len(li):\n li.append(a)\n ans+=1\n else:\n li[b]=a\nprint(ans)", "neg": "from collections import deque\nfrom bisect import bisect_left\nN=int(input())\nli=[]\nans=0\nfor i in range(N):\n a=-int(input())\n b=bisect_left(li,a+1)\n if b==len(li):\n li.append(a)\n ans+=1\n else:\n li[b]=a\n print(li)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [98, 104], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " li)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u223904637", "n_user": "u813174766", "pos": "import bisect\nn=int(input())\nseq=[]\nfor i in range(n):\n seq.append(int(input()))\nseq.reverse()\nLIS = [seq[0]]\nfor i in range(1,len(seq)):\n if seq[i] >= LIS[-1]:\n LIS.append(seq[i])\n else:\n LIS[bisect.bisect_right(LIS, seq[i])] = seq[i]\n\nprint(len(LIS))\n", "neg": "import bisect\nN = int(input())\nseq = [-int(input()) for i in range(N)] \nLIS = [seq[0]]\nfor i in range(1,len(seq)):\n if seq[i] > LIS[-1]:\n LIS.append(seq[i])\n else:\n LIS[bisect.bisect_right(LIS, seq[i])] = seq[i]\nprint(len(LIS))", "jacc_sim": 0.9032258064516129, "before_after_length": [125, 111], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "nN ]\n-int(input()) Nn]:\n seq.append(int(input()))\nseq.reverse()=\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u712822150", "n_user": "u712822150", "pos": "import sys\nimport bisect\nimport collections\n\n\ndef input():\n return sys.stdin.readline().rstrip()\n\n\ndef main():\n n = int(input())\n la = [int(input()) for _ in range(n)]\n result = collections.deque()\n for a in la:\n idx = bisect.bisect_left(result, a)\n if idx == 0:\n result.appendleft(a)\n else:\n result[idx - 1] = a\n print(len(result))\n\n\nmain()\n", "neg": "import sys\nimport bisect\nimport collections\n\n\ndef input():\n return sys.stdin.readline().rstrip()\n\n\ndef main():\n n = int(input())\n la = [int(input()) for _ in range(n)]\n result = collections.deque()\n for a in la:\n idx = bisect.bisect_left(result, a)\n if idx == 0:\n result.appendleft(a)\n else:\n result[idx - 1] = a\n print(len(result))\n print(result)\n\n\nmain()\n", "jacc_sim": 1.0, "before_after_length": [133, 139], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " print(result)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u099643902", "n_user": "u995861601", "pos": "import bisect\nN = int(input())\nA = [0 for i in range(N)]\nfor i in range(N):\n A[i] = int(input())\nnow = [-A[0]]\n\nfor i in range(1, N):\n\n index = bisect.bisect_right(now, -A[i])\n if index == len(now):\n now.append(-A[i])\n else:\n now[index] = -A[i]\n\nprint(len(now))\n", "neg": "import bisect\nN = int(input())\nA = [0 for i in range(N)]\nfor i in range(N):\n A[i] = int(input())\nnow = [-A[0]]\n \nfor i in range(1, N):\n \n index = bisect.insort_right(now, -A[i])\n if index == len(now):\n now.append(-A[i])\n else:\n now[index] = -A[i]\n \nprint(len(now))", "jacc_sim": 0.9333333333333333, "before_after_length": [123, 123], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": " bnorec \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u723711163", "n_user": "u723711163", "pos": "import bisect\nfrom collections import deque\nN = int(input())\nA = deque([])\nfor i in range(N):\n A.append(int(input()))\n\ndp = deque([])\nl = len(A)\nfor i,a in enumerate(A):\n pos = bisect.bisect_left(dp, a)-1\n if pos<0:\n dp.appendleft(a)\n else:\n dp[pos] = a\n\nprint(len(dp))", "neg": "import bisect\nfrom collections import deque\nN = int(input())\nA = deque([])\nfor i in range(N):\n A.append(int(input()))\n\ndp = deque([])\nl = len(A)\nfor i,a in enumerate(A):\n if len(dp)==0:\n dp.append(a)\n elif a < dp[-1]:\n dp.appendleft(a)\n elif a >= dp[-1]:\n dp.append(a)\n else:\n pos = bisect.bisect_left(dp, a)\n A.append(dp[pos])\n dp[pos] = a\n\nprint(len(dp))", "jacc_sim": 0.9487179487179487, "before_after_length": [116, 162], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "if len(dos)==0:\n= dpbisectbappend(a)\n elsect_let( a < [, a)\n if pos<0:\n dp.appendleft(a)\n else:\n dp[pos:\n dp.appendleft(a)\n elif a >dp[-1]:\n dp.ppend(a) else: os = bisect.bisect_left(dp, a)\n A.append(dp[pos])\n dp[pos] = a\n\np", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u108617242", "n_user": "u108617242", "pos": "import bisect\ndef LIS():\n L[0] = A[0]\n length = 1\n for i in range(1, N):\n if L[length-1] < A[i]:\n L[length] = A[i]\n length += 1\n else:\n j = bisect.bisect_left(L, A[i])\n L[min(length-1, j)] = A[i]\n return length\n\ndef LISDesc():\n L[0] = A[-1]\n length = 1\n for i in range(N-2, -1, -1):\n if L[length-1] <= A[i]:\n L[length] = A[i]\n length += 1\n else:\n j = bisect.bisect_right(L, A[i])\n L[min(length-1, j)] = A[i]\n return length\n\nINFTY = 10**13\nN = int(input())\nA = [int(input()) for i in range(N)]\nL = [INFTY for i in range(N)]\nans = LISDesc()\nprint(ans)\n", "neg": "import bisect\ndef LIS():\n L[0] = A[0]\n length = 1\n for i in range(1, N):\n if L[length] < A[i]:\n length += 1\n L[length] = A[i]\n else:\n j = bisect.bisect_left(L, A[i])\n L[min(length-1, j)] = A[i]\n return length\n\ndef LISDesc():\n L[-1] = A[-1]\n length = 1\n for i in range(N-2, 0, -1):\n if L[N-length] <= A[i]:\n length += 1\n L[N-length] = A[i]\n else:\n j = bisect.bisect_right(L, A[i])\n L[min(N-(length-1), j)] = A[i]\n return length\n\nINFTY = 10**13\nN = int(input())\nA = [int(input()) for i in range(N)]\nL = [-1 for i in range(N)]\nans = LISDesc()\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [278, 278], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "-1L[length] = A[i]\n \n L[length] = A[i] 0-10-1N--1L[length] = A[i]\n \n L[N-length] = A[i]N-()-1INFTY", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u698176039", "n_user": "u698176039", "pos": "import bisect\nimport sys\ninput = sys.stdin.readline\n\nN = int(input())\nA = [-1*int(input()) for _ in range(N)]\n\nmaxims = [A[0]]\nans = 1\nfor a in A[1:]:\n if maxims[-1] > a:\n idx = bisect.bisect(maxims,a)\n maxims[idx] = a\n else:\n maxims.append(a)\n ans += 1\n \nprint(ans)\n \n \n ", "neg": "import bisect\nimport sys\ninput = sys.stdin.readline\n\nN = int(input())\nA = [-1*int(input()) for _ in range(N)]\n\nmaxims = [A[0]]\nans = 1\nminim = A[0]\nfor a in A[1:]:\n if maxims[-1] < a:\n idx = bisect.bisect(maxims,a)\n maxims[idx] = a\n else:\n maxims.append(a)\n ans += 1\n \nprint(ans)\n \n \n ", "jacc_sim": 0.918918918918919, "before_after_length": [128, 136], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "minim = A[0]\n<>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u623819879", "n_user": "u623819879", "pos": "from heapq import heappush, heappop\nfrom collections import deque\nimport sys\n#import bisect\nsys.setrecursionlimit(10**6)\ndef MI():\n return map(int,input().split())\ndef I():\n return int(input())\ndef LI():\n return [int(i) for i in input().split()]\n\ndef bisect(ls,x):\n l,r=0,len(ls)\n while r-l>1:\n mid=(l+r)//2\n if ls[mid]>=x: # condition\n r=mid\n else:\n l=mid\n #print('bisect',ls,x,'=',r)\n return l\n\nn=I()\na=deque()\nq=[[] for _ in range(n)]\nm=0 # num of queue now\nfor i in range(n):\n a+=[I()]\n#print('a=',a)\n\nq=deque()\nq.append(a.popleft())\n#print(q,'q[',0,']=')\n\nwhile a:\n c=a.popleft()\n if c<=q[0]:\n q.appendleft(c)\n #print(q,'q[',0,']=',c)\n else:\n i=bisect(q,c)\n q[i]=c\n #print(q,'q[',i,']=',c)\n\n\nans=len(q)\nprint(ans)\n", "neg": "from heapq import heappush, heappop\nfrom collections import deque\nimport sys\n#import bisect\nsys.setrecursionlimit(10**6)\ndef MI():\n return map(int,input().split())\ndef I():\n return int(input())\ndef LI():\n return [int(i) for i in input().split()]\n\ndef bisect(ls,x):\n l,r=0,len(ls)-1\n while r-l>1:\n mid=(l+r)//2\n if ls[mid]>x: # condition\n l=mid\n else:\n r=mid\n #print('bisect',ls,x,'=',r)\n return l\n\nn=I()\na=deque()\nq=[[] for _ in range(n)]\nm=0 # num of queue now\nfor i in range(n):\n a+=[I()]\n#print('a=',a)\n\nq=deque()\nq.append(a.popleft())\n#print(q,'q[',0,']=')\n\nwhile a:\n c=a.popleft()\n if c<=q[0]:\n q.appendleft(c)\n #print(q,'q[',0,']=',c)\n else:\n i=bisect(q,c)\n q[i]=c\n #print(q,'q[',i,']=',c)\n\n\nans=len(q)\nprint(ans)\n\nt=[1,1,2,2,3,3]", "jacc_sim": 0.971830985915493, "before_after_length": [362, 377], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "-1=l=mid\n else:\n =mid\n else:\n l\nt=[1,1,2,2,3,3]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u918601425", "n_user": "u918601425", "pos": "import bisect\nN=int(input())\nls=[int(input()) for _ in range(N)]\ncolor=[ls[-1]]\nans=1\nfor i in range(N-1):\n a=ls[-2-i]\n k=bisect.bisect_right(color,a)\n if k==ans:\n color.append(a)\n ans+=1\n else:\n color[k]=a\nprint(ans)", "neg": "import bisect\nN=int(input())\nls=[int(input()) for _ in range(N)]\ncolor=[ls[-1]]\nans=1\nfor i in range(N-1):\n a=ls[-2-i]\n k=bisect.bisect_left(color,a)\n if k==ans:\n color.append(a)\n ans+=1\n else:\n color[k]=a\nprint(ans)", "jacc_sim": 0.9393939393939394, "before_after_length": [110, 110], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "right(coeor,a)\n it(color,a)\n if", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u653807637", "n_user": "u653807637", "pos": "import bisect\n\nn = int(input())\nnums = [-int(input()) for _ in range(n)]\n\ncolors = []\nmax_val = -1 * (10 ** 10)\nfor num in nums:\n\tif num >= max_val:\n\t\tcolors.append(num)\n\t\tmax_val = num\n\telse:\n\t\tidx_r = bisect.bisect_right(colors, num)\n\t\tcolors[idx_r] = num\n\t\tmax_val = min(colors[-1], max_val)\n\nprint(len(colors))\n\n", "neg": "import bisect\n\nn = int(input())\nnums = [-int(input()) for _ in range(n)]\n\ncolors = []\nmax_val = -1 * (10 ** 10)\nfor num in nums:\n\tif num >= max_val:\n\t\tcolors.append(num)\n\t\tmax_val = num\n\telse:\n\t\tidx_r = bisect.bisect_right(colors, num)\n\t\tcolors[idx_r] = num\n\t\tmax_val = min(colors[-1], max_val)\n\tprint(num, colors)\n\nprint(len(colors))\n\n", "jacc_sim": 1.0, "before_after_length": [136, 144], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "\tprint(num, colors)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u930705402", "n_user": "u930705402", "pos": "from collections import deque\nfrom bisect import bisect_left\nN=int(input())\nd=deque()\nfor i in range(N):\n A=int(input())\n b=bisect_left(d,A)-1\n if b==-1:\n d.appendleft(A)\n else:\n d[b]=A\nprint(len(d))", "neg": "from collections import deque\nfrom bisect import bisect_left\nN=int(input())\nd=deque()\nfor i in range(N):\n A=int(input())\n b=bisect_left(d,A)-1\n if b==-1:\n d.appendleft(A)\n else:\n d[b]=A\nprint(len(d))\nprint(d)", "jacc_sim": 1.0, "before_after_length": [91, 96], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "\nprint(d)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02973", "p_user": "u207097826", "n_user": "u207097826", "pos": "import bisect\nN = int(input())\nA = [int(input()) for i in range(N)]\n\n\nS = []\nfor i in range(N):\n posi = bisect.bisect_left(S,A[i])\n if posi == 0:\n S.insert(0,A[i])\n else:\n S[posi-1] = A[i]\n\nprint(len(S))", "neg": "import bisect\nN = int(input())\nA = [int(input()) for i in range(N)]\n\n\nS = []\nfor i in range(N):\n posi = bisect.bisect_right(S,A[i])\n if posi == 0:\n S.insert(0,A[i])\n else:\n S[posi-1] = A[i]\n\nprint(len(S))", "jacc_sim": 0.9333333333333333, "before_after_length": [103, 103], "nl": "You are given a sequence of N integers. Each integer must be painted with a color such that if two integers are painted with the same color, the first integer must be less than the second. Find the minimum number of colors required to satisfy this condition. Constraints: 1 \u2264 N \u2264 10^5, 0 \u2264 Ai \u2264 10^9. Input is given as N and the sequence A. Output the minimum number of colors required. For example, given input 5, 2, 1, 4, 5, 3, the output is 2. If the input is 4, 0, 0, 0, 0, the output is 4.", "diff_info": "lefrigh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u425762225", "n_user": "u425762225", "pos": "#!/usr/bin/env python3\nfrom collections import Counter\n# from numba import njit\n\n# input = stdin.readline\n\n# @njit\ndef solve(n,a):\n d = Counter(a)\n\n if d[0] == n:\n return True\n if n % 3 != 0:\n return False\n if len(d) == 2 and d[0] == n // 3:\n return True\n if len(d) == 3:\n if not all(v == n//3 for v in d.values()):\n return False\n x,y,z = d.keys()\n if x ^ y ^ z == 0:\n return True\n return False\n\n\n\n\n\ndef main():\n N = int(input())\n # N,M = map(int,input().split())\n a = list(map(int,input().split()))\n print(\"Yes\" if solve(N,a) else \"No\")\n return\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nfrom collections import Counter\n# from numba import njit\n\n# input = stdin.readline\n\n# @njit\ndef solve(n,a):\n d = Counter(a)\n\n if d[0] == n:\n return True\n if n % 3 != 0:\n return False\n if len(d) == 2 and d[0] == n // 3:\n return True\n if len(d) == 3:\n if not all(v % 3 == 0 for v in d.values()):\n return False\n x,y,z = d.keys()\n if x ^ y ^ z == 0:\n return True\n return False\n\n\n\n\n\ndef main():\n N = int(input())\n # N,M = map(int,input().split())\n a = list(map(int,input().split()))\n print(\"Yes\" if solve(N,a) else \"No\")\n return\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [254, 254], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "%==n// == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u758815106", "n_user": "u758815106", "pos": "#!/usr/bin/env python3\n\n#import\n#import math\n#import numpy as np\nN = int(input())\nA = list(map(int, input().split()))\nn = N // 3\ndic = {}\n\nfor a in A:\n if a in dic:\n dic[a] += 1\n else:\n dic[a] = 1\n\nans = True\n\nif len(dic) > 3:\n ans = False\n\nelif len(dic) == 3:\n keys = dic.keys()\n t = []\n for k in keys:\n t.append(k)\n if dic[k] != n:\n ans = False\n\n a = t[0]\n b = t[1]\n c = t[2]\n\n if (a ^ b) != c:\n ans = False\n\nelif len(dic) == 2:\n for k in dic:\n if k == 0:\n if dic[k] != n:\n ans = False\n else:\n if dic[k] != n * 2:\n ans = False\n\nelse:\n keys = dic.keys()\n if not 0 in keys:\n ans = False\n\nif ans:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "#!/usr/bin/env python3\n\n#import\n#import math\n#import numpy as np\nN = int(input())\nA = list(map(int, input().split()))\nn = N // 3\ndic = {}\n\nfor a in A:\n if a in dic:\n dic[a] += 1\n else:\n dic[a] = 1\n\nans = True\n\nif len(dic) > 3:\n ans = False\n\nelif len(dic) == 3:\n keys = dic.keys()\n for k in keys:\n if dic[keys] != n:\n ans = False\n\n if (keys[0] ^ keys[1]) != keys[2]:\n ans = False\n\nelif len(dic) == 2:\n for k in dic:\n if k == 0:\n if dic[k] != n:\n ans = False\n else:\n if dic[k] != n * 2:\n ans = False\n\nelse:\n keys = dic.keys()\n if not 0 in keys:\n ans = False\n\nif ans:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9333333333333333, "before_after_length": [311, 280], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "t = []\n t.appif dic[kysnd(k)\n if dic[kaif= t(keys\n b = t[1]\n c = t[2]\n\n if (abkeys[1]ckeys[2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u076306174", "n_user": "u076306174", "pos": "from collections import Counter\n\nn=int(input())\na=list(map(int, input().split()))\n\nflag=\"No\"\n\ncount_by_kw = Counter()\nfor i in range(n):\n count_by_kw[a[i]]+=1\n\nif count_by_kw.get(0) == n:\n flag=\"Yes\"\n\nif count_by_kw.get(0) == n/3 and len(count_by_kw.keys())==2:\n flag=\"Yes\"\n\ncl=list(count_by_kw.values())\nck=list(count_by_kw.keys())\n\nif len(cl)==3:\n if cl[0] == cl[1] and cl[1] == cl[2]:\n xor = ck[0]^ck[1]^ck[2]\n if xor == 0:\n flag=\"Yes\"\n \nprint(flag)\n\n\n\n", "neg": "from collections import Counter\n\nn=int(input())\na=list(map(int, input().split()))\n\nflag=\"No\"\n\ncount_by_kw = Counter()\nfor i in range(n):\n count_by_kw[a[i]]+=1\n\nprint(count_by_kw)\n\nif count_by_kw.get(0) == n:\n flag=\"Yes\"\n\nif count_by_kw.get(0) == n/3 and len(count_by_kw.keys())==2:\n flag=\"Yes\"\n \nif len(count_by_kw.values()) == 3:\n if count_by_kw.get(0) == count_by_kw.get(1) and count_by_kw.get(0) == count_by_kw.get(2):\n flag=\"Yes\"\n \nprint(flag)\n\n\n\n", "jacc_sim": 0.9111111111111111, "before_after_length": [225, 214], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "print(count_by_kw)\n\n cif en=list \nck=list(count_by_kw.keys())\n\niflen(cl)==l[ount_by_kw.get()]l[ount_by_kw.get()]l[1] == cl[2]:\n xr = cunt_by_[w.get(]^) == ount_by_w.get([1]^ck[)]\n if xor == 0 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u296150111", "n_user": "u296150111", "pos": "n=int(input())\na=list(map(int,input().split()))\np=[]\ncnt=[]\nzero=0\nfor i in range(n):\n\tif len(p)>=4:\n\t\tprint(\"No\")\n\t\texit()\n\tif a[i]==0:\n\t\tzero+=1\n\telif a[i] not in p:\n\t\tp.append(a[i])\n\t\tcnt.append(1)\n\telse:\n\t\tfor j in range(len(p)):\n\t\t\tif a[i]==p[j]:\n\t\t\t\tcnt[j]+=1\nif n%3!=0 and zero!=n:\n\tprint(\"No\")\n\texit()\nif len(p)>=4:\n\tprint(\"No\")\n\texit()\nif len(p)==3:\n\tif cnt[0]==cnt[1]==cnt[2]==n/3:\n\t\tif p[0]^p[1]^p[2]==0:\n\t\t\tprint(\"Yes\")\n\t\t\texit()\n\telse:\n\t\tprint(\"No\")\n\t\texit()\nelif len(p)==1:\n\tif cnt[0]==n/3*2:\n\t\tprint(\"Yes\")\n\t\texit()\nelif len(p)==0:\n\tif sum(a)==0:\n\t\tprint(\"Yes\")\n\t\texit()\nprint(\"No\")", "neg": "=int(input())\na=list(map(int,input().split()))\np=set()\ncnt=[]\nzero=0\nfor i in range(n):\n\tif a[i]==0:\n\t\tzero+=1\n\telif a[i] not in p:\n\t\tp.add(a[i])\n\t\tcnt.append(1)\n\telse:\n\t\tfor j in range(len(p)):\n\t\t\tif a[i]==p[j]:\n\t\t\t\tcnt[j]+=1\np=list(p)\nif n%3!=0 and zero!=n:\n\tprint(\"No\")\n\texit()\nif len(p)>=4:\n\tprint(\"No\")\n\texit()\nif len(p)==3:\n\tif cnt[0]==cnt[1]==cnt[2]==n/3:\n\t\tif p[0]^p[1]^p[2]==0:\n\t\t\tprint(\"Yes\")\n\t\t\texit()\n\telse:\n\t\tprint(\"No\")\n\t\texit()\nelif len(p)==1:\n\tif cnt[0]==n/3*2:\n\t\tprint(\"Yes\")\n\t\texit()\nelif len(p)==0:\n\tif sum(a)==0:\n\t\tprint(\"Yes\")\n\t\texit()\nprint(\"No\")", "jacc_sim": 0.96, "before_after_length": [348, 332], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "n[]set()len(p)>=4:\n\t\tprint(\"No\")\n\t\texit()\n\tif ppen(a[i])\n\t\tcnt.appena[i])\n\t\tcnt.append(\np=list(p)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u291278680", "n_user": "u291278680", "pos": "from collections import Counter\n\n# s = input()\nN = int(input())\nA = list(map(int, input().split()))\n# a, b = map(int, input().split())\n\nc = Counter()\n\nfor a in A:\n c[a] += 1\n\nk = list(c.keys())\nv = list(c.values())\nif len(v) == 1:\n if k[0]^k[0] == k[0]:\n print(\"Yes\")\n exit()\n\n\nif len(v) == 2 and N%3 == 0:\n if v[0]*2 == v[1]:\n if k[1]^k[1] == k[0]:\n print(\"Yes\")\n exit()\n if v[1]*2 == v[0]:\n if k[0]^k[0] == k[1]:\n print(\"Yes\")\n exit()\n\n\nif len(v) == 3:\n if v[0] == v[1] and v[1] == v[2]:\n if k[0]^k[1] == k[2]:\n print(\"Yes\")\n exit()\n\nprint(\"No\")\n\n\n", "neg": "from collections import Counter\n\n# s = input()\nN = int(input())\nA = list(map(int, input().split()))\n# a, b = map(int, input().split())\n\nc = Counter()\n\nfor a in A:\n c[a] += 1\n\nk = list(c.keys())\nv = list(c.values())\nif len(v) == 1:\n if k[0]^k[0] == k[0]:\n print(\"Yes\")\n exit()\n\nprint(k, v)\n\nif len(v) == 2 and N%3 == 0:\n if v[0]*2 == v[1]:\n if k[1]^k[1] == k[0]:\n print(\"Yes\")\n exit()\n if v[1]*2 == v[0]:\n if k[0]^k[0] == k[1]:\n print(\"Yes\")\n exit()\n\n\nif len(v) == 3:\n if v[0] == v[1] and v[1] == v[2]:\n if k[0]^k[1] == k[2]:\n print(\"Yes\")\n exit()\n\nprint(\"No\")\n\n\n", "jacc_sim": 1.0, "before_after_length": [288, 295], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "\nprint(k, v)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u813450934", "n_user": "u813450934", "pos": "n = int(input())\nl = list(map(int,input().split()))\nj = 0\nu = []\nv = [0]*4\nfor i in l:\n if not i in u :\n u.append(i)\n v[u.index(i)] += 1\n if len(u) > 3:\n break\n#print(u,v)\nif len(u) == 3:\n if ((n%3 == 0) and (u[0] ^ u[2] == u[1]) and (v[0] == v[1] and v[1] == v[2]) and not len(u) > 3 and not 0 in u):\n j = 1\nelif len(u) == 2:\n if 0 in u:\n if u[0] == 0 :\n b = u[1]\n else :\n b = u[0]\n if v[u.index(0)] * 2 == v[u.index(b)]:\n j = 1\nif len(u) == 1:\n if u[0] == 0:\n j = 1\n\nif j == 1 :\n print(\"Yes\")\nelse :\n print(\"No\")\n\n#print(l[0] ^ l[2] == l[1],n == 3)\n\"\"\"01\n10\n11\n01\n10\n11\n\n01\n00\n01\n01\n00\n01\n\"\"\"\n", "neg": "n = int(input())\nl = list(map(int,input().split()))\nj = 0\nu = []\nv = [0]*3\nfor i in l:\n if not i in u :\n u.append(i)\n v[u.index(i)] += 1\n if len(u) > 3:\n break\n#print(u,v)\nif len(u) == 3:\n if ((n%3 == 0) and (u[0] ^ u[2] == u[1]) and (v[0] == v[1] and v[1] == v[2]) and not len(u) > 3):\n j = 1\nelif len(u) == 2:\n if 0 in u:\n if v[0] == v[1] * 2 or v[0] * 2 == v[1]:\n j = 1\nif j == 1 :\n print(\"Yes\")\nelse :\n print(\"No\")\n\n#print(l[0] ^ l[2] == l[1],n == 3)\n\"\"\"01\n10\n11\n01\n10\n11\n\n01\n00\n01\n01\n00\n01\n\"\"\"\n", "jacc_sim": 0.9411764705882353, "before_after_length": [338, 281], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "34 and not 0 in uvuv0 :\n b = u]\n else :\n b = u[0]\n if v[u.index(0)or v[0] * 2 1u.index(b)\nif len(u) == 1:\n if u[0] == 0:\n j = 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u383416302", "n_user": "u383416302", "pos": "import itertools\nN=int(input())\nan=[int(x) for x in map(int,input().split()[:N])]\n\nret=an[0]\nfor x in range(1,N):\n ret= an[x] ^ ret\n\nif ret==0:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "import itertools\nN=int(input())\nan=[int(x) for x in map(int,input().split()[:N])]\n\nret=an[0]\nfor x in range(1,N):\n ret= ret[x] ^ ret\n\nif ret==0:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [82, 82], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "anret", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u021019433", "n_user": "u021019433", "pos": "from functools import reduce\nfrom operator import xor\n\nR = lambda: map(int, input().split())\n \nn = int(input())\nif n % 3:\n ans = 'YNeos'[any(R())::2]\nelse:\n a = sorted(R())\n m = n // 3\n if reduce(xor, a[::m]):\n ans = 'No'\n elif any(len(set(a[i:i + m])) > 1 for i in range(0, n, m)):\n ans = 'No'\n else:\n ans = 'Yes'\nprint(ans)\n", "neg": "from functools import reduce\nfrom operator import xor\n\nR = lambda: map(int, input().split())\n \nn = int(input())\nif n % 3:\n ans = 'YNeos'[any(R())::2]\nelse:\n a = sorted(R())\n m = n // 3\n if reduce(a[::m], xor):\n ans = 'No'\n elif any(len(set(a[i:i + m])) > 1 for i in range(0, n, m)):\n ans = 'No'\n else:\n ans = 'Yes'\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [147, 145], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "xor, , xor\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u114641312", "n_user": "u114641312", "pos": "from collections import deque,Counter\n\nN = int(input())\nlisA = list(map(int,input().split()))\n\ncnt = Counter(lisA)\n\nif len(cnt)>3:\n print(\"No\")\n exit()\n\nif len(cnt) == 1:\n if lisA[0] == 0:\n print(\"Yes\")\n exit()\n else:\n print(\"No\")\n exit()\nelif len(cnt) == 2:\n if not 0 in cnt:\n print(\"No\")\n exit()\n else:\n keys = sorted(list(cnt.keys()))\n another = keys[-1]\n if cnt[0]*2 == cnt[another]:\n print(\"Yes\")\n exit()\n else:\n print(\"No\")\n exit()\nelse:\n keys = sorted(list(cnt.keys()))\n if keys[0]^keys[1]^keys[2] != 0:\n print(\"No\")\n exit()\n else:\n if cnt[keys[0]]==cnt[keys[1]]==cnt[keys[2]]:\n print(\"Yes\")\n exit()\n else:\n print(\"No\")\n exit()\n", "neg": "from collections import deque,Counter\n\nN = int(input())\nlisA = list(map(int,input().split()))\n\ncnt = Counter(lisA)\n\nif len(cnt)>3:\n print(\"No\")\n exit()\n\nif len(cnt) == 1:\n if lisA[0] == 0:\n print(\"Yes\")\n exit()\n else:\n print(\"No\")\n exit()\nelif len(cnt) == 2:\n if not 0 in cnt:\n print(\"No\")\n exit()\n else:\n keys = sorted(list(cnt.keys()))\n another = keys[-1]\n if cnt[0]*2 == cnt[another]:\n print(\"Yes\")\n exit()\n else:\n print(\"No\")\n exit()\nelse:\n keys = sorted(list(cnt.keys()))\n if keys[0]^keys[1]^keys[2] != 0:\n print(\"No\")\n exit()\n else:\n if cnt(keys[0])==cnt(keys[1])==cnt(keys[2]):\n print(\"yes\")\n exit()\n else:\n print(\"No\")\n exit()\n\n\n\n\n", "jacc_sim": 0.9782608695652174, "before_after_length": [296, 300], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "([)]([)]([)]yY\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u620480037", "n_user": "u620480037", "pos": "N=int(input())\na=list(map(int,input().split()))\nD=dict()\nfor i in range(N):\n if a[i] in D:\n D[a[i]]+=1\n else:\n D[a[i]]=1\nL=list(D.items())\nL.sort()\n#print(L)\n\nif len(L)==1:\n if L[0][0]==0:\n print(\"Yes\")\n exit()\nelif len(L)==2:\n if L[0][0]==0 and L[1][1]==L[0][1]*2:\n print(\"Yes\")\n exit()\nelif len(L)==3:\n #print(1)\n if L[0][1]==L[1][1] and L[1][1]==L[2][1]:\n #print(2)\n if L[1][0]==L[0][0]^L[2][0] and L[2][0]==L[1][0]^L[0][0] and L[0][0]==L[1][0]^L[2][0]:\n print(\"Yes\")\n exit()\nprint(\"No\")\n \n", "neg": "N=int(input())\na=list(map(int,input().split()))\n\nD=dict()\nfor i in range(N):\n if a[i] in D:\n D[a[i]]+=1\n else:\n D[a[i]]=1\nL=list(D.items())\nL.sort()\n#print(L)\n\nif len(L)==1:\n print(\"YES\")\n exit()\nelif len(L)==2:\n if L[0][0]==0 and L[1][1]==L[0][1]*2:\n print(\"YES\")\n exit()\nelif len(L)==3:\n #print(1)\n if L[0][1]==L[1][1] and L[1][1]==L[2][1]:\n #print(2)\n if L[1][0]==L[0][0]^L[2][0] and L[2][0]==L[1][0]^L[0][0] and L[0][0]==L[1][0]^L[2][0]:\n print(\"YES\")\n exit()\nprint(\"NO\")\n \n", "jacc_sim": 0.9090909090909091, "before_after_length": [304, 293], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "\nif L[0][0]==0:\n ESes ESesESesOo", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u942033906", "n_user": "u942033906", "pos": "N = int(input())\nA = list(map(int,input().split()))\nsetA = list(set(A))\nif len(setA) == 1 and setA[0] == 0:\n\tprint(\"Yes\")\n\texit()\nif N % 3 != 0:\n\tprint(\"No\")\n\texit()\nif len(setA) == 1 or len(setA) > 3:\n\tprint(\"No\")\n\texit()\nif len(setA) == 2:\n\tif 0 in setA:\n\t\tsetA.sort()\n\t\tif A.count(0) == N // 3 and A.count(setA[1]) == (N // 3) * 2:\n\t\t\tprint(\"Yes\")\n\t\t\texit()\n\tprint(\"No\")\n\texit()\n\nif setA[0] ^ setA[1] != setA[2]:\n\tprint(\"No\")\n\texit()\nfor a in setA:\n\tif A.count(a) != N // 3:\n\t\tprint(\"No\")\n\t\texit()\nprint(\"Yes\")\nexit()", "neg": "N = int(input())\nA = list(map(int,input().split()))\nsetA = list(set(A))\nif len(setA) == and setA[0] == 0:\n\tprint(\"Yes\")\n\texit()\nif N % 3 != 0:\n\tprint(\"No\")\n\texit()\nif len(setA) == 1 or len(setA) > 3:\n\tprint(\"No\")\n\texit()\nif len(setA) == 2:\n\tif 0 in setA:\n\t\tsetA.sort()\n\t\tif A.count(0) == N // 3 and A.count(setA[1]) == (N // 3) * 2:\n\t\t\tprint(\"Yes\")\n\t\t\texit()\n\tprint(\"No\")\n\texit()\n\nif setA[0] ^ setA[1] != setA[2]:\n\tprint(\"No\")\n\texit()\nfor a in setA:\n\tif A.count(a) != N // 3:\n\t\tprint(\"No\")\n\t\texit()\nprint(\"Yes\")\nexit()", "jacc_sim": 1.0, "before_after_length": [256, 255], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": " 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u693173434", "n_user": "u693173434", "pos": "from collections import Counter\nn=int(input())\na=list(map(int, input().split()))\n\nc=Counter(a)\nbl=True\nif n%3==0:\n if len(c.keys())==3:\n l=[]\n for i,j in c.items():\n if j!=n//3:\n bl=False\n l.append(i)\n if 0 in l:\n bl=False\n if l[0]^l[1]!=l[2]:\n bl=False\n elif len(c.keys())==2:\n if c[0]!=n//3:\n bl=False\n else:\n bl=False\nelse:\n bl=False\nif c[0]==n:\n bl=True\n\nif bl:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "from collections import Counter\nn=int(input())\na=list(map(int, input().split()))\n\nc=Counter(a)\nbl=True\nif n%3==0:\n if len(c.keys())==3:\n l=[]\n for i,j in c.items():\n if j!=n//3:\n bl=False\n l.append(i)\n if abs(l[0]-l[1])!=l[2]:\n bl=False\n else:\n bl=False\nelse:\n bl=False\nif c[0]==n:\n bl=True\n\nif bl:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9183673469387755, "before_after_length": [212, 172], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "a0 in l:\n l=Fal(e\n if -^)ifse:\n b=Fals\nn(c.kly())e:\n bl=2:False !=n//3:\n bl=False\n else:\n bl=False\nelse:\n bl=False\nif c[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u496815777", "n_user": "u496815777", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nst = set(a)\nlst = list(st)\n\nif n == 3 and a[0] ^ a[1] == a[2]:\n print(\"Yes\")\nelif n >= 4 and st == {0}:\n print(\"Yes\")\nelif n % 3 == 0 and len(st) == 2 and a.count(0) == n /3:\n print(\"Yes\")\nelif n % 3 == 0 and len(st) == 3 and lst[0] ^ lst[1] == lst[2] and a.count(lst[0]) == n /3 and a.count(lst[1]) == n/3:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nst = set(a)\n\nif n == 3 and a[0] ^ a[1] == a[2]:\n print(\"Yes\")\nelif n >= 4 and st == {0}:\n print(\"Yes\")\nelif n % 3 == 0 and len(st) == 2 and (0 in a) and a.count(0) = n /3:\n print(\"Yes\")\nelif n % 3 == 0 and len(st) == 3 and a.count(st.pop) = n /3 anda.count(st.pop) = n/3:\n print(\"Yes\")\nelse:\n print(\"No\")\n ", "jacc_sim": 0.9047619047619048, "before_after_length": [186, 172], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": ")\nlst = list(st and (0 in a)= and lst[0] ^ lst[1] == lst[2]l[0].pop= l[1].pop=\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u588794534", "n_user": "u588794534", "pos": "n=int(input())\na=list(map(int,input().split()))\n\nif 1:\n tmp=0\n for item in a:\n tmp=tmp^item\n if tmp==0:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n tmp=0\n for item in a:\n tmp=tmp^item\n if tmp==2**len(str(bin(max(a))[2:]))-1:\n print(tmp)\n print(\"Yes\")\n else:\n print(\"No\")\n\n\n\n#001 (1)\n#010 (2)\n#011 (3)\n#001 (1)\n#010 (2)\n#011 (3)\n\n#010 (2)\n#011 (3)\n#001 (1)\n\n#011 (3)\n#001 (1)\n#010 (2)\n", "neg": "n=int(input())\na=list(map(int,input().split()))\n\nif n%2==1:\n tmp=0\n for item in a:\n tmp=tmp^item\n if tmp==0:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n tmp=0\n for item in a:\n tmp=tmp^item\n if tmp==2**len(str(bin(max(a))[2:]))-1:\n print(\"Yes\")\n else:\n print(\"No\")\n\n\n\n#001 (1)\n#010 (2)\n#011 (3)\n#001 (1)\n#010 (2)\n#011 (3)\n\n#010 (2)\n#011 (3)\n#001 (1)\n\n#011 (3)\n#001 (1)\n#010 (2)\n", "jacc_sim": 0.975609756097561, "before_after_length": [217, 215], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "n%2==tmp)\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u647656433", "n_user": "u647656433", "pos": "import collections\nn=int(input())\na=[int(_) for _ in input().split()]\nc=collections.Counter(a)\nl=len(c.keys())\nk=list(c.keys())\nv=list(c.values())\nif l > 3:\n print(\"No\")\nelif l == 3:\n if k[0]^k[1]^k[2] == 0 and v[0]==v[1]==v[2] and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\nelif l == 2:\n if k[0] == 0:\n if v[1] == v[0]*2 and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\n elif k[1] == 0:\n if v[0] == v[1]*2 and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n print(\"No\")\nelif l == 1:\n if k[0] == 0:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "import collections\nn=int(input())\na=[int(_) for _ in input().split()]\nc=collections.Counter(a)\nl=len(c.keys())\nk=list(c.keys())\nv=list(c.values())\nprint(c)\nif l > 3:\n print(\"No\")\nelif l == 3:\n if k[0]^k[1]^k[2] == 0 and v[0]==v[1]==v[2] and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\nelif l == 2:\n if k[0] == 0:\n if v[1] == v[0]*2 and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\n elif k[1] == 0:\n if v[0] == v[1]*2 and n%3==0:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n print(\"No\")\nelif l == 1:\n if k[0] == 0:\n print(\"Yes\")\n else:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [277, 283], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "print(c)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u374802266", "n_user": "u374802266", "pos": "import sys\nN=int(input())\na=list(map(int,input().split()))\nb,c,d=0,1,0\nwhile True:\n while True:\n if a[b]%(2**c)>=2**(c-1):\n d+=1\n b+=1\n if b==N:\n if d%2==1:\n print('No')\n sys.exit()\n else:\n break\n b,d=0,0\n c+=1\n if c==27:\n break\nprint('Yes')", "neg": "import sys\nN=int(input())\na=list(map(int,input().split()))\nb,c,d=0,1,0\nwhile True:\n while True:\n e==2**c\n if a[b]%(e)>=e/2:\n d+=1\n b+=1\n if b==N:\n if d%2==1:\n print('No')\n sys.exit()\n else:\n break\n b,d=0,0\n c+=1\n if c==27:\n break\nprint('Yes')", "jacc_sim": 0.926829268292683, "before_after_length": [142, 144], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "e==if a[b]%(\n if a[b]%(ee/**(c-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u785573018", "n_user": "u785573018", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor i in range(n):\n b[a[i]] = b[a[i]]+1 if a[i] in b else 1\nb = list(b.items())\nif len(b) == 1:\n print(\"Yes\") if b[0][0] == 0 else print(\"No\")\nelif len(b) == 2:\n b.sort()\n print(\"Yes\") if b[0][0] == 0 and b[0][1]*2 == b[1][1] else print(\"No\")\nelif len(b) == 3:\n print(\"Yes\") if b[0][0]^b[1][0]^b[2][0] == 0 and b[0][1] == b[1][1] and b[1][1] == b[2][1] else print(\"No\")\nelse:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor i in range(n):\n b[a[i]] = b[a[i]]+1 if a[i] in b else 1\nprint(b)\nb = list(b.items())\nprint(b)\nif len(b) == 1:\n print(\"Yes\") if b[0][0] == 0 else print(\"No\")\nelif len(b) == 2:\n print(\"Yes\") if b[0][0] == 0 and b[0][1]*2 == b[1][1] else print(\"No\")\nelif len(b) == 3:\n print(\"Yes\") if b[0][0]^b[1][0]^b[2][0] == 0 and b[0][1] == b[1][1] and b[1][1] == b[2][1] else print(\"No\")\nelse:\n print(\"No\")", "jacc_sim": 0.975, "before_after_length": [228, 232], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "print(b)\n)\nprint(bb.sort()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u905582793", "n_user": "u905582793", "pos": "n = int(input())\na = list(map(int,input().split()))\nx = list(set(a))\nx.sort()\nif len(x) >= 4:\n print(\"No\")\n exit()\nif len(x) == 3:\n if x[0]^x[1] == x[2] and 3*a.count(x[0]) == 3*a.count(x[1]) == 3*a.count(x[2]) == n:\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nif len(x) == 2:\n if x[0] == 0 and (2*a.count(x[0]) == 2*a.count(x[1]) == n or 6*a.count(x[0]) == 3*a.count(x[1]) == 2*n):\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nif len(x) == 1:\n if x[0] == 0:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int,input().split()))\nx = list(set(a))\nif len(x) >= 4:\n print(\"No\")\n exit()\nif len(x) == 3:\n if x[0]^x[1] == x[2] and 3*a.count[x[0]] == 3*a.count[x[1]] == 3*a.count[x[2]] == n:\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nif len(x) == 2:\n if x[0] == 0 or x[1] == 0 and 2*a.count[x[0]] == 2*a.count[x[1]] == n:\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nif len(x) == 1:\n if x[0] == 0:\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.9473684210526315, "before_after_length": [260, 235], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "x.sort()\n[(])[(])[(])orand(2*a.count(x[0]) == 2*a.count()0 ad or 6*a.count(x[0]) == 3*a.count(x[1]) ==a.cou):\nt[x[0]]== pri2*a.cou[(\"Yes\")\n else:\n print(\"No\")\n e[it()\nif len(x) == ]]:\n==nif x[0] == 0\n exit()\nif len(x) == 1:\n if x[0] == 0:\n print(\"Yes\")\n else:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u227082700", "n_user": "u227082700", "pos": "n,a=int(input()),sorted(list(map(int,input().split())));b=set(a);l=len(b)\nif l!=3:print(\"Yes\"if(l==1and a[0]==0)or(l==2and a[0]==0and n%3==0and a[n//3-1]!=a[n//3])else\"No\")\nelse:print(\"Yes\"if b.pop()^b.pop()==b.pop()and n%3==0and a[n//3-1]!=a[n//3]and a[n//3*2-1]!=a[n//3*2]else\"No\")", "neg": "n,a=int(input()),sorted(list(map(int,input().split())));b=set(a);l=len(b)\nif l!=3:print(\"Yes\"if(l==1and a[0]==0)or(l==2and a[0]==0and n%3==0and a[n//3-1]!=a[n//3])else\"No\")\nelif:print(\"Yes\"if b.pop()^b.pop()==b.pop()and n%3==0and a[n//3-1]!=a[n//3]and a[n//3*2-1]!=a[n//3*2]else\"No\")", "jacc_sim": 0.9772727272727273, "before_after_length": [168, 169], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "ifse", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u617228707", "n_user": "u617228707", "pos": "N = int(input())\nList=list(map(int,input().split()))\nList.sort()\na = List[0]\nb = List.count(a)\nc = List[N//3]\nd = List.count(c)\ne = List[2*N//3]\nf = List.count(e)\nif a == c and c == e:\n if a == 0 and b == N:\n print('Yes')\n else:\n print('No')\nelif c == e:\n if a == 0 and N % 3 == 0 and b == N // 3 and d == 2 * N // 3:\n print('Yes')\n else:\n print('No')\nelif N % 3 == 0 and b == N // 3 and d == N //3 and f == N //3 and a ^ e == c : \n print('Yes')\nelse:\n print('No')\n", "neg": "N = int(input())\nList=list(map(int,input().split()))\nList.sort()\na = List[0]\nb = List.count(a)\nc = List[N//3]\nd = List.count(c)\ne = List[2*N//3]\nf = List.count(e)\nif a == c and c == e:\n if a == 0 and b == N:\n print('Yes')\nelif c == e:\n if a == 0 and N % 3 == 0 and b == N // 3 and d == 2 * N // 3:\n print('Yes')\nelif N % 3 == 0 and b == N // 3 and d == N //3 and f == N //3 and a ^ e == c : \n print('Yes')\nelse:\n print(A)\n", "jacc_sim": 0.9487179487179487, "before_after_length": [216, 196], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": " else:\n print('No')\n else:\n print('No')\nA'No'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u021548497", "n_user": "u021548497", "pos": "from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\nc = Counter(a)\n\njudge = False\nif 0 in c and c[0] == n:\n judge = True\nif n % 3 == 0:\n judge1, judge2 = False, 0\n num = 0\n value = 0\n for k, v in c.items():\n num += 1\n if v == n // 3:\n if k == 0:\n judge1 = True\n judge2 += 1\n value ^= k\n if judge1 and num == 2:\n judge = True\n if judge2 == num == 3 and value == 0:\n judge = True\n\nprint(\"Yes\" if judge else \"No\")\n ", "neg": "from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\nc = Counter(a)\n\njudge = False\nif 0 in c and c[0] == n:\n judge = True\nif n % 3 == 0:\n judge1, judge2 = False, 0\n num = 0\n value = 0\n for k, v in c.items():\n num += 1\n if v == n // 3:\n if k == 0:\n judge1 = True\n judge2 += 1\n value ^= v\n if judge1 and num == 2:\n judge = True\n if judge2 == num == 3 and value == 0:\n judge = True\n\nprint(\"Yes\" if judge else \"No\")\n ", "jacc_sim": 1.0, "before_after_length": [192, 192], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": " vk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u063052907", "n_user": "u063052907", "pos": "from collections import Counter\n\n\ndef main():\n N = int(input())\n lst_a = list(map(int, input().split()))\n\n cnt_a = Counter(lst_a)\n\n if len(cnt_a) > 3:\n print(\"No\")\n exit()\n \n if len(cnt_a) == 1:\n print(\"Yes\" if lst_a[0] == 0 else \"No\")\n exit()\n \n if N % 3:\n print(\"No\")\n exit()\n \n if len(cnt_a) == 2:\n if cnt_a[0] != N//3:\n print(\"No\")\n else:\n print(\"Yes\")\n else:\n if any(v != N//3 for v in cnt_a.values()):\n print(\"No\")\n else:\n x, y, z = list(cnt_a)\n print(\"Yes\" if x ^ y ^ z == 0 else \"No\")\n\n\nif __name__ == \"__main__\":\n main()", "neg": "from collections import Counter\n\n\ndef main():\n N = int(input())\n lst_a = list(map(int, input().split()))\n\n cnt_a = Counter(lst_a)\n\n if len(cnt_a) > 3:\n print(\"No\")\n exit()\n \n if len(cnt_a) == 1:\n print(\"Yes\" if lst_a[0] == 0 else \"No\")\n exit()\n \n if N % 3:\n print(\"No\")\n exit()\n \n if len(cnt_a) == 2:\n if cnt_a[0] != N//3:\n print(\"No\")\n else:\n print(\"Yes\")\n else:\n if any(v != N//3 for v in C.values()):\n print(\"No\")\n else:\n x, y, z = list(cnt_a)\n print(\"Yes\" if a ^ b ^ c == 0 else \"No\")\n\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9245283018867925, "before_after_length": [253, 251], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "Ccnt_aaxbycz", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u203022424", "n_user": "u203022424", "pos": "n = int(input())\na = list(map(int, input().split()))\naa = 0\n\nfor i in range(n):\n aa = aa ^ a[i]\n\nif aa == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\naa = 0\n\nfor i in range(N):\n aa = aa ^ a[i]\n \nif aa == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9655172413793104, "before_after_length": [65, 66], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "Nn ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u086503932", "n_user": "u086503932", "pos": "from collections import Counter\n\nN = int(input())\na = list(map(int, input().split()))\n\nif len(set(a)) == 1 and a[0] == 0:\n print('Yes')\nelif N % 3 == 0:\n l = [*Counter(a).values()]\n res = 0\n for s in set(a):\n res ^= s\n if len(l) == 3 and res == 0 and len(set(l)) == 1:\n print('Yes')\n elif len(l) == 2 and a.count(0) == N//3:\n print('Yes')\n else:\n print('No')\nelse:\n print('No')", "neg": "from collections import Counter\n\nN = int(input())\na = list(map(int, input().split()))\n\nif len(set(a)) == 1 and a[0] == 0:\n print('Yes')\nelif N % 3 == 0:\n l = [*Counter(a).values()]\n res = 0\n for s in set(l):\n res ^= s\n if len(l) == 3 and res == 0 and len(set(l)) == 1:\n print('Yes')\n elif len(l) == 2 and a.count(0) == N//3 * 2:\n print('Yes')\n else:\n print('No')\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [167, 169], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "la * 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u686036872", "n_user": "u686036872", "pos": "from collections import Counter\n\nN = int(input())\n\nA = list(map(int, input().split()))\nc = Counter(A)\na = list(set(A))\n\n\nif len(a) >= 4:\n ans = False\n\nelif len(a) == 3:\n a, b, d = a\n if c[a] == c[b] and c[b] == c[d] and a^b == d and d^b == a and a^d == b:\n ans = True\n else:\n ans = False\n\nelif len(a) == 2:\n a, b = sorted(a)\n if a == 0 and c[a] == N/3 and c[b] == (N/3)*2:\n ans = True\n else:\n ans = False\n\nelif len(a) == 1:\n if sum(a) == 0:\n ans = True\n else:\n ans = False\n\nprint(\"Yes\" if ans else \"No\")\n", "neg": "from collections import Counter\n\nN = int(input())\n\nA = list(map(int, input().split()))\nc = Counter(A)\na = list(set(A))\n\n\nif len(a) >= 4:\n ans = False\n\nelif len(a) == 3:\n a, b, d = a\n if c[a] == c[b] == c[d] and a^b = c and c^b == a and a^c == b:\n ans = True\n else:\n ans = False\n\nelif len(a) == 2:\n a, b = sorted(a)\n if a == 0 and c[a] == N/3 and c[b] == (N/3)*2:\n ans = True\n else:\n ans = False\n\nelif len(a) == 1:\n if sum(a) == 0:\n ans = True\n else:\n ans = False\n\nprint(\"Yes\" if ans else \"No\")\n", "jacc_sim": 1.0, "before_after_length": [245, 240], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "==anddb== c[d] =c ancand dcd", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u111365362", "n_user": "u111365362", "pos": "n = int(input())\nA = list(map(int,input().split()))\nl = [[0,0],[0,0],[0,0]]\nflag = 0\nfor i in range(n):\n x = A[i]\n for j in range(3):\n if l[j] == [0,0]:\n l[j] = [x,1]\n break\n if x == l[j][0]:\n l[j][1] += 1\n break\n else:\n break\na = l[0][1]\nb = l[1][1]\nc = l[2][1]\naa = l[0][0]\nbb = l[1][0]\ncc = l[2][0]\nif n % 3 == 0:\n m = n // 3\n if a == m:\n if b == m and c == m:\n if aa ^ bb ^ cc == 0:\n flag = 1\n if a == 2 * m and b == m:\n if bb == 0:\n flag = 1\n if a == m and b == 2 * m:\n if aa == 0:\n flag = 1\nif a == n and aa == 0:\n flag = 1\nif flag == 1:\n print('Yes')\nelse:\n print('No')", "neg": "n = int(input())\na = list(map(int,input().split()))\nl = [[-1,0],[-1,0],[-1,0]]\nflag = 0\nfor i in range(n):\n x = a[i]\n for j in range(3):\n if l[j] == [0,0]:\n l[j] = [x,1]\n break\n if x == l[j][0]:\n l[j][1] += 1\n break\n else:\n break\na = l[0][1]\nb = l[1][1]\nc = l[2][1]\naa = l[0][0]\nbb = l[1][0]\ncc = l[2][0]\nif n % 3 == 0:\n m = n // 3\n if a == m:\n if b == m and c == m:\n if aa ^ bb ^ cc == 0:\n flag = 1\n if a == 2 * m and b == m:\n if bb == 0:\n flag = 1\n if a == m and b == 2 * m:\n if aa == 0:\n flag = 1\nelse:\n if a == n and aa == 0:\n flag = 0\nif flag == 1:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9583333333333334, "before_after_length": [315, 320], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "aA-1,][-1,-10,0],[0aAelse:\n 01", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u518064858", "n_user": "u518064858", "pos": "n=int(input())\na=sorted(list(map(int,input().split())))\nb=sorted(list(set(a)))\nl=len(b)\nif l>=4:\n print(\"No\")\n exit()\nelse:\n if l==1:\n if b[0]==0:\n print(\"Yes\")\n else:\n print(\"No\")\n elif l==2:\n if n%3!=0:\n print(\"No\")\n else:\n if b[0]!=0:\n print(\"No\")\n else:\n cnt1=a.count(b[0])\n cnt2=a.count(b[1])\n if cnt2==(n//3)*2:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n if n%3!=0:\n print(\"No\")\n else:\n cnt1=a.count(b[0])\n cnt2=a.count(b[1])\n cnt3=a.count(b[2])\n if cnt1!=n//3 or cnt2!=n//3 or cnt3!=n//3:\n print(\"No\")\n else:\n if b[0]^b[2]!=b[1]:\n print(\"No\")\n else:\n print(\"Yes\")\n", "neg": "n=int(input())\na=sorted(list(map(int,input().split())))\nb=sorted(list(set(a)))\nl=len(b)\nif l>=4:\n print(\"No\")\n exit()\nelse:\n if l==1:\n if b[0]==0:\n print(\"Yes\")\n else:\n print(\"No\")\n elif l==2:\n if n%3!=0:\n print(\"No\")\n else:\n if b[0]!=0:\n print(\"No\")\n else:\n cnt1=a.count(b[0])\n cnt2=a.count(b[1])\n if cnt2==(n//3)*2:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n if n%3!=0:\n print(\"No\")\n else:\n cnt1=a.count(b[0])\n cnt2=a.count(b[1])\n cnt3=a.count(b[2])\n print(cnt1,cnt2,cnt3)\n if cnt1!=n//3 or cnt2!=n//3 or cnt3!=n//3:\n print(\"No\")\n else:\n if b[0]^b[2]!=b[3]:\n print(\"No\")\n else: \n print(\"Yes\")\n", "jacc_sim": 1.0, "before_after_length": [331, 345], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "print(cnt1,cnt2,cnt3)\n 31 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u225388820", "n_user": "u225388820", "pos": "n=int(input())\na=sorted(list(map(int,input().split())))\n\nif n%3==0:\n for j in range(3):\n for i in range(j*(n//3),(j+1)*(n//3)-1):\n if a[i]!=a[i+1]:\n print(\"No\")\n exit()\n if a[0]^a[n//3]==a[2*n//3]:\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nfor i in range(0,n-1):\n if a[i]!=a[i+1]:\n print(\"No\")\n exit()\nprint(\"Yes\")", "neg": "n=int(input())\na=sorted(list(map(int,input().split())))\n\nif n%3==0:\n for j in range(3):\n for i in range(j*(n//3),(j+1)*(n//3)-1):\n if a[i]!=a[i+1]:\n print(\"No\")\n exit()\n if x[0]^x[n//3]==x[2*n//3]:\n print(\"Yes\")\n else:\n print(\"No\")\n exit()\nfor i in range(0,n-1):\n if a[i]!=a[i+1]:\n print(\"No\")\n exit()\nprint(\"Yes\")", "jacc_sim": 0.975, "before_after_length": [175, 175], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "xaxaxa", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u937238023", "n_user": "u937238023", "pos": "n = int(input())\nl = list(map(int, input().split()))\nu = list(set(l))\nif len(u)==1 and u[0]==0:\n print(\"Yes\")\nelif n%3==0:\n if len(u)==2:\n x = l.count(u[0])\n y = l.count(u[1])\n if (x==2*n/3 and y==n/3 and u[1]==0) or (y==2*n/3 and x==n/3 and u[0]==0):\n print(\"Yes\")\n else:\n print(\"No\")\n elif len(u)==3:\n x = l.count(u[0])\n y = l.count(u[1])\n z = l.count(u[2])\n if x==n/3 and y==n/3 and z==n/3 and ((u[0]^u[1])^u[2])==0:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n print(\"No\")\nelse:\n print(\"No\")\n\n", "neg": "n = int(input())\nl = list(map(int, input().split()))\nu = list(set(l))\nif len(u)==1 and u[0]==0:\n print(\"Yes\")\nelif n%3==0:\n if len(u)==2:\n \tx = l.count(u[0])\n \ty = l.count(u[1])\n if (x==2*n/3 and y==n/3) or (y==2*n/3 and x==n/3):\n print(\"Yes\")\n else:\n print(\"No\")\n elif len(u)==3:\n x = l.count(u[0])\n \ty = l.count(u[1])\n z = l.count(u[2])\n if x==n/3 and y==n/3 and z==n/3:\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n print(\"No\")\nelse:\n print(\"No\")", "jacc_sim": 0.9743589743589743, "before_after_length": [280, 249], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "\t \t and u[1]==0 and u[0]==0\t and ((u[0]^u[1])^u[2])==0\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02975", "p_user": "u268516119", "n_user": "u268516119", "pos": "from collections import Counter \nimport sys\ndef No():\n print(\"No\")\n sys.exit()\n\ndef Yes():\n print(\"Yes\")\n sys.exit()\n\nN=int(input())\nA = [int(i) for i in input().split()]\nC=Counter(A)\nif N%3==0:\n if len(C)==1:\n if C.get(0,0):\n Yes()\n else:No()\n if len(C)==2:\n if C.get(0,0) == N//3:\n Yes()\n else:No()\n if len(C)>3:No()\n if not all([v==N//3 for v in C.values()]):\n No() \n bits = [format(a,\"040b\") for a in C.keys()]\n if all([z.count(\"0\")%2 for z in zip(*bits)]):\n print(\"Yes\")\n else:No()\nelse:\n if len(C)==1 and C.get(0,0):\n Yes()\n else:No()", "neg": "from collections import Counter \nimport sys\ndef No():\n print(\"No\")\n sys.exit()\n\ndef Yes():\n print(\"Yes\")\n sys.exit()\n\nN=int(input())\nA = [int(i) for i in input().split()]\nC=Counter(A)\nif N%3:\n if len(C)==1:\n if C.get(0,0):\n Yes()\n else:No()\n if len(C)==2:\n if C.get(0,0) == N//3:\n Yes()\n else:No()\n if len(C)!=3:No()\n bits = [format(a,\"040b\") for a in C.keys()]\n if all([z.count(\"0\")%2 for z in zip(*bits)]):\n print(\"Yes\")\n else:No()\nelse:\n if len(C)==1 and C.get(0,0):\n Yes()\n else:No()", "jacc_sim": 0.9074074074074074, "before_after_length": [269, 243], "nl": "Snuke has N hats, each labeled with an integer a_i. There are N camels in a circle, and Snuke will place one hat on each camel. If there exists a way to distribute the hats such that the bitwise XOR of the numbers on adjacent camels equals the number on the camel's hat, print \"Yes\"; otherwise, print \"No\". Constraints: All input values are integers, 3 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9. Input format: N followed by a list of a_i values. Output: Print the answer. Example Input 1: 3, 1 2 3. Example Output 1: Yes (Explanation: Hats 1, 2, and 3 can be placed in clockwise order to satisfy the condition for every camel). Example Input 2: 4, 1 2 4 8. Example Output 2: No (Explanation: There is no way to distribute the hats to satisfy the condition).", "diff_info": "==0>!=\n if not all([v==N//3 for v in C.values()]):\n No() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u007263493", "n_user": "u269459751", "pos": "N , A, B = map(int,input().split())\nprint(min(N*A, B))", "neg": "N, A, B = map(int, input().split())\n\nprint(N *min(A,B))\n", "jacc_sim": 1.0, "before_after_length": [25, 27], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " \nN *N* \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u580920947", "n_user": "u580920947", "pos": "#!/usr/bin/env python\n\ndef main():\n N, A, B = list(map(int, input().strip().split()))\n if N * A < B:\n return N * A\n else:\n return B\n\nif __name__ == '__main__':\n print(main())\n", "neg": "#!/usr/bin/env python\n\ndef main():\n N, A, B = list(map(int, input().strip().split()))\n if N * A < B:\n return N * A\n else:\n return B\n\n print(main())", "jacc_sim": 0.9090909090909091, "before_after_length": [76, 64], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " prf __t(mme__ == '__ma__':\n printmain(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u864202285", "n_user": "u864202285", "pos": "n,a,b = map(int, input().split())\n \nif n * a > b:\n print(b)\nelse:\n print(n * a)", "neg": "n,a,b = map(int, input().split())\n\nif n * a > n * b:\n print(n * b)\nelse:\n print(n * a)", "jacc_sim": 1.0, "before_after_length": [41, 44], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " n *n * ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u238801602", "n_user": "u238801602", "pos": "N,A,B = map(int,input().split())\nif N*A < B:\n print(N*A)\nelse:\n print(B)", "neg": "N,A,B = map(int,input().split())\nif N*4 < B:\n print(N*4)\nelse:\n print(B)", "jacc_sim": 0.9473684210526315, "before_after_length": [39, 39], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "4A4A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u664610890", "n_user": "u664610890", "pos": "N, A, B = map(int, input().split())\n\nif N * A > B:\n print(B)\nelse:\n print(N*A)\n", "neg": "N, A, B = map(int, input().split())\n\nif N * A > B:\n print(N * A)\nelse:\n print(B)\n", "jacc_sim": 1.0, "before_after_length": [41, 41], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "BN * ABN*A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u982462877", "n_user": "u982462877", "pos": "nums = list(map(int, input().split()))\n\nif nums[0]*nums[1] > nums[2]:\n print(nums[2])\n \nelif nums[0]* nums[1] <= nums[2]: \n print(nums[0] * nums[1])", "neg": "nums = list(map(int, input().split()))\n\nif nums[0]*nums[1] > nums[2]:\n print(nums[0]*nums[1])\n \nelif nums[0]* nums[1] <= nums[2]: \n print(nums[2])", "jacc_sim": 1.0, "before_after_length": [68, 67], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "20]*nums[120] * nums[1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u561231954", "n_user": "u344959886", "pos": "n,a,b=map(int,input().split())\nans=min(b,a*n)\nprint(ans)\n", "neg": "n,a,b=map(int,input().split())\nprint(min(a,b)*n)", "jacc_sim": 0.9375, "before_after_length": [31, 25], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "ans=min(b,a*n)\namis(a,b\n*n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u987164499", "n_user": "u987164499", "pos": "from sys import stdin\nli = list(map(int,stdin.readline().rstrip().split()))\nif li[1]*li[0] > li[2]:\n print(li[2])\nelse:\n print(li[0]*li[1])", "neg": "from sys import stdin\n\nli = list(map(int,stdin.readline().rstrip.split()))\n\nif li[1] > li[2]:\n print(li[0]*li[1])\nelse:\n print(li[0]*li[2])\n ", "jacc_sim": 1.0, "before_after_length": [62, 66], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "\n()\n]*li[020]*li[121\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u812587837", "n_user": "u812587837", "pos": "n, a, b = map(int, input().split())\nif a*n <= b:\n print(a*n)\nelse:\n print(b)", "neg": "n, a, b = map(int, input().split())\nif a <= b:\n print(a*n)\nelse:\n print(b*n)", "jacc_sim": 1.0, "before_after_length": [39, 39], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "*n*n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u173178698", "n_user": "u745562158", "pos": "N,A,B = map(int,(input().split()))\nprint(min(A*N,B))", "neg": "N, A, B = map(int, input().split())\nprint(B, A*N)", "jacc_sim": 0.9333333333333333, "before_after_length": [27, 23], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " ()B, min(,B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u983943108", "n_user": "u983943108", "pos": "def minimizer(n,a,b):\n first=n*a\n second=b\n if first>second:\n return second\n else: \n return first\n\ninputing=input()\ninput_sep=inputing.split(\" \")\ninput_sep=[int(i) for i in input_sep]\nprint(minimizer(int(input_sep[0]),int(input_sep[1]),int(input_sep[2])))", "neg": "def minimizer(n,a,b):\n first=n*a\n second=n*b\n if first>second:\n return second\n elif first B:\n print(B)\nelse:\n print(N * A)", "neg": "N,A,B = map(int,input().split())\nif A>=B:\n print(N*A)\nelse:\n print(N*B)\n ", "jacc_sim": 1.0, "before_after_length": [40, 42], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " \nN * = BN*A B A\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u122195031", "n_user": "u122195031", "pos": "a,b,c = map(int,input().split())\nif a*b < c:\n print(a*b)\nelse:\n print(c)", "neg": "a,b,c = map(int,input().split)\n\nif a*b < c:\n print(a:b)\nelse:\n print(c)", "jacc_sim": 1.0, "before_after_length": [39, 40], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "(\n):*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u953379577", "n_user": "u995861601", "pos": "n , a , b = map(int,input().split())\nt = n*a\nif t>b:\n print(b)\nelse:\n print(t)", "neg": "n, a, b = map(int, input().split())\nif n*a > b:\n print(n*a)\nelse:\n print(b)", "jacc_sim": 0.9473684210526315, "before_after_length": [41, 39], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " ift =\nift bn*a bt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u662449766", "n_user": "u662449766", "pos": "import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n n, a, b = [int(i) for i in input().split()]\n print(min([a * n, b]))\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n n, a, b = [int(i) for i in input().split()]\n print(min([a, b]) * n)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [68, 69], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " * n * n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u844123804", "n_user": "u844123804", "pos": "num = input().split()\na = int(num[0]) * int(num[1])\nb = int(num[2])\nprint(min(a,b))", "neg": "num = input().split()\na = int(num[0]) * int(num[1])\nb = int(num[0]) * int(num[2])\nprint(min(a,b))", "jacc_sim": 1.0, "before_after_length": [40, 47], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "0]) * int(num[", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u944047948", "n_user": "u185806788", "pos": "n,a,b=map(int,input().split())\nc=n*a\nif(c B:\n total_cost = B\n \nprint(total_cost)", "neg": "N A B = list(map(int, input().split()))\n\ntotal_cost = N * A\n\nif total_cost > B:\n total_cost = B\n \nprint(total_cost)\n", "jacc_sim": 1.0, "before_after_length": [53, 50], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": ",, \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u639703036", "n_user": "u639703036", "pos": "#ABC133\nn,a,b = map(int,input().split())\nans =n*a\nif(ans > b):\n print(b)\nelif(ans < b):\n print(ans)\nelse:\n print(ans)", "neg": "n,a,b = map(int,input().split())\nans = a*b\nif(ans > n):\n print(n)\nelif(ans < n):\n print(ans)\nelse:\n print(ans)", "jacc_sim": 0.9130434782608695, "before_after_length": [60, 56], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "#ABC133\n n**bnbnbnb", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u867826040", "n_user": "u867826040", "pos": "n,a,b = map(int,input().split())\nif b > n*a:\n print(a*n)\nelif b < a*a:\n print(b)\nelse:\n print(b)\n", "neg": "a,b,c = map(int,input().split())\nif a*b > a*c:\n print(a*c)\nelif a*b < a*c:\n print(a*b)\nelse:\n print(a*b)", "jacc_sim": 0.9047619047619048, "before_after_length": [55, 62], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "n,,ca*n**ccna*caa*a*\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u641770903", "n_user": "u641770903", "pos": "#input\nN, A, B = map(int, input().split())\n \n#output\nif N*A > B:\n print(B)\nelse:\n print(N*A)", "neg": "#input\nN, A, B = map(int, input().split())\n\n#output\nif N*A > B:\n print(B)\nelif:\n print(N*A)", "jacc_sim": 0.9047619047619048, "before_after_length": [47, 47], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": " ifse", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u306664745", "n_user": "u306664745", "pos": "a,b,c=map(int, input().split())\nprint(min(b*a,c))", "neg": "a,b,c=map(int, input().split())\nprint(a*min(b,c))", "jacc_sim": 1.0, "before_after_length": [25, 25], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "a**a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02981", "p_user": "u894381129", "n_user": "u740047492", "pos": "n,a,b = map(int, input().split())\n\nif a * n <= b:\n print(a*n)\n \nelse:\n print(b)", "neg": "n,a,b=map(int,input().split())\nprint(n*a if a B:\n print(B)\nelse:\n print(N*A)", "neg": "N,A,B = map(int,input().split())\nif N*A > B:\n print(B)\nelse:\n print(A)", "jacc_sim": 1.0, "before_after_length": [39, 37], "nl": "You and your friends are planning a trip and need to decide whether to take a train or a taxi. The train will cost each of you A yen, while the taxi will cost a total of B yen. You need to find the minimum total travel expense. Constraints: All input values are integers, 1 \u2264 N \u2264 20, 1 \u2264 A \u2264 50, and 1 \u2264 B \u2264 50. Input is given in the format N A B, and the output should be an integer representing the minimum total travel expense. For example, if the input is 4 2 9, the output should be 8, as the train will cost 8 yen and the taxi will cost 9 yen.", "diff_info": "N*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u817845505", "n_user": "u817845505", "pos": "squares = []\nfor i in range(0, 16001):\n\tsquares.append(i*i)\nN, D = map(int, input().split())\nX = []\nfor i in range(0, N):\n\tX.append(list(map(int, input().split())))\ncnt = 0\nfor i in range(0, N):\n\tfor j in range(i+1, N):\n\t\tsqdist = 0\n\t\tfor k in range(0, D):\n\t\t\tsqdist += (X[i][k]-X[j][k])**2\n\t\tif sqdist in squares:\n\t\t\tcnt += 1\nprint(cnt)", "neg": "squares = []\nfor i in range(0, 16001):\n\tsquares.append(i+i)\nN, D = map(int, input().split())\nX = []\nfor i in range(0, N):\n\tX.append(list(map(int, input().split())))\ncnt = 0\nfor i in range(0, N):\n\tfor j in range(i+1, N):\n\t\tsqdist = 0\n\t\tfor k in range(0, D):\n\t\t\tsqdist += (X[i][k]-X[j][k])**2\n\t\tif sqdist in squares:\n\t\t\tcnt += 1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [158, 158], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "+*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u572609857", "n_user": "u572609857", "pos": "def distance(a, b):\n s = 0\n for i in range(len(a)):\n s += (a[i] - b[i]) ** 2\n\n return s ** 0.5\n\nN,D = map(int,input().split())\n\nX = []\n\nfor i in range(N):\n X.append([int(x) for x in input().split()])\n\ncount = 0\n\nfor i in range(N):\n for j in range(i+1, N):\n if distance(X[i], X[j]).is_integer():\n count += 1\n\nprint(count)\n\n\n\n\n", "neg": "def distance(a, b):\n s = 0\n for i in range(len(a)):\n s += (a[i] - b[i]) ** 2\n\n return s ** 0.5\n\nN,D = map(int,input().split())\n\nX = []\n\nfor i in range(D):\n X.append([int(x) for x in input().split()])\n\ncount = 0\n\nfor i in range(D):\n for j in range(i+1, D):\n if distance(X[i], X[j]).is_integer():\n count += 1\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [156, 151], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "DNDNDN\n\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u948911484", "n_user": "u948911484", "pos": "import math\nn,d = map(int,input().split())\nx = [list(map(int,input().split())) for _ in range(n)]\ndef distance(a,b):\n s = 0\n for i in range(d):\n s += (a[i]-b[i])**2\n return math.sqrt(s)\nans = 0\nfor i in range(n-1):\n for j in range(i+1,n):\n if distance(x[i],x[j])//1 == distance(x[i],x[j]):\n ans += 1\nprint(ans)", "neg": "import math\nn,d = map(int,input().split())\nx = [list(map(int,input().split())) for _ in range(n)]\ndef distance(a,b):\n s = 0\n for i in range(d):\n s += (a[i]-b[i])**2\n return math.sqrt(ans)\nans = 0\nfor i in range(n-1):\n for j in range(i+1,n):\n if distance(x[i],x[j])//1 == distance(x[i],x[j]):\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [148, 148], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u582663624", "n_user": "u582663624", "pos": "from math import sqrt\nn,d=map(int,input().split())\nl=[list(map(float,input().split())) for i in range(n)]\nnums=[i for i in range(n-1)]\nfa=[i for i in range(d)]\ncnt=0\nans=0\nt=[]\nfor i in nums:\n for j in l[i+1:]:\n cnt=0\n for k in fa:\n cnt+=(l[i][k]-j[k])**2\n cnt=sqrt(cnt)\n t.append(cnt)\nfor v in t:\n if(v.is_integer()):\n ans+=1\nprint(ans)\n ", "neg": "from math import sqrt\nn,d=map(int,input().split())\nl=[list(map(float,input().split())) for i in range(n)]\nnums=[i for i in range(n-1)]\nfa=[i for i in range(d)]\ncnt=0\nans=0\nt=[]\nfor i in nums:\n for j in l[i+1:]:\n cnt=0\n for k in fa:\n cnt+=(l[i][k]-j[k])**2\n cnt=sqrt(cnt)\n print(cnt)\n t.append(cnt)\nfor v in t:\n if(v.is_integer()):\n ans+=1\nprint(ans)\n ", "jacc_sim": 1.0, "before_after_length": [168, 174], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "print(cnt)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u098588273", "n_user": "u098588273", "pos": "n,d=map(int,input().split())\nx=[[int(a) for a in input().split(\" \")] for _ in range(n)]\ncnt=0\nfor i in range(n-1):\n for j in range(i+1,n):\n dis=0\n for k in range(d):\n dis+=(x[i][k]-x[j][k])**2\n if (dis**0.5).is_integer():\n cnt+=1\nprint(cnt)", "neg": "n,d=map(int,input().split())\nx=[[int(a) for a in input().split(\" \")] for _ in range(n)]\ncnt=0\ndis=0\nfor i in range(n-1):\n for j in range(i+1,n):\n for k in range(d):\n dis+=(x[i][k]-x[j][k])**2\n if (dis**0.5).is_integer:\n cnt+=1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [122, 121], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "=0\ndisdis=0\n ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u653837719", "n_user": "u653837719", "pos": "n, d = map(int, input().split())\nx = []\ncnt = 0\nsum = 0\nfor _ in range(n):\n tmp = list(map(int, input().split()))\n x.append(tmp)\n\nfor i in range(n):\n for j in range(i + 1, n):\n sum = 0\n l = 1\n for k in range(d):\n sum += (x[i][k] - x[j][k]) ** 2\n while (l ** 2 <= sum):\n if l ** 2 == sum:\n cnt += 1\n l += 1\n\nprint(cnt)\n", "neg": "import math\n\nn, d = map(int, input().split())\nx = []\ncnt = 0\nsum = 0\nfor _ in range(n):\n tmp = list(map(int, input().split()))\n x.append(tmp)\n\nfor i in range(n):\n for j in range(i + 1, n):\n l = 1\n for k in range(d):\n sum += (x[i][k] - x[j][k]) ** 2\n while (l ** 2 <= sum):\n if l ** 2 == sum:\n cnt += 1\n l += 1\n\nprint(cnt)\n", "jacc_sim": 0.95, "before_after_length": [152, 151], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "import math\n\n\n sum = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u096359533", "n_user": "u096359533", "pos": "import math\nN,D=map(int,input().split())\nx=[]\nfor i in range(N):\n y=list(map(int,input().split()))\n x.append(y)\n\ncnt=0\nfor n in range(N):\n for nn in range(N):\n if n==nn:\n continue\n else:\n a=[]\n for d in range(D):\n a.append((x[n][d]-x[nn][d])**2)\n c=math.sqrt(sum([abs(i) for i in a]))\n if c%1==0:\n cnt+=1\nprint(int(cnt/2))", "neg": "import math\nN,D=map(int,input().split())\nx=[]\nfor i in range(N):\n y=list(map(int,input().split()))\n x.append(y)\n\ncnt=0\nfor n in range(N):\n a=[]\n for d in range(D):\n if n == N-1:\n a.append((x[-1][d]-x[0][d])**2)\n else:\n a.append((x[n][d]-x[n+1][d])**2)\n c=math.sqrt(sum([abs(i) for i in a]))\n if c%1==0:\n cnt+=1\nprint(cnt)", "jacc_sim": 0.9333333333333333, "before_after_length": [165, 175], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "for nn in r=[]nge(N): if n==nn:\n continue\n else:\n a=[]\n if n == N-1:\n n-10nnelse:\n a.append((x[n][d]-x[n+1][d])**2)\n ci(cnt/2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u137542041", "n_user": "u137542041", "pos": "import math\n\nn, d = map(int, input().split())\n\n\nall_list = []\n\nfor i in range(n):\n x = input()\n x = x.split(' ')\n\n # x = list(x)\n # print(x)\n x = [float(v) for v in x] # to float\n\n all_list.append(x) # list of list\n\n# print(all_list)\n\ncnt = 0\n\nfor i in range(n):\n target = all_list[i]\n\n for j in range(n - (i + 1)):\n target2 = all_list[j + i + 1]\n\n # sum_1 = [u ** 2 + v ** 2 for u, v in zip(target, target2)]\n sum_1 = [(target[q] - target2[q]) ** 2 for q in range(d)]\n sum_2 = sum(sum_1)\n dis = math.sqrt(sum_2)\n\n # print('---')\n # print(target)\n # print(target2)\n\n if dis.is_integer():\n cnt += 1\n\nprint(cnt)\n", "neg": "import math\n\nn, d = map(int, input().split())\n\n\nall_list = []\n\nfor i in range(n):\n x = input()\n x = x.split(' ')\n\n # x = list(x)\n # print(x)\n x = [float(v) for v in x] # to float\n\n all_list.append(x) # list of list\n\n# print(all_list)\n\ncnt = 0\n\nfor i in range(n):\n target = all_list[i]\n\n for j in range(n - (i + 1)):\n target2 = all_list[j + i + 1]\n\n sum_1 = [u ** 2 + v ** 2 for u, v in zip(target, target2)]\n sum_2 = sum(sum_1)\n dis = math.sqrt(sum_2)\n\n # print('---')\n # print(target)\n # print(target2)\n\n if dis.is_integer():\n cnt += 1\n\nprint(cnt)\n", "jacc_sim": 0.9803921568627451, "before_after_length": [286, 258], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "# )]\n sum_1 = [(target[q] - target2[q]) ** 2 for q in range(d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u687443343", "n_user": "u687443343", "pos": "N, D = map(int,input().split())\nK = [list(map(int,input().split()))for x in range(N)]\nans = 0\nfor i in range(N-1):\n for j in range(i+1,N):\n goukei=0\n for a,b in zip(K[i],K[j]):\n goukei += (a-b)**2\n ans += (goukei**0.5).is_integer()\nprint(ans)", "neg": "N, D = map(int,input().split())\nK = [list(map(int,input().split()))for x in range(N)]\nans = 0\nfor i in range(N-1):\n for j in range(i+1,N):\n goukei=0\n for a,b in zip(K[i],K[j]):\n goukei += (a-b)**2\n ans += (goukei**0.5).is_integer()\nprint(K)", "jacc_sim": 1.0, "before_after_length": [124, 124], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "Kans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u749816033", "n_user": "u749816033", "pos": "n, d = map(int, input().split())\nx = [list(map(int, input().split())) for i in range(n)]\na = 0\nfor i in range(len(x)):\n for j in range(i+1, len(x)):\n t = 0\n for k in range(d):\n t += (x[i][k]-x[j][k])**2\n if float.is_integer(t**0.5):\n a += 1\nprint(a)", "neg": "n,d=map(int, input().split())\nx = [list(map(int, input().split())) for i in range(n)]\na=0\nfor i in range(len(x)):\n for j in range(i+1, len(x)):\n if float.is_integer(((x[i][0]-x[j][0])**2+(x[i][1]-x[j][1])**2)**0.5):\n a += 1\nprint(a)", "jacc_sim": 0.9444444444444444, "before_after_length": [124, 123], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": " t = 0\n for k in range(d):\n t += (x[i][k]-x[j][k])**2\n t**((x[i][.5]-x[j][0]**2:\n a = (x[i][]-x[j][1])**2)**0.5): a += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u095021077", "n_user": "u095021077", "pos": "temp=input().split()\nN=int(temp[0])\nD=int(temp[1])\n\npoints=[]\nfor i in range(N):\n temp=input().split()\n points.append([int(temp[x]) for x in range(D)])\n \ncounter=0\nfor i in range(N):\n for j in range(i+1, N):\n l=pow(sum([pow(points[i][x]-points[j][x], 2) for x in range(D)]), 1/2)\n if l.is_integer():\n counter+=1\n \nprint(counter)", "neg": "temp=input().split()\nN=int(temp[0])\nD=int(temp[1])\n\npoints=[]\nfor i in range(N):\n temp=input().split()\n points.add([int(temp[x]) for x in range(D)])\n \ncounter=0\nfor i in range(N):\n for j in range(i+1, N):\n l=pow(sum([pow(points[i, x]-points[j, x], 2) for x in range(D)]), 1/2)\n if l==int(l):\n counter+=1\n \nprint(counter)", "jacc_sim": 0.9166666666666666, "before_after_length": [151, 151], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "dppen, ][, ][.==s_iegerl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u726218285", "n_user": "u726218285", "pos": "import math\nimport itertools\n\n\nN, D = (int(i) for i in input().split())\nX = [0]*N\n\n\nfor n in range(N):\n l = input().split()\n X[n] = [0]*D\n for d in range(D):\n X[n][d] = int(l[d])\n\n\ncount = 0\nfor y, z in itertools.combinations(X, 2):\n d = math.sqrt(sum(pow(y[i] - z[i], 2) for i in range(D)))\n if d.is_integer():\n count += 1\n\nprint(count)\n", "neg": "import math\nimport itertools\n\n\nN, D = (int(i) for i in input().split())\nX = [0]*N\n\n\nfor n in range(N):\n l = input().split()\n X[n]=[0]*D\n for d in range(D):\n X[n][d] = int(l[d])\n\n\ncount = 0\nfor y, z in itertools.combinations(X, 2):\n print(f\"y={y}, z={z}\")\n d = math.sqrt(sum(pow(y[i] - z[i], 2) for i in range(D)))\n if d.is_integer():\n count += 1\n\nprint(count)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [157, 171], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": " prind = mah.sqrtf\"sum(pow(={y}[i] - z[i]z={z}\")\n d = math.sqrt(sum(pow(y[i] - z[i], ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u293198424", "n_user": "u293198424", "pos": "n,d = map(int,input().split())\nx = []\nfor i in range(n):\n xi = [int(i) for i in input().split()]\n x.append(xi)\ncount = 0\nans = 0\nfor i in range(n-1):\n for l in range(i+1,n):\n ans = 0\n for j in range(d):\n ans += (x[i][j]-x[l][j])**2\n\n ans = ans **(1/2)\n if ans == int(ans):\n count += 1\nprint(count)\n ", "neg": "n,d = map(int,input().split())\nx = []\nfor i in range(n):\n xi = [int(i) for i in input().split()]\n x.append(xi)\ncount = 0\nans = 0\nfor i in range(n-1):\n for l in range(i+1,n):\n ans = 0\n for j in range(d):\n ans += (x[i][j]-x[l][j])**2\n\n ans = ans **(1/2)\n print(ans)\n if ans == int(ans):\n count += 1\nprint(count)\n ", "jacc_sim": 1.0, "before_after_length": [147, 153], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "print(ans)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u774160580", "n_user": "u774160580", "pos": "import numpy as np\n\nN, D = list(map(int, input().split()))\nX = []\nfor i in range(N):\n x_i = [int(i) for i in input().split()]\n X.append(x_i)\nX = np.array(X)\n\nans = 0\nfor i in range(N):\n for j in range(i + 1, N):\n if np.sqrt(np.sum((X[i] - X[j]) ** 2)).is_integer():\n ans += 1\nprint(ans)\n", "neg": "import numpy as np\n\nN, D = list(map(int, input().split()))\nX = []\nfor i in range(D):\n x_i = [int(i) for i in input().split()]\n X.append(i)\nX = np.array(X)\n\nans = 0\nfor i in range(D):\n for j in range(i + 1, D):\n if np.is_integer(np.sqrt(np.sum(X[i] - X[j]) ** 2)):\n ans += 1\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [136, 136], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "DNx_DNDNnp.is_integer((.is_integer()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u650265349", "n_user": "u650265349", "pos": "import math\nN, D = map(int, input().split())\nX = []\n\nfor i in range(N):\n buf = list(map(int, input().split()))\n X.append(buf)\n\ncnt = 0\n\nfor i in range(N-1):\n for j in range(i+1,N):\n dist2 = 0\n for index in range(D):\n dist2 += (X[i][index] - X[j][index]) ** 2\n dist = math.sqrt(dist2)\n if dist == float(int(dist)):\n cnt += 1\n\nprint(cnt)", "neg": "import math\nN, D = map(int, input().split())\nX = []\n\nfor i in range(N):\n inp = input()\n buf = list(map(int, inp))\n X.append(buf)\n\ncnt = 0\n\nfor i in range(N-1):\n for j in range(i+1,N):\n dist2 = 0\n for index in range(D):\n dist2 += (X[i][index] - X[j][index]) ** 2\n dist = math.sqrt(dist2)\n if dist == float(int(dist)):\n cnt += 1\n\nprint(cnt)", "jacc_sim": 0.975, "before_after_length": [150, 153], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "inp = input()\n ut().split()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u945181840", "n_user": "u945181840", "pos": "import numpy as np\n\nN, D = map(int, input().split())\nX = np.array([list(map(int, input().split())) for _ in range(N)])\nans = 0\nDist = 0\n\nfor i in range(N - 1):\n for j in range(i + 1, N):\n Dist = np.sum((X[i] - X[j]) ** 2)\n for k in range(1, Dist // 2 + 2):\n if k ** 2 == Dist:\n ans += 1\nprint(ans)", "neg": "import numpy as np\n\nN, D = map(int, input().split())\nX = np.array([list(map(int, input().split())) for _ in range(N)])\nans = 0\nDist = 0\n\nfor i in range(N - 1):\n for j in range(i + 1, N):\n Dist = np.sum((X[i] - X[j]) ** 2)\n print(Dist)\n for k in range(1, Dist // 2 + 2):\n if k ** 2 == Dist:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [130, 136], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "print(Dist)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u434872492", "n_user": "u434872492", "pos": "import math\nN, D = map(int,input().split())\nX = [0] * N\nfor i in range(N):\n X[i] = list(map(int,input().split()))\ncount = 0\ndef func(A,B):\n a = 0\n for k in range(D):\n a += (A[k] - B[k])**2\n a = math.sqrt(a)\n return a\nfor i in range(N):\n for j in range(i,N):\n sum_x = 0\n int_x = 0\n if i == j:\n continue\n sum_x = func(X[i],X[j])\n int_x = int(sum_x)\n if sum_x == int_x:\n count += 1\nprint(count)", "neg": "import math\nN, D = map(int,input().split())\nX = [0] * N\nfor i in range(N):\n X[i] = list(map(int,input().split()))\ncount = 0\ndef func(A,B):\n a = 0\n for k in range(D):\n a += (A[k] - B[k])**2\n a = math.sqrt(a)\n return a\nfor i in range(N):\n for j in range(i,N):\n sum_x = 0\n int_x = 0\n if i == j:\n continue\n sum_x = func(X[i],X[j])\n int_x = int(sum_x)\n if sum_x == int_x:\n count += 1", "jacc_sim": 0.9767441860465116, "before_after_length": [197, 192], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": " \nprint(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u316233444", "n_user": "u316233444", "pos": "import math\n\nn, d=map(int, input().split())\nx=[]\nfor i in range(n):\n x.append([int(i) for i in input().split()])\n\nans=0\nfor i in range(n-1): #0-n\n for j in range(i+1,n):\n s = 0\n for k in range(d):\n s += (x[i][k]-x[j][k])**2\n a = math.sqrt(s)\n if a.is_integer():\n ans += 1\nprint(ans)", "neg": "n, d=map(int, input().split())\nx=[]\nfor i in range(n):\n x.append([int(i) for i in input().split()])\n\nfor i in range(n-1): #0-n\n for j in range(i+1,n):\n s = 0\n for k in range(d):\n s += (x[i][k]-x[j][k])**2\n a = math.sqrt(s)\n if a.is_integer():\n ans += 1\nprint(ans)", "jacc_sim": 0.9736842105263158, "before_after_length": [141, 133], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "import math\n\n\nans=0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u350093546", "n_user": "u350093546", "pos": "import math\nn,d=map(int,input().split())\nx=[list(map(int,input().split())) for _ in range(n)]\ncnt=0\nfor i in range(n):\n for j in range(i+1,n):\n sum=0\n for k in range(d):\n sum+=(x[i][k]-x[j][k])**2\n z=pow(sum,0.5)\n if math.ceil(z)==math.floor(z):\n cnt+=1\nprint(cnt)\n", "neg": "import math\nn,d=map(int,input().split())\nx=[list(map(int,input().split())) for _ in range(n)]\ncnt=0\nfor i in range(n):\n for j in range(i+1,n):\n sum=0\n for k in range(n):\n sum+=(x[i][k]-x[j][k])**2\n z=pow(sum,0.5)\n if math.ceil(z)==math.floor(z):\n cnt+=1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [137, 136], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "nd\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u189188797", "n_user": "u189188797", "pos": "import math\nn,d=map(int,input().split())\nd_list=[]\nans=0\nfor i in range(n):\n d_list.append(list(map(int,input().split())))\nfor i in range(n-1):\n for j in range(i+1,n):\n kyori=0\n #print(i,j)\n for k in range(d):\n kyori+=(d_list[i][k]-d_list[j][k])**2\n #print(kyori)\n if int(math.sqrt(kyori))**2==kyori:\n ans+=1\nprint(ans)", "neg": "import math\nn,d=map(int,input().split())\nd_list=[]\nans=0\nfor i in range(n):\n d_list.append(list(map(int,input().split())))\nfor i in range(n-1):\n kyori=0\n for j in range(i+1,n):\n for k in range(d):\n kyori+=(d_list[i][k]-d_list[j][k])**2\n if math.sqrt(kyori)**2==kyori:\n ans+=1\nprint(ans)", "jacc_sim": 0.972972972972973, "before_after_length": [168, 148], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "kyori=0\n \n kyori=0\n #print(i,j)if #print(kyori)\n if int() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u079827881", "n_user": "u079827881", "pos": "import math as mt\nn,d = map(int,input().split())\nx = []\ncount = 0\nfor i in range(n):\n x.append(list(map(int,input().split())))\n\nfor i in range(n-1):\n for s in range(i+1,n):\n dist = 0\n for j in range(d):\n dist += (x[i][j]-x[s][j])**2\n dist = mt.sqrt(dist)\n if dist.is_integer()==True:\n count += 1\nprint(count)", "neg": "import math as mt\nn,d = map(int,input().split())\nx = []\ncount = 0\nfor i in range(n):\n x.append(list(map(int,input().split())))\n\nfor i in range(n-1):\n dist = 0\n for j in range(d):\n dist += (x[i][j]-x[i+1][j])**2\n dist = mt.sqrt(dist)\n if dist.is_integer()==True:\n count += 1\nprint(count)", "jacc_sim": 0.975, "before_after_length": [140, 129], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "for s in range(i+1,n):\n si+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u755180064", "n_user": "u755180064", "pos": "\nurl = \"https://atcoder.jp//contests/abc133/tasks/abc133_b\"\nimport itertools\ndef main():\n n,d = list(map(int, input().split()))\n lis = []\n for i in range(n):\n t = list(map(int, input().split()))\n lis.append(t)\n count = 0\n for i in range(len(lis)):\n for j in range(i+1, len(lis)):\n if i == j:\n continue\n if float.is_integer(ret(lis[i], lis[j])):\n count += 1\n print(count)\n\n\nimport math\ndef ret(a,b):\n retval = 0\n idx = 0\n while True:\n if idx == len(a):\n break\n retval += abs(a[idx]-b[idx])**2\n idx += 1\n return math.sqrt(retval)\n\nif __name__ == '__main__':\n main()\n", "neg": "\nurl = \"https://atcoder.jp//contests/abc133/tasks/abc133_b\"\n\ndef main():\n n,d = list(map(int, input().split()))\n lis = []\n for i in range(n):\n t = list(map(int, input().split()))\n lis.append(t)\n count = 0\n for i in range(len(lis)-1):\n if float.is_integer(ret(lis[i], lis[i+1])):\n count += 1\n print(count)\n\n\nimport math\ndef ret(a,b):\n retval = 0\n idx = 0\n while True:\n if idx == len(a):\n break\n retval += abs(a[idx]-b[idx])**2\n idx += 1\n return math.sqrt(retval)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.953125, "before_after_length": [252, 226], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "import itertools-):\n for j in range(i+, len(lis) if i == j:\n continue\n ji+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u855665975", "n_user": "u855665975", "pos": "import math\n\nN, D = map(int, input().split())\nX = [list(map(int, input().split())) for _ in range(N)]\ncnt = 0\n\nfor i in range(N - 1):\n for j in range(i + 1, N):\n tmp = 0\n for k in range(D):\n tmp += ((X[i][k] - X[j][k])** 2)\n tmp = math.sqrt(tmp)\n if tmp.is_integer():\n cnt += 1\n\nprint(cnt)\n", "neg": "import math\n\nN, D = map(int, input().split())\nX = [list(map(int, input().split())) for _ in range(N))]\ncnt = 0\n\nfor i in range(N - 1):\n for j in range(i + 1, N):\n tmp = 0\n for k in range(D):\n tmp += ((X[i][k] - X[j][k])** 2)\n tmp = math.sqrt(tmp)\n if tmp.is_integer:\n cnt += 1\n\nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [132, 133], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": ") () ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u486065927", "n_user": "u486065927", "pos": "import numpy as np\nn, d = map(int, input().split())\nx = np.array([[int(i) for i in input().split(\" \")] for j in range(n)])\nc = 0\nfor i in range(1,n):\n t = x[:-1*i,:]-x[1*i:,:]\n t = np.sqrt(np.sum(t*t, axis=1))\n c += np.sum(t%1==0)\nprint(c)", "neg": "import numpy as np\nn, d = map(int, input().split())\nx = np.array([[int(i) for i in input().split(\" \")] for j in range(n)])\nt = x[:-1,:]-x[1:,:]\nt = np.sqrt(np.sum(t*t, axis=1))\nprint(np.sum(t%1==0))", "jacc_sim": 0.9473684210526315, "before_after_length": [120, 94], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "c = 0\nfor i in range(1,n):\n *i*i print( c += \nprint(c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u068142202", "n_user": "u068142202", "pos": "n, d = map(int, input().split())\ndistances = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in range(n):\n for j in range(i + 1, n):\n diff_total = 0\n for k in range(d):\n diff = abs(distances[i][k] - distances[j][k])\n diff_total += diff * diff\n\n flag = False\n for k in range(diff_total + 1):\n if (k * k) == diff_total:\n flag = True\n if flag:\n ans += 1\nprint(ans)\n", "neg": "n, d = map(int, input().split())\ndistances = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in range(n):\n for j in range(i + 1, n):\n diff_total = 0\n for k in range(d):\n diff = abs(distances[i][k] - distances[j][k])\n diff_total = diff * diff\n\n flag = False\n for k in range(diff_total + 1):\n if (k ** 2) == diff_total:\n flag = True\n if flag:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9736842105263158, "before_after_length": [157, 157], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "+*2k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u813452457", "n_user": "u813452457", "pos": "N, D = map(int,input().split())\nli = []\nfor _ in range(N):\n li.append(list(map(int,input().split())))\n\ns = 0\nc = 0\nfor n1 in range(-1,N-1):\n for n2 in range(n1+1,N-1):\n for d in range(D):\n s = s + abs(li[n1][d] - li[n2][d]) ** 2\n s_float = float(s**(1/2))\n if s_float.is_integer():\n c += 1\n s = 0\nprint(c)\n", "neg": "N, D = map(int,input().split())\nli = []\nfor _ in range(N):\n li.append(list(map(int,input().split())))\n\ns = 0\nc = 0\nfor n in range(-1,N-1):\n for d in range(D):\n s = s + abs(li[n][d] - li[n+1][d]) ** 2\n s_float = float(s**(1/2))\n if s_float.is_integer():\n c += 1\n s = 0\nprint(c)", "jacc_sim": 0.925, "before_after_length": [156, 137], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "1n2 in range(n1+1,N-1):\n for 12+1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u486251525", "n_user": "u486251525", "pos": "import math\nimport itertools\n\nN,D= map(int,input().split())\nX = []\ncount=0\nfor x in range(N):\n X.append(list(map(int,input().split()))) \n\nlistArray = list(itertools.combinations(X, 2))\n\nfor X in listArray:\n sumX = 0\n for x in range(D):\n subX = X[0][x] - X[1][x]\n sumX += subX**2\n \n if math.sqrt(sumX).is_integer():\n count += 1\n \nprint(count)\n\n ", "neg": "import math\nimport itertools\n\nN,D= map(int,input().split())\nX = []\ncount=0\nfor x in range(N):\n X.append(list(map(int,input().split()))) \n\nprint(X)\nlistArray = list(itertools.combinations(X, 2))\n\nprint(listArray)\nfor X in listArray:\n sumX = 0\n for x in range(D):\n subX = X[0][x] - X[1][x]\n sumX += subX**2\n \n if math.sqrt(sumX).is_integer():\n count += 1\n \nprint(count)\n\n ", "jacc_sim": 1.0, "before_after_length": [151, 162], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "print(X)\n\nprint(listArray)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u913395020", "n_user": "u913395020", "pos": "def issq(n):\n for i in range(2 * n):\n if i * i == n:\n return True\n return False\n \n\nn, d = map(int, input().split())\nx = [list(map(int, input().split())) for i in range(n)]\n\ncount = 0\n\nfor i in range(n - 1):\n for j in range(i + 1, n):\n sqdist = 0\n for k in range(d):\n sqdist = sqdist + ((x[i][k] - x[j][k]) ** 2)\n if issq(sqdist) == True:\n count = count + 1\n\nprint(count)", "neg": "def issq(n):\n for i in range(2 * n):\n if i * i == n:\n return True\n return False\n \n\nn, d = map(int, input().split())\nx = [list(map(int, input().split())) for i in range(n)]\n\ncount = 0\n\nfor i in range(n - 1):\n for j in range(i + 1, n):\n for k in range(d):\n sqdist = 0\n sqdist = sqdist + (x[i][k] - x[j][k]) ** 2\n if issq(sqdist) == True:\n count = count + 1\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [166, 165], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "sqdist = 0\n 0\n sqdist = ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u873134970", "n_user": "u873134970", "pos": "import numpy as np\n\nn,d=map(int,input().split())\narr=[]\nfor i in range(n):\n arr.append(list(map(int,input().split())))\narr =np.array(arr)\nans=0\nfor i in range(n):\n for j in range(i,n):\n if j!=i:\n k = np.linalg.norm(arr[i]-arr[j],ord=2)\n else:\n k=0.5\n if k==int(k):\n ans +=1\nprint(ans)\n", "neg": "import numpy as np\n\nn,d=map(int,input().split())\narr=np.array(n)\nfor i in range(n):\n arr[i]=np.array(list(map(float,input().split())))\nans=0\nfor i in range(n):\n for j in range(i,n):\n if j!=i:\n k = np.linalg.norm(arr[i]-arr[j],ord=2)\n else:\n k=np.nan\n if k==int(k):\n ans +=1\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [142, 142], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": "[]\nfor i in range(n):\n arr.append(list(map(int,input().split())))\narr =n)\nfor i in rnge(n):\n a[i]=np.array(list(map(float,input().split()))0np5nan\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02982", "p_user": "u855819610", "n_user": "u855819610", "pos": "import math\nN,D=map(int,input().split())\nX = [list(map(int,input().split())) for i in range(N)]\ncount = 0\nfor j in range(N-1):\n for k in range(j+1,N):\n L = 0\n for l in range(D):\n L += (X[j][l]-X[k][l])**2\n if math.sqrt(L).is_integer() == True:\n count += 1\nprint(count)", "neg": "import math\nN,D=map(int,input().split())\nX = [list(map(int,input().split())) for i in range(N)]\ncount = 0\nfor j in range(N-1):\n for k in range(j+1,N):\n L = 0\n for l in range(D):\n L += (X[j][l]-X[k][l])**2\n print(L)\n if math.sqrt(L).is_integer() == True:\n count += 1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [124, 130], "nl": "You are given N points in a D-dimensional space. The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}). Find the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer. All input values are integers, with 2 \u2264 N \u2264 10, 1 \u2264 D \u2264 10, and -20 \u2264 X_{ij} \u2264 20. No two given points have the same coordinates. The input is given in the format: N D X_{11} X_{12} ... X_{1D} X_{21} X_{22} ... X_{2D} ... X_{N1} X_{N2} ... X_{ND}. Output the number of pairs (i, j) (i < j) meeting the integer distance condition.", "diff_info": " print(L)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u516554284", "n_user": "u516554284", "pos": "n=int(input())\na=list(map(int,input().split()))\nc=0\nfor i in range(0,n-2):\n if a[i]a[i+1] and a[i+1]>a[i+2]:\n c+=1\nprint(c)", "neg": "n=int(input())\na=list(map(int,input().split()))\nc=0\nfor i in range(1,n-1):\n if a[i]a[i+1] and a[i+1]>a[i+2]:\n c+=1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u073852194", "n_user": "u073852194", "pos": "n = int(input())\np = list(map(int, input().split()))\nc = 0\nfor i in range(0,n-2):\n if p[i] < p[i+1] < p[i+2] or p[i] > p[i+1] > p[i+2]:\n c += 1\nprint(c) ", "neg": "n = int(input())\np = list(map(int, input().split()))\nc = 0\nfor i in range(0,n-2):\n if p[i] * p[i+2] < p[i+1] ** 2:\n c += 1\nprint(c) ", "jacc_sim": 0.9032258064516129, "before_after_length": [87, 71], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "* p[i+2] <**p[i+] or p[i] > p[i+1] > p[i+2] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u294385082", "n_user": "u294385082", "pos": "n = int(input())\np = list(map(int,input().split()))\nc = 0\nfor i in range(1,n-1):\n if p[i-1] <= p[i] < p[i+1] or p[i-1]>p[i]>=p[i+1]:\n c += 1\nprint(c)", "neg": "n = int(input())\np = list(map(int,input().split()))\nc = 0\nfor i in range(1,n-1):\n if p[i-1] < p[i] < p[i+1]:\n c += 1\nprint(c)", "jacc_sim": 0.9310344827586207, "before_after_length": [87, 67], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "=p[i+1] or p[i-1]>p[i]>=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u202826462", "n_user": "u202826462", "pos": "n = int(input())\np = list(map(int, input().split()))\n\nans = 0\nfor i in range(1, n-1):\n if p[i-1] < p[i] < p[i+1] or p[i-1] > p[i] > p[i+1]:\n ans += 1\n else:\n continue\n\nprint(ans)\n", "neg": "n = int(input())\np = list(map(int, input().split()))\n\ncnt = 0\nfor i in range(1, n - 1):\n if p[i - 1] < p[i] < p[i+1] or p[i-1] < p[i] < p[i + 1]:\n cnt += 1\n else:\n continue\n\nprint(cnt)\n", "jacc_sim": 0.90625, "before_after_length": [96, 96], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "cats <><> catscats", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u056659569", "n_user": "u056659569", "pos": "n=int(input())\np = list(map(int, input().split()))\ncount=0\nfor i in range (n-2):\n if p[i]>p[i+1]>p[i+2] or p[i+2]>p[i+1]>p[i]:\n count = count+1\nprint(count)\n ", "neg": "n=int(input())\np = list(map(int, input().split()))\ncount=0\nfor i in p\n\tif p[i]>p[i+1]>p[i+2] or p[i+2]>p[i+1]>p[i]:\n \tcount=count+1\nprint(count)", "jacc_sim": 0.9310344827586207, "before_after_length": [88, 82], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "prange (n-2):\t \t \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u076170062", "n_user": "u076170062", "pos": "def counting(numbers) -> int:\n count = 0\n for i in range(1, len(numbers) - 1):\n pre = numbers[i-1]\n curr = numbers[i]\n next_ = numbers[i+1]\n if pre < curr and curr == next_:\n count += 1\n elif next_ < curr and curr == pre:\n count += 1\n elif pre < curr < next_ or next_ < curr < pre:\n count += 1\n return count\n \n_ = input()\nnumbers_str = input()\nresult = counting([int(c) for c in numbers_str.split(' ')])\nprint(result)\n", "neg": "def counting(numbers) -> int:\n count = 0\n for i in range(1, len(numbers) - 1):\n pre = numbers[i-1]\n curr = numbers[i]\n next_ = numbers[i+1]\n if pre < curr < next_:\n count += 1\n return count\n \n_ = input()\nnumbers_str = input()\nresult = counting([int(c) for c in numbers_str.split(' ')])\nprint(result)\n", "jacc_sim": 0.925, "before_after_length": [158, 117], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "and curr == next_:\n count += 1\n elif next_ curr and curr == pre:\n count += 1\n elif pre < curr < or next_ < curr < pre", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u243312682", "n_user": "u243312682", "pos": "def main():\n n = int(input())\n p = list(map(int, input().split()))\n cnt = 0\n\n for i in range(1, n-1):\n if (p[i-1] < p[i] and p[i] < p[i+1]) \\\n or (p[i-1] > p[i] and p[i] > p[i+1]):\n cnt += 1\n print(cnt)\n\nif __name__ == '__main__':\n main()", "neg": "def main():\n n = int(input())\n p = list(map(int, input().split()))\n cnt = 0\n\n for i in range(1, n-1):\n print(p[i-1], p[i], p[i+1])\n if (p[i-1] < p[i] and p[i] < p[i+1]) \\\n or (p[i-1] > p[i] and p[i] > p[i+1]):\n cnt += 1\n print(cnt)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [128, 148], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "prntf ,< , and p[i] <\n\\\nif or<><>: \\cor (p[i-1] > p[i] adtp[i] > p[i=1]):\n1\nprint( += 1\n print(cnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u769698512", "n_user": "u613401788", "pos": "n = int(input())\np = list(map(int, input().split()))\ncnt = 0\nfor i in range(1, n-1):\n if (p[i-1] < p[i] and p[i] < p[i+1]) or (p[i-1] > p[i] and p[i] > p[i+1]):\n cnt += 1\nprint(cnt)\n", "neg": "\nn = int(input())\np = input().split()\n\nprint(p)\ncnt = 0\n\nfor i in range(1,n-1):\n if( (p[i-1] < p[i] and p[i] <= p[i+1] ) or (p[i-1] >= p[i] and p[i] > p[i+1]) or (p[i-1] == p[i+1] and p[i] > p[i-1]) ):\n cnt += 1\n \nprint(cnt)", "jacc_sim": 0.9333333333333333, "before_after_length": [100, 132], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "\nlist(map(int, )\n\nprint(p\n (= = or (p[i-1] == p[i+1] and p[i] > p[i-1]) ) \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u695644361", "n_user": "u695644361", "pos": "n=int(input())\np=list(map(int,input().split()))\na=0\nfor i in range(1,n-1):\n\ta+=p[i]>min(p[i-1],p[i+1]) and p[i]min(p[i-1],p[i+1]) and p[i] p[i+1] > p[i+2]:\n count += 1\n else:\n pass\n \nprint(count)\n", "neg": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\nfor i in range(n-2):\n if p[i] < p[i+1] < p[i+2]:\n count += 1\n else:\n pass", "jacc_sim": 0.90625, "before_after_length": [94, 67], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " or p[i] > p[i+1] > p[i+2]\n \nprint(count)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u546686251", "n_user": "u546686251", "pos": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\nfor i in range(1, n - 1):\n if p[i - 1] < p[i] < p[i + 1]:\n count += 1\n elif p[i + 1] < p[i] < p[i - 1]:\n count += 1\nprint(count)\n", "neg": "n = int(input())\np = list(map(int, input().split()))\ncount = 0\nfor i in range(1, n):\n if p[i - 1] < p[i] < p[i + 1]:\n count += 1\nprint(count)\n", "jacc_sim": 0.9642857142857143, "before_after_length": [94, 66], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " - 1 elif p[i + 1] < p[i] < p[i - 1]:\n count += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u305940825", "n_user": "u305940825", "pos": "n = int(input())\np_list = list(map(int, input().split()))\ncount = 0\nfor i in range(len(p_list)-2):\n if (p_list[i]p_list[i+1] and p_list[i+1]>p_list[i+2]):\n count += 1\nprint(count)", "neg": " n = int(input())\n p_list = list(map(int, input().split()))\n count = 0\n for i in range(len(p_list)-2):\n \tif (p_list[i]p_list[i+1] and p_list[i+1]>p_list[i+2]):\n \t\tcount += 1\n print(count)", "jacc_sim": 1.0, "before_after_length": [123, 131], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " \t\t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u747427153", "n_user": "u747427153", "pos": "n = int(input())\np = [int(i) for i in input().split()]\ns = 0\nfor i in range(1,n-1):\n l1 = p[i-1:i+2]\n l2 = l1.copy()\n l2.sort()\n if l1[1] == l2[1]:\n s += 1\nprint(s)\n ", "neg": "n = int(input())\np = [int(i) for i in range(n)]\ns = 0\nfor i in range(1,n-1):\n l1 = p[i-1,i+2]\n l2 = l1.copy()\n l2.sort()\n if l1[1] == l2[2]:\n s += 1\nprint(s)\n ", "jacc_sim": 0.9655172413793104, "before_after_length": [96, 95], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "irageputn).split(,:21 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u006883624", "n_user": "u006883624", "pos": "def main():\n n = int(input())\n P = list(map(int, input().split()))\n\n count = 0\n p1 = P[0]\n p2 = P[1]\n for i in range(2, n):\n p3 = P[i]\n if p1 < p2 < p3 or p1 > p2 > p3:\n count += 1\n p1 = p2\n p2 = p3\n\n print(count)\n\n\nmain()\n", "neg": "def main():\n n = int(input())\n P = map(int, input().split())\n\n count = 0\n p1 = P[0]\n p2 = P[1]\n for i in range(2, n):\n p3 = P[i]\n if p1 < p2 < p3 or p1 > p2 > p3:\n count += 1\n p1 = p2\n p2 = p3\n\nmain()\n", "jacc_sim": 0.9411764705882353, "before_after_length": [123, 112], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "n=it(input())\n P int(input())\n P = list() p1=p2\n 212\n p2 = p\n\n print(count)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u773686010", "n_user": "u773686010", "pos": "N = int(input())\nN_List = list(map(int,input().split()))\nct = 0\nfor i in range(1,N-1):\n if (N_List[i] > N_List[i-1]) & (N_List[i] < N_List[i+1]):\n ct += 1\n elif (N_List[i] < N_List[i-1]) & (N_List[i] > N_List[i+1]):\n ct += 1\n\n\nprint(ct)\n", "neg": "N = int(input())\nN_List = sorted(list(map(int,input().split())))\nct = 0\nfor i in range(1,N-1):\n if (N_List[i] > N_List[i-1]) & (N_List[i] < N_List[i+1]):\n ct += 1\n\nprint(ct)\n", "jacc_sim": 0.9354838709677419, "before_after_length": [130, 89], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "sorted() elif (N_List[i] < N_List[i-1]) & (N_List[i] > N_List[i+1]):\n ct += 1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u641722141", "n_user": "u641722141", "pos": "cnt = int(input())\nl = list(map(int, input().split()))\ncount = 0\n \nfor i in range(cnt-2):\n a,b, c = l[i], l[i+1], l[i+2]\n if (a < b and b < c) or( a>b and b> c):\n count += 1\nprint(count)", "neg": "cnt = int(input())\nl = list(map(int, input().split()))\ncount = 0\n \nfor i in range(cnt-2):\n a,b, c = l[i], l[i+1], l[i+2]\n if a < b and b < c:\n count += 1\nprint(count)", "jacc_sim": 0.9411764705882353, "before_after_length": [92, 81], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "() or( a>b and b> c)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u842388336", "n_user": "u842388336", "pos": "N = int(input())\nnum_list = list(map(int,input().split()))\n\ncnt=0\nfor i in range(1,N-1):\n temp_list = num_list[i-1:i+2]\n sort_list = sorted(temp_list)\n if temp_list[1] == sort_list[1]:\n cnt+=1\nprint(cnt)\n", "neg": "N = int(input())\nnum_list = list(map(int,input().split()))\n\ncnt=0\nfor i in range(1,N-1):\n temp_list = num_list[i-1:i+2]\n print(temp_list)\n sort_list = sorted(temp_list)\n if temp_list[1] == sort_list[1]:\n cnt+=1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [97, 104], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "print(temp_list)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u953868469", "n_user": "u953868469", "pos": "N = int(input())\nnumbers = [list(map(int, input().split()))]\n\nnumbers = numbers[0]\n\ncount = 0\n\n\nfor i in range(N-2):\n aaa = []\n number_a = int(numbers[i])\n aaa.append(number_a)\n number_b = int(numbers[i+1])\n aaa.append(number_b)\n number_c = int(numbers[i+2])\n aaa.append(number_c)\n if number_b == sorted(aaa)[-2]:\n count += 1\n else:\n continue\n\nprint(count)", "neg": "N = int(input())\nnumbers = [list(map(int, input().split()))]\n\nnumbers = numbers[0]\naaa = []\ncount = 0\n\n\nfor i in range(N-2):\n number_a = int(numbers[i])\n aaa.append(number_a)\n number_b = int(numbers[i+1])\n aaa.append(number_b)\n number_c = int(numbers[i+2])\n aaa.append(number_c)\n if number_b == sorted(aaa)[-2]:\n count += 1\n else:\n continue\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [158, 155], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "aaa = []aaa = []\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u659563289", "n_user": "u659563289", "pos": "def main():\n n = int(input())\n p = list(map(int,input().split()))\n cnt = 0\n\n for i in range(1,len(p)-1):\n if p[i] < p[i+1] and p[i] > p[i-1]:\n cnt += 1\n elif p[i] > p[i+1] and p[i] < p[i-1]:\n cnt += 1\n\n print(cnt)\n\nmain()", "neg": "def main():\n n = int(input())\n ans = []\n p = list(map(int,input().split()))\n cnt = 0\n\n for i in range(1,len(p)-2):\n if p[i] < p[i+1] and p[i] > p[i-1]:\n cnt += 1\n elif p[i] > p[i+1] and p[i] < p[i-1]:\n cnt += 1\n\n print(cnt)\n\n\n\nmain()", "jacc_sim": 0.9428571428571428, "before_after_length": [120, 127], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "\n ans = []21\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u219466830", "n_user": "u219466830", "pos": "n = int(input())\np = list(map(int, input().split()))\n\ncount = 0\n\nfor i in range(1, n-1):\n if sorted(p[i-1:i+2]).index(p[i]) == 1:\n count += 1\n\nprint(count)", "neg": "n = int(input())\np = map(int, input().split())\n\ncount = 0\n\nfor i in range(1, n-1):\n if sorted(p[i-1:i+1]).index(p[i]) == 1:\n count += 1\n\nprint(count)", "jacc_sim": 0.9310344827586207, "before_after_length": [74, 71], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "list()12", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u131264627", "n_user": "u131264627", "pos": "n = int(input())\np = [int(i) for i in input().split()]\nctn = 0\nfor j in range(1, n-1):\n if p[j - 1] < p[j] < p[j + 1] or p[j + 1] < p[j] < p[j - 1]:\n ctn += 1\nprint(ctn)", "neg": "n = int(input())\np = [int(i) for i in input().split()]\nctn = 0\nfor j in range(1, n-2):\n if p[j -1] < p[j] < p[j + 1]\n ctn += 1\nprint(ctn)", "jacc_sim": 0.9285714285714286, "before_after_length": [91, 72], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "21 or p[j + 1] < p[j] < p[j - 1]:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u307631662", "n_user": "u307631662", "pos": "n=int(input())\nl = list(map(int, input().split()))\nres = 0\nfor i in range(1,n-1):\n if l[i-1]l[i] and l[i]>l[i+1]: res+=1\nprint(res)\n", "neg": "n=int(input())\nl = [*map(int, input().split())]\nres = 0\nfor i in range(1,n-1):\n if l[i-1]l[i]andl[i]>l[i+1]: res+=1\nprint(res)", "jacc_sim": 0.90625, "before_after_length": [96, 95], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "[*list(]) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u496942486", "n_user": "u496942486", "pos": "n = int(input())\np = list(map(int,input().split()))\ncount = 0\nfor i in range(n):\n r = p[i:i+3]\n if len(r) == 3:\n if max(r) > r[1] and r[1] > min(r):\n count += 1\nprint(str(count))\n", "neg": "n = int(input())\np = list(map(int,input().split()))\ncount = 0\nfor i in range(n):\n r = p[i:i+3]\n if len(r) == 3:\n if max(r)> p[1] < min(r):\n count += 1\n\nprint(str(count))\n", "jacc_sim": 0.9411764705882353, "before_after_length": [89, 85], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " pr\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u267300160", "n_user": "u267300160", "pos": "N = int(input())\nP = list(map(int,input().split()))\nans = 0\nfor i in range(N-2):\n p = P[i:i+3]\n if min(p)!=p[1] and max(p)!=p[1]:\n ans += 1\nprint(ans)\n", "neg": "N = int(input())\nP = list(map(int,input().split()))\nans = 0\nfor i in range(N-2):\n p = P[i:i+3]\n print(p)\n if min(p)!=p[1] and max(p)!=p[1]:\n ans += 1\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [81, 87], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "print(p)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u167273718", "n_user": "u827261928", "pos": "n = int(input())\np = list(map(int, input().split()))\na = 0\nfor i in range(n - 2):\n if p[i] > p[i + 1] > p[i + 2] or p[i] < p[i + 1] < p[i + 2]:\n a += 1\nprint(a)", "neg": "n=int(input())\np=list(map(int,input().split()))\na=0\nfor i in range(1,n-1):\n if (p[i-1]>p[i] and p[i]>p[i+1]) or (p[i+1]>p[i] and p[i]>p[i-1]):\n a+1\nprint(a)", "jacc_sim": 0.9032258064516129, "before_after_length": [84, 99], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " 1, 1 2(p[i-1]>and> p[i + 1] > p[i + 2] or>p[i+1])p[i] and + 1> < -1 + 2) = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u390170391", "n_user": "u390170391", "pos": "n = int(input())\nl = list(map(int,input().split()))\nc = 0\nfor i in range(1,n-1):\n if l[i] > l[i-1] and l[i] < l[i+1]:\n c = c+1\n elif l[i] < l[i-1] and l[i] > l[i+1]:\n c = c+1\n else:\n continue\n\nprint(c)", "neg": "n = int(input())\nl = list(map(int,input().split()))\nc = 0\nfor i in range(1,n-2):\n if l[i] > l[i-1] and l[i] < l[i+1]:\n c = c+1\n elif l[i] < l[i-1] and l[i] > l[i+1]:\n c = c+1\n\nprint(c)", "jacc_sim": 0.9090909090909091, "before_after_length": [115, 108], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "21 c= = c c= = c\n else:\n continue", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u115988130", "n_user": "u115988130", "pos": "N = int(input())\np = list(map(int, input().split()))\ncount = 0\n\n\nfor i in range(0,N-2):\n if p[i] < p[i+1] and p[i+1] < p[i+2]:\n count += 1\n elif p[i] > p[i+1] and p[i+1] > p[i+2]: \n count += 1\nprint(count)", "neg": "N = int(input())\np = list(map(int, input().split()))\ncount = 0\n\n\nfor i in range(0,N-2):\n if p[i] < p[i+1] and p[i+1] < p[i+2]:\n count += 1\nprint(count)", "jacc_sim": 0.9354838709677419, "before_after_length": [109, 76], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " elif p[i] > p[i+1] and p[i+1] > p[i+2]: \n count += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u726212005", "n_user": "u726212005", "pos": "n=int(input())\np=list(map(int,input().split()))\n\ncount=0\nfor i in range(n-2):\n sorted_p=sorted(p[i:i+3])\n if p[i+1]==sorted_p[1]:\n count+=1\n\nprint(count)\n", "neg": "n=int(input())\np=list(input().split())\n\ncount=0\nfor i in range(n-2):\n sorted_p=sorted(p[i:i+3])\n if p[i+1]==sorted_p[1]:\n count+=1\n print(sorted_p)\n\nprint(count)\n", "jacc_sim": 0.9333333333333333, "before_after_length": [80, 83], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "map(int,) print(sorted_p)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u527261492", "n_user": "u527261492", "pos": "n=int(input())\np=list(map(int,input().split()))\ncnt=0\nfor i in range(n-2):\n lst=[p[i],p[i+1],p[i+2]]\n m=min(lst)\n P=p[i+1]\n del lst[lst.index(m)]\n if min(lst)==P:\n cnt+=1\nprint(cnt)\n", "neg": "n=int(input())\np=list(map(int,input().split()))\ncnt=0\nfor i in range(n-2):\n lst=[p[i],p[i+1],p[i+2]]\n m=max(lst)\n P=p[i+1]\n del m\n if max(lst)==P:\n cnt+=1\nprint(cnt)", "jacc_sim": 0.9117647058823529, "before_after_length": [105, 97], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": "axinlst[lst.index()]axin\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02988", "p_user": "u626881915", "n_user": "u805552010", "pos": "n = int(input())\np = list(map(int, input().split()))\nc = 0\nfor i in range(1, n-1):\n if p[i-1] < p[i] < p[i+1] or p[i-1] > p[i] > p[i+1]:\n c += 1\nprint(c)", "neg": "n = int(input())\np = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(1,n-1):\n if p[i-1]p[i]>i[i+1]:\n ans += 1\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [86, 88], "nl": "You are given a permutation p = {p1, p2, ..., pn} of {1, 2, ..., n}. Print the number of elements pi (1 < i < n) that satisfy the condition: pi is the second smallest number among the three numbers pi-1, pi, and pi+1. All input values are integers, and 3 \u2264 n \u2264 20. The input is given in the format: n followed by p1, p2, ..., pn. Output the number of elements pi that satisfy the condition.", "diff_info": " c\nans\n i pc anscans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u623819879", "n_user": "u021548497", "pos": "n,k=map(int,input().split())\nans=n-k if k>1 else 0\nprint(ans)\n", "neg": "n, k = map(int, input().split())\nans = n-k if k > 1 else 0", "jacc_sim": 0.9473684210526315, "before_after_length": [30, 24], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u677440371", "n_user": "u462329577", "pos": "n, k = map(int, input().split())\n\nif k >= 2:\n print(n - k)\nelse:\n print(0)", "neg": "n,k = map(int,input().split())\nif n >= 2: print(n-k)\nelse: print(0)", "jacc_sim": 1.0, "before_after_length": [36, 31], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \nnk\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u131625544", "n_user": "u131625544", "pos": "s = input().split()\n\nn = int(s[0])\nk = int(s[1])\n\nif k==1 :\n print(0)\nelse:\n print(n-k)", "neg": "input = input().split()\n\nn = s[0]\nk = s[1]\n\nif n ==1 :\n print(0)\nelse:\n print(n-k)", "jacc_sim": 0.9473684210526315, "before_after_length": [49, 45], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "sinputint()int()kn ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u638795007", "n_user": "u960783046", "pos": "N,K =map(int,input().split())\nans =int(0)\n\nif K==1:\n print(ans)\n exit()\n\nelse:\n ans = N - K\n\nprint(ans)", "neg": "N, K = map(int, input().split(\" \"))\n\nif K == 1:\n print(N)\n exit(0)\n \n \nans = N - K\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [53, 48], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \"))\nans\")=int(0 Nans0\n\nelse:\n \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u747884126", "n_user": "u945419374", "pos": "n,k = map(int, input().split(' '))\nif k <= 1:\n ans = 0\nelse:\n ans = n - (k-1) - 1\nprint(ans)", "neg": "n,k=map(int,input().split())\nif k=1:\n print(\"0\")\nelse:\nprint(n-k) ", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 34], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " ' ' < aprit(\"s = \") ans = n - (k-1) - 1\nas-k ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u983918956", "n_user": "u310678820", "pos": "N,K = map(int,input().split())\nif K == 1:\n ans = 0\nelse:\n ans = N - K\nprint(ans)", "neg": "N, K = map(int, input().split())\nif N==1:\n print(0)\nelse:\n print(N-K)", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 35], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " NK aprit(s = )ans = N - K\nN-Kans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u030726788", "n_user": "u030726788", "pos": "n,k = map(int,input().split())\n\nmi = 1\nma = 1 + n-k\n\nif(k==1):\n print(0)\nelse:\n print(ma-mi)\n", "neg": "n,k = map(int,input().split())\n\nmi = 1\nma = 1 + k-n\n\nif(k==1):\n print(0)\nelse:\n print(ma-mi)", "jacc_sim": 1.0, "before_after_length": [51, 50], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "n--n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u534081198", "n_user": "u534081198", "pos": "data = []\n\ndata.extend(list(map(int, input().split(\" \"))))\nN = data[0]\nK = data[1]\n\nif K == 1:\n print(0)\nelse:\n print(N - K)", "neg": "\ndata = []\n\ndata.extend(list(map(int, input().split(str))))\nN = data[0]\nK = data[1]\n\nif K == 1:\n print(0)\nelse:\n print(K - N)", "jacc_sim": 0.92, "before_after_length": [60, 61], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "\nstr\" \"KNNK", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u369105927", "n_user": "u369105927", "pos": "#!/usr/bin/python3\n\ndef main():\n n, k = map(int, input().split(' '))\n if k == 1:\n print(0)\n return\n\n print(n - k)\n return\n\nif __name__ == '__main__':\n main()", "neg": "#!/usr/bin/python3\n\ndef main():\n n, k = map(int, input().split(' '))\n if k == 1:\n print(n)\n return\n\n print(n - k)\n return\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9655172413793104, "before_after_length": [73, 73], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "n0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u570545890", "n_user": "u034243122", "pos": "n,k = [int(i) for i in input().split()]\n\nif k == 1:\n print(0)\nelse:\n print(n-k)", "neg": "n,k= [int(i) for i in input().split()]\nif k==1:\n return 0\nelse:\n return n-k", "jacc_sim": 0.9130434782608695, "before_after_length": [41, 36], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \n pein(urn )pein(urn )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u614734359", "n_user": "u907223098", "pos": "n,k = (int(i) for i in input().split())\nif k == 1:\n print(0)\nelse:\n print(n-k)\n", "neg": "n,k=(int(i) for i in input().split())\nif n>=k:\n print(n-k)\nelse:\n print(0)", "jacc_sim": 0.9047619047619048, "before_after_length": [40, 39], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " n>k k= 1 print(0)\nelse:\n else:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u844503366", "n_user": "u623349537", "pos": "N, K = map(int, input().split())\nif K == 1:\n print(0)\nelse:\n max = N-K+1\n print(max-1)", "neg": "N, K = map(int, input().split())\nif N == 1:\n print(0)\nelse:\n print(N - K + 1 - 1)", "jacc_sim": 0.95, "before_after_length": [44, 39], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "NKmax = N-K+1\n N max K + 1 - ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u960653324", "n_user": "u068695365", "pos": "N, K = (int(i) for i in input().split())\n\nif K == 1:\n ans = 0\nelse:\n ans = N-K\n\nprint(ans)\n", "neg": "N, K = (int(i) for i in input().split())\n\nif K>=N:\n ans = 0\nelse:\n ans=N-K\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [45, 44], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "> N= 1 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u952467214", "n_user": "u003501233", "pos": "x,y = map(int,input().split())\n\nif(y==1):\n print(0)\nelse:\n print(x-y)", "neg": "x,y=map(int,input().split())\nif y == 1:\n print(x)\nelse:\n print(x-y)", "jacc_sim": 0.9444444444444444, "before_after_length": [37, 35], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \n ( )x0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u426764965", "n_user": "u310233294", "pos": "N, K = map(int, input().split())\nans = N - K if K > 1 else 0\nprint(ans)", "neg": "N, K = map(int, input().split())\nans = N - K\nans = ans if K == 1 else 0\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [29, 33], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "\nans = ans>==", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u861469253", "n_user": "u861469253", "pos": "s = list(map(int, input().split()))\nif (s[1] != 1):\n ans = s[0] - s[1]\n print(ans)\nelse:\n print(0)", "neg": "s = list(map(int, input().split()))\nif (s[1] == 1:\n ans = s[0] - s[1]\n print(ans)\nelse:\n print(0)", "jacc_sim": 0.9545454545454546, "before_after_length": [51, 51], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "=!)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u668503853", "n_user": "u232374873", "pos": "N,K=map(int,input().split())\nif K!=1:\n ans=N-K\nelse:\n ans=0\nprint(ans)", "neg": "N, K = map(int,input().split())\nif N != 1:\n print(N-K)\nelse:\n print(0)", "jacc_sim": 0.95, "before_after_length": [39, 35], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " KN a prit(s=) ans=0\n0ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u937642029", "n_user": "u113971909", "pos": "x,y = map(int,input().split())\t\n\nif(y==1):\n ans=0\nelse:\n ans=x-y\n\nprint(ans)\n", "neg": "x,y=map(int,input().split())\nif y = 1:\n print(0)\nelse:\n print(x-y)", "jacc_sim": 0.9473684210526315, "before_after_length": [43, 35], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \t\n ( =)pri at(s=) ans=x-y\n\nx-yans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u703461446", "n_user": "u703461446", "pos": "splited = input().split(' ')\nN = int(splited[0])\nK = int(splited[1])\n \nif(K == 1):\n print(0)\nelse:\n print(N - K)", "neg": "splited = input().split(' ')\nN = int(splited[0])\nK = int(splited[1])\n\nif(K == 1):\n return 0\nelse\n return N - K", "jacc_sim": 0.9047619047619048, "before_after_length": [54, 48], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " pein(urn ):pein(urn )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u591936613", "n_user": "u591936613", "pos": "from sys import stdin\nl = stdin.readline().rstrip().split()\n\nn = int(l[0])\nk=int(l[1])\n\nif k == 1:\n print(0)\nelse:\n print(n-k)", "neg": "from sys import stdin\nl = stdin.readline().rstrip().split()\n\nn = int(l[0])\nk=int(l[1])\n\nif k == 1:\n print 0;\nelse:\n print n-k", "jacc_sim": 0.96, "before_after_length": [60, 57], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " (;) ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u090994275", "n_user": "u373047809", "pos": "n,k=map(int,input().split())\nprint([n-k,0][k==1])", "neg": "n, k = map(int, input().split())\nprint([0, 0, n-k][k!=1])", "jacc_sim": 0.9444444444444444, "before_after_length": [25, 28], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " 0, 0, ,0!=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u151107315", "n_user": "u597374218", "pos": "N, K = map(int, input().split())\nprint(0 if N == K or K == 1 else N - K)\n", "neg": "N,K=map(int,input().split())\nprint(0 if K==1 or K==N else N-K+1)", "jacc_sim": 0.9473684210526315, "before_after_length": [30, 31], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " KN 1 K N 1 +1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u077141270", "n_user": "u068695365", "pos": "N, K = (int(i) for i in input().split())\n\nif K == 1:\n print(0)\nelse:\n print(N-K)\n", "neg": "N, K = (int(i) for i in input().split())\n\nif K=1:\n ans=0\nelse:\n ans=N-K\nprint(ans)", "jacc_sim": 0.9523809523809523, "before_after_length": [41, 43], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " = apris=t()ans=N-K\nansN-K\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u398846051", "n_user": "u309141201", "pos": "n, k = map(int, input().split())\nif k == 1:\n print(0)\n exit()\nprint(n-k)", "neg": "n, k = map(int, input().split())\nrem = n-k\nif n == 1:\n print(0)\n exit()\nprint(rem)", "jacc_sim": 0.9473684210526315, "before_after_length": [35, 39], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "rem = n-k\nnkremn-k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u633051991", "n_user": "u057109575", "pos": "N,K = map(int,input().split())\nif K==1:\n print(0)\nelse:\n print(N-K)\n", "neg": "N, K = map(int, input().split())\n\nif K == 1:\n print(N)\nelse:\n print(N - K)\n\n\n", "jacc_sim": 0.9444444444444444, "before_after_length": [36, 39], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " \n N0 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u474579514", "n_user": "u474579514", "pos": "class BallDistribution:\n def __init__(self):\n self.N, self.K = map(int, input().split())\n\n def max_number(self):\n if self.K == 1:\n print(0)\n else:\n print(self.N - self.K)\n\n\nballDistribution = BallDistribution()\nballDistribution.max_number()\n", "neg": "class BallDistribution:\n def __init__(self):\n self.N, self.K = map(int, input().split())\n\n def max_number(self):\n if self.K == 1:\n print(0)\n\n print(self.N - self.K)\n\n\nballDistribution = BallDistribution()\nballDistribution.max_number()\n", "jacc_sim": 0.9615384615384616, "before_after_length": [92, 89], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " else: ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u360090862", "n_user": "u318205491", "pos": "a,b=[int(i) for i in input().split()]\nif b==1:\n print(0)\nelse:\n print(a-b)", "neg": "a = input().split()\na = [int(i) for i in a]\nif a[1] == 0:\n print(0)\nelse:\n print(a[0]-a[1])", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 50], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": " ,b input().split()\na = ainput().split()ba[1] 1 0[0]ba[1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u290898260", "n_user": "u227082700", "pos": "(a, b) = input().split()\na = int(a)\nb = int(b)\nif b == 1:\n\tprint(0)\nelse:\n\tprint(a - b)", "neg": "a,b=map(int,input().split())\nif b==1:print(0)\nelse:print(b-a)\n", "jacc_sim": 0.9444444444444444, "before_after_length": [47, 32], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "( ) map(int,\na = int(a)\nb = int(b \n\t\n\ta - -a\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u649326276", "n_user": "u131625544", "pos": "s = input().split(\" \");\nn = int(s[0]);\nk = int(s[1]);\nif k == 1 :\n\tprint(0);\nelse :\n\tprint(n-k);", "neg": "s = input().split()\n\nk = int(s[0])\nn = int(s[1])\n\nif n ==1 :\n print(0)\nelse:\n print(n-k)", "jacc_sim": 0.9047619047619048, "before_after_length": [49, 49], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "\" \";n\nk;nk\n;nk \t ; \t ;", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03005", "p_user": "u619819312", "n_user": "u127499732", "pos": "n,k=map(int,input().split());print(n-k if k!=1 else 0)", "neg": "n,k=map(int,input().split())\nprint(n-k if n!=1 else 0)", "jacc_sim": 0.9473684210526315, "before_after_length": [25, 26], "nl": "You are given N balls to distribute among K persons. Each person must receive at least one ball. Find the maximum possible difference in the number of balls received between the person with the most balls and the person with the fewest balls. Constraints: 1 \u2264 K \u2264 N \u2264 100. Input format: N K. Output the maximum possible difference in the number of balls received. For example, for input 3 2, the output is 1. If N=3 and K=2, the maximum difference is 1.", "diff_info": "\n;nk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u830940424", "n_user": "u830940424", "pos": "import numpy as np\n\nN = int(input())\nW = input().split()\n\nfor i in range(N):\n W[i] = int(W[i])\nmin_w= 1000000\nfor i in range(N-1):\n w1 = W[:i+1]\n w2 = W[i+1:]\n w1 = np.array(w1)\n w2 = np.array(w2)\n min_w = min(min_w, abs(np.sum(w2)-np.sum(w1)))\n\nprint(min_w)", "neg": "import numpy as np\n\nN = int(input())\nW = input().split()\n\nfor i in range(N):\n W[i] = int(W[i])\nmin_w= 100000\nfor i in range(N-1):\n w1 = W[:i]\n w2 = W[i+1:N-1]\n w1 = np.array(w1)\n w2 = np.array(w2)\n min_w = min(min_w, abs(np.sum(w2)-np.sum(w1)))\n\nprint(min_w)", "jacc_sim": 0.9411764705882353, "before_after_length": [139, 141], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "0]\n w2 = W[i]\n w2 = W[i+1N]\n w1 = np.array(w1)\n w2 = np.array(w2)\n min_w = min(min_w, abs(np.sum(w2)1]\n w1 = array(w1)\n w2 = np.array(w2)\n min_w = min(min_w, ab(np.s2)-np.sum(w", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u813098295", "n_user": "u813098295", "pos": "n = int(input())\nw = [ int(x) for x in input().split() ]\nans = sum(w)\nl, r = 0, sum(w)\nfor i in range(n):\n l += w[i]\n r -= w[i]\n ans = min(ans, abs(l-r))\n\nprint(ans)", "neg": "n = int(input())\nw = sorted([ int(x) for x in input().split() ])\nans = sum(w)\nl, r = 0, sum(w)\nfor i in range(n):\n l += w[i]\n r -= w[i]\n ans = min(ans, abs(l-r))\n\nprint(ans)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [84, 87], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "sorted()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u910369451", "n_user": "u910369451", "pos": "N = int(input())\nW = list(map(int,input().split()))\nm = sum(W)\n\nfor j in range(N-1):\n W1 = W[:j+1]\n W2 = W[j+1:N]\n s = abs(sum(W1) - sum(W2))\n m = min(m, s)\n\nprint(m)\n", "neg": "N = int(input())\nW = list(map(int,input().split()))\nm = sum(W)\n\nfor j in range(N-1):\n W1 = W[:j+1]\n W2 = W[j+1:N]\n print(W1, W2)\n s = abs(sum(W1) - sum(W2))\n m = min(m, s)\n\nprint(m)\n", "jacc_sim": 1.0, "before_after_length": [96, 106], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "print(W1, W2)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u564906058", "n_user": "u564906058", "pos": "n = int(input())\nw = list(map(int,input().split()))\ns = 0\nlist = []\nfor i in range(n):\n s += w[i]\nfor i in range(n):\n t = 0\n for j in range(i):\n t += w[j]\n list.append(abs(s - 2*t))\nprint(min(list))", "neg": "n = int(input())\nw = list(map(int,input().split()))\ns = 0\nlist = []\nfor i in range(n):\n s += w[i]\nfor i in range(n):\n t = 0\n for j in range(i):\n t += w[j]\n list.append(abs(s - 2t))\nprint(min(list)) ", "jacc_sim": 0.90625, "before_after_length": [95, 95], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "* ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u804566868", "n_user": "u804566868", "pos": "weight_num = int(input())\nweights = [int(i) for i in input().split()]\nsum_1_list = []\nsum_2_list = []\nsum_1 = 0\nsum_2 = 0\n\nfor i in range(weight_num):\n sum_1 += weights[i]\n sum_2 += weights[len(weights) - (i + 1)]\n sum_1_list.append(sum_1)\n sum_2_list.append(sum_2)\n\nans = max(sum_1_list)\n\nfor i in range(weight_num - 1):\n if ans > abs(sum_1_list[i] - sum_2_list[weight_num - (i + 2)]):\n ans = abs(sum_1_list[i] - sum_2_list[weight_num - (i + 2)])\n\nprint(ans)\n", "neg": "weight_num = int(input())\nweights = [int(i) for i in input().split()]\nsum_1_list = []\nsum_2_list = []\nsum_1 = 0\nsum_2 = 0\n\nfor i in range(weight_num):\n sum_1 += weights[i]\n sum_2 += weights[len(weights) - (1 + i)]\n sum_1_list.append(sum_1)\n sum_2_list.append(sum_2)\n\nans = max(sum_1_list)\n\nfor i in range(weight_num - 1):\n for j in range(weight_num - 1):\n if ans > abs(sum_1_list[i] - sum_2_list[j]):\n ans = abs(sum_1_list[i] - sum_2_list[j])\n\nprint(ans)\n", "jacc_sim": 0.9411764705882353, "before_after_length": [214, 212], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "1ii1iorj in rsge(weight_num->abs(sum__list[i] - sum_2_list[weight_num - (i + 2)]if >=wej]):\n ans = abs(sum_1_lsgh[i] - sum2_list[j])\n\npritum - ansi + 2])\nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u225388820", "n_user": "u225388820", "pos": "n=int(input())\nw= list(map(int, input().split()))\ns=sum(w)\nt=0\nans=abs(s-2*w[0])\nfor i in range(n-1):\n t+=w[i]\n ans=min(ans,abs(s-2*t))\nprint(ans)", "neg": "n=int(input())\nw= list(map(int, input().split()))\ns=sum(w)\nt=0\nans=abs(s-2*a[0])\nfor i in range(n-1):\n t+=a[i]\n ans=min(ans,abs(s-2*t))\nprint(ans)", "jacc_sim": 0.9696969696969697, "before_after_length": [84, 84], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "awaw", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u685662874", "n_user": "u685662874", "pos": "n=int(input())\nw=list(map(int, input().split()))\nsn=sum(w)\nabs_list=[abs(2*sum(w[:i+1])-sn) for i in range(n)]\nprint(min(abs_list))", "neg": "n=int(input())\nw=list(map(int, input().split())) \nsn=sum(w)\nabs_list=[abs(sn-sum(w[:i+1])) for i in range(n)]\nprint(min(abs_list))", "jacc_sim": 0.9333333333333333, "before_after_length": [63, 61], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": " 2*sn--sn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u172569352", "n_user": "u172569352", "pos": "def calc(n, w):\n min_sub = 100000\n N = n\n num = w\n for i in range(1,N):\n S1 = num[:i]\n S2 = num[i:]\n sub = abs(sum(S1)-sum(S2))\n if min_sub > sub:\n min_sub = sub\n print(min_sub)\n \nN = int(input())\nW = [int(i) for i in input().split()]\ncalc(N, W)", "neg": "def calc(N, W):\n min_sub = 100000\n num = W\n for i in range(1,N):\n S1 = num[:i]\n S2 = num[i:]\n sub = abs(sum(S1)-sum(S2))\n if min_sub > sub:\n min_sub = sub\n print(min_sub)\n\nN = int(input())\nW = [int(i) for i in input().split()]", "jacc_sim": 0.9411764705882353, "before_after_length": [125, 112], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "n, w):\n min_sub = 100000\n ,W):\n min_sub 100000\n \num=W num = w \ncalc(N, W)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u227082700", "n_user": "u227082700", "pos": "n,w=int(input()),list(map(int,input().split()))\na=[w[0]]\nfor i in w[1:]:a.append(a[-1]+i)\nans=a[-1]\nfor i in a:\n if ans>abs((a[-1]-i)-i):ans=abs((a[-1]-i)-i)\nprint(ans)", "neg": "n,w=int(input()),list(map(int,input().split()))\na=w[0]\nfor i in w[1:]:a.append(a[-1]+i)\nans=a[-1]\nfor i in a:\n if ans>max(i,ans-i):ans=a[-1]-i\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [93, 85], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "[]mxbs(a[-1]-),ansbs((a)-i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u500297289", "n_user": "u500297289", "pos": "N = int(input())\nW = list(map(int, input().split()))\nl = sum(W)\nr = 0\nans = l\nfor w in W:\n l -= w\n r += w\n ans = min(abs(r - l), ans)\n\nprint(ans)", "neg": "N = int(input())\nW = list(map(int, input().split()))\nl = sum(W)\nr = 0\nans = l\nfor w in W:\n l -= w\n r += w\n ans = min(abs(r - l))\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [71, 69], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": ", ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u373046572", "n_user": "u373046572", "pos": "n = int(input())\na = list(map(int,input().split()))\nans = 10000000\nfor i in range(n):\n ans = min(ans,abs(sum(a[:i])- sum(a[i:])))\nprint(ans)", "neg": "n = int(input())\na = list(map(int,input().split()))\nans = 0\nfor i in range(n):\n ans = min(ans,abs(sum(a[:i])- sum(a[i:])))\nprint(ans)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [62, 62], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "1000000\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u422673384", "n_user": "u422673384", "pos": "import math\n \nn = int(input())\nwn = list(map(int, input().split()))\n \nmini = 10000000000\nfor i in range(n-1):\n new_mini = abs(sum(wn[:i+1]) -sum(wn[i+1:]))\n if new_mini < mini:\n mini = new_mini\nprint(mini)", "neg": "import math\nn = int(input())\nwn = list(map(int, input().split()))\n\n\nmini = math.inf\nfor i in range(n-1):\n new_mini = abs(sum(wn[:i]) -sum(wn[i:]))\n if new_mini < mini:\n mini = new_mini\nprint(mini)", "jacc_sim": 0.9090909090909091, "before_after_length": [97, 92], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": " \n\n\nmini\n= ath.fi = 10000000000+1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u750651325", "n_user": "u750651325", "pos": "import sys\nimport math\nimport itertools\nimport bisect\nfrom copy import copy\nfrom collections import deque,Counter\nfrom decimal import Decimal\ndef s(): return input()\ndef i(): return int(input())\ndef S(): return input().split()\ndef I(): return map(int,input().split())\ndef X(): return list(input())\ndef L(): return list(input().split())\ndef l(): return list(map(int,input().split()))\ndef lcm(a,b): return a*b//math.gcd(a,b)\nsys.setrecursionlimit(10 ** 9)\nmod = 10**9+7\n\nN = i()\nS = l()\nsa = 1000000000\n\nfor i in range(1,N):\n sa = min(sa,abs(sum(S[:i])-sum(S[i:])))\n\nprint(sa)\n", "neg": "import sys\nimport math\nimport itertools\nimport bisect\nfrom copy import copy\nfrom collections import deque,Counter\nfrom decimal import Decimal\ndef s(): return input()\ndef i(): return int(input())\ndef S(): return input().split()\ndef I(): return map(int,input().split())\ndef X(): return list(input())\ndef L(): return list(input().split())\ndef l(): return list(map(int,input().split()))\ndef lcm(a,b): return a*b//math.gcd(a,b)\nsys.setrecursionlimit(10 ** 9)\nmod = 10**9+7\n\nN = i()\nS = l()\nS.sort()\nans1 = 0\nans2 = sum(S)\nsa = 1000000000\ni=0\n\nfor i in range(N):\n ans1 += S[i]\n ans2 -= S[i]\n sa = min(sa,abs(ans2-ans1))\n i += 1\n\nprint(sa)\n", "jacc_sim": 0.9354838709677419, "before_after_length": [202, 237], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "S.ort()\nns = 000000000\n\nfor i in range(1,N):\n sa0\nans2 = su(S)\nsa = 1000000000\n=0\n\nfor i i rangeN):\n an1 += a,abs(sum(:)\n ans2 = sum(:\n sa = min(sa,abs(ans2-ans1\n i += 1\n\nprint(sa\nprint(sa)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u276250981", "n_user": "u276250981", "pos": "n = int(input())\ns = list(map(int,input().split()))\nmin = 10**9\nfor i in range(1,n):\n a = abs(sum(s[:i])-sum(s[i:]))\n if asub):\n bestsub=sub\n\nprint(bestsub)\n", "neg": "n=int(input())\nw=list(map(int,input().split()))\ns=w.sum()\np=0\nbestsub=100000000\n\nfor i in range n:\n p=p+w[i]\n sub=abs(s-p)\n if(bestsub>sub):\n bestsub=sub\n\nprint(bestsub)", "jacc_sim": 1.0, "before_after_length": [92, 87], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "w.w ()p-()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u669098512", "n_user": "u669098512", "pos": "N = int(input())\nres = []\narr = list(map(int,input().split()))\nfor i in range(N-1):\n res.append(abs(sum(arr[:i+1])-sum(arr[i+1:])))\nprint(min(res))", "neg": "N = int(input())\narr = list(map(int,input().split()))\nres = []\nfor i in range(N-1):\n res.append(abs(sum(arr[:i+1])-arr(W[i+1:])))\nprint(min(res))", "jacc_sim": 0.9655172413793104, "before_after_length": [67, 67], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "\nres = []\nres = []sum((W", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u667024514", "n_user": "u667024514", "pos": "n = int(input())\nlis = list(map(int,input().split()))\nans = 10 ** 9\nle = 0\nri = sum(lis)\nans = sum(lis)\nfor num in lis:\n le += num\n ri -= num\n ans = min(ans,abs(ri-le))\nprint(ans)\n", "neg": "n = int(input())\nlis = list(map(int,input().split()))\nans = 10 ** 9\nle = sum(lis)\nri = sum(lis)\nfor num in lis:\n le += num\n ri -= num\n ans = min(ans,abs(ri-le))\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [84, 79], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "0\nri = rians\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u156113867", "n_user": "u156113867", "pos": "N = int(input())\nW = list(map(int, input().split()))\n \ndef calc_sum(W, T):\n S1 = sum(W[:T])\n S2 = sum(W[T:])\n return S1, S2\n \ndef calc_abs(S1, S2):\n return abs(S1-S2)\n \nmin_ = 1000\nfor i in range(len(W)):\n S1, S2 = calc_sum(W, i)\n j = calc_abs(S1, S2)\n if j < min_:\n min_ = j\n \nprint(min_)", "neg": "N = int(input())\nW = map(int, input().split())\n\ndef calc_sum(W, T):\n S1 = sum(W[:T])\n S2 = sum(W[T:])\n return S1, S2\n\ndef calc_abs(S1, S2):\n return abs(S1-S2)\n \nmin_ = 1000\nfor i in range(len(W)):\n S1, S1 = calc_sum(W, i)\n j = calc_abs(S1, S2)\n if j < min_:\n min_ = j\n \nprint(min_)", "jacc_sim": 0.9722222222222222, "before_after_length": [158, 153], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "list() 12", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u882359130", "n_user": "u882359130", "pos": "N = int(input())\nW = [int(w) for w in input().split()]\nans = 100000000\nfor t in range(N):\n less_T = W[:t]\n more_T = W[t:]\n S_l = sum(less_T)\n S_m = sum(more_T)\n d = abs(S_l - S_m)\n if ans > d:\n ans = d\nprint(ans)", "neg": "N = int(input())\nW = [int(w) for w in input().split\nans = 10000000\nfor t in range(N):\n less_T = W[:t]\n more_T = W[t:]\n S_l = sum(less_T)\n S_m = sum(more_T)\n d = abs(S_l - S_m)\n if ans > d:\n ans = d\nprint(ans)", "jacc_sim": 0.9354838709677419, "before_after_length": [110, 108], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "()]0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u835732324", "n_user": "u835732324", "pos": "N = int(input())\nW = list(map(int,input().split()))\n \nmin_list = []\nfor i in range(N):\n mi = abs(sum(W[0:i]) - sum(W[i:]))\n min_list.append(mi)\nprint(min(min_list))", "neg": "N = map(int,input().split())\nW = list(map(int,input().split()))\n\nmin_list = []\nfor i in range(N):\n S1 = sum(W[0:i])\n S2 = sum(W) - sum(W[0:i])\n mi = abs(S1-S2)\n min_list.append(mi)\nprint(min(min_list))\n", "jacc_sim": 0.9333333333333333, "before_after_length": [77, 102], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "map(,(t().spli S1miabs(\n S2 = sum(W)0ii\n mi = abs(S1-S2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u913965975", "n_user": "u913965975", "pos": "N = int(input())\nl = list(map(int,input().split()))\n\nfor T in range(N-1):\n S1 = 0\n S2 = 0\n for i in range(T+1):\n S1 += l[i]\n for i in range(T+1,N):\n S2 += l[i]\n if T == 0:\n min = abs(S1-S2)\n elif abs(S1-S2) < min:\n min = abs(S1-S2)\n\nprint(min)\n", "neg": "N = int(input())\nl = list(map(int,input().split()))\n\nmin = 0\nfor T in range(N-1):\n S1 = 0\n S2 = 0\n for i in range(T+1):\n S1 += l[i]\n for i in range(T+1,N):\n S2 += l[i]\n if abs(S1-S2) < min:\n min = abs(S1-S2)\n\nprint(min)\n", "jacc_sim": 0.96875, "before_after_length": [137, 122], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "\nmin = 0T == 0:\n min = \n elif abs(S1-S2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u250061066", "n_user": "u250061066", "pos": "N = int(input())\nL = list(map(int, input().split()))\nA = [abs(sum(L[:i])-sum(L[i:]))for i in range(1,N)]\nprint(min(A))", "neg": "N = int(input())\nL = list(map(int, input().split()))\nA = [abs(sum(L[:i])-sum(L[i:]))for i in L]\nprint(min(A))", "jacc_sim": 0.9230769230769231, "before_after_length": [56, 52], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "Lrange(1,N)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u578462133", "n_user": "u578462133", "pos": "N=int(input())\nW = list(map(int, input().split()))\ntotal = 0\nfor i in range(N):\n total += W[i]\n \n\nans = total\nsumi = 0\nloop = True\ni = 0\nwhile loop:\n sumi += W[i]\n if abs(sumi - (total - sumi)) > ans:\n print(ans)\n loop = False\n else:\n ans = abs(sumi - (total - sumi))\n i += 1", "neg": "N=int(input())\nW = list(map(int, input().split()))\ntotal = 0\nfor i in range(N):\n total += W[i]\n \n\nans = total\nsumi = 0\nloop = True\n\nwhile loop:\n sumi += W[i]\n if abs(sumi - (total - sumi)) > ans:\n print(ans)\n loop = False\n else:\n ans = abs(sumi - (total - sumi))", "jacc_sim": 0.9714285714285714, "before_after_length": [125, 117], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "i = 0 \n i += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u566529875", "n_user": "u566529875", "pos": "n=int(input())\nw=list(map(int,input().split()))\nwa=[0]*(n+1)\nfor i in range(n):\n\twa[i+1] = wa[i]+w[i]\n\nans = 1234567890\nfor i in range(1,n+1):\n\tans = min(ans,abs(wa[n]-2*wa[i]))\nprint(ans)", "neg": "n=int(input())\nw=list(map(int,input().split()))\nwa=[0]*(n+1)\nfor i in range(n):\n\twa[i+1] = wa[i]+w[i]\n\nans = 1234567890\nfor i in range(1,n+1):\n\tans = min(ans,abs(wa[n+1]-wa[i]))\nprint(ans)", "jacc_sim": 0.967741935483871, "before_after_length": [104, 104], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "+12*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u501163846", "n_user": "u175590965", "pos": "n=int(input())\nw=list(map(int,input().split()))\nans=[]\nfor i in range(n):\n ans.append(abs(sum(w[:i])-sum(w[i:])))\nprint(min(ans))\n", "neg": "n = int(input())\nw = list(map(int,input().split()))\nans = []\nfor i in range(1,n):\n ans.append(abs(sum(l[:i])-sum(l[i:])))\nprint(min(ans))", "jacc_sim": 0.9285714285714286, "before_after_length": [62, 63], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": " 1,lwlw\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u844123804", "n_user": "u844123804", "pos": "num = int(input())\ntmp = input().split()\ntmp = [int(i) for i in tmp]\nflg = 0\n\nans = abs(tmp[0] - sum(tmp[1:]))\nfor i in range(1,num):\n if abs(sum(tmp[:i]) - sum(tmp[i:])) > ans:\n print(ans)\n flg = 1\n break\n else:\n ans = abs(sum(tmp[:i]) - sum(tmp[i:]))\n\nif flg == 0: print(ans)", "neg": "num = int(input())\ntmp = input().split()\ntmp = [int(i) for i in tmp]\n\nans = abs(tmp[0] - sum(tmp[1:]))\nfor i in range(1,num):\n if abs(sum(tmp[:i]) - sum(tmp[i:])) > ans:\n print(ans)\n break\n else:\n ans = abs(sum(tmp[:i]) - sum(tmp[i:]))", "jacc_sim": 0.9655172413793104, "before_after_length": [132, 109], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "\nflg = 0flg = 1\n \n\nif flg == 0: print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u264989012", "n_user": "u264989012", "pos": "n = int(input())\nweight = list(map(int,input().split()))\nmin = 99999\nfor i in range(n-1):\n sum1 = 0\n sum2 = 0\n for j in range(i+1):\n sum1 += weight[j]\n for k in range(n-i-1):\n sum2 += weight[n-k-1]\n sub = sum1 - sum2\n if sub < 0:\n sub = 0 - sub\n if sub < min:\n min = sub\nprint(min)", "neg": "n = int(input())\nweight = list(map(int,input().split()))\nmin = 99999\nfor i in range(n-1):\n sum1 = 0\n sum2 = 0\n for j in range(i+1):\n sum1 += weight[j]\n for k in range(n-i-1):\n sum2 += weight[n-k-1]\n sub = sum1 - sum2\n if(sub < 0):\n sub = 0 - sub\n if(sub < min):\n min = sub\nprint(sub)\n ", "jacc_sim": 1.0, "before_after_length": [132, 136], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "( )( )submin\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u247211039", "n_user": "u247211039", "pos": "N=int(input())\nW=list(map(int, input().split()))\n \nsum1,sum2=0,0\nans=0\ndif=1000\n \nfor i in range(N):\n sum1=sum(W[0:i])\n sum2=sum(W[i:])\n now = abs(sum1-sum2)\n if dif > now:\n dif =now\n \nprint(dif)", "neg": "N=input()\nW=list(map(int, input().split()))\n\nsum1,sum2=0,0\nans=0\ndif=1000\n\nfor i in range(N):\n sum1=sum(W[0:i])\n sum2=sum(W[i:])\n now = abs(sum1-sum2)\n if dif > now:\n dif =now\n\nprint(dif)", "jacc_sim": 1.0, "before_after_length": [106, 101], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "puinput() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03012", "p_user": "u632423548", "n_user": "u632423548", "pos": "y = input()\ny = input().split()\ny = [ int(x) for x in y]\nsum_go = []\nsum_back = []\nfor i in range(1, len(y)):\n sum_go.append(sum(y[0:i] ))\n sum_back.append(sum(y[i:] ))\n#print(sum_go)\n#print(sum_back)\nresult = []\nfor i in range(len(sum_go)):\n result.append( abs(sum_go[i] - sum_back[i]) )\nprint(min(result))", "neg": "y = input().split()\ny = [ int(x) for x in y]\ny = y[1:]\nsum_go = []\nsum_back = []\nfor i in range(1, num):\n sum_go.append(sum(y[0:i] ))\n sum_back.append(sum(y[i:] ))\nresult = []\nfor i in range(len(sum_go)):\n result.append( abs(sum_go[i] - sum_back[i]) )\nprint(min(result))", "jacc_sim": 0.9354838709677419, "before_after_length": [143, 126], "nl": "You are given N weights indexed from 1 to N, each with a specific mass. The task is to divide these weights into two groups: one with indices not greater than T and the other with indices greater than T (where 1 \u2264 T < N). Find the minimum possible absolute difference between the sums of the masses in the two groups. Constraints: 2 \u2264 N \u2264 100, 1 \u2264 Wi \u2264 100 (all input values are integers). The input is given as N followed by the masses of the weights. Output the minimum possible absolute difference. For example, given input 3 and weights 1 2 3, the output is 0, as the minimum absolute difference is achieved when T = 2, resulting in S1 = 3 and S2 = 3.", "diff_info": "y = input()\n]\ny = y[1:leum(y)#result = []\nfor i in range(len(sum_go)):\n result.arpend( abs(sum_go[] - nt(sum_go)\n#print([i] )pint(min(r = []\nfor i in range(len(sum_go:\n result.append( abs(sum_go[i] - sum_back[i]) )\nprint(min(result))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u920977317", "n_user": "u920977317", "pos": "def main():\n N,M=map(int,input().split())\n\n k_list=[]\n swiches=[]\n for i in range(M):\n inp=list(map(int,input().split()))\n k_list.append(inp[0])\n swiches.append(inp[1:])\n P=list(map(int,input().split()))\n\n res=0\n for SwichStatus in range(pow(2,N)):\n flag=0\n for i in range(M):\n Link=0\n for swich in swiches[i]:\n Link+=1<<(swich-1)\n OnSwich=SwichStatus&Link\n OnCounter=0\n while OnSwich!=0:\n OnCounter+=OnSwich&1\n OnSwich>>=1\n if OnCounter%2!=P[i]:\n flag=1\n break\n if flag!=1:\n res+=1\n print(res)\nif __name__==\"__main__\":\n main()\n\n", "neg": "def main():\n N,M=map(int,input().split())\n\n k_list=[]\n swiches=[]\n for i in range(M):\n inp=list(map(int,input().split()))\n k_list.append(inp[0])\n swiches.append(inp[1:])\n P=list(map(int,input().split()))\n\n res=0\n for SwichStatus in range(pow(2,N)):\n flag=0\n for i in range(M):\n Link=0\n for swich in swiches[i]:\n Link+=1<<(swich-1)\n OnSwich=SwichStatus&Link\n OnCounter=0\n while OnSwich!=0:\n OnCounter+=OnSwich&1\n OnSwich>>=1\n if OnCounter%2!=P[i]:\n flag=1\n break\n if flag!=1:\n res+=1\n \nif __name__==\"__main__\":\n main()\n\n", "jacc_sim": 0.9807692307692307, "before_after_length": [265, 261], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "print(res)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u902468164", "n_user": "u902468164", "pos": "n, m = map(int, input().split())\n\nss = []\nfor i in range(m):\n s = list(map(int, input().split()))[1:]\n te = 0\n for sm in s:\n te += 2**(sm-1)\n ss.append(te)\n\npp = list(map(int, input().split()))\nres = 0\nfor i in range(2**n):\n tm = True\n for j in range(len(ss)):\n st = 0\n su = i & ss[j]\n for u in range(n):\n st += (su >> u) & 1\n if st % 2 != pp[j]:\n tm = False\n break\n if tm:\n res += 1\nprint(res)\n", "neg": "n, m = map(int, input().split())\n\nss = []\nfor i in range(m):\n s = list(map(int, input().split()))[1:]\n te = 0\n for sm in s:\n te += 2**(sm-1)\n ss.append(te)\n\npp = list(map(int, input().split()))\nres = 0\nfor i in range(2**(n-1)):\n tm = True\n for j in range(len(ss)):\n if (i & ss[j]) % 2 != pp[j]:\n tm = False\n break\n if tm:\n res += 1\nprint(res)", "jacc_sim": 0.9148936170212766, "before_after_length": [190, 164], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "(-1)ifst(= 0\n su = \n for u in range(n:\n st += (su >> u) & 1\n if st\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u355371431", "n_user": "u355371431", "pos": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nimport itertools\n\nans = 0\nN,M = map(int,readline().split())\nL = []\n\nfor i in range(M):\n k,*S = map(int,readline().split())\n L.append(S)\n\nP = list(map(int,readline().split()))\n\nA = list(itertools.product([0,1],repeat=N))\n\nfor i in A:\n sw = [False] * M\n for j in range(M):\n count = 0\n for k in L[j]:\n count += i[k-1]\n\n if count % 2 == P[j]:\n sw[j] = True\n \n if sum(sw) == M:\n ans += 1\nprint(ans)", "neg": "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nimport itertools\n\nans = 0\nN,M = map(int,readline().split())\nL = []\n\nfor i in range(M):\n k,*S = map(int,readline().split())\n L.append(S)\n\nP = list(map(int,readline().split()))\n\nA = list(itertools.product([0,1],repeat=N))\n\nfor i in A:\n sw = [False] * N\n for j in range(M):\n count = 0\n for k in L[j]:\n count += i[k-1]\n\n if count % 2 == P[j]:\n sw[j] = True\n \n if sum(sw) == N:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [222, 222], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "NMNM", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u847758719", "n_user": "u847758719", "pos": "import copy\n\nN,M = map(int, input().split())\njisho = [[] for i in range(N)]\nfor i in range(M):\n val = input().split()\n for j in val[1:]:\n jisho[int(j)-1].append(i)\n\np = list(map(int, input().split()))\n\nsw = []\ndef create_ki(data):\n if len(data) == N:\n sw.append(data)\n return\n tmp = copy.copy(data)\n tmp.append(0)\n create_ki(tmp)\n tmp2 = copy.copy(data)\n tmp2.append(1)\n create_ki(tmp2)\n\ncreate_ki([])\n\nans = 0\nfor val in sw:\n num = 0\n sw2 = [0]*M\n for i in val:\n if i == 0:\n num += 1\n continue\n data = jisho[num]\n for j in data:\n sw2[j] += 1\n num += 1\n cn = 0\n for j in sw2:\n if j % 2 != p[cn]:\n break\n cn += 1\n if cn == M:\n ans += 1\n\nprint(ans)", "neg": "import copy\n\nN,M = map(int, input().split())\njisho = [[] for i in range(N)]\nfor i in range(M):\n val = input().split()\n for j in val[1:]:\n jisho[int(j)-1].append(i)\n\np = list(map(int, input().split()))\n\nsw = []\ndef create_ki(data):\n if len(data) == N:\n sw.append(data)\n return\n tmp = copy.copy(data)\n tmp.append(0)\n create_ki(tmp)\n tmp2 = copy.copy(data)\n tmp2.append(1)\n create_ki(tmp2)\n\ncreate_ki([])\n\nans = 0\nfor val in sw:\n num = 0\n sw2 = [0]*M\n for i in val:\n if i == 0:\n num += 1\n continue\n data = jisho[num]\n for j in data:\n sw2[j] += 1\n num += 1\n cn = 0\n for j in sw2:\n if j % 2 == p[cn]:\n break\n cn += 1\n if cn == M:\n ans += 1\n\nprint(ans)\nmac:128 ry", "jacc_sim": 0.9245283018867925, "before_after_length": [311, 316], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "=!\nmac:128 ry", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u085035133", "n_user": "u085035133", "pos": "# -*- coding: utf-8 -*-\n\nn, m = map(int, input().split())\n\nlamps = [list(map(lambda x: int(x)-1, input().split()))[1:] for _ in range(m)]\np = list(map(int, input().split()))\n\nans = 0\n\nfor i in range(1 << n):\n for r in range(m):\n on_sum=0\n for j in range(n):\n if i >> j & 1 and j in lamps[r]:\n on_sum += 1\n\n if on_sum % 2 != p[r]:\n break\n\n else:\n ans += 1\n\nprint(ans)\n", "neg": "# -*- coding: utf-8 -*-\n\nn, m = map(int, input().split())\n\nlamps = [list(map(lambda x: int(x)-1, input().split()))[1:] for _ in range(n)]\np = map(int, input().split())\n\nans = 0\n\nfor i in range(1 << n):\n for r in range(m):\n on_sum=0\n for j in range(n):\n if i >> j & 1 and j in lamps[r]:\n on_sum += 1\n\n if on_sum % 2 != p[r]:\n break\n\n else:\n ans += 1\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [172, 169], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "nmlist()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u615918811", "n_user": "u615918811", "pos": "def main():\n N,M = map(int, input().split())\n s = [[int(x) for x in input().split()][1:] for _ in range(M)]\n p = [int(x) for x in input().split()]\n count=0\n for i in range(2**N):\n switch=[0]*N\n sw = bin(i)[2:]\n sw = \"0\"*(N-len(sw))+sw\n #print(sw)\n #for j in range(N):\n #switch[j] = int(sw[j])\n All=0 \n for j in range(M):\n Sum=0\n for k in s[j]:\n #if switch[k-1]==1:\n if int(sw[k-1])==1:\n Sum+=1\n if Sum%2 == p[j]:\n All+=1\n if All==M:\n count+=1\n print(count)\n\nmain()", "neg": "def main():\n N,M = map(int, input().split())\n s = [[int(x) for x in input().split()] for _ in range(M)]\n p = [int(x) for x in input().split()]\n count=0\n for i in range(2**N):\n switch=[0]*N\n sw = bin(i)[2:]\n sw=sw[:-1]\n sw = \"0\"*(N-len(sw))+sw\n #for j in range(N):\n #switch[j] = int(sw[j])\n All=0 \n for j in range(M):\n Sum=0\n for k in s[j]:\n #if switch[k-1]==1:\n if int(sw[k-1])==1:\n Sum+=1\n if Sum%2 == p[j]:\n All+=1\n if All==M:\n count+=1\n print(count)\n\nmain()", "jacc_sim": 1.0, "before_after_length": [241, 241], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "][1:=sw[:-1]\n swprint(sw)\n #", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u442877951", "n_user": "u442877951", "pos": "N,M = map(int,input().split())\nKS = [list(map(int,input().split()))[1:] for _ in range(M)]\nP = list(map(int, input().split()))\nans = 0\nfor i in range(2**N):\n switch_pattern = bin(i)[2:].zfill(N)\n succes = 1\n for j in range(M):\n switch_on = 0\n for k in KS[j]:\n if switch_pattern[k-1] == '1':\n switch_on += 1\n if switch_on % 2 != P[j]:\n succes = 0\n break\n if succes == 1:\n ans += 1\nprint(ans)", "neg": "N,M = map(int,input().split())\nKS = [[int(x) for x in input().split()] for _ in range(M)]\nP = list(map(int, input().split()))\nans = 0\nfor i in range(2**N):\n switch_pattern = bin(i)[2:].zfill(N)\n succes = 1\n for j in range(M):\n for k in KS[j]:\n switch_on = 0\n if switch_pattern[k-1] == '1':\n switch_on += 1\n if switch_on % 2 != P[j]:\n succes = 0\n break\n if succes == 1:\n ans += 1\nprint(ans)", "jacc_sim": 0.9767441860465116, "before_after_length": [178, 176], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "[lnsmap(x) for x t,))[1: switch_on = 0\n switch_on = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u141410514", "n_user": "u141410514", "pos": "n,m = map(int,input().split())\nlight = [list(map(int,input().split())) for _ in range(m)]\np = list(map(int,input().split()))\nans = 0\nfor i in range(2**n):\n binstr = list(reversed(format(i, '010b')))\n lightnum = 0\n for j in range(m):\n cnt = 0\n K = light[j][0]\n for k in range(1,K+1):\n s = light[j][k]\n if binstr[s-1] == '1':\n cnt += 1\n if p[j] == cnt%2:\n lightnum += 1\n if lightnum == m:\n ans += 1\nprint(ans)\n", "neg": "n,m = map(int,input().split())\nlight = [list(map(int,input().split())) for _ in range(m)]\np = list(map(int,input().split()))\nans = 0\nfor i in range(2**n):\n binstr = list(reversed(format(i, '010b')))\n lightnum = 0\n for j in range(m):\n cnt = 0\n for s in light[j]:\n if binstr[s-1] == '1':\n cnt += 1\n if p[j] == cnt%2:\n lightnum += 1\n if lightnum == m:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9534883720930233, "before_after_length": [190, 166], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "K = light[j][0]\n sk range(1,K+1):\n s =:[k]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u583285098", "n_user": "u583285098", "pos": "n, m = map(int, input().split())\nk = [list(map(int, input().split())) for _ in range(m)]\np = list(map(int, input().split()))\n\nans = 0\nfor i in range(2**n):\n light = 0\n for ki, j in enumerate(k):\n switch = 0\n for s in j[1:]:\n if i >> (s-1) & 1:\n switch += 1\n if switch % 2 == p[ki]:\n light += 1\n if light == m:\n ans += 1\nprint(ans)\n", "neg": "n, m = map(int, input().split())\nk = [list(map(int, input().split())) for _ in range(m)]\np = list(map(int, input().split()))\n\nans = 0\nfor i in range(2**n):\n light = 0\n for ki, j in enumerate(k):\n switch = 0\n for s in j[1:]:\n if i & (1 << s):\n switch += 1\n if switch % 2 == p[ki]:\n light += 1\n if light == m:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.926829268292683, "before_after_length": [146, 143], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": ">> (s-1) ( << s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u700636661", "n_user": "u700636661", "pos": "import sys\n\ndef all_lighted(input, mod, pattern):\n for i, bulb in enumerate(input):\n if bin(bulb & pattern).count('1') % 2 == mod[i]:\n next\n else:\n return False\n \n return True\n\n\ndef main():\n num_switch, num_bulb = [int(x) for x in sys.stdin.readline().split()]\n input = [0] * num_bulb\n\n for i in range(num_bulb):\n for x in sys.stdin.readline().split()[1:]:\n input[i] += 2**(int(x) - 1)\n\n mod = [int(x) for x in sys.stdin.readline().split()]\n\n count = 0\n\n for pattern in range(2 ** num_switch):\n if all_lighted(input, mod, pattern): count += 1\n\n print(count)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\n\ndef all_lighted(input, mod, pattern):\n for i, bulb in enumerate(input):\n if bin(bulb and pattern).count('1') % 2 == pattern[i]:\n next\n else:\n return False\n \n return True\n\n\ndef main():\n num_switch, num_bulb = [int(x) for x in sys.stdin.readline().split()]\n input = [0] * num_bulb\n\n for bulb in input:\n for x in sys.stdin.readline().split()[1:]:\n bulb += 2**(int(x) - 1)\n\n mod = [int(x) for x in sys.stdin.readline().split()]\n\n count = 0\n\n for i in range(2 ** num_switch):\n if all_lighted(input, mod, i): count += 1\n\n print(count)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.96, "before_after_length": [245, 239], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "&andmodpatternbulb np range(ntm_bulb)binplbt[i]ipatternipattern", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u886747123", "n_user": "u886747123", "pos": "N,M = map(int,input().split())\nks = [list(map(int,input().split())) for _ in range(M)]\np = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(2**N):\n switch = [0]*N\n \n for j in range(N):\n if (i>>j & 1):\n switch[j] = 1\n \n n_on_light = 0\n \n for x in range(M):\n n_on_switch_for_one_light = 0\n for k in range(ks[x][0]):\n n_on_switch_for_one_light += switch[ks[x][k+1]-1]\n if n_on_switch_for_one_light%2 == p[x]:\n n_on_light += 1\n \n if n_on_light == M:\n ans += 1\n \nprint(ans)", "neg": "N,M = map(int,input().split())\nks = [list(map(int,input().split())) for _ in range(M)]\np = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(2**N):\n switch = [0]*N\n \n for j in range(N):\n if (i>>j & 1):\n switch[j] = 1\n \n n_on_light = 0\n \n for x in range(M):\n n_on_switch_for_one_light = 0\n for k in range(ks[x][0]):\n n_on_switch_for_one_light += switch[ks[x][k+1]-1]\n if n_on_switch_for_one_light%2 == p[x]:\n n_on_light += 1\n \n if n_on_light == M:\n print(switch)\n ans += 1\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [234, 240], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "print(switch)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u888337853", "n_user": "u888337853", "pos": "import math\nimport copy\nfrom copy import deepcopy\nimport sys\nimport fractions\n# import numpy as np\nfrom functools import reduce\n# import statistics\nimport decimal\nimport heapq\nimport collections\nimport itertools\nfrom operator import mul\n\nsys.setrecursionlimit(100001)\n\n\n# input = sys.stdin.readline\n# sys.setrecursionlimit(10**6)\n\n# ===FUNCTION===\n\ndef getInputInt():\n inputNum = int(input())\n return inputNum\n\n\ndef getInputListInt():\n outputData = []\n inputData = input().split()\n outputData = [int(n) for n in inputData]\n\n return outputData\n\n\ndef getSomeInputInt(n):\n outputDataList = []\n for i in range(n):\n inputData = int(input())\n outputDataList.append(inputData)\n\n return outputDataList\n\n\ndef getSomeInputListInt(n):\n inputDataList = []\n outputDataList = []\n for i in range(n):\n inputData = input().split()\n inputDataList = [int(n) for n in inputData]\n outputDataList.append(inputDataList)\n\n return outputDataList\n\n\n# ===CODE===\n\nn, m = map(int, input().split())\n\ns = getSomeInputListInt(m)\np = getInputListInt()\n\ns_bit = []\n\nfor tmp_s in s:\n tmp_bit = 0\n for i in range(1, tmp_s[0] + 1, 1):\n aaa = 1 << (tmp_s[i] - 1)\n tmp_bit = aaa | tmp_bit\n s_bit.append(tmp_bit)\n\nans = 0\nfor i in range(int(pow(2, n))):\n flg = True\n for j in range(m):\n cnt = bin(s_bit[j] & i).count(\"1\")\n if cnt % 2 != p[j]:\n flg = False\n break\n if flg:\n ans += 1\n\nprint(ans)", "neg": "import math\nimport copy\nfrom copy import deepcopy\nimport sys\nimport fractions\n# import numpy as np\nfrom functools import reduce\n# import statistics\nimport decimal\nimport heapq\nimport collections\nimport itertools\nfrom operator import mul\n\nsys.setrecursionlimit(100001)\n\n\n# input = sys.stdin.readline\n# sys.setrecursionlimit(10**6)\n\n# ===FUNCTION===\n\ndef getInputInt():\n inputNum = int(input())\n return inputNum\n\n\ndef getInputListInt():\n outputData = []\n inputData = input().split()\n outputData = [int(n) for n in inputData]\n\n return outputData\n\n\ndef getSomeInputInt(n):\n outputDataList = []\n for i in range(n):\n inputData = int(input())\n outputDataList.append(inputData)\n\n return outputDataList\n\n\ndef getSomeInputListInt(n):\n inputDataList = []\n outputDataList = []\n for i in range(n):\n inputData = input().split()\n inputDataList = [int(n) for n in inputData]\n outputDataList.append(inputDataList)\n\n return outputDataList\n\n\n# ===CODE===\n\nn, m = map(int, input().split())\n\ns = getSomeInputListInt(m)\np = getInputListInt()\n\ns_bit = []\n\nfor tmp_s in s:\n tmp_bit = 0\n for i in range(1, tmp_s[0] + 1, 1):\n aaa = 1 << (i - 1)\n tmp_bit = aaa | tmp_bit\n s_bit.append(tmp_bit)\n\nans = 0\nfor i in range(int(pow(2, m))):\n flg = True\n for j in range(m):\n cnt = bin(s_bit[j] & i).count(\"1\")\n if cnt % 2 != p[j]:\n flg = False\n break\n if flg:\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [491, 486], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "tmp_s[]mn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u626337957", "n_user": "u626337957", "pos": "N, M = map(int, input().split())\nks = [list(map(int, input().split())) for i in range(M)]\np = list(map(int, input().split()))\n\ndef check(ar):\n cnt = 0\n for j in range(M):\n count = 0\n for k in ks[j][1::]:\n if ar[k-1] == 1:\n count += 1\n if count%2 == p[j]:\n cnt += 1\n return (cnt == M)\n\n\ndef dfs(n, ar):\n if n == 0:\n if check(ar):\n return 1\n else:\n return 0\n else:\n return dfs(n-1, ar+[0]) + dfs(n-1, ar+[1])\narr = []\nans = dfs(N, arr)\nprint(ans)\n", "neg": "N, M = map(int, input().split())\nks = [list(map(int, input().split())) for i in range(M)]\np = list(map(int, input().split()))\n\ndef check(ar):\n cnt = 0\n for j in range(M):\n count = 0\n for k in ks[1::]:\n if ar[k-1] == 1:\n count += 1\n if count%2 == p[j]:\n cnt += 1\n return (cnt == M)\n\n\ndef dfs(n, ar):\n if n == 0:\n if check(ar):\n return 1\n else:\n return 0\n else:\n return dfs(n-1, ar.append(0)) + dfs(n-1, ar.append(1))\narr = []\nans = dfs(N, arr)\nprint(ans)", "jacc_sim": 0.9767441860465116, "before_after_length": [212, 211], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "[j].appen+[0]) + fs0))n-1,ar[1])\narr = []\nans =n-1, ar.append(1))\narr = []\nans = dfs(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u060938295", "n_user": "u060938295", "pos": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun May 26 20:56:00 2019\n\n@author: Yamazaki Kenichi\n\"\"\"\n\nN,M = map(int,input().split())\nks = [list(map(int,input().split())) for i in range(M)]\np = list(map(int,input().split()))\n\nans = 0\nfor i in range(2**N):\n t = '{:010b}'.format(i)\n flg = True\n for j in range(M):\n tmp = 0\n for k in range(ks[j][0]):\n tmp += int(t[-ks[j][k+1]])\n# print(i,j,t,tmp,ans)\n if tmp%2 == p[j]:\n continue\n else:\n flg = False\n break\n# print(i,j,t,tmp,ans,flg)\n if flg:\n ans += 1\n\n \nprint(ans)", "neg": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun May 26 20:56:00 2019\n\n@author: Yamazaki Kenichi\n\"\"\"\n\nN,M = map(int,input().split())\nks = [list(map(int,input().split())) for i in range(M)]\np = list(map(int,input().split()))\n\nans = 0\nfor i in range(2**N):\n t = '{:010b}'.format(i)\n flg = True\n for j in range(M):\n tmp = 0\n for k in range(ks[j][0]):\n tmp += int(t[-ks[j][k]])\n# print(i,j,t,tmp,ans)\n if tmp%2 == p[j]:\n continue\n else:\n flg = False\n break\n if flg:\n ans += 1\n\n \nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [250, 231], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "+1# print(i,j,t,tmp,ans,flg)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u133936772", "n_user": "u133936772", "pos": "f=lambda:map(int,input().split())\nn,m=f()\nS=[[0]*n for _ in [0]*m]\nfor i in range(m):\n _,*s=f()\n for j in s: S[i][j-1]=1\np=[*f()]\nprint(sum(all(sum(i>>j&1*S[k][j] for j in range(n))%2==p[k] for k in range(m)) for i in range(2**n)))", "neg": "f=lambda:[*map(int,input().split())]\nn,m=f()\nS=[f()[1:] for _ in [0]*m]\np=f()\nprint(sum(all(sum(i>>-~k for k in S[j])%2==p[j] for j in range(m)) for i in range(2**n)))", "jacc_sim": 0.9210526315789473, "before_after_length": [126, 87], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "[*]f()0]*n for _ in [0]*m]\nfor i in range(m):\n _,*s=f()\n for j in s: S[i][j-: for _ in [0]*m]\np1\np=[*]-~j&1*S[ for k in S[j[j] for j in range(n)jkjk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u556070294", "n_user": "u556070294", "pos": "import itertools\n\nswitch, light = map(int, input().split())\nksm = []\nfor i in range(1, light+1):\n ks = input().split()\n ksm.append(ks)\n\npm = input().split()\n\nans = 0\nfor i in itertools.product([0, 1], repeat=switch):\n isOk = True\n for li in range(light):\n if not isOk:\n break\n p = int(pm[li])\n ks = ksm[li]\n light_sum = 0\n for ksi in range(int(ks[0])):\n light_sum += i[int(ks[ksi + 1]) - 1]\n if light_sum % 2 != p:\n isOk = False\n if isOk:\n ans += 1\nprint(ans)\n", "neg": "import itertools\n\nswitch, light = map(int, input().split())\nksm = []\nfor i in range(1, light+1):\n ks = input().split()\n ksm.append(ks)\n\npm = input().split()\n\nans = 0\nfor i in itertools.product([0, 1], repeat=switch):\n isOk = True\n for li in range(light):\n p = pm[li]\n ks = ksm[li]\n light_sum = 0\n for ksi in range(int(ks[0])):\n light_sum += i[int(ks[ksi + 1]) - 1]\n if light_sum % 2 != p:\n isOk = False\n if isOk:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9565217391304348, "before_after_length": [199, 187], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "p = pm[lf not isOk:\n break\n p = int(pm[li)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u513844316", "n_user": "u513844316", "pos": "N,M=map(int,input().split())\n\ns=[[0 for i in range(N)] for j in range(M)]\n\nfor i in range(M):\n tmp=list(map(int,input().split()))\n\n k=tmp[0]\n for j in range(k):\n s[i][tmp[j+1]-1]=1\n\np=list(map(int,input().split()))\n\nout=0\n\nfor i in range(2**N):\n b=list(map(int,list(bin(i))[2:]))\n b=[0 for j in range((N-len(b)))]+b\n ss=1\n for j in range(M):\n t=0\n for k in range(N):\n if b[k]==1 and s[j][k]==1:\n t+=1\n if t%2!=p[j]:\n ss=0\n if ss==1:\n out+=1\n\nprint(out)\n ", "neg": "N,M=map(int,input().split())\n\ns=[[0 for i in range(N)] for j in range(M)]\n\nfor i in range(M):\n tmp=list(map(int,input().split()))\n\n k=tmp[0]\n for j in range(k):\n s[i][tmp[j+1]-1]=1\n\np=list(map(int,input().split()))\n\nout=0\n\nfor i in range(2**N):\n b=list(map(int,list(bin(i))[2:]))\n b=[0 * (N-len(b))]+b\n ss=1\n for j in range(M):\n t=0\n for k in range(N):\n if b[k]==s[j][k]:\n t+=1\n if t%2!=p[j]:\n ss=0\n if ss==1:\n out+=1\n\nprint(out)\n \n", "jacc_sim": 0.975609756097561, "before_after_length": [251, 244], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "*forj in range()1 and ==1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u597455618", "n_user": "u597455618", "pos": "def dfs(A):\n global cnt\n\n if len(A) == n:\n ans = [0 for i in range(m)]\n for i, a in enumerate(A):\n if a:\n for j in range(m):\n if i+1 in s[j]:\n ans[j] += 1\n for x, y in zip(p, ans):\n if x != y%2:\n break\n else:\n cnt += 1\n return\n for v in range(2):\n A.append(v)\n dfs(A)\n A.pop()\n\nn, m = map(int, input().split())\ns = [list(map(int, input().split()))[1:] for _ in range(m)]\np = list(map(int, input().split()))\ncnt = 0\ndfs([])\nprint(cnt)", "neg": "import sys\ndef dfs(A):\n global cnt\n\n if len(A) == n:\n ans = [0 for i in range(m)]\n print(A)\n for i, a in enumerate(A):\n if a:\n for j in range(m):\n if i+1 in s[j]:\n ans[j] += 1\n print(ans)\n for x, y in zip(p, ans):\n if x != y%2:\n break\n else:\n cnt += 1\n return\n for v in range(2):\n A.append(v)\n dfs(A)\n A.pop()\n\nn, m = map(int, input().split())\ns = [list(map(int, x.split()))[1:] for x in sys.stdin.readlines()]\np = list(map(int, input().split()))\ncnt = 0\ndfs([])\nprint(cnt)", "jacc_sim": 0.9056603773584906, "before_after_length": [210, 229], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "import sys\n\n print(A)print(ans)\n xinput()x_sys.stdin.edligsm", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u384476576", "n_user": "u384476576", "pos": "import itertools\nN,M = input().split()\nN = int(N)\nM = int(M)\nline_list = []\nfor i in range(M):\n line = input().split()\n new_list=[]\n for l in line:\n new_list.append(int(l))\n new_list.pop(0)\n line_list.append(new_list)\nold_p_list = input().split()\np_list = []\nfor p in old_p_list:\n p_list.append(int(p))\n\nA = []\nfor n in range(N):\n A.append([True,False])\npattern_list = list(itertools.product(*A))\npattern_num = 0\nfor pattern in pattern_list:\n ok_flug = 1\n for i, line in enumerate(line_list):\n on_num = 0\n for l in line:\n if pattern[l-1]:\n on_num += 1\n if on_num%2 != p_list[i]:\n ok_flug = 0\n if ok_flug == 1:\n pattern_num += 1\nprint(pattern_num)\n", "neg": "import itertools\nN = int(N)\nM = int(M)\nline_list = []\nfor i in range(M):\n line = input().split()\n new_list=[]\n for l in line:\n new_list.append(int(l))\n new_list.pop(0)\n line_list.append(new_list)\nold_p_list = input().split()\np_list = []\nfor p in old_p_list:\n p_list.append(int(p))\n\nA = []\nfor n in range(N):\n A.append([True,False])\npattern_list = list(itertools.product(*A))\npattern_num = 0\nfor pattern in pattern_list:\n ok_flug = 1\n for i, line in enumerate(line_list):\n on_num = 0\n for l in line:\n if pattern[l-1]:\n on_num += 1\n if on_num%2 != p_list[i]:\n ok_flug = 0\n if ok_flug == 1:\n pattern_num += 1\nprint(pattern_num)", "jacc_sim": 1.0, "before_after_length": [284, 274], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "\nN,M = input().split()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u843722521", "n_user": "u843722521", "pos": "import itertools\nn,m = map(int,input().split())\nk = []\ns = []\nfor i in range(m):\n temp = list(map(int,input().split()))\n k.append(temp[0])\n s.append(temp[1:])\np = list(map(int,input().split()))\n\noz = [[1,0]]*n\nz = list(itertools.product(*oz))\nans = 0\nfor i in z:\n ad = True\n for j in range(m):\n cnt = 0\n for l in s[j]:\n if i[l-1] == 1:\n cnt += 1\n if not cnt%2 == p[j]:\n ad = False\n break\n if ad:\n ans += 1\nprint(ans)", "neg": "import itertools\nn,m = map(int,input().split())\nk = []\ns = []\nfor i in range(m):\n temp = list(map(int,input().split()))\n k.append(temp[0])\n s.append(temp[1:])\np = list(map(int,input().split()))\n\nz = list(itertools.combinations_with_replacement([1,0],n))\nans = 0\nfor i in z:\n ad = True\n for j in range(m):\n cnt = 0\n for l in range(k[j]):\n if i[s[j][l]-1] == 1:\n cnt += 1\n if not cnt%2 == p[j]:\n ad = False\n break\n if ad:\n ans += 1\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [194, 202], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "o[list(itertools.combinations_with_replacement(,]*\nz = list(itertools.product(*ozsrange(k)s[j][]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u453623947", "n_user": "u453623947", "pos": "n,m = map(int,input().split())\nks = [list(map(int,input().split())) for i in range(m)]\np = list(map(int,input().split()))\n\n\nans = 0\nfor i in range(2**n):\n s = 0\n for j in range(m):\n c = 0\n for k in range(len(ks[j])-1) :\n if ((i >> (ks[j][k+1]-1)) & 1) :\n c += 1\n if c % 2 == p[j]:\n s += 1\n if s == m :\n ans += 1\n\nprint(ans)\n", "neg": "n,m = map(int,input().split())\nks = [list(map(int,input().split())) for i in range(m)]\np = list(map(int,input().split()))\n\n\nans = 0\nfor i in range(2**n):\n s = 0\n for j in range(m):\n c = 0\n for k in range(len(ks[j])-1) :\n if ((i >> (ks[j][k+1]-1)) & 1) :\n c += 1\n if c != 0 and c % 2 == p[j]:\n s += 1\n if s == m :\n ans += 1\n\nprint(ans)\n", "jacc_sim": 0.95, "before_after_length": [162, 166], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "!= 0 and c ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u222252114", "n_user": "u222252114", "pos": "n, m = map(int, input().split())\n\nlis = []\nfor _ in range(m):\n new = list(map(int, input().split()))\n lis.append(new[1:])\n\nplist = list(map(int, input().split()))\n\nres = 0\nfor i in range(2**n):\n cou = [0 for k in range(m)]\n binary = '0'*(n - len(bin(i)[2:])) + bin(i)[2:]\n for j in range(n):\n if binary[j] == '1':\n for k in range(len(lis)):\n if j + 1 in lis[k]:\n cou[k] += 1 \n if all((cou[x] - plist[x])%2 == 0 for x in range(m)):\n res += 1\nprint(res)", "neg": "n, m = map(int, input().split())\n\nlis = []\nfor _ in range(m):\n new = list(map(int, input().split()))\n lis.append(new[1:])\n\nplist = list(map(int, input().split()))\n\nres = 0\nfor i in range(2**n):\n cou = [0 for k in range(m)]\n binary = bin(i)[2:]\n for j in range(len(binary)):\n if binary[j] == '1':\n for k in range(len(lis)):\n if j + 1 in lis[k]:\n cou[k] += 1 \n if all((cou[x] - plist[x])%2 == 0 for x in range(m)):\n res += 1\nprint(res)", "jacc_sim": 1.0, "before_after_length": [214, 201], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "'0'*(n - len()) + bin(i)[2:]le(binary)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u436982376", "n_user": "u436982376", "pos": "n,m=map(int,input().split())\n\nlamp=[]\nswitches=[]\ntemp=[]\n\nfor i in range(m):\n temp=list(map(int,input().split()))\n lamp.append(temp.pop(0))\n switches.append(temp)\n temp=[]\n\nmodul=list(map(int,input().split()))\n\nbit_list=[]\n\nfor i in range(2**(n)):\n bit_list.append(bin(i)[2:].zfill(n))\n\nans = 0\n\nfor b in bit_list:\n flag = 0\n for s,p in zip(switches,modul):\n sum = 0\n for k in range(len(s)):\n sum=sum+int(b[s[k]-1])\n if sum%2 != p:\n flag = 1\n break\n if flag == 0:\n ans=ans+1\n\nprint(ans)\n", "neg": "n,m=map(int,input().split())\n\nlamp=[]\nswitches=[]\ntemp=[]\n\nfor i in range(m):\n temp=list(map(int,input().split()))\n lamp.append(temp.pop(0))\n switches.append(temp)\n temp=[]\n\nmodul=list(map(int,input().split()))\n\nbit_list=[]\n\nfor i in range(2**(n)):\n bit_list.append(bin(i)[2:].zfill(n))\n\nans = 0\n\nfor b in bit_list:\n flag = 0\n sum = 0\n for s,p in zip(switches,modul):\n for k in range(len(s)):\n sum=sum+int(b[s[k]-1])\n if sum%2 != p:\n flag = 1\n break\n if flag == 0:\n ans=ans+1\n\nprint(bit_list)\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [239, 247], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "sum = 0\n sum = 0\n bit_list)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u779455925", "n_user": "u779455925", "pos": "N, M = map(int, input().split())\nswitch_list=[input().split() for i in range(M)]\nswitch_list=[[int(i[m+1]) for m in range(len(i)-1)] for i in switch_list]\nP_list=input().split()\nP_list=[int(i) for i in P_list]\ncount=0\nz=N\nfor i in range(1 << z):\n switch=[0 for i in range(N)]\n for j in range(z):\n if ((i >> j) & 1) == 1:\n switch[j]=1\n count+=sum([sum([switch[m-1] for m in switch_list[x]])%2==P_list[x] for x in range(M)])==M\nprint(count)\n", "neg": "N, M = map(int, input().split())\nswitch_list=[input().split() for i in range(M)]\nswitch_list=[[int(i[m+1]) for m in range(len(i)-1)] for i in switch_list]\nP_list=input().split()\nP_list=[int(i) for i in P_list]\nfor i in range(1 << z):\n switch=[0 for i in range(N)]\n for j in range(z):\n if ((i >> j) & 1) == 1:\n switch[j]=1\n count+=sum([sum([switch[m-1] for m in switch_list[x]])%2==P_list[x] for x in range(M)])==M\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [196, 188], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "count=0\nz=N\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u214434454", "n_user": "u214434454", "pos": "n, m = map(int,input().split())\nlis = [list(map(int,input().split())) for i in range(m)]\np = list(map(int,input().split()))\ncount = 0\nfor i in range(2**n):\n switch = [0]*n\n for j in range(n):\n if ((i >> j) & 1):\n switch[j] = 1\n All = True\n for k in range(m):\n on = 0 \n for l in lis[k][1:]:\n on += switch[l-1]\n if on % 2 == p[k]:\n continue\n else:\n All = False\n break\n if All == True:\n count += 1\n \nprint(count)", "neg": "n, m = map(int,input().split())\nlis = [list(map(int,input().split())) for i in range(m)]\np = list(map(int,input().split()))\ncount = 0\nfor i in range(n**2):\n switch = [0]*n\n for j in range(n):\n if ((i >> j) & 1):\n switch[j] = 1\n for k in range(m):\n on = 0\n All = True\n for l in range(len(lis[k][1:])):\n on += switch[lis[k][1+l]-1]\n if on % 2 == p[k]:\n continue\n else:\n All = False\n break\n if All == True:\n count += 1\n \nprint(count)", "jacc_sim": 0.9777777777777777, "before_after_length": [187, 199], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "n22nAll = True\n \nAll = Truerange(len())is[k][1+l]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u391589398", "n_user": "u391589398", "pos": "n, m = map(int, input().split())\ndenq = []\nfor _ in range(m):\n ks = tuple(map(lambda x: int(x)-1, input().split()))\n denq.append(ks[1:])\nP = tuple(map(int, input().split()))\n\nans = 0\nfor i in range(2**n):\n kk = [0] * m\n switch_states = [(i>>j)&1 for j in range(n)]\n for idq, dq in enumerate(denq):\n counts = 0\n for s in dq:\n counts += switch_states[s]\n if counts%2 != P[idq]:\n break\n else:\n ans += 1\nprint(ans)\n", "neg": "def resolve():\nn, m = map(int, input().split())\ndenq = []\nfor _ in range(m):\n ks = tuple(map(lambda x: int(x)-1, input().split()))\n denq.append(ks[1:])\nP = tuple(map(int, input().split()))\n\nans = 0\nfor i in range(2**n):\n kk = [0] * m\n # switch_states = [(i>>j)&1 for j in range(n)]\n for idq, dq in enumerate(denq):\n counts = 0\n for s in dq:\n counts += (i>>s)&1\n if counts%2 != P[idq]:\n break\n else:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9423076923076923, "before_after_length": [183, 189], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "def resolve():\n# (i>>)&1witch_states[s]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u103902792", "n_user": "u103902792", "pos": "n,m = map(int,input().split())\nss = []\nfor _ in range(m):\n s = list(map(int,input().split()))[1:]\n ss.append(s)\nps = list(map(int,input().split()))\n\ndef get_bit(i,n):\n res = []\n for _ in range(n):\n res.append(i%2)\n i = int(i/2)\n return res[::-1]\n\nans = 0\nfor i in range(2**n):\n flags = get_bit(i,n)\n for j in range(m):\n count = 0\n for k in ss[j]:\n count += flags[k-1]\n if count %2 == ps[j]:\n continue\n else:\n break\n else:\n ans += 1\nprint(ans)\n\n", "neg": "n,m = map(int,input().split())\nss = []\nfor _ in range(m):\n s = list(map(int,input().split()))[1:]\n ss.append()\nps = list(map(int,input().split()))\n\ndef get_bit(i,n):\n res = []\n for i in range(n):\n res.append(i%2)\n i = int(i/2)\n return res[::-1]\n\nans = 0\nfor i in range(2**n):\n flags = get_bit(i,n)\n for j in range(m):\n count = 0\n for k in ss[j]:\n count += flags[k-1]\n if count %2 == ps[j]:\n continue\n else:\n break\n else:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [215, 211], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "si_\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u455629561", "n_user": "u455629561", "pos": "from itertools import product\nN, M = map(int, input().split())\nS = []\nfor m in range(M):\n s = list(map(int, input().split()))\n S.append(s[1:])\nP = list(map(int, input().split()))\n\nans = 0\nfor c in product([0, 1], repeat=N):\n ok = True\n for m in range(M):\n sm = 0\n for s in S[m]:\n sm += c[s - 1]\n if sm % 2 != P[m]:\n ok = False\n break\n if ok:\n ans += 1\nprint(ans)", "neg": "N, M = map(int, input().split())\nS = []\nfor m in range(M):\n s = list(map(int, input().split()))\n S.append(s[1:])\nP = list(map(int, input().split()))\n\nans = 0\nfor c in product([0, 1], repeat=N):\n ok = True\n for m in range(M):\n sm = 0\n for s in S[m]:\n sm += c[s - 1]\n if sm % 2 != P[m]:\n ok = False\n break\n if ok:\n ans += 1\nprint(ans)", "jacc_sim": 0.9318181818181818, "before_after_length": [160, 155], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "from itertools import product\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u342869120", "n_user": "u342869120", "pos": "N, M = map(int, input().split())\nS = [0] * M\nfor i in range(M):\n _, *s, = map(int, input().split())\n for v in s:\n S[i] = S[i] | (1 << (v - 1))\n\n*P, = map(int, input().split())\n\nans = 0\nfor p in range(2**N):\n ok = True\n for i in range(M):\n b = format(p & S[i], 'b')\n if b.count('1') % 2 != P[i]:\n ok = False\n break\n if ok:\n ans += 1\n\nprint(ans)", "neg": "N, M = map(int, input().split())\nS = [0] * M\nfor i in range(M):\n _, *s, = map(int, input().split())\n for v in s:\n S[i] = S[i] | (2 << v)\n\n*P, = map(int, input().split())\n\nans = 0\nfor p in range(2**N):\n ok = True\n for i in range(M):\n b = format(p & S[i], 'b')\n if b.count('1') % 2 != P[i]:\n ok = False\n break\n if ok:\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9782608695652174, "before_after_length": [169, 166], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "21( - 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03031", "p_user": "u413318755", "n_user": "u413318755", "pos": "def bits2tuple(n):\n ret = []\n i = 0\n while (1 << i) <= n:\n if n & (1 << i) != 0:\n ret.append(i)\n i += 1\n return tuple(ret)\n\n\ndef main():\n N, M = map(int, input().split())\n\n kM = []\n skM = []\n for _ in range(M):\n sk = list(map(int, input().split()))\n k = sk.pop(0)\n\n kM.append(k)\n skM.append(sk)\n\n pM = list(map(int, input().split()))\n\n ans = 0\n for bits in range(0, 1 << N):\n on_switch = list(map(lambda x: x + 1, bits2tuple(bits)))\n\n all_on = True\n for p, k, sk in zip(pM, kM, skM):\n if len(set(on_switch) & set(sk)) % 2 != p:\n all_on = False\n break\n\n if all_on:\n ans += 1\n\n print(ans)\n\n\nmain()\n", "neg": "def bits2tuple(n):\n ret = []\n i = 0\n while (1 << i) <= n:\n if n & (1 << i) != 0:\n ret.append(i)\n i += 1\n return tuple(ret)\n\n\ndef main():\n N, M = map(int, input().split())\n\n kM = []\n skM = []\n for _ in range(M):\n sk = list(map(int, input().split()))\n k = sk.pop(0)\n\n kM.append(k)\n skM.append(sk)\n\n pM = list(map(int, input().split()))\n\n ans = 0\n for bits in range(1, 1 << N):\n on_switch = list(map(lambda x: x + 1, bits2tuple(bits)))\n\n all_on = True\n for p, k, sk in zip(pM, kM, skM):\n if 0 < len(set(on_switch) & set(sk)) and len(set(on_switch) & set(sk)) % 2 != p:\n all_on = False\n break\n\n if all_on:\n ans += 1\n\n print(ans)\n\n\nmain()\n", "jacc_sim": 0.9821428571428571, "before_after_length": [291, 307], "nl": "You have N switches with \"on\" and \"off\" states, and M bulbs. Each bulb is connected to a certain number of switches and is lit based on the number of \"on\" switches connected to it. Find the number of combinations of switch states that light all the bulbs. Constraints: 1 \u2264 N, M \u2264 10, 1 \u2264 ki \u2264 N, 1 \u2264 sij \u2264 N, sia \u2260 sib (a \u2260 b), pi is 0 or 1. Input format: N M, followed by k1 s11 s12 ... s1k1, kM sM1 sM2 ... sMkM, and p1 p2 ... pM. Output the number of combinations of switch states lighting all bulbs. Example: Input 2 2, 2 1 2, 1 2, 0 1. Output: 1.", "diff_info": "100 < %and2 != p:\n alen(set(ononswitch)& set(sk)) % 2 !p:False break\n\n if = False\n break\n\n if all_on", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u194894739", "n_user": "u194894739", "pos": "N, M = map(int, input().split())\nL, R = map(int, input().split())\nif M == 1:\n print(R - L + 1)\n exit()\nfor _ in range(M-1):\n l, r = map(int, input().split())\n if l <= R and L <= r:\n L = max(L, l)\n R = min(R, r)\n else:\n print(0)\n exit()\nprint(R - L + 1)\n", "neg": "N, M = map(int, input().split())\nL, R = map(int, input().split())\nif M == 1:\n print(R - L + 1)\nfor _ in range(M-1):\n l, r = map(int, input().split())\n if l <= R and L <= r:\n L = max(L, l)\n R = min(R, r)\n else:\n print(0)\n exit()\nprint(R - L + 1)\n", "jacc_sim": 1.0, "before_after_length": [124, 120], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": ")\n exit(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u095094246", "n_user": "u095094246", "pos": "n,m=map(int,input().split())\nl=1\nr=n\nfor i in range(m):\n li,ri=map(int,input().split())\n l = max(l,li)\n r = min(r,ri)\nprint(max(r-l+1,0))", "neg": "n,m=map(int,input().split())\nl=1\nr=n\nfor i in range(m):\n li,ri=map(int,input().split())\n l = max(l,li)\n r = min(r,ri)\nprint(max(r-l,0)", "jacc_sim": 0.9629629629629629, "before_after_length": [75, 73], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u572271833", "n_user": "u572271833", "pos": "n,m=map(int,input().split( ))\n\nL=[]\nR=[]\nfor i in range(m):\n l,r=map(int,input().split( ))\n L.append(l)\n R.append(r)\n\nprint(max(min(R)-max(L)+1,0))\n\n", "neg": "\nn,m=map(int,input().split( ))\nline=list(map(int,input().split( )))s\n\n\nL=[]\nR=[]\nfor i in range(m):\n l,r=map(int,input().split( ))\n L.append(l)\n R.append(r)\n\nprint(max(min(R)-max(L)+1,0)\n\n", "jacc_sim": 0.9090909090909091, "before_after_length": [81, 99], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "\n\nline=list(map(int,input().split( )))s\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u231261695", "n_user": "u231261695", "pos": "n, m = map(int, input().split())\nlr = [list(map(int, input().split())) for _ in range(m)]\nleft = [lr[i][0] for i in range(m)]\nright = [lr[i][1] for i in range(m)]\nans = min(right) - max(left)\nprint(ans+1 if ans >= 0 else 0)", "neg": "n, m = map(int, input().split())\np = []\nlr = [list(map(int, input().split())) for _ in range(m)]\nleft = [lr[i][0] for i in range(m)]\nright = [lr[i][0] for i in range(m)]\nans = max(left)-min(right)\nprint(ans+1 if ans >= 0 else 0)", "jacc_sim": 0.9705882352941176, "before_after_length": [93, 96], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "p = []\n01in(right) - mt)-min(righ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u700499791", "n_user": "u700499791", "pos": "n,m= input().split()\nn = int(n)\nm = int(m)\ng=[input().split() for i in range(m)]\nav =[-1,1000000]\nfor i in range(m):\n av[0] = max(int(g[i][0]),av[0])\n av[1] = min(int(g[i][1]),av[1])\nprint(max(av[1] -av[0]+1,0))", "neg": "n,m= input().split()\nn = int(n)\nm = int(m)\ng=[input().split() for i in range(m)]\n\nfor i in int(m):\n av =[0,0]\n av[0] = max(int(g[i][0]),av[0])\n av[1] = min(int(g[i][1]),av[1])\nprint(av[1] -av[0]+1)", "jacc_sim": 0.9629629629629629, "before_after_length": [115, 112], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "av =[-1,1000000]iratge =[0,0]\n avmax(,0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u443170850", "n_user": "u443170850", "pos": "N, M = map(int, input().split(\" \"))\nmin_l = 1\nmax_r = N\n\nfor m in range(M):\n l, r = map(int, input().split(\" \"))\n if l > min_l:\n min_l = l\n if r < max_r:\n max_r = r\n\nans = (max_r-min_l)+1\nif ans < 0:\n ans = 0\n\nprint(ans)\n", "neg": "N, M = map(int, input().split(\" \"))\nmin_l = 1\nmax_r = N\n\nfor m in range(M):\n l, r = map(int, input().split(\" \"))\n if l > min_l:\n min_l = l\n if r < max_r:\n max_r = r\n print(min_l, max_r)\nprint((max_r-min_l)+1)", "jacc_sim": 0.9333333333333333, "before_after_length": [115, 108], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": " print(min_l, max_r)aprit(s = \nif ans < 0:\n ans = 0\n\nprint(ans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u175590965", "n_user": "u175590965", "pos": "n,m = map(int,input().split())\nl = [0]*m\nr = [0]*m\nfor i in range(m):\n l[i],r[i] = map(int,input().split())\nif min(r)-max(l) < 0:\n print(0)\nelse:\n print(min(r)-max(l)+1)", "neg": "n,m = map(int,input().split())\nl = [0]*m\nr = [0]*m\nfor i in range(m):\n l[i],r[i] = map(int,input().split())\nif min(r)-max(l)<0:\n print(0)\nelse:\n print(min(r)-max(l)+1", "jacc_sim": 1.0, "before_after_length": [89, 88], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": " )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u914330401", "n_user": "u914330401", "pos": "N, M = map(int, input().split())\n \nl_list = []\nr_list = []\nfor i in range(M):\n l, r = map(int, input().split())\n l_list.append(l)\n r_list.append(r)\n \nl = max(l_list)\nr = min(r_list)\n \nif r < l:\n print(0)\nelse:\n print(r-l+1)", "neg": "N, M = map(int, input().split())\n\nl_list = []\nr_list = []\nfor i in range(M):\n l, r = map(int, input().split())\n l_list.append(l)\n r_list.append(r)\n \nl = max(l_list)\nr = min(r_list)\n\nif r < l:\n print(0)\nelse:\n print(l-r+1)", "jacc_sim": 1.0, "before_after_length": [115, 113], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": " lrrl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u589578850", "n_user": "u589578850", "pos": "n, m = map(int,input().split())\n\nlefts = [0] * m\nrights = [0] * m\n\nfor i in range(m):\n\tl, r = map(int,input().split())\n\tlefts[i] = l\n\trights[i] = r\n\nlefts_max = max(lefts)\nrights_min = min(rights)\n\nresult = rights_min - lefts_max + 1\n\nprint(max(result,0))", "neg": "n, m = map(int,input().split())\n\nlefts = [0] * m\nrights = [0] * m\n\nfor i in range(m):\n\tl, m = map(int,input().split())\n\tlefts[i] = l\n\trights[i] = r\n\nlefts_max = max(lefts)\nrithts_min = min(rights)\n\nresult = rights_min - lefts_max + 1\n\nprint(max(result,0))\n\n", "jacc_sim": 0.9705882352941176, "before_after_length": [115, 119], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "mrtg\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u700636661", "n_user": "u700636661", "pos": "import sys\n \ndef main():\n sinputl = sys.stdin.readline\n\n num_card, num_gate = [int(x) for x in sinputl().split()]\n input = [[int(x) for x in sinputl().split()] for _ in range(num_gate)]\n \n under_limit = [x[0] for x in input]\n over_limit = [x[1] for x in input]\n \n print(max(min(over_limit) - max(under_limit) + 1, 0))\n \n \nif __name__ == \"__main__\":\n main()", "neg": " import sys\n \n def main():\n sinputl = sys.stdin.readline\n \n num_card, num_gate = [int(x) for x in sinputl().split()]\n input = [[int(x) for x in sinputl().split()] for _ in range(num_gate)]\n \n under_limit = [x[0] for x in input]\n over_limit = [x[1] for x in input]\n \n print(max(min(over_limit) - max(under_limit) + 1, 0))\n \n \n if __name__ == \"__main__\":\n main()", "jacc_sim": 1.0, "before_after_length": [151, 156], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": " ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u253952966", "n_user": "u253952966", "pos": "n,m = map(int, input().split())\nlmax,rmin=0,n+1\nfor i in range(m):\n l,r=map(int, input().split())\n lmax=max(l,lmax)\n rmin=min(r,rmin)\nprint(max(0,rmin-lmax+1))", "neg": "n,m = map(int, input().split())\nlmax,rmin=0,n+1\nfor i in range(m):\n l,r=map(int, input().split()\n lmax=max(l,lmax)\n rmin=min(r,rmin)\nprint(max(0,lmax-rmin+1)", "jacc_sim": 1.0, "before_after_length": [84, 84], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": ")rmin--rmin)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u152891327", "n_user": "u152891327", "pos": "N, M = map(int, input().split())\nL = 1\nR = N\nfor i in range(M):\n Li, Ri = map(int, input().split())\n if Li > L:\n L = Li\n if Ri < R:\n R = Ri\nif L <= R:\n print(R - L + 1)\nelse:\n print(0)\n", "neg": "N, M = map(int, input().split())\nL = 0\nR = 100000\nfor i in range(M):\n Li, Ri = map(int, input().split())\n if Li > L:\n L = Li\n if Ri < R:\n R = Ri\nprint(L - R + 1)", "jacc_sim": 0.9333333333333333, "before_after_length": [92, 75], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "01N100000if L <= R:\n LRRL\nelse:\n print(0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u323045245", "n_user": "u323045245", "pos": "n, m = map(int, input().split())\nl = [0]*m\nr = [0]*m\nfor i in range(m):\n l[i], r[i] = map(int, input().split())\nprint(max(min(r) - max(l) + 1, 0))\n", "neg": "n, m = map(int, input().split())\nl = [0]*m\nr = [0]*m\nfor i in range(m):\n p, q = map(int, input().split())\n l[i], r[i] = map(int, input().split())\nprint(max(min[r] - max[l] + 1, 0))", "jacc_sim": 0.9333333333333333, "before_after_length": [73, 86], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "p, q = map(int, input().split())\n [(])[(])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u839857256", "n_user": "u839857256", "pos": "n, m = map(int, input().split())\nl, r = 0, n\nfor _ in range(m):\n l_in, r_in = map(int, input().split())\n l = max(l, l_in)\n r = min(r, r_in)\nprint(max(r-l+1, 0))\n", "neg": "n, m = map(int, input().split())\nl, r = 0, m\nfor _ in range(m):\n l_in, r_in = map(int, input().split())\n l = max(l, l_in)\n r = min(r, r_in)\nprint(max(r-l+1, 0))\n", "jacc_sim": 1.0, "before_after_length": [84, 84], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "mn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u564770050", "n_user": "u564770050", "pos": "n,m = map(int,input().split())\nls = [i for i in range(m)]\nrs = [i for i in range(m)]\ncnt = 0\nfor _ in range(m):\n ls[_],rs[_] = map(int,input().split())\n\nmaxl = max(ls)\nminr = min(rs)\n\nfor nn in range(1,n+1):\n if maxl <= nn and minr >= nn:\n cnt += 1\nprint(cnt)", "neg": "n,m = map(int,input().split())\nls = [i for i in range(m)]\nrs = [i for i in range(m)]\ncnt = 0\nfor _ in range(m):\n ls[_],rs[_] = map(int,input().split())\n\nmaxl = max(ls)\nminr = min(rs)\n\nfor nn in range(1,n+1):\n if maxl <= nn or minr >= nn:\n cnt += 1\n\nprint(cnt)", "jacc_sim": 0.9444444444444444, "before_after_length": [120, 121], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "orand\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u548834738", "n_user": "u548834738", "pos": "N, M = map(int, input().split())\nl = []\nr = []\nfor _ in range(M):\n s, t = map(int, input().split())\n l.append(s)\n r.append(t)\n \nlm = max(l)\nrm = min(r)\nprint(max([rm - lm + 1, 0]))", "neg": "N, M = map(int, input().split())\nl = []\nr = []\nfor _ in range(M):\n s, t = map(int, input().split())\n l.append(s)\n r.append(t)\n \nlm = max(l)\nrm = min(r)\nprint(max[rm - lm + 1, 0])", "jacc_sim": 1.0, "before_after_length": [87, 87], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u020812754", "n_user": "u020812754", "pos": "N, M = (int(x) for x in input().split())\nL = []\nR = []\nfor i in range(M):\n\tl, r = (int(x) for x in input().split())\n\tL.append(l)\n\tR.append(r)\n\t\nlmax = max(L)\nrmin = min(R)\nans = rmin - lmax + 1\nif ans < 0:\n\tans = 0\n\nprint(ans)", "neg": "N, M = (int(x) for x in input().split())\nL = []\nR = []\nfor i in range(M):\n\tl, r = (int(x) for x in input().split())\n\tL.append(l)\n\tR.append(r)\n\t\nlmax = max(L)\nrmin = min(R)\nans = lmax - rmin + 1\n\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [110, 99], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "lraxinrlinax\nprf nt( < 0:\n\tans = 0\n\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u542506429", "n_user": "u542506429", "pos": "n, m = map(int, input().split())\n\nimport numpy as np\n\nrets = np.array([0] * n)\nlmax = 1\nrmin = n\nfor _ in range(m):\n l, r = map(int, input().split())\n lmax = max(l, lmax)\n rmin = min(r, rmin)\nprint(rmin - lmax + 1 if rmin - lmax + 1 > 0 else 0)\n\n\n", "neg": "n, m = map(int, input().split())\n\nimport numpy as np\n\nrets = np.array([0] * n)\nlmax = n\nrmin = 0\nfor _ in range(m):\n l, r = map(int, input().split())\n lmax = max(l, lmax)\n rmin = min(r, rmin)\nprint(rmin - lmax + 1 if rmin - lmax + 1 > 0 else 0)\n\n\n", "jacc_sim": 1.0, "before_after_length": [110, 110], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "n10n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u491539020", "n_user": "u491539020", "pos": "import numpy as np\nn,m=map(int,input().split())\npost_b = 0\npost_c = n\nfor i in range(m):\n b,c=map(int,input().split())\n if post_b < b:\n post_b = b\n if post_c > c:\n post_c = c\n\nif (post_c - post_b + 1)<0:\n print(\"0\")\nelse:\n print(post_c - post_b + 1)\n", "neg": "import numpy as np\nn,m=map(int,input().split())\npost_b = 0\npost_c = n\nfor i in range(m):\n b,c=map(int,input().split())\n if post_b < b:\n post_b = b\n if post_c > c:\n post_c = c\n\nprint(c-b+1)\n", "jacc_sim": 0.9411764705882353, "before_after_length": [124, 94], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "prntf post_ post_ <0: print(\"0\")\nelse:\n print(post_c - post_b + 1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u115110170", "n_user": "u115110170", "pos": "n,m = map(int,input().split())\n\ns = 1\ne = n\n\nfor _ in range(m):\n l,r = map(int,input().split())\n \n s = max(s,l)\n e = min(e,r)\n \nprint(max(e-s+1,0))\n", "neg": "n,m = map(int,input().split())\n\ns = 0\ne = n-1\n\nfor _ in range(m):\n l,r = map(int,input().split())\n \n s = max(s,l)\n e = min(e,r)\n \nprint(max(e-s+1,0))", "jacc_sim": 1.0, "before_after_length": [81, 82], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "01-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u849177211", "n_user": "u849177211", "pos": "def prison():\n N, M = (int(i) for i in input().split())\n L_max = 0\n R_min = float(\"inf\")\n for _ in range(M):\n L, R = (int(i) for i in input().split())\n L_max = max(L, L_max)\n R_min = min(R, R_min)\n result = max(R_min - L_max + 1, 0)\n return result\n\n\nprint(prison())", "neg": "def prison():\n N, M = (int(i) for i in input().split())\n L_max = 0\n R_min = float(\"inf\")\n for _ in range(M):\n L, R = (int(i) for i in input().split())\n L_max = max(L, L_max)\n R_min = min(R, R_min)\n\tresult = max(R_min - L_max + 1, 0)\n return result\n\n\nprint(prison())", "jacc_sim": 1.0, "before_after_length": [124, 124], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u189479417", "n_user": "u189479417", "pos": "N, M = map(int,input().split())\nL = []\nR = []\nfor i in range(M):\n tmp_L, tmp_R = map(int,input().split())\n L.append(tmp_L)\n R.append(tmp_R)\n\nleft = max(L)\nright = min(R)\n\nif right - left < 0:\n print(0)\nelse:\n print(right - left + 1)", "neg": "N, M = map(int,input().split())\nL = []\nR = []\nfor i in range(M):\n tmp_L, tmp_R = input().split()\n L.append(tmp_L)\n R.append(tmp_R)\n\nleft = max(L)\nright = min(R)\n\nif right - left < 0:\n print(0)\nelse:\n print(right - left + 1)", "jacc_sim": 1.0, "before_after_length": [109, 105], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "map(int,)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u385167811", "n_user": "u439312138", "pos": "N,M = map(int,input().split(\" \"))\nL_list = []\nR_list = []\nfor i in range(M):\n L,R = map(int,input().split(\" \"))\n L_list.append(L)\n R_list.append(R)\nif min(R_list) - max(L_list) >= 0:\n print(min(R_list) - max(L_list) +1)\nelse:\n print(0)", "neg": "N,M = map(int,input().split())\nL_list = []\nR_list = []\n\nfor i in range(M):\n L,R = map(int,input().split())\n L_list.append(L)\n R_list.append(R)\n \nif max(R_list) >= max(L_list):\n print(max(R_list) - max(L_list) + 1)\nelse:\n print(0)", "jacc_sim": 0.9411764705882353, "before_after_length": [117, 114], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "\" \"\n \" \" \nin(R_list) - mRL0:\n print(min(R_list) - +1)\nelseprint(max(R_list) - max(L_list) + 1)\nelse:\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u798260206", "n_user": "u798260206", "pos": "n,m = map(int,input().split())\nll = []\nrl = []\n \nfor i in range(m):\n l,r = list(map(int,input().split()))\n ll.append(l)\n rl.append(r)\n \nif min(rl)= 1:\n print(c)\nelse:\n print(0)\n\n", "neg": "import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: map(str, sys.stdin.buffer.readline().split())\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.buffer.readline().split())\nrl = lambda: list(map(int, sys.stdin.readline().split()))\ninf = float('inf')\nmod = 10**9 + 7\n\nn, m = rm()\nl = 0\nr = inf\nfor _ in range():\n a, b = rm()\n a = max(a, l)\n b = min(b, inf)\nprint(b-a+1)\n\n", "jacc_sim": 0.9333333333333333, "before_after_length": [212, 190], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "):\n a, b = r(:, b = rm()\n lb = min(b, inf)\np = mt, r)\nc = ral)if c >= 1: print(c)\nelse:\n print(0)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u106797249", "n_user": "u106797249", "pos": "def resolve():\n (n, m) = list(map(int, input().split(\" \")))\n \n for i in range(m):\n o = list(map(int, input().split(\" \")))\n if i == 0:\n lmax = o[0]\n rmin = o[1]\n else:\n lmax = max(lmax, o[0])\n rmin = min(rmin, o[1])\n\n print(rmin-lmax+1 if lmax <= rmin else 0)\n\n\nif '__main__' == __name__:\n resolve()", "neg": "def resolve():\n (n, m) = list(map(int, input().split(\" \")))\n \n for i in range(m):\n o = list(map(int, input().split(\" \")))\n if i == 0:\n lmax = o[0]\n rmin = o[1]\n else:\n lmax = max(lmax, o[0])\n rmin = min(rmin, o[1])\n\n print(rmin-lmax+1 if rmin > lmax else 0)\n\n\nif '__main__' == __name__:\n resolve()", "jacc_sim": 0.9473684210526315, "before_after_length": [141, 141], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "rmin > <= rmin", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u756829954", "n_user": "u756829954", "pos": "def p_c():\n n, m = map(int, input().split())\n _min = n\n _max = 0\n for _ in range(m):\n l, r = map(int, input().split())\n _min = min(_min, r)\n _max = max(_max, l)\n print(max(_min - _max + 1, 0))\n\np_c()", "neg": "n, m = map(int, input().split())\n_min = 0\n_max = n\nfor _ in range(m):\n l, r = map(int, input().split())\n _min = min(_min, r)\n _max = max(_max, l)\n print(max(_max - _min + 1, 0))", "jacc_sim": 0.9310344827586207, "before_after_length": [97, 81], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "def p_c():\n = n\n _max_max=n\n _min=min(_min,r)\n_max= max(ax, l)\n prt( = axinin, r)\n _m = max(_max, l)\n print(max(_mininax\n\np_c()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u023141436", "n_user": "u023141436", "pos": "n,m = map(int,input().split())\n\nLmax = 0\nRmin = 1000000\nfor i in range(m):\n\tL,R = map(int,input().split())\n\tif Lmax < L:\n\t\tLmax = L\n\tif Rmin > R:\n\t\tRmin = R\nres = Rmin - Lmax + 1\nif res > 0:\n\tprint(\"%d\" % (Rmin - Lmax +1))\nelse:\n\tprint(0)", "neg": "n,m = map(int,input().split())\n\nLmax = 0\nRmin = 100000\nfor i in range(m):\n\tL,R = map(int,input().split())\n\tif Lmax < L:\n\t\tLmax = L\n\tif Rmin > R:\n\t\tRmin = R\nif Rmin > Lmax:\n\tprint(\"0\")\nelse:\n\tprint(\"%d\" % (Rmin - Lmax +1))", "jacc_sim": 0.9142857142857143, "before_after_length": [116, 108], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "0ifres= - Lmax + 1\nif resLmax:\n\tprint(\"\")\nelse\nelse:\n\tprint(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03037", "p_user": "u540698208", "n_user": "u540698208", "pos": "from sys import stdin\n\nn, m = (int(x) for x in stdin.readline().rstrip().split())\nlr = [stdin.readline().rstrip().split() for _ in range(m)]\nl = max([int(i[0]) for i in lr])\nr = min([int(i[1]) for i in lr])\n\nif l <= r:\n print(r-l+1)\nelse:\n print(0)", "neg": "from sys import stdin\n\nn, m = (int(x) for x in stdin.readline().rstrip().split())\nlr = [stdin.readline().rstrip().split() for _ in range(m)]\nl = max([i[0] for i in lr])\nr = min([i[1] for i in lr])\n\nif l <= r:\n print(r-l+1)\nelse:\n print(0)\n", "jacc_sim": 1.0, "before_after_length": [107, 104], "nl": "You have N ID cards and M gates. To pass the i-th gate, you need one of the ID cards from the L_i-th to R_i-th. Find the number of ID cards that allow you to pass all gates alone. Constraints: All input values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, and 1 \u2264 L_i \u2264 R_i \u2264 N. Input format: N M L_1 R_1 L_2 R_2 ... L_M R_M. Output the number of ID cards that allow you to pass all gates alone.", "diff_info": "nt(i for i in lr]\nr=form i lr])\nr = minint()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u558059388", "n_user": "u558059388", "pos": "N,K=(int(x) for x in input().split())\nS=list(input())\nS[K-1] = S[K-1].lower()\nprint(''.join(S))", "neg": "N,K=(int(x) for x in input().split())\nS=list(int(i) for i in input())\nS[K-1] = S[K-1].lower()\nprint(','.join(S))", "jacc_sim": 0.9583333333333334, "before_after_length": [46, 54], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "t(i) for i in in,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u849433300", "n_user": "u849433300", "pos": "N, K = map(int,input().split())\t\nS = input()\n\n#print(S[K-1])\nS = (S[:K-1] + S[K-1].lower() + S[K:])\nprint(S)", "neg": "N, K = map(int,input().split())\t\nS = input()\n\n#print(S[K-1])\nS = (S[:K-2]+S[K-1].lower()+S[K:]\nprint(S)", "jacc_sim": 0.9545454545454546, "before_after_length": [59, 57], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "21 )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u517621096", "n_user": "u140680196", "pos": "n, k = map(int, input().split())\ns = input()\n\nprint(s[:k-1] + s[k-1].lower() + s[k:])\n", "neg": "n, k = map(int, input().split())\ns = input()\n\nprint(s[:k] + s[k].lower() + s[k+1:])", "jacc_sim": 0.95, "before_after_length": [43, 40], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "-1-1+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u956112889", "n_user": "u132583371", "pos": "n, k = list(map(int, input().split()))\ns = list(input())\ns[k - 1] = s[k - 1].lower()\nprint(\"\".join(s))", "neg": "n,k = map(int,input().split())\ns = list(input())\ns[k-1] = s[k-1].lower()\n\nprint(s)", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 41], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " list( ) \n\"\".join()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u765815947", "n_user": "u765815947", "pos": "n, k = map(int, input().split())\ns =input()\nprint(s[:k-1] + s[k-1].lower() +s[k:])", "neg": "n, k = map(int, input().split())\ns = input()\nprint(s[:k]+lower(s[k])+s[k+1:])\n", "jacc_sim": 0.95, "before_after_length": [41, 39], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " -1 s[k-1].s[k] +1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u266171694", "n_user": "u239301277", "pos": "n, k = map(int, input().split())\ns = input()\nprint(s[:k - 1] + s[k - 1].lower() + s[k:])", "neg": "n,k=int(input().split())\ns=input()\nprint(s[:k-1]+s.replace(s[k-1], s[k-1].lower())+s[k:])", "jacc_sim": 0.9047619047619048, "before_after_length": [42, 48], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " map((, s.replace(s[k-1], ) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u631277801", "n_user": "u631277801", "pos": "import sys\nstdin = sys.stdin\n\nsys.setrecursionlimit(10 ** 7)\n\ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x) - 1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\nn,k = li()\ns = ns()\n\nprint(s[:k-1] + s[k-1].lower() + s[k:])", "neg": "import sys\nstdin = sys.stdin\n\nsys.setrecursionlimit(10 ** 7)\n\ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x) - 1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\nn,k = li()\ns = ns()\n\nprint(s[:k].lower() + s[k:])", "jacc_sim": 1.0, "before_after_length": [174, 165], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "-1] + s[k-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u580327099", "n_user": "u580327099", "pos": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\nimport sys\n\ninput = sys.stdin.readline\n\ndef main():\n n, k = [int(e) for e in input().split(\" \")]\n s = \"\"\n for i, r in enumerate(input()):\n if i == k-1:\n s += r.lower()\n else:\n s += r\n print(s)\n\nmain()\n", "neg": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\nimport sys\n\ninput = sys.stdin.readline\n\ndef main():\n n, k = [int(e) for e in input().split(\" \")]\n print(n, k)\n s = \"\"\n for i, r in enumerate(input()):\n if i == k-1:\n s += r.lower()\n else:\n s += r\n print(s)\n\nmain()\n", "jacc_sim": 1.0, "before_after_length": [116, 124], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "ps = \"\"\n fo nt(nr in enumerate(input()):\n if i == )\n s = \"\"\n for i, r in enumerate(input()):\n if i == k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u213401801", "n_user": "u213401801", "pos": "n,k=map(int,input().split())\ns=input()\nprint(s[0:k-1]+s[k-1].lower()+s[k:])", "neg": "n,k=map(int,input().split())\ns=input()\nprint(s[0:k-1]+s[k-1]+s[k:])", "jacc_sim": 0.9523809523809523, "before_after_length": [42, 39], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": ".lower()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u710398282", "n_user": "u710398282", "pos": "N, K = map(int, input().split())\ns3 =[]\n\ns = list(input())\n\ns1 = s\n\n\ns2= s1[K-1]\n\ns3 = s2.lower()\n\ns1[K-1] = s3\n\nprint('' .join(s1))", "neg": "N, K = map(int, input().split())\ns3 =[]\n\ns = list(input())\n\ns1 = s\n\n\ns2= s1[K]\n\ns3 = s2.lower()\n\ns1[K] = s3\n\nprint('' .join(s1))\n", "jacc_sim": 0.9166666666666666, "before_after_length": [77, 74], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "-1-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u492605584", "n_user": "u759510609", "pos": "N, K = map(int, input().split())\nS = list(input())\ntmp = S[K-1]\ntmp = tmp.lower()\nS[K-1] = tmp\nprint(''.join(S))", "neg": "N,K=map(int,input().split())\nS = list(input())\n\nS[K-1] = S[K-1].lower()\n\nprint(\"\".join(S)", "jacc_sim": 0.9545454545454546, "before_after_length": [52, 45], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " tmp = S[K-1]\ntmp = tmp.lower()tmpS[K-1].lower()\n\"\"'')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u028217518", "n_user": "u028217518", "pos": "read = input\nn, k = map(int, read().split())\ns = read()\nk -= 1\ns= s[:k] + str.lower(s[k]) + s[k+1:]\nprint(s)", "neg": "n, k = map(int, read().split())\ns = read()\nk -= 1\ns= s[:k] + str.lower(s[k]) + s[k+1:]\nprint(s)", "jacc_sim": 0.9545454545454546, "before_after_length": [53, 49], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "read = input\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u995062424", "n_user": "u393253137", "pos": "n,k=map(int, input().split())\nS=input()\ns=S.lower()\nprint(S[:k-1]+s[k-1]+S[k:])", "neg": "n,k=map(int,input().split())\ns=input()\nprint(s[:k]+s[k-1].lower()+s[k+1:])", "jacc_sim": 0.9523809523809523, "before_after_length": [44, 40], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " sSs=S.lower()\nsS-1.lower()sS+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u095089755", "n_user": "u960653324", "pos": "N, K = list(map(int, input().split()))\nS=list(input())\nS[K - 1] = S[K - 1].lower()\nprint(\"\".join(S))", "neg": " N,K= map(int, input().split())\n S = list(str(input()))\n\n S[K-1] = S[K-1].lower()\n print(''.join(S))", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 47], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " list() (str)\n ''\"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u898967808", "n_user": "u898967808", "pos": "n,k = map(int,input().split())\ns = list(input())\ns[k-1]= str.lower(s[k-1])\nprint(\"\".join(s))", "neg": "n,k = map(int,input().split())\ns = list(input())\ns[k-1]= str.lower(s[k-1])\n\"\".join(s)uu", "jacc_sim": 0.9130434782608695, "before_after_length": [45, 45], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "print()uu", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u687766076", "n_user": "u452066060", "pos": "n, k = [int(i)-1 for i in input().split()]\ns = input()\nprint(s[:k]+s[k].lower()+s[k+1:])\n", "neg": "n, k = (int(i) for i in input().split()) \ns = input()\ns_ = s[:k-1] + s[k].lower() + s[k:]\nprint(s_)", "jacc_sim": 0.9565217391304348, "before_after_length": [45, 50], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "([-1]) s_ = print(-1 +1)print(s_)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u323045245", "n_user": "u415325136", "pos": "N, K = map(int, input().split())\nS = list(input())\n\nS[K-1] = S[K-1].lower()\n\nS = ''.join(S)\nprint(S)\n", "neg": "N, K = map(int, input().split())\nS = list(input())\n\nS[K-1].lower()\n\nans = ''\nans = ''.join(S)\n\nprint(ans)", "jacc_sim": 0.9545454545454546, "before_after_length": [52, 49], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " = S[K-1]Sans = ''\nans\nSans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u045408189", "n_user": "u168416324", "pos": "n,k=map(int,input().split())\ns=input()\nprint(s[:(k-1)]+s[k-1].lower()+s[k:])\n", "neg": "n,k=map(int,input().split())\ns=input()\nprint(s[:k]+s[k].lower()+s[k+1:])", "jacc_sim": 0.95, "before_after_length": [43, 38], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "(-1)-1+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u021471186", "n_user": "u021471186", "pos": "NK = input().split()\nNK = [int(s) for s in NK]\n\nS = input()\n\nout = ''\nif NK[1] == 1:\n out = S.capitalize().swapcase()\nelse:\n out = S[:NK[1] - 1] + S[NK[1]-1:].capitalize().swapcase()\n\nprint(out)", "neg": "NK = input().split()\nNK = [int(s) for s in NK]\n\nS = input()\n\nout = ''\nif NK[1] == 1:\n out = S.capitalize().swapcase()\nelse:\n out = S[:NK[1] - 2] + S[NK[1]-1:].capitalize().swapcase()\n\nprint(out)", "jacc_sim": 0.9615384615384616, "before_after_length": [98, 98], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "21", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u985648232", "n_user": "u985648232", "pos": "input1 = list(map(int, input().split()))\n\ntar_str = input()\n\noutput_str = ''\n\nfor i in range(len(tar_str)):\n if i == input1[1] - 1:\n output_str += tar_str[i].lower()\n else:\n output_str += tar_str[i]\n\nprint(output_str)\n", "neg": "input1 = list(map(int, input().split()))\n\ntar_str = input()\n\noutput_str = ''\n\nfor i in range(len(tar_str)):\n if i == input1[1]:\n output_str += tar_str[i].lower()\n else:\n output_str += tar_str[i]\n\nprint(output_str)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [95, 92], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u302292660", "n_user": "u302292660", "pos": "n,k = map(int,input().split())\ns = list(input())\ns[k-1] = s[k-1].lower()\ns =\"\".join(s)\nprint(s)", "neg": "n,k = map(int,input().splt())\ns = list(input())\ns[k-1] = s[k-1].lower()\ns =\"\".join(s)\nprint(s)", "jacc_sim": 0.9090909090909091, "before_after_length": [49, 50], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u024609780", "n_user": "u024609780", "pos": "change_K = int(input().split(\" \")[-1])\nword_S = list(input())\nS = list(word_S)\nword1 = \"\"\nfor i in range(change_K - 1):\n word1 = word1 + S[i]\nword2 = S[change_K - 1]\nword3 = \"\"\ncount = 0\nwhile True:\n try:\n word3 = word3 + S[change_K + count]\n count += 1\n except IndexError:\n break\nword2 = word2.swapcase()\nprint(word1 + word2 + word3)\n", "neg": "word_S = input().split(\" \")[-1]\nS = list(word_S)\nchange_K = int(input())\nword1 = \"\"\nfor i in range(change_K - 1):\n word1 = word1 + S[i]\nword2 = S[change_K - 1]\nword3 = \"\"\ncount = 0\nwhile True:\n try:\n word3 = word3 + S[change_K + count]\n count += 1\n except IndexError:\n break\nword2 = word2.swapcase()\nprint(word1+word2+word3)\n", "jacc_sim": 1.0, "before_after_length": [142, 140], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "wordchangeSKint()word_word_S)\nchange_K = t(in)\nS = list(word_S ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u338824669", "n_user": "u868628468", "pos": "N,K=map(int,input().split())\nS=input()\na=S[K-1].lower()\nprint(S[:K-1]+a+S[K:])", "neg": "N, K = map(int, input().split())\nS = input()\na = S[K-1]\nS[K-1] = a.lower()\nprint(S)", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 43], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " \nS[K-1] = a[:K-1]+a+S[K:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u102275718", "n_user": "u102275718", "pos": "\nn,k = map(int, input().split())\ns = input()\n\ns_temp = s.swapcase()\n\nans = s[:k-1]+s_temp[k-1]+s[k:]\n\nprint(ans)", "neg": "n,k = map(int, input().split())\ns = input()\n\ns_temp = s.swapcase()\n\nans = s[:k]+s_temp[k]+s[k+1:]\n\nprint(ans)", "jacc_sim": 0.9545454545454546, "before_after_length": [57, 54], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "\n-1-1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u737758066", "n_user": "u303059352", "pos": "n, k = map(int, input().split())\ns = list(input())\n\ns[k-1] = s[k-1].lower()\nprint(''.join(s))\n", "neg": "n, k = list(map(int, input().split()))\ns = input()\ns[k - 1].lower()\nprint(s)", "jacc_sim": 0.9047619047619048, "before_after_length": [45, 34], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "list()list()\n-1]= s[k ''.join()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u703130195", "n_user": "u703130195", "pos": "N, K = map(int, input().split())\ns = list(input())\ns[K-1] = s[K-1].lower()\nprint(''.join(s))\n", "neg": "N, K = map(int, input().split())\ns = list(input())\ns[K-1] = s[K-1].lower()\nprint(s)", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 40], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "''.join()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u296989351", "n_user": "u003501233", "pos": "n, k = map(int, input().split())\ns = list(input())\ns[k-1] = s[k-1].lower()\nprint(''.join(s))\n", "neg": "n,k=map(int,input().split())\ns=list(input())\ns[k-1]=s[k-1].lower()\nprint(s)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 41], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " ''.join()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u622570247", "n_user": "u571128069", "pos": "n, k = map(int, input().split())\ns = input()\n\nk = k - 1\ns = s[:k] + s[k].lower() + s[k+1:]\nprint(s)\n", "neg": "n, k = map(int, input().split())\ns = input()\n\nprint(s[:k-1] + lower(s[k-1]) + s[k:])", "jacc_sim": 1.0, "before_after_length": [51, 42], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "k = k - 1\ns = s[:k] + s[k].lower() + s[k+1:]\n[:k-1] + lower(s[k-1]\n + s[k:])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u762960952", "n_user": "u762960952", "pos": "N,K = map(int,input().split(\" \"))\nS = list(input())\n\ntmp = S[K-1].lower()\nS[K-1] = tmp\nans = \"\".join(S)\n\nprint(ans)", "neg": "N,K = map(int,input().split(\" \"))\nS = input()\n\ntmp = S[K-1].lower()\nS[K-1] = tmp\nans = \"\".join(S)\n\nprint(ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [57, 55], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": "list()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03041", "p_user": "u690040890", "n_user": "u116233709", "pos": "n, k = map(int,input().split())\ns = list(input())\ns[k-1] = s[k-1].lower()\nprint(''.join(s))", "neg": "n,k=map(int,input().split())\ns=list(input())\n\ns[k-1]=s[k-1].lower()\n\nprint(s)\n\n", "jacc_sim": 0.9047619047619048, "before_after_length": [43, 44], "nl": "You are given a string S of length N consisting of characters A, B, and C, and an integer K between 1 and N (inclusive). Print the string S after lowercasing the K-th character in it. Constraints: 1 \u2264 N \u2264 50, 1 \u2264 K \u2264 N. Input is given in the format N K S, and the output should be the string S after lowercasing the K-th character. Example: Input 1: 3 1 ABC, Output 1: aBC. Example: Input 2: 4 3 CABA, Output 2: CAbA.", "diff_info": " \n \n''.join()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u955251526", "n_user": "u955251526", "pos": "class Unionfind():\n def __init__(self, size):\n self.table = [-1 for _ in range(size)]\n\n def find(self, x):\n while(self.table[x] >= 0):\n x = self.table[x]\n return x\n\n def union(self, x, y):\n xp = self.find(x)\n yp = self.find(y)\n if xp != yp:\n if self.table[xp] <= self.table[yp]:\n self.table[xp] += self.table[yp]\n self.table[yp] = xp\n else:\n self.table[yp] += self.table[xp]\n self.table[xp] = yp\n\nn, m = map(int, input().split())\nclue = Unionfind(n)\nfor _ in range(m):\n x, y, _ = map(int, input().split())\n clue.union(x-1, y-1)\nroots = set()\nfor i in range(n):\n roots.add(clue.find(i))\nprint(len(roots))", "neg": "class Unionfind():\n def __init__(self, size):\n self.table = [-1 for _ in range(size)]\n\n def find(self, x):\n while(self.table[x] >= 0):\n x = self.table[x]\n return x\n\n def union(self, x, y):\n xp = self.find(x)\n yp = self.find(y)\n if xp != yp:\n if self.table[xp] <= self.table[yp]:\n self.table[yp] = xp\n self.table[xp] += self.table[yp]\n else:\n self.table[xp] = yp\n self.table[yp] += self.table[xp]\n\nn, m = map(int, input().split())\nclue = Unionfind(n)\nfor _ in range(m):\n x, y, _ = map(int, input().split())\n clue.union(x-1, y-1)\nroots = set()\nfor i in range(n):\n roots.add(clue.find(i))\nprint(len(roots))", "jacc_sim": 1.0, "before_after_length": [271, 271], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "yp] = xp\n self.table[else:\n xp] = ] = xp\n else:\n self.table[xp] = yp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u096616343", "n_user": "u096616343", "pos": "import sys\nsys.setrecursionlimit(10 ** 7)\n\ndef dfs(s):\n if visited[s]:\n return\n visited[s] = 1\n for to in t[s]:\n if visited[to]:\n continue\n dfs(to)\n \nN, M = map(int,input().split())\nt = [[] for _ in range(N)]\nvisited = [0] * N\nfor _ in range(M):\n X, Y, Z = map(int,input().split())\n X -= 1\n Y -= 1\n t[X].append(Y)\n t[Y].append(X)\nans = 0\nfor i in range(0, N):\n if visited[i]:\n continue\n ans += 1\n dfs(i)\nprint(ans)", "neg": "import sys\nsys.setrecursionlimit(10 ** 7)\n\ndef dfs(s):\n if visited[s]:\n return\n visited[s] = 1\n for to in t[s]:\n if visited[to]:\n continue\n dfs(to)\n \nN, M = map(int,input().split())\nt = [[] for _ in range(N)]\nvisited = [0] * N\nfor _ in range(M):\n X, Y, Z = map(int,input().split())\n X -= 1\n Y -= 1\n t[X].append(Y)\n t[Y].append(X)\nfor i in range(1, N + 1):\n s = visited.index(0)\n dfs(s)\n if min(visited):\n ans = i\n break\nprint(ans)", "jacc_sim": 0.9361702127659575, "before_after_length": [192, 200], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "ans = 0\n0, N):\n if visited[i]:\n continue\n ans += , N + 1):s = visite.index(0)\n ds)\n f min(visited: ans = i\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u942033906", "n_user": "u942033906", "pos": "# coding: utf-8\n# Your code here!\nN,M = map(int,input().split())\nlst = [i for i in range(N)]\n\ndef root(n):\n if n == lst[n]:\n return n\n lst[n] = root(lst[n])\n return lst[n]\n\ndef union(x,y):\n rootX, rootY = root(x), root(y)\n if rootX != rootY:\n if rootX > rootY:\n lst[rootX] = rootY\n if rootY > rootX:\n lst[rootY] = rootX\n\nfor i in range(M):\n X,Y,Z = map(int,input().split())\n X -= 1\n Y -= 1\n union(X, Y)\n\nans = len([i for i in range(N) if root(i) == i])\nprint(ans)\n\n", "neg": "# coding: utf-8\n# Your code here!\nN,M = map(int,input().split())\nlst = [i for i in range(N)]\n\ndef root(n):\n if n == lst[n]:\n return n\n lst[n] = func(lst[n])\n return lst[n]\n\ndef union(x,y)\n rootX, rootY = root(x), root(y)\n if rootX != rootY:\n lst[max(x,y)] = min(x,y)\n\nfor i in range(M):\n X,Y,Z = map(int,input().split())\n X -= 1\n Y -= 1\n union(X, Y)\n\nfor i in range(N):\n func(i)\n\nans = len([i for i in range(N) if lst[i] == i])\nprint(ans)\n\n", "jacc_sim": 0.9148936170212766, "before_after_length": [221, 215], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "funcroot:lsif rooX > rootY:\n lstrootX] = rootY\n if rootY > rootX:\n lst[rootY] = rootX\n\nfor i in range(M):\n X,Y,Z = xpx,y)] = mt(xyinput(.split()) X -= 1 Y -= 1\n union(X, Y)\n\nans = len([i M):\n X,Y,Z = map(int,input().split())\n X -= 1\n Y -= 1\n union(X, Y)\n\nfor i in range(:\n func()\n\nans = len([i ori in ooange(N) if ls[i] == i])\nprintians == i])print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u123824541", "n_user": "u123824541", "pos": "class UnionFind:\n def __init__(self, n=1):\n self.par = [i for i in range(n)]\n self.rank = [0] * (n+1)\n self.cnt = 0\n\n \n def find(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n \n def groupsize(self):\n self.cnt = 0\n for i, x in enumerate(self.par):\n if x == i:\n self.cnt += 1\n return self.cnt\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n \n def same_check(self, x, y):\n return self.find(x) == self.find(y)\n\nN, M = map(int,input().split())\nA = [list(map(int,input().split())) for i in range(M)]\nuf = UnionFind(N)\n\nfor i in range(M):\n uf.union(A[i][0]-1, A[i][1]-1)\n\nprint(uf.groupsize())\n", "neg": "class UnionFind:\n def __init__(self, n=1):\n self.par = [i for i in range(n)]\n self.rank = [0] * (n+1)\n self.cnt = 0\n\n \n def find(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n \n def groupsize(self):\n self.cnt = 0\n for i, x in enumerate(self.par):\n if x == i:\n self.cnt += 1\n return self.cnt\n \n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n \n def same_check(self, x, y):\n return self.find(x) == self.find(y)\n\nN, M = map(int,input().split())\nA = [list(map(int,input().split())) for i in range(M)]\nuf = UnionFind(N)\n\nfor i in range(M):\n uf.union(A[i][0]-1, A[i][1]-1)\n\nprint(uf.groupsize())", "jacc_sim": 1.0, "before_after_length": [382, 381], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": " \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u903460784", "n_user": "u903460784", "pos": "class UnionFind:\n def __init__(self,n):\n self.parent=[i for i in range(n)]\n self.rank=[0 for _ in range(n)]\n\n def find(self,x):\n if self.parent[x]==x:\n return x\n else:\n rootx=self.find(self.parent[x])\n self.parent[x]=rootx\n return rootx\n\n def union(self,x,y):\n rootx=self.find(x)\n rooty=self.find(y)\n if self.rank[rootx]=0:\n root[i]=search(root[i])\n return root[i]\n return i\nfor i in range(M):\n x,y,z=map(int,input().split())\n x-=1\n y-=1\n rx=search(x)\n ry=search(y)\n if rx==ry:\n continue\n elif root[rx]<=root[ry]:\n root[ry]+=root[rx]\n root[rx]=ry\n else:\n root[rx]+=root[ry]\n root[ry]=rx\nans=0\nfor i in range(N):\n if root[i]<0:\n ans+=1\nprint(ans)\n", "neg": "N,M=map(int,input().split())\nroot=[-1]*N\ndef search(i):\n if root[i]>=0:\n root[i]=search(root[i])\n return root[i]\n return i\nfor i in range(M):\n x,y,z=map(int,input().split())\n x-=1\n y-=1\n rx=search(x)\n ry=search(y)\n if rx==ry:\n continue\n elif root[rx]<=root[ry]:\n root[ry]+=root[rx]\n root[rx]=ry\n else:\n root[rx]+=root[ry]\n root[ry]=rx\nans=0\nprint(root)\nfor i in range(N):\n if root[i]<0:\n ans+=1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [211, 215], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "print(root)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u626881915", "n_user": "u626881915", "pos": "n, m = map(int, input().split())\ng = [[] for i in range(n)]\nfor i in range(m):\n u,v,z=map(int, input().split())\n g[u-1].append((u-1, v-1, z))\n g[v-1].append((v-1,u-1,z))\ncount = 0\nrenketu_list = [-1]*n\nstack = []\nfor i in range(n):\n if renketu_list[i] == -1:\n count += 1\n renketu_list[i] = count\n while len(g[i]) > 0:\n stack.append(g[i].pop())\n while len(stack) > 0:\n u,v,z=stack.pop()\n if renketu_list[v] == -1:\n renketu_list[v] = count\n while len(g[v])>0:\n stack.append(g[v].pop())\n\nprint(count)\n", "neg": "n, m = map(int, input().split())\ng = [[] for i in range(n)]\nfor i in range(m):\n u,v,z=map(int, input().split())\n g[u-1].append((u-1, v-1, z))\n g[v-1].append((v-1,u-1,z))\ncount = 0\nrenketu_list = [-1]*n\nstack = []\nfor i in range(n):\n if renketu_list[i] == -1:\n count += 1\n renketu_list[i] = count\n while len(g[i]) > 0:\n stack.append(g[i].pop())\n while len(stack) > 0:\n u,v,z=stack.pop()\n if renketu_list == -1:\n renketu_list[v] = count\n while len(g[v])>0:\n stack.append(g[v].pop())\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [256, 252], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "[v]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u167988719", "n_user": "u167988719", "pos": "import sys\n\nclass UnionFind:\n def __init__(self, n):\n self.parent = [i for i in range(n)]\n def find(self, x):\n if self.parent[x] == x:\n return x\n self.parent[x] = self.find(self.parent[x])\n return self.parent[x]\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n self.parent[x] = y\n\ndef main():\n N, M = map(int, input().split())\n uf = UnionFind(N)\n for i in range(M):\n X, Y, Z = map(int, input().split())\n uf.union(X-1, Y-1)\n s = set()\n for i in range(N):\n s.add(uf.find(i))\n print(len(s))\n\nif __name__ == \"__main__\":\n sys.setrecursionlimit(10**6)\n main()\n", "neg": "class UnionFind:\n def __init__(self, n):\n self.parent = [i for i in range(n)]\n def find(self, x):\n if self.parent[x] == x:\n return x\n self.parent[x] = self.find(self.parent[x])\n return self.parent[x]\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n self.parent[x] = y\n\ndef main():\n N, M = map(int, input().split())\n uf = UnionFind(N)\n for i in range(M):\n X, Y, Z = map(int, input().split())\n uf.union(X-1, Y-1)\n s = set()\n for i in range(N):\n s.add(uf.find(i))\n print(len(s))\n\nif __name__ == \"__main__\":\n sys.setrecursionlimit(10**6)\n main()\n", "jacc_sim": 0.9811320754716981, "before_after_length": [270, 266], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "import sys\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u756439833", "n_user": "u756439833", "pos": "import sys\ninput = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\n\nN, M = map(int,input().split())\nq = []\nc = [0] * N\nA = [[] for i in range(N)]\n\nfor i in range(M):\n\tx, y, z = map(int,input().split())\n\tx = x - 1\n\ty = y - 1\n\tA[x].append(y)\n\tA[y].append(x)\n\ncost = 0\nfor i in range(N):\n\tif c[i] == 0:\n\t\tcost += 1\n\t\tq.append(i)\n\t\twhile len(q):\n\t\t\tj = q.pop()\n\t\t\tc[j] = 1\n\t\t\tfor k in A[j]:\n\t\t\t\tif c[k] == 0:\n\t\t\t\t\tq.append(k)\n\nprint(cost)\n", "neg": "'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\n\nN, M = map(int,input().split())\nq = []\nc = [0] * N\nA = [[] for i in range(N)]\n\nfor i in range(M):\n\tx, y, z = map(int,input().split())\n\tx = x - 1\n\ty = y - 1\n\t#A[x].append(y)\n\tA[y].append(x)\n\ncost = 0\nfor i in range(N):\n\tif c[i] == 0:\n\t\tcost = cost + 1\n\t\tq.append(i)\n\t\twhile len(q):\n\t\t\tj = q.pop(0)\n\t\t\tc[j] = 1\n\t\t\tfor k in A[j]:\n\t\t\t\tif c[k] == 0:\n\t\t\t\t\tq.append(k)\n\nprint(cost)\n", "jacc_sim": 0.9183673469387755, "before_after_length": [235, 228], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "import sys\ninput = sys.stdin.readline\n#= cost =)\n\t\t\tc[j] = 1\n\t\t\tfor k in A[j]:\n\t\t\t\tif c[k] == ):c[j] = 1\n\tfor q.append( in A[j]:\n\t\t\t\tif c[k] == 0:\n\t\t\t\t\tq.append(k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u111365362", "n_user": "u111365362", "pos": "#17:11\nn,m = map(int,input().split())\npre = [i for i in range(n)]\nans = n\nfor _ in range(m):\n x,y,z = map(int,input().split())\n x -= 1\n y -= 1\n X = [x]\n Y = [y]\n while pre[x] != x:\n X.append(x)\n x = pre[x]\n while pre[y] != y:\n Y.append(y)\n y = pre[y]\n if x != y:\n ans -= 1\n for xx in X:\n pre[xx] = y\n for yy in Y:\n pre[yy] = y\n pre[x] = y\n#print(pre)\nprint(ans)", "neg": "#17:11\nn,m = map(int,input().split())\npre = [-1 for i in range(n)]\nans = n\nfor _ in range(m):\n x,y,z = map(int,input().split())\n x -= 1\n y -= 1\n X = [x]\n Y = [y]\n while pre[x] != -1:\n X.append(x)\n x = pre[x]\n while pre[y] != -1:\n Y.append(y)\n y = pre[y]\n if x != y:\n ans -= 1\n for xx in X:\n pre[xx] = y\n for yy in Y:\n pre[yy] = y\n pre[x] = y\n#print(pre)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [194, 196], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "i-1x-1y-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u652583512", "n_user": "u652583512", "pos": "class union_find():\n def __init__(self, n):\n self.par = [i for i in range(n + 1)]\n self.rank = [1 for i in range(n + 1)]\n\n def find(self, c):\n if self.par[c] == c:\n return c\n\n ret = self.find(self.par[c])\n self.par[c] = ret\n return ret\n\n def union(self, x, y):\n xr = self.find(x)\n yr = self.find(y)\n if xr == yr:\n return\n\n if self.rank[yr] > self.rank[xr]:\n self.par[xr] = yr\n else:\n self.par[yr] = xr\n if self.rank[xr] == self.rank[yr]:\n self.rank[xr] += 1\n\n def show(self):\n print('parent', self.par[1:])\n print('rank', self.rank[1:])\n\nN, M = map(int, input().split())\nuf = union_find(N)\n\nfor i in range(M):\n x, y, z = map(int, input().split())\n uf.union(x, y)\n\n\nprint([i == v for i, v in enumerate(uf.par)].count(True) - 1)\n\n\n\n\n", "neg": "class union_find():\n def __init__(self, n):\n self.par = [i for i in range(n + 1)]\n self.rank = [1 for i in range(n + 1)]\n\n def find(self, c):\n if self.par[c] == c:\n return c\n\n ret = self.find(self.par[c])\n self.par[c] = ret\n return ret\n\n def union(self, x, y):\n xr = self.find(x)\n yr = self.find(y)\n if xr == yr:\n return\n\n if self.rank[yr] > self.rank[xr]:\n self.par[xr] = yr\n else:\n self.par[yr] = xr\n if self.rank[xr] == self.rank[yr]:\n self.rank[xr] += 1\n\n def show(self):\n print('parent', self.par[1:])\n print('rank', self.rank[1:])\n\nN, M = map(int, input().split())\nuf = union_find(N)\n\nfor i in range(M):\n x, y, z = map(int, input().split())\n uf.union(x, y)\n\n\nprint([i == v for i, v in enumerate(uf.par[1:])].count(True))\n\n\n\n\n", "jacc_sim": 0.9803921568627451, "before_after_length": [343, 343], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "[1:] - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u954774382", "n_user": "u954774382", "pos": "import math\nimport operator as op\nfrom functools import reduce\nfrom fractions import Fraction as frac\n\ndef ncr(n, r):\n r = min(r, n-r)\n numer = reduce(op.mul, range(n, n-r, -1), 1)\n denom = reduce(op.mul, range(1, r+1), 1)\n return numer / denom\ndef rd(p):\n if(p==0):\n return input()\n if(p==1):\n return int(input())\n if(p==2):\n return map(int,input().split())\n if(p==3):\n return list(map(int,input().split()))\n\nglobal par\npar=[-1 for i in range(100001)]\n# t=rd(1)\ndef find(u):\n if(par[u]<0):\n return u\n else:\n return find(par[u])\ndef uni(x,y):\n u=find(x)\n v=find(y)\n if u==v:\n return\n if(par[u] self.rnk[y]:\n self.root[x] += self.root[y]\n self.root[y] = x\n else:\n self.root[y] += self.root[x]\n self.root[x] = y\n if self.rnk[x] == self.rnk[y]:\n self.rnk[y] += 1\n\n\nimport sys\nsys.setrecursionlimit(10000000)\ninput = sys.stdin.readline\n\nn, m = map(int, input().split())\nu = UnionFind(n)\nfor _ in range(m):\n a, b, c = map(int, input().split())\n a -= 1\n b -= 1\n u.Unite(a, b)\nprint(len(set(u.Find_Root(i) for i in range(n))))\n", "neg": "class UnionFind():\n def __init__(self, n):\n self.n = n\n self.root = [-1] * (n + 1)\n self.rnk = [0] * (n + 1)\n\n def Find_Root(self, x):\n if self.root[x] < 0:\n return x\n else:\n self.root[x] = self.Find_Root(self.root[x])\n\n def Unite(self, x, y):\n x = self.Find_Root(x)\n y = self.Find_Root(y)\n if(x == y):\n return\n elif(self.rnk[x] > self.rnk[y]):\n self.root[x] += self.root[y]\n self.root[y] = x\n else:\n self.root[y] += self.root[x]\n self.root[x] = y\n if(self.rnk[x] == self.rnk[y]):\n self.rnk[y] += 1\n\n\nimport sys\nsys.setrecursionlimit(10000000)\ninput = sys.stdin.readline\n\nn, m = map(int, input().split())\nu = UnionFind(n)\nfor _ in range(m):\n a, b, c = map(int, input().split())\n a -= 1\n b -= 1\n u.Unite(a, b)\nprint(len(set(u.Find_Root(i) for i in range(n))))\n", "jacc_sim": 1.0, "before_after_length": [378, 374], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": " return self.root[x]\n(xx==== )( )( )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u686230543", "n_user": "u686230543", "pos": "n, m = map(int, input().split())\nadj = [[] for _ in range(n)]\nfor _ in range(m):\n x, y, z = map(int, input().split())\n adj[x-1].append(y-1)\n adj[y-1].append(x-1)\nopn = [True] * n\ncount = 0\nfor i in range(n):\n if opn[i]:\n count += 1\n opn[i] = False\n stack = [i]\n while stack:\n u = stack.pop()\n for v in adj[u]:\n if opn[v]:\n stack.append(v)\n opn[v] = False\nprint(count)", "neg": "n, m = map(int, input().split())\nadj = [[] for _ in range(m)]\nfor _ in range(m):\n x, y, z = map(int, input().split())\n adj[x-1].append(y-1)\n adj[y-1].append(x-1)\nopn = [True] * n\ncount = 0\nfor i in range(n):\n if opn:\n count += 1\n opn[i] = False\n stack = [i]\n while stack:\n u = stack.pop()\n for v in adj[u]:\n if opn[v]:\n stack.append(v)\n opn[v] = False\nprint(count)", "jacc_sim": 1.0, "before_after_length": [178, 176], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "mn[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u846150137", "n_user": "u846150137", "pos": "class UnionFind:\n def __init__(self, n):\n self.par = [i for i in range(n)]\n self.rank = [0] * (n)\n\n def find(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\nn,m=map(int,input().split())\nU=UnionFind(n)\n\nfor i in range(m):\n x,y,z=map(int,input().split())\n U.union(x-1,y-1)\nans=0\nfor i,j in enumerate(U.par):\n if i==j:\n ans+=1\nprint(ans)\n", "neg": "class UnionFind:\n def __init__(self, n):\n self.par = [i for i in range(n)]\n self.rank = [0] * (n)\n\n def find(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.find(self.par[x])\n return self.par[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\nn,m=map(int,input().split())\nU=UnionFind(n)\n\nfor i in range(m):\n x,y,z=map(int,input().split())\n U.union(x-1,y-1)\nans=0\nfor i,j in ensmurate(U.par):\n if i==j:\n ans+=1\nprint(ans)\n", "jacc_sim": 0.9565217391304348, "before_after_length": [295, 298], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "suue", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u667024514", "n_user": "u667024514", "pos": "import sys\nsys.setrecursionlimit(10 ** 6)\ndef dfs(v):\n global gone\n stack = [v]\n gone[v] = True\n while stack:\n v = stack.pop()\n for w in graph[v]:\n if gone[w] == False:\n stack.append(w)\n gone[w] = True\n\nn,m = map(int,input().split())\nexist = [False for i in range(n+1)]\ngone = [False for i in range(n+1)]\ngraph = [[] for _ in range(n+1)]\nfor i in range(m):\n x,y,z = map(int,input().split())\n graph[x].append(y)\n graph[y].append(x)\n exist[x] = True\n exist[y] = True\nans = 0\n\nfor i in range(1,n+1):\n if exist[i] == True:\n if gone[i] == False:\n dfs(i)\n ans += 1\n else:\n ans += 1\n\nprint(ans)", "neg": "import sys\nsys.setrecursionlimit(10 ** 6)\ndef dfs(v):\n global gone\n stack = [v]\n gone[v] = True\n while stack:\n v = stack.pop()\n for w in graph[v]:\n gone[w] = True\n stack.append(w)\n\nn,m = map(int,input().split())\nexist = [False for i in range(n+1)]\ngone = [False for i in range(n+1)]\ngraph = [[] for _ in range(n+1)]\nfor i in range(m):\n x,y,z = map(int,input().split())\n graph[x].append(y)\n graph[y].append(x)\n exist[x] = True\n exist[y] = True\nans = 0\n\nfor i in range(1,n+1):\n if exist[i] == True:\n if gone[i] == False:\n dfs(i)\n ans += 1\n else:\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [266, 256], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "if =TruFals: \n gone[w] = True", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u231685196", "n_user": "u231685196", "pos": "class uf_tree():\n\n def __init__(self,n):\n self.n = n\n self.par = [i for i in range(n)]\n\n def indep(self):\n dep =0\n for i in range(self.n):\n if i == self.par[i]:\n dep += 1\n\n return dep\n\n def unite(self,child,mas):\n if self.root(child) == self.root(mas):\n return\n else:\n self.par[self.root(child)] = self.root(mas)\n\n def root(self,i):\n if self.par[i] == i:\n return i\n else:\n self.par[i] = self.root(self.par[i])\n return self.par[i]\n\n def same(self,x,y):\n if self.root(x) == self.root(y):\n return True\n else:\n return False\n\n\n\nn,m = map(int,input().split())\nuf = uf_tree(n+1)\nfor i in range(m):\n x,y,z = map(int,input().split())\n uf.unite(x,y)\n\nprint(uf.indep()-1)\n", "neg": "class uf_tree():\n\n def __init__(self,n):\n self.n = n\n self.par = [i for i in range(n)]\n\n def indep(self):\n dep =0\n for i in range(self.n):\n if i == self.par[i]:\n dep += 1\n\n return dep\n\n def unite(self,child,mas):\n if self.root(child) == self.root(mas):\n return\n else:\n self.par[self.root(child)] = self.root(self.mas)\n\n def root(self,i):\n if self.par[i] == i:\n return i\n else:\n self.par[i] = self.root(self.par[i])\n return self.par[i]\n\n def same(self,x,y):\n if self.root(x) == self.root(y):\n return True\n else:\n return False\n\n\n\nn,m = map(int,input().split())\nuf = uf_tree(n+1)\nfor i in range(m):\n x,y,z = map(int,input().split())\n uf.unite(x,y)\n\nprint(uf.indep()-1)\n", "jacc_sim": 1.0, "before_after_length": [316, 318], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "self.", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u106778233", "n_user": "u106778233", "pos": "n,m=map(int,input().split())\n \nroot=[int(i) for i in range(n)] \nrank=[0]*n \ndef find(x):\n if root[x]==x:\n return x \n else:\n return find(root[x])\n\nfor i in range(m):\n x,y,z=map(int,input().split())\n fx=find(x-1)\n fy=find(y-1)\n if rank[fx]>=rank[fy]:\n root[fy]=fx\n if rank[fx]==rank[fy]:\n rank[fx]+=1\n else:\n root[fx]=fy \na=[]\nfor i in range(n):\n a.append(find(i)) \nprint(len(set(a)))", "neg": "n,m=map(int,input().split())\n \nroot=[int(i) for i in range(n)] \nrank=[0]*n \ndef find(x):\n if root[x]==x:\n return x \n else:\n return find(root[x])\n\nfor i in range(m):\n x,y,z=map(int,input().split())\n fx=find(x-1)\n fy=find(y-1)\n if rank[fx]>=rank[fy]:\n root[fy]=fx\n if rank[fx]==rank[fy]:\n rank[fx]+=1\n else:\n root[fx]=fy \na=()\nfor i in range(n):\n a.add(find(i)) \nprint(len(a))", "jacc_sim": 0.9285714285714286, "before_after_length": [204, 202], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "()[]dppenset()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u779455925", "n_user": "u779455925", "pos": "# input = sys.stdin.readline\nfrom bisect import *\nfrom collections import *\nfrom heapq import *\n# import functools\n# import itertools\n# import math\nN,M=map(int,input().split())\nXYZ=[list(map(int,input().split())) for i in range(M)]\ndata=[[] for i in range(N+1)]\nittenai=[]\nfor x,y,z in XYZ:\n data[x].append(y)\n data[y].append(x)\n ittenai.append(x)\n ittenai.append(y)\n\n\nittenai=set(ittenai)\ncount=N-len(ittenai)\nwhile ittenai:\n x=ittenai.pop()\n stack=deque([x])\n\n count+=1\n while stack:\n num=stack.popleft()\n for i in data[num]:\n if i in ittenai:\n ittenai.remove(i)\n stack.append(i)\nprint(count)\n", "neg": "# input = sys.stdin.readline\nfrom bisect import *\nfrom collections import *\nfrom heapq import *\n# import functools\n# import itertools\n# import math\nN,M=map(int,input().split())\nXYZ=[list(map(int,input().split())) for i in range(M)]\ndata=[[] for i in range(N+1)]\nittenai=[]\nfor x,y,z in XYZ:\n data[x].append(y)\n data[y].append(x)\n ittenai.append(x)\n ittenai.append(y)\n\n\nittenai=set(ittenai)\ncount=N-len(ittenai)\nwhile ittenai:\n x=ittenai.pop(x)\n stack=deque([x])\n\n count+=1\n while stack:\n num=stack.popleft()\n for i in data[num]:\n if i in ittenai:\n ittenai.remove(i)\n stack.append(i)\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [252, 254], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u711539583", "n_user": "u711539583", "pos": "import sys\nfrom collections import deque\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\nn, m = map(int, input().split())\nmemo = set(list(range(n)))\nE = [[] for i in range(n)]\nfor i in range(m):\n x, y, z = map(int, input().split())\n E[x-1].append(y-1)\n E[y-1].append(x-1)\ndef dfs(cur, pre):\n stack = deque([[cur, pre]])\n while stack:\n cur, pre = stack.pop()\n if pre != -1:\n memo.discard(cur)\n for e in E[cur]:\n if e != pre and e in memo:\n stack.append([e, cur])\nans = 0\nwhile len(memo):\n cur = memo.pop()\n dfs(cur, -1)\n ans += 1\nprint(ans)\n", "neg": "import sys\nfrom collections import deque\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\nn, m = map(int, input().split())\nmemo = set(list(range(n)))\nE = [[] for i in range(n)]\nfor i in range(m):\n x, y, z = map(int, input().split())\n E[x-1].append(y-1)\n E[y-1].append(x-1)\ndef dfs(cur, pre):\n stack = deque([[cur, pre]])\n while stack:\n cur, pre = stack.pop()\n memo.discard(cur)\n for e in E[cur]:\n if e != pre and e in memo:\n stack.append([e, cur])\nans = 0\nfor i in range(n):\n if i in memo:\n dfs(cur, -1)\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9821428571428571, "before_after_length": [234, 227], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "if pre != -1:\n whfor l in rang( le(memoifcuri=in :.pop() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u003873207", "n_user": "u003873207", "pos": "import sys\nsys.setrecursionlimit(200000)\n\nclass UnionFind:\n def __init__(self,N):\n self.par = [i for i in range(N)]\n \n def root(self,x):\n if self.par[x] == x:\n return x\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n \n def unite(self,x,y):\n self.rx = self.root(x)\n self.ry = self.root(y)\n if self.rx == self.ry:\n return\n self.par[self.rx] = self.ry\n \n def same(self,x,y):\n self.rx = self.root(x)\n self.ry = self.root(y)\n return self.rx == self.ry\n \nN,M = [int(i) for i in input().split()]\nuf = UnionFind(N)\n \nfor _ in range(M):\n x,y,_ = [int(i)-1 for i in input().split()]\n uf.unite(x,y)\n \nans = set()\nfor i in range(N):\n ans.add(uf.root(i))\n \nprint(len(ans))\n", "neg": "sys.setrecursionlimit(100000)\n\nclass UnionFind:\n def __init__(self,N):\n self.par = [i for i in range(N)]\n \n def root(self,x):\n if self.par[x] == x:\n return x\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n \n def unite(self,x,y):\n self.rx = self.root(x)\n self.ry = self.root(y)\n if self.rx == self.ry:\n return\n self.par[self.rx] = self.ry\n \n def same(self,x,y):\n self.rx = self.root(x)\n self.ry = self.root(y)\n return self.rx == self.ry\n \nN,M = [int(i) for i in input().split()]\nuf = UnionFind(N)\n \nfor _ in range(M):\n x,y,_ = [int(i)-1 for i in input().split()]\n uf.unite(x,y)\n \nans = set()\nfor i in range(N):\n ans.add(uf.root(i))\n \nprint(len(ans))", "jacc_sim": 0.9361702127659575, "before_after_length": [318, 314], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "import sys\n12\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u211706121", "n_user": "u211706121", "pos": "N,M=map(int,input().split())\n\nflag=list(range(N))\ndef takeflag(p):\n stock=[]\n while flag[flag[p]]!=flag[p]:\n stock.append(p)\n p=flag[p]\n p=flag[p]\n for i in stock:\n flag[i]=p\n return p\n\nfor i in range(M):\n x,y,z = map(int,input().split())\n x,y=x-1,y-1\n x,y = map(takeflag,(x,y))\n x,y = min(x,y),max(x,y)\n flag[x]=y\n\nst=set()\nfor i in range(N):\n st.add(takeflag(i))\n\nprint(len(st))", "neg": "N,M=map(int,input().split())\n\nflag=list(range(N))\ndef takeflag(p):\n stock=[]\n while flag[flag[p]]!=flag[p]:\n stock.append(p)\n p=flag[p]\n p=flag[p]\n for i in stock:\n flag[i]=p\n return p\n\nfor i in range(M):\n x,y,z = map(int,input().split())\n x,y = map(takeflag,(x,y))\n x,y = min(x,y),max(x,y)\n flag[x]=y\n\nst=set()\nfor i in range(N):\n st.add(takeflag(i))\n\nprint(len(st))", "jacc_sim": 0.95, "before_after_length": [205, 192], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "=x-1,y-1\n x,y", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u202560873", "n_user": "u202560873", "pos": "class UnionFind():\n def __init__(self, n):\n self.par = [i for i in range(n)]\n self.rank = [0] * n\n\n def root(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n\n def union(self, x, y):\n x = self.root(x)\n y = self.root(y)\n if x != y:\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def samegrp(self, x, y):\n return self.root(x) == self.root(y)\n\nn, m = [int(x) for x in input().split()]\nA = UnionFind(n)\nans = n\nfor i in range(m):\n x, y, _ = [int(z) - 1 for z in input().split()]\n if not A.samegrp(x, y):\n ans -=1\n A.union(x, y)\n\nprint(ans)\n", "neg": "class UnionFind():\n def __init__(self, n):\n self.par = [i for i in range(n)]\n self.rank = [0] * n\n\n def root(self, x):\n if self.par[x] == x:\n return x\n else:\n self.par[x] = self.root(self.par[x])\n return self.par[x]\n\n def union(self, x, y):\n x = self.root(x)\n y = self.root(y)\n if x != y:\n if self.rank[x] < self.rank[y]:\n self.par[x] = y\n else:\n self.par[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def samegrp(self, x, y):\n return self.root(x) == self.root(y)\n\nfrom mymodules.somedatastrs import UnionFind\n\nn, m = [int(x) for x in input().split()]\nA = UnionFind(n)\nans = n\nfor i in range(m):\n x, y, _ = [int(z) - 1 for z in input().split()]\n if not A.samegrp(x, y):\n ans -=1\n A.union(x, y)\n\nprint(ans)", "jacc_sim": 0.92, "before_after_length": [330, 343], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "fron, = [int(x) for x in input().split()]\nA = UnionFind(n)\nans = n\nfor i in range():\n x, , _ = [int(z) - 1 for z in input().split()]\n if not A.saodegrp(x, y):\n ans -=1\n A.les.somedatastrs import UFind\n\nn, m = [int) for x in input().split()]\nA = UnionFind(n)\nans = n\nfor i in range(m):\n x, _ = [int(z - 1 for z in input().split()] if not A.samegrp(x, y): ans -=1\n A.union(x, y)\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u123756661", "n_user": "u123756661", "pos": "#!/usr/bin/env python3\n# -*- coding: UTF-8 -*-\n\nclass UnionFind:\n def __init__(self, size):\n self.rank=[0]*size\n self.par =[int(i) for i in range(size)]\n self.grp =size\n\n def find(self, x):\n if x==self.par[x]: return x\n\n self.par[x]=self.find(self.par[x])\n return self.par[x]\n\n def same(self, x, y):\n return self.find(x)==self.find(y)\n\n def unite(self, x, y):\n x,y=self.find(x),self.find(y)\n if x==y:\n return\n\n self.grp-=1\n if self.rank[x] 0:\n\t\tnode = stack.pop()\t\n\t\tfor n in adj_list[node]:\n\t\t\tif searched[n] == False:\n\t\t\t\tstack.append(n)\n\t\t\t\tsearched[n] = True\n\nprint(count)", "neg": "f-8\n\nN, M = (int(x) for x in input().split())\n\nadj_list = [[] for i in range(N)]\nfor i in range(M):\n\tx, y, z = (int(x) for x in input().split())\n\tadj_list[x - 1].append(y - 1)\n\tadj_list[y - 1].append(x - 1)\n\nsearched = [False] * N\ncount = 0\nfor i in range(N):\n\tif searched[i] == True:\n\t\tcontinue\n\n\tcount += 1\n\tstack = [i]\n\twhile len(stack) > 0:\n\t\tnode = stack.pop()\n\t\tsearched[node] = True\n\t\tfor n in adj_list[node]:\n\t\t\tif searched[n] == False:\n\t\t\t\tstack.append(n)\n\nprint(count)", "jacc_sim": 0.9130434782608695, "before_after_length": [225, 212], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "# coding: utsearched[i] = True\n\t\n\tsearched[node] = True\np\t\t\t\tseaint(ouhed[] = True\n\nprin(count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u589820400", "n_user": "u589820400", "pos": "import sys\nsys.setrecursionlimit(1000000)\n\na = input().split()\nN = int(a[0])\nM = int(a[1])\n\nl = []\nf = []\nfor i in range(N):\n\ttemp = []\n\tl.append(temp)\n\tf.append(0)\n\nfor i in range(M):\n\tb = input().split()\n\tX = int(b[0]) - 1\n\tY = int(b[1]) - 1\n\tl[X].append(Y)\n\tl[Y].append(X)\n\ndef search(cnt, li, flag, num):\n\tif(flag[num] == 0):\n\t\tflag[num] = cnt\n\t\tif(len(li[num]) != 0):\n\t\t\tfor i in range(len(li[num])):\n\t\t\t\tsearch(cnt, li, flag, li[num][i])\n\t\t\ncnt = 0\nfor i in range(N):\n\tif(f[i] == 0):\n\t\tcnt += 1\n\t\tsearch(cnt, l, f, i)\t\t\t\nprint(cnt)", "neg": "a = input().split()\nN = int(a[0])\nM = int(a[1])\n\nl = []\nf = []\nfor i in range(N):\n\ttemp = []\n\tl.append(temp)\n\tf.append(0)\n\nfor i in range(M):\n\tb = input().split()\n\tX = int(b[0]) - 1\n\tY = int(b[1]) - 1\n\tl[X].append(Y)\n\tl[Y].append(X)\n\ndef search(cnt, li, flag, num):\n\tif(flag[num] == 0):\n\t\tflag[num] = cnt\n\t\tif(len(li[num]) != 0):\n\t\t\tfor i in range(len(li[num])):\n\t\t\t\tsearch(cnt, li, flag, li[num][i])\n\t\t\ncnt = 0\nfor i in range(N):\n\tprint(f)\n\tif(f[i] == 0):\n\t\tcnt += 1\n\t\tsearch(cnt, l, f, i)\t\t\t\nprint(cnt)", "jacc_sim": 0.9069767441860465, "before_after_length": [266, 258], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "import sys\nsys.setrecursionlimit(1000000)\n\nprint(f)\n\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03045", "p_user": "u769870836", "n_user": "u769870836", "pos": "class uf():\n def __init__(self,n):\n self.n=n\n self.pa=[-1]*n\n def find(self,x):\n if self.pa[x]<0:\n return x\n else:\n self.pa[x]=self.find(self.pa[x])\n return self.pa[x]\n def unite(self,x,y):\n x=self.find(x)\n y=self.find(y)\n if x==y:\n \treturn True\n else:\n if self.pa[x]>self.pa[y]:\n x,y=y,x\n self.pa[x]+=self.pa[y]\n self.pa[y]=x\n return True\n def same(self,x,y):\n return self.find[x]==find.pa[y]\n def size(self,x):\n return -self.pa[self.find(x)] \nn,m=map(int,input().split())\nimport sys\ninput=sys.stdin.readline\nuf=uf(n)\nfor _ in range(m):\n a,b,c=map(int,input().split())\n uf.unite(a-1,b-1)\nmemo=set([])\nfor i in range(n):\n memo.add(uf.find(i))\nprint(len(memo))", "neg": "class uf():\n def __init__(self,n):\n self.n=n\n self.pa=[-2]*n\n def find(self,x):\n if self.pa[x]<-1:\n return x\n else:\n self.pa[x]=self.find(self.pa[x])\n return self.pa[x]\n def unite(self,x,y):\n x=self.find(x)\n y=self.find(y)\n if x==y:\n \treturn True\n else:\n if self.pa[x]>self.pa[y]:\n x,y=y,x\n self.pa[x]+=y\n self.pa[y]=x\n return True\n def same(self,x,y):\n return self.find[x]==find.pa[y]\n def size(self,x):\n return -self.pa[self.find(x)] \nn,m=map(int,input().split())\nimport sys\ninput=sys.stdin.readline\nuf=uf(n)\nfor _ in range(m):\n a,b,c=map(int,input().split())\n uf.unite(a-1,b-1)\nmemo=set([])\nfor i in range(n):\n memo.add(uf.find(i))\nprint(len(memo))", "jacc_sim": 0.9636363636363636, "before_after_length": [347, 343], "nl": "You are given N cards placed face down in a row, each with an integer 1 or 2 written on it. Your objective is to guess the integers on all the cards. You can use a magic that allows you to know the integer on a chosen card, with a cost of 1. The minimum cost required to determine all the integers on the cards needs to be calculated. Constraints include N (2 \u2264 N \u2264 10^5), M (1 \u2264 M \u2264 10^5), and other conditions. The input format is N M followed by X_i Y_i Z_i for M lines, and the output is the minimum total cost. Sample inputs and outputs are provided.", "diff_info": "210-1self.pa[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u306497037", "n_user": "u306497037", "pos": "N = int(input())\nV = list(map(int,input().split()))\nC = list(map(int,input().split()))\n\nans = 0\nfor i in range(N):\n if V[i] > C[i]:\n ans = ans + (V[i]-C[i])\n\nprint(ans)", "neg": "N = int(input())\nV = list(map(int,input().split()))\nC = list(map(int,input().split()))\n\nanc = 0\nfor i in range(N):\n if V[i] > C[i]:\n anc = anc + (V[i]-C[i])\n\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [81, 83], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "cscscs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u970899068", "n_user": "u970899068", "pos": "n = int(input())\na = list(map(int, input().split()))\nb = list(map(int, input().split()))\nans = 0\nm = a[0]\nk = b[0]\nfor i in range(n):\n if a[i] >b[i] :\n ans += a[i]-b[i]\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\nb = list(map(int, input().split()))\n\nm = a[0]\nk = b[0]\nfor i in range(n):\n if a[i] >b[i] :\n ans = a[i]-b[i]\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [91, 88], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "ans = 0+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u348432940", "n_user": "u348432940", "pos": "def calculate_max(Ans, value):\n temp = Ans\n if (Ans + value) > Ans:\n temp += value\n if temp < 0 :\n temp = 0\n return temp\n# input processing \nN = int(input())\nValue = list(map(int, input().split()))\nCost = list(map(int, input().split()))\n# profit calculation\nProfit = [Value[i] - Cost[i] for i in range(N)]\nAnswer = 0\n# process\nfor i in range(N):\n Answer = calculate_max(Answer, Profit[i])\n# Output\nprint(Answer)\n", "neg": "def calculate_max(Ans, value):\n temp = Ans\n if (Ans + value) > Ans:\n temp += value\n if tmep < 0 :\n temp = 0\n return temp\n# input processing \nN = int(input())\nValue = map(int, input().split())\nCost = map(int, input().split())\n# profit calculation\nProfit = [Value[i] - Cost[i] for i in range(N)]\nAnswer = 0\n# process\nfor i in range(N):\n Answer = calculate_max(Answer, Profit[i])\n# Output\nprint(Answer)\n", "jacc_sim": 0.9523809523809523, "before_after_length": [155, 150], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "mmlist()list()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u231905444", "n_user": "u231905444", "pos": "n=int(input())\narr=list(map(int,input().split()))\narr2=list(map(int,input().split()))\nans=0\nfor i in range(n):\n\tif(arr[i]-arr2[i]>0):\n\t\tans+=arr[i]-arr2[i]\n\n\t#ans=max(ans,arr[i]-arr2[i])\nprint(ans)\n", "neg": "n=int(input())\narr=list(map(int,input().split()))\narr2=lisT9map(int,input().split())\nans=0\nfor i in range(n):\n\tif(arr[i]-arr2[i]>0):\n\t\tans+=arr[i]-arr2[i]\n\n\t#ans=max(ans,arr[i]-arr2[i])\nprint(ans)\n", "jacc_sim": 0.9354838709677419, "before_after_length": [106, 107], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "T9t()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u054412614", "n_user": "u054412614", "pos": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if v[i]-c[i]>0:\n ans+=v[i]-c[i]\nprint(ans)\n\n", "neg": "n=int(input())\nv=map(int,input().split())\nc=map(int,input().split())\nans=0\nfor i in range(n):\n if c[i]-v[i]>0:\n ans+=c[i]-v[i]\nprint(ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [82, 74], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "list()list()cvvccvvc\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u465903301", "n_user": "u465903301", "pos": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nprint(sum([v[i] - c[i] for i in range(n) if v[i] > c[i]]))", "neg": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nprint(sum([i for i in range(n) if v[i] > c[i]]))", "jacc_sim": 0.9583333333333334, "before_after_length": [66, 58], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "v[] - c[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u854175276", "n_user": "u854175276", "pos": "n =int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nans = 0\nfor i in range(n):\n if (v[i] - c[i]) > 0:\n ans += v[i] - c[i]\nprint(ans)", "neg": "n =int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nans = 0\nfor i in range(n):\n if (v[i] - c[i]) > 0:\n ans +~ v[i] - c[i]\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [80, 81], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "~=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u821432765", "n_user": "u821432765", "pos": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\nD = [V[i] - C[i] for i in range(N)]\nD = filter(lambda x: x > 0, D)\nprint(sum(D))", "neg": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\nD = [X[i] - Y[i] for i in range(N)]\nD = filter(lambda x: x > 0, D)\nprint(sum(D))", "jacc_sim": 0.9354838709677419, "before_after_length": [75, 75], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "XVYC", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u392938961", "n_user": "u392938961", "pos": "n = int(input())\nx =list(map(int, input().split()))\ny =list(map(int, input().split()))\ndiff = [x[i]-y[i] for i in range(n)]\nnum = 0\nfor d in diff:\n if(d > 0):\n num += d\nprint(num)", "neg": "n = int(input())\nx =list(map(int, input().split()))\ny =list(map(int, input().split()))\ndiff = [x[i]-y[i] for i in range(n)]\nnum = 0\nfor d in diff:\n if(d > 0):\n num += d", "jacc_sim": 0.9655172413793104, "before_after_length": [82, 77], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "\nprint(num)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u729535891", "n_user": "u729535891", "pos": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\nX = 0\nY = 0\n\nfor i in range(N):\n if V[i] > C[i]:\n v = V[i]\n c = C[i]\n X = X + v\n Y = Y + c\n\nprint(X-Y)", "neg": "N = int(input())\nV = list(map(int, input().split())) \nC = list(map(int, input().split())) \n\nX = 0\nY = 0\n\nfor i in range(N):\n if V[i] < C[i]:\n X = V[i]\n Y = V[i]\n X += X \n Y += Y\n\nif (X-Y) > 0:\n print(X-Y)", "jacc_sim": 0.9032258064516129, "before_after_length": [102, 110], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": " <>XvYcVC X ==vX Y ==Ycprf nt > 0:\n print(X-Y)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u923504061", "n_user": "u923504061", "pos": "def solve():\n N = int(input())\n V = list(map(int,input().split()))\n C = list(map(int,input().split()))\n cnt=0\n for i in range(len(V)):\n if V[i] < C[i]:\n pass\n else:\n cnt += V[i]-C[i]\n print(cnt)\n\n\nsolve()\n", "neg": "def solve():\n N = int(input())\n V = list(map(int,input().split()))\n C = list(map(int,input().split()))\n cnt=0\n for i in range(len(V)):\n if V < C:\n pass\n else:\n cnt += V(i)-C(i)\n print(cnt)\n\n\nsolve()\n", "jacc_sim": 0.9375, "before_after_length": [102, 96], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "[i][i]([)]([)]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u117545210", "n_user": "u117545210", "pos": "a=int(input())\np=list(map(int,input().split()))\nq=list(map(int,input().split()))\ncost=0\nfor i in range(a):\n if p[i] - q[i] > 0:\n cost += (p[i]-q[i]) \nprint(cost)", "neg": "a=input()\np=list(map(int,input().split()))\nq=list(map(int,input().split()))\ncost=0\nfor i in range(a):\n if p[i] - q[[i] > 0:\n cost += (p[i]-q[i]) \nprint(n)", "jacc_sim": 0.9642857142857143, "before_after_length": [81, 79], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "int()[ncost", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u840958781", "n_user": "u840958781", "pos": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nans1=0\nans2=0\nfor i in range (len(v)):\n if v[i]>c[i]:\n ans1 += v[i]-c[i]\nprint(ans1)", "neg": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nans1=0\nans2=0\nfor i in range (len(v)):\n if v[i]>c[i]:\n ans1 += v[i]-c[i]\n else:\n ans2 += c[i]-v[i]\nprint(min(ans1,ans2))", "jacc_sim": 0.9354838709677419, "before_after_length": [87, 110], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": " else:\n ans2 += c[i]-v[i]\nmin(,ans2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u329573160", "n_user": "u329573160", "pos": "from sys import stdin\n\nN = int(stdin.readline().rstrip())\ndata = [stdin.readline().rstrip().split() for _ in range(2)]\n\nprofit = [0] * N\nsum_profit = 0\n\nfor i in range(N):\n profit[i] = int(data[0][i]) - int(data[1][i])\n if profit[i] > 0:\n sum_profit += profit[i]\n\nprint(sum_profit)", "neg": "from sys import stdin\n\nN = int(stdin.readline().rstrip())\ndata = [stdin.readline().rstrip().split() for _ in range(N)]\n\nprofit = []\nsum_profit = 0\n\nfor i in N:\n profit[i] = data[1][i] - data[2][i]\n if profit[i] > 0:\n sum_profit += profit[i]\n\nprint(sum_profit)", "jacc_sim": 0.9696969696969697, "before_after_length": [122, 112], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "2)]\n\nprofit = [0] * )]\n\nprofit = []range()int(data[0][i]) - int() - data[2][i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u059436995", "n_user": "u059436995", "pos": "n = int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nans = 0\nfor a, b in zip(v,c):\n ans +=max(a-b,0)\nprint(ans)\n", "neg": "n = int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nans = 0\nfor a, b in zip(v,c):\n ans +=max(a-b,0)\nans", "jacc_sim": 0.96, "before_after_length": [68, 64], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "print()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u661576386", "n_user": "u661576386", "pos": "a = int(input())\nList=list(map(int,input().split()))\nList2=list(map(int,input().split()))\n\nsum=0\ni=0\nwhile i < a:\n if List[i] - List2[i] > 0:\n sum += List[i] - List2[i]\n i +=1\nprint(sum)", "neg": "a = int(input())\nList=list(map(int,input().split()))\nList2=list(map(int,input().split()))\n\nprint(List)\nsum=0\ni=0\nwhile i < a:\n if List[i] - List2[i] > 0:\n sum += List[i] - List2[i]\n i +=1\nprint(sum)", "jacc_sim": 1.0, "before_after_length": [90, 95], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "\nprint(List)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u357218223", "n_user": "u357218223", "pos": "# coding: utf-8\nN = int(input())\nV = list(map(int,input().split()))\nC = list(map(int,input().split()))\nVC = []\nfor i in range(N):\n VC.append(V[i] - C[i])\nans = 0\nfor j in VC:\n if j > 0:\n ans+=j\nprint(ans)", "neg": "# coding: utf-8\nN = int(input())\nV = list(map(int,input().split()))\nC = list(map(int,input().split()))\nans = 0\nfor i in [ V[_] - C[_] for _ in range(N)]:\n if i> 0:\n ans+=j\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [99, 85], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "VCans0[] in [ V[_] - C[_] for _:\n VC.append(V[i:\n- C[f])\nans= 0\nfor j n VC:\n if j ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u939757770", "n_user": "u939757770", "pos": "import numpy as np\n\nn=int(input())\nv = [int(x) for x in input().split()]\nc = [int(x) for x in input().split()]\n\nv = np.array(v)\nc= np.array(c)\nhikizan = v-c\n\nx = np.zeros((3,n))\nx[1] = v\nx[2] = c\nx[0] = hikizan\n\nkotae = 0\n\nfor i in range(0,n):\n if x[0,i] > 0:\n kotae += x[0,i]\n \nprint(int(kotae))", "neg": "import numpy as np\n\nn=int(input())\nv = [int(x) for x in input().split()]\nc = [int(x) for x in input().split()]\n\nv = np.array(v)\nc= np.array(c)\nhikizan = v-c\n\nx = np.zeros((3,n))\nx[1] = v\nx[2] = c\nx[0] = hikizan\n\na = x[: , x[0,:].argsort()]\n\nkotae = 0\n\nfor i in range(0,n):\n if a[0,i] > 0:\n kotae += a[0,i]\n \nprint(kotae)", "jacc_sim": 0.9473684210526315, "before_after_length": [161, 176], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "kotex[0\n\nfor i in range(0,n)\n if x[0i] > 0:\n kotae +=:].argsort()]\n\nkotae = 0\n\nfor in range(0,n):\n if a[0,i > 0:kotae += a[0,i] \nkoin(kot)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u238801602", "n_user": "u238801602", "pos": "N = input()\nV = input().split()\nC = input().split()\nret_X_Y = 0\nV = [int(i) for i in V]\nC = [int(i) for i in C]\nfor i in range(len(V)):\n if (V[i] - C[i]) > 0:\n ret_X_Y += V[i] - C[i]\nprint(ret_X_Y)", "neg": "N = input()\nV = input().split()\nC = input().split()\nret_X_Y = 0\n\nfor i in range(len(V)):\n if (V[i] - C[i]) > 0:\n ret_X_Y += V[i] - C[i]\nprint(ret_X_Y)", "jacc_sim": 0.96, "before_after_length": [105, 80], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "V = [int(i) for i in V]\nC = [int(i) for i in C]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u131264627", "n_user": "u131264627", "pos": "n = int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nans = 0\nfor i in range(n):\n d = v[i] - c[i]\n if 0 < d:\n ans += d\nprint(int(ans))\n", "neg": "n = int(input())\nv = list(map(int, input().split))\nc = list(map(int, input().split))\nd = 0\nfor i range(n):\n d = v[i] - c[i]\n if 0 < d:\n ans += d\nprint(int(ans))\n", "jacc_sim": 0.9642857142857143, "before_after_length": [79, 76], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "()()dans in", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u825981710", "n_user": "u825981710", "pos": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nnum=0\nfor i in range(n):\n if((v[i]-c[i])>0):\n num+=(v[i]-c[i])\nprint(num)\n", "neg": "n=int(input())\nv=list(map(int,input().split()))\nc=list(map(int,input().split()))\nnum=0\nfor i in range(n):\n if(v[i]-c[i]>0):\n num+=v[i]-d[i]\nprint(num)\n", "jacc_sim": 0.9642857142857143, "before_after_length": [82, 82], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "()(dc)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u721316601", "n_user": "u233183615", "pos": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\nans = 0\n\nfor i in range(N):\n if V[i] > C[i]:\n ans += V[i]-C[i]\nprint(ans)\n", "neg": "N = int(input())\nC = list(map(int, input().split()))\nV = list(map(int, input().split()))\nsum = 0\nfor i in range(N):\n if V[i] > C[i]:\n sum += V[i] - C[i]\nprint(sum)", "jacc_sim": 0.9285714285714286, "before_after_length": [78, 76], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "))\nV = list(map(int, input().split()anV = lit(map(int, input().split()))\nsum\n anum anum\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u408375121", "n_user": "u408375121", "pos": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\nR = []\nfor i in range(N):\n l = V[i] - C[i]\n R.append(l)\ncost = 0\nfor r in R:\n if r > 0:\n cost += r\nprint(cost)\n \n", "neg": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\nR = []\nfor i range(N):\n R.append(V[i] - C[i])\ncost = 0\nfor r in R:\n if r > 0:\n cost += r\nprint(cost)\n ", "jacc_sim": 0.967741935483871, "before_after_length": [96, 89], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "in l = V[i] - C[i]\n lV[i] - C[i]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u326328575", "n_user": "u326328575", "pos": "N=int(input())\nV=list(map(int,input().split()))\nC=list(map(int,input().split()))\nans =0\nfor i in range(N):\n z = V[i]-C[i]\n if z>0:\n ans+=z\n \nprint(ans)", "neg": "N=int(input())\nV=list(map(int,input().split()))\nC=list(map(int,input().split()))\nprint(V)\nprint(C)\nans =0\nfor i in range(N):\n z = V[i]-C[i]\n if z>0:\n ans+=z\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [79, 89], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "print(V)\nprint(C)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u714300041", "n_user": "u714300041", "pos": "N = int(input())\nV = list(map(int, input().split()))\nC = list(map(int, input().split()))\n\nanswer = 0\nfor i in range(N):\n if V[i] > C[i]:\n answer += V[i] - C[i]\n\nprint(int(answer))\n", "neg": "N = int(input())\nV = map(int, input().split())\nC = map(int, input().split())\n\nanswer = 0\nfor i in range(N):\n if V[i] > C[i]:\n answer += V[i] - C[i]\n\nprint(int(answer))", "jacc_sim": 0.9629629629629629, "before_after_length": [81, 74], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "list()list()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u825378567", "n_user": "u825378567", "pos": "N=int(input())\nV=[]\nC=[]\ndif=[]\nsum=0\nV=list(input().split())\nC=list(input().split())\nfor i in range(N):\n dif.append(int(V[i])-int(C[i]))\nfor i in range(N):\n if dif[i]>=0:\n sum+=dif[i]\nprint(sum)\n", "neg": "N=int(input())\nV=[]\nC=[]\ndif=[]\nsum=0\nV=list(input().split())\nC=list(input().split())\nfor i in range(N):\n dif.append(int(V[i])-int(C[i]))\nprint(dif)\nfor i in range(N):\n if dif[i]>=0:\n sum+=dif[i]\nprint(sum)\n", "jacc_sim": 1.0, "before_after_length": [101, 106], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "print(dif)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u895333128", "n_user": "u895333128", "pos": "n = int(input())\nvs = input().split(\" \")\ncs = input().split(\" \")\n \nxy = 0\nfor i in range(n):\n v = int(vs[i])\n c = int(cs[i])\n if v>c:\n xy += v-c\n \nprint(xy)", "neg": "n = int(input())\nvs = input().split(\" \")\ncs = input().split(\" \")\n\nxy = 0\nfor i in range(n):\n v = vs[i]\n c = cs[i]\n if v>c:\n xy += v-c\n\nprint(xy)", "jacc_sim": 1.0, "before_after_length": [77, 71], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": " int()int() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u189427183", "n_user": "u189427183", "pos": "import heapq\nN = int(input()) \nV=list(map(int,input().split())) \nC= list(map(int,input().split())) \na=[] \nfor i in range(0,N): \n if V[i]>=C[i]:\n heapq.heappush(a,(V[i]-C[i])) \n else:\n continue \nprint(sum(a))", "neg": "import heapq\nN = int(input()) \nV=list(map(int,input().split())) \nC= list(map(int,input().split())) \na=[] \nfor i in range(0,N): \n if V[i]>=C[i]: \n heapq.heappush(a,(V[i]-C[i])) \n \u3000else: \n continue \nprint(sum(a))", "jacc_sim": 1.0, "before_after_length": [105, 108], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": " \u3000 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u327668449", "n_user": "u327668449", "pos": "import heapq\n\nn = input()\nv = input()\nv = v.split()\nc = input()\nc = c.split()\n\nVSubC = []\n\nfor index in range(int(n)):\n heapq.heappush(VSubC, -(int(v[index]) - int(c[index])))\n\nanswer = 0\nwhile(len(VSubC) > 0):\n item = heapq.heappop(VSubC)\n if (item < 0):\n answer -= item\n else:\n break\n\nprint(answer)", "neg": "n = input()\nv = input()\nv = v.split()\nc = input()\nc = c.split()\n\nVSubC = []\n\nfor index in range(n):\n heapq.heappush(VSubC, -(v[index] - c[index]))\n\nanswer = 0\nwhile(len(VSubC) > 0):\n item = heapq.heappop(VSubC)\n if (item < 0):\n answer -= item\n else:\n break\n\nprint(answer)", "jacc_sim": 0.9444444444444444, "before_after_length": [139, 126], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": "import heapq\n\nit(n)int()int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03060", "p_user": "u850417587", "n_user": "u483885886", "pos": "n = int(input())\nv = list(map(int, input().split()))\nc = list(map(int, input().split()))\nprofit = 0\n\nfor i in range(n):\n\tif (v[i] - c[i]) > 0:\n\t\tprofit += (v[i] - c[i])\n\t\t\nprint(profit)\n", "neg": "n = int(input())\nv = list(map(int,input().split())\nc = list(map(int,input().split())\nsum = 0\nfor i in range(n):\n if v[i] >c[i]:\n sum += v[i]-c[i]\nprint(sum)\n", "jacc_sim": 0.9285714285714286, "before_after_length": [89, 75], "nl": "You have a set of gems, each with a value and a cost. You can choose any combination of gems, and you want to maximize the difference between the total value of the chosen gems and the total cost. Find the maximum possible difference. Input consists of the number of gems, their values, and their costs. Output the maximum possible difference. All values are integers. The number of gems is between 1 and 20, and both the cost and value of each gem are between 1 and 50.", "diff_info": " ) )sumprofit\n\t (>- ) > 0\t\tprofit sum( )\n\t\tsumprofit", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u687766076", "n_user": "u687766076", "pos": "n = int(input())\nv = [int(i) for i in input().split()]\n\n\ndef gcd(x, y):\n if y > x:\n x, y = y, x\n if y == 0:\n return x\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\nl = [0 for i in range(n)]\nr = [0 for i in range(n)]\n\nfor i in range(1, n):\n l[i] = gcd(l[i - 1], v[i - 1])\nfor i in range(n - 1)[::-1]:\n r[i] = gcd(r[i+1], v[i+1])\nm = [gcd(l[i], r[i]) for i in range(n)]\nprint(max(m))\n", "neg": "import math\nn = int(input())\nv = [int(i) for i in input().split()]\nif n == 2:\n print(max(v))\n\nl = [0 for i in range(n)]\nr = l[:]\n\n\ndef gcd(x, y):\n if y > x:\n x, y = y, x\n if y == 0:\n return x\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\nfor i in range(n):\n l[i] = gcd(l[i-1], v[i-1])\nfor i in range(n - 1)[::-1]:\n r[i] = gcd(r[i + 1], v[i + 1])\nm = [gcd(l[i], r[i]) for i in range(n)]\nprint(max(m))\n", "jacc_sim": 0.918918918918919, "before_after_length": [206, 215], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "import math\nif n == 2:\ndefgcd(x,y):\n if y > x:\n x, y = y, x\n if y == 0:\n return x\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\nl = [0 for i in range(n)]\nr = [0 for i in range(n)]\n\nfor i in range(1, n):\n l[i] = gcd(l[i - 1], v[i - 1])\nfor i in range(n - 1)[::-1]:\n r[i] = gcd(r[i+1], v[i+1])\nm = [gcd(l[i], r[i]) for i in range(n)]\nv))\n\nl = [0 for i in range(n)]\nr = l[:]\n\n\ndef gcd(x, y):\n if y > x:\n x, y = y, x\n if y == 0:\n return x\n if x % y == 0:\n return y\n return gcd(y, x % y)\n\n\nfor i in range(n):\n l[i] = gcd(l[i-1], v[i-1])\nfor i in range(n - 1)[::-1]:\n r[i] = gcd(r[i + 1], v[i + 1])\n = [gcd(l[i], r[i] for i in range(n]print(max(m))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u571199625", "n_user": "u571199625", "pos": "N = int(input())\nA = list(map(int, input().split()))\ngcd_list=[]\nreverse_gcd_list = []\n\n\ndef gcd(x,y):\n if xy\n if y==0:\n return x\n if x%y==0:\n return y\n else:\n return gcd(y,x%y)\n\ngcd_list.append(A[0])\nreverse_gcd_list.append(A[-1])\n\nfor i in range(1,N):\n gcd_list.append(gcd(gcd_list[i-1], A[i]))\n # reverse_gcd_list.insert(0,gcd(reverse_gcd_list[0], A[-1-i]))\n reverse_gcd_list.append(gcd(reverse_gcd_list[-1], A[-1-i]))\n\nreverse_gcd_list.reverse()\nnum = [gcd_list[-2], reverse_gcd_list[1]]\nfor i in range(N-2):\n num.append(gcd(gcd_list[i], reverse_gcd_list[i+2]))\n\nprint(max(num))\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\ngcd_list=[]\nreverse_gcd_list = []\n\n\ndef gcd(x,y):\n if xy\n if y==0:\n return x\n if x%y==0:\n return y\n else:\n return gcd(y,x%y)\n\ngcd_list.append(A[0])\nreverse_gcd_list.append(A[-1])\n\nfor i in range(1,N):\n gcd_list.append(gcd(gcd_list[i-1], A[i]))\n reverse_gcd_list.insert(0,gcd(reverse_gcd_list[0], A[-1-i]))\n\nnum = [gcd_list[-2], reverse_gcd_list[1]]\nfor i in range(N-2):\n num = num.append(gcd(gcd_list[i], reverse_gcd_list[i+2]))\n\nprint(max(num))\n", "jacc_sim": 0.9767441860465116, "before_after_length": [307, 269], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "# reverse_gcd_list.append(gcd(reverse_gcd_list[-1], A[-1-i]))\n\nreverse_gcd_list.reverse() = num", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u197495461", "n_user": "u197495461", "pos": "N = int(input())\nnums = [int(i) for i in input().split()]\nnums_sorted = sorted(list((set(nums))), reverse=True)\ndef compute_divs(n):\n divs = []\n if n == 1: return [1]\n for i in range(2,int(n**0.5)+1):\n if n % i == 0:\n divs.append(i)\n if i != n // i:\n divs.append(n//i)\n divs.append(n)\n return divs\nans = 1\nif len(nums_sorted) == 1: ans = nums[0]\nelse:\n divs1 = compute_divs(nums_sorted[0])\n divs2 = compute_divs(nums_sorted[1])\n divs = sorted(list(set(divs1+divs2)))\n for i in reversed(divs):\n c= 0\n for j in nums:\n if j % i != 0:\n c += 1\n if c == 2:\n break\n if c <= 1:\n ans = i\n break\nprint(ans)", "neg": "N = int(input())\nnums = [int(i) for i in input().split()]\nnums = list((set(nums)))\ndef compute_divs(n):\n divs = []\n for i in range(2,int(n**0.5)+1):\n if n % i == 0:\n divs.append(i)\n if i != n // i:\n divs.append(n//i)\n divs.append(n)\n return divs\n\nif len(nums) == 1: ans = nums[0]\nelse:\n divs1 = compute_divs(nums[0])\n divs2 = compute_divs(nums[1])\n divs = sorted(list(set(divs1+divs2)))\n print(divs)\n for i in reversed(divs):\n c= 0\n for j in range(len(nums)):\n if nums[j] % i != 0:\n c += 1\n if c == 2:\n break\n if c <= 1:\n ans = i\n break\nprint(ans)", "jacc_sim": 0.94, "before_after_length": [280, 266], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "_sortedsorted(, reverse=True)]\n if n == 1: return [1ans = 1_sorted_sorted_sortedprint(divs)\n rage(len(n))nums[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u774539708", "n_user": "u774539708", "pos": "import sys\ninput=sys.stdin.readline\n\nimport math\ndef make_divisors(n):\n D=[]\n for i in range(1, int(n**0.5)+1):\n if n%i==0:\n D.append(i)\n if i!=n//i:\n D.append(n//i)\n D.sort()\n return D\n\nn=int(input())\nA=list(sorted(map(int,input().split())))\nD0=list(reversed(make_divisors(A[0])))\nD1=list(reversed(make_divisors(A[1])))\n\nans=1\nfor d in D0:\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(d,ans)\n break\n\nfor d in D1:\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(d,ans)\n break\n\nprint(ans)", "neg": "import sys\ninput=sys.stdin.readline\n\nimport math\ndef make_divisors(n):\n D=[]\n for i in range(1, int(n**0.5)+1):\n if n%i==0:\n D.append(i)\n if i!=n//i:\n D.append(n//i)\n D.sort()\n return D\n\nn=int(input())\nA=list(sorted(map(int,input().split())))\nD0=list(reversed(make_divisors(A[0])))\nD1=list(reversed(make_divisors(A[1])))\n\nprint(D0,D1)\nans=1\nfor d in D0:\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(d,ans)\n break\n\nfor d in D1:\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(d,ans)\n break\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [324, 333], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "aprit(s=1\nfor d in :\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(dD1)\n)=1fordin break\n\nfor d in 01for d in D1:\n if d==1:\n continue\n cnt=0\n for a in A:\n if a%d!=0:\n cnt+=1\n if cnt>1:\n break\n if cnt<=1:\n ans=max(d,ans)\n break\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u386819480", "n_user": "u386819480", "pos": "#!/usr/bin/env python3\nimport sys\nimport functools\n# from math import gcd\n# from fractions import gcd\n\ndef gcd(x,y):\n if xy\n if y==0:\n return x\n if x%y==0:\n return y\n else:\n return gcd(y,x%y)\n \ndef solve(N: int, A: \"List[int]\"):\n L = [0] * (N)\n R = [0] * (N)\n \n for i in range(1, N):\n L[i] = gcd(L[i-1], A[i-1])\n for i in reversed(range(0,N-1)):\n R[i] = gcd(R[i+1], A[i+1])\n \n # print(L)\n # print(R)\n \n ans = 0\n for i in range(N):\n ans = max(ans, gcd(L[i], R[i]))\n \n print(ans)\n \n return\n \n \n# Generated by 1.1.4 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n A = [ int(next(tokens)) for _ in range(N) ] # type: \"List[int]\"\n solve(N, A)\n \nif __name__ == '__main__':\n main()", "neg": "#!/usr/bin/env python3\nimport sys\nimport functools\nfrom fractions import gcd\n\n\ndef solve(N: int, A: \"List[int]\"):\n L = [0] * (N+2)\n R = [0] * (N+2)\n\n L[1] = A[0]\n for i in range(2,N+1):\n L[i] = gcd(L[i-1], A[i-1])\n\n R[N] = A[N-1]\n for i in reversed(range(0,N+1)):\n R[i] = gcd(A[i-1], R[i+1])\n\n # print(L)\n # print(R)\n\n ans = 0\n for i in range(1,N):\n if(L[i-1] == 0):\n ans = max(ans, R[i+1])\n elif(R[i-1] == 0):\n ans = max(ans, R[i-1])\n else:\n ans = max(ans, gcd(L[i-1], R[i+1]))\n\n print(ans)\n\n return\n\n\n# Generated by 1.1.4 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n A = [ int(next(tokens)) for _ in range(N) ] # type: \"List[int]\"\n solve(N, A)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9101123595505618, "before_after_length": [428, 445], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "#fromactins iportmath import # from fractions import gcd\ndef gcd(x,y):\n if xy\n if y==0:\n return x\n if x%y==0:\n return y\n else:\n return gcd(y,x%y)\n +2+2\n\nL[ for i in range(] = A[0]\n for i in range(2 +1\nforR[N]=iA[in reversed(range(0,])):foriin R[i] = reversed(ranecd0,NR[i)):\n R[i,= gcd([i-1], R 1,ifans = max(ans, gcd-1 == 0):\n ans = max(ans+1\n elif(R[i-1] == 0: ans = max(ans, R[i-1]) else:\n ans = max(ans, gcd(L[i-1], R[i+1]))\n\n \n return return \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u825981710", "n_user": "u825981710", "pos": "def gcd(a,b):\n if b==0:\n return a\n return gcd(b,a%b)\nN=int(input())\nA=list(map(int,input().split()))\n\nL=[0,0]\nfor ai in A:\n L.append(gcd(L[-1],ai))\n #print(L)\n\nR=[0,0]\nfor ai in A[::-1]:\n R.append(gcd(R[-1],ai))\n #print(R)\n\nprint(max(gcd(l,r) for l,r in zip(L,reversed(R))))\n", "neg": "def gcd(a,b):\n if b==0:\n return a\n return gcd(b,a%b)\nN=int(input())\nA=list(map(int,input().split()))\n\nL=[0,0]\nfor ai in A:\n L.append(gcd(L[-1],ai))\n print(L)\n\nR=[0,0]\nfor ai in A[::-1]:\n R.append(gcd(R[-1],ai))\n print(R)\n\nprint(max(gcd(l,r) for l,r in zip(L,reversed(R))))", "jacc_sim": 0.9736842105263158, "before_after_length": [155, 152], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "##\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u060938295", "n_user": "u060938295", "pos": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sat Apr 27 20:57:32 2019\n\n@author: Yamazaki Kenichi\n\"\"\"\n\nN = int(input())\nA = list(map(int,input().split()))\n\ndef eg(x,y):\n if y == 0:\n return x\n x, y = y, x%y\n return eg(x,y)\n\nT = [[1,1,1] for i in range(N)]\nT[0][0],T[0][1],T[0][2] = A[0], 0, 0\nfor i in range(1,N):\n T[i][0] = eg(T[i-1][0],A[i])\n T[i][1] = T[i-1][0]\n T[i][2] = max(eg(T[i-1][2],A[i]),eg(T[i-1][1],A[i]))\nprint(max(T[N-1]))\n\n", "neg": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sat Apr 27 20:57:32 2019\n\n@author: Yamazaki Kenichi\n\"\"\"\n\nN = int(input())\nA = list(map(int,input().split()))\n\ndef eg(x,y):\n if y == 0:\n return x\n x, y = y, x%y\n return eg(x,y)\n\nT = [[1,1] for i in range(N)]\nT[0][0],T[0][1], = A[0],A[0]\nfor i in range(1,N):\n T[i][0] = eg(T[i-1][0],A[i])\n T[i][1] = max(eg(T[i-1][1],A[i]),T[i-1][0])\nprint(max(T[N-1]))", "jacc_sim": 0.9807692307692307, "before_after_length": [253, 221], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": ",1T = A,A02 = A[0], 0, 0T[i-1][0]\n T[i][2] = 12eg(01,A[i])\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u408620326", "n_user": "u408620326", "pos": "import sys,math,copy\ninput = sys.stdin.readline\n\nN=int(input().strip())\nA=[int(x) for x in input().strip().split()]\ndef gcd(a,b):\n if b==0:\n return a\n \n return gcd(b,a%b)\n\nANS=[]\nL=[0]\nR=[0]\nfor i in range(len(A)):\n L.append(gcd(A[i],L[-1]))\n R.append(gcd(A[-1-i],R[-1]))\n\nR.reverse()\nfor i in range(len(L)-1):\n ANS.append(gcd(L[i],R[i+1]))\n\nprint(max(ANS))\n", "neg": "import sys,math,copy\nfrom fractions import gcd\ninput = sys.stdin.readline\n\nN=int(input().strip())\nA=[int(x) for x in input().strip().split()]\n# def gcd(a,b):\n# if b==0:\n# return a\n \n# return gcd(b,a%b)\n\nANS=[]\nL=[0]\nR=[0]\nfor i in range(len(A)):\n L.append(gcd(A[i],L[i]))\n R=[gcd(A[-1-i],R[-i])]+R\n\nfor i in range(len(L)-1):\n ANS.append(gcd(L[i],R[i+1]))\n\nprint(max(ANS))\n", "jacc_sim": 0.9148936170212766, "before_after_length": [183, 188], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "from fractions import gcd\n# # # # i]))\n R=[gcd(A[-i,R[-i])]+R R.append(gcd(A[-1-i],R[-1]))\n\nR.reverse()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u250664216", "n_user": "u250664216", "pos": "def gcd(a,b):\n l = max(a,b)\n s = min(a,b)\n if s == 0:\n return l\n else:\n return gcd(s, l%s)\n\nn = int(input())\na = [0] + list(map(int, input().split())) + [0]\nmax_gcd = 1\nL = [0] * (n+2)\nR = [0] * (n+2)\n\nfor i in range(1,n+2):\n L[i] = gcd(a[i],L[i-1])\n R[n+1-i] = gcd(a[n+1-i], R[n+2-i])\nfor i in range(1,n+1):\n max_gcd = max(max_gcd,gcd(L[i-1], R[i+1]))\n\nprint(max_gcd)", "neg": "def gcd(a,b):\n l = max(a,b)\n s = min(a,b)\n if s == 0:\n return l\n else:\n return gcd(s, l%s)\n\nn = int(input())\na = [0] + list(map(int, input().split())) + [0]\nmax_gcd = 1\nL = [0] * (n+2)\nR = [0] * (n+2)\n\nfor i in range(1,n+2):\n L[i] = gcd(a[i],L[i-1])\n R[n+1-i] = gcd(a[n+1-i], R[n+2-i])\nfor i in range(1,n+1):\n max_gcd = max(L[i-1], R[i+1])\n\nprint(max_gcd)", "jacc_sim": 1.0, "before_after_length": [225, 217], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "max_gcd,gcd()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u953110527", "n_user": "u953110527", "pos": "def gcd(a,b):\n return gcd(b, a%b) if b else a\nN = int(input())\na = list(map(int,input().split()))\ngcdl = [a[0]]\ngcdr = [a[N-1]]\nfor i in range(1,N-1):\n gcdl.append(gcd(gcdl[i-1],a[i]))\n gcdr.append(gcd(gcdr[i-1],a[N-i-1]))\nimport numpy as np\nans = np.maximum(gcdl[N-2],gcdr[N-2])\ngcdl.pop()\ngcdr.pop()\ngcdr.sort()\nfor i in range(N-2):\n if ans < gcd(gcdl[i],gcdr[i]):\n ans = gcd(gcdl[i],gcdr[i])\nprint(ans)", "neg": "def gcd(a,b):\n return gcd(b, a%b) if b else a\nN = int(input())\na = list(map(int,input().split()))\ngcdl = [a[0]]\ngcdr = [a[N-1]]\nfor i in range(1,N-1):\n gcdl.append(gcd(gcdl[i-1],a[i]))\n gcdr.append(gcd(gcdr[i-1],a[N-i-1]))\nimport numpy as np\nans = np.maximum(gcdl[N-2],gcdr[N-2])\ngcdr.sort()\nfor i in range(1,N-1):\n if ans < gcd(gcdl[i],gcdr[i]):\n ans = gcd(gcdl[i],gcdr[i])\nprint(ans)", "jacc_sim": 0.9767441860465116, "before_after_length": [220, 209], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "l.pop()\ngcdr.pop()\ngcd1,12", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u404057606", "n_user": "u404057606", "pos": "def gcd(a,b):\n if b==0:\n return max(a,b)\n else:\n if a%b == 0:\n return(b)\n else:\n return gcd(b,a%b)\nn = int(input())\na = list(map(int,input().split()))\nl=[0 for i in range(n)]\nr=[0 for i in range(n)]\ne=[0 for i in range(n)]\nfor i in range(1,n):\n l[i]=gcd(l[i-1],a[i-1])\n r[i]=gcd(r[i-1],a[n-i])\nfor i in range(n):\n e[i] = gcd(l[i],r[n-1-i])\nprint(max(e))\n", "neg": "def gcd(a,b):\n if b==0:\n return max(a,b)\n else:\n if a%b == 0:\n return(b)\n else:\n return gcd(b,a%b)\nn = int(input())\na = list(map(int,input().split()))\nl=[0 for i in range(n+1)]\nr=[0 for i in range(n+1)]\n\nfor i in range(1,n):\n l[i]=gcd(l[i-1],a[i-1])\n r[i]=gcd(r[i-1],a[n-i])\nfor i in range(n):\n e[i] = gcd(l[i],r[n-1-i])\nprint(max(e))\n", "jacc_sim": 0.9714285714285714, "before_after_length": [202, 196], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "+)]\nr=[0 for i in range(n)]\ne=[0 for i in range(n)]\nfor i in range(,n]:r=[0 l[i]=gcd(l[i-1],a[i-1])\n r[i]=gcd(r[i-1],a[n-i])\n+):\n e[i] = gcd(l[i],r[n-)]\n\nfor i in range(1,n):\n l[i]=gcd(l[i-1],a[i-1])\n r[i]=gcd(r[i-1],a[n-i])\nfor i in range(n):\n e[i] = gcd(l[i],r[n-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u278886389", "n_user": "u278886389", "pos": "N = int(input())\nA = list(map(int,input().split(\" \")))\n\ndef gcd(m,n):\n while n != 0:\n a = n\n n = m % n\n m = a\n return m\n\nl = [0]*N\nr = [0]*N\n\nl[0] = A[0]\nr[-1] = A[-1]\n\nfor x in range(1,N):\n y = N - 1 - x\n l[x] = gcd(A[x],l[x-1])\n r[y] = gcd(A[y],r[y+1])\n\nl.insert(0,0)\nl.append(0)\nr.insert(0,0)\nr.append(0)\n\no = 1\n\nfor x in range(N):\n o = max(o,gcd(l[x],r[x+2]))\n\nprint(o)", "neg": "N = int(input())\nA = list(map(int,input().split(\" \")))\n\ndef gcd(m,n):\n while n != 0:\n a = n\n n = m % n\n m = a\n return m\n\nl = [0]*N\nr = [0]*N\n\nl[0] = A[0]\nr[-1] = A[-1]\n\nfor x in range(1,N):\n y = N - 1 - x\n l[x] = gcd(A[x],l[x-1])\n r[y] = gcd(A[y],r[y+1])\n\nl.insert(0,0)\nl.append(0)\nr.insert(0,0)\nr.append(0)\n\no = 1\n\nfor x in range(N):\n x += 1\n o = max(o,gcd(l[x-1],r[x+1]))\n\nprint(max(o))", "jacc_sim": 0.9767441860465116, "before_after_length": [226, 235], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "xo= max(o,gcd(l[x],r[x2= 1\n o = max(o,gcd(l[x-1,r[x+1]max()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u098968285", "n_user": "u098968285", "pos": "def gcd(a, b): # a >= b\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n\ndef makelist(n, m):\n return [[0 for i in range(m)] for j in range(n)]\n\nN = int(input())\nA = [0] + list(map(int, input().split()))\n\ntoRight = [0]*(N+1)\ntoRight[1] = A[1]\nfor i in range(2, N+1):\n toRight[i] = gcd(toRight[i-1], A[i])\n\ntoLeft = [0]*(N+1)\ntoLeft[N] = A[N]\nfor i in reversed(range(1, N)):\n toLeft[i] = gcd(toLeft[i+1], A[i])\n\n# print(toRight)\n# print(toLeft)\n \nans = max(toRight[-2], toLeft[2])\nfor i in range(2, N-1 + 1):\n now = gcd(toRight[i-1], toLeft[i+1])\n ans = max(ans, now)\n\nprint(ans)\n", "neg": "def gcd(a, b): # a >= b\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n\ndef makelist(n, m):\n return [[0 for i in range(m)] for j in range(n)]\n\nN = int(input())\nA = [0] + list(map(int, input().split()))\n\ntoRight = [0]*(N+1)\ntoRight[1] = A[1]\nfor i in range(2, N+1):\n toRight[i] = gcd(toRight[i-1], A[i])\n\ntoLeft = [0]*(N+1)\ntoLeft[N] = A[N]\nfor i in reversed(range(1, N)):\n toLeft[i] = gcd(toLeft[i+1], A[i])\n \nans = max(toRight[-2], toLeft[2])\nfor i in range(3, N-3 + 1):\n now = gcd(toRight[i-1], toLeft[-i-1])\n ans = max(ans, now)\n\nprint(ans)\n", "jacc_sim": 0.9791666666666666, "before_after_length": [291, 276], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "\n# print(toRight)\n# print(toLeft)\n3231--+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u590211278", "n_user": "u590211278", "pos": "N = int(input())\nA = list(map(int,input().split(' ')))\n\ndef myGCD(a,b):\n if a == 0:\n return b\n while b!=0:\n a,b = b,a%b\n return a\n\nL=[]\nR=[]\nfor i in range(N):\n L.append(0)\n R.append(0)\n\nfor i in range(N-1):\n L[i+1]=myGCD(L[i],A[i])\n\nfor i in range(N-2,-1,-1):\n #print(i)\n R[i] = myGCD(R[i+1],A[i+1])\n\nM=[]\nfor i in range(N):\n M.append(myGCD(R[i],L[i]))\n#print(L)\n#print(R)\n\nprint(max(M))", "neg": "N = int(input())\nA = list(map(int,input().split(' ')))\n\ndef myGCD(a,b):\n if a == 0:\n return b\n while b!=0:\n a,b = b,a%b\n return a\n\nL=[]\nR=[]\nfor i in range(N):\n L.append(0)\n R.append(0)\n\nfor i in range(N-1):\n L[i+1]=myGCD(L[i],A[i])\n\nfor i in range(N-2,-1,-1):\n #print(i)\n R[i] = myGCD(R[i+1],A[i])\n\nM=[]\nfor i in range(N):\n M.append(myGCD(R[i],L[i]))\n\nprint(max(M))", "jacc_sim": 1.0, "before_after_length": [229, 215], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "+1#print(L)\n#print(R)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u159994501", "n_user": "u159994501", "pos": "def gcd(a, b): # a>b\n a, b = max(a, b), min(a, b)\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n\n\nN = int(input())\nA = list(map(int, input().split()))\nR = [0 for i in range(N - 1)]\nL = [0 for i in range(N - 1)]\nR[0] = A[0]\nL[0] = A[-1]\nfor i in range(1, N - 1):\n R[i] = gcd(R[i - 1], A[i])\nfor j in range(1, N - 1):\n L[j] = gcd(L[j - 1], A[-1 - j])\n # print(L[j])\nt = 0\nfor i in range(N - 2):\n # print(R[i], L[N - 3 - i])\n t = max(t, gcd(R[i], L[N - 3 - i]))\nprint(max(t, R[-1], L[-1]))\n", "neg": "def gcd(a, b): # a>b\n a, b = max(a, b), min(a, b)\n if b == 0:\n return a\n else:\n return gcd(b, a % b)\n\n\nN = int(input())\nA = list(map(int, input().split()))\nR = [0 for i in range(N - 1)]\nL = [0 for i in range(N - 1)]\nR[0] = A[0]\nL[0] = A[-1]\nfor i in range(1, N - 1):\n R[i] = gcd(R[i - 1], A[i])\nfor j in range(1, N - 1):\n L[j] = gcd(L[j - 1], A[-1 - j])\n # print(L[j])\nt = 0\nfor i in range(N - 2):\n print(R[i], L[N - 3 - i])\n t = max(t, gcd(R[i], L[N - 3 - i]))\nprint(max(t, R[-1], L[-1]))\n", "jacc_sim": 1.0, "before_after_length": [269, 268], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "# ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u933341648", "n_user": "u933341648", "pos": "N = int(input())\nA = [int(i) for i in input().split()]\n\ndef gcd(x, y):\n if x < y:\n x, y = y, x\n if y == 0:\n return x\n return gcd(x%y, y)\n\nL = [0]\nR = [0]\nfor i in range(N):\n L.append(gcd(A[i], L[i]))\n R.append(gcd(A[-i-1], R[i]))\n\nR.reverse()\n\nM = []\nfor i in range(0, N):\n M.append(gcd(L[i], R[i+1]))\n\nprint(max(M))", "neg": "N = int(input())\nA = [int(i) for i in input().split()]\n\ndef gcd(x, y):\n if x < y:\n x, y = y, x\n while y != 0:\n x, y = y, x%y\n return y\n\nL = [0]\nR = [0]\nfor i in range(N):\n L.append(gcd(A[i], L[i]))\n R.append(gcd(A[-i-1], R[i]))\n\nR.reverse()\n\nM = []\nfor i in range(0, N):\n M.append(gcd(L[i], R[i+1]))\n\nprint(max(M))\n", "jacc_sim": 0.9473684210526315, "before_after_length": [174, 175], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "whfle!=x,returnyx\n=y, return gcd(\n, return )\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u798129018", "n_user": "u798129018", "pos": "from functools import reduce\ninf = 10**10\nimport sys\ninput = sys.stdin.readline\n\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\ndef gcd_list(numbers):\n return reduce(gcd,numbers)\nn = int(input())\na = list(map(int,input().split()))\nindex = inf\nif n == 2:\n print(max(a))\nelse:\n a.sort()\n if gcd(a[0],a[n-1]) == 1:\n print(max(gcd_list(a[1:n]),gcd_list(a[0:n-1])))\n else:\n ans = gcd(a[0],a[n-1])\n for i in range(1,n-1):\n if gcd(a[i]-a[0],a[n-1]-a[i]) <= ans:\n index = i\n ans = gcd(a[i]-a[0],a[n-1]-a[i])\n print(max(gcd_list(a[0:index]+a[index+1:n]),gcd_list(a[1:n]),gcd_list(a[0:n-1])))", "neg": "from functools import reduce\ninf = 10**10\nimport sys\ninput = sys.stdin.readline\ndef gcd_list(numbers):\n return reduce(math.gcd,numbers)\nn = int(input())\na = list(map(int,input().split()))\nindex = inf\nif n == 2:\n print(max(a))\nelse:\n a.sort()\n if math.gcd(a[0],a[n-1]) == 1:\n print(max(gcd_list(a[1:n]),gcd_list(a[0:n-1])))\n else:\n for i in range(1,n-1):\n ans = math.gcd(a[0],a[n-1])\n if math.gcd(a[i]-a[0],a[n-1]-a[i]) <= ans:\n index = i\n ans = math.gcd(a[i]-a[0],a[n-1]-a[i])\n print(gcd_list(a[0:i]+a[i+1:n]))", "jacc_sim": 0.9215686274509803, "before_after_length": [335, 267], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "\n\ndef gcd(a, b):\n if a < b:\n a, b = b, a\n if b == 0:\n return a\n c = a % b\n return gcd(b, c)\ngcd,nuabers)\nn = inh(input())\na = list(map(int,input()gcd,number)\nn = int(inut())\na = smap(int,input())\nindex = inf\nif n == 2:\n print(max(a))\nelse:\n aorpli)) nf gce(a[0],a[n-1]) == 1:\n print(ma = inf\nif n == 2:\n printmgcd_list([1:n]),gcd_list(a[0:n-1])))\n else:\n ans = gcd(a[0],a[n-1])\n for i in range(1,n-1):\n if gcd(a[i]-a[0],a[n-1]-a[i]) <= ans:\n inde(a))\nelse:\n a.sort()\n if math.gcd(a[0],a[n-1]) =i\n ans = gcd(a[i]-a[0],a[n-:]-a[i])0:index]+a[index+0:n-])))\n else\n for i i range(1,n-1):\n ans = math.gcd(a[0,a[n-1]\n if math.gcd(a[i]-a[0]a[n-1]-a[i]) <= ans:\n index = i\n ans = math.gcd(a[i]-a[0],a[n-1]-a[i])\n print(i]+a[i+1:-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u844005364", "n_user": "u844005364", "pos": "\nn = int(input())\na = list(map(int, input().split()))\n\n\nimport sys\nif n == 2:\n print(max(a))\n sys.exit()\n\n\ndef gcd(x, y):\n while y:\n x, y = y, x % y\n return x\n\n\ng = a[0]\ngcd_left = [g]\nfor i in range(n-1):\n g = gcd(g, a[i+1])\n gcd_left.append(g)\n\ng = a[n-1]\ngcd_right = [g]\nfor i in range(n-1):\n g = gcd(g, a[n-2-i])\n gcd_right.append(g)\n\nmax_gcd = gcd_right[n-2]\nfor i in range(1, n-1):\n max_gcd = max(max_gcd, gcd(gcd_left[i-1], gcd_right[n - 2 - i]))\nmax_gcd = max(max_gcd, gcd_left[n-2])\n\nprint(max_gcd)", "neg": "\nn = int(input())\na = list(map(int, input().split()))\n\n\nimport sys\nif n == 2:\n print(max(a))\n sys.exit()\n\n\ndef gcd(x, y):\n while y:\n x, y = y, x % y\n return x\n\n\ng = a[0]\ngcd_left = [g]\nfor i in range(n-1):\n g = gcd(g, a[i+1])\n gcd_left.append(g)\n\ng = a[n-1]\ngcd_right = [g]\nfor i in range(n-1):\n g = gcd(g, a[n-2-i])\n gcd_right.append(g)\n\nmax_gcd = gcd_right[n-1]\nfor i in range(1, n-1):\n max_gcd = max(max_gcd, gcd(gcd_left(i-1), gcd_right(n - 2 - i)))\nmax_gcd = max(max_gcd, gcd_left[n-1])\n\nprint(max_gcd)", "jacc_sim": 1.0, "before_after_length": [275, 275], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "12([)]([)))\nmax_gcd = max(max_gcd, gcd_left[n-1\n\nprint(max_gcd\nmax_gcd = max(max_gcd, gcd_left[n-2])\n\nprint(max_gcd)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u951672936", "n_user": "u951672936", "pos": "def gcd(a, b):\n if b > a:\n a, b = b, a\n if a % b == 0:\n return b\n return gcd(a%b, b)\n\n\nN = int(input())\nA = [int(s) for s in input().split(\" \")]\n\nleft = A.copy()\nright = A.copy()\n\nfor i in range(1, N):\n left[i] = gcd(left[i-1], left[i])\n\nfor i in reversed(range(0, N-1)):\n right[i] = gcd(right[i+1], right[i])\n\nans = max(right[1], left[-2])\n\nfor i in range(1, N-1):\n ans = max(ans, gcd(left[i-1], right[i+1]))\n\nprint(ans)", "neg": "def gcd(a, b):\n if b > a:\n a, b = b, a\n if a % b == 0:\n return b\n return gcd(a%b, b)\n\n\nN = int(input())\nA = [int(s) for s in input().split(\" \")]\n\nleft = A.copy()\nright = A.copy()\n\nfor i in range(1, N):\n left[i] = gcd(left[i-1], left[i])\n\nfor i in reversed(range(0, N-1)):\n right[i] = gcd(right[i+1], right[i])\n\nprint((left, right))\n\nans = max(right[1], left[-2])\n\nfor i in range(1, N-1):\n ans = max(ans, gcd(left[i-1], right[i+1]))\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [208, 216], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "print((left, right))\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u354953865", "n_user": "u354953865", "pos": "import math\nfrom itertools import accumulate\n\nn = int(input())\na = list(map(int, input().split()))\n\nfromleft = list(accumulate(a, math.gcd))\na.reverse()\nfromright = list(accumulate(a, math.gcd))\nfromright.reverse()\na.reverse()\n\ngcd = []\n\ngcd.append(fromright[1])\nfor i in range(1, n-1):\n gcd.append(math.gcd(fromleft[i-1], fromright[i+1]))\n\ngcd.append(fromleft[n-2])\n\nif n == 2:\n print(max(a[1], a[0]))\nelse:\n print(max(gcd))\n", "neg": "import math\nfrom itertools import accumulate\n\nn = int(input())\na = list(map(int, input().split()))\n\nfromleft = list(accumulate(a, math.gcd))\na.reverse()\nfromright = list(accumulate(a, math.gcd))\nfromright.reverse()\na.reverse()\n\ngcd = []\n\ngcd.append(fromright[1])\nfor i in range(1, n-1):\n gcd.append(math.gcd(fromleft[i-1], fromright[i+1]))\n print(i, fromright[i-1], fromleft[i+1])\n\ngcd.append(fromleft[n-2])\n\nif n == 2:\n print(max(a[1], a[0]))\nelse:\n print(max(gcd))\n", "jacc_sim": 1.0, "before_after_length": [181, 201], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": ")\n print(i, fromright[i-1], fromleft[i+1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u439176910", "n_user": "u439176910", "pos": "N = int(input()) \ndef gcd(m, n):\n a = max(m,n)\n b = min(m,n)\n if a%b==0:\n return b\n while not a % b == 0:\n a, b = b, a % b\n return b\n\narr = [int(item) for item in input().split()]\na = [arr[0]]\nb = [arr[-1]]\nfor i in range(1, N):\n a.append(gcd(a[i-1], arr[i]))\n b.append(gcd(b[i-1], arr[N-i-1]))\nans = max(a[-2], b[-2])\nb = b[::-1]\nfor i, j in zip(a[:-2], b[2:]):\n ans = max(ans, gcd(i,j))\nprint(ans)\n", "neg": "N = int(input()) \ndef gcd(m, n):\n a = max(m,n)\n b = min(m,n)\n if a%b==0:\n return b\n while not a % b == 0:\n a, b = b, a % b\n return b\n\narr = [int(item) for item in input().split()]\na = [arr[0]]\nb = [arr[-1]]\nfor i in range(1, N):\n a.append(gcd(a[i-1], arr[i]))\n b.append(gcd(b[i-1], arr[N-i-1]))\nans = max(a[-2], b[-2])\n\nfor i, j in zip(a[:-3], b[:-3:-1]):\n ans = max(ans, gcd(i,j))\nprint(ans)\n", "jacc_sim": 0.975609756097561, "before_after_length": [218, 214], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "b = b[::-1]322-3:-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u800058906", "n_user": "u800058906", "pos": "import math\nfrom itertools import accumulate\n\nn = int(input())\na = list(map(int, input().split()))\n\nfromleft = list(accumulate(a, math.gcd))\nfromright = list(accumulate(a[::-1], math.gcd))[::-1]\n\ngcd = []\n\ngcd.append(fromright[1])\nfor i in range(1, n-1):\n gcd.append(math.gcd(fromleft[i-1], fromright[i+1]))\ngcd.append(fromleft[n-2])\n\nprint(max(gcd))", "neg": "import math\nfrom itertools import accumulate\n\nn = int(input())\na = list(map(int, input().split()))\n\nfromright = list(accumulate(a, math.gcd))\na.reverse()\nfromleft = list(accumulate(a, math.gcd))\nfromleft.reverse()\n\ngcd = []\n\ngcd.append(fromleft[1])\n\nfor i in range(1, n-1):\n gcd.append(math.gcd(fromright[i-1], fromleft[i+1]))\n\ngcd.append(fromright[1])\n\nif n == 2:\n print(max(a))", "jacc_sim": 0.9444444444444444, "before_after_length": [148, 156], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "right = ist(accumulat(a, math.gcd))\na.reverse()\nromlefleft.everse()\n\ngcd = []\n\ngcd.append(fromleft[1])\n\nfor in rane(1, n-1):\n gcd.append(mat.gcd(fromrigh[i-1],= fromist(accumulat(a[::-1], math.gcd))[::-1]\n\ngcd = []\n\ngcd.append(romright[1])\nfor i in range(1, n-1):\n gcd.append(math.gcd(fromleft[i-1], fromrigh\nleright[1])\n\ni t[- == :])\n agcd", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u073852194", "n_user": "u073852194", "pos": "def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\nn = int(input())\nA = list(map(int,input().split()))\n\naccum_gcd = []\ngcd_A = A[0]\nfor j in range(n):\n gcd_A = gcd(gcd_A,A[j])\n accum_gcd.append(gcd(gcd_A,A[j]))\n\naccum_gcd_i = []\nA_i = A[::-1]\ngcd_A_i = A_i[0]\nfor j in range(n):\n gcd_A_i = gcd(gcd_A_i,A_i[j])\n accum_gcd_i.append(gcd(gcd_A_i,A_i[j]))\n\naccum_gcd_pop = []\n\nfor j in range(n):\n if j == 0:\n accum_gcd_pop.append(accum_gcd_i[n-2])\n elif j == n-1:\n accum_gcd_pop.append(accum_gcd[n-2])\n else:\n accum_gcd_pop.append(gcd(accum_gcd[j-1],accum_gcd_i[n-j-2]))\nprint(max(accum_gcd_pop))\n", "neg": "def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\nn = int(input())\nA = list(map(int,input().split()))\n\naccum_gcd = []\ngcd_A = A[0]\nfor j in range(n):\n gcd_A = gcd(gcd_A,A[j])\n accum_gcd.append(gcd(gcd_A,A[j]))\n\naccum_gcd_i = []\nA_i = A[::-1]\ngcd_A_i = A_i[0]\nfor j in range(n):\n gcd_A_i = gcd(gcd_A_i,A_i[j])\n accum_gcd_i.append(gcd(gcd_A_i,A_i[j]))\n\naccum_gcd_pop = []\n\nfor j in range(n):\n if j == 0:\n accum_gcd_pop.append(accum_gcd_i[n-1])\n elif j == n-1:\n accum_gcd_pop.append(accum_gcd[n-1])\n else:\n accum_gcd_pop.append(gcd(accum_gcd[j-1],accum_gcd_i[n-j-2]))\nprint(max(accum_gcd_pop))", "jacc_sim": 1.0, "before_after_length": [350, 349], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "1212\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u436982376", "n_user": "u436982376", "pos": "def gcd(x,y):\n if x 2 else A[1]\nfor i in range(2,N):\n d = divi(all_d, A[i])\n max_d = divi(max_d, A[i])\n if max_d < all_d:\n max_d = all_d\n all_d = d\nprint(max_d)", "neg": "N = int(input())\nA = list(map(int, input().split()))\ndef divi(a, b):\n rem = b % a\n if rem == 0:\n return a\n else:\n return divi(rem, a)\nA.sort()\nall_d = A[0]\nmax_d = max(divi(A[0],A[1]), divi(A[0],A[2])) if N > 2 else A[1]\nfor i in range(1,N):\n d = divi(all_d, A[i])\n max_d = divi(max_d, A[i])\n if max_d < d:\n max_d = all_d\n all_d = d\nprint(max_d)", "jacc_sim": 1.0, "before_after_length": [204, 188], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "divi(,\nmax_d= A[1])\n_d = maxall_d, max(divi(A[1],A[2]), 1]), divi(A[0],A[)12all_", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u347640436", "n_user": "u347640436", "pos": "# Segment tree (GCD)\nfrom math import gcd\n\n\nclass SegmentTree:\n _f = None\n _data = None\n _offset = None\n _size = None\n\n def __init__(self, size, f):\n self._f = f\n self._size = size\n t = 1\n while t < size:\n t *= 2\n self._offset = t - 1\n self._data = [0] * (t * 2 - 1)\n\n def build(self, iterable):\n f = self._f\n data = self._data\n data[self._offset:self._offset + self._size] = iterable\n for i in range(self._offset - 1, -1, -1):\n data[i] = f(data[i * 2 + 1], data[i * 2 + 2])\n\n def query(self, start, stop):\n def iter_segments(data, l, r):\n while l < r:\n if l & 1 == 0:\n yield data[l]\n if r & 1 == 0:\n yield data[r - 1]\n l = l // 2\n r = (r - 1) // 2\n f = self._f\n it = iter_segments(self._data, start + self._offset,\n stop + self._offset)\n result = next(it)\n for e in it:\n result = f(result, e)\n return result\n\n\nN = int(input())\nA = list(map(int, input().split()))\n\nst = SegmentTree(N, gcd)\nst.build(A)\n\nresult = st.query(1, N)\nfor i in range(1, N - 1):\n result = max(result, gcd(st.query(0, i), st.query(i + 1, N)))\nresult = max(result, st.query(0, N - 1))\nprint(result)\n", "neg": "# Segment tree (GCD)\nclass SegmentTree:\n _f = None\n _data = None\n _offset = None\n _size = None\n\n def __init__(self, size, f):\n self._f = f\n self._size = size\n t = 1\n while t < size:\n t *= 2\n self._offset = t - 1\n self._data = [0] * (t * 2 - 1)\n\n def build(self, iterable):\n data = self._data\n data[self._offset:self._offset + self._size] = iterable\n for i in range(self._offset - 1, -1, -1):\n data[i] = data[i * 2 + 1] + data[i * 2 + 2]\n\n def query(self, start, stop):\n def iter_segments(data, l, r):\n while l < r:\n if l & 1 == 0:\n yield data[l]\n if r & 1 == 0:\n yield data[r - 1]\n l = l // 2\n r = (r - 1) // 2\n f = self._f\n it = iter_segments(self._data, start + self._offset,\n stop + self._offset)\n result = next(it)\n for e in it:\n result = f(result, e)\n return result\n\n\nfrom math import gcd\n\nN = int(input())\nA = list(map(int, input().split()))\n\nst = SegmentTree(N, gcd)\nst.build(A)\n\nresult = st.query(1, N)\nfor i in range(1, N - 1):\n result = max(result, gcd(st.query(0, i), st.query(i + 1, N)))\nresult = max(result, st.query(0, N - 1))\nprint(result)\n", "jacc_sim": 1.0, "before_after_length": [462, 453], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "from math import gcd\n\n\nf = self._f\n f(, +)froN = int(input())\nA = list(ap(int,input().split()))\n\nst = SegaenTh impotee(N,)st.build(A)\nresult = st.query(1, = int(input()Afor= lst in range1, N - 1):\n result = pxint, input().split()))\n\nst = SegmentTe(Nsult)\nst.buildA)\n\nresult = 0, i), st.query(i + ))fo i in rangsult = max1result, st.query(0:\n result = max(result, gcd(st.query(0, i), st.query(i + 1, N)))\nresult = max(result, st.query(0, N - 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u435108403", "n_user": "u435108403", "pos": "def gcd(a, b):\n while b != 0:\n a, b = b, a % b\n return a\n\n\nN = int(input())\nA = list(map(int, input().split()))\nL = [0 for i in range(N)]\nR = [0 for i in range(N)]\nT = [0 for i in range(N)]\n\nfor i in range(N):\n if i == 0:\n L[i] = 0\n else:\n L[i] = gcd(L[i-1], A[i-1])\nfor i in reversed(range(0, N)):\n if i == N-1:\n R[i] = 0\n else:\n R[i] = gcd(R[i+1], A[i+1])\nfor i in range(N):\n T[i] = gcd(L[i], R[i])\n\nprint(max(T))", "neg": "def gcd(a, b):\n while b != 0:\n a, b = b, a % b\n return a\n\n\nN = int(input())\nA = list(map(int, input().split()))\nL = [0 for i in range(N)]\nR = [0 for i in range(N)]\nT = [0 for i in range(N)]\n\nfor i in range(N):\n if i == 0:\n L[i] = 0\n else:\n L[i] = gcd(L[i-1], A[i-1])\nfor i in range(N-1, 0, -1):\n if i == N-1:\n R[i] = 0\n else:\n R[i] = gcd(R[i+1], A[i+1])\nfor i in range(N):\n T[i] = gcd(L[i], R[i])\n\nprint(T)", "jacc_sim": 0.9487179487179487, "before_after_length": [225, 225], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "angversedrange(0, N)):\n if i == , 0, -1):\n if i == N-1max()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u227082700", "n_user": "u227082700", "pos": "def gcd(a,b):\n while b:a,b=b,a%b\n return a\nn=int(input())\na=list(map(int,input().split()))\nif n==2:print(max(a[0],a[1]));exit()\nleft=[a[0]]\nfor i in range(1,n):left.append(gcd(left[-1],a[i]))\nright=[a[n-1]]\nfor i in range(n-2,-1,-1):right.append(gcd(right[-1],a[i]))\nright.reverse()\nans=max(right[1],left[n-2])\nprint(max(ans,max(gcd(left[i-1],right[i+1])for i in range(1,n-1))))", "neg": "def gcd(a,b):\n while b:a,b=b,a%b\n return a\nn=int(input())\na=list(map(int,input().split()))\nleft=[a[0]]\nfor i in range(1,n):left.append(gcd(left[-1],a[i]))\nright=[a[n-1]]\nfor i in range(n-2,-1,-1):right.append(gcd(right[-1],a[i]))\nright.reverse()\nans=max(right[1],left[n-2])\nprint(max(ans,max(gcd(left[i-1],right[i+1])for i in range(1,n-1))))", "jacc_sim": 0.925, "before_after_length": [195, 174], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "ilet n[=2:print(max(,a[1]));exit()\nleft=[a[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u584083761", "n_user": "u584083761", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ndef gcd(a,b):\n while b:\n a, b = b, a%b\n return a\n\ns1 = [0]*(n + 1)\ns2 = [0]*(n + 1)\nfor i in range(1, n):\n s1[i] = gcd(s1[i-1], a[i-1])\n s2[n-i] = gcd(s2[n-i+1], a[n-i])\n\nans = 0\nfor i in range(n):\n ans = max(ans, (gcd(s1[i], s2[i+1])))\n\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ndef gcd(a,b):\n while b:\n a, b = b, a%b\n return a\n\ns1 = [a[0]]\ns2 = [a[-1]]\nfor i in range(1, len(a)-1):\n s1.append(gcd(s1[-1], a[i]))\n s2 = [gcd(s2[-1], a[-(i+1)])] + s2\ns1 = [a[-1]] + s1\ns2 = s2 + [a[0]]\n\n\nans = 0\nfor i in range(len(s1)):\n ans = max(ans, (gcd(s1[i], s2[i])))\n\nprint(max(ans))", "jacc_sim": 0.918918918918919, "before_after_length": [178, 200], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": "a[]*(n + 1)0a[-1]*(n + 1)le(a)-1[i] = .append(-1], a[-1), a[i-1] = n-i] = n1], a[-(),)]+ s2\ns1 = [n1i)] + s1\ns2 = s2 + [a[0]]\nle(s1)+1mx(a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03061", "p_user": "u131264627", "n_user": "u131264627", "pos": "def gcd(x, y):\n if y == 0:\n return x\n else:\n return gcd(y, x % y)\n\nn = int(input())\naaa = list(map(int, input().split()))\ncnt_l = [0] * (n - 1)\ncnt_r = [0] * (n - 1)\n\ncnt_l[0] = aaa[0]\nfor i in range(1, n - 1):\n cnt_l[i] = gcd(cnt_l[i - 1], aaa[i])\n\naaa.reverse()\ncnt_r[0] = aaa[0]\nfor i in range(1, n - 1):\n cnt_r[i] = gcd(cnt_r[i - 1], aaa[i])\n\ncnt_l = [cnt_r[-1]] + cnt_l\ncnt_r = [cnt_l[-1]] + cnt_r\ncnt_r.reverse()\n\nans = 1\nfor i in range(n):\n tmp = gcd(cnt_l[i], cnt_r[i])\n ans = max(ans, tmp)\n\nprint(ans)", "neg": "def gcd(x, y):\nif y == 0:\n return x\nelse:\n return gcd(y, x % y)\n\nn = int(input())\naaa = list(map(int, input().split()))\ncnt_l = [0] * (n - 1)\ncnt_r = [0] * (n - 1)\n\ncnt_l[0] = aaa[0]\nfor i in range(1, n - 1):\ncnt_l[i] = gcd(cnt_l[i - 1], aaa[i])\n\naaa.reverse()\ncnt_r[0] = aaa[0]\nfor i in range(1, n - 1):\ncnt_r[i] = gcd(cnt_r[i - 1], aaa[i])\n\ncnt_l = [cnt_r[-1]] + cnt_l\ncnt_r = [cnt_l[-1]] + cnt_r\ncnt_r.reverse()\n\nans = 0\nfor i in range(n - 1):\ntmp = gcd(cnt_l[i], cnt_r[i])\nans = max(ans, tmp)\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [275, 272], "nl": "You have a set of N integers written on a blackboard. You can choose one and replace it with any integer between 1 and 10^9. Find the maximum possible greatest common divisor of the N integers after your move. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible greatest common divisor after your move. Example: Input: 3, 7 6 8. Output: 2 (by replacing 7 with 4).", "diff_info": " 01 - 1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u679888753", "n_user": "u679888753", "pos": "a_c = list(map(int, input().split()))\n\nif min(a_c[0], a_c[1]) < a_c[2] < max(a_c[0], a_c[1]):\n print(\"Yes\")\n\nelse:\n print(\"No\")", "neg": "a_c = list(map(int, input().split()))\n\nif a_c[0] < a_c[2] < a_c[1]:\n print(\"Yes\")\n\nelse:\n print(\"No\")", "jacc_sim": 0.9230769230769231, "before_after_length": [71, 54], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "min(, a_c[1])max(a_c[0], )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u042802884", "n_user": "u042802884", "pos": "A,B,C=map(int,input().split())\nprint('Yes' if (C-A)*(C-B)<0 else 'No')", "neg": "A,B,C=map(int,input().split())\nprint('Yes' if (C-A)*(C-B)<0 else 'NO')", "jacc_sim": 0.9130434782608695, "before_after_length": [36, 36], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "Oo", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u994988729", "n_user": "u095426154", "pos": "a,b,c=map(int,input().split())\nif a c:\n print('Yes')\nelif a > c and b < c:\n print('Yes')\nelse:\n print('No')\n", "neg": "a,b,c = map(int,input().split())\nif a <= c and c <= b :\n print('Yes')\nelse :\n print('No')", "jacc_sim": 0.9130434782608695, "before_after_length": [57, 39], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "=b > c:\n print('Yes')\nelif a > <=and< c \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u525866992", "n_user": "u525866992", "pos": "a, b, c = map(int, input().split())\n\na != b\nb != c\nc != a\n\n1 <= a <= 100\n1 <= b <= 100\n1 <= c <= 100\n\nif a < c < b:\n print(\"Yes\")\nelif a > c > b:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a, b, c = map(int, input().split())\n\na != b\nb != c\nc != a\n\n1 <= a <= 100\n1 <= b <= 100\n1 <= c <= 100\n\nif a < c < b:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.92, "before_after_length": [85, 70], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "if a > c > b:\n print(\"Yes\")\nel", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u565387531", "n_user": "u670567845", "pos": "A, B, C = map(int, input().split())\n\nif min(A, B) <= C and max(A, B) >= C:\n print('Yes')\nelse:\n print('No')", "neg": "A, B, C = map(int, input().split())\nif A <= C <= B and A >= B >= C:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9166666666666666, "before_after_length": [50, 43], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "\nmin(, B)<= B max(, >=) \"'\"' \"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u649427151", "n_user": "u649427151", "pos": "a, b, c = map(int, input().split())\nif (a < c and c < b) or (b < c and c < a):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a, b, c = map(int, input().split())\nif a < c and c < b:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9545454545454546, "before_after_length": [50, 39], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "() or (b < c and c < a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u399721252", "n_user": "u399721252", "pos": "a, b, c = [ int(v) for v in input().split() ]\nif b < a:\n a, b = b, a\nprint( \"Yes\" if a <= c <= b else \"No\" )\n ", "neg": "a, b, c = [ int(v) for v in input().split() ]\nprint( \"Yes\" if a <= c <= b else \"No\" )\n ", "jacc_sim": 0.9583333333333334, "before_after_length": [53, 38], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "if b < a:\n a, b = b, a\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u635949425", "n_user": "u635949425", "pos": "a,b,c= list(map(int,input().split()))\nif a >c >b or b>c>a:\n print('Yes')\nelse:\n print('No')", "neg": "a,b,c= list(map(int,input().split()))\nif a >b or b<>c>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u514222361", "n_user": "u514222361", "pos": "# -*- coding: utf-8 -*-\nimport sys\nimport os\n\nx,y,z = [int(i) for i in input().split(' ')]\n\nif x > y:\n x,y = y,x\n\nif x < z < y:\n print('Yes')\nelse:\n print('No')", "neg": "# -*- coding: utf-8 -*-\nimport sys\nimport os\n\nx,y,z = [int(i) for i in input().split(' ')]\n\nif x < z < y:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9705882352941176, "before_after_length": [80, 64], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "> y:\n x,y = y,x\n\nif x ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u820052258", "n_user": "u820052258", "pos": "m = list(map(int,input().split()))\n\nif m[0]= C:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n print(\"No\")\n", "neg": "A, B, C= (int(i) for i in input().split())\n\ntmp_max = max(A,B)\ntmp_min = min(A,B)\nA = tmp_min\nB = tmp_max\n\nif A <= B:\n if B >= C:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [93, 93], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "BC", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u706695185", "n_user": "u055529891", "pos": "a,b,c = map(int, input().split())\nprint('Yes' if a <= c <= b or b <= c <= a else 'No')", "neg": "a,b,c = map(int, input().split())\nif a<=b<=c or c<=b<=a:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9523809523809523, "before_after_length": [35, 47], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "if a<=b<=c or c<=b<=a:\n )\n if a <= c <= b or b <= c <= a :\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u094534632", "n_user": "u827885761", "pos": "a, b, c = map(int, input().split())\nif a <= c <= b:\n print('Yes')\nelif b <= c <= a:\n print('Yes')\nelse:\n print('No')", "neg": "a, b, c = map(int, input().split())\nif a < c < b:\n print('Yes')\nelse:\n print('No') \n", "jacc_sim": 0.9523809523809523, "before_after_length": [52, 39], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "==:\n print('Yes')\nelif b <= c <= a \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u866769581", "n_user": "u701199820", "pos": "a,b,c =map(int,input().split())\n\n\nif a < c and c < b:\n print('Yes')\n\nelif ba[0] and a[2]a[0] and a[2]b>c else 'No')", "jacc_sim": 0.9523809523809523, "before_after_length": [36, 35], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": " ) c < b>cprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u133698397", "n_user": "u219417113", "pos": "a,b,c = map(int,input().split())\n\nif ((a >= c and b <= c) or (b >= c and a <= c)):\n co = \"Yes\"\nelse :\n co = \"No\"\n\n\nprint(co)\n\n", "neg": "a,b,c=map(int,input().split())\n\nif (a>b and b>c) or (a <= a< >= cba = )co = \"Yes\"\nelse :\n co = \"No\"\n\n\nco\"Yes\"else: print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u129978636", "n_user": "u129978636", "pos": "a,b,c=map(int,input().split())\nif(a<=c & c<=b):\n print('Yes')\nelif(a>=c & c>=b):\n print('Yes')\nelse:\n print('No')", "neg": "a,b,c=map(int,input().split())\nif(a<=c & c<=b):\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9130434782608695, "before_after_length": [62, 42], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "if(a>=c & c>=b):\n print('Yes')\nel", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u970107703", "n_user": "u180528413", "pos": "A, B, C = map(int, input().split())\nif(A < C < B or A > C > B):\n print('Yes')\nelse:\n print('No')", "neg": "A, B, C = map(int, input().split(' '))\nif A <= C <= B:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9090909090909091, "before_after_length": [44, 39], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "' ' (== or A > C > B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u422272120", "n_user": "u422272120", "pos": "a,b,c = map(int,input().split())\nprint (\"Yes\") if a < c < b or b < c < a else print (\"No\")\n", "neg": "a,b,c = map(int,input().split())\nprint (\"Yes\") if a <= c <= b else print (\"No\")\n", "jacc_sim": 0.95, "before_after_length": [37, 31], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "== or b < c < a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u698849142", "n_user": "u698849142", "pos": "inputs = list(map(int, input().split(\" \")))\nprint('Yes' if (inputs[0] < inputs[2] < inputs[1] or inputs[1] < inputs[2] < inputs[0]) else 'No')", "neg": "inputs = list(map(int, input().split(\" \")))\nprint('Yes' if inputs[0] < inputs[2] < inputs[1] else 'No')", "jacc_sim": 0.9583333333333334, "before_after_length": [54, 38], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "(or inputs[1] < inputs[2] < inputs[0]) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u599547273", "n_user": "u599547273", "pos": "A, B, C = map(int, input().split(\" \"))\n\n\nprint([\"No\", \"Yes\"][min(A, B) <= C <= max(A, B)])", "neg": "A, B, C = map(int, input().split(\" \"))\n\nprint([\"No\", \"Yes\"][A <= C <= B])", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 33], "nl": "You are given the coordinates of three houses on a number line. Determine if the straight path from the first house to the second house passes through the coordinate of the third house without making a detour. If it does, print \"Yes\"; otherwise, print \"No\". The input consists of three distinct integers A, B, and C (0 \u2264 A, B, C \u2264 100). The output should be \"Yes\" or \"No\" based on the condition mentioned.", "diff_info": "\nmin(, B)max(A, )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03067", "p_user": "u096736378", "n_user": "u117078923", "pos": "a, b, c = map(int, input().split())\n\nif a < c and c < b:\n print('Yes')\nelif b < c and c < a:\n print('Yes')\nelse:\n print('No')", "neg": "a, b, c = map(int,input().split())\nif b>a and c>a: \n if c>b:\n print(\"No\")\n else:\n print(\"Yes\")\n \nelif a>b and c>b:\n if a>c:\n print(\"Yes\")\n else c < c>a:\n< if c>\"No\"'Yes'\nelif b < c and c < a: print('Yes')\n'\"Yes\")\n \nelif a>b and c>b:\n if a>c:\n print(\"Yes\")\n else c currentMax:\n\t\tcurrentMax = val\n\t\n\tfor i in range(1, len(A)-2*K, 2):\n\t\told_sum_of_two = sum(A[i:i+2])\n\t\tsum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\t\tval += sum_of_two - old_sum_of_two\n\t\tif val > currentMax:\n\t\t\tcurrentMax = val\n\tprint(currentMax)\nelse:\n\tval = sum(A[:2*K+1])\n\tcurrentMax = val\n\tfor i in range(0, len(A)-2*K, 2):\n\t\told_sum_of_two = sum(A[i:i+2])\n\t\tsum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\t\tval += sum_of_two - old_sum_of_two\n\t\tif val > currentMax:\n\t\t\tcurrentMax = val\n\tprint(currentMax)\n\n", "neg": "N, K = map(int, input().split())\nS = input()\nlast_s = \"0\"\ncount = 0\nA = []\nfor i, s in enumerate(S):\n\tif i == 0:\n\t\tcount += 1\n\telse:\n\t\tif s != last_s:\n\t\t\tA.append(count)\n\t\t\tcount = 0\n\t\tcount += 1\n\tlast_s = s\n\nif count != 0:\n\tA.append(count)\n\n\nval = sum(A[:2*K+1])\ncurrentMax = val\n\nfor i in range(0, len(A)-2*K-2, 2):\n\told_sum_of_two = sum(A[i:i+2])\n\tsum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\tval += sum_of_two - old_sum_of_two\n\tif val > currentMax:\n\t\tcurrentMax = val\n\nprint(currentMax)\n", "jacc_sim": 0.9574468085106383, "before_after_length": [457, 242], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "\nval = sum(.append(0)\nA.append(0)\n\nval = 0\n\nif S0] == \"0\"\n\tval = sum(A[:])\n\tcurrentMax = val\n\told = A[0]\n\tnew = sum(A[2*K:2*K2])\n\tval += new - old\n\tif val > currentMax:\n\t\tcurrentMax = val\n\t\n\tfor i in range(,])\ncurrentMax= vaen(A)-2*K, 2):\t\told_sum_of_two = sum(A[i:i+2])\t\tsum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\t\tval += sum_of_two - old_sum_of_two\n\t\tif val > currentMax:\n\t\t\tcurrentMax = val\n\tprint(currentMax)\nelse:\n\tval = sum(A[:2*K+1])\n\tcurrentMax = val\n\t, 2):\n\t\told_sum_of_two = sum(A[i:i+2])\n\t\tsum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\t\tval += sum_of_two 2,2):\n\t = sum(A[i:i+2])sum_of_two = sum(A[i+2*K+1:i+2*K+3])\n\tval += sum_of_two - old_sum_of_two\n\t\n\t\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u820351940", "n_user": "u820351940", "pos": "n, k = map(int, input().split())\ns = list(map(lambda x: x == \"1\", list(input())))\n\nchange_flg = False\ncnt = 0\nilands = []\n\n\ndef cumsum(array):\n value = array[0]\n results = [value] * len(array)\n for index, elm in enumerate(array[1:], 1):\n value += elm\n results[index] = value\n return results\n\n\ndef change():\n global cnt, change_flg\n ilands.append(cnt)\n cnt = 0\n change_flg = not change_flg\n\nfor value in s:\n if value: # case 1 cnt\n if change_flg:\n change()\n else: # case 0 cnt : plus\n if not change_flg:\n change()\n cnt += 1\n\nilands.append(cnt)\n\nif not len(ilands) % 2:\n ilands.append(0)\n\nmerged = list(cumsum(ilands))\nsection = 2 * k + 1\n\nresults = [0] * (len(ilands) // 2 - (k - 1))\nif len(results) < 1 or len(merged) < section:\n print(n)\n exit()\n\nmerged.append(0)\nfor i in range(len(results)):\n start = i * 2 - 1\n results[i] = merged[start + section] - merged[start]\n\nprint(max(results))\n", "neg": "n, k = map(int, input().split())\ns = list(map(lambda x: x == \"1\", list(input())))\n\nchange_flg = False\ncnt = 0\nilands = []\n\n\ndef cumsum(array):\n value = array[0]\n results = [value] * len(array)\n for index, elm in enumerate(array[1:], 1):\n value += elm\n results[index] = value\n return results\n\n\ndef change():\n global cnt, change_flg\n ilands.append(cnt)\n cnt = 0\n change_flg = not change_flg\n\nfor value in s:\n if value: # case 1 cnt\n if change_flg:\n change()\n else: # case 0 cnt : plus\n if not change_flg:\n change()\n cnt += 1\n\nilands.append(cnt)\n\nilands += [0] * 10**5\n\nif not len(ilands) % 2:\n ilands.append(0)\n\nmerged = list(cumsum(ilands))\nsection = 2 * k + 1\n\nresults = [0] * (len(ilands) // 2 - (k - 1))\n\n# merged.append(0)\n# for i in range(len(results)):\n# start = i * 2 - 1\n# results[i] = merged[start + section] - merged[start]\n# \n# print(max(results))\n", "jacc_sim": 0.921875, "before_after_length": [360, 353], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "laf ot len(ilan) % 2:\n ilands.append(0)\n\nmerged = list(cumsum(ilands))\nsection = 2 * k 1\n\nresults 10**5\n\nif not len(ilands) % 2:\n ilands.append(0)\n\nmerged = list(cumsum(ilands))\nsection = 2 * k + 1\n\nresults = [0] * \n#iflen(results) < 1 or len(merged) < section:\n print(n)\n exit()\n\n# # # # # ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u463655976", "n_user": "u463655976", "pos": "n, k = map(int, input().split())\ns = input().rstrip()\n\n\n#n, k = 5, 3\n#s = \"00010\"\n\nm = 0\ncur_s = cur_e = 0\n\nwhile True:\n while cur_e < n and s[cur_e] == '1':\n cur_e+=1\n \n if k <= 0 or cur_e >= n:\n wm = cur_e - cur_s\n if wm > m:\n m = wm\n \n if cur_e >= n:\n break\n \n while cur_s < n and s[cur_s] == '1':\n cur_s+=1\n while cur_s < n and s[cur_s] == '0':\n cur_s+=1\n k+=1\n\n if k > 0:\n while cur_e < n and s[cur_e] == '0':\n cur_e+=1\n k-=1\n \nprint(m)\n", "neg": "n, k = map(int, input().split())\ns = input().rstrip()\n\n\n#n, k = 5, 3\n#s = \"00010\"\n\nm = 0\ncur_s = cur_e = 0\n\nwhile True:\n print((cur_s, cur_e, k))\n while cur_e < n and s[cur_e] == '1':\n cur_e+=1\n \n if k <= 0 or cur_e >= n:\n wm = cur_e - cur_s\n if wm > m:\n m = wm\n \n if cur_e >= n:\n break\n \n while cur_s < n and s[cur_s] == '1':\n cur_s+=1\n while cur_s < n and s[cur_s] == '0':\n cur_s+=1\n k+=1\n\n if k > 0:\n while cur_e < n and s[cur_e] == '0':\n cur_e+=1\n k-=1\n \nprint(m)\n", "jacc_sim": 1.0, "before_after_length": [247, 261], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "while cur_e < n and s[cur_e] == '1':\n cur_e+=1\n \n if k <= 0 or cur_e >= n:\n wm = cur_e - cur_s\n if wm > m:\n m = wm\n \n if cur_e >= n:\n break\n \n while cur_s < n and s[cur_s] == '1':\n cur_s+=1\n while cur_s < n and s[cur_s] == '0':\n cur_s+=1\n k+=1\n\n if k > 0:\n while cur_e < n and s[cur_e] == '0':\n cur_e+=1\n k-=1\n \nm(cur_s, cur_e, k) while cur_e < n and s[cur_e] == '1':\n cur_e+=1\n \n if k <= 0 or cur_e >= n:\n wm = cur_e - cur_s\n if wm > m:\n m = wm\n \n if cur_e >= n:\n break\n \n while cur_s < n and s[cur_s] == '1':\n cur_s+=1\n while cur_s < n and s[cur_s] == '0':\n cur_s+=1\n k+=1\n\n if k > 0:\n while cur_e < n and s[cur_e] == '0':\n cur_e+=1\n k-=1\n \nprint(m)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u417365712", "n_user": "u417365712", "pos": "from itertools import groupby\nn, k = map(int, input().split())\nS = input().strip()\nL = [len(list(g)) for v, g in groupby(S)]\nif S[0] == '0':\n L = [0] + L\nif S[-1] == '0':\n L = L + [0]\n\nA = [sum(L[:2*k+1])]\nfor i in range(0, len(L)-2*k-1, 2):\n A += A[-1]-L[i]-L[i+1]+L[i+2*k+1]+L[i+2*k+2],\nprint(max(A))", "neg": "from itertools import groupby\nn, k = map(int, input().split())\nS = input().strip()\nL = [len(list(g)) for v, g in groupby(S)]\nA = [sum(L[:2*k+1])]\nfor i in range(0, len(L)-2*k-1, 2):\n A += A[-1]-L[i]-L[i+1]+L[i+2*k+1]+L[i+2*k+2],\nprint(max(A))", "jacc_sim": 0.9512195121951219, "before_after_length": [164, 125], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "if S[0] == '0':\n L = [0] + L\nif S[-1] == '0':\n L = L + [0]\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u518042385", "n_user": "u518042385", "pos": "n,k=map(int,input().split())\nw=input()\nl=[]\nc=0\nw=\"1\"+w\nfor i in range(1,1+n):\n if w[i]!=w[i-1]:\n l.append(c)\n c=1\n else:\n c+=1\nl.append(c)\nif k>=len(l)//2:\n print(n)\nelse:\n if w[-1]==\"0\":\n l.append(0)\n s=l[0]\n for i in range(1,1+k):\n s+=l[2*i]+l[2*i-1]\n s1=s\n c1=l[0]+l[1]\n for i in range(1,(len(l)+1)//2-k):\n s1=s1-l[2*i-2]-l[2*i-1]+l[2*i-1+2*k]+l[2*i+2*k]\n if s1>s:\n s=s1\n print(s)", "neg": "n,k=map(int,input().split())\nw=input()\nl=[]\nc=0\nw=\"1\"+w\nfor i in range(1,1+n):\n if w[i]!=w[i-1]:\n l.append(c)\n c=1\n else:\n c+=1\nl.append(c)\nif w[-1]==\"0\":\n l.append(0)\ns=l[0]\nfor i in range(1,1+k):\n s+=l[2*i]+l[2*i-1]\ns1=s\nc1=l[0]+l[1]\nfor i in range(1,(len(l)+1)/2):\n s1=s1-l[2*i-2]-l[2*i-1]+l[2*i-2+2*k+1]+l[2*i+2*k]\n if s1>s:\n s=s1\nprint(s)\n \n\n", "jacc_sim": 1.0, "before_after_length": [275, 249], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "if k>=len(l)//2:\n print(n)\nelse:\n /):\n s1=s1l[2*i-2]-l[2*i-1]+l[2*i-2+2*):+1]+l[2*i+2*k] s1=s1-l[2*i-2]-l[2*i-1]+l[2*i-1+2*k]+l[2*i+2*k]\n s=s1\nprint(s)\ns=s1\n print(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u669240121", "n_user": "u669240121", "pos": "N, K = map(int, input().split())\nS = input().replace('\\n', '')\n\n\ndef solve(S, K):\n record = []\n temp = []\n for i in range(len(S) - 1):\n if S[i:i+2] == '01':\n temp.append(i + 1)\n elif S[i:i+2] == '10':\n if not temp: temp = [0, i]\n else: temp.append(i)\n record.append(temp)\n temp = []\n if len(temp) > 0:\n temp.append(len(S) - 1)\n record.append(temp)\n if S[0] == '0':\n record = [[0, 0]] + record\n if S[-1] == '0':\n record = record + [[len(S) - 1, len(S) - 1]]\n if len(record) <= K + 1: return(len(S))\n else:\n cnt = 0\n for i in range(len(record) - K):\n cnt = max(cnt, record[i + K][1] - record[i][0] + 1)\n return(cnt)\nprint(solve(S, K))", "neg": "N, K = map(int, input().split())\nS = input().replace('\\n', '')\n\n\ndef solve(S, K):\n record = []\n temp = []\n for i in range(len(S) - 1):\n if S[i:i+2] == '01':\n temp.append(i + 1)\n elif S[i:i+2] == '10':\n if not temp: temp = [0, i]\n else: temp.append(i)\n record.append(temp)\n temp = []\n if len(temp) > 0:\n temp.append(len(S) - 1)\n record.append(temp)\n if S[0] == '0':\n record = [[0, record[0][0] - 1]] + record\n if S[-1] == '0':\n record = record + [[record[-1][-1] + 1, len(S) - 1]]\n print(record)\n if len(record) <= K + 1: return(len(S))\n else:\n cnt = 0\n for i in range(len(record) - K):\n cnt = max(cnt, record[i + K][1] - record[i][0] + 1)\n return(cnt)\nprint(solve(S, K))", "jacc_sim": 1.0, "before_after_length": [300, 316], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "record[[0+ record\n if S[ ] == '0':\n record = recordrecord\n if S[len(S) 1]==1,l'0':\n rcordn(S)=-r1]]\n if lcon(ecor) <= K[[1: cotun(len(S))\n else:\n cnt = 0\n for i in range(len(recor[) 1] K):\n cnt = max(cnt, recordi + K][1] 1 record[i][0, len(S - 1]]print(record)\nif len(cotudn(cnt <=\nprint(solve(S, + 1: return(len(S\n else:\n cnt = 0\n for i in range(len(record) - K):\n cnt = max(cnt, record[i + K][1] - record[i][0] + 1)\n return(cnt)\nprint(solve(S, K))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u210827208", "n_user": "u210827208", "pos": "\nn,k=map(int,input().split())\ns=input()\n\nI=[0]\n\nfor i in range(n-1):\n if s[i]!=s[i+1]:\n I.append(i+1)\n \nr=len(I)\n\nfor _ in range(10**6):\n I.append(n)\n\nX=[]\n\nfor i in range(r):\n if s[I[i]]=='0':\n X.append(I[i+2*k]-I[i])\n else:\n X.append(I[i+2*k+1]-I[i])\n\nprint(max(X))\n ", "neg": "n,k=map(int,input().split())\ns=input()\n\nI=[0,]\n\nfor i in range(n-1):\n if s[i]!=s[i+1]:\n I.append(i+1)\n\nif len(I) m:\n # m = s\nelse:\n for i in range(n):\n if i%2 == 1:\n l.append(memo[i+2*K+1]-memo[i])\n else:\n l.append(memo[i+2*K]-memo[i])\n\n\n # if s > m:\n # m = s\n\nprint(max(l))\n", "neg": "N,K = map(int,input().split())\nS = input()\n\nif S[N-1] == '1':\n S += '0'\nelse:\n S += '1'\n\nmemo = []\nnow = S[0]\ncnt = 1\nfor i in range(N):\n if S[i+1] == now:\n cnt += 1\n else:\n memo.append(cnt)\n cnt += 1\n now = S[i+1]\n\nm = 0\nl = []\nif S[0] == '1':\n for i in range(len(memo)):\n if i%2 == 0:\n l.append(memo[i+2*K+1]-memo[i])\n else:\n l.append(memo[i+2*K]-memo[i])\n\n\n\n # if s > m:\n # m = s\nelse:\n for i in range(len(memo)):\n if i%2 == 1:\n l.append(memo[i+2*K+1]-memo[i])\n else:\n l.append(memo[i+2*K]-memo[i])\n\n\n # if s > m:\n # m = s\n\nprint(max(l))", "jacc_sim": 0.9761904761904762, "before_after_length": [337, 310], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "1cnt += 1\n cnt += 1\n mn0\n = []en(memo)if S[0] == '1':\n len(memo)):\n if i%2 == 0:\n l.append(memo[i+]-memo[i]:m lsmo.appnd(N+1)\n\nm = 0\nl = []\nif S[0] == '1':\n for i in range(n):\n if i%2 == 0+1\n\n\n# if s > m:\n # m = s\n:\n for i in range(len(memo)):\n if i%2 == 1+1\n\n\nel# if > m:\n # m = s\nlse:\n for i in range(n):\n if i%2 == 1+1 else:\n l.append(memo[i+2*K]-memo[i])\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u940852449", "n_user": "u940852449", "pos": "# coding: utf-8\n# Your code here!\nN, K = [int(_) for _ in input().split()]\nS = str(input())\n\nNums = []\nnow, cnt = 1, 0\nfor i in range(N):\n if S[i] == str(now): cnt += 1\n else:\n Nums.append(cnt)\n now = 1 - now\n cnt = 1\nif cnt != 0: Nums.append(cnt)\nif len(Nums) % 2 == 0: Nums.append(0)\n\n\n# add = 2 * K + 1\n# ans = 0\n# for i in range(0, len(Nums), 2):\n# tmp = 0\n# left = i\n# right = min(i+add, len(Nums))\n# j = left\n# while j < right:\n# tmp += Nums[j]\n# j += 1\n# ans = max(tmp, ans)\n# print(ans)\n\n#------------------------\nadd = 2 * K + 1\nans = 0\nleft = 0\nright = 0\ntmp = 0\nfor i in range(0, len(Nums), 2):\n nextLeft = i \n nextRight = min(i + add, len(Nums))\n while nextLeft > left:\n tmp -= Nums[left]\n left += 1\n while nextRight > right:\n tmp += Nums[right]\n right += 1\n #print('left, right: ', left, right)\n ans = max(tmp, ans)\n \nprint(ans)\n", "neg": "# coding: utf-8\n# Your code here!\nN, K = [int(_) for _ in input().split()]\nS = str(input())\n\nNums = []\nnow, cnt = 1, 0\nfor i in range(N):\n if S[i] == str(now): cnt += 1\n else:\n Nums.append(cnt)\n now = 1 - now\n cnt = 1\nif cnt != 0: Nums.append(cnt)\nif len(Nums) % 2 == 0: Nums.append(0)\n\n\n# add = 2 * K + 1\n# ans = 0\n# for i in range(0, len(Nums), 2):\n# tmp = 0\n# left = i\n# right = min(i+add, len(Nums))\n# j = left\n# while j < right:\n# tmp += Nums[j]\n# j += 1\n# ans = max(tmp, ans)\n# print(ans)\n\n#------------------------\nadd = 2 * K + 1\nans = 0\nleft = 0\nright = 0\ntmp = 0\nfor i in range(len(Nums)):\n nextLeft = i \n nextRight = min(i + add, len(Nums))\n while nextLeft > left:\n tmp -= Nums[left]\n left += 1\n while nextRight > right:\n tmp += Nums[right]\n right += 1\n ans = max(ans, tmp)\n \nprint(ans)\n", "jacc_sim": 0.9827586206896551, "before_after_length": [374, 356], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "0, , 2#print('left, right: ', left, right)\n ans, ,)\n \nprint( \nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u065599736", "n_user": "u065599736", "pos": "import numpy as np\nN, K = map(int, input().split())\nx = list(input())\nxn = \"1\"\nc = 0\ny = []\nfor n in range(N):\n if x[n] == xn:\n c += 1\n else:\n xn = x[n]\n y.append(c)\n c = 1\ny.append(c)\nif len(y) % 2 == 0:\n y.append(0)\ny = np.array(y)\nl = 2 * K + 1\nif l >= len(y):\n print(np.sum(y))\nelse:\n z = [np.sum(y[2 * i:2 * i + l]) for i in range((len(y) + 3 - l) // 2)]\n print(max(z))", "neg": "import numpy as np\nN, K = map(int, input().split())\nx = list(input())\nxn = \"1\"\nc = 0\ny = []\nfor n in range(N):\n if x[n] == xn:\n c += 1\n else:\n xn = x[n]\n y.append(c)\n c = 1\ny.append(c)\nif len(y) % 2 == 0:\n y.append(0)\ny = np.array(y)\nprint(y)\nl = 2 * K + 1\nprint(l)\nif l >= len(y):\n print(np.sum(y))\nelse:\n z = [np.sum(y[2 * i:2 * i + l]) for i in range((len(y) + 3 - l) // 2)]\n print(z)\n print(max(z))", "jacc_sim": 1.0, "before_after_length": [198, 214], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "print(y)\n\nprint(l)max(\n print(max(z)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u651663683", "n_user": "u651663683", "pos": "n,k=list(map(int,input().split()))\ns=input()\ncnt=[[],[]]\nst=1\nc=0\nfor i in s:\n if st==int(i):\n c+=1\n else:\n cnt[st].append(c)\n c=1\n st=1-st\ncnt[st].append(c)\ncnt[0].append(0)\ncnt[1].append(0)\nsm=[[],[]]\ns=0\nfor i in cnt[0]:\n s+=i\n sm[0].append(s)\ns=0\nfor i in cnt[1]:\n s+=i\n sm[1].append(s)\nsm[0][-1]=0\nsm[1][-1]=0\nif len(cnt[0])<=k+1:\n print(n)\nelse:\n m=0\n for i in range(len(cnt[0])-k):\n s=sm[0][i+k-1]-sm[0][i-1]+sm[1][min(i+k,len(cnt[1])-2)]-sm[1][i-1]\n m=max(s,m)\n print(m)", "neg": "n,k=list(map(int,input().split()))\ns=input()\ncnt=[[],[]]\nst=1\nc=0\nfor i in s:\n if st==int(i):\n c+=1\n else:\n cnt[st].append(c)\n c=1\n st=1-st\ncnt[st].append(c)\ncnt[0].append(0)\ncnt[1].append(0)\nsm=[[],[]]\ns=0\nfor i in cnt[0]:\n s+=i\n sm[0].append(s)\ns=0\nfor i in cnt[1]:\n s+=i\n sm[1].append(s)\nsm[0][-1]=0\nsm[1][-1]=0\nif len(cnt[0])<=k+1:\n print(n)\nelse:\n m=0\n for i in range(len(cnt[0])-k):\n s=sm[0][i+k-1]-sm[0][i-1]+sm[1][min(i+k,len(cnt[0])-2)]-sm[1][i-1]\n m=max(s,m)\n print(m)", "jacc_sim": 1.0, "before_after_length": [303, 303], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "01", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u387774811", "n_user": "u387774811", "pos": "N,K=map(int,input().split())\nS=input()\nif N==1:\n print(1)\nelse:\n lst=[]\n ct=1\n if int(S[0])==0:\n lst.append(0)\n ima=int(S[0])\n for i in range(1,N):\n if int(S[i])==ima:\n ct+=1\n else:\n lst.append(ct)\n ima=int(S[i])\n ct=1\n lst.append(ct)\n if ima==0:\n lst.append(0)\n A=len(lst)-2\n if A<=K*2-1:\n print(N)\n else:\n for i in range(1,len(lst)):\n lst[i]+=lst[i-1]\n ans=0\n for i in range((len(lst)-1-2*K)//2+1):\n if i==0:\n ans=max(ans,lst[2*i+2*K])\n else:\n ans=max(ans,lst[2*i+2*K]-lst[2*i-1])\n print(ans)", "neg": "N,K=map(int,input().split())\nS=input()\nif N==1:\n print(1)\nelse:\n lst=[]\n ct=1\n if int(S[0])==0:\n lst.append(-1)\n ima=int(S[0])\n for i in range(1,N):\n if int(S[i])==ima:\n ct+=1\n else:\n lst.append(ct)\n ima=int(S[i])\n ct=1\n lst.append(ct)\n if ima==0:\n lst.append(-1)\n A=len(lst)-2\n if A<=K*2-1:\n print(N)\n else:\n for i in range(1,len(lst)):\n lst[i]+=lst[i-1]\n ans=0\n for i in range((len(lst)-1-2*K)//2+1):\n ans=max(ans,lst[2*i+2*K]-lst[2*i])\n print(ans+1)\n", "jacc_sim": 1.0, "before_after_length": [290, 262], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "0-10-1if i==0:\n -lst[2*i] elprint(ane:\n ans=max(ans,lst[2*i2*K]-lst[2*i-] print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u121921603", "n_user": "u121921603", "pos": "n,k=map(int,input().split())\ns=input()\nnum=[0]\nc=1\nfor i in range(1,n):\n\n if s[i]==s[i-1]:\n c+=1\n else:\n num.append(c)\n c=1\nnum.append(c)\nnum.append(0)\n#print(num)\n\nans=0\n#print(num)\nif s[0]==\"0\":\n if len(num)-2*k+1<=0:\n ans=sum(num)\n else:\n asum=sum(num[0:2*k+1])\n ans=asum\n #print(asum)\n for i in range(2,len(num)-2*k,2):\n #print(asum,num[i+2*k],num[i+2*k-1],num[i-1],num[i-2])\n asum=asum+num[i+2*k]+num[i+2*k-1]-num[i-1]-num[i-2]\n ans=max(ans,asum)\nif s[0]==\"1\":\n if len(num)-2*k+2<=0:\n ans=sum(num)\n else:\n asum=sum(num[1:2*k+2])\n ans=asum\n for i in range(3,len(num)-2*k,2):\n #print(asum,num[i+2*k],num[i+2*k-1],num[i-1],num[i-2])\n asum=asum+num[i+2*k]+num[i+2*k-1]-num[i-1]-num[i-2]\n ans=max(ans,asum)\nprint(ans)\n", "neg": "n,k=map(int,input().split())\ns=input()\nnum=[0]\nc=1\nfor i in range(1,n):\n\n if s[i]==s[i-1]:\n c+=1\n else:\n num.append(c)\n c=1\nnum.append(c)\nnum.append(0)\n#print(num)\n\nans=0\n#print(num)\nif s[0]==\"0\":\n if (len(num)-2+1)//2<=k:\n ans=sum(num)\n else:\n asum=sum(num[0:2*k+1])\n for i in range(2,len(num)-2*k-1,2):\n asum+num[i+2*k]+num[i+2*k-1]-num[i-1]-num[i-2]\n ans=max(ans,asum)\nif s[0]==\"1\":\n if (len(num)-2)//2<=k:\n ans=sum(num)\n else:\n asum=sum(num[1:2*k+2])\n for i in range(3,len(num)-2*k-1,2):\n #print(asum,num[i+2*k],num[i+2*k-1],num[i-1],num[i-2])\n asum=asum+num[i+2*k]+num[i+2*k-1]-num[i-1]-num[i-2]\n ans=max(ans,asum)\nprint(ans)\n", "jacc_sim": 0.975609756097561, "before_after_length": [455, 400], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "(*k)//2k0)\n ans=asum\n #print(asum-1#print(asum,num[i+2*k],num[i+2*k-1],num[i-1],num[i-2])\n asum=()//*k+k0\n ans=asum-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u324314500", "n_user": "u324314500", "pos": "import sys\n\ndef i2s():\n return sys.stdin.readline().rstrip()\n\ndef ii2ss(n):\n return [sys.stdin.readline() for _ in range(n)]\n\ndef sp2nn(sp, sep=' '):\n return [int(s) for s in sp.split(sep)]\n\ndef ss2nn(ss):\n return [int(s) for s in list(ss)]\n\ndef analyze(S):\n data = []\n i0 = 0\n s0 = S[0]\n sc = 0\n for i, s in enumerate(S):\n if s == s0:\n sc += 1\n else:\n data.append((i0, s0, sc))\n i0 = i\n s0 = s\n sc = 1\n data.append((i0, s0, sc))\n return data\n\ndef main(ss):\n N, K = sp2nn(ss[0])\n S = ss[1]\n data = analyze(S)\n cmax = 0\n \n for dl in range(len(data)):\n c = 0\n dw = K * 2\n if data[dl][1] == '1':\n dw += 1\n if dl + dw < len(data):\n c = data[dl+dw][0] - data[dl][0]\n else:\n c = N - data[dl][0]\n if cmax < c:\n cmax = c\n \n print(cmax)\nmain(ii2ss(2))", "neg": "import sys\n\ndef i2s():\n return sys.stdin.readline().rstrip()\n\ndef ii2ss(n):\n return [sys.stdin.readline() for _ in range(n)]\n\ndef sp2nn(sp, sep=' '):\n return [int(s) for s in sp.split(sep)]\n\ndef ss2nn(ss):\n return [int(s) for s in list(ss)]\n\ndef analyze(S):\n data = []\n i0 = 0\n s0 = S[0]\n sc = 0\n for i, s in enumerate(S):\n if s == s0:\n sc += 1\n else:\n data.append((i0, s0, sc))\n i0 = i\n s0 = s\n sc = 1\n data.append((i0, s0, sc))\n return data\n\ndef main(ss):\n N, K = sp2nn(ss[0])\n S = ss[1]\n data = analyze(S)\n cmax = 0\n \n for dl in range(len(data)):\n c = 0\n dw = K * 2\n if data[dl][1] == '1':\n dw += 1\n if dl + dw < len(data):\n c = data[dl+dw][0] - data[dl][0]\n else:\n c = len(S) - data[dl][0]\n if cmax < c:\n cmax = c\n \n print(cmax)\n\nmain(ii2ss(2))", "jacc_sim": 1.0, "before_after_length": [377, 381], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "Nlen(S)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u426108351", "n_user": "u426108351", "pos": "import itertools\nN, K = map(int, input().split())\nS = input()\n\n\nhuman = []\nhumancount = []\nfor key, group in itertools.groupby(S):\n human.append(key)\n humancount.append(len(list(group)))\n\nhumancount_ac = [0] + list(itertools.accumulate(humancount))\n\nans = 0\nj = 0\ncount = 0\n\nfor i in range(N):\n while j <= len(human)-1:\n if human[j] == \"0\" and count < K:\n count += 1\n j += 1\n ans = max(ans, humancount_ac[j] - humancount_ac[i])\n elif human[j] == \"1\":\n j += 1\n ans = max(ans, humancount_ac[j] - humancount_ac[i])\n else:\n if human[i] == \"0\":\n count -= 1\n break\nprint(ans)\n", "neg": "import itertools\nN, K = map(int, input().split())\nS = input()\n\n\nhuman = []\nhumancount = []\nfor key, group in itertools.groupby(S):\n human.append(key)\n humancount.append(len(list(group)))\n\nhumancount\nhuman[0]\nhuman\n\nhumancount_ac = [0] + list(itertools.accumulate(humancount))\n\nans = 0\nj = 0\ntemp = 0\ncount = 0\n\nfor i in range(N):\n while j <= len(human)-1:\n print(ans, i, j)\n if human[j] == \"0\" and count < K:\n count += 1\n j += 1\n ans = max(ans, humancount_ac[j] - humancount_ac[i])\n elif human[j] == \"1\":\n j += 1\n ans = max(ans, humancount_ac[j] - humancount_ac[i])\n else:\n if human[i] == \"0\":\n count -= 1\n break\nprint(ans)\n", "jacc_sim": 0.9795918367346939, "before_after_length": [237, 262], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "_\nhumnc = \nhuman\n\nhumancount_ac=+[list(itertools.accumulate(humancount))\n\nans = ] + list(itertools.accumulate(humancount))\nans = 0\n = 0\ntemp\n print(ans, i, j)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u537782349", "n_user": "u537782349", "pos": "a, b = map(int, input().split())\nc = input()\nd = []\ne = 0\nfor i in range(1, a):\n e += 1\n if c[i] != c[i-1]:\n if c[i] == \"0\":\n d.append(e)\n else:\n d.append(-e)\n e = 0\n if i == (a-1):\n e += 1\n if c[i] == \"1\":\n d.append(e)\n else:\n d.append(-e)\n e = 0\nf = 0\ng = 0\nh = 0\nfor i in range(len(d)):\n g += abs(d[i])\n if d[i] > 0 and f >= b:\n h = max(h, g)\n if i-2*b >= 0:\n g -= abs(d[i-2*b])\n if d[i] < 0 and f >= b:\n g -= abs(d[i-2*b])\n if d[i] < 0 and f < b:\n f += 1\nh = max(h, g)\nprint(h if h != 0 else a)\n", "neg": "a, b = map(int, input().split())\nc = list(input() + \"2\")\nd = 1\ne = []\nfor i in range(1, len(c)):\n if c[i] != c[i-1]:\n if c[i-1] == \"1\":\n e.append(d)\n else:\n e.append(-d)\n d = 1\n else:\n d += 1\nf = 0\ng = 0\nh = 0\nprint(e)\nfor i in range(len(e)):\n g += abs(e[i])\n if f >= b:\n if e[i] > 0:\n h = max(h, g)\n if i-b*2 >= 0:\n g -= abs(e[i-b*2])\n if e[i] < 0:\n f += 1\nprint(h if len(e) != 1 else abs(e[0]))\n", "jacc_sim": 0.9534883720930233, "before_after_length": [291, 229], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "list( + \"2\")1\ne = \ne = 0a):\n e += 1\n if c[i] != c[i-1]:\n if c[i] == \"0\":\n d.append(e)\n es:\n d.apped-e)\n e = 0\n if i == (a-1):\n e += 1\n if )):\n if c] != c[i-1]:\n if c[i-1eddeeddede= 0\nf = 0\ng = 0\nh = 0\nfor i in range(len(d)):\n g += abs(d[i])\n if d[i] > 0 and f >= b:\n h = max(h, g)\n if i-2*b >= 0:\n g -= abs(d[i-2*b])\n if d[i] < 0 and f >= b:\n g -= abs(d[i-2*b])\n if d[i] < 0 and f < b:\n f +h=max(h,g)\nprint(h if h != 0:\n d += 1\nf = 0\ng = 0\nh = 0\nprint(e)\nfor i in rnge(len(e): g += abs(e[i])\n if f >= b:\n if e[i] > 0:\n h = max(h, g)\n if i-b*2 >= 0:\n g -= abs(e[i-b*2])\n if e[i] < 0:\n f += 1\nprint(h if len(e) != 1 else abs(e[0]))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u223904637", "n_user": "u223904637", "pos": "n,k=map(int,input().split())\ns=list(input())\na=[]\nf=1\ns.append(2)\nfor i in range(n):\n if s[i]==s[i+1]:\n f+=1\n else:\n a.append(f)\n f=1\ng=len(a)\nr=[0]*(g+1)\nfor i in range(g):\n r[i+1]=r[i]+a[i]\nif s[0]=='1':\n ans=sum(a[0:2*k+1])\n if s[-2]=='0':\n ans=max(ans,sum(a[max(0,g-2*k):g]))\n for i in range(g):\n if 2*i+2*k+1= wc:\n print(n)\nelif s[0] == '0':\n if s[-1] == '0':\n maxl = max(wl[2*k] - wl[0], wl[-1] - wl[-2*k-1])\n for l, r in zip(wl[1::2], wl[2*k+2:-1:2]):\n if r - l > maxl:\n maxl = r - l\n else:\n maxl = wl[2*k] - wl[0]\n for l, r in zip(wl[1::2], wl[2*k+2::2]):\n if r - l > maxl:\n maxl = r - l\n print(maxl)\nelse:\n if s[-1] == '0':\n maxl = wl[-1] - wl[-2*k-1]\n for l, r in zip(wl[::2], wl[2*k+1:-1:2]):\n if r - l > maxl:\n maxl = r - l\n else:\n maxl = 0\n for l, r in zip(wl[::2], wl[2*k+1::2]):\n if r - l > maxl:\n maxl = r - l\n print(maxl)\n", "neg": "n, k = map(int, input().split())\ns = input().strip()\n\nwl = []\nwc = 0\nprevs = None\nfor i, _s in enumerate(s):\n if prevs is None:\n wl.append(i)\n prevs = _s\n if _s == '0':\n wc += 1\n elif prevs != _s:\n wl.append(i)\n prevs = _s\n if _s == '0':\n wc += 1\nwl.append(n)\nprint(wl, wc)\nif k >= wc:\n print(n)\nelif s[0] == '0':\n if s[-1] == '0':\n maxl = max(wl[2*k] - wl[0], wl[-1] - wl[-2*k-1])\n for l, r in zip(wl[1::2], wl[2*k+2:-1:2]):\n if r - l > maxl:\n maxl = r - l\n else:\n maxl = wl[2*k] - wl[0]\n for l, r in zip(wl[1::2], wl[2*k+2::2]):\n if r - l > maxl:\n maxl = r - l\n print(maxl)\nelse:\n if s[-1] == '0':\n maxl = wl[-1] - wl[-2*k-1]\n for l, r in zip(wl[::2], wl[2*k+1:-1:2]):\n if r - l > maxl:\n maxl = r - l\n else:\n maxl = 0\n for l, r in zip(wl[::2], wl[2*k+1::2]):\n if r - l > maxl:\n maxl = r - l\n print(maxl)\n", "jacc_sim": 1.0, "before_after_length": [449, 455], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "print(wl, wc)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u561231954", "n_user": "u561231954", "pos": "n,k=map(int,input().split())\ns=input()\n\nnum_cnt=[]\nif s[0]=='1':\n num_cnt.append(0)\n\ncnt=1\nfor i in range(1,n):\n if s[i]==s[i-1]:\n cnt+=1\n else:\n num_cnt.append(cnt)\n cnt=1\nnum_cnt.append(cnt)\n\nleng=len(num_cnt)\nif leng/2>k:\n ans=sum(num_cnt[:2*k])\n tot=ans\n \n if leng%2==0:\n limit=leng//2-k\n else:\n num_cnt.append(0)\n limit=leng//2-k+1\n \n #print(ans)\n #print(num_cnt)\n tmp2=num_cnt[2*k]+num_cnt[2*k+1]-num_cnt[0]\n tot+=tmp2\n if tot>ans:\n ans=tot\n \n for i in range(1,limit):\n #print(2*(i+k)+1)\n tmp=num_cnt[2*(i+k)]+num_cnt[2*(i+k)+1]-num_cnt[2*i]-num_cnt[2*i-1]\n #print(tot)\n tot+=tmp\n if tot>ans:\n ans=tot\nelse:\n ans=n\nprint(ans)\n ", "neg": "n,k=map(int,input().split())\ns=input()\n\nnum_cnt=[]\nif s[0]=='1':\n num_cnt.append(0)\n\ncnt=1\nfor i in range(1,n):\n if s[i]==s[i-1]:\n cnt+=1\n else:\n num_cnt.append(cnt)\n cnt=1\nnum_cnt.append(cnt)\n\nif k<=n/2:\n ans=sum(num_cnt[:2*k])\n\n tmp=len(num_cnt)\n if tmp%2==0:\n limit=tmp//2-k\n else:\n num_cnt.append(0)\n limit=tmp//2-k+1\n \n #print(ans)\n #print(num_cnt)\n tmp=num_cnt[2*k]+num_cnt[2*k+1]-num_cnt[0]\n if tmp>0:\n ans+=tmp\n \n for i in range(1,limit):\n tmp=num_cnt[2*(i+k)]+num_cnt[2*(i+k)+1]-num_cnt[2*i]-num_cnt[2*i+1]\n #print(tmp)\n if tmp>0:\n ans+=tmp\nelse:\n ans=n\nprint(ans)\n ", "jacc_sim": 0.9111111111111111, "before_after_length": [370, 337], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "leif k<=g=len(num_cnt)\nif leng>:\n ans=sum(num_cnt[:2*:])\natmp=le(ns=s(_cut)\n if tp_cnt[:2*k])\n tot=ans\n \n if lengtmplengtmpleng2if ot+=t2\n if tot0:\n +:\n ansmpot#print(2*(i+k)+1)\n +-omp)\n if )\n tot+=t\n if tot0:\n +=tmp\nelseans=n\nprint(ans)\n ans=tot\nelse:\n ans=n\nprint(ans)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u955251526", "n_user": "u955251526", "pos": "n, k = map(int, input().split())\ns = input()\nseq = []\npre = '1'\ncount = 0\nfor c in s:\n if c == pre:\n count += 1\n else:\n pre = c\n seq.append(count)\n count = 1\nseq.append(count)\n\nn = len(seq)\nsum = sum(seq[:2*k + 1])\nans = sum\nseq.append(0)\nfor i in range(0, n - 2*k - 1, 2):\n sum -= seq[i] + seq[i + 1]\n sum += seq[i + 2*k + 1] + seq[i + 2 * k + 2]\n ans = max(ans, sum)\nprint(ans)", "neg": "n, k = map(int, input().split())\ns = input()\nseq = []\npre = '1'\ncount = 0\nfor c in s:\n if c == pre:\n count += 1\n else:\n pre = c\n seq.append(count)\n count = 1\nseq.append(count)\n\nans = 0\nfor i in range(n):\n ans = max(ans, sum(seq[i: 2 * k + 1 + i]))\nprint(ans)", "jacc_sim": 0.9473684210526315, "before_after_length": [183, 118], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "aslen(seq)\nsum = sum(seq[:2*k + 1])\nans = sum\nseq.append()0, - 2*k - 1, 2sum -= seq[i] + seq[i + 1]\n sum += seq[i + 2*k + 1] + seq[i + 2 * k + 2]\n (seq[i: 2 * k + 1 + i])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u879870653", "n_user": "u879870653", "pos": "N,K = map(int,input().split())\nS = input() + \"#\"\nA = []\ncnt = 1\nfor i in range(N) :\n if S[i] == S[i+1] :\n cnt += 1\n else :\n A.append(cnt)\n cnt = 1\n\nif S[0] == \"1\" :\n ans = sum(A[:2*K+1])\n calc = ans\n for i in range(2*K+1, len(A)) :\n calc += A[i]\n if i % 2 == 1 :\n calc -= (A[i-1-2*K] + A[i-2*K])\n ans = max(ans, calc)\nelse :\n ans = sum(A[:2*K])\n calc = ans\n for i in range(2*K,len(A)) :\n calc += A[i]\n if i == 2*K :\n calc -= A[0]\n elif i % 2 == 0 :\n calc -= (A[i-1-2*K] + A[i-2*K])\n ans = max(ans, calc)\n\nprint(ans)\n", "neg": "N,K = map(int,input().split())\nS = input() + \"#\"\nA = []\ncnt = 1\nfor i in range(N) :\n if S[i] == S[i+1] :\n cnt += 1\n else :\n A.append(cnt)\n cnt = 1\n\nif S[0] == \"1\" :\n ans = sum(A[:2*K+1])\n calc = ans\n for i in range(2*K+1, len(A)) :\n calc += A[i]\n if i % 2 == 1 :\n calc -= (A[i-1-2*K] + A[i-2*K])\n ans = max(ans, calc)\nelse :\n ans = sum(A[:2*K])\n for i in range(2*K,len(A)) :\n calc += A[i]\n if i == 2*K :\n calc -= A[0]\n elif i % 2 == 0 :\n calc -= (A[i-1-2*K] + A[i-2*K])\n ans = max(ans, calc)\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [285, 280], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "calc = ans\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03074", "p_user": "u201928947", "n_user": "u201928947", "pos": "n,k = map(int,input().split())\ns = input()\nx = len(s)\nlst = [0]\nans = 0\nif s[0] == \"1\" and s[x-1] == \"0\":\n s = s[::-1]\nfor i in range(1,x):\n if s[i-1] != s[i]:\n lst.append(i)\nlst.append(x)\nif s[0] == \"0\" and s[x-1] == \"1\":\n if 2*k >= len(lst):\n ans = x\n else:\n i = 1\n while i+2*k+1 <= len(lst)-1:\n ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\n ans = max(ans,lst[2*k])\nif s[0] == \"0\" and s[x-1] == \"0\":\n if 2*k >= len(lst):\n ans = x\n else:\n i = 1\n while i+2*k+1 <= len(lst)-1:\n ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\n ans = max(ans,lst[2*k])\n ans = max(ans,x-lst[len(lst)-2*k-1])\nif s[0] == \"1\" and s[x-1] == \"1\":\n if 2*k+1 >= len(lst):\n ans = x\n else:\n i = 0\n while i+2*k+1 <= len(lst)-1:\n ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\nprint(ans)", "neg": "n,k = map(int,input().split())\ns = input()\nx = len(s)\nlst = [0]\nans = 0\nfor i in range(1,x):\n if s[i-1] != s[i]:\n lst.append(i)\nlst.append(x)\nif s[0] == \"1\" and s[x-1] == \"0\":\n s.reverse()\nif s[0] == \"0\" and s[x-1] == \"1\":\n if 2*k >= len(lst):\n ans = x\n else:\n i = 1\n while i+2*k+1 <= len(lst)-1:\n ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\n #ans = max(ans,lst[2*k])\nif s[0] == \"0\" and s[x-1] == \"0\":\n if 2*k >= len(lst):\n ans = x\n else:\n i = 1\n while i+2*k+1 <= len(lst)-1:\n ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\n #ans = max(ans,lst[2*k])\n #ans = max(ans,x-lst[len(lst)-2*k-1])\nif s[0] == \"1\" and s[x-1] == \"1\":\n if 2*k+1 >= len(lst):\n ans = x\n else:\n i = 0\n while i+2*k+1 <= len(lst)-1:\n #ans = max(ans,lst[i+2*k+1]-lst[i])\n i += 2\nprint(ans) ", "jacc_sim": 0.9523809523809523, "before_after_length": [434, 435], "nl": "You are given a row of N people represented by a string of 0s and 1s. Each 0 represents a person standing on their feet, and each 1 represents a person standing on their hands. You can perform at most K operations, where each operation involves flipping the standing position of a range of people. Find the maximum number of consecutive people standing on their hands after performing at most K operations. The constraints are N (1 \u2264 N \u2264 10^5), K (1 \u2264 K \u2264 10^5), and the length of the string S is N. The input is given in the format \"N K\" followed by the string S, and the output should be the maximum possible number of consecutive people standing on their hands after at most K operations.", "diff_info": "\nif s[0] == \"1\" and s[x-1] == \"0\":\n s = s[::-1]1\" and s[x-1] == \"0\":\n s.reverse()\nif s[0] == \"#### ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u619819312", "n_user": "u578953945", "pos": "a,b,c=map(int,input().split())\nprint(\"Yes\" if a==b and b==c else\"No\")", "neg": "a,b,c=map(int,input().split())\nprint(\"Yes\" if a == b and a == c \"No\")", "jacc_sim": 0.9473684210526315, "before_after_length": [31, 30], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " ba else", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u255499778", "n_user": "u330712095", "pos": "a,b,c = list(map(int,input().split()))\nif a == b == c:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b,c = map(int,input().split())\n\nif(a = b = c):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.95, "before_after_length": [40, 39], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "list(\n)( ==) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u721316601", "n_user": "u507617429", "pos": "A, B, C = list(map(int, input().split()))\n\nif A == B and B == C:\n print('Yes')\nelse:\n print('No')", "neg": "A, B, C = map(int, input().split())\nif A == B and B == C:\n print(Yes)\nelse:\n print(No)", "jacc_sim": 0.9047619047619048, "before_after_length": [43, 39], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "list()\n''''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u177411511", "n_user": "u177411511", "pos": "li = list(map(int,input().split()))\na = li[0]\nb = li[1]\nc = li[2]\nif a == b and b == c:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "li = list(map(int,input().split()))\na = li[0]\nb = li[1]\nc = li[2]\nif a + b > c and a + c > b and b + c > a:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9310344827586207, "before_after_length": [59, 69], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "==+ b > c and a + c >+== > a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u095756391", "n_user": "u296518383", "pos": "A, B, C = map(int, input().split())\n\nif (A==B and B==C):\n print('Yes')\nelse:\n print('No')", "neg": "A,B,C=map(int,input().split())\n\nif A+B>C and B+C>A and C+A>B:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 50], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " (+==>C+==)>A and C+A>B\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u170201762", "n_user": "u253952966", "pos": "a,b,c = map(int,input().split())\nif a==b and b==c:\n print('Yes')\nelse:\n print('No')", "neg": "a, b, c = map(int, input().split())\nif a == b and a == c:\n print('Yes')\nprint('No')", "jacc_sim": 0.95, "before_after_length": [39, 35], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " ba else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u528899139", "n_user": "u528899139", "pos": "# -*- coding: utf-8 -*-\n\nfrom sys import stdin\n\ndef load():\n n = stdin.readline()\n return n\n\ndef calc(n):\n return n.count(\"2\")\n\nn = load()\na,b,c = [ int(x) for x in n.split(' ')]\n\nif (a==b and b==c):\n print('Yes')\nelse:\n print('No')", "neg": "# -*- coding: utf-8 -*-\n\nfrom sys import stdin\n\ndef load():\n n = stdin.readline()\n return n\n\ndef calc(n):\n return n.count(\"2\")\n\nn = load()\na,b,c = [ int(x) for x in n.split(' ')]\n\nif (a+b>c and b+c>a and c+a>b):\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9534883720930233, "before_after_length": [106, 116], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "+==>c+==>a and c+a>b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u701743518", "n_user": "u701743518", "pos": "# coding: utf-8\n\nA, B, C = map(int, input().split())\n\nif A == B and B == C:\n print('Yes')\nelse:\n print('No')", "neg": "# coding: utf-8\n\nA, B, C = map(int, input().split())\n\nif A == B && B == C:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9230769230769231, "before_after_length": [48, 48], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "&&and", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u144980750", "n_user": "u144980750", "pos": "A,B,C=map(int,input().split())\nif A==B and A==C:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "A,B,C=map(int,input().split())\nif A==B&&A==C:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 40], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "&& and ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u688375653", "n_user": "u688375653", "pos": "DATA=list(map(int, input().split(\" \")))\nDATA=sorted(DATA)\nif DATA[0] == DATA[-1]:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "DATA=list(map(int, input().split(\" \")))\nDATA=sorted(DATA)\nif DATA[0] == DATA[-1]:\n print(\"Yes\")\nelse;\n print(\"No\")", "jacc_sim": 0.96, "before_after_length": [47, 47], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": ";:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u037098269", "n_user": "u037098269", "pos": "a, b, c = map(int, input().split())\nif (a == b) & (b == c):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a, b, c = map(int, input().split())\nif (a+b > c) & (b+c > a) & (c+a > b):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [42, 54], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "+ == > c+ == > a) & (c+a > b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u385244248", "n_user": "u385244248", "pos": "A = list(map(int,input().split()))\nif A[0] == A[1] == A[2]:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "A = list(map(int,input().split()))\nif A[0] + A[1] > A[2]:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.92, "before_after_length": [44, 44], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "+==>==", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u151625340", "n_user": "u919404987", "pos": "A,B,C = map(int,input().split())\nif A == B and B == C:\n print('Yes')\nelse:\n print('No')\n", "neg": "A, B, C = map(lambda x: int(x), input().split(\" \"))\nif A=B and B=C:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [40, 46], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " lambda x: (x) \" \" = = \"'\"' \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u480847874", "n_user": "u163874353", "pos": "a,b,c = map(int, input().split())\nif a == b and b == c:\n print('Yes')\nelse:\n print('No')", "neg": "a, b, c = map(int, input().split())\nif a + b > c and b + c > a and c + a > b:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 49], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " +== > c+== > a and c + a > b\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u814781830", "n_user": "u814781830", "pos": "A, B, C = map(int, input().split())\nmsg = 'Yes' if A == B and B == C else 'No'\nprint(msg)", "neg": "A, B, C = map(int, input().split())\nmsg = 'Yes' if A == B and B == C else 'No'\nprint(mssg)", "jacc_sim": 0.9523809523809523, "before_after_length": [37, 38], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "s", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u562767072", "n_user": "u233729690", "pos": "A,B,C = map(int,input().split())\n\nif A==B==C:\n print('Yes')\nelse:\n print('No')\n", "neg": "A,B,C = map(int, input().split())\n\nprint(A,B,C)\n\nif A == B and B == C:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.95, "before_after_length": [39, 50], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " print(A,B,C)\n\n and B \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u375006224", "n_user": "u900688325", "pos": "a,b,c=list(map(int,input().split()))\nif c==a and c==b and a==b:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a, b, c = map(int(input().split()))\n\nif a == b == c:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 39], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " list((,\nc==and c and ab c'\"'\"'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u667084803", "n_user": "u473633103", "pos": "a, b, c = map(int,input().split())\nif a== b and b == c:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b,c == map(int,input().split())\n\nif a==b and b==c:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [39, 40], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " =\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u970107703", "n_user": "u581511366", "pos": "A,B,C = map(int, input().split())\nif(A==B==C):\n print('Yes')\nelse:\n print('No')", "neg": "A,B,C = map(int,input().split())\nif (A==B)and(B==C):\n print\"Yes\"\nelse:\n print\"No\"", "jacc_sim": 0.95, "before_after_length": [38, 42], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " B)and( \"('\"') \"('\"')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u584174687", "n_user": "u584174687", "pos": "from collections import Counter, defaultdict\nimport sys\nsys.setrecursionlimit(10 ** 5 + 10)\n# input = sys.stdin.readline\nfrom math import factorial\nimport heapq, bisect\nimport math\nimport itertools\n\n\nimport queue\nfrom collections import deque\n\n\ndef main():\n a, b, c = map(int, input().split())\n if a == b == c:\n print('Yes')\n else:\n print('No')\n\n\n\n\n\n\n\n\nif __name__ == '__main__':\n main()\n", "neg": "from collections import Counter, defaultdict\nimport sys\nsys.setrecursionlimit(10 ** 5 + 10)\n# input = sys.stdin.readline\nfrom math import factorial\nimport heapq, bisect\nimport math\nimport itertools\n\n\nimport queue\nfrom collections import deque\n\n\ndef main():\n a, b, c = map(int, input().split())\n if max(a, b, c) < a + b + c - max(a, b, c):\n print('Yes')\n else:\n print('No')\n\n\n\n\n\n\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9361702127659575, "before_after_length": [130, 147], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "m ==x(a,,c)==< a + b + - max(a, b, c)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u201234972", "n_user": "u368016155", "pos": "a,b,c = map( int, input().split())\nif a == b and b == c:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "a,b,c = map(int, input().split())\n\nif a=b=c:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.95, "before_after_length": [40, 38], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " \n = and b = '\"'\" '\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u181332825", "n_user": "u181332825", "pos": "if __name__ == '__main__':\n\ta, b, c = list(map(int, input().split(' ')))\n\tif a == b and b == c:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')\n", "neg": "if __name__ == '__main__':\n\ta, b, c = map(int, input().split(' '))\n if a == b and b == c:\n\t\tprint('Yes')\n\telse:\n\t\tprint('No')", "jacc_sim": 0.9565217391304348, "before_after_length": [59, 56], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "list()\t \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u664652300", "n_user": "u803848678", "pos": "a,b,c = map(int,input().split())\nif a==b and b==c:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b,c = map(int, input().split())\nif a+b > c and b+c > a and c + a > b:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 49], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": " +== > c+== > a and c + a > b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u829356061", "n_user": "u197663238", "pos": "A, B, C = map(int, input().split())\n\nif A == B == C:\n print('Yes')\nelse:\n print('No')", "neg": "A, B, C = (int, input().split())\n\nif A == B == C :\n print(\"Yes\")\nelse :\n print(\"No\")", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 37], "nl": "You are given three integers A, B, and C. Determine if there exists an equilateral triangle with sides of length A, B, and C. All input values are integers, and A, B, and C are between 1 and 100. The input is given in the format A B C, and the output should be \"Yes\" if an equilateral triangle exists, and \"No\" if it does not. For example, for input 2 2 2, the output is \"Yes\" because there exists an equilateral triangle with sides of length 2, 2, and 2. For input 3 4 5, the output is \"No\" because there is no equilateral triangle with sides of length 3, 4, and 5.", "diff_info": "map \"'\"' \"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03079", "p_user": "u580362735", "n_user": "u015187377", "pos": "A,B,C = map(int,input().split())\nif A == B and B == C and C == A:\n print('Yes')\nelse:\n print('No')", "neg": "A,B,C = map(int, input().split())\n\nif Ab:\n print('Yes')\nelse:\n print('No')\n", "neg": "N=int(input())\ns=list(input().split())\nr=s.count('R')\nb=s.count('B')\nif r>b:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9130434782608695, "before_after_length": [51, 54], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "list().split()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u025463382", "n_user": "u025463382", "pos": "num = int(input())\ncol = input()\nr = col.count(\"R\")\nb = num - r\nif r > b :\n ans = \"Yes\"\nelse :\n ans = \"No\"\nprint (ans)", "neg": "num = int(input())\ncol = input()\nr = clo.count(\"R\")\nb = num - r\nif r > b :\n ans = \"Yes\"\nelse :\n ans = \"No\"\nprint (ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [54, 54], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "oo", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u368016155", "n_user": "u368016155", "pos": "n = int(input())\ns = [i for i in input()]\n\nred = s.count('R')\nblue = s.count('B')\n\nif red > blue:\n print('Yes')\nelse:\n print ('No')", "neg": "n = int(input())\ns = [i for i in input().split()]\n\nred = count('R')\nblue = count('B')\n\nif red > blue:\n print('Yes')\nelse:\n print ('No')", "jacc_sim": 0.9629629629629629, "before_after_length": [58, 56], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": ".split()s.s.", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u233288243", "n_user": "u233288243", "pos": "l = int(input())\ns = input()\nr = s.count(\"R\")\nb = s.count(\"B\")\nif (r > b):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "l = int(input())\ns = input()\nr = l.count(\"R\")\nb = l.count(\"B\")\nif (r > b):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [52, 52], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "lsls", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u587199081", "n_user": "u587199081", "pos": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ndata = stdin.readline().rstrip().split()\ns = str(data[0])\ncount_red, count_blue = 0,0\nfor i in range(len(s)):\n if s[i] == \"R\":\n count_red += 1\n else:\n count_blue += 1\n\nif count_red > count_blue:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ndata = stdin.readline().rstrip().split()\nprint(type(data))\ns = str(data[0])\ncount_red, count_blue = 0,0\nfor i in range(len(s)):\n if s[i] == \"R\":\n count_red += 1\n else:\n count_blue += 1\n\nif count_red > count_blue:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9743589743589743, "before_after_length": [119, 126], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": ")\nprint(type(data)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u864453204", "n_user": "u864453204", "pos": "N = input()\ns = input()\nR = s.count('R')\nB = s.count('B')\n\nif R > B:\n print('Yes')\nelse:\n print('No')", "neg": "s = input()\nR = s.count('R')\nB = s.count('B')\n\nif R > B:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9444444444444444, "before_after_length": [49, 44], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "N = input()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u412563426", "n_user": "u412563426", "pos": "n = int(input())\nx= input()\n\ncount = 0\nme = 0\nfor i in range(n):\n if x[i] == \"R\":\n count +=1\n else:\n me +=1\n \n\nif count > me:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = input()\nx= input()\n\ncount = 0\nme = 0\nfor i in range(n):\n if x[i] == \"R\":\n count +=1\n else:\n me +=1\n \n\nif count > me:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9629629629629629, "before_after_length": [77, 76], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "t(in)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u560464565", "n_user": "u560464565", "pos": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\nimport sys\n\ninput = sys.stdin.readline\nN = int(input())\ns = input().strip()\nr = 0\nb = 0\n\nfor i in range(0, len(s)):\n if s[i] == 'R':\n r += 1\n else:\n b += 1\n\nif r > b:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\nimport sys\n\ninput = sys.stdin.readline\nN = int(input())\ns = input().split()\nr = 0\nb = 0\n\nfor i in range(0, len(s)):\n if s[i] == 'R':\n r += 1\n else:\n b += 1\n\nif r > b:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9583333333333334, "before_after_length": [120, 120], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "plirip", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u879870653", "n_user": "u600261652", "pos": "N = int(input())\nS = input()\n\n\nprint(\"Yes\" if S.count(\"R\") > S.count(\"B\") else \"No\")", "neg": "N = int(input())\nS = input()\nprint(\"Yes\" if S.count(\"B\") > S.count(\"R\") else \"No\")", "jacc_sim": 1.0, "before_after_length": [36, 34], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "\n\nBRRB", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u498575211", "n_user": "u498575211", "pos": "input1 = input()\nN = int(input1)\ninput2 = input()\nS = list(input2)\n \nR = 0\nB = 0\nh = 'No'\n \nfor i in range(N):\n if S[i] == 'R':\n R += 1\n else:\n B += 1\n \nif R > B:\n h = 'Yes'\n\nprint(h)\n", "neg": "input1 = input()\nN = int(input1)\ninput2 = input()\nS = input2\n \nR = 0\nB = 0\nh = 'No'\n \nfor i in N:\n if S[i] == 'R':\n R += 1\n else:\n B += 1\n \nif R > B:\n h = 'Yes'\n\nprint(h)", "jacc_sim": 0.9333333333333333, "before_after_length": [100, 94], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "list()range()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u503111914", "n_user": "u503111914", "pos": "N = int(input())\nS = input()\nprint(\"Yes\" if N/2 < S.count(\"R\") else \"No\")\n", "neg": "N = int(input())\nS = input()\nprint(\"Yes\" if N/2 < S.count(R) else \"No\")", "jacc_sim": 1.0, "before_after_length": [32, 31], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "\"\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u077141270", "n_user": "u077141270", "pos": "from sys import stdin\n\nN= int(input())\nl = input()\n\nif l.count(\"B\") < l.count(\"R\"):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "from sys import stdin\n\nN= int(input())\nl = input()\nprint(l.count(\"R\"))\n\nif N - l.count(\"R\") < l.count(\"R\"):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9166666666666666, "before_after_length": [50, 62], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "print(l.count(\"R\"))\n N -RB", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u502389123", "n_user": "u502389123", "pos": "N = int(input())\nS = input()\n\ncnt = 0\nfor s in S:\n if \"R\" == s:\n cnt += 1\n\nif cnt > N - cnt:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\nS = input()\n\ncnt = 0\nfor s in S:\n if \"R\" == cnt:\n cnt += 1\n\nif cnt > N - cnt:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [60, 60], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "scnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u652656291", "n_user": "u652656291", "pos": "n = int(input())\ns = input()\n\nR = s.count('R')\nB = len(s)-R\n\nif R > B:\n print('Yes')\nelse:\n print('No')\n", "neg": "n = int(input())\ns = input()\nR = s.count('R')\nB = len(s)-R\nif R > B:\n print('Yes')\nelse:\n peint('No')", "jacc_sim": 0.9545454545454546, "before_after_length": [52, 50], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "\n\ner\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u008134456", "n_user": "u146597538", "pos": "input()\ns = input()\n\nif s.count('R') > s.count('B'):\n print('Yes')\nelse:\n print('No')\n", "neg": "s = list(input())\n\nif s.count('R') > s.count('B'):\n print('Yes')\nelse:\n print('No')\n\n", "jacc_sim": 0.9444444444444444, "before_after_length": [40, 40], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "s = list(\ns = input( \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u843932857", "n_user": "u843932857", "pos": "n=int(input())\ns = input()\n#print(s)\nr = 0\nb = 0\nfor i in s:\n if i == \"R\":\n r += 1\n if i == \"B\":\n b += 1\n\nif r <= b:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "n=int(input())\n#s = input().split()\nprint(s)\nr = 0\nb = 0\nfor i in s:\n if i == \"R\":\n r += 1\n if i == \"B\":\n b += 1\n\nif r <= b:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9285714285714286, "before_after_length": [79, 81], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "#.split()#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u814781830", "n_user": "u814781830", "pos": "N = int(input())\nS = input()\nr = S.count('R')\nb = S.count('B')\nmsg = 'Yes' if r > b else 'No'\nprint(msg)", "neg": "N = int(input())\nS = input()\nr = s.count('R')\nb = s.count('B')\nmsg = 'Yes' if r > b else 'No'\nprint(msg)", "jacc_sim": 0.9545454545454546, "before_after_length": [48, 48], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "sSsS", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u046187684", "n_user": "u046187684", "pos": "n=int(input())\ns=input()\nans= \"Yes\" if s.count(\"R\") > n//2 else \"No\" \nprint(ans)", "neg": "n=int(input())\ns=input()\nans \"Yes\" if s.count(\"R\") > n//2 eise \"No\" \nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [38, 38], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "=il", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u754985212", "n_user": "u754985212", "pos": "input()\ni = input()\nif i.count('R') > i.count('B'): print('Yes')\nelse : print('No')", "neg": "i = input()\nif i.count('R') > i.count('B'):\n\tprint('Yes')\nelse :\n\tprint('No')", "jacc_sim": 1.0, "before_after_length": [34, 35], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "input()\n \n\t \n\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u987164499", "n_user": "u987164499", "pos": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ns = stdin.readline().rstrip()\n\nif s.count(\"R\") > s.count(\"B\"):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "from sys import stdin\n\nn = int(stdin.readline().rstrip())\ns = stdin.readline().rstrip()\n\nif s.cound(\"R\") > s.count(\"B\"):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.96, "before_after_length": [61, 62], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "dt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u551692187", "n_user": "u551692187", "pos": "N = int(input())\ns = input()\nprint('Yes') if s.count('R')>s.count('B') else print('No')", "neg": "N = int(input())\ns = input().split()\nprint('Yes') if s.count('R') > s.count('B') else print('No')", "jacc_sim": 0.9473684210526315, "before_after_length": [35, 37], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "t().spli ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u119983020", "n_user": "u119983020", "pos": "N=input()\ns = input()\nif s.count(\"R\")>s.count(\"B\"):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "s = input()\nif s.count(\"R\")>s.count(\"B\"):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9444444444444444, "before_after_length": [40, 35], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "N=input()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u907693064", "n_user": "u907693064", "pos": "num = int(input())\nhats = input()\n\nrhat = len([hat for hat in hats if hat == \"R\"])\nbhat = len([hat for hat in hats if hat == \"B\"])\n\nif rhat > bhat:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "num = int(input())\nhats = input()\n\nrhat = len([hat for hat in fats if hat == \"R\"])\nbhat = len([hat for hat in fats if hat == \"B\"])\n\nif rhat > bhat:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9615384615384616, "before_after_length": [79, 79], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "fhfh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u217530935", "n_user": "u217530935", "pos": "N = int(input())\ns = str(input())\ncntA = 0\ncntB = 0\n\nfor i in s:\n if i == \"R\":\n cntA = cntA + 1\n else:\n cntB = cntB + 1\n \nif cntA > cntB:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\ns = str(input())\nprint(s)\ncntA = 0\ncntB = 0\n\nfor i in s:\n if i == \"R\":\n cntA = cntA + 1\n else:\n cntB = cntB + 1\n \nif cntA > cntB:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [86, 91], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": ")\nprint(s", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u414458988", "n_user": "u414458988", "pos": "n=int(input())\ns=list(input())\nif s.count('R') > s.count('B'):\n print('Yes')\nelse:\n print('No')", "neg": "n=int(input())\ns=list(input())\nif s.count('R') > s.count('B'):\n print('Yes')\nelse:\n pritn('No')", "jacc_sim": 0.9523809523809523, "before_after_length": [44, 46], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "nn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u147571984", "n_user": "u147571984", "pos": "N = int(input())\nS = input()\n\nred = 0\nblue = 0\nfor s in S:\n if s == 'R':\n red = red+1\n else:\n blue = blue+1\n\nif red > blue:\n print('Yes')\nelse:\n print('No')", "neg": "N = int(input())\nS = input()\n\nred = 0\nblue = 0\nfor s in S:\n if s == 'R':\n red++\n else:\n blue++\n\nif red > blue:\n print('Yes')\nelse\n print('No')", "jacc_sim": 0.9583333333333334, "before_after_length": [74, 67], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": " = red+1 = blue+1:", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u919734978", "n_user": "u919734978", "pos": "n = int(input())\na = str(input())\nif a.count(\"R\") > n /2:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "n = int(input())\na = str(input())\nif a.count(\"r\") > n /2:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [42, 41], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "rR\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u680851063", "n_user": "u680851063", "pos": "n = int(input())\ns=input()\n\nred=0\nfor i in s:\n if i=='R':\n red+=1\n\nif red>n-red: print('Yes')\nelse: print('No')", "neg": "n = int(input())\ns=input()\n\nred=0\nfor i in s:\n if i=='R':\n red+=1\n\nif red>=-(-n//2): print('Yes')\nelse: print('No')", "jacc_sim": 0.9230769230769231, "before_after_length": [55, 57], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "=nred(-n//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u219610930", "n_user": "u219610930", "pos": "import sys\n \ninput = sys.stdin.readlines()\n \nn = int(input[0])\nhatList = list(input[1])\ncounter = 0\n\nfor i in range (n):\n if(hatList[i] == \"R\"):\n counter += 1\n \nif counter > (n/2):\n print(\"Yes\")\nelse:\n\tprint(\"No\")", "neg": "import sys\n \ninput = sys.stdin.readlines()\n \nn = int(input[0])\nprint(input[1])\nhatList = list(input[1])\ncounter = 0\n\nfor i in range (n):\n if(hatList[i] == \"R\"):\n counter += 1\n if counter >= (n/2 + 1):\n print(\"Yes\")\n exit()\n \nprint(\"No\")", "jacc_sim": 0.9444444444444444, "before_after_length": [93, 103], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "prhatLnst = liscounter = 0\n\nfor i in range (n):\n if( = list(inputi] == \"R\"):\n counter += ]) \nif = 0\n\nfor i in range (n):\n if(hatList[i] == \"R\"):\n counter += 1\n if counter = + 1 lse:xit()\t \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03080", "p_user": "u350697094", "n_user": "u350697094", "pos": "N = input()\nL = input()\nR_list = [s for s in L if 'R' in s]\nB_list = [s for s in L if 'B' in s]\nif len(R_list) >len(B_list):\n print('Yes')\nelse:\n print('No')", "neg": "N = input(int)\nL = input()\nR_list = [s for s in L if 'R' in s]\nB_list = [s for s in L if 'B' in s]\n\nif len(R_list) >len(B_list):\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.96, "before_after_length": [75, 78], "nl": "You are given a group of people wearing either red or blue hats. Determine if there are more people wearing red hats than blue hats. The input consists of the number of people and a string representing the hat colors. Output \"Yes\" if there are more people wearing red hats, and \"No\" if there are an equal number or more people wearing blue hats.", "diff_info": "int\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u312025627", "n_user": "u312025627", "pos": "def main():\n N, M = (int(i) for i in input().split())\n par = [i for i in range(N)]\n rank = [1]*N\n\n def find_root(x):\n if par[x] == x:\n return x\n else:\n par[x] = find_root(par[x])\n return par[x]\n\n def is_same_group(x, y):\n return find_root(x) == find_root(y)\n\n def unite(x, y):\n x = find_root(x)\n y = find_root(y)\n if x == y:\n return\n if rank[x] < rank[y]:\n x, y = y, x\n rank[x] += rank[y]\n par[y] = x\n\n def size(x):\n return rank[find_root(x)]\n\n ans = [N*(N-1)//2]\n AB = [[int(i)-1 for i in input().split()] for j in range(M)]\n for a, b in AB[::-1]:\n if is_same_group(a, b):\n ans.append(ans[-1])\n else:\n p = size(a)\n q = size(b)\n # print(a, b, p, q)\n unite(a, b)\n ans.append(ans[-1] - p * q)\n ans = ans[::-1]\n for a in ans[1:]:\n print(a)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n N, M = (int(i) for i in input().split())\n par = [i for i in range(N)]\n rank = [0]*N\n\n def find_root(x):\n if par[x] == x:\n return x\n else:\n par[x] = find_root(par[x])\n return par[x]\n\n def is_same_group(x, y):\n return find_root(x) == find_root(y)\n\n def unite(x, y):\n x = find_root(x)\n y = find_root(y)\n if x == y:\n return\n if rank[x] < rank[y]:\n par[x] = y\n else:\n par[y] = x\n if rank[x] == rank[y]:\n rank[x] += 1\n\n def size(x):\n return rank[find_root(x)]\n\n ans = [N*(N-1)//2]\n AB = [[int(i)-1 for i in input().split()] for j in range(M)]\n for a, b in AB[::-1]:\n if is_same_group(a, b):\n ans.append(ans[-1])\n else:\n p = size(a) + 1\n q = size(b) + 1\n unite(a, b)\n ans.append(ans[-1] - p * q)\n\n for a in ans[::-1]:\n print(a)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9607843137254902, "before_after_length": [398, 393], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "01par[,] =\n= else:\n par[],= if=+:p rrnkxy+1x + 1\n+1 # print(a, b, p, q)\nfor is =\n for a in ans[1:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u296518383", "n_user": "u296518383", "pos": "N, M = map(int, input().split())\nAB = [list(map(int, input().split())) for _ in range(M)]\n\nAB = AB[::-1]\n\nroot = [i for i in range(N + 1)]\ncomp_size = [1] * (N+1)\n\ndef root_find(x):\n y = root[x]\n if x == y:\n return x\n else:\n z = root_find(y)\n root[x] = z\n return z\n\ndef merge(x, y):\n #print(x, y)\n rx = root_find(x)\n ry = root_find(y)\n sx = comp_size[rx]\n sy = comp_size[ry]\n if rx == ry:\n return 0\n else:\n if sx >= sy:\n root[ry] = rx\n comp_size[rx] = sx + sy\n else:\n root[rx] = ry\n comp_size[ry] = sx + sy\n return sx * sy\n\nnetwork = 0\nanswer = []\nfor a, b in AB:\n #print(a, b, root)\n answer.append(N * (N - 1) // 2 - network)\n network += merge(a, b)\n\nanswer = answer[::-1]\nfor a in answer:\n print(a)", "neg": "N, M = map(int, input().split())\n\nroot = [i for i in range(N + 1)]\ncomp_size = [1] * (N+1)\n\ndef root_find(x):\n y = root[x]\n if x == y:\n return x\n else:\n z = root_find(y)\n root[x] = z\n return z\n\ndef merge(x, y):\n #print(x, y)\n rx = root_find(x)\n ry = root_find(y)\n sx = comp_size[rx]\n sy = comp_size[ry]\n if rx == ry:\n return 0\n else:\n if sx >= sy:\n root[ry] = rx\n comp_size[rx] = sx + sy\n else:\n root[rx] = ry\n comp_size[ry] = sx + sy\n return sx * sy\n\nnetwork = 0\nanswer = []\nfor i in range(M):\n a, b = map(int, input().split())\n answer.append(N * (N - 1) // 2 - network)\n network += merge(a, b)\n\nanswer = answer[::-1]\nfor a in answer:\n print(a)", "jacc_sim": 0.9411764705882353, "before_after_length": [335, 306], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "\nAB = [list(map(int, input().split())) for _ in range(M)]\n\nAB = AB[::-1]i in range(M):\n = map(t,inAB:\n #rut().spln)a, b, root", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u303059352", "n_user": "u303059352", "pos": "class UnionFind:\n def __init__(self, n):\n self.par = [-1 for _ in range(n)]\n def root(self, x):\n return x if self.par[x] < 0 else self.root(self.par[x])\n def unite(self, x, y):\n x, y = self.root(x), self.root(y)\n if x != y:\n if self.par[y] < self.par[x]:\n x, y = y, x\n self.par[x] += self.par[y]\n self.par[y] = x\n return x != y\n def find(self, x, y):\n return self.root(x) == self.root(y)\n def size(self, x):\n return -self.par[self.root(x)]\n\nn, m = map(int, input().split())\ntree = UnionFind(n)\nb = []\nfor _ in range(m):\n a, c = map(int, input().split())\n b.append([a - 1, c - 1])\nb.reverse()\nans = [sum(range(n))]\nfor i, p in enumerate(b):\n tmp = ans[-1]\n if not tree.find(p[0], p[1]):\n tmp -= tree.size(p[0])*tree.size(p[1])\n tree.unite(p[0], p[1])\n ans.append(tmp)\nfor i in reversed(ans[:-1]):\n print(i)", "neg": "class UnionFind:\n def __init__(self, n):\n self.par = [-1 for _ in range(n)]\n def root(self, x):\n return x if self.par[x] < 0 else self.root(self.par[x])\n def unite(self, x, y):\n x, y = self.root(x), self.root(y)\n if x != y:\n if self.par[y] < self.par[x]:\n x, y = y, x\n self.par[x] += self.par[y]\n self.par[y] = x\n return x != y\n def find(self, x, y):\n return self.root(x) == self.root(y)\n def size(self, x):\n return -self.par[self.root(x)]\n\nn, m = map(int, input().split())\ntree = UnionFind(n)\nb = []\nfor _ in range(m):\n a, c = map(int, input().split())\n b.append([a - 1, c - 1])\nb.reverse()\nans = [sum(range(n))]\nfor i, p in enumerate(b):\n if not tree.find(p[0], p[1]):\n ans.append(ans[-1] - tree.size(p[0])*tree.size(p[1]))\n tree.unite(p[0], p[1])\n elif i != m - 1:\n ans.append(ans[-1])\nfor i in reversed(ans):\n print(i)\n", "jacc_sim": 0.9649122807017544, "before_after_length": [381, 388], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "if nom tree.find([0],=p[1]):\n ans.append(\n if not tree.find(p[0], p[1]):\n tmp=)ans.appnd(tlif i != - 1:\n ans.ape)\nfor i id(an revered(ans:\nfor i in reversed(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u095426154", "n_user": "u095426154", "pos": "n,m=map(int,input().split())\nbridge=[[] for i in range(m)]\nleader=[i for i in range(n+1)]\nmember=[1 for i in range(n+1)]\nfor i in range(m):\n bridge[i]=list(map(int,input().split()))\nans=[0 for i in range(m+1)]\nans[0]=int((n-1)*n/2)\nk=1\nfor i in reversed(bridge):\n le0=leader[i[0]]\n le1=leader[i[1]]\n while le0!=leader[le0]:\n le0=leader[le0]\n leader[i[0]]=le0\n \n while le1!=leader[le1]:\n le1=leader[le1]\n leader[i[1]]=le1\n \n if le0!=le1:\n ans[k]=ans[k-1]-member[le0]*member[le1]\n if member[le0]>=member[le1]:\n member[le0]+=member[le1]\n leader[le1]=le0\n else:\n member[le1]+=member[le0]\n leader[le0]=le1\n else:\n ans[k]=ans[k-1]\n if ans[k]==0:\n ans[k:]=[0 for l in range(m-k)]\n break\n k+=1\nfor i in range(m):\n print(ans[m-1-i])", "neg": "n,m=map(int,input().split())\nbridge=[[] for i in range(m)]\nleader=[i for i in range(n+1)]\nmember=[1 for i in range(n+1)]\nfor i in range(m):\n bridge[i]=list(map(int,input().split()))\nans=[0 for i in range(m+1)]\nans[0]=int((n-1)*n/2)\nk=1\nfor i in reversed(bridge):\n print(leader)\n print(member)\n le0=leader[i[0]]\n le1=leader[i[1]]\n if le0!=le1:\n ans[k]=ans[k-1]-member[le0]*member[le1]\n if member[le0]>=member[le1]:\n member[le0]+=member[le[1]]\n leader[i[1]]=le0\n else:\n member[le1]+=member[le0]\n leader[i[0]]=le1\n else:\n ans[k]=ans[k-1]\n if ans[k]==0:\n ans[k:]=[0 for l in range(m-k)]\n break\n k+=1\nfor i in range(m):\n print(ans[m-1-i])", "jacc_sim": 0.9534883720930233, "before_after_length": [380, 325], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "le0=leader[i[0]]\n le1=leader[i[1]]\n while le0!=leader[le0]:\n le0=leader[le0]\n leader[i[0]]=le0\n \n while le1!=leader[le1]:\n le1=leader[le1]\n leader[i[1]]=le1\n \n if le0!=le1:\n ans[k]=ans[k-1]-member[le0]*member[le1]\n if member[le0]>=member[le1]:\n member[le0]+=member[le1]\n leader[le1]=le0\n else:\n member[le1]+=member[le0]\n leader[le0]=le1\n else:\n ans[k]=ans[k-1]\n if ans[k]==0:\n ans[k:]=[0 for l in range(m-k)]\n break\n k+=1\nfor i in range(m):\n leder)\n prit(member)\n le0=leader[i[0]]\n le1=leader[i[1]]\n if le0!=le1:\n anmk]=ans[k]member[le0]*member[le1]\n f member[le0>=member[le1]:\n member[le0]+=member[le[1]]\n leader[i[1]]=le0\n else:\n member[le1]+=member[le0]\n leader[i[0]]=le1\n else:\n ans[k]=ans[k-1]\n if ans[k]==0:\n ans[k:]=[0 for l in range(m-k]\n break\n k+=1\nfor i in range(m):\n print(ans[m-1-i])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u982594421", "n_user": "u982594421", "pos": "def find_index_by_value(a, val):\n for i, items in enumerate(a):\n if val in items:\n return i\n return -1\n\n\ndef num_reachable(n):\n return n * (n - 1) // 2\n\n\nn, m = map(int, input().split())\nedges = []\n\nfor _ in range(m):\n a, b = map(int, input().split())\n edges.append((a, b))\n\nsize = [1 for _ in range(n + 1)]\ngroup = [i for i in range(n + 1)]\n\n\ndef find_group(x):\n c = []\n p = x\n while True:\n pp = group[p]\n if pp == p:\n break\n else:\n c.append(p)\n p = pp\n for i in c:\n group[i] = pp\n return pp\n\n# find_group = lambda x: x if x == group[x] else find_group(group[x])\n\nans = []\nnot_reachable = n * (n - 1) // 2\nreachable_node = []\nans.append(not_reachable)\n\ncount = not_reachable\nreachable = 0\nfor _ in range(m - 1):\n a, b = edges.pop()\n if count > 0:\n ra = find_group(a)\n rb = find_group(b)\n if rb != ra:\n s_ra = size[ra]\n s_rb = size[rb]\n new_size = s_ra + s_rb\n reachable += num_reachable(new_size) - num_reachable(s_ra) - num_reachable(s_rb)\n size[ra] = new_size\n group[rb] = ra\n count = not_reachable - reachable\n ans.append(count)\n\nfor _ in range(len(ans)):\n print(ans.pop())", "neg": "def find_index_by_value(a, val):\n for i, items in enumerate(a):\n if val in items:\n return i\n return -1\n\n\ndef num_reachable(n):\n return n * (n - 1) // 2\n\n\nn, m = map(int, input().split())\nedges = []\n\nfor _ in range(m):\n a, b = map(int, input().split())\n edges.append((a, b))\n\nsize = [1 for _ in range(n + 1)]\ngroup = [i for i in range(n + 1)]\n\n\ndef find_group(x):\n p = x\n while True:\n pp = group[p]\n if pp == p:\n break\n return pp\n\nans = []\nnot_reachable = n * (n - 1) // 2\nreachable_node = []\nans.append(not_reachable)\n\ncount = not_reachable\nreachable = 0\nfor _ in range(m - 1):\n a, b = edges.pop()\n if count > 0:\n ra = find_group(a)\n rb = find_group(b)\n if rb != ra:\n s_ra = size[ra]\n s_rb = size[rb]\n new_size = s_ra + s_rb\n reachable += num_reachable(new_size) - num_reachable(s_ra) - num_reachable(s_rb)\n size[ra] = new_size\n group[rb] = ra\n count = not_reachable - reachable\n ans.append(count)\n\nfor _ in range(len(ans)):\n print(ans.pop())", "jacc_sim": 0.9393939393939394, "before_after_length": [466, 402], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "c = []\n return else:\n c.aend(p)\n p = pp\n for i in c:\n group[i] = pp\n return pp\n\n# find_group = lambda x: x if x == group[x] else find_group(group[x])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u350093546", "n_user": "u350093546", "pos": "n,m=map(int,input().split())\n\npar=[i for i in range(n)]\nsize=[1]*n\n\ndef find(x):\n if par[x]==x:\n return x\n else:\n par[x]=find(par[x])\n return par[x]\ndef union(a,b):\n x=find(a)\n y=find(b)\n if x!=y:\n if size[x]t:\n l[x]=y\n l[y]+=s\n else:\n l[y]=x\n l[x]+=t\n c[i]=c[i+1]-s*t\nfor x in c[1:]:\n print(x)", "neg": "import sys\nsys.setrecursionlimit(100000)\ninput=sys.stdin.readline\nn,m=map(int,input().split())\nl=[1]*n\nz=n*(n-1)//2\ninput()\nm-=1\nb=[input().split() for _ in range(m)]\nc=[0]*m+[z]\ndef r(s):\n t=l[s]\n if t>0:\n return s\n else:\n l[s]=r(t)\n return l[s]\ndef f(s):\n return r(int(s)-1)\nfor i in range(m-1,-1,-1):\n x,y=map(f,b[i])\n if x!=y:\n s,t=l[x],l[y]\n z-=s*t\n if st:\n l[x]=y\n l[y]+=s\n else:\n l[y]=x\n l[x]+=t\n c[i]=c[i+1]-s*t\n_xrange(m)]\n=0]*m+[z]\ndef r(s):\n t=l[s]\n if t>0:\n return s\n else:\n l[s]=r(t)\n return l[s]\ndef f(s):\n return r(int(s)-)\nfor i in range(m-1,-1,-1)\n x,y=map(f,b[i)\n if x!=y s,t=l[x],l[y]\n z-=s*t\n if s= b_size:\n eld[a_index].extend(eld[b_index])\n for i in eld[b_index]:\n eld[i] = [a_index]\n else:\n eld[b_index].extend(eld[a_index])\n for i in eld[a_index]:\n eld[i] = [b_index]\n\nfor i in ans[::-1]:\n print(i)", "neg": "n,m = [int(i) for i in input().split()]\nab = []\nfor i in range(m):\n ab.append([int(i)-1 for i in input().split()])\n\ndef find_index(c,eld):\n if c in eld[c]:\n return(c,len(eld[c]))\n else:\n return(eld[c][0],len(eld[eld[c][0]]))\n \neld = []\nfor i in range(n):\n eld.append([i])\nstat = eld\nans = [int(len(eld)*(len(eld)-1)/2)]\n\nfor a,b in ab[1:][::-1]:\n a_index,a_size = find_index(a,eld)\n b_index,b_size = find_index(b,eld)\n if a_index == b_index:\n ans.append(ans[-1])\n continue\n if a_size >= b_size:\n eld[a_index].extend(eld[b_index])\n eld[b_index] = [a_index]\n else:\n eld[b_index].extend(eld[a_index])\n eld[a_index] = [b_index]\n\n next = a_size * b_size\n ans.append(ans[-1] - next)\n\nfor i in ans[::-1]:\n print(i)\n\n\n ", "jacc_sim": 0.9787234042553191, "before_after_length": [394, 354], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "# print(eld)\n)\n# print(a_index,b_indexifelse:\n next =*>=: eld[a_index].extend(eld[b_index])\n eld[b_index] = [a_index]\n else:\n eld[b_index].extend(eld[a_index])\n eld[a_index] = [b_index]\n\n next = a_size * b_size\n if a_size >= b_size:\n eld[a_index].extend(eld[b_index])\n for i in eld[b_index]:\n eld[i] = [a_index]\n else:\n eld[b_index].extend(eld[a_index])\n for i in eld[a_index]:\n eld[i] = [b_index]\n\n\n\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u780565479", "n_user": "u780565479", "pos": "import sys\nsys.setrecursionlimit(100000)\n\ndef detectGroup(parents,x):\n if parents[x]!=x:\n parents[x]=detectGroup(parents,parents[x])\n return parents[x]\n else:\n return x\n \nN,M=map(int,input().split())\nAB=[[int(x)-1 for x in input().split()] for i in range(M)][::-1]\nparents=[i for i in range(N)]\ngroupsize=[1 for i in range(N)]\ninconv=N*(N-1)/2\nresult = []\nfor i in range(M):\n result.append(str(int(inconv))+'\\n')\n groupA=detectGroup(parents,AB[i][0])\n groupB=detectGroup(parents,AB[i][1])\n if groupA!=groupB:\n inconv-=groupsize[groupA]*groupsize[groupB]\n groupsize[groupA]+=groupsize[groupB]\n parents[groupB] = groupA\nprint(\"\".join(result[::-1]))", "neg": "def detectGroup(parents,x):\n if parents[x]!=x:\n return detectGroup(parents,parents[x])\n else:\n return x\n \nN,M=map(int,input().split())\nAB=[[int(x)-1 for x in input().split()] for i in range(M)][::-1]\nparents=[i for i in range(N)]\ngroupsize=[1 for i in range(N)]\ninconv=N*(N-1)/2\nresult = []\nfor i in range(M):\n result.append(str(int(inconv))+'\\n')\n groupA=detectGroup(parents,AB[i][0])\n groupB=detectGroup(parents,AB[i][1])\n print(groupA,groupB,inconv)\n if groupA!=groupB:\n inconv-=groupsize[groupA]*groupsize[groupB]\n groupsize[groupA]+=groupsize[groupB]\n parents[groupB] = groupA\nprint(\"\".join(result[::-1]))", "jacc_sim": 0.9230769230769231, "before_after_length": [268, 256], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "import sys\nsys.setrecursionlimit(100000)\n\npatur ts[x]=\n return parents[x])\n print(groupA,groupB,inconv", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u504562455", "n_user": "u504562455", "pos": "import sys\nsys.setrecursionlimit(10**6)\n\nN, M = [int(i) for i in input().split()]\nparent = [i for i in range(N+1)]\nnode_num = [1 for i in range(N+1)]\ndef find(x):\n if parent[x] == x:\n return x\n else:\n parent[x] = find(parent[x])\n return parent[x]\n\nbridge = []\nfor i in range(M):\n A, B = [int(i) for i in input().split()]\n bridge.append([A, B])\n\nbridge = bridge[::-1]\nans_rev = [N*(N-1)//2]\ncombi = 0\nfor i in range(M-1):\n A, B = bridge[i]\n r_A = find(A)\n r_B = find(B)\n if r_A != r_B:\n parent[r_B] = r_A\n combi += node_num[r_B] * node_num[r_A]\n node_num[r_A] += node_num[r_B]\n ans_rev.append(N*(N-1)//2-combi)\n\nans = ans_rev[::-1]\nprint(*ans, sep=\"\\n\")", "neg": "import sys\nsys.setrecursionlimit(20000)\nN, M = [int(i) for i in input().split()]\nparent = [i for i in range(N+1)]\nnode_num = [1 for i in range(N+1)]\ndef find(x):\n if parent[x] == x:\n return x\n else:\n parent[x] = find(parent[x])\n return parent[x]\n\nbridge = []\nfor i in range(M):\n A, B = [int(i) for i in input().split()]\n bridge.append([A, B])\n\nbridge = bridge[::-1]\nans_rev = [N*(N-1)//2]\ncombi = 0\nfor i in range(M-1):\n A, B = bridge[i]\n r_A = find(A)\n r_B = find(B)\n if r_A != r_B:\n parent[r_B] = r_A\n combi += node_num[r_B] * node_num[r_A]\n node_num[r_A] += node_num[r_B]\n ans_rev.append(N*(N-1)//2-combi)\n\nans = ans_rev[::-1]\nprint(*ans, sep=\"\\n\"", "jacc_sim": 0.9433962264150944, "before_after_length": [324, 322], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "21000**6\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u559823804", "n_user": "u559823804", "pos": "n,m=map(int,input().split())\npair=[]\nuf = [-1]*(n+1)\n\ndef root(x):\n if uf[x]<0: \n return x\n else: \n uf[x]=root(uf[x])\n return uf[x]\n\ndef issame(x,y):\n return root(x)==root(y)\n\ndef unite(x,y):\n x=root(x)\n y=root(y)\n if x==y:\n return False\n if uf[x]>uf[y]:\n x,y=y,x\n uf[x]+=uf[y]\n uf[y]=x\n return True\n\ndef size(x):\n return -uf[root(x)]\n\n\nans=[n*(n-1)//2]\n\nfor _ in range(m):\n a,b=map(int,input().split())\n pair.append((a,b))\n\nfor i,p in enumerate(reversed(pair)):\n if not issame(p[0],p[1]): \n ans.append(ans[i]-size(p[0])*size(p[1]))\n unite(p[0],p[1]) \n else:\n ans.append(ans[i])\n\nans.reverse()\nfor i in range(m):\n print(ans[i+1])\n ", "neg": "n,m=map(int,input().split())\npair=[]\nuf = [-1]*(n+1)\n\ndef root(x):\n if uf[x]<0: \n return x\n else: \n uf[x]=root(uf[x])\n return uf[x]\n\ndef issame(x,y):\n return root(x)==root(y)\n\ndef unite(x,y):\n x=root(x)\n y=root(y)\n if x==y:\n return False\n if uf[x]>uf[y]:\n x,y=y,x\n uf[x]+=uf[y]\n uf[y]=x\n return True\n\ndef size(x):\n return -uf[root(x)]\n\n\nans=[n*(n-1)//2]\n\nfor _ in range(m):\n a,b=map(int,input().split())\n pair.append((a,b))\n\nfor i,p in enumerate(reversed(pair)):\n if not issame(p[0],p[1]): \n ans.append(ans[i]-size(p[0])*size(p[1]))\n unite(p[0],p[1]) \n else:\n ans.append(ans[i])\nans.reverse()\nfor i in range(n-1):\n print(ans[i+1])", "jacc_sim": 1.0, "before_after_length": [355, 354], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "\nmn-1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u619819312", "n_user": "u619819312", "pos": "n,m=map(int,input().split())\na=[list(map(int,input().split()))for i in range(m)][::-1]\nw=[i for i in range(n+1)]\ns=[1]*(n+1)\ndef root(x):\n if w[x]==x:\n return x\n x=w[x]\n return root(w[x])\ndef unite(x,y):\n x=root(x)\n y=root(y)\n if x!=y:\n if s[x] rank[j]:\n par[j] = i\n size[i] += size[j]\n else:\n par[i] = j\n size[j] += size[i]\n if rank[i] == rank[j]:\n rank[j] += 1\n\nbridge = [None] * M\nfor i in range(M):\n x, y = map(int, input().split())\n bridge[i] = [x, y]\n \ncnt = N * (N - 1) // 2\ninconv = [0] * M\nfor i in range(M - 1, -1, -1):\n inconv[i] = cnt\n a, b = bridge[i]\n if not same(a, b):\n cnt -= size[root(a)] * size[root(b)]\n unite(a, b)\n \nfor i in range(M):\n print(inconv[i])", "neg": "N, M = map(int, input().split())\n\npar = list(range(0, N + 1))\nsize = [1] * (N + 1)\nrank = [1] * (N + 1)\n\ndef root(i):\n if par[i] == i:\n return i\n else:\n par[i] = root(par[i])\n return par[i]\n \ndef same(i, j):\n root(i) == root(j)\n \ndef findsize(i):\n size[i] = size[root(i)]\n \ndef unite(i, j):\n i = root(i)\n j = root(j)\n if i != j:\n if rank[i] > rank[j]:\n par[j] = i\n size[i] += size[j]\n else:\n par[i] = j\n size[j] += size[i]\n if rank[i] == rank[j]:\n rank[j] += 1\n\nbridge = [None] * M\nfor i in range(M):\n x, y = map(int, input().split())\n bridge[i] = [x, y]\n \ncnt = N * (N - 1) // 2\ninconv = [0] * M\nfor i in range(M - 1, -1, -1):\n inconv[i] = cnt\n a, b = bridge[i]\n if not same(a, b):\n cnt -= size[root(a)] * size[root(b)]\n unite(a, b)\n \nfor i in range(M):\n print(inconv[i])", "jacc_sim": 1.0, "before_after_length": [403, 402], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": " return", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u782685137", "n_user": "u782685137", "pos": "class UnionFindTree:\n def __init__(self, n):\n self._tree = [i for i in range(n)]\n# self._rank = [1] * n\n self._size = [1] * n\n def root(self, a):\n if self._tree[a] == a:return a\n self._tree[a] = self.root(self._tree[a])\n return self._tree[a]\n def is_same_set(self, a, b):\n return self.root(a)==self.root(b)\n def unite(self, a, b):\n ra = self.root(a)\n rb = self.root(b)\n if ra == rb: return\n if self._size[ra] < self._size[rb]:\n self._tree[ra] = rb\n self._size[rb] += self._size[ra]\n else:\n self._tree[rb] = ra\n self._size[ra] += self._size[rb]\n def size(self, a):\n return self._size[self.root(a)]\n\nN,M=map(int,input().split())\nAB=[list(map(int,input().split())) for _ in range(M)]\n \nuft=UnionFindTree(N)\ns=[0]\nfor a,b in AB[::-1]:\n if not(uft.is_same_set(a-1,b-1)):\n sa = uft.size(a-1)\n sb = uft.size(b-1)\n s += [s[-1] +(sa+sb)*(sa+sb-1)//2 -sa*(sa-1)//2 -sb*(sb-1)//2]\n uft.unite(a-1,b-1)\n else:s += [s[-1]]\n#print(s)\nfor r in s[:M][::-1]:print(N*~-N//2-r)", "neg": "class UnionFindTree:\n def __init__(self, n):\n self._tree = [i for i in range(n)]\n# self._rank = [1] * n\n self._size = [1] * n\n def root(self, a):\n if self._tree[a] == a:return a\n self._tree[a] = self.root(self._tree[a])\n return self._tree[a]\n def is_same_set(self, a, b):\n return self.root(a)==self.root(b)\n def unite(self, a, b):\n ra = self.root(a)\n rb = self.root(b)\n if ra == rb: return\n if self._size[ra] < self._size[rb]:\n self._tree[ra] = rb\n self._size[rb] += self._size[ra]\n else:\n self._tree[rb] = ra\n self._size[ra] += self._size[rb]\n def size(self, a):\n return self._size[self.root(a)]\n\nN,M=map(int,input().split())\nAB=[list(map(int,input().split())) for _ in range(M)]\n\nuft=UnionFindTree(N)\ns=[0]\nfor a,b in AB[::-1]:\n if not(uft.is_same_set(a-1,b-1)):\n sa = uft.size(a-1)\n sb = uft.size(b-1)\n s += [s[-1] +(sa+sb)*(sa+sb-1)//2 -sa*~-sa//2 -sb*~-sb//2]\n uft.unite(a-1,b-1)\n else:s += [s[-1]]\nfor r in s[:N-1][::-1]:print(N*~-N//2-r)", "jacc_sim": 1.0, "before_after_length": [481, 474], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": " (~--1)(~--1)fo#p r t()\nfor r in sMN-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u879870653", "n_user": "u879870653", "pos": "def comb(N) :\n return N*(N+1)//2\n\nclass UnionFind:\n def __init__(self,N):\n self.parent = [i for i in range(N)]\n self.rank = [0] * N\n self.count = 0\n self.size = [1] * N\n self.connection = 0\n def root(self,a):\n if self.parent[a] == a:\n return a\n else:\n self.parent[a] = self.root(self.parent[a])\n return self.parent[a]\n def is_same(self,a,b):\n return self.root(a) == self.root(b)\n def unite(self,a,b):\n ra = self.root(a)\n rb = self.root(b)\n if ra == rb: return\n self.connection -= (comb(self.size[ra]) + comb(self.size[rb]))\n self.connection += comb(self.size[ra] + self.size[rb])\n if self.rank[ra] < self.rank[rb]:\n self.size[rb] += self.size[ra]\n self.parent[ra] = rb\n else:\n self.size[ra] += self.size[rb]\n self.parent[rb] = ra\n if self.rank[ra] == self.rank[rb]: self.rank[ra] += 1\n self.count += 1\n\nN,M = map(int,input().split())\nL = [list(map(int,input().split())) for i in range(M)]\n\nUF = UnionFind(N)\n\nans = [N*(N-1)//2]\n\nfor i in range(M-1,-1,-1) :\n a,b = L[i]\n a -= 1\n b -= 1\n UF.unite(a,b)\n ans.append(ans[0] - UF.connection)\n\nprint(*ans[::-1][1:], sep=\"\\n\")\n", "neg": "def comb(N) :\n return N*(N+1)//2\n\nclass UnionFind:\n def __init__(self,N):\n self.parent = [i for i in range(N)]\n self.rank = [0] * N\n self.count = 0\n self.size = [1] * N\n self.connection = 0\n def root(self,a):\n if self.parent[a] == a:\n return a\n else:\n self.parent[a] = self.root(self.parent[a])\n return self.parent[a]\n def is_same(self,a,b):\n return self.root(a) == self.root(b)\n def unite(self,a,b):\n ra = self.root(a)\n rb = self.root(b)\n if ra == rb: return\n self.connection -= (comb(self.size[ra]) + comb(self.size[rb]))\n self.connection += comb(self.size[ra] + self.size[rb])\n if self.rank[ra] < self.rank[rb]:\n self.size[rb] += self.size[ra]\n self.parent[ra] = rb\n else:\n self.size[ra] += self.size[rb]\n self.parent[rb] = ra\n if self.rank[ra] == self.rank[rb]: self.rank[ra] += 1\n self.count += 1\n\nN,M = map(int,input().split())\nL = [list(map(int,input().split())) for i in range(M)]\n\nUF = UnionFind(N)\n\nans = [N*(N-1)//2]\n\nfor i in range(M) :\n a,b = L[i]\n a -= 1\n b -= 1\n UF.unite(a,b)\n ans.append(ans[0] - UF.connection)\n\nprint(*ans[::-1][1:], sep=\"\\n\")\n", "jacc_sim": 1.0, "before_after_length": [502, 494], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "-1,-1,-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u518042385", "n_user": "u518042385", "pos": "n,m=map(int,input().split())\nl=[]\nfor i in range(m):\n l.append(list(map(int,input().split())))\nl=l[::-1]\nparent=[i for i in range(n+1)]\ndepth=[1 for i in range(n+1)]\ndef find(n):\n if parent[n]==n:\n return n\n else:\n parent[n]=find(parent[n])\n return parent[n]\ndef unite(n,m):\n n1=find(n)\n m1=find(m)\n if n1==m1:\n return None\n elif depth[n1]t:\n l[x]=y\n l[y]+=s\n else:\n l[y]=x\n l[x]+=t\n c[i]=c[i+1]-s*t\nfor x in c[1:]:\n print(x)", "neg": "n,m=map(int,input().split())\nans=n*(n-1)/2\nl=[-1]*n\na=[1]*n\nb=[input().split() for _ in range(m)]\nc=[0]*m+[ans]\ndef r(s):\n t=l[s]\n return s if t<0 else r(t)\ndef f(s):\n return r(int(s)-1)\nfor i in range(m-1,-1,-1):\n x,y=map(f,b[i])\n if x!=y:\n l[x]=y\n ans-=a[x]*a[y]\n a[y]+=a[x]\n c[i]=ans\nfor x in c[1:]:\n print(x)", "jacc_sim": 0.9333333333333333, "before_after_length": [250, 196], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "l=[-1]*n\nb=[input().split() for _ in rsge(m)]\ncn[0](m+[*(n/\nl=[-1]*n\na=[1]*n\nb=[input().split() for _ in range(m)]\nc=[0]*m+[ans return s:\nelse (eurn s\n else:\n l[s]=r(t\n return l[s]s,t=0,0\n l[x]=y\n an-,tal,l[y]\n if s>t:\n l[x]=y\n l[y]+=s\n else:\n l[y]=x\n l[x]+=t\n c[i]=c[i+1]-sta[y]for a[y]+=a[]\nini]=ans\nfor x in c[", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u529180657", "n_user": "u529180657", "pos": "import sys\nsys.setrecursionlimit(1000000)\nn,m = map(int,input().split())\na = [0]*m\nb = [0]*m\nfor i in range(m):\n u,v = map(int, input().split())\n a[i] = u-1\n b[i] = v-1\npar = [i for i in range(n)]\nsize = [1]*n\nincomb = [n*(n-1)//2]*m\n\ndef root(x):\n if par[x] == x: \n return x\n else:\n par[x] = root(par[x])\n return par[x]\n \ndef isSame(x,y):\n return par[x] == par[y]\n\ndef union(x,y):\n x = root(x)\n y = root(y)\n if x == y:\n return\n else:\n par[y] = x\n size[x] += size[y]\n \ndef size_count(x):\n return size[root(x)]\n\nfor i in reversed(range(1,m)):\n q_a = a[i]\n q_b = b[i]\n size_a = size_count(q_a)\n size_b = size_count(q_b)\n if not isSame(q_a,q_b):\n union(q_a,q_b)\n incomb[i-1] = incomb[i] - size_a*size_b\n else:\n incomb[i-1] = incomb[i]\n\nfor i in incomb:\n print(i)", "neg": " import sys\n sys.setrecursionlimit(100000)\n n,m = map(int,input().split())\n a = [0]*m\n b = [0]*m\n for i in range(m):\n u,v = map(int, input().split())\n a[i] = u-1\n b[i] = v-1\n par = [i for i in range(n)]\n size = [1]*n\n incomb = [n*(n-1)//2]*m\n \n def root(x):\n if par[x] == x: \n return x\n else:\n par[x] = root(par[x])\n return par[x]\n \n def isSame(x,y):\n return par[x] == par[y]\n \n def union(x,y):\n x = root(x)\n y = root(y)\n if x == y:\n return\n else:\n par[y] = x\n size[x] += size[y]\n \n def size_count(x):\n return size[root(x)]\n \n for i in reversed(range(1,m)):\n q_a = a[i]\n q_b = b[i]\n size_a = size_count(q_a)\n size_b = size_count(q_b)\n if not isSame(q_a,q_b):\n union(q_a,q_b)\n incomb[i-1] = incomb[i] - size_a*size_b\n else:\n incomb[i-1] = incomb[i]\n \n for i in incomb:\n print(i)", "jacc_sim": 0.9636363636363636, "before_after_length": [403, 422], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": " 0 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u532966492", "n_user": "u532966492", "pos": "N,M=map(int,input().split())\nAB=[list(map(int,input().split())) for _ in range(M)]\nparts=[i for i in range(N)]\nans=[N*(N-1)//2]\nparts_dict=dict([[i,[i]] for i in range(N)])\n\nfor i in range(M-1):\n ab=AB.pop()\n if parts[ab[0]-1]==parts[ab[1]-1]:\n ans.append(ans[-1])\n else:\n a,b=sorted(ab,key=lambda x:parts[x-1])\n len_a,len_b=len(parts_dict[parts[a-1]]),len(parts_dict[parts[b-1]])\n ans.append(ans[-1]-len_a*len_b)\n parts_dict[parts[a-1]]+=parts_dict[parts[b-1]]\n for i in parts_dict[parts[b-1]]:\n parts[i]=parts[a-1]\n\nfor i in reversed(ans):\n print(i)", "neg": "N,M=map(int,input().split())\nAB=[list(map(int,input().split())) for _ in range(M)]\nparts=[i for i in range(N)]\nans=[N*(N-1)//2]\nparts_dict=dict([[i,[i]] for i in range(N)])\n\nfor i in range(M-1):\n ab=AB.pop()\n if parts[ab[0]-1]==parts[ab[1]-1]:\n ans.append(ans[-1])\n else:\n a,b=sorted(ab,key=lambda x:parts[x-1])\n len_a,len_b=len(parts_dict[parts[a-1]]),len(parts_dict[parts[b-1]])\n ans.append(ans[-1]-len_a*len_b)\n parts_dict[a-1]+=parts_dict[parts[b-1]]\n for i in parts_dict[parts[b-1]]:\n parts[i]=parts[a-1]\n\nfor i in range(M-2):\n if ans[i+1]==ans[i+2]:\n ans[i+1]=ans[i]\n\nfor i in reversed(ans):\n print(i)", "jacc_sim": 1.0, "before_after_length": [276, 313], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "prts[a]angversedM-2ansif ans[i+1]==ans[i+2]:\n ans[i+1]=ans[i]\n\nfor i in reversed(ans):\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u837286475", "n_user": "u837286475", "pos": "\n\n\nclass dset:\n def __init__(self,n):\n self.par = [-1]*n\n\n def size(self,n):\n return -self.par[self.root(n)]\n\n def root(self,n):\n if self.par[n]<0:\n return n\n else:\n self.par[n] = self.root(self.par[n])\n return self.par[n]\n\n def same(self, a, b):\n return self.root(a) == self.root(b)\n\n def __link__(self,a,b):\n if a == b:\n return \n \n if self.size(a) < self.size(b):\n a,b = b,a\n \n self.par[a] += self.par[b]\n self.par[b] = a\n\n def unite(self,a,b):\n self.__link__(\n self.root(a)\n ,self.root(b)\n )\n\n\ndef main():\n n, m = map(int, input().split() ) \n\n\n ins = [ list( map(int,input().split()) ) for i in range(m) ]\n\n ds = dset(n)\n\n ans = [0]*m\n ans[-1] = n*(n-1)//2\n for i in range(m-1,0,-1):\n ans[i-1] = ans[i]\n\n a,b = ins[i]\n a-=1\n b-=1\n\n# print(ins[i])\n # print( (ds.root(a),ds.root(b)) ) \n if not ds.same(a,b):\n x = ds.size(a)\n y = ds.size(b)\n #print((x,y))\n ans[i-1] -= x*y\n ds.unite(a,b)\n\n for e in ans:\n print(e)\n\nif __name__ == '__main__':\n main()", "neg": "\n\n\nclass dset:\n def __init__(self,n):\n self.par = [-1]*n\n\n def size(self,n):\n return -self.par[self.root(n)]\n\n def root(self,n):\n return self.par[n] = root(par[n]) if self.par[n]>=0 else n\n\n def same(self, a, b):\n return self.root(a) == self.root(b)\n\n def __link__(self,a,b):\n if a == b:\n return \n \n if self.size(a) < self.size(b):\n a,b = b,a\n \n self.par[a] += self.par[b]\n self.par[b] = a\n\n def unite(self,a,b):\n self.__link__(\n self.root(a)\n ,self.root(b)\n )\n\n\ndef main():\n n, m = map(int, input().split() ) \n\n\n ins = [ list( map(int,input().split()) ) for i in range(m) ]\n\n ds = dset(n)\n\n ans = [0]*m\n ans[-1] = n*(n-1)//2\n for i in range(m-1,0,-1):\n ans[i-1] = ans[i]\n\n a,b = ins[i]\n a-=1\n b-=1\n\n# print(ins[i])\n # print( (ds.root(a),ds.root(b)) ) \n if not ds.same(a,b):\n x = ds.size(a)\n y = ds.size(b)\n #print((x,y))\n ans[i-1] -= x*y\n ds.unite(a,b)\n\n for e in ans:\n print(e)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9824561403508771, "before_after_length": [510, 490], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "if self.par[n]<0:\n self.par[]\n=root(par[n])ifself.par[n]>=0else else:\n self.par[] = self.root(self.par[n])\n return self.par[n]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u310678820", "n_user": "u310678820", "pos": "class UnionFind(object):\n def __init__(self, n):\n self.parent = [i for i in range(n)]\n self.rank = [0 for _ in range(n)]\n self.size = [1 for i in range(n)]\n self.value=n*(n-1)//2\n\n\n def find(self, x):\n if self.parent[x] == x:\n return x\n else:\n return self.find(self.parent[x])\n\n\n def unite(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n self.value-=self.size[y]*self.size[x]\n self.size[x]+=self.size[y]\n self.size[y]=self.size[x]\n\n if self.rank[x] < self.rank[y]:\n self.parent[x] = y\n else:\n self.parent[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\nn, m = map(int, input().split())\nU=UnionFind(n)\nans=[U.value]\nab = [list(map(int, input().split())) for _ in range(m)]\nfor abi in ab[:0:-1]:\n a, b = abi\n U.unite(a-1, b-1)\n ans.append(U.value)\nfor i in ans[::-1]:\n print(i)", "neg": "class UnionFind(object):\n def __init__(self, n):\n self.parent = [i for i in range(n)]\n self.rank = [0 for _ in range(n)]\n self.size = [1 for i in range(n)]\n self.value=n*(n-1)//2\n\n\n def find(self, x):\n if self.parent[x] == x:\n return x\n else:\n return self.find(self.parent[x])\n\n\n def unite(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n self.value-=self.size[y]*self.size[x]\n self.size[x]+=self.size[y]\n self.size[y]=self.size[x]\n\n if self.rank[x] < self.rank[y]:\n self.parent[x] = y\n else:\n self.parent[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\nn, m = map(int, input().split())\nU=UnionFind(n)\nans=[U.value]\nfor i in range(m-1):\n a, b = map(int, input().split())\n U.unite(a-1, b-1)\n ans.append(U.value)\nfor i in ans[::-1]:\n print(i)", "jacc_sim": 0.9454545454545454, "before_after_length": [420, 404], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "ab = [list(map(int, input().split())) i_)]\nfor abi in ab[:0:)]mbp(nt, input().split())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u861466636", "n_user": "u861466636", "pos": "N, M = map(int, input().split())\nab = [tuple(map(int, input().split())) for _ in range(M)]\n\nclass UnionFind:\n def __init__(self, size):\n self.rank = [-1]*(size+1)\n self.number = [1]*(size+1)\n \n def find(self, x):\n while self.rank[x] >= 0:\n x = self.rank[x]\n return x\n \n def union(self, a, b):\n if a == b:\n return\n if self.rank[a] == self.rank[b]:\n self.rank[b] = a\n self.rank[a] -= 1\n self.number[a] += self.number[b]\n elif self.rank[a] < self.rank[b]:\n self.rank[b] = a\n self.number[a] += self.number[b]\n else:\n self.rank[a] = b\n self.number[b] += self.number[a]\n \np = N * (N - 1) // 2\nans = [p]\nuf = UnionFind(N)\n\nfor a, b in ab[::-1]:\n ar = uf.find(a)\n br = uf.find(b)\n \n if ar != br:\n p -= uf.number[ar] * uf.number[br]\n uf.union(ar, br)\n ans.append(p)\n\nprint(*ans[::-1][1:], sep='\\n')", "neg": "N, M = map(int, input().split())\nab = [tuple(map(int, input().split())) for _ in range(M)]\n\nclass UnionFind:\n def __init__(self, size):\n self.rank = [-1]*(size+1)\n self.number = [1]*(size+1)\n \n def find(self, x):\n while self.rank[x] >= 0:\n x = self.rank[x]\n return x\n \n def union(self, a, b):\n if a == b:\n return\n if self.rank[a] == self.rank[b]:\n self.rank[b] = a\n self.rank[a] -= 1\n self.number[a] += self.number[b]\n elif self.rank[a] < self.rank[b]:\n self.rank[b] = a\n self.number[a] += self.number[b]\n else:\n self.rank[a] = b\n self.number[b] += sekf.number[a]\n \np = N * (N - 1) // 2\nans = [p]\nuf = UnionFind(N)\n\nfor a, b in ab[::-1]:\n ar = uf.find(a)\n br = uf.find(b)\n \n if ar != br:\n p -= uf.number[ar] * uf.number[br]\n uf.union(ar, br)\n ans.append(p)\n\nprint(*ans[::-1], sep='\\n')", "jacc_sim": 0.9836065573770492, "before_after_length": [388, 387], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "kl[1:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03108", "p_user": "u075303794", "n_user": "u075303794", "pos": "class UnionFind():\n def __init__(self,n):\n self.parents = list(range(n))\n self.size = [1]*n\n \n def find(self,x):\n if self.parents[x] == x:\n return x\n\t\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n \n def union(self,x,y):\n x = self.find(x)\n y = self.find(y)\n \n if x==y:\n return\n \n if self.size[x]self.size[y]:\n x,y=y,x\n\t\n self.size[x]+=self.size[y]\n self.parents[y] = x\n \n def sizeofset(self,x):\n return self.size[self.find(x)]\n\n\nN,M=map(int,input().split())\nuf = UnionFind(N)\n\ncnt=(N)*(N-1)//2\nL=[[int(x) for x in input().split()] for _ in range(M)]\nans=[]\n\nfor a,b in L[::-1]:\n ans.append(cnt)\n if uf.find(a)!=uf.find(b):\n cnt-= uf.sizeofset(a)*uf.sizeofset(b)\n uf.union(a,b)\n\nfor x in ans[::-1]:\n print(x)", "jacc_sim": 0.9074074074074074, "before_after_length": [391, 367], "nl": "You are given N islands and M bridges. Each bridge connects two islands bidirectionally. Initially, you can travel between any two islands using the bridges. However, the bridges will collapse in order from the first to the M-th bridge. The inconvenience is the number of pairs of islands (a, b) (a < b) for which you can no longer travel using the remaining bridges. For each i (1 \u2264 i \u2264 M), find the inconvenience just after the i-th bridge collapses. Constraints: All values are integers, 2 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, 1 \u2264 A_i < B_i \u2264 N, all pairs (A_i, B_i) are distinct, and the inconvenience is initially 0. Input is given as N M followed by A_i B_i. Output the inconvenience after each bridge collapses. Note that the answer may not fit into a 32-bit integer type.", "diff_info": "> 0:\n \ta.append(j)\n ii+=1\n#print(a)\n \nfor k in range(1,m+1):\n if a.count(k) == n:\n ans+=1\nprint(ans)", "neg": "n,m=map(int,input().split())\na=[]\nans=0\nfor i in range(n):\n for j in map(int,input().split()):\n a.append(j)\n\nfor k in range(m):\n if a.count(k) == m:\n ans+=1\nprint(ans)\n \n\n ", "jacc_sim": 0.90625, "before_after_length": [112, 87], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "ii=0\n if ii > 0:\n \t ii+=1\n#print(a)\n 1,+1mn\n \n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u635182517", "n_user": "u635182517", "pos": "n,m = list(map(int, input().split()))\nk = list(list(map(int, input().split())) for _ in range(n))\nc = 0\n\nfor i in range(m):\n f = 0\n for j in range(n):\n if not i+1 in k[j][1:]:\n f = 1\n #print(i+1)\n #print(k[j][1:])\n if f == 0:\n c += 1\n\nprint(c)\n\n", "neg": "n,m = list(map(int, input().split()))\nk = list(list(map(int, input().split())) for _ in range(n))\nc = 0\nf = 0\nfor i in range(m):\n for j in range(n):\n if not i in k[j]:\n f == 1\n\n if f == 0:\n c += 1\n\nprint(c)", "jacc_sim": 0.967741935483871, "before_after_length": [127, 98], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "f = 0 = 0\n f+1[:\n f == :]: f = 1\n #print(i+1)\n #print(k[j][1:])\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u540761833", "n_user": "u540761833", "pos": "N,M = map(int,input().split())\narray2 = [0 for i in range(M+1)]\nfor i in range(N):\n array = list(map(int,input().split()))\n array.pop(0)\n for j in array:\n array2[j] += 1\nc = 0\nfor k in array2:\n if k == N:\n c += 1\nprint(c)", "neg": "N,M = map(int,input().split())\narray2 = [0 for i in range(M+1)]\nfor i in range(N):\n array = list(map(int,input().split()))\n array.pop[0]\n for j in array:\n array2[j] += 1\nc = 0\nfor k in array2:\n if k == N:\n c += 1\nprint(c)\n ", "jacc_sim": 1.0, "before_after_length": [102, 104], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "[(])\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u626337957", "n_user": "u626337957", "pos": "N, M = map(int, input().split())\nfoods = [0]*(M+1)\n\nfor i in range(N):\n person = list(map(int, input().split()))\n for j in range(1,M+1):\n if j in person[1:]:\n foods[j] += 1\nans = 0\nfor i in range(1,M+1):\n if foods[i] == N:\n ans += 1\nprint(ans)\n", "neg": "N, M = map(int, input().split())\nfoods = [0]*(M)\n\nfor i in range(N):\n person = list(map(int, input().split()))\n for j in range(M):\n if j in person:\n foods[j] += 1\nans = 0\nfor i in range(M):\n if foods[i] == N:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [121, 107], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "+11,+1[1:]1,+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u873269440", "n_user": "u873269440", "pos": "\n\ndef main():\n A,B = map(int,input().split())\n \n originalList = set(list(map(int,input().split()))[1:])\n for i in range(A-1):\n list1=set(list(map(int,input().split()))[1:])\n originalList = originalList & list1\n\n print(len(originalList))\n\n\nif __name__== \"__main__\":\n main() ", "neg": "\n\ndef main():\n A,B = map(int,input().split())\n \n originalList = set(list(map(int,input().split()))[1:])\n print(originalList)\n for i in range(A-1):\n list1=set(list(map(int,input().split()))[1:])\n print(list1)\n print(type(list1))\n originalList = originalList & list1\n print(originalList)\n print(type(originalList))\n\n print(len(originalList))\n\n\n\n\n\n\n\n\n\n\nif __name__== \"__main__\":\n main() ", "jacc_sim": 0.9714285714285714, "before_after_length": [113, 160], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "print(originalList)\n print(list1)\n print(type(list1))\n \n (len\n print(type(originalList)\n\n print(len(originalList))\n\n\n\n\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u972474792", "n_user": "u972474792", "pos": "N,M=map(int,input().split())\nKA=[]\nA=[]\na=0\nfor i in range(N):\n KA.append(list(map(int,input().split())))\nfor i in range(N):\n KA[i].remove(KA[i][0])\nfor i in range(N):\n for j in range(len(KA[i])):\n A.append(KA[i][j])\nfor i in range(1,M+1):\n if N==A.count(i):\n a+=1\nprint(a)", "neg": "N,M=map(int,input().split())\nKA=[]\nfor i in range(N):\n KA.append(list(map(int,input().split())))\nA=[]\nfor i in range(N):\n for j in range(1,len(KA[i])):\n A.append(KA[i][j])\na=0\nfor i in range(M):\n if A.count(i)==N:\n a+=1\nprint(a)", "jacc_sim": 0.96875, "before_after_length": [145, 120], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "A=[]\na=0\nfor i in range(N):\n K=i.remove(KA[i][0])len(KA[i])):\n A.append(KA[i][j])\nfor i in range(len(KA[i])):\n A.append(KA[i][j])\na=0\nfor i in range(+1N====N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u744517446", "n_user": "u744517446", "pos": "n,m = map(int,input().split())\nk = 0\nalist = []\nwhile k < n :\n a = list(map(int,input().split()))\n alist.append(a)\n k += 1\n#\nif n == 1 :\n print(len(alist[0])-1)\nelse:\n for blist in alist :\n b = blist[0]\n blist.remove(b)\n#\n anslist = []\n ans = 0\n i_roop = len(alist[0])\n while i_roop >= 0 :\n if i_roop == 0 :\n break\n else:\n c = min(alist[0])\n for j in range(1,n) :\n if c in alist[j] :\n anslist.append(\"OK\")\n if j == n-1 :\n if len(anslist) == n-1 :\n ans += 1\n else:\n if j == n-1 :\n if len(anslist) == n-1 :\n ans += 1\n break\n alist[0].remove(c)\n anslist = []\n i_roop += -1\n\nif n != 1 :\n print(ans)", "neg": "n = int(input())\nk = 0\nalist = []\nwhile k < n :\n a = list(map(int,input().split()))\n alist.append(a)\n k += 1\n#\nfor blist in alist :\n b = blist[0]\n blist.remove(b)\n#\nanslist = []\nans = 0\ni_roop = len(alist[0])\nwhile i_roop >= 0 :\n if i_roop == 0 :\n break\n else:\n c = min(alist[0])\n for j in range(1,n) :\n if c in alist[j] :\n anslist.append(\"OK\")\n if j == n-1 :\n if len(anslist) == n-1 :\n ans += 1\n else:\n if j == n-1 :\n if len(anslist) == n-1 :\n ans += 1\n break\n alist[0].remove(c)\n anslist = []\n i_roop += -1\n\nprint(ans)", "jacc_sim": 0.9574468085106383, "before_after_length": [305, 264], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": ",mintmapint,t().spliif n == 1 :\n print(len(alist[0])-1)\nelse:\n anslist=[]\nlist0[] ans = 0\n anslist=anslist = prf t(a != 1 :\n prit(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u391875425", "n_user": "u391875425", "pos": "n, m = map(int, input().split())\na = set(input().split()[1:])\nfor i in range(n - 1):\n a &= set(input().split()[1:])\nprint(len(a))", "neg": "n, m = map(int, input().split())\na = set(input().split()[1:])\nfor i in range(n - 1):\n a &= set(reads()[1:])\nprint(len(a))", "jacc_sim": 0.9615384615384616, "before_after_length": [56, 54], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "readinput().plit", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u346629192", "n_user": "u346629192", "pos": "N,M = map(int,input().split())\nnum = []\nfor i in range(N):\n num.append(list(map(int,input().split()[1:])))\ncount = 0\nfor j in range(1,M+1):\n if all(j in num[i] for i in range(N)):\n count += 1\nprint(count)", "neg": "N,M = map(int,input().split())\nnum = []\nfor i in range(N):\n num.append(list(map(int,input().split()[1:])))\ncount = 0\nfor j in range(1,M+1):\n if all(j in num[i] for i in range(N)):\n count += 1\nprint(count) \nprint(num)", "jacc_sim": 1.0, "before_after_length": [89, 95], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": " \nprint(num)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u684120680", "n_user": "u684120680", "pos": "import copy\n\nn,m = [int(i) for i in input().split()]\n\ncommon = list(range(1,m+1))\nfor i in range(n):\n like = [int(i) for i in input().split()][1:]\n for j in common[::-1]:\n if j not in like:\n common.remove(j)\n \nprint(len(common))\n \n", "neg": "n,m = [int(i) for i in input().split()]\n\ncommon = list(range(1,m+1))\nfor i in range(n):\n like = [int(i) for i in input().split()][1:]\n for j in common:\n if j not in like:\n common.remove(j)\n\nprint(len(common))\n \n", "jacc_sim": 0.9032258064516129, "before_after_length": [100, 91], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "import copy\n\n[::-1]\nprint(len(common))\nprint(len(common))\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u347600233", "n_user": "u347600233", "pos": "n, m = map(int, input().split())\nall = {int(i) for i in range(1, m + 1)}\nfor _ in range(n):\n k, *i_th = map(int, input().split())\n all &= set(i_th)\nprint(len(all))", "neg": "n, m = map(int, input().split())\nall = {int(i) for i in range(1, i + 1)}\nfor _ in range(n):\n k, *i_th = map(int, input().split())\n all &= set(list(i_th))\nprint(len(all))", "jacc_sim": 0.9666666666666667, "before_after_length": [73, 75], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "imlist()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u316386814", "n_user": "u316386814", "pos": "n, m = list(map(int, input().split()))\nse = set(range(1, m + 1))\nfor _ in range(n):\n x = se - set(list(map(int, input().split()))[1:])\n se -= x\n\nprint(len(se))\n", "neg": "n, m = list(map(int, input().split()))\nse = set(range(1, m + 1))\nfor _ in range(n):\n x = set(map(int, input().split()))\n se -= x\n\nprint(len(se))\n", "jacc_sim": 0.9259259259259259, "before_after_length": [73, 65], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": " - set(lis)[1:]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u640922335", "n_user": "u640922335", "pos": "N,M=map(int,input().split())\nA=list(map(int,input().split()))\nA.pop(0)\n\nif N>1:\n for _ in range(N-1):\n B=list(map(int,input().split()))\n B.pop(0)\n A=[num for num in A if num in B]\n\nprint(len(A))", "neg": "N,M=map(int,input().split())\nA=list(map(int,input().split()))\nA.pop(0)\nfor _ in range(N-1):\n B=list(map(int,input().split()))\n for num in A[1:]:\n if num not in B:\n A.remove(num)\n\nprint(len(A))", "jacc_sim": 0.90625, "before_after_length": [96, 92], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "\nif N>1:\n fornumin B.pop(0)\n =1:num for num in A if num in B: if num not in B:p A.int(lmove(um)\n\nprintlen(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u982591663", "n_user": "u982591663", "pos": "#ABC-118-B\nN, M = map(int, input().split())\nmemo = [0]*(M+1)\n\nfor _ in range(N):\n Ki, *A = map(int, input().split())\n for item in A:\n memo[int(item)] += 1\n\nans = 0\nfor i in range(1, M+1):\n if memo[i] == N:\n ans += 1\n\nprint(ans)", "neg": "#ABC-118-B\nN, M = map(int, input().split())\nmemo = [0]*(M+1)\n\nfor _ in range(N):\n Ki, *A = map(int, input().split())\n for item in A:\n memo[int(item)] += 1\n\nans = 0\nfor i in range(1, M):\n if memo[i] == N:\n ans += 1\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [110, 109], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u629350026", "n_user": "u629350026", "pos": "import itertools\nn,m=map(int,input().split())\na=[]\nfor i in range(0,n):\n a.append(list(map(int,input().split())))\n del a[i][0]\na=list(itertools.chain.from_iterable(a))\ncount=0\nfor i in range(0,m):\n if a.count(i+1)==n:\n count=count+1\nprint(count)", "neg": "import itertools\nn,m=map(int,input().split())\na=[]\nfor i in range(0,n):\n a.append(list(map(int,input().split())))\n del a[i][0]\na=list(itertools.chain.from_iterable(a))\ncount=0\nfor i in range(0,m):\n if a.count(i)==n\n count=count+1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [111, 108], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": ")==n\n count=count\nprint(count==n:\n count=count+1\nprint(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u124428040", "n_user": "u124428040", "pos": "import sys\n\n(sn, sm) = sys.stdin.readline().split()\nn = int(sn)\nm = int(sm)\n\nflg = [0 for j in range(m)]\nfor i in range(n):\n sa = sys.stdin.readline().split()\n if len(sa) > 1:\n for saj in sa[1:]:\n aj = int(saj)\n flg[aj - 1] += 1\n\nsuma = 0\nfor sumaj in flg:\n if sumaj == n:\n suma += 1\nprint(suma)", "neg": "import sys\n\n(sn, sm) = sys.stdin.readline().split()\nn = int(sn)\nm = int(sm)\n\nflg = [0 for j in range(m)]\nfor i in range(n):\n sa = sys.stdin.readline().split()\n for saj in sa:\n aj = int(saj)\n flg[aj - 1] += 1\n\nsuma = 0\nfor sumaj in range(flg):\n if sumaj == n:\n suma += 1\nprint(suma)", "jacc_sim": 0.9459459459459459, "before_after_length": [143, 132], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "for saj n sa:\n aj = int(saj)\n gen(sa) > 1:\n for saj in sa1:]:\n aj = int(saj)\n flg[range()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u167307651", "n_user": "u167307651", "pos": "lst = []\nn,m = map(int, input().split())\nfor i in range(n):\n k = list(map(int, input().split()))\n lst = lst + k[1:]\na = 0\nfor i in range(1, m+1):\n if lst.count(i) == n:\n a += 1\nprint(a)", "neg": "lst = []\nn,m = map(int, input().split())\nfor i in range(n):\n k = list(map(int,input().split()))\n lst = lst + k[1:]\na = 0\nfor i in range(m):\n if lst.count(i) == n:\n a += 1\nprint(a)", "jacc_sim": 1.0, "before_after_length": [87, 83], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": " 1, +1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03126", "p_user": "u513081876", "n_user": "u513081876", "pos": "N, M = map(int, input().split())\ncheck = [0] * M\nfor i in range(N):\n a = [int(i) - 1 for i in input().split()]\n a = a[1:]\n for j in a:\n check[j] += 1\n\n\nans = 0\nfor i in check:\n if i == N:\n ans += 1\nprint(ans)", "neg": "N, M = map(int, input().split())\ncheck = [0] * M\nfor i in range(N):\n a = [int(i - 1) for i in input().split()]\n a = a[1:]\n for j in check:\n check[j] += 1\n \n\nans = 0\nfor i in check:\n if i == N:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [99, 100], "nl": "Katsusando conducted a survey on M kinds of foods and asked N people whether they like these foods or not. Each person answered which foods they like. The task is to find the number of foods liked by all N people. The input is given in the format N M followed by the food preferences of each person. The output should be the number of foods liked by all N people. All values in the input are integers, and the constraints are 1 \u2264 N, M \u2264 30, 1 \u2264 Ki \u2264 M, and 1 \u2264 Aij \u2264 M.", "diff_info": "))a:\n :\n[j]+=1\n\n\nans=0\nfori in[j]:\n if i == N:\n ans \n\nans = 0\nfor i in check:\n if i == N:\n ans += 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u707870100", "n_user": "u707870100", "pos": "# -*- coding: utf-8 -*-\n#ABC116C\nimport sys\n\ntmp = input().split()\nhoge = list(map(lambda a: int(a), tmp))\nn=hoge[0]\nm=hoge[1]\n\ntmp = input().split()\nhoge = list(map(lambda a: int(a), tmp))\n\nhoge.sort()\n#print(hoge)\nx=[]\nsum=0\nfor i in range(0,m-1):\n\tx.append(hoge[i+1]-hoge[i])\n\tsum+=hoge[i+1]-hoge[i]\nx.sort(reverse=True)\n\n#print(x)\n\nsc=0\nfor i in range(0,min(n-1,len(x))):\n\tsc+=x[i]\n\nprint(sum-sc)\n\n", "neg": "# -*- coding: utf-8 -*-\n#ABC116C\nimport sys\n\ntmp = input().split()\nhoge = list(map(lambda a: int(a), tmp))\nn=hoge[0]\nm=hoge[1]\n\ntmp = input().split()\nhoge = list(map(lambda a: int(a), tmp))\n\nhoge.sort()\n#print(hoge)\nx=[]\nsum=0\nfor i in range(0,m-1):\n\tx.append(hoge[i+1]-hoge[i])\n\tsum+=hoge[i+1]-hoge[i]\nx.sort(reverse=True)\n\n#print(x)\n\nsc=0\nfor i in range(0,n-1):\n\tsc+=x[i]\n\nprint(sum-sc)\n\n", "jacc_sim": 0.9555555555555556, "before_after_length": [226, 219], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "mi(n,len(x))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u444732068", "n_user": "u444732068", "pos": "N,M = map(int,input().split())\nx = sorted(list(map(int,input().split())))\n\nif M <= N:\n\tprint(0)\n\texit()\n\t\n\ndistance = [0]*(M-1)\ndistance[0] = x[1]-x[0]\nfor i in range(0,M-1):\n\tdistance[i] = x[i+1]-x[i]\n\ndistance_sorted = sorted(distance)\nans = 0\nfor i in range(0,M-N):\n\tans += distance_sorted[i]\n\nprint(ans)\n\n\n", "neg": "N,M = map(int,input().split())\nx = sorted(list(map(int,input().split())))\n\nif M <= N:\n\tprint(0)\n\texit()\n\t\n\ndistance = [0]*(M-1)\ndistance[0] = x[1]-x[0]\nfor i in range(0,M-1):\n\tdistance[i] = x[i+1]-x[i]\n\ndistance_sorted = sorted(distance)\nprint(distance_sorted)\nans = 0\nfor i in range(0,M-N):\n\tans += distance_sorted[i]\n\nprint(ans)\n\n\n", "jacc_sim": 1.0, "before_after_length": [149, 156], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "aprits = 0\nfor i in range0,M-N):\n\tans += )\nans = 0\nfor i in range(0,M-N):\n\tans += distance_sorted", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u076512055", "n_user": "u076512055", "pos": "N, M = map(int, input().split())\nX = list(map(int, input().split()))\nans = 0\nif (M-1)-(N-1) <= 0:\n pass\nelse:\n X.sort()\n dist = [X[i+1]-X[i] for i in range(M-1)]\n dist.sort()\n for i in range((M-1)-(N-1)):\n ans += dist[i]\nprint(ans)", "neg": "N, M = map(int, input().split())\nX = list(map(int, input().split()))\nans = 0\nif M-1-N <= 0:\n pass\nelse:\n X.sort()\n dist = [X[i+1]-X[i] for i in range(M-1)]\n dist.sort()\n for i in range(M-1-N):\n ans += dist[i]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [118, 109], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "()(-1)()(-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u857759499", "n_user": "u857759499", "pos": "n,m,*x = map(int,open(0).read().split())\nx.sort()\nif n >= m:\n print(0)\n exit()\na = sorted([x[i+1]-x[i] for i in range(m-1)],reverse=True)\nans = x[-1]-x[0]\nfor i in range(n-1):\n ans -= a[i]\nprint(ans)", "neg": "n,m,*x = map(int,open(0).read().split())\nx.sort()\na = sorted([x[i+1]-x[i] for i in range(m-1)],reverse=True)\nans = x[-1]-x[0]\nfor i in range(n-1):\n ans -= a[i]\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [105, 89], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "if n >= m:\n print(0)\n exit()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u694810977", "n_user": "u694810977", "pos": "n, m = map(int, input().split())\nx = list(map(int, input().split()))\ncnt = 0\nif n > m:\n print(0)\n exit()\nx.sort()\nL = []\nfor i in range(m - 1):\n L.append(x[i + 1] - x[i])\nL.sort()\nL.reverse()\nfor i in range(n-1):\n L.pop(0)\nprint(sum(L))\n", "neg": "n, m = map(int, input().split())\nx = list(map(int, input().split()))\ncnt = 0\nif n > m:\n print(0)\n exit()\nx.sort()\nL = []\nprint(x)\nfor i in range(m - 1):\n print(i)\n L.append(x[i + 1] - x[i])\nL.sort()\nL.reverse()\nprint(L)\nfor i in range(n-1):\n L.pop(0)\nprint(sum(L))\n", "jacc_sim": 1.0, "before_after_length": [118, 134], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "print(x)\n\n print(i)print(L)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u649760109", "n_user": "u649760109", "pos": "n,m = map(int,input().split())\nx = list(map(int, input().split()))\nx_new = sorted(x)\nintervals = [0]*(m-1)\nfor i in range(m-1):\n intervals[i] = abs(x_new[i+1] - x_new[i])\nc = sorted(intervals, reverse=True)\ns = 0\nif n < m:\n for j in range(n-1):\n s += c[j]\n min = sum(intervals) - s\n print(min)\nelse:\n print(0)", "neg": "n,m = map(int,input().split())\nx = list(map(int, input().split()))\nx_new = sorted(x)\nintervals = [0]*(m-1)\nfor i in range(m-1):\n intervals[i] = abs(x_new[i+1] - x_new[i])\nc = sorted(intervals, reverse=True)\ns = 0\nfor j in range(n-1):\n s += c[j]\n \nmin = sum(intervals) - s\nprint(min)", "jacc_sim": 0.925, "before_after_length": [145, 129], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "if n < m:\n \n \nelse:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u815659544", "n_user": "u815659544", "pos": "n,m = map(int, input().split())\narr = list(map(int, input().split()))\n\nif n >= m:\n print(0)\n\nelse:\n arr.sort()\n\n diff = [arr[i+1] - arr[i] for i in range(m-1)]\n diff.sort()\n\n print(sum(diff[0:m-n]))", "neg": "n,m = map(int, input().split())\narr = list(map(int, input().split()))\n\nif n >= m:\n print(0)\n\nelse:\n arr.sort()\n\n diff = [arr[i+1] - arr[i] for i in range(m-1)]\n diff.sort()\n\n print(sum(arr[0:m-n]))", "jacc_sim": 1.0, "before_after_length": [96, 96], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "arrdiff", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u557565572", "n_user": "u557565572", "pos": "n,m = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort()\n\ndis=[x[i+1]-x[i] for i in range(m-1)]\ndis.sort()\nprint(sum(dis[:m-n]) if m>=n else 0)", "neg": "n,m = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort()\n\ndis=[]\nres=0\nif n>m: \n print(0)\nelse:\n for i in range(len(x)-1):\n dis[i] = x[i+1] - x[i]\n\n dis.sort()\n\n for j in range(n-1):\n res += dis[j]\n\n print(sum(dis) - res)", "jacc_sim": 0.9117647058823529, "before_after_length": [79, 125], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "x[i+1-x[\nres=0\n]f n>m: \n print(0)\nelse:\n mlen(x):\n dis[i] = x[i+1] - x[i\n \n for j in range(n-1):\n res += dis[j]\n\n [:m-n]-ifrm>=n le 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u739456942", "n_user": "u739456942", "pos": "n, m = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort()\n\nif n < m:\n x_far = [abs(x[i + 1] - x[i]) for i in range(m - 1)]\n x_far.sort()\n ans = 0\n for i in range (m - n):\n ans += x_far[i]\n print(ans)\nelse:\n print(0)\n", "neg": "n, m = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort()\n\nif n < m:\n x_distance = [x[i + 1] - x[i] for i in range(m - 1)]\n x_distance.sort()\n print(x_distance)\n ans = 0\n for i in range (m - n):\n ans += x_distance[i]\n print(ans)\nelse:\n print(0)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [117, 123], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "fdistrnceabs()fdistnce.so.sot()\n pin)\n ans = 0\n for i in range (m - n):\n ans += fdistnce)r[i]aprit(an)\nelse:\n= print(\n for i in range (m - n: ans += x_distance[i]\n print(ans)\nelse:\n print(0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u403984573", "n_user": "u403984573", "pos": "N,M=map(int,input().split())\nX=[int(i) for i in input().split()]\nX.sort()\ncount=[]\nsum=0\nif N=m:\n print(0)\n exit()\nlist1 = list(map(int,input().split()))\nlist1.sort()\nlist2 = []\nfor i in range(m-1):\n\tlist2.append(list1[i+1]-list1[i])\nlist2.sort(reverse = True)\ncut = 0\nfor j in range(n-1):\n\tcut+= list2[j]\nprint(max(list1)-min(list1)-cut)", "neg": "n,m = map(int,input().split())\nlist1 = list(map(int,input().split()))\nlist1.sort()\nlist2 = []\nfor i in range(m-1):\n\tlist2.append(list1[i+1]-list1[i])\nlist2.sort(reverse = True)\ncut = 0\nfor j in range(n-1):\n\tcut+= list2[j]\nprint(max(list1)-min(list1)-cut)", "jacc_sim": 0.918918918918919, "before_after_length": [134, 117], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": ")\nif n>=m:\n print(0)\n exit(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u744034042", "n_user": "u744034042", "pos": "n,m = map(int,input().split())\nx = list(map(int,input().split()))\nx.sort()\ndis = []\nans = 0\nif n>m:\n print(0)\n exit()\nfor i in range(m-1):\n dis.append(x[i+1]-x[i])\n ans += x[i+1]-x[i]\ndis.sort(reverse = True)\nfor j in range(n-1):\n ans -= dis[j]\nprint(ans)", "neg": "n,m = map(int,input().split())\nx = list(map(int,input().split()))\nx.sort()\ndis = []\nans = 0\nfor i in range(m-1):\n dis.append(x[i+1]-x[i])\n ans += x[i+1]-x[i]\ndis.sort(reverse = True)\nfor j in range(n-1):\n ans -= dis[j]\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [129, 113], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "i n>m:\n print(0)\n exit()\nf", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u220462658", "n_user": "u220462658", "pos": "nandm = input().split()\nnumlist = input().split()\nN = int(nandm[0])\nM = int(nandm[1])\nif N >= M:\n print(0)\nelse:\n intlist = [int(num) for num in numlist]\n intlist.sort()\n subtract = [intlist[i + 1] - intlist[i] for i in range(len(intlist) - 1)]\n subtract.sort()\n print(sum(subtract[:(M - N)]))", "neg": "nandm = input().split()\nnumlist = input().split()\nN = int(nandm[0])\nM = int(nandm[1])\nif N >= M:\n print(0)\nelse:\n intlist = [int(num) for num in numlist]\n intlist.sort()\n subtract = [intlist[i + 1] - intlist[i] for i in range(len(intlist) - 1)]\n subtract.sort()\n print(sum(subtract[M - N]))", "jacc_sim": 1.0, "before_after_length": [128, 126], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": ":(]])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u466143662", "n_user": "u466143662", "pos": "n,m=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\nkyori=[]\nif n>=m:\n print(0)\n \nelse:\n for i in range(m-1):\n kyori.append(a[i+1]-a[i])\n b=0\n kyori.sort()\n for i in range(m-n):\n b+=kyori[i]\n \n print(b)", "neg": "n,m=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\nkyori=[]\nif n>=m:\n print(0)\n \nelse:\n for i in range(m-1):\n kyori.append(a[i+1]-a[i])\n\nkyori.sort()\nb=sum(kyori[:m-n])\nprint(b)", "jacc_sim": 0.9696969696969697, "before_after_length": [130, 112], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": " \nkyori.sort()\nsum(0\n [:.sort()\n for i in range(]:print( +=kyori[i]\n \n print(b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u557494880", "n_user": "u557494880", "pos": "N,M = map(int,input().split())\nX = list(map(int,input().split()))\nX.sort()\nd = []\nfor i in range(M-1):\n d.append(X[i+1]-X[i])\nd.sort()\nn = min(M-1,N-1)\nfor i in range(n):\n d.pop()\nans = sum(d)\nprint(ans)", "neg": "N,M = map(int,input().split())\nX = list(map(int,input().split()))\nX.sort()\nans = X[-1] - X[0]\nd = []\nfor i in range(N-1):\n d.append(X[i+1]-X[i])\nd.sort()\nn = min(N-1,M-1)\nfor i in range(n):\n ans -= d[-i]\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [106, 113], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "\nans = X[-1] - X[0]M-1):\n d.append(X[i+1]-X[i])\nd.sort()\nn = min(M-1,-1):\n d.append(X[i+1]-X[i])\nd.sort()\nn = min(N-1,Mans -= .[-i]\noprintans\nans = sum(d)\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u671060652", "n_user": "u671060652", "pos": "import itertools\nimport math\n\nn, m = map(int, input().split())\nx = list(map(int, input().split()))\n\nx.sort()\n\ndis = []\nfor i in range(m-1):\n dis.append(x[i+1]-x[i])\n\ndis.sort(reverse=True)\nfor i in range(min(n-1,len(dis))):\n dis[i] = 0\n\nprint(sum(dis))", "neg": "import itertools\nimport math\n\nn, m = map(int, input().split())\nx = list(map(int, input().split()))\n\nx.sort()\nprint(x)\n\ndis = []\nfor i in range(m-1):\n dis.append(x[i+1]-x[i])\n\ndis.sort(reverse=True)\nfor i in range(len(dis)):\n dis[i] = 0\n\nprint(sum(dis))", "jacc_sim": 0.9722222222222222, "before_after_length": [114, 113], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": ")\nprint(xmlen(dn(n-1,len(di)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u960171798", "n_user": "u960171798", "pos": "B = [0]\n\nN,M = map(int, input().split())\nX = list(map(int, input().split()))\nX = sorted(X)\nfor i in range(1,M):\n x = X[i]-X[i-1]\n B.append(x)\nB = sorted(B)\nB = B[::-1]\nprint(X[-1]-X[0]-sum(B[:N-1]))", "neg": "B = [0]\n\nN,M = map(int, input().split())\nX = list(map(int, input().split()))\nX = sorted(X)\nprint(X)\nfor i in range(1,M):\n x = X[i]-X[i-1]\n B.append(x)\nB = sorted(B)\nB = B[::-1]\nprint(B)\nprint(X[-1]-X[0]-sum(B[:N-1]))", "jacc_sim": 1.0, "before_after_length": [110, 120], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "(X)\nprintB)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u609814378", "n_user": "u609814378", "pos": "import sys \nN, M = map(int, input().split())\nX = list(map(int, input().split()))\n\nX = sorted(X)\n\nanslis = []\n\n\nif M <= N:\n print(0)\n sys.exit()\n\n\n \nfor i in range(M-1):\n ans = abs(X[i+1] - X[i])\n anslis.append(ans)\n ans = 0\n\nanslis = sorted(anslis)\n\nif N==1:\n print(sum(anslis))\nelse:\n print(sum(anslis[0:M-N]))", "neg": "import sys \nN, M = map(int, input().split())\nX = list(map(int, input().split()))\n\nX = sorted(X)\n\nanslis = []\n\n\nif M >= N:\n print(0)\n sys.exit()\n\n\n \nfor i in range(M-1):\n ans = abs(X[i+1] - X[i])\n anslis.append(ans)\n ans = 0\n\nanslis = sorted(anslis)\n\nprint(sum(anslis[0:N+1]))", "jacc_sim": 0.9210526315789473, "before_after_length": [159, 139], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": ">= m:\n print(0)\nelse:\n x = sorted(list(map(int, input().split())))\n\n y = []\n for i in range(m-1):\n y.append(x[i+1] - x[i])\n\n y_sorted = sorted(y, reverse=True)\n\n ans = 0\n for _y in y_sorted[n-1:]:\n ans += _y\n print(ans)", "neg": "n, m = map(int, input().split())\nif n >= m:\n print(0)\nelse:\n x = sorted(list(map(int, input().split())))\n\n y = []\n for i in range(m-1):\n y.append(h[i+1] - h[i])\n\n y_sorted = sorted(y, reverse=True)\n\n ans = 0\n for _y in y[n:]:\n ans += _y\n print(ans)", "jacc_sim": 0.972972972972973, "before_after_length": [126, 122], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "hxhx_sorted-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u768896740", "n_user": "u768896740", "pos": "n, m = map(int, input().split())\n\nif n >= m:\n print(0)\n exit()\n\nx = list(map(int, input().split()))\nx = sorted(x)\ndiff = [x[i+1] - x[i] for i in range(0, m-1)]\n\nsort_diff = sorted(diff, reverse=True)\n\nsum = 0\n\nif len(sort_diff) == 0:\n print(0)\n exit()\n\nfor i in range(n-1):\n sort_diff.pop(0)\n\nfor i in range(len(sort_diff)):\n sum += sort_diff[i]\nprint(sum)", "neg": "\nn, m = map(int, input().split())\n\nx = list(map(int, input().split()))\nx = sorted(x)\ndiff = [x[i+1] - x[i] for i in range(0, m-1)]\n\nsort_diff = sorted(diff, reverse=True)\n\nsum = 0\nfor i in range(n-1):\n sort_diff.pop(0)\n\nfor i in range(len(sort_diff)):\n sum += sort_diff[i]\nprint(sum)", "jacc_sim": 0.9166666666666666, "before_after_length": [168, 129], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "\n)\n\nif n >= m:\n print(0)\n exit(\nif len(sort_diff) == 0:\n print(0)\n exit()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u095756391", "n_user": "u095756391", "pos": "N, M = map(int, input().split())\nX = list(map(int, input().split()))\nans = 0\ndiff = []\n \nX.sort()\n \nif (N < M): \n for i in range(M-1):\n dif = X[i+1] - X[i]\n diff.append(dif)\n \n diff.sort()\n \n for i in range(M-N):\n ans += diff[i]\n # for n in range(N):\n # diff.pop(-1)\n \n # for i in range(len(diff)):\n # ans += diff[i]\nprint(ans)", "neg": "N, M = map(int, input().split())\nX = list(map(int, input().split()))\nans = 0\ndiff = []\n \nX.sort()\n \nfor i in range(M-1):\n dif = X[i+1] -X[i]\n diff.append(dif)\n \ndiff.sort()\n \nfor n in range(N):\n diff.pop(-1)\n \nfor i in range(len(diff)):\n ans += diff[i]\n\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [162, 128], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "if (N < M): \n diff.append(dif)\n\ndiff.sort()\n\nfor diff.apped(dif)\n \n diff.sort()\n \n for iM- ans += diff[i]\n # for n in range(N):\n # # # \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u453623947", "n_user": "u453623947", "pos": "n,m = map(int,input().split())\nif n >= m :\n print(0)\nelse:\n ls=[int(s) for s in input().split()]\n ls.sort()\n d=[ls[i+1]-ls[i] for i in range(m-1)]\n d.sort()\n print(sum(d[:m-n]))\n", "neg": "n,m = map(int,input().split())\nif n >= m :\n print(0)\nelse:\n ls=[int(s) for s in input().split()]\n ls.sort()\n d=[ls[i+1]-ls[i] for i in range(m-1)]\n d.sort()\n print(sum(d[:n-m]))\n", "jacc_sim": 1.0, "before_after_length": [92, 92], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "m--m", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u172035535", "n_user": "u172035535", "pos": "N,M = map(int,input().split())\nX = sorted(map(int,input().split()))\nL = sorted([X[i+1]-X[i] for i in range(M-1)])\nif M < N:print(0)\nelse:print(sum(L[:(M-N)]))", "neg": "N,M = map(int,input().split())\nX = sorted(map(int,input().split()))\nL = sorted([X[i+1]-X[i] for i in range(M-1)])\nif M < L:print(0)\nelse:print(sum(L[:(M-N)]))", "jacc_sim": 1.0, "before_after_length": [77, 77], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "LN", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u360090862", "n_user": "u360090862", "pos": "N,M=[int(i) for i in input().split()]\nX=[int(i) for i in input().split()]\nX.sort()\nrui=[]\nfor i in range(len(X)-1):\n rui.append(X[i+1]-X[i])\nrui.sort()\nif N==1:\n print(sum(rui))\nelif M>=N:\n print(sum(rui[0:-(N-1)]))\nelse:\n print(0)", "neg": "N,M=[int(i) for i in input().split()]\nX=[int(i) for i in input().split()]\nX.sort()\nrui=[]\nfor i in range(len(X)-1):\n rui.append(X[i+1]-X[i])\nrui.sort()\nif N==1:\n print(sum(rui))\nif M<=N:\n print(sum(rui[0:-(N-1)]))\nelse:\n print(0)", "jacc_sim": 0.9090909090909091, "before_after_length": [127, 126], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "el<>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u883203948", "n_user": "u883203948", "pos": "n,m = list(map(int,input().split()))\n\ndata = [int(s) for s in input().split()]\ndata.sort()\nl = []\nif n >= m:\n print(0)\nelse:\n for i in range(m-1):\n l.append(data[i+1]-data[i])\n l.sort(reverse = True)\n\n x = 0\n for i in range(n-1):\n x += l[i]\n print(data[m-1] - data[0] - x)\n", "neg": "n,m = list(map(int,input().split()))\n\ndata = [int(s) for s in input().split()]\ndata.sort()\nl = []\nfor i in range(m-1):\n l.append(data[i+1]-data[i])\nl.sort(reverse = True)\n\nx = 0\nfor i in range(n-1):\n x += l[i]\nprint(data[m-1] - data[0] - x)\n", "jacc_sim": 0.9142857142857143, "before_after_length": [138, 118], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "i n >= m:\n print(0)\nelse:\n f ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u485716382", "n_user": "u485716382", "pos": "def main():\n N, M = map(int, input().split())\n X = list(map(int, input().split()))\n \n X = sorted(X)\n X = sorted([X[i+1]-X[i] for i in range(M-1)], reverse=True)\n print(sum(X[N-1:]))\n\n\nmain()", "neg": "def main():\n N, M = map(int, input().split())\n X = list(map(int, input().split()))\n \n X = sorted(X)\n print(X)\n X = sorted([X[i+1]-X[i] for i in range(M-1)], reverse=True)\n print(X)\n print(sum(X[N-1:]))\n\n\nmain()", "jacc_sim": 1.0, "before_after_length": [90, 102], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "print(X)\n X)\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u676496404", "n_user": "u676496404", "pos": "N,M = map(int,input().split())\nl = list(map(int,input().split()))\nif M <= N:\n print('0')\nelse:\n l.sort()\n li = []\n for i in range(M-1):\n difference = abs(l[i]-l[i+1])\n li.append(difference)\n li.sort()\n li.reverse()\n dif = 0\n for i in range(N-1):\n dif += li[i]\n print(l[M-1]-l[0]-dif)", "neg": "N,M = map(int,input().split())\nl = list(map(int,input().split()))\nif M <= N:\n print('0')\nelse:\n l.sort()\n li = []\n for i in range(M-1):\n difference = abs(l[i]-l[i+1])\n li.append(difference)\n li.sort().reverse()\n dif = 0\n for i in range(N-1):\n dif += li[i]\n print(l[M-1]-l[0]-dif)", "jacc_sim": 1.0, "before_after_length": [143, 139], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "\n li", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u843722521", "n_user": "u843722521", "pos": "n,m=map(int,input().split())\nx=sorted(list(map(int,input().split())))\nif m<=n:\n print(0)\nelse:\n d=[]\n for i in range(m-1):\n d.append(x[i+1]-x[i])\n d=sorted(d)\n print(sum(d[:m-n]))", "neg": "n,m=map(int,input().split())\nx=sorted(list(map(int,input().split())))\nif n<=m:\n print(0)\nelse:\n d=[]\n for j in range(n-1):\n d.append(x[i+1]-x[i])\n d=sorted(d)\n print(sum(d[:m]))", "jacc_sim": 0.9696969696969697, "before_after_length": [97, 95], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "nmmnjinm-n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u578489732", "n_user": "u578489732", "pos": "# -*- coding: utf-8 -*-\nimport sys\n# ----------------------------------------------------------------\n# Use Solve Function\n\ndef solve(lines):\n N,M = map(int, lines.pop(0).split(' '))\n X = list(map(int, lines.pop(0).split(' ')))\n if N >= M:\n print(0)\n sys.exit(0)\n X.sort()\n span = []\n for i in range(M-1):\n span.append( X[i+1] - X[i] )\n span.sort()\n for i in range(N-1):\n span.pop(-1)\n print(sum(span))\n\n#\n# main\n#\n\nlines = [x.strip() for x in sys.stdin.readlines()]\n\n#\n# solve !!\n#\nsolve(lines)\n", "neg": "# -*- coding: utf-8 -*-\nimport sys\n# ----------------------------------------------------------------\n# Use Solve Function\n\ndef solve(lines):\n N,M = map(int, lines.pop(0).split(' '))\n X = list(map(int, lines.pop(0).split(' ')))\n X.sort()\n span = []\n for i in range(M-1):\n span.append( X[i+1] - X[i] )\n span.sort()\n for i in range(N-1):\n span.pop(-1)\n print(sum(span))\n\n#\n# main\n#\n\nlines = [x.strip() for x in sys.stdin.readlines()]\n\n#\n# solve !!\n#\nsolve(lines)\n", "jacc_sim": 0.9423076923076923, "before_after_length": [210, 189], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "if N >= M:\n print(0)\n sys.exit(0)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03137", "p_user": "u671060652", "n_user": "u671060652", "pos": "def main():\n # n = int(input())\n n, m = map(int, input().split())\n x = list(map(int, input().split()))\n # s = input()\n # h = [int(input()) for _ in range(n)]\n\n x.sort()\n\n subs = []\n\n for i in range(1, m):\n subs.append(abs(x[i]-x[i-1]))\n\n subs.sort()\n if (m < n):\n print(0)\n else:\n print(sum(subs[0:m-n]))\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n # n = int(input())\n n, m = map(int, input().split())\n x = list(map(int, input().split()))\n # s = input()\n # h = [int(input()) for _ in range(n)]\n\n x.sort()\n\n subs = []\n\n for i in range(1, m):\n subs.append(abs(x[i]-x[i-1]))\n\n subs.sort()\n print(subs)\n if (m <= n):\n print(0)\n else:\n print(sum(subs[0:m-n]))\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [165, 171], "nl": "You are playing a one-player game using a number line and N pieces. Initially, place each piece at an integer coordinate. Multiple pieces can be at the same coordinate. The objective is to visit all M coordinates X1, X2, ..., XM with these pieces by moving a piece to a neighboring coordinate. Find the minimum number of moves required to achieve the objective. Constraints: All values are integers, 1 \u2264 N \u2264 10^5, 1 \u2264 M \u2264 10^5, -10^5 \u2264 Xi \u2264 10^5, and X1, X2, ..., XM are all different. Input format: N M X1 X2 ... XM. Output: Minimum number of moves.", "diff_info": "print(subs)\n =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u597455618", "n_user": "u597455618", "pos": "n = list(map(int, input().split()))\nprint(min(n[1], n[2]), max(0, n[1] + n[2] - n[0]))", "neg": "n = list(map(int, input().split()))\nprint(min(n[1], n[2]))\nprint(max(0, n[1] - n[2]))", "jacc_sim": 0.9523809523809523, "before_after_length": [45, 42], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": ", )\nprint(-+ - n[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u371467115", "n_user": "u371467115", "pos": "n,a,b=map(int,input().split())\ns=min(a,b)\nl=0\nif na+b:\n l=abs(b-a)\nprint(\"{} {}\".format(s,l))\n", "jacc_sim": 0.9285714285714286, "before_after_length": [61, 58], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "> 0:\n min = (A + B) - N\nelse:\n min = 0\nprint(\"{} {}\".format(max, min))", "neg": "N,A,B = map(int,input().split())\nmaxN,minN = 0\n\nif N >= A + B:\n minN = 0\n maxN = min([A,B])\nelse:\n minN = A + B - N\n maxN = min([A,B])\n \nprint('{} {}'.format(maxN,minN))", "jacc_sim": 1.0, "before_after_length": [66, 88], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " N,minN = 0\n\nif N >= A + B:\n minN = 0\n maxN \nif (A + B) - N > 0:\n min = (A + B) - NminN= A + B - N\n maxN =([A,B])\n=0'\"'\"N N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u456353530", "n_user": "u767438459", "pos": "N, A, B = list(map(int, input().split()))\n\nX = min(A, B)\nY = max(A + B - N, 0)\n\nprint(X, Y)", "neg": "N,A,B= map(int, input().split())\nX = min(A, B)\nY = max(0, A+B-10)\nprint(X, Y)", "jacc_sim": 0.9090909090909091, "before_after_length": [48, 43], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " list()\n0A + B - NA+B-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u712259362", "n_user": "u712259362", "pos": "N, A, B = [int(i) for i in input().split()]\n\nX = A if A < B else B\nY = 0 if N > A+B else A+B-N\n\nprint(\"{0} {1}\".format(X, Y))", "neg": "N, A, B = [int(i) for i in input().split()]\n\nX = A if A > B else B\nY = 0 if N > (A+B) else N - (A+B)\n\nprint(\"{0} {1}\".format(X, Y))", "jacc_sim": 0.967741935483871, "before_after_length": [63, 67], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "><()N - ()-N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u001024152", "n_user": "u762420987", "pos": "N,A,B = map(int, input().split())\nif N-A-B>=0:\n print(min(A,B),0)\nelse:\n print(min(A,B), A+B-N)", "neg": "N,A,B = map(int,input().split())\n\nmax = A+B\nif A>=B:\n min = B\nelse:\n min = A\n\nif max>10:\n print(min,max-10)\nelse:\n print(min,0)\n", "jacc_sim": 0.9130434782608695, "before_after_length": [56, 70], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " \nmax = A+B\nN--BB:\n min = B\nelse:\n min = A\n\nif max>1(AB),max-1(A0B\n, A+B-N)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u226155577", "n_user": "u738037409", "pos": "N, A, B = map(int, input().split())\nprint(min(A, B), max(A+B-N, 0))", "neg": "N, A, B = map(int, input().split())\nprint(min(A, B), max(0, N - (A + B)))", "jacc_sim": 1.0, "before_after_length": [33, 34], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "0A+B-N0N - (A + B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u667084803", "n_user": "u325264482", "pos": "N, A, B =map(int, input().split())\n\nans1 = min(A,B)\nans2 = max(0, A+B-N)\nprint(ans1, ans2)", "neg": "N, A, B = list(map(int, input().split()))\n\nans1 = min(A, B)\nans2 = max(N - A - B, 0)\n\nprint(ans1, ans2)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [48, 53], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " list() 0,N - +BN B, 0\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u905802918", "n_user": "u905802918", "pos": "N,A,B=map(int,input().split())\n#the max\nprint(min(A,B),max(0,A+B-N))", "neg": "N,A,B=map(int,input.split())\n#the max\nprint(min(A,B))\nprint(max(0,A+B-N))", "jacc_sim": 1.0, "before_after_length": [37, 40], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "(),)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u721316601", "n_user": "u546853743", "pos": "n, a, b = list(map(int, input().split()))\n\nprint(min(a, b), '', end='')\n\nif n < a + b:\n print((a+b)-n)\nelse:\n print(0)\n", "neg": "\nn,a,b=map(int,input().split())\nprint(min(a,b))\nif a+b <= n:\n print('0')\nelse:\n print(n -(a+b))", "jacc_sim": 0.9166666666666666, "before_after_length": [60, 52], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "\n list( )\n , '', end=''\nna+b=na + b'0'(a+b)-n0n -(a+b)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u569742427", "n_user": "u569742427", "pos": "\nN,A,B=[int(_) for _ in input().split() ]\nif A>=B:\n BIG=A\n SMALL=B\nif B>A:\n BIG=B\n SMALL=A\n\nMAX=SMALL\n\nif BIG+SMALL<=N:\n MIN=SMALL\n print(str(MAX)+' 0')\n exit(0)\n\n\nMIN=BIG+SMALL-N\nprint(str(MAX)+' '+str(MIN))\n\n", "neg": "N,A,B=[int(_) for _ in input().split() ]\nif A>=B:\n BIG=A\n SMALL=B\nif B>A:\n BIG=B\n SMALL=A\n\nMAX=BIG\n\nif BIG+SMALL>N:\n MIN=SMALL\n print(str(MAX)+' '+str(MIN))\n exit(0)\n\nMIN=0\nprint(str(MAX)+' '+str(MIN))\n", "jacc_sim": 0.9354838709677419, "before_after_length": [113, 108], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "\nBIG\n\nif BIG+>\n\nif BIG+SMALL<=0+str(MIN)\n0BIG+SMALL-N\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u023229441", "n_user": "u023229441", "pos": "a,b,c=map(int,input().split())\nq=min(b,c)\nw=b+c-a\nprint(\"{} {}\".format(q,max(0,w)))\n", "neg": "a,b,c=map(int,input(),split())\nq=min(b,c)\nw=b+c-a\nprint(\"{} {}\".format(q,w))", "jacc_sim": 0.9166666666666666, "before_after_length": [48, 43], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": ",.max(0,)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u562935282", "n_user": "u329709276", "pos": "n, a, b = map(int, input().split())\n\nprint(min(a, b), max(a + b - n, 0))\n", "neg": "n,a,b = map(int,input.split())\n\nprint(min(a,b),max(a+b-n,0))", "jacc_sim": 1.0, "before_after_length": [35, 34], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " () \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u782098901", "n_user": "u782098901", "pos": "N, A, B = map(int, input().split())\n\nprint(min(A, B), 0 if A + B <= N else max(A, B) - (N - min(A, B)))\n", "neg": "N, A, B = map(int, input().split())\n\nprint(min(A, B), 0 if A + B <= N else max(A, B) - min(A, B))\n", "jacc_sim": 1.0, "before_after_length": [49, 46], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "(N - )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u422104747", "n_user": "u995062424", "pos": "n,a,b=map(int,input().split())\nprint(min(a,b),end=\" \")\nif a+b>n:\n print(a+b-n)\nelse:\n print(0)\n", "neg": "n, a, b = map(int, input().split())\n\nif(n >= a+b):\n print(a if b >= a else b, end=' ')\n print(0)\nelse:\n print(a if b >= a else b, end=' ')\n print(abs(a-b))", "jacc_sim": 0.9166666666666666, "before_after_length": [54, 73], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " print(min(a,b),end=\" \")(n >=)>n+ if - >= a else b, ed=' ')\n print(00a if b >= a else b, end=' ' print(abs(a-b))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u624617831", "n_user": "u624617831", "pos": "n = input().split()\nN = int(n[0])\nA = int(n[1])\nB = int(n[2])\n\nif A > B:\n a = A\n b = B\nelif A < B:\n a = B\n b = A\nelif A == B:\n a = A\n b = B\n\nif a != b:\n if a+b <= N:\n print(str(b) + ' ' + str(0))\n elif a+b > N:\n print(str(b) + ' ' + str(a - (N-b)))\nelif a+b <= N:\n print(str(a) + ' ' + str(0))\nelif a+b > N:\n print(str(a) + ' ' + str(a-(N-b)))\n", "neg": "n = input().split()\nN = int(n[0])\nA = int(n[1])\nB = int(n[2])\n\nif A > B or A == B:\n a = A\n b = B\nelif B < A:\n a = B\n b = A\n\nif a != b:\n if a+b < N:\n print(str(b) + ' ' + str(0))\n elif a+b > N:\n print(str(b) + ' ' + str(a - (N-b)))\nelif a < N//2:\n print(str(a) + ' ' + str(0))\nelif a > N//2:\n print(str(a) + ' ' + str(a-(N-b)))\n", "jacc_sim": 0.9354838709677419, "before_after_length": [202, 189], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " or A == BBAA:\n a = :baB\n b = \nelif A == B:\n a = A\n b = B=+b=//2+b//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u999989620", "n_user": "u999989620", "pos": "n, a, b = map(int, input().split(' '))\nprint(f'{min(a,b)} {max(0,a+b-n)}')\n", "neg": "n, a, b = map(int, input().split(' '))\nprint(f'{min(a,b)} {min(0,abs(a+b-n))}')\n", "jacc_sim": 0.9130434782608695, "before_after_length": [41, 43], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "inaxabs()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u124025116", "n_user": "u124025116", "pos": "num = list(map(int,input().split()))\nif num[1] > num[2]:\n a = num[2]\nelse:\n a = num[1]\nb = num[1] + num[2] - num[0]\nif b < 0:\n b = 0\nprint(str(a) + \" \" + str(b))", "neg": "num = list(map(int,input().split()))\nif num[1] > num[2]:\n a = num[2]\nelse:\n a = num[1]\nb = num[1] + num[2] - num[0]\nprint(a + \" \" + b)", "jacc_sim": 0.9285714285714286, "before_after_length": [86, 70], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "if b < 0:\n b = 0\nstr()str()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u218843509", "n_user": "u143051858", "pos": "n, a, b = map(int, input().split())\nc = min(a, b)\nif a + b <= n:\n\td = 0\nelse:\n\td = a+b-n\nprint(c, d)", "neg": "n,a,b = map(int,input().split())\nif n < a+b:\n print(min(a,b),n-a+b)\nelse:\n print(min(a,b),0)", "jacc_sim": 0.9130434782608695, "before_after_length": [55, 54], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " cif=n < a+b:\n print( ,\nif a + b <= -a+b):\n\td = 0\td= a+b-n\ncmin(ab d,0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u785989355", "n_user": "u760961723", "pos": "\nN,A,B=list(map(int,input().split()))\n\nprint(str(min(A,B))+\" \"+str(max(0,A+B-N)))", "neg": "N, A, B = map(int,input().split())\n\nprint(str(min(A, B)) + \" \" + str(max(N, A+B)-min(N,A+B)))", "jacc_sim": 0.9047619047619048, "before_after_length": [44, 48], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "\n list() 0N, A+B)-min(N-N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u698919163", "n_user": "u698919163", "pos": "N, A, B = list(map(int,input().split()))\n\nup = min(A,B)\n\nif A+B >= N:\n down = A+B-N\nelse:\n down = 0\n \nprint(up,down)", "neg": "N, A, B = list(map(int,input().split()))\n\nup = min(A,B)\n\nif A+B >= N:\n down = N-(A+B)\nelse:\n down = 0\n \nprint(up,down)", "jacc_sim": 1.0, "before_after_length": [62, 64], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "N-()-N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u728498511", "n_user": "u728498511", "pos": "n,a,b = map(int, input().split())\nif a+b > n:\n q = a+b-n\nelse :\n q = 0\nprint( str(min(a,b)) +\" \"+ str(q))", "neg": "n,a,b = map(int, input().split())\nif a+b > 10:\n q = a+b-10\nelse :\n q = 0\nprint( str(min(a,b)) +\" \"+ str(q))", "jacc_sim": 0.96, "before_after_length": [57, 57], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "n10n10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u702786238", "n_user": "u702786238", "pos": "N, A, B = map(int, input().split())\n\nans1 = B if A>B else A\nans2 = A+B-N if A+B-N >= 0 else 0\n\nprint(\"{} {}\".format(ans1, ans2))", "neg": "N, A, B = map(int, input().split())\n\nans1 = B if A>B else A\nans2 = A+B-N\n\nprint(\"{} {}\".format(ans1, ans2))", "jacc_sim": 0.96, "before_after_length": [60, 50], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " if A+B-N >= 0 else 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u175034939", "n_user": "u033524082", "pos": "n,a,b = map(int,input().split())\nif a+b-n >= 0:\n ans = a+b-n\nelse:\n ans = 0\nprint(min(a,b),ans)", "neg": "n,a,b=map(int,input().split())\nif n>=a+b:\n if a>b:\n print(a,0)\n else:\n print(b,0)\nelse:\n if a>b:\n print(a,a+b-n)\n else:\n print(b,a+b-n)", "jacc_sim": 0.9090909090909091, "before_after_length": [52, 88], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " n>=-n >= 0ifans =>+-:\n prit(a,0)\n else:\n print(b,0)ifans= 0a>b: min(a+-n\n else:\n print(b+b-s", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u094731123", "n_user": "u006721330", "pos": "n,a,b = map(int,input().split())\nif a >= b:\n max = b\nelse:\n max = a\nif a+b > n:\n min = a+b-n\nelse:\n min = 0\nprint(max,end = \" \")\nprint(min)", "neg": "n, a, b = map(int, input().split())\n\nif n >= a+b:\n min = 0\n if a >= b:\n max = b\n else:\n max = a\n \nelse:\n min = abs(a - b)\n if a >= b:\n max = b\n else:\n max = a\n\nprint(max, \" \", min)", "jacc_sim": 0.92, "before_after_length": [72, 95], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": " \nif n >= a+b:\n min = 0\n if a+b > n:\nmin = a+b-n0abs(a - b)\n if a >= b:\n max = b\n else:\n max = a\nend =, )\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u580004585", "n_user": "u580004585", "pos": "i = input().split()\nall = int(i[0])\nx = int(i[1])\ny = int(i[2])\nt = 0\nmax = 0\nif x > y:\n max = x - abs(x - y)\n t = x\nelif y > x:\n max = y - abs(x - y)\n t = y \nelse:\n t = x\n max = x\n\nmin = 0\nnx = all - x\nny = all - y\n\nif nx > ny:\n nt = nx\nelif ny > nx:\n nt = ny\nelse:\n nt = nx\nif t >= nt: \n min = t - nt\nelse:\n min = 0\nprint(\"{0} {1}\".format(max,min))", "neg": "i = input().split()\nall = int(i[0])\nx = int(i[1])\ny = int(i[2])\nt = 0\nmax = 0\nif x > y:\n max = x - abs(x - y)\n t = x\nelif y > x:\n max = y - abs(x - y)\n t = y \nelse:\n t = all\n max = x\n\nmin = 0\nnx = all - x\nny = all - y\n\nif nx > ny:\n nt = nx\nelif ny > nx:\n nt = ny\nelse:\n nt = 0\nmin = abs(t - nt)\nprint(\"{0} {1}\".format(max,min))", "jacc_sim": 1.0, "before_after_length": [188, 176], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "all\n ma = x\nmin=0\nnx=all - x\nny = all - y\n\nif nx > ny:\n nt = nx\nelif ny > nx:\n nt = ny\nelse:\n nt = 0\nin = xbs(t-=x\n\nmi = 0\nnx = all - x\nny = all - y\n\nif nx > ny:\n n) = nx\nelif ny > nx:\n nt = ny\nelse:\n nt = nx\nif t >= nt: \n min = t - nt\nelse:\n min = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u168416324", "n_user": "u168416324", "pos": "n,a,b=map(int,input().split())\nmx=min(a,b)\nmn=max(mx-(n-max(a,b)),0)\nprint(str(mx)+\" \"+str(mn))\n", "neg": "n,a,b=map(int,input.split())\nmx=min(a,b)\nmn=mx-(n-max(a,b))\nprint(str(mx)+\" \"+str(mn))", "jacc_sim": 0.9545454545454546, "before_after_length": [56, 50], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "()ax(m),0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03139", "p_user": "u135204039", "n_user": "u135204039", "pos": "from sys import stdin\n\nA, B, C = [int(x) for x in stdin.readline().rstrip().split()]\n\n\n\n\nif B+C <= A:\n print(str(min(B,C)) + ' ' + str(0))\nelse:\n print(str(min(B,C)) + ' ' +str(B+C-A))", "neg": "from sys import stdin\n\nA, B, C = [int(x) for x in stdin.readline().rstrip().split()]\n\n\n\n\nif B+C <= A:\n print(str(max(B,C)) + ' ' + str(0))\nelse:\n print(str(max(B1,C)) + ' ' +str(B+C-A))", "jacc_sim": 0.9117647058823529, "before_after_length": [90, 91], "nl": "You conducted a survey on newspaper subscriptions, asking each of the N respondents if they subscribe to Newspaper X and Newspaper Y. A respondents answered \"yes\" to Question 1, and B respondents answered \"yes\" to Question 2. You need to find the maximum and minimum possible number of respondents subscribing to both newspapers. Write a program to solve this. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 A \u2264 N, 0 \u2264 B \u2264 N. Input format: N A B. Output: Print the maximum and minimum possible number of respondents subscribing to both newspapers. Example: Input: 10 3 5, Output: 3 0.", "diff_info": "axinaxin1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u619458041", "n_user": "u641446860", "pos": "n = int(input())\na = str(input())\nb = str(input())\nc = str(input())\n\nans = 0\nfor i in range(n):\n chrs = set([a[i], b[i], c[i]])\n ans += len(chrs) - 1\n\nprint(ans)", "neg": "n = int(input())\na, b, c = input(), input(), input()\nans = 0\nfor i in range(n):\n ans += len(set(a[i], b[i], c[i])) - 1\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [77, 58], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": ", b, cstr(,)\nb= str(,)\nc= str()\nanchr+len([]\n ans += len(chrs\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u163449343", "n_user": "u054556734", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\nans = 0\nfor i in range(n):\n ans += len(set(a[i]+b[i]+c[i]))-1\nprint(ans) ", "neg": "n = int(input())\na,b,c = input(),input(),input()\n\nans = 0\nfor i in range(n):\n cnt = len(set(a[i],b[i],c[i]))-1\n ans += cnt\n\nprint(ans)", "jacc_sim": 0.9230769230769231, "before_after_length": [61, 65], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": ", = input()\n, = input()\n,input(),input()\nc ats+,+,+\n ans += cnt\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u058861899", "n_user": "u058861899", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nal=list(a)\nbl=list(b)\ncl=list(c)\n\ncount=0\n\nfor i in range(n):\n if al[i]==bl[i]:\n if al[i]==cl[i]:\n plus=0\n else:\n plus=1\n elif bl[i]==cl[i]:\n plus=1\n elif al[i]==cl[i]:\n plus=1\n else:\n plus=2\n \n count+=plus\n \nprint(count)", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nal=list(a)\nbl=list(b)\ncl=list(c)\n\ncount=0\nfor i in range(n):\n if al[i]==bl[i]:\n if al[i]==cl[i]:\n plus=2\n elif:\n plus=1\n elif bl[i]==cl[i]:\n plus=1\n elif al[i]==cl[i]:\n plus=1\n else:\n plus=0\n \n count+=plus\n \nprint(count)", "jacc_sim": 1.0, "before_after_length": [152, 151], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "\n0\n else:\n plus=1\n elif bl[i]==cl[i]:\n plus=1\n elif al[i]==cl[i]:\n plus=1\n else:\n plus=elif:\n plus=1\n elif bl[i]==cl[i]:\n plus=1\n elif al[i]==cl[i]:\n plus=1\n else:\n plus=0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u657221245", "n_user": "u657221245", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\nd = 0\nfor i in range(0, n):\n if a[i:i+1] != b[i:i+1] and b[i:i+1] != c[i:i+1] and a[i:i+1] != c[i:i+1]:\n d += 2\n if a[i:i+1] == b[i:i+1] and b[i:i+1] == c[i:i+1] and a[i:i+1] == c[i:i+1]:\n d += 0\n if a[i:i+1] != b[i:i+1] and b[i:i+1] == c[i:i+1] and c[i:i+1] != a[i:i+1]:\n d += 1\n if a[i:i+1] == b[i:i+1] and b[i:i+1] != c[i:i+1] and c[i:i+1] != a[i:i+1]:\n d += 1\n if a[i:i+1] != b[i:i+1] and b[i:i+1] != c[i:i+1] and c[i:i+1] == a[i:i+1]:\n d += 1\nprint(d)\n", "neg": "n = int(input())\na = input()\nb = input()\nc = input()\nd = 0\nfor i in range(0, n):\n if a[i] != b[i] != c[i]:\n d += 2\n if a[i] == b[i] == c[i]:\n d += 0\n if a[i] != b[i] == c[i] or a[i] == b[i] != c[i] or b[i] == a[i] != c[i]:\n d += 1\nprint(d)", "jacc_sim": 0.9259259259259259, "before_after_length": [346, 136], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": ":] != b[+1cb:i+1] and b[i:i+1] != c[i:i+1] and a[i:i+1] != c[i:i+1:] == b[+1cb:i+1] and b[i:i+1] == c[i:i+1] and a[i:i+1] == c[i:i+1:] != b[+1== c[i] or a[i] == b[i] c[i] or :] == a[+1!=andcb:i+1] == c[i:i+1] and c[i:i+1] != a[i:i+1]:\n d += 1\n if a[i:i+1] == b[i:i+1] and b[i:i+1] != c[i:i+1] and c[i:i+1] != a[i:i+1]:\n d += 1\n if a[i:i+1] != b[i:i+1] and b[i:i+1] != c[i:i+1] and c[i:i+1] == a[i:i+1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u410118019", "n_user": "u410118019", "pos": "import sys\nn = int(input())\na,b,c = sys.stdin\ncount = 0\nfor i in range(n):\n if a[i] == b[i] == c[i]:\n continue\n elif a[i] == b[i] or a[i] == c[i] or b[i] == c[i]:\n count += 1\n else:\n count += 2\nprint(count)", "neg": "import sys\nn = int(input())\na,b,c = sys.stdin\ncount = 0\nfor i in range(n):\n if a[i] == b[i] == c[i]:\n continue\n elif a[i] == b[i] or a[i] == b[i] or b[i] == c[i]:\n count += 1\n else:\n count += 2\nprint(count)", "jacc_sim": 1.0, "before_after_length": [102, 102], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "bc", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u167908302", "n_user": "u167908302", "pos": "#coding:utf-8\nn = int(input())\na = input()\nb = input()\nc = input()\nans = 0\n \nfor i in range(n):\n ans += len(set([a[i], b[i], c[i]])) - 1 \n \nprint(ans)", "neg": "#coding:utf-8\nn = int(input())\na = input()\nb = input()\nc = input()\nans = 0\n\nfor i in range(n):\n ans += len(set(a[i], b[i], c[i])) - 1 \n \nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [72, 71], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " []\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u652150585", "n_user": "u859897687", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nans=0\nfor i in range(n):\n if a[i]==b[i]==c[i]:\n ans+=0\n elif a[i]==b[i]:\n ans+=1\n elif b[i]==c[i]:\n ans+=1\n elif a[i]==c[i]:\n ans+=1\n else:\n ans+=2\nprint(ans)", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nans=0\nfor i in range(n):\n if a[i]==b[i]:\n if not b[i]==c[i]:\n ans+=1\n else:\n if b[i]==c[i]:\n ans+=1\n else:\n ans+=2\nprint(ans)", "jacc_sim": 0.9230769230769231, "before_after_length": [125, 101], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "ifa[i]==b[i]:\n anot bcb==c[i] ans+=0\n elif a[i]==b[i]:\n else:\n el seif a[i]==c[i] ans+=1\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u359856428", "n_user": "u359856428", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\ncount = 0\n\nfor i in range(n):\n if a[i] != b[i]:\n count += 1\n if b[i] != c[i]:\n if a[i] != c[i]:\n count += 1\nprint(count)", "neg": "n = int(input())\na = input()\nb = input()\nc = input()\ncount = 0 \nfor i in range(n):\n if a[i] != b[i]:\n count += 1\n if b[i] != c[i]:\n count += 1\n if a[i] == c[i]:\n count -= 1\nprint(count)", "jacc_sim": 0.9583333333333334, "before_after_length": [85, 90], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " \nif a[i] != c[i]:\n if a[i] == c[i]:\n count -= 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u091051505", "n_user": "u091051505", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\nans = 0\nfor i in range(n):\n if (a[i] == b[i]) & (b[i] == c[i]):\n continue\n if (a[i] == b[i]) | (b[i] == c[i]) | (c[i] == a[i]):\n ans += 1\n continue\n ans += 2\nprint(ans)\n", "neg": "n = int(input())\na = input()\nb = input()\nc = input()\nans = 0\nfor i in range(n):\n if (a[i] == b[i]) & (b[i] == c[i]):\n continue\n if (a[i] == b[i]) | (b[i] == c[i]):\n ans += 1\n continue\n ans += 2\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [116, 104], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " | (c[i] == a[i])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u561231954", "n_user": "u561231954", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nans=0\nfor j in range(n):\n d=a[j]\n e=b[j]\n f=c[j]\n if d==e and d!=f:\n ans+=1\n elif d==f and d!=e:\n ans+=1\n elif e==f and e!=d:\n ans+=1\n elif d!=e and e!=f and f!=d:\n ans+=2\n \nprint(ans)\n ", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nans=0\nfor j in range(n):\n d=a[j]\n e=b[j]\n f=c[j]\n if d==e and d!=f:\n ans+=1\n elif d==f and d!=e:\n ans+=1\n elif e==f and e!=d:\n ans+=1\n elif d!=e and e!=f and f!=d:\n ans+=2", "jacc_sim": 0.9655172413793104, "before_after_length": [144, 135], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "\n \nprint(ans)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u112318601", "n_user": "u112318601", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nabc=list('0'*n)\nfor i in range(n):\n if a[i]==b[i]:\n abc[i]=a[i]\n if b[i]==c[i]:\n abc[i]=b[i]\n if c[i]==a[i]:\n abc[i]=c[i]\n if abc[i]=='0':\n abc[i]=a[i]\ncount=0\nfor i in range(n):\n if a[i]!=abc[i]:\n count+=1\n if b[i]!=abc[i]:\n count+=1\n if c[i]!=abc[i]:\n count+=1\nprint(count)", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nabc=list('0000')\nfor i in range(n):\n if a[i]==b[i]:\n abc[i]=a[i]\n if b[i]==c[i]:\n abc[i]=b[i]\n if c[i]==a[i]:\n abc[i]=c[i]\ncount=0\nfor i in range(n):\n if a[i]!=abc[i]:\n count+=1\n if b[i]!=abc[i]:\n count+=1\n if c[i]!=abc[i]:\n count+=1\nprint(count)", "jacc_sim": 0.9285714285714286, "before_after_length": [203, 179], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "00'*n)\nfor i in range(n):\n if a[i]==b[i]:\n abc[i]=a[i]\n if b[i]==c[i]:\n abc[i]=b[i]\n if c[i]==a[i]:\n abc[i]=c[i]\n if abc[i]=='):\n abc[i]=a[i]\ncount=0==b[i]:\n abc[i]=a[i]\n if b[i]==c[i]:\n abc[i]=b[i]\n if c[i]==a[i]:\n abc[i]=c[i]\ncount=0\nfor i in range(n):\n if a[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u432333240", "n_user": "u432333240", "pos": "N = int(input())\nA = input()\nB = input()\nC = input()\ntarget_list = []\nfor a, b, c in zip(A, B, C):\n if a==b and b==c and c==a:\n target_list.append(3)\n elif a==b or b==c or c==a: \n target_list.append(2)\n else:\n target_list.append(1)\nprint(N*3 - sum(target_list))", "neg": "target_list = []\nfor a, b, c in zip(A, B, C):\n if a==b and b==c:\n target_list.append(3)\n elif a==b or a==c:\n target_list.append(2)\n else:\n target_list.append(1)\nprint(N*3 - sum(target_list))", "jacc_sim": 0.9411764705882353, "before_after_length": [120, 90], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "N = int(input())\nA = input()\nB = input()\nC = input()\n and c==aab or c==a ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u374802266", "n_user": "u374802266", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nd=0\nfor i in range(n):\n if a[i]==b[i]==c[i]:\n continue\n elif a[i]==b[i] or b[i]==c[i] or a[i]==c[i]:\n d+=1\n else:\n d+=2\nprint(d)\n", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nd=0\nfor i in range(n):\n if a[i]==b[i]==c[i]:\n continue\n elif a[i]==b[i] or b[i]==c[i]:\n d+=1\n else:\n d+=2\nprint(d)", "jacc_sim": 1.0, "before_after_length": [107, 96], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " or a[i]==c[i]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u734876600", "n_user": "u309141201", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\n\nans = 0\n\nfor i in range(n):\n if a[i] != b[i]:\n ans += 1\n if a[i] != c[i] and b[i] != c[i]:\n ans += 1\n \nprint(ans)", "neg": "n = int(input())\na = input()\nb = input()\nc = input()\nans = 0\nfor i in range(n):\n if not (a[i] == b[i] and b[i] == c[i]):\n ans += 1\n\nprint(ans)", "jacc_sim": 0.92, "before_after_length": [86, 69], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "\n\nnot (=! and b[i] == c[i]) if a[i] != c[i] and b[i] != c[i]:\n ans += 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u060392346", "n_user": "u155236040", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\n\nq = 0\nfor i in range(n):\n q += len(set([a[i], b[i], c[i]])) - 1\nprint(q)", "neg": "n = int(input())\na,b,c = input(),input(),input()\n\ncount = 0\nfor i in range(n):\n count += len(set(a[i],b[i],c[i]))-1\nprint(count)", "jacc_sim": 0.9230769230769231, "before_after_length": [62, 59], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": ", = input()\n, = input()\n,input(),input()qcountq count[ ] qcount", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u945460548", "n_user": "u945460548", "pos": "N = int(input())\nA = input()\nB = input()\nC = input()\ncnt = 0\n\nfor idx in range(N):\n if A[idx] == B[idx] and A[idx] == C[idx] and B[idx] == C[idx]:\n continue\n elif A[idx] == B[idx]:\n C = C[:idx] + A[idx] + C[idx+1:]\n cnt += 1\n elif A[idx] == C[idx]:\n B = B[:idx] + A[idx] + B[idx+1:]\n cnt += 1\n elif B[idx] == C[idx]:\n A = A[:idx] + B[idx] + A[idx+1:]\n cnt += 1\n else:\n B = B[:idx] + A[idx] + B[idx+1:]\n C = C[:idx] + A[idx] + C[idx+1:]\n cnt += 2\n#print(A,B,C)\nprint(cnt)", "neg": "N = int(input())\nA = input()\nB = input()\nC = input()\ncnt = 0\n\nfor idx in range(N):\n if A[idx] == B[idx] and A[idx] == C[idx] and B[idx] == C[idx]:\n print(0)\n continue\n elif A[idx] == B[idx]:\n C = C[:idx] + A[idx] + C[idx+1:]\n cnt += 1\n elif A[idx] == C[idx]:\n B = B[:idx] + A[idx] + B[idx+1:]\n cnt += 1\n elif B[idx] == C[idx]:\n A = A[:idx] + B[idx] + A[idx+1:]\n cnt += 1\n else:\n B = B[:idx] + A[idx] + B[idx+1:]\n C = C[:idx] + A[idx] + C[idx+1:]\n cnt += 2\n#print(A,B,C)\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [244, 250], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "print(0)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u729008627", "n_user": "u411858517", "pos": "N = int(input())\nA = list(input())\nB = list(input())\nC = list(input())\nans = 0\nfor i in range(N):\n if A[i] == B[i]:\n if A[i] != C[i]:\n ans += 1\n else:\n if A[i] == C[i]:\n ans += 1\n elif B[i] == C[i]:\n ans += 1\n else:\n ans += 2\nprint(ans)", "neg": "N = int(input())\nA = input()\nB = input()\nC = input()\n\nans = 0\nfor i in range(N):\n if A[i] != B[i] != C[i]:\n ans += 2\n\n elif A[i] != B[i]:\n ans += 1\n\n elif A[i] != C[i]:\n ans += 1\n\n elif B[i] != C[i]:\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [120, 116], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "list()list()list(\n) == B[i]:\n if A[i] C[i]:\n ans += 1\n else:\n if A[i] == C[i]:\n ans += 1\n elif != 1\n else:\n ans += \n elif A[i] != B[i]:\n ans += 1\n\n elif A[i] != C[i]:\n ans += 1\n\n elif B[i] != C[i]:\n ans += 1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u086503932", "n_user": "u086503932", "pos": "N = int(input())\nA = [input() for i in range(3)]\nans = 0\nfor i in range(N):\n ans += len(set([A[0][i],A[1][i],A[2][i]]))-1\nprint(ans)", "neg": "N = int(input())\nA = [input() for i in range(N)]\nans = 0\nfor i in range(N):\n ans += len(set(A[0][i],A[1][i],A[2][i]))-1\nprint(ans)", "jacc_sim": 0.96, "before_after_length": [65, 64], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "N3[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u367130284", "n_user": "u367130284", "pos": "N=int(input())\nA=list(input())\nB=list(input())\nC=list(input())\nlitter=[]\nc=0\nfor s in range(N):\n c+=[0,0,1,2][len(set([A[s],B[s],C[s]]))]\nprint(c)", "neg": "N=int(input())\nA=list(input())\nB=list(input())\nC=list(input())\nlitter=[]\nc=0\nfor s in range(N):\n print(len(set([A[s],B[s],C[s]])))\n c+=[0,0,1,2][len(set([A[s],B[s],C[s]]))]\nprint(c)", "jacc_sim": 1.0, "before_after_length": [80, 101], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "print(len(set([A[s],B[s],C[s]])))\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u821262411", "n_user": "u821262411", "pos": "n=int(input())\na=list(input())\nb=list(input())\nc=list(input())\n\nans=0\n\nfor i in range(n):\n\n s=[a[i],b[i],c[i]]\n buff=set(s)\n ans += len(buff)-1\n\nprint(ans)", "neg": "n=int(input())\na=list(input())\nb=list(input())\nc=list(input())\n\nprint(a,b,c)\n\nans=0\n\nfor i in range(n):\n\n s=[a[i],b[i],c[i]]\n buff=set(s)\n ans += len(buff)-1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [81, 91], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": ")\n\nprint(a,b,c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u293992530", "n_user": "u483645888", "pos": "N = int(input())\nA = input()\nB = input()\nC = input()\ncount = 0\nfor i in range(N):\n if A[i]!=B[i]:\n count += 1\n if A[i]!=C[i]:\n if B[i] != C[i]:\n count += 1\nprint(count)", "neg": "N = int(input())\nA = input()\nB = input()\nC = input()\ncount = 0\n\nfor i in range(N):\n if A[i] != B[i]:\n count += 1\nfor i in range(N):\n if A[i] != C[i]:\n count += 1\n\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [86, 83], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "\n foriin range(N):\n[i]!=C[i]:\n if B \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u344959959", "n_user": "u344959959", "pos": "a = int(input())\nb = (input())\nc = (input())\nd = (input())\ncount = 0\nfor i in range(a):\n if b[i] == c[i] == d[i]:\n count += 0\n elif b[i] == c[i] or b[i] == d[i] or c[i] == d[i]:\n count += 1\n else:\n count += 2\nprint(count)\n", "neg": "a = int(input())\nb = (input())\nc = (input())\nd = (input())\ncount = 0\nfor i in range(a):\n if b[i] == c[i] == d[i]:\n count += 0\n elif b[i] == c[i] or b[i] == d[i] == c[i] == d[i]:\n count += 1\n else:\n count += 2\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [112, 110], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "== or ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u462329577", "n_user": "u462329577", "pos": "n = int(input())\ns = [input() for _ in range(3)]\nans = 2*n\nfor i in range(n):\n if s[0][i] == s[1][i]: ans -= 1\n if s[0][i] == s[2][i]: ans -= 1\n if s[2][i] == s[1][i]: ans -= 1\n if s[0][i] == s[1][i] and s[2][i] == s[1][i] : ans += 1\nprint(ans)\n", "neg": "n = int(input())\ns = [input() in range(3)]\nans = 2*n\nfor i in range(n):\n if s[0][i] == s[1][i]: ans -= 1\n if s[0][i] == s[2][i]: ans -= 1\n if s[2][i] == s[1][i]: ans -= 1\n if s[0][i] == s[1][i] and s[2][i] == s[1][i] : ans += 1\nprint(ans)", "jacc_sim": 0.9615384615384616, "before_after_length": [130, 127], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "for _ \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u026155812", "n_user": "u026155812", "pos": "N = int(input())\na = []\nfor i in range(3):\n a.append(input())\n\nans = 0\nfor i in range(N):\n if a[0][i] != a[1][i] and a[1][i] != a[2][i] and a[0][i] != a[2][i]:\n ans += 2\n elif a[0][i] == a[1][i] and a[1][i] == a[2][i] and a[0][i] == a[2][i]:\n continue\n else:\n ans += 1\nprint(ans)", "neg": "N = int(input())\na = []\nfor i in range(3):\n a.append(input())\n\nans = 0\nfor i in range(N):\n if a[0][i] != a[1][i] and a[1][i] != a[2][i]:\n ans += 2\n elif a[0][i] == a[1][i] and a[1][i] == a[2][i]:\n continue\n else:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [149, 121], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " and a[0][i] != a[2][i]][i] == a[2][i] and a[0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u695857481", "n_user": "u936985471", "pos": "n = int(input())\na = input()\nb = input()\nc = input()\nans = 0\nfor i in range(n):\n s = len(set([a[i], b[i], c[i]]))\n if (s == 3):\n ans += 2\n elif (s == 2):\n ans += 1\nprint(ans)", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nans=0\nfor i in range(n):\n if len(set([a,b,c]))==3:\n ans+=2\n elif len(set([a,b,c]))==2:\n ans+=1\nprint(ans)\n ", "jacc_sim": 0.9655172413793104, "before_after_length": [85, 84], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " ifs =[i] [i] [i]\n if (s ) len et([a,b,c])) ) \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u257374434", "n_user": "u379692329", "pos": "N = int(input())\nA = (input())\nB = (input())\nC = (input())\n\nans = 0\nfor i in range(N):\n if A[i]==B[i]==C[i]:\n continue\n elif A[i]!=B[i] and B[i]!=C[i] and C[i] !=A[i]:\n ans +=2\n else:\n ans +=1\n\nprint(ans)", "neg": "N = int(input())\nA = input()\nB = input()\nC = input()\nans = 0\n\nfor i in range(N):\n if A[i] == B[i] and B[i] == C[i]:\n continue\n elif A[i] != B[i] and B[i] != C[i]:\n ans += 2\n else:\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [111, 101], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "input)\nB = \nC = input(\nB = (input())\nC = (input())\n\n and B[i] [i] and C[i] !=A ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u077337864", "n_user": "u077337864", "pos": "n = int(input())\na = input().strip()\nb = input().strip()\nc = input().strip()\nans = 0\nfor _a, _b, _c in zip(a, b, c):\n if _a != _b and _b != _c and _a != _c:\n ans += 2\n elif _a == _b and _b == _c:\n continue\n else:\n ans += 1\nprint(ans)", "neg": "n = int(input())\na = input().strip()\nb = input().strip()\nc = input().strip()\nans = 0\nfor _a, _b, _c in zip(a, b, c):\n if _a != _b and _b != _c:\n ans += 2\n elif _a == _b and _b == _c:\n continue\n else:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [108, 102], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " and _a != _c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u059262067", "n_user": "u059262067", "pos": "N = int(input())\nA = list(str(input()))\nB = list(str(input()))\nC = list(str(input()))\n\nres = 0\nfor i in range(N):\n if A[i] != B[i] or A[i] != C[i] or B[i] != C[i]:\n res+=1\n if A[i] != B[i] and A[i] != C[i] and B[i] != C[i]:\n res+=1\nprint(res)\n", "neg": "N = int(input())\nA = list(str(input()))\nB = list(str(input()))\nC = list(str(input()))\n\nres = 0\nfor i in range(N):\n if A[i] != B[i]:\n res+=1\n if A[i] != C[i]:\n res+=1\n\nprint(res)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [133, 92], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " or A[i] != C[i] or B[i] != C[i]B[i] and A[i] != C[i] and B[i] != \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u509368316", "n_user": "u509368316", "pos": "n=int(input())\na=input()\nb=input()\nc=input()\nd=0\nfor i in range(n):\n\tif a[i]!=b[i] and b[i]!=c[i] and a[i]!=c[i]:\n\t\td+=2\n\telif not a[i]==b[i]==c[i]:\n\t\td+=1\nprint(d)", "neg": "n=int(input())\na=input()\nb=input()\nc=input()\nd=0\nfor i in range(n):\n\tif a[i]!=b[i]!=c[i]:\n\t\td+=2\n\telif not a[i]==b[i]==c[i]:\n\t\td+=1\nprint(d)", "jacc_sim": 0.9629629629629629, "before_after_length": [106, 90], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": " and b[i]!=c[i] and a[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03140", "p_user": "u316386814", "n_user": "u316386814", "pos": "def diff(a, b, c):\n i = 0\n for aa, bb, cc in zip(a, b, c):\n if aa != bb and aa != cc and bb != cc:\n i += 2\n elif aa != bb or bb != cc:\n i += 1\n return i\n\nn = int(input())\na = list(input())\nb = list(input())\nc = list(input())\n\nprint(diff(a, b, c))", "neg": "def diff(a, b, c):\n i = 0\n for aa, bb, cc in zip(a, b, c):\n if aa != bb or aa != cc:\n i += 1\n return i\n\nn = int(input())\na = list(input())\nb = list(input())\nc = list(input())\n\nprint(diff(a, b, c))", "jacc_sim": 0.90625, "before_after_length": [112, 92], "nl": "You are given three strings A, B, and C, each of length N, consisting of lowercase English letters. The objective is to make all three strings equal. You can perform the following operation: choose a string and specify an integer i between 1 and N, then change the i-th character to another lowercase English letter. Find the minimum number of operations required to achieve this objective. Constraints: 1 \u2264 N \u2264 100. Input format: N, A, B, C. Output: Print the minimum number of operations required. Example: Input 4, west, east, wait. Output: 3. Explanation: Change characters to make A, B, and C equal.", "diff_info": "and aa != cc and bb != cc:\n i += 2\n elif aa != bb aabb", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u094731123", "n_user": "u094731123", "pos": "n = int(input())\nflower = input().split()\nfor i in range(n):\n flower[i] = int(flower[i])\na = 0\ndef water():\n if sum(flower) == 0:\n a = -1\n elif 0 in flower:\n i = 0\n while flower[i] == 0:\n i += 1\n j = i\n try:\n while flower[j+1] != 0:\n j += 1\n except:\n abc = i\n for k in range(i,j+1):\n flower[k] -= 1\n else:\n for i in range(n):\n flower[i] -= 1\nans = 0\nwhile sum(flower) != 0:\n water()\n ans += 1\nprint(ans)", "neg": "n = int(input())\nflower = input().split()\nfor i in range(n):\n flower[i] = int(flower[i])\nprint(flower)\na = 0\ndef water():\n if sum(flower) == 0:\n a = -1\n elif 0 in flower:\n i = 0\n while flower[i] == 0:\n i += 1\n j = i\n try:\n while flower[j+1] != 0:\n j += 1\n except:\n abc = i\n for k in range(i,j+1):\n flower[k] -= 1\n else:\n for i in range(n):\n flower[i] -= 1\nans = 0\nwhile sum(flower) != 0:\n water()\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [199, 205], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": ")\nprint(flower", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u440129511", "n_user": "u440129511", "pos": "n=int(input())\nh=list(map(int,input().split()))\nl=[0]\nc='plus'\nfor i in range(n-1):\n if c=='minus' and h[i]<=h[i+1]:\n l.append(i)\n if h[i]<=h[i+1]:c='plus'\n else:c='minus'\n\nw=0\nm=0\nfor i in range(len(l)-1):\n w+=max(h[l[i]:l[i+1]+1])-m\n m=h[l[i+1]]\nw+=max(h[l[-1]:n])-m\nprint(w)", "neg": "n=int(input())\nh=list(map(int,input().split()))\nl=[0]\nc='plus'\nfor i in range(n-1):\n if c=='minus' and h[i]<=h[i+1]:\n l.append(i)\n if h[i]<=h[i+1]:c='plus'\n else:c='minus'\n\nw=0\nm=0\nfor i in range(len(l)-1):\n w+=max(h[l[i]:l[i+1]+1])-m\n m=h[l[i+1]]\nw+=max(h[l[-1]:-1])-m\nprint(w)", "jacc_sim": 1.0, "before_after_length": [172, 173], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "-1])-m\npri]t(w-m\nprint(w)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u648901783", "n_user": "u648901783", "pos": "N = int(input())\nh = list(map(int, input().split()))\n\na = [0]*N\nanswer = 0\nwhile(True):\n area_flag = False\n area = 0\n comp_cnt = 0\n # print(a)\n for i in range(N):\n if a[i]>=h[i] and h[i]==0:\n comp_cnt+=1\n if area_flag:\n area += 1\n area_flag = False\n continue\n elif a[i]>=h[i]:\n comp_cnt+=1\n if area_flag:\n area += 1\n area_flag = False\n continue\n area_flag = True\n a[i]+= 1\n if area_flag and comp_cnt!=0:\n area += 1\n answer += area\n # print(area)\n if comp_cnt == N: \n answer += min(h)\n break\n\n\nprint(answer)\n \n", "neg": "N = int(input())\nh = list(map(int, input().split()))\n\na = [0]*N\nanswer = 0\nwhile(True):\n area_flag = False\n area = 0\n comp_cnt = 0\n # print(a)\n for i in range(N):\n if a[i]>=h[i] and h[i]==0:\n comp_cnt+=1\n if area_flag:\n area += 1\n area_flag = False\n continue\n elif a[i]>=h[i]:\n comp_cnt+=1\n if area_flag:\n area += 1\n area_flag = False\n continue\n area_flag = True\n a[i]+= 1\n if area_flag:\n area += 1\n answer += area\n # print(answer)\n if comp_cnt == N: \n answer += min(h)\n break\n\n\nprint(answer)\n \n", "jacc_sim": 0.975609756097561, "before_after_length": [242, 235], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": ":\n rea += 1\n adswer += area\n # print(answer)\n if!=0:\n area += 1\n answer += area\n # print(area)\n if comp_cnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u219607170", "n_user": "u219607170", "pos": "def get_nonzero_range(A):\n start, end = None, None\n N = len(A)\n for i in range(N):\n if A[i] != 0:\n start = i\n for j in range(i+1, N):\n if A[j] == 0:\n end = j\n return start, end\n else:\n return start, end\n\nN = int(input())\nH = list(map(int, input().split()))\nH.append(0)\nnum = 0\nwhile True:\n start, end = get_nonzero_range(H)\n if start == None:\n break\n else:\n for i in range(start, end):\n H[i] -= 1\n num += 1\nprint(num)\n", "neg": "def get_nonzero_range(A):\n start, end = None, None\n N = len(A)\n for i in range(N):\n if A[i] != 0:\n start = i\n for j in range(i+1, N):\n if A[j] == 0:\n end = j\n return start, end\n else:\n return start, end\n\nN = int(input())\nH = list(map(int, input().split()))\nH.append(0)\nnum = 0\nprint(H)\nwhile True:\n start, end = get_nonzero_range(H)\n print(start, end)\n if start == None:\n break\n else:\n for i in range(start, end):\n H[i] -= 1\n num += 1\nprint(num)", "jacc_sim": 1.0, "before_after_length": [189, 201], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "print(H)\nprint(start, end)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u634159866", "n_user": "u634159866", "pos": "import numpy as np\n\nN = int(input())\nH = np.array(input().split(), dtype=np.int32)\n\ndef myfunc(left, right):\n if right a[n-1] and n > 0:\n num += (i-a[n-1])\n n += 1\nprint(num) \n \n \n ", "neg": "a = [int(i) for i in input().split()] \nn = 0\nnum = a[0]\nfor i in a:\n max = a[0]\n \n \n if i > a[n-1] and n > 0:\n num += (i-a[n-1])\n n += 1\nprint(num) \n \n \n ", "jacc_sim": 0.9615384615384616, "before_after_length": [91, 86], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "l = input()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u499966353", "n_user": "u499966353", "pos": "n = int(input())\nheights = list(map(int, input().split()))\n\ndef nextgen(comb):\n lis = comb[0]\n j = comb[1]\n if len(lis) == 1 and lis[0] != 0:\n j += 1 \n for i in range(len(lis)-1):\n if (i != len(lis) and (lis[i] == 0 and lis[i+1] != 0)) or (i == 0 and lis[i] != 0):\n j += 1\n if lis[i] != 0:\n lis[i] -= 1\n if lis[len(lis)-1] != 0:\n lis[len(lis)-1] -= 1\n return [lis, j]\n\ncomb = [heights, 0]\nwhile (comb[0].count(0) != len(comb[0])):\n comb = nextgen(comb)\n\nprint(comb[1])", "neg": "n = int(input())\nheights = list(map(int, input().split()))\n\ndef nextgen(comb):\n lis = comb[0]\n j = comb[1]\n for i in range(len(lis)-1):\n if (i != len(lis) and (lis[i] == 0 and lis[i+1] != 0)) or (i == 0 and lis[i] != 0):\n j += 1\n if lis[i] != 0:\n lis[i] -= 1\n if lis[len(lis)-1] != 0:\n lis[len(lis)-1] -= 1\n return [lis, j]\n\ncomb = [heights, 0]\nwhile (comb[0].count(0) != len(comb[0])):\n comb = test(comb)\n\nprint(comb[1])", "jacc_sim": 0.9736842105263158, "before_after_length": [239, 214], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "if len(lis) == 1 and lis[0] != 0:\n j += 1 \n tnsxgen", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u806855121", "n_user": "u806855121", "pos": "import numpy as np\n\ndef my_index(l, x):\n return [i for i, _x in enumerate(l) if _x == x]\n\nn = int(input())\nh = list(map(int, input().split()))\nh = np.array(h)\n\nsplit_h = []\nsplit_h.append(h)\n\nans = 0\nlist_h = []\nwhile len(split_h):\n sph = split_h.pop()\n\n min_h = sph.min()\n sph -= min_h\n ans += min_h\n\n if np.all(sph == 0):\n continue\n\n for elem in sph:\n if elem != 0:\n list_h.append(elem)\n else:\n if list_h:\n split_h.append(np.array(list_h))\n list_h = []\n if list_h:\n split_h.append(np.array(list_h))\n list_h = []\n\nprint(ans)\n", "neg": "import numpy as np\n\ndef my_index(l, x):\n return [i for i, _x in enumerate(l) if _x == x]\n\nn = int(input())\nh = list(map(int, input().split()))\nh = np.array(h)\n\ni = 0\nmin_h = h.min()\nh -= min_h\nans = min_h\n\nif np.all(h==0):\n print(h)\n quit()\n\nsplit_h = []\nzero_index = my_index(h, 0)\n\nsplit_h = []\nlist_h = []\nfor elem in h:\n if elem != 0:\n list_h.append(elem)\n else:\n if list_h:\n split_h.append(np.array(list_h))\n list_h = []\n\nwhile len(split_h):\n sph = split_h.pop()\n\n min_h = sph.min()\n sph -= min_h\n ans += min_h\n\n if np.all(sph == 0):\n continue\n\n for elem in sph:\n if elem != 0:\n list_h.append(elem)\n else:\n if list_h:\n split_h.append(np.array(list_h))\n list_h = []\n\nprint(ans)\n", "jacc_sim": 0.9615384615384616, "before_after_length": [253, 334], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "i = 0\nmin_h = h.min()\nh -= min_h\nans = min_h\n\nif np.all(h==0):\n print(h)\n quit()\n\nsplzero_t_h.appeex = my_index,)\n\nans =)\nspswhile len(split_h):\n sph = split_h.pop()\n\n min_h = sph.min()\n sph -= min_h\n ans += min_h\n\n if np.all(sph == 0):\n continue\n\n for elem in sph:\n if elem != 0:\n list_h.append(elem)\n else:\n if list_h:\n split_h.append(np.array(list_h))\n foreleminh:\n eem != 0:\n lt_h:\n splielem)\n else:\n if list_h:\n split_h.append( while len(slit_h):\n sph = split_h.pop()\n\n min_h = sph.min()\n sph -= min_h\n ans += min_h\n\n if np.all(sph == 0):\n continue\n\n fo elem sph:\n if elem != 0:\n lis_h.appendelem)\n else:\n if list_h:\n split_h.pped(np.array(lit_h) list_h = []\n\nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u821284362", "n_user": "u821284362", "pos": "import numpy as np\n\nN = int(input())\nh_ls = list(map(int,input().split(\" \")))\n\nh_ls = np.array(h_ls)\nn = 0\nh_len = len(h_ls)\nwhile max(h_ls)!=0:\n max_ind = h_ls.argmax()\n d = 0\n while max_ind+d < h_len -1 and h_ls[max_ind+d+1]==h_ls[max_ind]:\n d+=1\n h_ls[max_ind:max_ind+d+1] =h_ls[max_ind:max_ind+d+1]-1\n n+=1\n\nprint(n)\n", "neg": "N = int(input())\nh_ls = list(map(int,input().split(\" \")))\n\nh_ls = np.array(h_ls)\nn = 0\nh_len = len(h_ls)\nwhile max(h_ls)!=0:\n max_ind = h_ls.argmax()\n d = 0\n while max_ind+d < h_len -1 and h_ls[max_ind+d+1]==h_ls[max_ind]:\n d+=1\n h_ls[max_ind:max_ind+d+1] =h_ls[max_ind:max_ind+d+1]-1\n n+=1\n print(h_ls)\n\nprint(n)\n", "jacc_sim": 0.918918918918919, "before_after_length": [180, 182], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "import numpy as np\n\n print(h_ls)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u891422384", "n_user": "u891422384", "pos": "le = int(input())\nll = list(map(int, input().split()))\n \nres = ll[0]\nfor i in range(1, le):\n if(ll[i-1] < ll[i]): res += ll[i]-ll[i-1]\nprint(res)", "neg": "le = int(input())\nll = list(map(int, input().split()))\n \nres = h[0]\nfor i in range(1, ll):\n if(ll[i-1] < ll[i]): res += ll[i]-ll[i-1]\nprint(res)", "jacc_sim": 0.9642857142857143, "before_after_length": [73, 73], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "hllle", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u350093546", "n_user": "u350093546", "pos": "n=int(input())\nx=list(map(int,input().split()))\nans=0\nfor i in range(n-1):\n ans+=max(0,x[i+1]-x[i])\nprint(ans+x[0])\n", "neg": "n=int(input())\nx=list(map(int,input().split()))\nans=0\nfor i in range(n-1):\n ans+=max(0,x[i+1]-x[i])\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [64, 59], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "+x[0]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u962197874", "n_user": "u962197874", "pos": "n = int(input())\nh = list(map(int,input().split()))\na = 0\nwhile sum(h) > 0:\n lst = [i for i, x in enumerate(h) if x > 0]\n mx = min(lst)\n for i in range(len(lst) -1):\n if lst[i] + 1 == lst[i+1]:\n mx += 1\n else:\n break\n h = [x - 1 if i >= min(lst) and i <= mx else x for i, x in enumerate(h)]\n a += 1\nprint(a)", "neg": "n = int(input())\nh = list(map(int,input().split()))\na = 0\nwhile sum(h) > 0:\n lst = [i for i, x in enumerate(h) if x > 0]\n mx = min(lst)\n for i in range(len(lst) -1):\n if lst[i] + 1 == lst[i+1]:\n mx += 1\n else:\n break\n h = [x - 1 if i >= min(lst) and i <= mx else x for i, x in enumerate(h)]\n a += 1\n print(h)\nprint(a)", "jacc_sim": 1.0, "before_after_length": [143, 150], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": " h)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u063052907", "n_user": "u063052907", "pos": "N = int(input())\nlst_h = list(map(int, input().split()))\n\n\nans = 0\nnow = 0\nfor i in range(N):\n if lst_h[i] > now:\n ans += lst_h[i] - now\n now = lst_h[i]\n\n\nprint(ans)\n", "neg": "N = int(input())\nlst_h = list(map(int, input().split()))\n\n\nans = 0\nnow = 0\nfor i in range(N):\n if lst_h[i] > now:\n ans += now\n now = lst_h[i]\n\n\nprint(ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [82, 74], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "lst_h[i] - \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u288087195", "n_user": "u288087195", "pos": "# -*- coding: utf-8 -*-\n\nN = int(input())\nh = list(map(int, input().split()))\n\n\ndef calc(list_h):\n if not list_h:\n return 0\n\n min_height = min(list_h)\n list_h = [list_h[i] - min_height for i in range(len(list_h))]\n zero_indexes = [i for i, x in enumerate(list_h) if x == 0]\n\n if not any(list_h):\n return min_height\n\n sum_cnt = 0\n left_list = list_h[:zero_indexes[0]]\n right_list = list_h[zero_indexes[0]+1:]\n sum_cnt += calc(left_list) + calc(right_list)\n\n return sum_cnt + min_height\n\n\nprint(calc(h))\n", "neg": "# -*- coding: utf-8 -*-\n\nN = int(input())\nh = list(map(int, input().split()))\n\n\ndef calc(list_h):\n if not list_h:\n return 0\n\n min_height = min(list_h)\n list_h = [list_h[i] - min_height for i in range(len(list_h))]\n zero_indexes = [i for i, x in enumerate(list_h) if x == 0]\n\n if not any(list_h):\n return min_height\n\n left_list = list_h[:zero_indexes[0]]\n right_list = list_h[zero_indexes[0]+1:]\n return calc(left_list) + calc(right_list)\n\n\nprint(calc(h))\n", "jacc_sim": 0.9777777777777777, "before_after_length": [221, 200], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "sum_cnt = 0\n return calc(left_lium_cn)=right_isef_list + calc(right_list)\n\n return sum_cnt + min_height", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u332253305", "n_user": "u332253305", "pos": "n=int(input())\nh=list(map(int,input().split()))\nf=[0]*n\ncnt=0\nwhile 1:\n flag=0\n for i in range(n):\n if h[i]!=f[i]:\n f[i]+=1\n flag=1\n elif h[i]==f[i] and flag==1:\n cnt+=1\n flag=0\n if flag==1:\n cnt+=1\n\n if h==f:\n break\n\nprint(cnt)\n", "neg": "n=int(input())\nh=list(map(int,input().split()))\nf=[0]*n\ncnt=0\nwhile 1:\n flag=0\n for i in range(n):\n if h[i]!=f[i]:\n f[i]+=1\n flag=1\n elif h[i]==f[i] and flag==1:\n cnt+=1\n flag=0\n if flag:==1\n cnt+=1\n\n if h == f:\n break\n\nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [133, 133], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": ":: ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u328755070", "n_user": "u328755070", "pos": "N = int(input())\nh = list(map(int, input().split()))\n\ndef minus(l,x):\n for i in range(len(l)):\n l[i] = l[i] - x\n \n\ncount = 0\ncount += min(h)\nminus(h, min(h))\n\n\nfor i in range(N-1):\n if h[i] > h[i+1]:\n count -= h[i+1]-h[i]\n \ncount += h[-1]\nprint(count)\n \n\n", "neg": "N = int(input())\nh = list(map(int, input().split()))\n\ndef minus(l,x):\n for i in range(len(l)):\n l[i] = l[i] - x\n \n\ncount = 0\ncount += min(h)\nminus(h, min(h))\n\nprint(h)\nfor i in range(N-1):\n if h[i] > h[i+1]:\n count -= h[i+1]-h[i]\n \ncount += h[-1]\nprint(count)\n \n\n", "jacc_sim": 1.0, "before_after_length": [136, 140], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "print(h)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u841222846", "n_user": "u841222846", "pos": "import numpy as np\n\nn = int(input())\nh = list(map(int, input().split(\" \")))\n\nh = np.array(h)\n\ncount = 0\nwhile(sum(h) != 0):\n s = 200\n e = n\n for i in range(n):\n if(s == 200):\n if(h[i] != 0): s = i\n elif(h[i] == 0):\n e = i\n break\n\n count += min(h[s:e])\n h[s:e] -= min(h[s:e])\n\nprint(count)", "neg": "import numpy as np\n\nn = int(input())\nh = list(map(int, input().split(\" \")))\n\nh = np.array(h)\n\ncount = 0\nwhile(sum(h) != 0):\n s = 200\n e = n\n for i in range(n):\n if(s == 200):\n if(h[i] != 0): s = i\n elif(h[i] == 0):\n e = i\n break\n\n count += min(h[s:e])\n h[s:e] -= min(h[s:e])\n\n print(h)\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [148, 155], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": " print(h)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u919235786", "n_user": "u919235786", "pos": "n=int(input())\nh=list(map(int,input().split()))\nhm=max(h)\n\nans=0\nfor i in range(hm,0,-1):\n t=1\n for j in range(n):\n if h[j]>=i:\n ans+=t\n t=0\n else:\n t=1\n\nprint(ans)\n", "neg": "n=int(input())\nh=list(map(int,input.split()))\nhm=max(h)\nt=1\nfor i in range(hm,-1,-1):\n for j in range(n)\n if h[j]=i:\n ans+=t\n t=0\n else:\n t=1\n\nprint(ans)\n", "jacc_sim": 0.96875, "before_after_length": [99, 93], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "()t\nans10,0,-):\n t=)::>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u196746947", "n_user": "u196746947", "pos": "import sys \nsys.setrecursionlimit(1000)\nn=int(input())\nH=list(map(int,input().split()))\ndef bunkai(H):\n B=[]\n b=0\n f=0\n for i in range(len(H)):\n if H[i]==0:\n if i!=0:\n B.append(H[b:i-1+1])\n b=i+1\n else:\n b=i+1\n elif i==len(H)-1:\n B.append(H[b:])\n return B\ndef min(lis):\n min=101\n if len(lis)==0:\n return 0\n for i in range(len(lis)):\n if lis[i] 0 > after:\n peak.append(a)\n elif before < 0 < after:\n trough.append(a)\n before = after\n\nprint(sum(peak) - sum(trough))", "neg": "N = int(input())\nh = list(map(int, input().split()))\n\npeak = []\ntrough = []\nbefore = h[0]\nfor a, b in zip(h[:-1], h[1:]):\n after = b - a\n if after == 0:\n continue\n elif before > 0 and after < 0:\n peak.append(a)\n elif before < 0 and after > 0:\n trough.append(a)\n before = after\n\nprint(sum(peak) - sum(trough))", "jacc_sim": 0.9459459459459459, "before_after_length": [135, 130], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "before = = + h + [0]\nbefore = 0>and < 0< fter:\n trough.appe ()fter > 0:before=after\n\nprint(sum(peak)-sum(.append(a\n before = after\n\nprint(sum(peak - sum(trough))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u417365712", "n_user": "u417365712", "pos": "n, *H = map(int, open(0).read().split())\n\ninc = True\nmaxes, mins = [], []\nfor h0, h1 in zip(H, H[1:]):\n if inc:\n if h0 > h1:\n maxes.append(h0)\n inc = False\n else:\n if h0 < h1:\n mins.append(h0)\n inc = True\nif inc:\n maxes.append(H[-1])\nprint(sum(maxes)-sum(mins))", "neg": "n, *H = map(int, open(0).read().split())\n\ninc = True\npeaks = [], []\nfor h0, h1 in zip(H, H[1:]):\n if inc:\n if h0 > h1:\n peaks.append(h0)\n inc = False\n else:\n if h0 < h1:\n peaks.append(-h0)\n inc = True\nif inc:\n peaks.append(H[-1])\nprint(sum(peaks))", "jacc_sim": 0.918918918918919, "before_after_length": [132, 121], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "mpekxes, minmpekxeminpeak-mpekxempekxe-sum(mins)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u939702463", "n_user": "u939702463", "pos": "n = int(input())\nh = list(map(int, input().split()))\n \nans = h[0]\nfor i in range(1, n):\n d = h[i] - h[i-1]\n if d > 0:\n ans += d\nprint(ans)", "neg": "n = int(input())\nh = map(int, input().split())\n\nans = 0\nfor i in range(1, n):\n d = h[i] - h[i-1]\n if d > 0:\n ans += d\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [71, 64], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "list() h[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u177040005", "n_user": "u177040005", "pos": "import numpy as np\nN = int(input())\nH = np.array(list(map(int,input().split())))\n\nans = 0\nwhile np.max(H) != 0:\n\n min_h_p = 0\n st = -1\n for i in range(N):\n if st == -1:\n if H[i] > 0:\n st = i\n if i == N-1:\n ans += H[i]\n H[i] = 0\n break\n elif H[i] == 0:\n min_h_p = min(H[st:i])\n ans += min_h_p\n H[st:i] -= min_h_p\n break\n elif i == N-1:\n min_h_p = min(H[st:])\n ans += min_h_p\n H[st:] -= min_h_p\n break\nprint(ans)\n", "neg": "import numpy as np\nN = int(input())\nH = np.array(list(map(int,input().split())))\n\nans = 0\nwhile np.max(H) != 0:\n min_h_p = 0\n for i in range(N):\n if H[i] == 0 and min_h_p > 0:\n ans += min_h_p\n H[st:i] -= min_h_p\n break\n elif i == N-1:\n if min_h_p == 0:\n min_h_p = H[i]\n if st == 0:\n H[i] -= min_h_p\n ans += min_h_p\n else:\n ans += min_h_p\n H[st:] -= min_h_p\n break\n else:\n if min_h_p == 0:\n min_h_p = H[i]\n st = i\n else:\n min_h_p = min(H[i],min_h_p)\n\nprint(ans)\n", "jacc_sim": 0.9523809523809523, "before_after_length": [227, 258], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "\n\n st = -1stH[i] -1:\n if H[i] > and min_h_p > 0ans+=min_h_p\n H[:i]-mn_h_pbreak\n elifmin_h_p ans + H[i]\n H[i] :bremin_h_p = H[i]\n if st == 0:\n H[i] -= min_h_p\n kns += min_h_p ifse:\nH[i]==0:\n min_h_p = min(H[st:i])\n iif i == N-1:\n min_h_p = min(H[t:])\n ans += min_h_p\n H[st:] -= min_h_p\n br:\n if min_h_p == 0:\n min_h_p = H[i]\n st = i\n else:\n min_h_p = min(H[i],min_h_p)\n\nprint(kns)print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u518064858", "n_user": "u518064858", "pos": "n=int(input())\nh=list(map(int,input().split()))\nans=0\nif n==1:\n print(h[0])\n exit()\nwhile any(h)==True:\n flag=0\n for i in range(n-1):\n if h[i]>0:\n h[i]-=1\n flag=1\n else:\n if flag==1:\n ans+=1\n flag=0\n if i==n-2:\n if h[n-1]>0:\n h[n-1]-=1\n ans+=1\n else:\n if flag==1:\n ans+=1\nprint(ans)\n", "neg": "n=int(input())\nh=list(map(int,input().split()))\nans=0\nwhile any(h)==True:\n flag=0\n for i in range(n):\n if h[i]>0:\n h[i]-=1\n flag=1\n else:\n if flag==1:\n ans+=1\n flag=0\n if i==n-2:\n if h[n-1]>0:\n h[n-1]-=1\n ans+=1\n break\n else:\n if h[i]>0:\n ans+=1\n break\nprint(ans)\n", "jacc_sim": 0.9428571428571428, "before_after_length": [174, 163], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "\nif n==1:\n print(h[0])\n exit()-1else:\nb if flag==1:\n ans+=1\npeak\n else:\n f h[i]>0:\n as+=1\n break\nprin", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u529012223", "n_user": "u529012223", "pos": "import numpy as np\nN = int(input())\nh = list(map(int, input().split()))\nh = np.array(h)\nh_diff = h[1:] - h[:N-1]\ncount = 0\nfor i in range(N-1):\n count -= min(h_diff[i], 0)\n \nprint(count + h[N-1])", "neg": "import numpy as np\nN = int(input())\nh = list(map(int, input().split()))\nh = np.array(h)\nh_diff = h[1:] - h[:N-1]\ncount = 0\nprint(h_diff)\nfor i in range(N-1):\n count -= min(h_diff[i], 0)\n \nprint(count + h[N-1])", "jacc_sim": 1.0, "before_after_length": [91, 98], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "pfo i range(N-1):\n coun -= min[)\nfor ],0in range(N-1:\nprint(-= min(h_diff[i], 0)\n \nprint(count ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u970899068", "n_user": "u970899068", "pos": "n= int(input())\nh= list(map(int, input().split()))\nx=max(h)\nans=0\ncount=0\nfor i in range(10009):\n count=0\n if max(h)==0:\n break\n ans+=1\n for j in range(n):\n if h[j]==0 and count==0:\n continue\n elif h[j]>0:\n count=1\n h[j]-=1\n else:\n break\n\n\n\nprint(ans)", "neg": "n= int(input())\nh= list(map(int, input().split()))\nx=max(h)\nans=0\ncount=0\nfor i in range(10009):\n count=0\n if h[-1]==0:\n break\n ans+=1\n for j in range(n):\n if h[j]==0 and count==0:\n continue\n elif h[j]>0:\n count=1\n h[j]-=1\n else:\n break\n\n\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [133, 133], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "max()[-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u905582793", "n_user": "u905582793", "pos": "N = int(input())\nh = list(map(int, input().split()))\nans = h[0]\nfor i in range(N-1):\n if h[i+1] > h[i]:\n ans += h[i+1]-h[i]\nprint(ans)", "neg": "N = int(input())\nh = list(map(int, input().split()))\nans = 0\nfor i in range(N-1):\n if h[i+1] > h[i]:\n ans += h[i+1]-h[i]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [71, 68], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "h[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u491762407", "n_user": "u491762407", "pos": "n = int(input())\nl = list(map(int,input().split()))\ncount = 0\nprev = 0\nfor i in l:\n if i > prev:\n count += i - prev\n prev = i\n \nprint(count)", "neg": "n = int(input())\nl = list(map(int,input().split()))\ncount = 0\nprev = 0\nfor i in l:\n if i > prev:\n count += i - prev\n prev = i\nprint(count)", "jacc_sim": 1.0, "before_after_length": [60, 58], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": " \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03147", "p_user": "u112324182", "n_user": "u112324182", "pos": "n = int(input())\nh = list(map(int,input().split()))\nh.insert(0,0)\nsum = 0\nbottom = 0\nfor i, hn in enumerate(h):\n if (i == 0) :\n continue\n if (hn < h[i-1]):\n bottom = hn\n else:\n sum += hn - h[i-1]\nprint(sum)", "neg": "n = int(input())\nh = list(map(int,input().split()))\nh.insert(0,0)\nsum = 0\nbottom = 0\nfor i, hn in enumerate(h):\n if (i == 0) :\n continue\n if (hn < h[i-1]):\n print(h[i-1])\n sum += (h[i-1] - bottom)\n bottom = hn\nend = bottom if h[n-1] < h[n] else 0\nprint(sum+end)", "jacc_sim": 0.9696969696969697, "before_after_length": [102, 129], "nl": "You have a flower bed with N flowers initially at height 0. Given a sequence h, change the height of each flower to h_k using a \"watering\" operation: specify l and r, then increase the height of flowers between l and r. Find the minimum number of watering operations needed. Constraints: 1 \u2264 N \u2264 100, 0 \u2264 h_i \u2264 100. Input format: N followed by h_1 to h_N. Output: Minimum number of watering operations. Example: Input 1: 4, 1 2 2 1. Output 1: 2. Example 2: Input 2: 5, 3 1 2 3 1. Output 2: 5. Example 3: Input 3: 8, 4 23 75 0 23 96 50 100. Output 3: 221.", "diff_info": "boprin(tom = hn\n else:\n sum += hn - ) sum += (h[i-1] - bottom)\n bottom = hn\nend = bottom if h[n-1] < h[n] else 0\n+end", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u112952458", "n_user": "u112952458", "pos": "n, k = map(int, input().split())\nh = [int(i) for i in input().split()]\n\ndef chmin(a, b):\n if a > b:\n return b\n else:\n return a\nf_inf = pow(10,9)+99\n\ndp = [f_inf] * (10**5+10)\ndp[0] = 0\nfor i in range(1, n):\n for j in range(1, k+1):\n if i - j >= 0:\n dp[i] = chmin(dp[i], dp[i-j]+ abs(h[i] - h[i - j]))\nprint(dp[n-1])", "neg": "n, k = map(int, input().split())\nh = [int(i) for i in input().split()]\n\ndef chmin(a, b):\n if a > b:\n return b\n else:\n return a\nf_inf = pow(10,9)+99\n\ndp = [f_inf] * (N+1)\ndp[0] = 0\nfor i in range(1, n):\n for j in range(1, k+1):\n if i - j >= 0:\n dp[i] = chmin(dp[i], dp[i-j]+ abs(h[i] - h[i - j]))\nprint(dp[n-1])\n", "jacc_sim": 0.9534883720930233, "before_after_length": [167, 166], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "N10**50\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u102960641", "n_user": "u102960641", "pos": "n,k = map(int, input().split())\nh = list(map(int, input().split()))\ndp = [10 ** 18] * (n+1)\ndp[1] = 0\nfor i,v in enumerate(h,1):\n for j in range(i+1,min(n+1,i+k+1)):\n dp[j] = min(dp[j],dp[i]+abs(v-h[j-1]))\nprint(dp[n])\n", "neg": "n,k = map(int, input().split())\nh = list(map(int, input().split()))\ndp = [10 ** 18] * (n+1)\ndp[1] = 0\nfor i,v in enumerate(h,1):\n for j in range(i+1,min(n+1,i+k+1)):\n dp[j] = min(dp[j],dp[i]+v)\nprint(dp[n])\n", "jacc_sim": 0.9411764705882353, "before_after_length": [118, 110], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "abs(-h)\nprint(dpnj-1)print(dp[n])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u020091453", "n_user": "u020091453", "pos": "import numpy as np\n\nN,K = map(int,input().split(' '))\na = np.array(list(map(int,input().split(' '))))\n\ncost = np.full(N,10**9)\ncost[0] = 0\nfor i in range(1 , N):\n \n size = min(i,K)\n cost[i] = (np.abs(a[i] - a[i-size:i]) + cost[i-size:i]).min()\n\nprint(int(cost[-1]))", "neg": "import numpy as np\n\nN,K = map(int,input().split(' '))\na = np.array(list(map(int,input().split(' '))))\n\ncost = np.full(N,10**9)\ncost[0] = 0\nfor i in range(1 , N):\n \n size = min(i,K)\n cost[i] = (np.abs(a[i] - a[i-size:i]) + cost[i-size:i])\n\nprint(int(cost[-1]))", "jacc_sim": 1.0, "before_after_length": [131, 128], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": ".min()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u639046797", "n_user": "u639046797", "pos": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ncost=[float(\"inf\")]*n\ncost[0]=0\n\nfor i in range(n):\n for j in range(1,k+1):\n if i+j>n-1:\n continue\n else:\n cost[i+j]=min(abs(h[i+j]-h[i])+cost[i] ,cost[i+j])\n\nprint(cost[n-1])\n", "neg": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ncost=[float(\"inf\")]*n\ncost[0]=0\ncost[1]=abs(h[1]-h[0])\n\nfor i in range(1,n-1):\n for j in range(1,k+1):\n if i+j>n-1:\n continue\n else:\n cost[i+j]=min(abs(h[i+j]-h[i])+cost[i] ,cost[i+j])\n\nprint(cost[n-1])\n", "jacc_sim": 1.0, "before_after_length": [129, 150], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "c\nfst[r i in range(n):\n for j in range(,k+1):\n if i+j>n-1:\n continue\n else:\n cost[i+jmin(1i+j0])\n\nfor ])+cost[n]range(1cost[i+j])\n\nprint(cost[):\n for j in range(1,k+1):\n if i+j>n-1:\n continue\n else:\n cost[i+j=min(abs(h[i+j]-h[i]+cost[i] ,cost[i+j])\nprint(cost[n-1])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u680851063", "n_user": "u680851063", "pos": "import sys\ninput = sys.stdin.readline\nn,k = map(int,input().split())\nh = tuple(map(int,input().split()))\n\ndp = [0] + [float(\"inf\")]*(n-1)\n#print(dp)\n\nfor i in range(1,n):\n for j in range(max(0,i-k),i):\n dp[i] = min(dp[i],dp[j]+abs(h[i]-h[j]))\n#print(dp)\n\nprint(dp[-1])\n\n", "neg": "import sys\ninput = sys.stdin.readline\n\n\nN, K = map(int,input().split())\nh = tuple(map(int,input().split()))\n\ndp = [float(\"inf\")] * (N)\ndp[0] = 0\nprint(dp)\n\nfor n in range(1, N):\n k = max(0, n - K)\n dp[n] = min(abs(h[n] - h[i]) + dp[i] for i in range(k, n))\n\nprint(dp)\n\nprint(dp[-1])\n\n", "jacc_sim": 0.9024390243902439, "before_after_length": [135, 139], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "n\n\nNk K0] + [ Nn-1d#[rint(dp)\n\nfor i in range(1,n):\n for j in range(max(,] = 0\npr-knt(dp,\n\nfor n n):\nra dp[i] = migedp[i],dp[j]+abs(h[i]-h[j]))\n#print(dp)\n\nprint(dp[-, N):\n k = max(0, n - K)\n dp[n = min(abs(h[n] - h[i] + dp[i] for i in range(k, n))print(dp)\n\nprint(dp[-1])\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u783586434", "n_user": "u783586434", "pos": "n,h=map(int,input().split())\nl=list(map(int,input().split()))\nc=[0]*n\nc[1]=abs(l[0]-l[1])\nfor i in range(2,n):\n c[i]=min( c[j]+abs(l[i]-l[j]) for j in range(max(0,i-h),i) )\nprint(c[-1])\n", "neg": "n,h,l=int(input()),int(input()),list(map(int,input().split()))\nc=[0]*n\nc[1]=abs(l[0]-l[1])\nfor i in range(2,n):\n c[i]=min( c[i-j]+abs(l[i]-l[i-j]) for j in range(1,h+1) if i-j > -1 )\nprint(c[-1])", "jacc_sim": 0.9117647058823529, "before_after_length": [107, 114], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": ",lmap((,),.splnt(inpu,\nl= i-i-1max(0h+1) if h),i)j > -1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u180908266", "n_user": "u180908266", "pos": "N, K = map(int, input().split())\nh_s = list(map(int, input().split()))+[0]*K\n# print(h_s)\ndp = [float(\"inf\")]*(N+K)\ndp[0] = 0\n \nfor i in range(N):\n for j in range(1, K+1):\n dp[i+j] = min(dp[i+j], dp[i]+abs(h_s[i]-h_s[i+j]))\n \nprint(dp[N-1])", "neg": "N = int(input())\nh_s = list(map(int, input().split()))+[0]*10\n# print(h_s)\ndp = [float(\"inf\")]*(N+10)\ndp[0] = 0\n\nfor i in range(N):\n for j in range(1, 3):\n dp[i+j] = min(dp[i+j], dp[i]+abs(h_s[i]-h_s[i+j]))\n\nprint(dp[N-1])", "jacc_sim": 0.9166666666666666, "before_after_length": [134, 124], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": ",=Kint= mapint, .split()1K\n# print(h_s)\ndp = [float(\"inf\")]*(N+K)\ndp[\n# print(h_s)\ndp = [float(\"inf\") = *(N+1)dp[0]= 0\n3K+1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u894265012", "n_user": "u894265012", "pos": "N, K = map(int, input().split())\nh = list(map(int, input().split()))\nINF = 10**9\ndp = [INF] * N\ndp[0] = 0\nfor i in range(N):\n for k in range(1, K+1):\n if i + k < N:\n dp[i+k] = min(dp[i+k], dp[i]+abs(h[i] - h[i+k]))\nprint(dp[N-1])", "neg": "N, K = map(int, input().split())\nh = [0] * (2*N)\nh[:N] = list(map(int, input().split()))\nINF = 10**9\ndp = [INF] * (2*N)\ndp[0] = 0\nfor i in range(N):\n for k in range(1, K+1):\n dp[i+k] = min(dp[i+k], dp[i]+abs(h[i] - h[i+k]))\nprint(dp[N-1])", "jacc_sim": 0.9166666666666666, "before_after_length": [120, 130], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": " = [0] * (2*N)\nh[:N](2*)if i + k < N:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u450898610", "n_user": "u450898610", "pos": "N,K = map(int, input().split())\nh = list(map(int, input().split()))\ndp = [float('inf')] * 10 ** 5\n\ndp[0] = 0\nfor i in range(1, N):\n tmp = i\n if tmp > K:\n tmp = K\n for j in range(1,tmp + 1):\n dp[i] = min(dp[i], dp[i - j] + abs(h[i - j] - h[i]))\n\nprint(dp[N-1])\n", "neg": "N,K = map(int, input().split())\nh = list(map(int, input().split()))\ndp = [float('inf')] * 10 ** 5\n\ndp[0] = 0\nfor i in range(1, N):\n tmp = i\n if tmp > K:\n tmp = K\n for j in range(1,tmp + 1):\n dp[i] = dp[i - j] + abs(h[i - j] - h[i])\n\nprint(dp[N-1])\n", "jacc_sim": 0.9736842105263158, "before_after_length": [131, 125], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "min(dp[i], )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u633548583", "n_user": "u633548583", "pos": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ndp=[10**5]*n\ndp[0]=0\nfor i in range(1,n):\n dp[i]=min(dp[j]+abs(h[j]-h[i]) for j in range(max(0,i-k),i))\nprint(dp[n-1])\n", "neg": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ndp=[10**5]*n\ndp[0]=0\nfor i in range(2,n):\n for j in range(1,k):\n dp[i+j]=min(dp[i+j],dp[i]+abs(h[i+j]-h[i]))\n print(dp[n-1])\n", "jacc_sim": 0.9411764705882353, "before_after_length": [100, 107], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "21 dp[i]=min(dp[j]+abs(h[j]-h[i])1max(0i-,:\n dp[+j]=min(dp[i+j],dp[i]+abs(h[i+j]-h[i] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u995062424", "n_user": "u995062424", "pos": "def main():\n N, K = map(int, input().split())\n h = list(map(int, input().split()))\n\n DP = [10**10 for _ in range(N)]\n DP[0] = 0\n DP[1] = abs(h[0]-h[1])\n \n for i in range(2, N):\n DP[i] = min(DP[k]+abs(h[i]-h[k]) for k in range(max(0, i-K), i)) \n print(DP[N-1])\nmain()", "neg": "def main():\n N, K = map(int, input().split())\n h = list(map(int, input().split()))\n\n DP = [10**10 for _ in range(N)]\n DP[0] = 0\n DP[1] = abs(h[0]-h[1])\n \n for i in range(2, N):\n DP[i] = min([DP[i-K]+abs(h[i]-h[k]) for k in range(i)]) \n print(DP[N-1])\nmain()", "jacc_sim": 0.9722222222222222, "before_after_length": [144, 139], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "[k]+abs(h[i]-h[k]) for k in range(max(0, ]+abs(h[i]-h[k],for k n range(i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u539692012", "n_user": "u691896522", "pos": "n, k = map(int, input().split())\nh = list(map(int, input().split()))\ndp = [1001001001001001001] * n\ndp[0] = 0\nfor i in range(n):\n for j in range(i + 1, min(i + k + 1, n)):\n dp[j] = min(dp[j], dp[i] + abs(h[i] - h[j]))\nprint(dp[n-1])", "neg": "n, k = list(map(int, input().split()))\nh = list(map(int, input().split()))\ninf = abs(h[0] - h[-1])\ndp = [inf] * n\ndp[0] = 0\nfor i in range(n):\n dp[i] = min([dp[i - j] + abs(h[i - j] - h[i]) for j in range(min(k+1, i+1))])\nprint(dp[-1])\n", "jacc_sim": 0.9375, "before_after_length": [115, 120], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "map(int, input().spt())\nh = lih = list(map(int, input().split()))\ninf = abs(h[0] - h[-1])\ninf1001001001001001001dp[i] = min([dp[i - j] + abs(h[i - j] - h[i]) m + 1, mii + +1,i , ))])\nprit()):\n j] = min(dp[j], dp[i] + abs(h[i] 1 h[j)print(dp[n-1])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u130900604", "n_user": "u130900604", "pos": "def main():\n n,k=map(int,input().split())\n h=list(map(int,input().split()))+[0]*(k+10)\n dp=[(float(\"inf\")) for i in range(n+k+10)]\n dp[0]=0\n for i in range(n-1):\n for j in range(k):\n dp[i+j+1]=min(dp[i]+abs(h[i]-h[i+j+1]),dp[i+j+1])\n return (dp[n-1])\nprint(main())\n", "neg": "n,k=map(int,input().split())\nh=list(map(int,input().split()))+[0]*(k+10)\ndp=[(float(\"inf\")) for i in range(n+k+10)]\ndp[0]=0\ndef main():\n \tfor i in range(n-1):\n \tfor j in range(k):\n \tdp[i+j+1]=min(dp[i]+abs(h[i]-h[i+j+1]),dp[i+j+1])\n \tprint(dp[n-1])\nmain()\n", "jacc_sim": 0.972972972972973, "before_after_length": [147, 145], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "def main():\n dp[0]=0\ndefma dp[0]=0\n for i rangen-1\tfori for jkn-1\tfor j in range(k):\n \t\tpeinurn maprtmain()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u867848444", "n_user": "u867848444", "pos": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ndef ch_min(a,b):\n if a>b:\n return b\n \n return a\ndef solve():\n dp=[float('inf')]*n\n dp[0]=0\n\n for i in range(1,n):\n \n for j in range(1,1+k):\n if i-j>=0:\n dp[i]=ch_min(dp[i],dp[i-j]+abs(h[i]-h[i-j]))\n \n if dp[i]==0:\n break\n \n print(dp[-1])\n \n\nsolve()", "neg": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\ndef ch_min(a,b):\n if a>b:\n return b\n\ndef solve():\n dp=[float('inf')]*n\n dp[0]=0\n\n for i in range(1,n):\n \n for j in range(1,1+k):\n if i-j>=0:\n dp[i]=ch_min(dp[i],dp[i-j]+abs(h[i]-h[i-j]))\n \n \n print(dp[-1])\n \n\nsolve()", "jacc_sim": 0.975609756097561, "before_after_length": [177, 159], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": " \n return aif dp[i]==0:\n break\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u119714109", "n_user": "u119714109", "pos": "import math\nN, K = map(int, input().split())\nh = list(map(int, input().split()))\n \ndef nya(N, K, h):\n S = [0] * N\n S[0] = 0\n \n for i in range(1, N):\n value = math.inf\n for step in range(1, K + 1):\n if i - step < 0:\n break\n value = min(value, S[i - step] + abs(h[i] - h[i - step]))\n S[i] = value\n return S[N-1]\n\nprint(nya(N, K, h))", "neg": "from numba import jit\nimport math\nN, K = map(int, input().split())\nh = list(map(int, input().split()))\n \nS = [0] * N\nS[0] = 0\n \n@jit\ndef nya(S, N):\n for i in range(1, N):\n value = math.inf\n for step in range(1, K + 1):\n if i - step < 0:\n break\n value = min(value, S[i - step] + abs(h[i] - h[i - step]))\n S[i] = value\n return S\n\nS = nya(S, N)\nprint(S[N - 1])", "jacc_sim": 0.9090909090909091, "before_after_length": [161, 171], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "import math\nN, K = map(int, input().split())\nh = list(map(int, input().split()))\n \nderomyumb( import jit\nimport math\n = map(intinput().split())\n = list(map(int, input(:.split()))\n \n@jit\ndef nya(S, N):[N-1]S = print(S, ,)\nprint(S[N-K,h1])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u225627575", "n_user": "u225627575", "pos": "N,K = map(int,input().split())\nh = list(map(int,input().split()))\ndp = [10**15+1 for i in range(N)]\ndp[0] = 0\nfor i in range(N):\n for j in range(1,K+1):\n if i+j -1 )\nprint(c[-1])", "jacc_sim": 0.9166666666666666, "before_after_length": [116, 115], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "0]=0\nc[i-i-1max(0i-+1 ,f i-j > -1 \nprint(c[-1]\nprint(c[-1])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u225388820", "n_user": "u225388820", "pos": "n,k= map(int, input().split())\nh= list(map(int, input().split()))\ndp=[2000000000]*n\ndp[0]=0\nfor i in range(1,min(n,k+1)):\n for j in range(0,i):\n dp[i]=min(abs(h[i]-h[0])+dp[j],dp[i])\nif n>k:\n for i in range(k+1,n):\n for j in range(1,k+1):\n dp[i]=min(abs(h[i]-h[i-j])+dp[i-j],dp[i])\n#print(dp)\nprint(dp[n-1])\n", "neg": "n,k= map(int, input().split())\nh= list(map(int, input().split()))\ndp=[2000000000]*n\ndp[0]=0\nfor i in range(1,k+1):\n for j in range(0,i):\n dp[i]=min(abs(h[i]-h[0])+dp[j],dp[i])\nfor i in range(k+1,n):\n for j in range(1,k+1):\n dp[i]=min(abs(h[i]-h[i-j])+dp[i-j],dp[i])\n#print(dp)\nprint(dp[n-1])", "jacc_sim": 0.9411764705882353, "before_after_length": [179, 166], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "min(n,)if n>k:\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u185424824", "n_user": "u185424824", "pos": "N,K = map(int,input().split())\nH = [int(x) for x in input().split()]\n \ndef main(N,K,H):\n dp = [0]*N\n for i in range(1,N):\n L = [dp[j]+abs(H[i]-H[j]) for j in range(max(0,i-K),i)]\n dp[i] = min(L)\n print(dp[-1])\nmain(N,K,H)", "neg": "N,K = map(int,input().split())\nh = list(map(int,input().split()))\n \ndef main(N,K,H):\n dp = [0]*N\n for i in range(1,N):\n L = [dp[j]+abs(H[i]-H[j]) for j in range(max(0,i-K),i)]\n dp[i] = min(L)\n print(dp[-1])\nmain(N,K,H)", "jacc_sim": 0.9166666666666666, "before_after_length": [122, 120], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "hHl[st(map(i,(x) for x in ]))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u366959492", "n_user": "u366959492", "pos": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\nh+=[0]*k\ninf=10**9\ndp=[inf]*(n+k)\ndp[0]=0\nfor i in range(n):\n for j in range(1,k+1):\n dp[i+j]=min(dp[i]+abs(h[i]-h[i+j]),dp[i+j])\nprint(dp[n-1])\n", "neg": "n,k=map(int,input().split())\nh=list(map(int,input().split()))\nh+=[0]*k\ninf=100000\ndp=[inf]*(n+k)\ndp[0]=0\nfor i in range(n):\n for j in range(1,k+1):\n dp[i+j]=min(dp[i]+abs(h[i]-h[i+j]),dp[i+j])\n print(dp)\nprint(dp)\n", "jacc_sim": 0.9117647058823529, "before_after_length": [122, 123], "nl": "You are given N stones, each with a specific height. A frog starts at Stone 1 and can jump to stones 1 to K ahead. The cost of jumping to a stone is the absolute difference in height. Find the minimum total cost to reach Stone N. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 K \u2264 100, 1 \u2264 height \u2264 10^4. Input format: N K, followed by the heights of the stones. Output the minimum total cost. Example: Input: 5 3, 10 30 40 50 20. Output: 30.", "diff_info": "**90000 [)\npri-1]t(dp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03161", "p_user": "u756553422", "n_user": "u756553422", "pos": "import sys\n\nn,k = map(int,input().split())\na = list(map(int,input().split()))\ndp = [sys.maxsize]*(n)\ndp[0] = 0\nfor i in range(n):\n for j in range(i+1,k+i+1):\n if j 0:\n count += 1\n d[y] -= 1\n \nprint(count)", "neg": "n = int(input())\na = list(map(int, input().split()))\na.sort(reverse = True)\nd = {}\ncount = 0\n\nfor x in a:\n if x not in d: d[x] = 0\n d[x] += 1\n \nfor i in range(len(a)):\n y = 2**a[i].bit_length() - a[i]\n if y in d and d[y] > 0:\n count += 1\n d[y] -= 1\n \nprint(count) ", "jacc_sim": 0.9761904761904762, "before_after_length": [168, 140], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "\n if d[a[i]] == 0:continue\n \n d[a[i]] -= 1\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u312025627", "n_user": "u268793453", "pos": "def main():\n from collections import Counter\n import sys\n input = sys.stdin.buffer.readline\n\n _ = int(input())\n A = [int(i) for i in input().split()]\n\n ans = 0\n c = Counter(A)\n B = sorted(c.keys(), reverse=True)\n # print(type(c.keys()))\n for b in B:\n if c[b] == 0:\n continue\n a = (2 ** b.bit_length()) - b\n if a == b:\n cur = c[b]//2\n else:\n if a in c:\n cur = min(c[a], c[b])\n else:\n cur = 0\n ans += cur\n # c[b] -= cur\n c[a] -= cur\n\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n from collections import Counter\n import sys\n input = sys.stdin.buffer.readline\n\n _ = int(input())\n A = [int(i) for i in input().split()]\n\n ans = 0\n c = Counter(A)\n B = sorted(c.keys(), reverse=True)\n\n for b in B:\n if c[b] == 0:\n continue\n a = (2 ** b.bit_length()) - b\n if a == b:\n cur = c[b]//2\n else:\n if a in C:\n cur = min(c[a], c[b])\n else:\n cur = 0\n ans += cur\n # c[b] -= cur\n c[a] -= cur\n\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9629629629629629, "before_after_length": [223, 212], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": " # print(type(c.keys()))Cc", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u497046426", "n_user": "u497046426", "pos": "from collections import Counter\n\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nA = sorted(A, reverse=True)\nans = 0\nfor a in A:\n if a & (a - 1) != 0:\n cand = (1 << ((a - 1).bit_length())) - a\n if cnt[a] == 0 or cnt[cand] == 0: continue\n else:\n cand = a\n if cnt[a] < 2: continue\n ans += 1\n cnt[a] -= 1; cnt[cand] -= 1\nprint(ans)", "neg": "from collections import Counter\n\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nA = sorted(A, reverse=True)\nans = 0\nfor a in A:\n if a & (a - 1) != 0:\n cand = (1 << ((a - 1).bit_length()))\n if cnt[a] == 0 or cnt[cand] == 0: continue\n else:\n cand = a\n if cnt[a] < 2: continue\n ans += 1\n cnt[a] -= 1; cnt[cand] -= 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [150, 148], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": " - a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u347640436", "n_user": "u347640436", "pos": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nt = 1\nvalids = []\nwhile t < 2 * 10 ** 9:\n t *= 2\n valids.append(t)\nresult = 0\nwhile True:\n prev = result\n keys = list(d.keys())\n keys.sort(reverse = True)\n for x in keys:\n if x not in d:\n continue\n t = valids[bisect_right(valids, x)] - x\n while True:\n if t not in d:\n break\n if x == t and d[x] == 1:\n break\n result += 1\n if d[x] == 1:\n del d[x]\n else:\n d[x] -= 1\n if d[t] == 1:\n del d[t]\n else:\n d[t] -= 1\n if x not in d:\n break\n if prev == result:\n break\nprint(result)", "neg": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nt = 1\nvalids = []\nwhile t < 2 * 10 ** 9:\n t *= 2\n valids.append(t)\nresult = 0\nwhile True:\n prev = result\n keys = list(d.keys())\n keys.sort(reverse = True)\n for x in keys:\n t = valids[bisect_right(valids, 13)] - x\n if t not in d:\n continue\n result += 1\n if d[x] == 1:\n del d[x]\n else:\n d[x] -= 1\n if d[t] == 1:\n del d[t]\n else:\n d[t] -= 1\n break\n if prev == result:\n break\nprint(result)", "jacc_sim": 0.9622641509433962, "before_after_length": [283, 242], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "if x not in d:\n continue\n x13whlf t not in d:\n continu True: if t not in d:\n break\n if x == t and d[x] == 1:\n break\n ifd[x]==if1:\n el d\n==1 else del d[x]\n else:\n ifd[t]==if1:\n el d\n==1 else del d[t]\n else:\n if x not in d:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u401830498", "n_user": "u401830498", "pos": "from collections import Counter\nsize_a = int(input())\na = Counter(int(x) for x in input().split())\nkeys = list(a.keys())\nkeys.sort()\npair_cnt = 0\nwhile size_a >= 2:\n x = keys[-1]\n if a[x] == 0:\n keys.pop()\n continue\n a[x] -= 1\n size_a -= 1\n if a[x] == 0:\n keys.pop()\n b = 2 ** x.bit_length() - x\n if a[b] > 0:\n a[b] -= 1\n size_a -= 1\n if a[b] == 0:\n del a[b]\n pair_cnt += 1\nprint(pair_cnt)", "neg": "from collections import Counter\nsize_a = int(input())\na = Counter(int(x) for x in input().split())\nkeys = list(a.keys())\nkeys.sort()\npair_cnt = 0\nprint(a)\nwhile size_a >= 2:\n x = keys[-1]\n if a[x] == 0:\n keys.pop()\n continue\n print('search', x, a[x])\n a[x] -= 1\n size_a -= 1\n if a[x] == 0:\n keys.pop()\n b = 2 ** x.bit_length() - x\n if a[b] > 0:\n a[b] -= 1\n size_a -= 1\n if a[b] == 0:\n del a[b]\n pair_cnt += 1\n print('found')\nprint(pair_cnt)", "jacc_sim": 0.9047619047619048, "before_after_length": [185, 208], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "\nprint(a)print('search', x, a[x])\n 'found')\nrint(p", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u013408661", "n_user": "u013408661", "pos": "import bisect\ndef reversed_num(num):\n num_len=len(bin(num))-2\n f=2**num_len-1\n return num^f\nn=int(input())\nnumber=list(map(int,input().split()))\nnumber.sort()\ncount=0\nwhile len(number)>0:\n k=number.pop()\n if len(number)==0:\n break\n if k==int(k):\n x=reversed_num(k)+1\n y=bisect.bisect_left(number,x)\n if x>number[-1]:\n y-=1\n if number[y] ==x:\n number[y]-=0.5\n count+=1\nprint(count)", "neg": "import bisect\ndef reversed_num(num):\n num_len=len(bin(num))-2\n f=2**num_len-1\n return num^f\nn=int(input())\nnumber=list(map(int,input().split()))\nnumber.sort()\ncount=0\nwhile len(number)>0:\n x=reversed_num(number.pop())+1\n if number[bisect.bisect_left(number,x)] ==x:\n number[bisect.bisect_left(number,x)]=0\n count+=1\nprint(count)\n", "jacc_sim": 0.9111111111111111, "before_after_length": [187, 149], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "k=number.pop()\n if len(number)==0:\n break\n if k==int(k):\n knumber.pop()if y=number[\n if x>number[-1:\n y-=1\n if number[y] y]-=0bisect5bisect_left(number,x)]=0 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u852690916", "n_user": "u852690916", "pos": "from collections import Counter\nimport sys\ndef main():\n input = sys.stdin.readline\n N = int(input())\n A = list(map(int, input().split()))\n\n ans = 0\n A.sort(reverse=True)\n C = Counter(A)\n for a in A:\n if C[a] == 0: continue\n C[a] -= 1\n p = (1 << a.bit_length()) - a\n if p in C and C[p] > 0:\n ans += 1\n C[p] -= 1\n print(ans)\n\nif __name__ == '__main__':\n main()", "neg": "from collections import Counter\nimport sys\ndef main():\n input = sys.stdin.readline\n N = int(input())\n A = list(map(int, input().split()))\n\n ans = 0\n A.sort(reverse=True)\n C = Counter(A)\n for a in A:\n if C[a] == 0: continue\n p = (1 << a.bit_length()) - a\n if p > a: continue\n if p in C and C[p] > 0:\n ans += 1\n C[p] -= 1\n print(ans)\n\nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [157, 157], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "C[a] -= 1\n > a: continue\n if p ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u997113115", "n_user": "u997113115", "pos": "from collections import defaultdict\n\nN = int(input())\nA = sorted(list(map(int, input().split())), reverse=True)\ndic = defaultdict(int)\nfor a in A:\n dic[a] += 1\n\nans = 0\nfor a in A:\n if dic[a] != 0:\n b = 2**(a.bit_length()) - a\n if dic[b] != 0:\n if b == a and dic[b] == 1:\n continue\n ans += 1\n dic[a] -= 1\n dic[b] -= 1\n\nprint(ans)", "neg": "from collections import defaultdict\n\nN = int(input())\nA = sorted(list(map(int, input().split())), reverse=True)\ndic = defaultdict(int)\nfor a in A:\n dic[a] = 1\n\nans = 0\nfor i in range(N):\n if dic[A[i]] != 0:\n b = 2**(A[i].bit_length()) - A[i]\n if dic[b]:\n ans += 1\n dic[A[i]], dic[b] = 0, 0\n\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [143, 133], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "+i in r i Age(N)aA[i]aA[i]aA[i] != 0if b == a and dic[b] == 1:\n continue\n A[i]], dic[b] = 0, 0\n\nprint(] -= 1\n dic[b] -= 1\n\nprit(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u089032001", "n_user": "u089032001", "pos": "from collections import Counter\n\nn = int(input())\nA = list(map(int, input().split()))\n\nA.sort(reverse=True)\nc = Counter(A)\n\nans = 0\nflag = False\nfor i in range(n):\n if c[A[i]] == 0:\n continue\n\n pow_2 = 2 ** len(format(A[i], \"b\"))\n if c[pow_2 - A[i]] > 0 and pow_2 - A[i] != A[i]:\n c[pow_2 - A[i]] -= 1\n c[A[i]] -= 1\n ans += 1\n elif c[pow_2 - A[i]] > 1 and pow_2 - A[i] == A[i]:\n if flag is True:\n c[A[i]] -= 2\n ans += 1\n flag = False\n else:\n flag = True\n\nprint(ans)", "neg": "from collections import Counter\n\nn = int(input())\nA = list(map(int, input().split()))\n\nA.sort(reverse=True)\nc = Counter(A)\n\nans = 0\nflag = False\nfor i in range(n):\n if c[A[i]] == 0:\n continue\n\n pow_2 = 2 ** len(format(A[i], \"b\"))\n if pow_2 - A[i] != A[i]:\n c[pow_2 - A[i]] -= 1\n ans += 1\n elif c[pow_2 - A[i]] > 1 and pow_2 - A[i] == A[i]:\n if flag is True:\n c[A[i]] -= 2\n ans += 1\n flag = False\n else:\n flag = True\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [225, 202], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "c[ != A[i:\n>0and c[]-!A[1\n ans += 1\n elf]:\n >-=\nand c[A[i]] -= 1\n ans += 1\n elif c[] > 1 and pow_2 - A[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u270681687", "n_user": "u270681687", "pos": "from collections import defaultdict\n\nn = int(input())\na = list(map(int, input().split()))\n\na.sort()\nmemo = defaultdict(int)\nfor i in range(n):\n memo[a[i]] += 1\n\ncount = 0\nfor i in reversed(range(n)):\n if memo[a[i]] == 0:\n continue\n if (memo[(1 << (len(bin(a[i])) - 2)) - a[i]] > 0 and (1 << (len(bin(a[i])) - 2)) - a[i] != a[i]) or memo[(1 << (len(bin(a[i])) - 2)) - a[i]] > 1:\n memo[a[i]] -= 1\n memo[(1 << (len(bin(a[i])) - 2)) - a[i]] -= 1\n count += 1\n\nprint(count)", "neg": "from collections import defaultdict\n\nn = int(input())\na = list(map(int, input().split()))\n\na.sort()\nmemo = defaultdict(int)\nfor i in range(n):\n memo[a[i]] += 1\n\ncount = 0\nfor i in reversed(range(n)):\n if memo[a[i]] == 0:\n continue\n if memo[1 << (len(bin(a[i])) - 2) - a[i]] == 0:\n continue\n memo[a[i]] -= 1\n memo[1 << (len(bin(a[i])) - 2) - a[i]] -= 1\n count += 1\n\nprint(count)", "jacc_sim": 0.9047619047619048, "before_after_length": [215, 164], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "(()>== and (1 << (len(bin(a[i])) - 2)) - a[i] != a[i]) or memo[(1 << (len(bin(a[i])) - 2)) - a[i]] > 1continue\n () ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u118642796", "n_user": "u118642796", "pos": "N = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\ndic = {}\nfor a in A:\n dic[a] = dic.get(a,0)+1\nans = 0\n\nfor a in A:\n small = (1<<(len(format(a,\"b\")))) - a\n if small == a:\n if dic[a] >= 2:\n dic[a] -= 2\n ans += 1\n continue\n if dic.get(a,0)>0 and dic.get(small,0)>0:\n dic[a] -= 1\n dic[small] -= 1\n ans += 1\nprint(ans)\n", "neg": "N = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\ndic = {}\nfor a in A:\n dic[a] = dic.get(a,0)+1\nprint(dic)\nans = 0\n\nfor a in A:\n if dic[a]==0:\n continue\n small = (1<<(len(format(a,\"b\")))) - a\n if dic.get(small,0)>0:\n dic[small] -= 1\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9523809523809523, "before_after_length": [171, 137], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "print(dic)\n\n if dic[a]==0:\n continuesmall == a:\n if dic[a] >= 2:\n dic[a] -= 2\n ans += 1\n continue\n if smll and dic.get(small,0)>0smlldic[small] -= 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u347640436", "n_user": "u347640436", "pos": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nalist = list(sorted(d.keys(), reverse = True))\namax = alist[0]\nt = 1\npower_of_two = []\nwhile t < 2 * amax:\n t *= 2\n power_of_two.append(t)\nresult = 0\nfor a in alist:\n if a not in d or d[a] == 0:\n continue\n t = power_of_two[bisect_right(power_of_two, a)] - a\n while True:\n if t not in d or d[t] == 0:\n break\n if a == t and d[a] == 1:\n break\n i = 1\n if a != t:\n i = min(d[a], d[t])\n result += i\n d[a] -= i\n d[t] -= i\n if a not in d or d[a] == 0:\n break\nprint(result)\n", "neg": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nalist = list(sorted(d.keys(), reverse = True))\namax = alist[0]\nt = 1\npower_of_two = []\nwhile t < 2 * amax:\n t *= 2\n power_of_two.append(t)\nresult = 0\nfor a in alist:\n if d[a] == 0:\n continue\n t = power_of_two[bisect_right(power_of_two, a)] - a\n if t not in d:\n continue\n if d[a] != d[t]:\n i = min(d[a], d[t])\n else:\n i = d[a] // 2\n result += i\n d[a] -= i\n d[t] -= 1\nprint(result)\n", "jacc_sim": 0.9259259259259259, "before_after_length": [286, 248], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "a not in d or whlf t not in d:\n continu\nTrue:\nif if t not in or dat == 0:\n break\n if a == t and d[a] == 1:\n break\n i = 1\n if ad[] else:\n i = d[a] // 2\n 1\nprnt(result) if a not in d or d[a] == 0:\n break\nprint(result)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u358254559", "n_user": "u358254559", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nfrom collections import defaultdict\nd = defaultdict(int)\n\nfor num in a:\n d[num]+=1\n\nans=0\nfor num in sorted(d,reverse=True):\n while d[num]>=1:\n d[num]-=1\n\n now=1\n while now<=num:\n now*=2\n\n cand = now - num\n if d[cand]>=1:\n d[cand]-=1\n ans+=1\n else:\n break\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nfrom collections import defaultdict\nd = defaultdict(int)\n\nfor num in a:\n d[num]+=1\n\nans=0\nfor num in sorted(d,reverse=True):\n while d[num]>=1:\n d[num]-=1\n\n now=1\n while now<=num:\n now*=2\n\n cand = now - num\n print(num,cand)\n\n if d[cand]>=1:\n d[cand]-=1\n ans+=1\n else:\n break\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [153, 163], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "print(num,cand)\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u347640436", "n_user": "u347640436", "pos": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nalist = list(sorted(d.keys(), reverse = True))\namax = alist[0]\nt = 1\npower_of_two = []\nwhile t < 2 * amax:\n t *= 2\n power_of_two.append(t)\nresult = 0\nfor a in alist:\n if a not in d or d[a] == 0:\n continue\n t = power_of_two[bisect_right(power_of_two, a)] - a\n while True:\n if t not in d or d[t] == 0:\n break\n if a == t and d[a] == 1:\n break\n result += 1\n d[a] -= 1\n d[t] -= 1\n if a not in d or d[a] == 0:\n break\nprint(result)\n", "neg": "from bisect import bisect_right\nn = int(input())\nd = {}\nfor a in map(int, input().split()):\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\nalist = list(sorted(d.keys(), reverse = True))\namax = alist[0]\nt = 1\npower_of_two = []\nwhile t < 2 * amax:\n t *= 2\n power_of_two.append(t)\nresult = 0\nfor a in alist:\n if a not in d or d[a] == 0:\n continue\n t = power_of_two[bisect_right(power_of_two, a)] - a\n if t not in d or d[t] == 0:\n continue\n if a != t:\n i = min(d[a], d[t])\n else:\n i = d[a] // 2\n if i == 0:\n continue\n result += i\n d[a] -= i\n d[t] -= i\n if a not in d or d[a] == 0:\n break\nprint(result)\n", "jacc_sim": 0.9074074074074074, "before_after_length": [260, 283], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "while True:\n continue\nbrif a != t:\n i = min(d[a], d[t])\n lse:\n i = d[k] // 2if f a == t and d[a] == 1:\n break\n result += 1\n d[a] -= 1\n d[t] -= 1\n if a not in d or d[a]continue\n result += i\n d[a] -= i\n d[t] -= i\n if a not in d or d[a] == 0:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u476604182", "n_user": "u476604182", "pos": "from collections import Counter\nN,*A = map(int, open(0).read().split())\nCnt = Counter(A)\nm = 2**31\nans = 0\nfor i in range(31):\n for k in Cnt.keys():\n if Cnt[k]==0:\n continue\n if k==m-k:\n ans += Cnt[k]//2\n Cnt[k] %= 2\n else:\n if Cnt[m-k]==0:\n continue\n if Cnt[k]>= 1\nprint(ans)", "neg": "from collections import Counter\nN,*A = map(int, open(0).read().split())\nCnt = Counter(A)\nm = 2**31\nans = 0\nfor i in range(31,0,-1):\n for k in Cnt.keys():\n if Cnt[k]==0:\n continue\n if Cnt[m-k]>0:\n Cnt[k] -= 1\n Cnt[m-k] -= 1\n ans += 1\n m >>= 1\nprint(ans)", "jacc_sim": 0.9069767441860465, "before_after_length": [219, 124], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": ",0,-1Cnt[m-]>0:\n Cnt[k] - 1\n Cnt[m-k] - 1m-k:1Cnt[k]//2\n Cnt[k] %= 2\n else:\n if Cnt[m-k]==0:\n continue\n if Cnt[k]0 and d[A[i]]>0:\n ans2 += 1\n d[t] -= 1\n d[A[i]] -= 1\n else:\n if d[t] > 1:\n ans2 += 1\n d[t] -= 2\n\n\nprint(ans1+ans2)", "neg": "N = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\n\nans1, ans2 = 0,0\n\nmaxA = max(A)\nB = [1]\nt = 1\nwhile t < maxA:\n t *= 2\n B.append(t)\n\nd = dict()\nfor i in range(N):\n if A[i] in B:\n ans1 += 1\n M -= 1\n else:\n if A[i] in d:\n d[A[i]] += 1\n else:\n d[A[i]] = 1\n\nfor i in range(N):\n if A[i] not in B:\n t = 2**len(bin(A[i])[2::]) - A[i]\n if t in d:\n if d[t] > 0:\n ans2 += 1\n d[t] -= 1\n d[A[i]] -= 1\n\nprint(ans1+ans2)", "jacc_sim": 0.9166666666666666, "before_after_length": [257, 246], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "Bdans1d[A[i]] M -= 1\n if A[i] in d:\n d[A[i]] += 1\n else:\n if A[i] not in B:\n d[]!= A[i]:\n if d[t] and d[A[i]]>0\nprint(an ele:\n if d[t] > :\n ans2 ans= 1\n d[t] -= \n\n\nprint(ans1+ans2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u631277801", "n_user": "u631277801", "pos": "import sys\nstdin = sys.stdin\n \nsys.setrecursionlimit(10**5) \n \ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x)-1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\nn = ni()\na = list(li())\n\nfrom collections import Counter\n\nacnt = Counter(a)\n\nans = 0\ntemp = 0\nfor ai in sorted(a,reverse=True):\n pair = (1<<(ai.bit_length())) - ai\n \n if acnt[ai] > 0 and acnt[pair] > 0:\n if ai == pair:\n temp = (acnt[ai] // 2)\n ans += temp\n acnt[ai] -= (2*temp)\n \n elif ai > pair:\n temp = min(acnt[ai], acnt[pair])\n ans += temp\n acnt[ai] -= temp\n acnt[pair] -= temp\n \nprint(ans)", "neg": "import sys\nstdin = sys.stdin\n \nsys.setrecursionlimit(10**5) \n \ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x)-1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\nn = ni()\na = list(li())\n\nfrom collections import Counter\n\nacnt = Counter(a)\n\nans = 0\nfor ai in sorted(a,reverse=True):\n pair = (1<<(ai.bit_length())) - ai\n print(ai, pair)\n \n if acnt[ai] > 0 and acnt[pair] > 0:\n if ai == pair:\n temp = (acnt[ai] // 2)\n \n elif ai > pair:\n temp = min(acnt[ai], acnt[pair])\n \n ans += temp\n acnt[pair] -= temp\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [317, 296], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "temp = 0\nprint(ai, pair)\n ans += temp\n acnt[ai] -= (2*temp)\n \n pr\nprint(ct[pair] -= temp\n \nprint(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u914992391", "n_user": "u914992391", "pos": "# -*- coding: utf-8 -*-\nimport collections\n\nN = int(input())\nA = list(map(int, input().split()))\nA.sort(reverse=True)\nc=collections.Counter(A)\n\npairCounter=0\n\nbeki=29\nnibeki=2**beki\n\nfor i in range(N):\n target = A[i]\n if c[target] < 1:\n continue\n c[target]-= 1\n\n while (nibeki > target):\n beki-=1\n nibeki=2**beki\n\n pair = nibeki * 2 - target\n if pair in c.keys() and c[pair] > 0:\n c[pair]-= 1\n pairCounter+=1\n\nprint(pairCounter)", "neg": "# -*- coding: utf-8 -*-\nimport collections\n\nN = int(input())\nA = list(map(int, input().split()))\nA.sort(reverse=True)\nc=collections.Counter(A)\n\npairCounter=0\n\nbeki=7\nnibeki=2**beki\n\nfor i in range(N):\n target = A[i]\n if c[target] < 0:\n continue\n c[target]= -1\n\n while (nibeki > target):\n beki-=1\n nibeki=2**beki\n\n pair = nibeki * 2 - target\n if pair in c.keys():\n c[pair]= -1\n pairCounter+=1\n\nprint(pairCounter)", "jacc_sim": 0.94, "before_after_length": [197, 189], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "7291:\n continue\n c[target]-= 1\n\n while (nibeki > target):\n beki-=1\n nibeki=2**beki\n\n pair = nibeki * 2 - target\n if pair in c.keys() and c[pair] > ontinue\n ctpiget= = \nwhile(nibekip> trget):\n bek-rCounter+ nibeki=2**beki\n ai = nbeki * 2 - target\n if pair it c.keys):\n c[pair]= -1\n +=1\n\nprint(pairCounter", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u297109012", "n_user": "u297109012", "pos": "from collections import Counter\n\ndef ans_solve(N, As):\n C = Counter(As)\n ans = 0\n for d in reversed(sorted(As)):\n n = (2 ** d.bit_length()) - d\n if d != n:\n if C[d] > 0 and C.get(n, 0) > 0:\n C[d] -= 1\n C[n] -= 1\n ans += 1\n else:\n ans += C[d]//2\n C[d] = 0\n return ans\n \n \nif __name__ == \"__main__\":\n N = input()\n As = [int(c) for c in input().split()]\n print(ans_solve(N, As))", "neg": "from collections import Counter\n\ndef ans_solve(N, As):\n C = Counter(As)\n ans = 0\n for d in As:\n n = (2 ** d.bit_length()) - d\n if d != n:\n if C[d] > 0 and C.get(n, 0) > 0:\n C[d] -= 1\n C[n] -= 1\n ans += 1\n else:\n ans += C[d]//2\n C[d] = 0\n return ans\n \n \nif __name__ == \"__main__\":\n N = input()\n As = [int(c) for c in input().split()]\n print(ans_solve(N, As))", "jacc_sim": 0.9574468085106383, "before_after_length": [178, 173], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "reversed(sorted())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u593005350", "n_user": "u593005350", "pos": "import collections\nN=int(input())\nx=list(map(int,input().split()))\nc=collections.Counter(x)\nt=[2**i for i in range(len(str(bin(max(x)*2))[2:])+1)[::-1]]\ncount=0\nstart=0\nx.sort()\nfor i in range(len(x))[::-1]:\n for j in range(start,len(t)):\n if t[j] > 2*x[i]:\n start = j\n if t[j] < x[i]:\n break\n if t[j]-x[i] in c.keys():\n if t[j]-x[i] == x[i]:\n if c[x[i]] >= 2:\n c[x[i]] -= 2\n count +=1\n else:\n if c[t[j]-x[i]]>0 and c[x[i]]>0:\n c[t[j]-x[i]] -= 1\n c[x[i]] -= 1\n count+=1\nprint(count)", "neg": "import collections\nN=int(input())\nx=list(map(int,input().split()))\nc=collections.Counter(x)\nt=[2**i for i in range(len(str(bin(max(x)*2))[2:])+1)[::-1]]\ncount=0\nstart=0\nx.sort()\nfor i in range(len(x))[::-1]:\n for j in range(len(t)):\n if t[j] < x[i]:\n break\n if t[j]-x[i] in c.keys():\n if t[j]-x[i] == x[i] and c[x[i]] >= 2:\n c[x[i]] -= 2\n count +=1\n elif c[t[j]-x[i]]>0 and c[x[i]]>0:\n c[t[j]-x[i]] -= 1\n c[x[i]] -= 1\n count+=1\nprint(count)", "jacc_sim": 0.9574468085106383, "before_after_length": [269, 242], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "slen(art,len(t\n if t[j] > 2*x[i]:\n start = j:\nand if se:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u816116805", "n_user": "u816116805", "pos": "#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n# vim:fenc=utf-8\n#\n\n\"\"\"\nagc 029 B\n\"\"\"\n\nfrom collections import Counter\n\nnn = int(input())\nali = list(map(int, input().split()))\nali.sort(reverse=True)\n\nc = Counter(ali)\nans = 0\n\n\ndef pow2(n):\n m = n\n tmp = 1\n while m > 0:\n tmp = tmp << 1\n m = m >> 1\n return tmp\n\n\nii = 0\nm = ali[ii]\nwhile bool(c):\n while c[ali[ii]] == 0:\n ii += 1\n m = ali[ii]\n n = pow2(m) - m\n c[m] -= 1\n if c[m] <= 0:\n del c[m]\n if n in c:\n c[n] -= 1\n if c[n] <= 0:\n del c[n]\n ans += 1\n\nprint(ans)\n\n\n\n\n\n\n", "neg": "#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n# vim:fenc=utf-8\n#\n\n\"\"\"\nagc 029 B\n\"\"\"\n\nfrom collections import Counter\n\nn = int(input())\nali = list(map(int, input().split()))\nali.sort(reverse=True)\n\nc = Counter(ali)\nprint(c)\nans = 0\n\n\ndef pow2(n):\n m = n\n tmp = 1\n while m > 0:\n tmp = tmp << 1\n m = m >> 1\n return tmp\n\n\nwhile bool(c):\n m = list(c.elements())[0]\n n = pow2(m) - m\n print(m, n)\n c[m] -= 1\n c += Counter()\n if n in c:\n c[n] -= 1\n ans += 1\n c += Counter()\n\nprint(ans)\n\n\n\n\n\n\n", "jacc_sim": 0.9344262295081968, "before_after_length": [268, 236], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "n)\nprint(cii = 0\nm = ali[ii]\nwhm = lst(c.e cments())ali[ii]] == :\n ii += 1\n m = ali[iiprint(m, n)\n if [m] <= 0:\n del c[m]\n if n in c:\n c[n] -= 1\n if c[n] <= 0:\n del c[n]\n ansCounter()\n if n in c:\n c[n] -= ans += 1 c += Counter()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u102960641", "n_user": "u566529875", "pos": "from collections import defaultdict\n\ndef twosum(n):\n now = 1\n while n >= now:\n now *= 2\n return now - n\nn = int(input())\na = sorted(list(map(int, input().split())))\nd = defaultdict(int)\nfor i in a:\n d[i] += 1\nans = 0\nfor i in a[::-1]:\n d[i] -= 1\n find = twosum(i)\n if d[find] > 0 and d[i] >= 0:\n ans += 1\n d[find] -= 1\n else:\n d[i] += 1\nprint(ans)\n", "neg": "from collections import defaultdict\n\ndef twosum(n):\n now = 1\n while n >= now:\n now *= 2\n return now - n\nn=int(input())\na=sorted(list(map(int,input().split())))\nd = defaultdict(int)\nfor i in a:\n d[i] += 1\nans = 0\nfor i in a[::-1]:\n if not d[i] > 0:\n continue\n find = twosum(i)\n if not d[find] > 0:\n continue\n ans += 1\n d[i] -= 1\n d[find] -= 1\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [160, 158], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": " if not ] -= 1\n find = twosum(i)\n if d[find:\na cotinue\n fin= twosum(i)\n if not fnd= continue\n fndel d[find] -= 1\nprint(ane:\n d[i] += 1\nprint(ans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u440566786", "n_user": "u440566786", "pos": "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda:sys.stdin.readline().rstrip()\nfrom collections import defaultdict\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n D=defaultdict(int)\n for a in A:\n D[a]+=1\n\n A.sort(reverse=1)\n ans=0\n for a in A:\n if(D[a]==0): continue\n k=a.bit_length()\n d=(1<=2):\n ans+=1\n D[d]-=2\n print(ans)\nresolve()", "neg": "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda:sys.stdin.readline().rstrip()\nfrom collections import defaultdict\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n D=defaultdict(int)\n for a in A:\n D[a]+=1\n\n A.sort(reverse=1)\n ans=0\n for a in A:\n k=a.bit_length()\n d=(1<=2):\n ans+=1\n D[d]-=2\n print(ans)\nresolve()", "jacc_sim": 0.9830508474576272, "before_after_length": [236, 232], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "if(D[a]==0): continue\n print(a,d)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u062147869", "n_user": "u278479217", "pos": "from collections import defaultdict\ndef debug(*args): print(*args, file=sys.stderr)\nN=int(input())\nA=[int(i) for i in input().split()]\ndd=defaultdict(int)\nfor a in A:\n dd[a]+=1\n#print(dd)\nB=sorted(A,reverse=True)\nans=0\nfor x in B:\n #print(x)\n if dd.get(x,-1)==0:\n continue\n s=len(bin(x))-3\n if x==1<=1:\n ans+=1\n dd[x]-=1\n dd[(1<=1:\n ans+=1\n dd[x]-=1\n dd[(1< j:\n if b - A[i] == A[j]:\n c += 1\n A[j] = A[j] - 0.5\n A[i] = A[i] + 0.5\nprint(c)\n", "neg": "import bisect\n\nN = int(input())\nA = [int(a) for a in input().split()]\nA = sorted(A)\n\nc = 0\nfor i in range(N - 1 , -1, -1):\n b = 1\n while b <= A[i]:\n b <<= 1\n \n j = bisect.bisect_left(A, b - A[i])\n if b - A[i] == A[j]:\n c += 1\n A[j] = A[j] - 0.5\n\nprint(c)\n", "jacc_sim": 0.9714285714285714, "before_after_length": [171, 136], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "bif=A[i]1== int(A[i]): b = 1\n ifb-A[i]==ifA[i > ] if b - A[i] == A[j]:\n A[i] = A[i] + 0.5", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u871352270", "n_user": "u871352270", "pos": "N = int(input())\nball = list(map(int, input().split()))\nball.sort(reverse = True)\nok = {}\nfor x in ball:\n if x in ok:\n ok[x] += 1\n else:\n ok[x] = 1\nans = 0\nfor x in ball:\n if ok[x] != 0:\n y = 2**(x.bit_length()) - x\n if y in ok:\n if ok[y] != 0:\n if y == x and ok[y] == 1: \n continue\n ans += 1\n ok[x] -= 1\n ok[y] -= 1\nprint(ans)\n\n", "neg": "N = int(input())\nball = list(map(int, input().split()))\nball.sort(reverse = True)\nok = {}\nfor x in ball:\n if x in ok:\n dic[x] += 1\n else:\n dic[x] = 1\nans = 0\nfor x in ball:\n if ok[x] != 0:\n y = 2**(x.bit_length()) - x\n if ok[y] != 0:\n if y == x and ok[y] == 1: \n continue\n ans += 1\n dic[x] -= 1\n dic[y] -= 1\nprint(ans)", "jacc_sim": 0.975, "before_after_length": [163, 154], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "okdicokdicy in ok:\n if dic okdic ok\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u922449550", "n_user": "u922449550", "pos": "from heapq import heappush, heappop, heapify\nfrom bisect import bisect_right\n\npow2 = [2]\nfor i in range(29):\n pow2.append(pow2[-1]*2)\n\nN = int(input())\nA = list(map(int, input().split()))\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nA = [-a for a in A]\nheapify(A)\nans = 0\nwhile A:\n a = - heappop(A)\n if d[a] == 0:\n continue\n pair = pow2[bisect_right(pow2, a)] - a\n if a == pair:\n if d[a] >= 2:\n d[a] -= 2\n ans += 1\n elif pair in d and d[pair] > 0:\n ans += 1\n d[pair] -= 1\n d[a] -= 1\n\nprint(ans)", "neg": "from heapq import heappush, heappop, heapify\nfrom bisect import bisect_right\n\npow2 = [2]\nfor i in range(29):\n pow2.append(pow2[-1]*2)\n\nN = int(input())\nA = list(map(int, input().split()))\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nA = [-a for a in A]\nheapify(A)\nans = 0\nwhile A:\n a = - heappop(A)\n if d[a] == 0:\n continue\n pair = pow2[bisect_right(pow2, a)] - a\n if pair in d and d[pair] > 0:\n ans += 1\n d[pair] -= 1\n d[a] -= 1\n\nprint(ans)", "jacc_sim": 0.98, "before_after_length": [250, 220], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "pirin==d and d[:\n if d[a= 2:\n d[a] -= 2\n ans += 1\n elif pair in d and d[pair] >", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u350836088", "n_user": "u350836088", "pos": "n = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse = True)\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nans =0\nfor a in A:\n b = 2**(a.bit_length())-a\n if b in d:\n if d[b] >=1 and d[a] >= 1:\n if a == b and d[b] ==1:\n continue\n ans += 1 \n d[b]-= 1\n d[a]-= 1\n\nprint(ans)\n ", "neg": "n = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse = True)\nd = {}\nfor a in A:\n if a in d:\n d[a] += 1\n else:\n d[a] = 1\n\nans =0\nfor a in A:\n b = 2**(a.bit_length())-a\n if b in d:\n if d[b] >=1 and d[a] >= 1:\n ans += 1 \n d[b]-= 1\n d[a]-= 1\n\nprint(ans)\n ", "jacc_sim": 0.9743589743589743, "before_after_length": [164, 147], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "if a == b and d[b] ==1:\n continue\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u391731808", "n_user": "u391731808", "pos": "import bisect\nN = int(input())\n*A, = map(int,input().split())\nB = {}\nfor a in A:B[a] = B.get(a,0) + 1\nB = sorted(map(list,B.items()))\nbl = bisect.bisect_left\n\nans = 0\nwhile B:\n b,n = B.pop()\n c = (1<<(len(bin(b))-2)) - b\n if c==b :\n ans += n//2\n continue\n i = bl(B,[c,0])\n if i>=len(B): continue\n if B[i][0] == c:\n m = min(n,B[i][1])\n ans += m\n B[i][1] -= m\nprint(ans)", "neg": "import bisect\nN = int(input())\n*A, = map(int,input().split())\nB = {}\nfor a in A:B[a] = B.get(a,0) + 1\nB = sorted(map(list,B.items()))\nbl = bisect.bisect_left\n\nans = 0\nwhile 1:\n b,n = B.pop()\n if not B : break\n c = (1<<(len(bin(b))-2)) - b\n i = bl(B,[c,0])\n if B[i][0] == c:\n m = min(n,B[i][1])\n ans += m\n B[i][1] -= m\nprint(ans)", "jacc_sim": 0.9056603773584906, "before_after_length": [196, 175], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": "1B\n if not B : breakf c==b :\n ans += n//2\n continue\n ii>=len(B): continue\n if ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03201", "p_user": "u779455925", "n_user": "u779455925", "pos": "from itertools import *\nimport copy\nfrom collections import *\n\n\nN=int(input())\nA=list(map(int,input().split()))\nidle_max=10**9\npeki2=[]\nfor i in range(1,100):\n a=2**i\n if a<=2*idle_max:\n peki2.append(a)\npeki2.sort(reverse=True)\nlst=[[],[]]\nfor a in A:\n if a%2:\n lst[1].append(a)\n else:\n lst[0].append(a)\n\nlst[0].sort(reverse=True)\nlst[1].sort(reverse=True)\nsetlst=[set(lst[0]),set(lst[1])]\nCounerlst=[Counter(lst[0]),Counter(lst[1])]\n\ncount=0\nfor l in range(2):\n for n in lst[l]:\n if n in setlst[l]:\n for p in peki2:\n a=p-n\n\n if a in setlst[l]:\n if n==a:\n if Counerlst[l][n]>=2:\n count+=1\n Counerlst[l][n]-=2\n if Counerlst[l][n]==0:\n setlst[l].remove(n)\n else:\n\n count+=1\n Counerlst[l][a]-=1\n Counerlst[l][n]-=1\n if Counerlst[l][a]==0:\n setlst[l].remove(a)\n if Counerlst[l][n]==0:\n setlst[l].remove(n)\n break\nprint(count)\n", "neg": "from itertools import *\nimport copy\nfrom collections import *\n\n\nN=int(input())\nA=list(map(int,input().split()))\nidle_max=10**9\npeki2=[]\nfor i in range(1,100):\n a=2**i\n if a<=2*idle_max:\n peki2.append(a)\npeki2.sort(reverse=True)\nlst=[[],[]]\nfor a in A:\n if a%2:\n lst[1].append(a)\n else:\n lst[0].append(a)\n\nlst[0].sort(reverse=True)\nlst[1].sort(reverse=True)\nsetlst=[set(lst[0]),set(lst[1])]\nCounerlst=[Counter(lst[0]),Counter(lst[1])]\n\ncount=0\nfor l in range(2):\n for n in lst[l]:\n if n in setlst[l]:\n for p in peki2:\n a=p-n\n if a in setlst[l]:\n count+=1\n Counerlst[l][a]-=1\n Counerlst[l][n]-=1\n if Counerlst[l][a]==0:\n setlst[l].remove(a)\n if Counerlst[l][n]==0:\n setlst[l].remove(n)\n break\nprint(count)\n", "jacc_sim": 0.9824561403508771, "before_after_length": [432, 357], "nl": "Takahashi has N balls with positive integers written on them. He wants to form pairs such that the sum of the integers on each pair is a power of 2. Find the maximum possible number of pairs that can be formed. Constraints: 1 \u2264 N \u2264 2\u00d710^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. Input is given as N followed by N integers. Output the maximum possible number of pairs. For example, given 3 balls with integers 1, 2, and 3, the output is 1, as we can form one pair with a sum of 4. Given 5 balls with integers 3, 11, 14, 5, and 13, the output is 2, as we can form two pairs.", "diff_info": " if a in setlst[l]: if a in setlst[l]:\n if n==a:\n if Counerlst[l][n]>=2:\n an2\n if Counerlst[l][n]==0:\n setlst[l].remove(n)\n else:\n\n count+= naif n]-=1\n if Counerlst[l][ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u861466636", "n_user": "u861466636", "pos": "n = int(input())\ndef dfs(s):\n if int(s) > n:\n return 0\n ret = 1 if all([s.count(c) > 0 for c in '753']) else 0\n for c in '753':\n ret += dfs(s+c)\n return ret\nprint(dfs('0'))", "neg": "n = int(input())\ndef dfs(s):\n if int(s) > n:\n return 0\n ret = 1 if all([s.count(c) for c in '753']) else 0\n for c in '753':\n ret += dfs(s+c)\n return ret\nprint(ret('0'))", "jacc_sim": 1.0, "before_after_length": [81, 79], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "> 0 retdfs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u724732842", "n_user": "u416758623", "pos": "N = int(input())\n\ndef num(s):\n if int(s) > N:\n return 0\n ret = 1 if all(s.count(c) > 0 for c in '753') else 0\n for c in '753':\n ret += num(s+c)\n return ret\n\nprint(num('0'))\n ", "neg": "N = int(input())\n\ndef dfs(s): \n print(s)\n if int(s) > N:\n return 0\n ret = 1 if all(s.count(c) > 0 for c in '753') else 0\n for c in '753':\n ret += dfs(s + c)\n return ret\n\nprint(dfs('0')) ", "jacc_sim": 0.9285714285714286, "before_after_length": [85, 90], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "dfsnum \n print(s)dfsnum dfsnum\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u311636831", "n_user": "u311636831", "pos": "N=int(input())\nl=len(str(N))\n\ndef calc(st):\n st=str(st)\n if(len(st)>l):return 0\n t=calc(st+\"3\")\n f=calc(st+\"5\")\n s=calc(st+\"7\")\n o=0\n if(st.find(\"7\")>=0 and st.find(\"5\")>=0 and st.find(\"3\")>=0 and int(st)<=N):\n o=1\n return (t+f+s+o)\n\nprint(calc(str()))\n\n\n\n\n\n", "neg": "N=999999999\nl=len(str(N))\n\ndef calc(st):\n st=str(st)\n if(len(st)>l):return 0\n t=calc(st+\"3\")\n f=calc(st+\"5\")\n s=calc(st+\"7\")\n o=0\n if(st.find(\"7\")>=0 and st.find(\"5\")>=0 and st.find(\"3\")>=0 and int(st)<=N):\n o=1\n return (t+f+s+o)\n\nprint(calc(str()))\n\n\n\n\n\n", "jacc_sim": 0.9393939393939394, "before_after_length": [152, 150], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "999999999int(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u062459048", "n_user": "u062459048", "pos": "n = int(input())\n\ndef dts(s):\n if int(s) > n:\n return 0\n ret = 1 if all(s.count(_) for _ in '753') else 0\n for i in '753':\n ret += dts(s+i)\n return ret\n \nprint(dts('0'))\n", "neg": "n = int(input())\n\ndef dts(s):\n if int(s) > n:\n return 0\n if ret = 1 if all(s.count(_) for _ in '753') else 0\n for i in '753':\n ret += dts(s+i)\n return ret\n \ndts('0')", "jacc_sim": 0.9642857142857143, "before_after_length": [85, 83], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": " ifprint()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u029329478", "n_user": "u495678669", "pos": "N = int(input())\n\n\ndef dfs(s):\n if int(s) > N:\n return 0\n if s == '0':\n s = ''\n ret = 0\n if all(s.count(c) > 0 for c in '753'):\n ret += 1\n for c in '753':\n ret += dfs(c + s)\n return ret\n\n\nprint(dfs('0'))\n", "neg": "def dfs(s):\n if int(s) > N:\n return 0\n ret = 1 if all(s.count(c) > 0 for c in '753') else 0\n for c in '753':\n ret += dfs(s+c)\n return ret\nprint(dfs('0'))", "jacc_sim": 0.9259259259259259, "before_after_length": [105, 74], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "N = int(input())\n\n\nifret=s1== '0':\n s = ''\n ret = 0\n :\nelse0 ret += 1sc c)\ns)\nreturnurn ret\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u466143662", "n_user": "u466143662", "pos": "import itertools\nn=int(input())\n\nketa=len(str(n))\nhako=[]\nfor i in range(3,keta+1):\n for c in list(itertools.product([\"7\",\"5\",\"3\"],repeat=i)):\n if len(set(c))==3:\n a=int(\"\".join(c))\n hako.append(a)\nif n in hako:\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(len(b)+1) \nelse:\n hako.append(n)\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(int(len(b)))", "neg": "import itertools\nn=int(input())\n\nketa=len(str(n))\nhako=[]\nfor i in range(3,keta+1):\n for c in list(itertools.product([\"7\",\"5\",\"3\"],repeat=i)):\n if len(set(c))==3:\n a=int(\"\".join(c))\n hako.append(a)\nif n in hako:\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(len(b)) \nelse:\n hako.append(n)\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(int(len(b))+1)", "jacc_sim": 1.0, "before_after_length": [199, 200], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": ") \nelse:\n hako.append(n)\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(int(len(b)) \nelse:\n hako.append(n)\n hako.sort()\n k=hako.index(n)\n b=hako[:k]\n print(int(len(b)))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u626881915", "n_user": "u626881915", "pos": "n = int(input())\ncount = 0\nstack = [0]\ndef check(n):\n s = str(n)\n if \"3\" in s and \"5\" in s and \"7\" in s:\n return True\n else:\n return False\nwhile len(stack)>0:\n now = stack.pop()\n if check(now) and now <= n:\n count += 1\n if now < n:\n stack.append(now*10+3)\n stack.append(now*10+5)\n stack.append(now*10+7)\nprint(count)\n \n", "neg": "n = int(input())\nl = [True]*(10**9+1)\ncount = 0\nstack = [3, 5, 7]\ndef check(n, k):\n s = str(n)\n if \"3\" in s and \"5\" in s and \"7\" in s:\n return True\n else:\n return False\nwhile len(stack)>0:\n now = stack.pop()\n if l[now]:\n l[now] = False\n if check(now):\n count += 1\n if now < n:\n stack.append(now*10+3)\n stack.append(now*10+5)\n stack.append(now*10+7)\n stack.append(3*10**len(str(now))+now)\n stack.append(5*10**len(str(now))+now)\n stack.append(7*10**len(str(now))+now)\nprint(count)\n ", "jacc_sim": 0.9090909090909091, "before_after_length": [148, 233], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "count = 0\nstack = [0]\ndef check(n):\n s = str(n)\n if \"3\" in s and \"5\" in s and \"7\" in s:\n return True\n es = [Tru]*:\n return False\nwhile lenstack)>0:\n now = stack.pop()\n if check(now) and now <= n:\n count += 0**9+1)count=i0\nstack = [3, 5, 7]\ndecheck(n, k):\n s = str(n)\n if \"3\" in s and \"5\" in s and \"7\" in s:\n return True\n else:\n return False\nwhile len(stack)>0:\n now = stack.pop()\n if l[now]:\n l[now] = False\n if check(now):\n count += 1\n if stack.apend(3*10**len(st(now))+now)\n stack.append(5*10**len(str(now))+now)\n stack.append(7*10**len(str(now))+now)\npr\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u503228842", "n_user": "u271934630", "pos": "N = int(input())\ndef dfs(s):\n if int(s) > N:\n return 0\n ret = 1 if all(s.count(c)>0 for c in \"753\") else 0\n for c in \"753\":\n ret += dfs(s+c)\n return ret\nprint(dfs(\"0\"))", "neg": "n = int(input())\n\ndef dfs(s):\n print(s)\n if int(s) > n:\n return 0\n ret = 1 if all(s.count(c) > 0 for c in '753') else 0\n for c in '753':\n ret += dfs(s+c)\n return ret\n\nprint(dfs('0'))", "jacc_sim": 0.9285714285714286, "before_after_length": [83, 89], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "nN\nprint(s)\n nN '\"'\"'\"'\" \n'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u945228737", "n_user": "u945228737", "pos": "# import sys\n# sys.setrecursionlimit(10 ** 6)\n# import bisect\nfrom collections import deque\n# from decorator import stop_watch\n#\n#\n# @stop_watch\ndef solve(N):\n dq = deque([(3, [1, 0, 0]), (5, [0, 1, 0]), (7, [0, 0, 1])])\n ans = 0\n while dq:\n num, check = dq.popleft()\n if num > N:\n break\n if sum(check) == 3:\n ans += 1\n for i in (3, 5, 7):\n new_num = num * 10 + i\n if new_num > N:\n break\n new_check = check.copy()\n if i == 3:\n new_check[0] = 1\n elif i == 5:\n new_check[1] = 1\n elif i == 7:\n new_check[2] = 1\n dq.append((new_num, new_check))\n print(ans)\n\n\nif __name__ == '__main__':\n N = int(input())\n solve(N)\n\n # # test\n # from random import randint\n # from func import random_str\n # solve()\n", "neg": "# import sys\n# sys.setrecursionlimit(10 ** 6)\n# import bisect\nfrom collections import deque\nfrom decorator import stop_watch\n\n\n@stop_watch\ndef solve(N):\n dq = deque([(3, [1, 0, 0]), (5, [0, 1, 0]), (7, [0, 0, 1])])\n ans = 0\n while dq:\n num, check = dq.popleft()\n if num > N:\n break\n if sum(check) == 3:\n ans += 1\n for i in (3, 5, 7):\n new_num = num * 10 + i\n if new_num > N:\n break\n new_check = check.copy()\n if i == 3:\n new_check[0] = 1\n elif i == 5:\n new_check[1] = 1\n elif i == 7:\n new_check[2] = 1\n dq.append((new_num, new_check))\n print(ans)\n\n\nif __name__ == '__main__':\n N = int(input())\n solve(N)\n\n # # test\n # from random import randint\n # from func import random_str\n # solve()\n", "jacc_sim": 1.0, "before_after_length": [303, 299], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "#fromfdecoatr iportdestop_watorator import stop_watc### ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u223904637", "n_user": "u223904637", "pos": "n=int(input())\n\ndef ju(n):\n l=list(str(n))\n j=[0]*3\n f=0\n for i in range(len(l)):\n if l[i]=='3':\n j[0]=1\n elif l[i]=='5':\n j[1]=1\n elif l[i]=='7':\n j[2]=1\n else:\n f=1\n if sum(j)==3 and f==0:\n return 1\n else:\n return 0\n\nzenbu=[3,5,7]\n\nfor i in range(8):\n tmp=[]\n for j in zenbu:\n tmp.append(j+3*(10**(i+1)))\n tmp.append(j+5*(10**(i+1)))\n tmp.append(j+7*(10**(i+1)))\n tmp.append(j)\n zenbu=tmp\n \nans=0\nfor i in zenbu:\n if i<=n and ju(i)==1:\n ans+=1\nprint(ans)\n \n", "neg": "n=int(input())\n\ndef ju(n):\n l=list(str(n))\n j=[0]*3\n for i in range(len(l)):\n if l[i]=='3':\n j[0]=1\n elif l[i]=='5':\n j[1]=1\n elif l[i]=='7':\n j[2]=1\n if sum(j)==3:\n return 1\n else:\n return 0\n\nzenbu=[3,5,7]\n\nfor i in range(10):\n tmp=[]\n for j in zenbu:\n tmp.append(j*10+3)\n tmp.append(j*10+5)\n tmp.append(j*10+7)\n \nans=0\nfor i in zenbu:\n if i<=n and ju(i)==1:\n ans+=1\nprint(ans)\n ", "jacc_sim": 0.9565217391304348, "before_after_length": [280, 231], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\n f=0 else:\n f=1\n and f==0810*10*(10**(i+1))*10*(10**(i+1))*10*(10**(i+1))\n tmp.append(j)\n zenbu=tmp\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u558242240", "n_user": "u558242240", "pos": "s = input()\nl = len(s)\nn = int(s)\nans = 0\nimport itertools\nfor li in range(3, l+1):\n for i in itertools.product([7, 5, 3], repeat=li):\n num = int(''.join(map(str, i)))\n if num > n:\n continue\n if len(set(i)) == 3:\n ans += 1\nprint(ans)", "neg": "s = input()\nl = len(s)\nn = int(s)\nans = 0\nimport itertools\nfor li in range(3, l+1):\n for i in itertools.product([7, 5, 3], repeat=li):\n if len(set(i)) == 3:\n ans += 1\n num = int(''.join(map(str, i)))\n if num > n:\n continue\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [103, 103], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\n if len(set(i)) == 3:\n ans += 1pr f letanet(i) == 3:\n ans += 1\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u405660020", "n_user": "u405660020", "pos": "from itertools import product\nn=int(input())\n\nans = 0\nfor i in range(3, 10):\n for s in product('357', repeat=i):\n if len(set(s)) < 3:\n continue\n num = int(''.join(s))\n if num > n:\n break\n ans += 1\nprint(ans)\n", "neg": "from itertools import product\nn=int(input())\n\nans = 0\nfor i in range(3, 10):\n for s in product('357', repeat=i):\n if len(set(s)) < 3:\n continue\n 753num = int(''.join(s))\n if 753num> n:\n break\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9473684210526315, "before_after_length": [88, 92], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "753753 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u922449550", "n_user": "u922449550", "pos": "def f(n, k):\n num_bit = 3 - bin(k).count('1')\n c = [0, 0, 1, 3]\n return 3**n - num_bit*2**n + c[num_bit]\n\n# k = 0:(), 1:(3), 2(5), 3:(3, 5), 4:(7), 5:(3, 7), 6:(5, 7), 7:(3, 5, 7)\ndef solve(N, k=0):\n n = len(N)\n num_used = bin(k).count('1')\n if n==0 and num_used==3:\n return 1\n elif n==0 or n+num_used<3:\n return 0\n else:\n a = int(N[0])\n if a > 7:\n return f(n-1, k|1) + f(n-1, k|2) + f(n-1, k|4)\n elif a == 7:\n return f(n-1, k|2) + f(n-1, k|1) + solve(N[1:], k|4)\n elif a > 5:\n return f(n-1, k|2) + f(n-1, k|1)\n elif a == 5:\n return f(n-1, k|1) + solve(N[1:], k|2)\n elif a > 3:\n return f(n-1, k|1)\n elif a == 3:\n return solve(N[1:], k|1)\n else:\n return 0\n\nN = input()\nbase = sum([f(i, 0) for i in range(3, len(N))])\nprint(solve(N) + base)", "neg": "def f(n, k):\n num_bit = 3 - bin(k).count('1')\n c = [0, 0, 1, 3]\n return 3**n - num_bit*2**n + c[num_bit]\n\n# k = 0:(), 1:(3), 2(5), 3:(3, 5), 4:(7), 5:(3, 7), 6:(5, 7), 7:(3, 5, 7)\ndef solve(N, k=0):\n n = len(N)\n num_used = bin(k).count('1')\n if n==0 and num_used==3:\n return 1\n elif n==0 or n+num_used<3:\n return 0\n else:\n a = int(N[0])\n if a > 7:\n return sum([f(i, 0) for i in range(3, n+1)])\n elif a == 7:\n return f(n-1, k|2) + f(n-1, k|1) + solve(N[1:], k|4)\n elif a > 5:\n return f(n-1, k|2) + f(n-1, k|1)\n elif a == 5:\n return f(n-1, k|1) + solve(N[1:], k|2)\n elif a > 3:\n return f(n-1, k|1)\n elif a == 3:\n return solve(N[1:], k|1)\n elif a > 0:\n return 0\n\nN = input()\nbase = sum([f(i, 0) for i in range(3, len(N))])\nprint(solve(N) + base)", "jacc_sim": 1.0, "before_after_length": [427, 418], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "sum([i, 0) for i i-1 range(3nk|1) f(n-, k|2] + f(n-1, k|4seif a > 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u580697892", "n_user": "u580697892", "pos": "#coding: utf-8\nfrom collections import Counter\nN = int(input())\nl = [\"0\", \"3\", \"5\", \"7\"]\nans = [\"0\" for _ in range(9)]\ncnt = 0\nfor a in l:\n ans[0] = a\n for b in l:\n ans[1] = b\n for c in l:\n ans[2] = c\n for d in l:\n ans[3] = d\n for e in l:\n ans[4] = e\n for f in l:\n ans[5] = f\n for g in l:\n ans[6] = g\n for h in l:\n ans[7] = h\n for i in l:\n ans[8] = i\n ans_i = int(\"\".join(ans))\n ans_c = Counter(str(ans_i))\n if ans_i <= N and \"0\" not in str(ans_i) and len(ans_c.keys()) == 3 and len(str(ans_i)) >= 3:\n cnt += 1\nprint(cnt)", "neg": "#coding: utf-8\nfrom collections import Counter\nN = int(input())\nl = [\"0\", \"3\", \"5\", \"7\"]\nans = [\"0\" for _ in range(9)]\ncnt = 0\nfor a in l:\n ans[0] = a\n for b in l:\n ans[1] = b\n for c in l:\n ans[2] = c\n for d in l:\n ans[3] = d\n for e in l:\n ans[4] = e\n for f in l:\n ans[5] = f\n for g in l:\n ans[6] = g\n for h in l:\n ans[7] = h\n for i in l:\n ans[8] = i\n ans_c = Counter(ans)\n ans_i = int(\"\".join(ans))\n #if ans_i <= N and sum([l[j] in str(ans_i) for j in range(len(l))]) == 3 and len(ans_c.values()) == 3:\n if ans_i <= N and \"0\" not in str(ans_i) and len(ans_c.keys()) == 4 and len(str(ans_i)) >= 3:\n cnt += 1\nprint(cnt)", "jacc_sim": 0.9516129032258065, "before_after_length": [269, 313], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "c = Counter(ans)\n ans_#if ans_i <= N and sum([l[j] in str(ans_i) for j in range(len(l))]) == 3 and len(.val = Contsrstr(ans_i == 3:43", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u941753895", "n_user": "u941753895", "pos": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\n\ndef LI(): return list(map(int,input().split()))\ndef I(): return int(input())\ndef LS(): return input().split()\ndef S(): return input()\n\n# 10 -> n\ndef ten2n(a,n):\n x=a//n\n y=a%n\n if x:\n return ten2n(x,n)+str(y)\n return str(y)\n\ndef main():\n n=I()\n\n l=[]\n for i in range(pow(4,9)):\n l.append(ten2n(i,4).replace('3','7').replace('2','5').replace('1','3'))\n\n cnt=0\n for x in l:\n if int(x)<=n:\n if '3' in x and '5' in x and '7' in x and '0' not in x:\n cnt+=1\n else:\n break\n\n return cnt\n\nprint(main())\n", "neg": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\nsys.setrecursionlimit(10**7)\ninf=10**20\nmod=10**9+7\n\ndef LI(): return list(map(int,input().split()))\ndef I(): return int(input())\ndef LS(): return input().split()\ndef S(): return input()\n\n# 10 -> n\ndef ten2n(a,n):\n x=a//n\n y=a%n\n if x:\n return ten2n(x,n)+str(y)\n return str(y)\n\ndef main():\n n=I()\n\n l=[]\n for i in range(pow(4,10)):\n l.append(ten2n(i,4).replace('3','7').replace('2','5').replace('1','3'))\n\n cnt=0\n for x in l:\n if int(x)<=n:\n if '3' in x and '5' in x and '7' in x and '0' not in x:\n cnt+=1\n else:\n break\n\n return cnt\n\nprint(main())\n", "jacc_sim": 1.0, "before_after_length": [294, 294], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "9)):\n l.append(ten2n(i,4).replace('3','7').replace('2','5').replace('','3'))\n\n cnt=)):fo l.append(ten2n(i,4).ep x in ace:\n if intx)<=n:\n if , in x and '5' in x and ).repl in x ce(nd 20,'5').repla not in x:\n e('nt+=','3'))\n\n cnt=0\n for x in l:\n if int(x)<=n:\n if '3' in x and '5' in x and '7' in x and '0' not in x:\n cnt+=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u298297089", "n_user": "u298297089", "pos": "# https://atcoder.jp/contests/abc114/submissions/6262572\n\nfrom itertools import product\nN = input()\nn = int(N)\nans = 0\nfor i in range(3, len(N)+1):\n for s in product([\"3\",\"5\",\"7\"],repeat=i):\n if int(\"\".join(s)) <= n and \"3\" in s and \"5\" in s and \"7\" in s:\n ans += 1\nprint(ans)\n", "neg": "# https://atcoder.jp/contests/abc114/submissions/6262572\n\nfrom itertools import product\nN = input()\nn = int(N)\nans = 0\nfor i in range(len(N)+1):\n for s in product([\"3\",\"5\",\"7\"],repeat=i):\n if int(\"\".join(s)) <= n and \"3\" in s and \"5\" in s and \"7\" in s:\n ans += 1\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [117, 115], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "3, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u764956288", "n_user": "u764956288", "pos": "N = int(input())\n \ndef dfs(s):\n if int(s) > N:\n return 0\n r = 1 if all([i in s for i in '357']) else 0\n for c in '357':\n r += dfs(s+c)\n return r\n\nprint(dfs('0'))", "neg": "N = int(input())\n\ndef dfs(s):\n if int(s) > N:\n return 0\n r = 1 if all([i in s for i in '357']) else 0\n for c in '357':\n r += dfs(s+c)\n return r\n\nreturn(dfs('0'))", "jacc_sim": 0.9642857142857143, "before_after_length": [79, 78], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": " peinurn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u934868410", "n_user": "u934868410", "pos": "n = int(input())\n \ndef bfs(s):\n if int(s) > n:\n return 0\n return ('3' in s and '5' in s and '7' in s) + bfs(s+'3') + bfs(s+'5') + bfs(s+'7')\n \nprint(bfs('0'))", "neg": "n = int(input())\n\ndef bfs(s):\n if int(s) >= n:\n return 0\n return ('3' in s and '5' in s and '7' in s) + bfs(s+'3') + bfs(s+'5') + bfs(s+'7')\n\nprint(bfs(''))", "jacc_sim": 1.0, "before_after_length": [84, 81], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": " = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u122598824", "n_user": "u122598824", "pos": "N=int(input())\n\ndef dfs(cur,use,counter):\n if cur>N:\n return 0\n \n counter=int(use==0b111)\n\n counter+=dfs(cur*10+7,use | 0b001, counter)\n counter+=dfs(cur*10+5,use | 0b010, counter)\n counter+=dfs(cur*10+3,use | 0b100, counter)\n\n return counter\n\nprint(dfs(0,0,0))", "neg": "N=int(input())\n\ndef dfs(cur,use,counter):\n if cur>N:\n return 0\n \n if use==0b111:\n counter=1\n\n counter+=dfs(cur*10+7,use | 0b001, counter)\n counter+=dfs(cur*10+5,use | 0b010, counter)\n counter+=dfs(cur*10+3,use | 0b100, counter)\n\n return counter\n\nprint(dfs(0,0,0))\n", "jacc_sim": 0.9666666666666667, "before_after_length": [123, 126], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "if use==0b111:\n int(use==0b11)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u750378652", "n_user": "u750378652", "pos": "n=int(input())\nimport bisect\nimport itertools\nl=len(str(n))\nans=[]\nnum=[]\nx=['3', '5', '7']\nfor k in range(3,l+1):\n m=list(itertools.product(x, repeat=k))\n num.extend(m)\nfor i in range(len(num)):\n y=num[i]\n if '3' in y and '5' in y and '7' in y:\n number=''\n for j in range(len(y)):\n number+=y[j]\n ans.append(int(number))\nans.sort()\nprint(bisect.bisect_right(ans, n))", "neg": "n=int(input())\nimport bisect\nimport itertools\nans=[]\nnum=[]\nfor i in range(3,l+1):\n m=list(itertools.product(x, repeat=i))\n num.extend(m)\nfor i in range(len(num)):\n y=num[i]\n if '3' in y and '5' in y and '7' in y:\n number=''\n for j in range(len(y)):\n number+=y[j]\n ans.append(int(number))\nans.sort()\nprint(bisect.bisect_left(ans, n))", "jacc_sim": 0.9130434782608695, "before_after_length": [176, 155], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\nl=len(str(n))x=['3', '5', '7']\nikiklefrigh", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u756829954", "n_user": "u756829954", "pos": "def p_c():\n import sys\n sys.setrecursionlimit(10 ** 9)\n n = int(input())\n ans = 0\n\n def dfs(s):\n \"\"\"\n :type s: str\n \"\"\"\n if int(s) > n:\n return 0\n ret = 1 if all(s.count(c) for c in \"753\") else 0\n for c in \"753\":\n ret += dfs(s + c)\n return ret\n\n print(dfs(\"0\"))\n \np_c()", "neg": "def p_c():\n import sys\n sys.setrecursionlimit(10 ** 9)\n n = int(input())\n ans = 0\n\n def dfs(s):\n \"\"\"\n :type s: str\n \"\"\"\n if int(s) > n:\n return 0\n ret = 1 if all(s.count(c) for c in \"753\") else 0\n for c in \"753\":\n ret += dfs(s.join(c))\n return ret\n\n print(dfs(\"0\"))\n \np_c()", "jacc_sim": 0.9736842105263158, "before_after_length": [132, 134], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": " + .join()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u030879708", "n_user": "u030879708", "pos": "import itertools as t;N=input();X=[]\nfor i in range(10):X+=list(t.product('357',repeat=i))\nprint(sum(len(set(i))>2and int(''.join(i))<=int(N)for i in X))", "neg": "import itertools as t;N=input();X=[];for i in range(9):X+=list(t.product('357',repeat=i));print(sum(len(set(i))>2and int(''.join(i))<=int(N)for i in X))", "jacc_sim": 0.9459459459459459, "before_after_length": [68, 67], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": ";\n910;\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u782098901", "n_user": "u551351897", "pos": "N = int(input())\n\n\ndef dfs(s):\n if int(s) > N:\n return 0\n ret = 1 if all(s.count(c) > 0 for c in \"753\") else 0\n for c in \"753\":\n ret += dfs(s + c)\n return ret\n\nprint(dfs(\"0\"))", "neg": "N = int(input())\ndef dfs(s):\n if int(s) > N:\n return 0\n if all(s.count(c) > 0 for c in '753'):\n ret = 1\n else:\n ret = 0\n for c in '753':\n ret += dfs(s+c)\n\nprint(dfs('0'))", "jacc_sim": 1.0, "before_after_length": [85, 88], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\n\n ret = 1'\"'\":\n ret = 1\n :\n ret ='\"'\" \n return ret'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u274080981", "n_user": "u274080981", "pos": "n = int(input())\n \ndef dfs(s):\n\n if int(s) > n:\n return 0\n if s.count('3') > 0 and s.count('5') > 0 and s.count('7') > 0:\n cnt = 1\n else:\n cnt = 0\n cnt += dfs(s + '3')\n cnt += dfs(s + '5')\n cnt += dfs(s + '7')\n return cnt\n \n \nprint(dfs('0'))", "neg": "n = int(input())\n \ndef dfs(s):\n print(s)\n if int(s) > n:\n return 0\n if s.count('3') > 0 and s.count('5') > 0 and s.count('7') > 0:\n cnt = 1\n else:\n cnt = 0\n cnt += dfs(s + '3')\n cnt += dfs(s + '5')\n cnt += dfs(s + '7')\n return cnt\n \n \nprint(dfs('0'))", "jacc_sim": 1.0, "before_after_length": [120, 125], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\nif int(s) > n:\n return 0\n if s.count('3') > 0 and s.count('5') > 0 and s.count('7') > 0:\n cnt = 1\n else:\n cnt = 0\n cnt += dfs(s + '3')\n cnt += dfs(s + '5')\n cnt += dfs(s + '7')\n return cnt\n \n \ns)\n if int(s) > n:\n return 0\n if s.count('3') > 0 an s.count('5') > 0 and s.count('7') > 0:\n cnt = 1\n else:\n cnt = 0\n cnt += ds + 3')\n cnt += dfs(s + '5')\n cnt += dfs(s + '7')\n return cnt\n \n \nprint(dfs('", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u305965165", "n_user": "u305965165", "pos": "n = int(input())\n\nimport bisect\nl = []\ndef dfs(num, index):\n if index == 9:\n if (num.find(\"3\") != -1) and (num.find(\"5\") != -1) and (num.find(\"7\") != -1):\n l.append(int(num))\n return 0\n \n if num == \"\":\n ret0 = dfs(num + \"\" , index+1)\n ret1 = dfs(num + \"3\", index+1)\n ret2 = dfs(num + \"5\", index+1)\n ret3 = dfs(num + \"7\", index+1)\n\n return 0\n\ndfs(\"\", 0)\n\nprint (bisect.bisect_right(l,n))", "neg": "n = int(input())\n\nimport bisect\nl = []\ndef dfs(num, index):\n if index == 9:\n if (num.find(\"3\") != -1) and (num.find(\"5\") != -1) and (num.find(\"7\") != -1):\n l.append(int(num))\n return 0\n \n if num == \"\":\n ret0 = dfs(num + \"\" , index+1)\n ret1 = dfs(num + \"3\", index+1)\n ret2 = dfs(num + \"5\", index+1)\n ret3 = dfs(num + \"7\", index+1)\n\n return 0\n\ndfs(\"\", 0)\n\ncount = bisect.bisect_left(l,n)\ncount += 1 if n == l[bisect.bisect_left(l,n)] else 0\nprint (count)", "jacc_sim": 0.9047619047619048, "before_after_length": [183, 211], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "coupri(= right(eft(l\ncount += 1 if n == l[bisect.bisect_left(l,n] else 0\nprint (count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u063052907", "n_user": "u063052907", "pos": "# coding: utf-8\nimport itertools\nN = int(input())\nans = 0\n\nfor i in range(3, len(str(N))+1):\n for ptn in itertools.product((3,5,7), repeat=i):\n if (3 not in ptn) or (5 not in ptn) or (7 not in ptn):\n continue\n a = int(\"\".join(list(map(str, ptn))))\n if a <= N:\n ans += 1\nprint(ans)", "neg": "# coding: utf-8\nimport itertools\nN = input()\nans = 0\n\nfor i in range(3, len(N)+1):\n for ptn in itertools.product((3,5,7), repeat=i):\n if (3 not in ptn) or (5 not in ptn) or (7 not in ptn):\n continue\n a = int(\"\".join(list(map(str, ptn))))\n if a <= N:\n ans += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [123, 118], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "t(in)str()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u761471989", "n_user": "u761471989", "pos": "N = int(input())\n\ni = 357\ncount = 0\nif 357 <= N:\n while(1):\n flag = 0\n flag7 = 0\n flag5 = 0\n flag3 = 0\n for j,s in enumerate(str(i)):\n if s != \"7\" and s != \"5\" and s != \"3\":\n flag = 1\n i += 10 ** (len(str(i)) - j - 1)\n break\n if s == \"7\":\n flag7 = 1\n elif s == \"5\":\n flag5 = 1\n elif s == \"3\":\n flag3 = 1\n if flag == 0 and flag7 == 1 and flag5 == 1 and flag3 == 1:\n count += 1\n if flag == 0:\n i += 1\n if N < i:\n break\n\nprint(count)", "neg": "N = int(input())\n\ni = 357\ncount = 0\nif 357 <= N:\n while(1):\n flag = 0\n flag7 = 0\n flag5 = 0\n flag3 = 0\n\n for j,s in enumerate(str(i)):\n if s != \"7\" and s != \"5\" and s != \"3\":\n flag = 1\n i += 10 ** (len(str(i)) - j - 1)\n break\n if s == \"7\":\n flag7 = 1\n elif s == \"5\":\n flag5 = 1\n elif s == \"3\":\n flag3 = 1\n if flag == 0 and flag7 == 1 and flag5 == 1 and flag3 == 1:\n count += 1\n print(str(i))\n if flag == 0:\n i += 1\n if N <= i:\n break\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [209, 218], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "\n print(str(i))\n =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u471684875", "n_user": "u471684875", "pos": "import itertools\nn=str(input())\nans=0\nfor i in range(3,len(n)+1):\n for j in itertools.product([3,5,7], repeat=i):\n if (3 not in j) or (5 not in j) or (7 not in j):\n continue\n a=''.join(list(map(str,j)))\n if int(a)<=int(n):\n ans+=1\nprint(ans)\n\n ", "neg": "import itertools\nn=str(input())\nans=0\nfor i in range(3,len(n)+1):\n for j in itertools.product([3,5,7], repeat=i):\n if (3 not in j) or (5 not in j) or (7 not in j):\n continue\n a=''.join(list(map(str,j)))\n if a<=n:\n ans+=1\nprint(ans)\n\n ", "jacc_sim": 0.975, "before_after_length": [114, 109], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": "int()it(n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u842651507", "n_user": "u842651507", "pos": "n=int(input())\n\ndef dfs(s):\n if n0 for c in \"753\") else 0\n for i in \"753\":\n res += dfs(s+i)\n return res\n\nprint(dfs(\"0\"))\n", "neg": "n=int(input())\n\ndef dfs(s):\n if n0 : 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03212", "p_user": "u072949274", "n_user": "u072949274", "pos": "n = input()\n\ndef f(s):\n if int(s) > int(n):\n return 0\n if all(['3' in s,'5' in s,'7' in s]):\n ans.append(1)\n for t in '3','5','7':\n f(s+t)\n\nans=[]\nf('0')\nprint(sum(ans))\n", "neg": "n = input()\n\ndef f(s):\n if int(s) > int(n):\n return 0\n if all(['3' in s,'5' in s,'7' in s]):\n ans += 1\n for t in '3','5','7':\n f(s+t)\n\nans = 0\nf('0')\nprint(ans)\n", "jacc_sim": 0.90625, "before_after_length": [95, 90], "nl": "You are given an integer N. Find the count of \"Shichi-Go-San numbers\" between 1 and N. A Shichi-Go-San number is a positive integer where the digits 7, 5, and 3 appear at least once in base ten, and no other digits appear. Constraints: 1 \u2264 N < 10^9. Input is given as N, and output should be the count of Shichi-Go-San numbers between 1 and N. For example, given N = 575, there are 4 Shichi-Go-San numbers: 357, 375, 537, and 573.", "diff_info": ".append(1)\n for t in '3','5','7':\n f(st)\n\nans 1[] or t in '3','5','7':\n f's+t)\n\nans = \nf(0'anum(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u703890795", "n_user": "u703890795", "pos": "n = str(input())\nn = n.replace(\"1\", \"x\")\nn = n.replace('9', '1')\nn = n.replace('x', '9')\nprint(int(n))", "neg": "n = input()\nn.replace('1', 'x')\nn.replace('9', '1')\nn.replace('x', '9')\nprint(int(n))", "jacc_sim": 0.9333333333333333, "before_after_length": [49, 41], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "str()n = '\"'\"'\"'\"n = n = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u060392346", "n_user": "u060392346", "pos": "n = input()\nr = [10 - int(n[i]) for i in range(3)]\nprint(\"\".join(map(str, r)))\n\n", "neg": "n = input()\nr = [10 - int(n[i]) for i in range(n)]\nprint(\"\".join(map(str, r)))\n\n", "jacc_sim": 0.9565217391304348, "before_after_length": [37, 37], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "n3", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u602677143", "n_user": "u602677143", "pos": "s = list(input())\nfor i in range(len(s)):\n if s[i] == \"9\":\n s[i] = \"1\"\n elif s[i] == \"1\":\n s[i] = \"9\"\nfor i in s:\n print(i,end=\"\")", "neg": "s = list(input())\nfor i in range(len(s)):\n if ls[i] == \"9\":\n ls[i] = \"1\"\n elif ls[i] == \"1\":\n ls[i] = \"9\":\nfor i in s:\n print(i,end=\"\")", "jacc_sim": 0.9565217391304348, "before_after_length": [74, 74], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": " ll ll : ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u745562158", "n_user": "u745562158", "pos": "n = input()\nn = n.replace('1', '2')\nn = n.replace('9', '1')\nn = n.replace('2', '9')\nprint(n)", "neg": "n = input()\nn.replace('1', '2')\nn.replace('9', '1')\nn.replace('2', '9')\nprint(n)", "jacc_sim": 1.0, "before_after_length": [45, 39], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "n = = nn = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u415325136", "n_user": "u415325136", "pos": "input = str(input())\ninput = input.replace(\"9\", \"_\")\ninput = input.replace(\"1\", \"9\")\ninput = input.replace(\"_\", \"1\")\nprint(input)\n", "neg": "input = str(input())\ninput.replace('9', '_').replace('1', '9').replace('_', '1')\nprint(input)", "jacc_sim": 1.0, "before_after_length": [47, 34], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": " = input'\"'\"'\"'\"\ninput = input'\"'\"'\"'\"\ninput = input'\"'\"'\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u603324902", "n_user": "u603324902", "pos": "n = str(input())\n\nans = 0\nif n[0] == \"1\":\n ans += 900\nelse:\n ans += 100\n\nif n[1] == \"1\":\n ans += 90\nelse:\n ans += 10\n\nif n[2] == \"1\":\n ans += 9\nelse:\n ans += 1\n\nprint(ans)", "neg": "n = str(input())\n\nans = 0\nif n[0] == \"1\":\n ans += 900\nelse:\n ans += 100\n\nif n[0] == \"1\":\n ans += 90\nelse:\n ans += 10\n\nif n[0] == \"1\":\n ans += 9\nelse:\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9565217391304348, "before_after_length": [89, 89], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "0102", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u803503672", "n_user": "u803503672", "pos": "s = input()\nl = \"\"\nfor i in range(3):\n if s[i] == \"1\":\n l += \"9\"\n else:\n l += \"1\"\n \nprint(int(l))", "neg": "s = input()\nl = \"\"\nfor i in range(3):\n if s[0] == \"1\":\n l += \"9\"\n else:\n l += \"1\"\n \nprint(l)", "jacc_sim": 0.9130434782608695, "before_after_length": [54, 52], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "0iint()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u386819480", "n_user": "u386819480", "pos": "n = input()\nln = list(n)\n \nfor i in range(len(ln)):\n if ln[i] == '1':\n ln[i] = '9'\n elif ln[i] == '9':\n ln[i] = '1'\n \nn = ''.join(ln)\nprint(int(n))", "neg": "n = input()\nln = list(n)\n\nfor i in range(len(ln)):\n if ln[i] == '1':\n ln[i] = '9'\n elif ln[i] == '9':\n ln[i] = '1'\n \nn = ''.join(ln)\nprint(n = ''.join(ln))", "jacc_sim": 0.9583333333333334, "before_after_length": [84, 87], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": " n = ''.jotl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u244836567", "n_user": "u244836567", "pos": "a=input()\nprint(a.replace(\"1\",\"8\").replace(\"9\",\"1\").replace(\"8\",\"9\"))", "neg": "a=input()\na.replace(9,8)\na.replace(1,9)\na.replace(8,1)\nprint(a)", "jacc_sim": 0.9230769230769231, "before_after_length": [28, 36], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "print(9\"1\"\"\"\na\"9\",\"\",9\na\"\"1\"9\"\nprint(a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u190875453", "n_user": "u190875453", "pos": "text = list(input())\n\ndef swap(char, a, b):\n if char == a:\n return(b)\n if char == b:\n return(a)\n\nres = list(map(lambda x: swap(x, \"1\", \"9\"), text))\nprint(\"\".join(res))", "neg": "text = list(input())\n\ndef swap(char, a, b):\n if char == a:\n return(b)\n if char == b:\n return(a)\n\nres = list(map(lambda x: swap(x, \"1\", \"9\"), text))\nprint(\"\".join(res))\n~ ", "jacc_sim": 0.9615384615384616, "before_after_length": [75, 78], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\n~ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u886142147", "n_user": "u886142147", "pos": "s = input()\nans = \"\"\n\nfor i in range(3):\n if s[i] == \"1\":\n ans = ans + \"9\"\n else:\n ans = ans + \"1\"\n\nprint(ans)", "neg": "n = input()\nans = \"\"\n\nfor i in range(3):\n if n[i] == 1:\n ans = ans + \"9\"\n else:\n ans = ans + \"1\"\n\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [56, 55], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "nsns\"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u617037231", "n_user": "u617037231", "pos": "n = input()\ns = ''\nfor c in n:\n if c == '1':\n s += '9'\n else:\n if c == '9':\n s += '1'\n else:\n s += c\nprint(s)", "neg": "n = input()\ns = ''\nfor c in n:\n if c == '1':\n s += '9'\n else:\n \tif c == '9':\n \ts += '1'\n else:\n s += c\nprint(s)\n ", "jacc_sim": 1.0, "before_after_length": [62, 66], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\t \t \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u407535999", "n_user": "u407535999", "pos": "N=input()\nanswer=\"\"\nif N[0]==\"1\":\n answer+=\"9\"\nelse:\n answer+=\"1\"\nif N[1]==\"1\":\n answer+=\"9\"\nelse:\n answer+=\"1\"\nif N[2]==\"1\":\n answer+=\"9\"\nelse:\n answer+=\"1\"\nprint(answer)\n", "neg": "N=input()\nanswer=\"\"\nif N[0]==1:\n answer+=\"9\"\nelse:\n answer+=\"1\"\nif N[1]==1:\n answer+=\"9\"\nelse:\n answer+=\"1\"\nif N[1]==1:\n answer+=\"9\"\nelse:\n answer+=\"1\"\nprint(answer)", "jacc_sim": 0.9444444444444444, "before_after_length": [92, 91], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\"\"\"\"12\"\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u013756322", "n_user": "u013756322", "pos": "print(input().replace('1', 'o').replace('9', '1').replace('o', '9'))\n", "neg": "print(input().replace('1', '9').replace('9', '1'))", "jacc_sim": 0.9090909090909091, "before_after_length": [26, 18], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "9o.replace('o', '9')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u079022116", "n_user": "u079022116", "pos": "n=input()\nfor i in range(3):\n if int(n[i]) == 1:print(9,end='')\n else:print(1,end='')", "neg": "n=int(input())\nfor i in range(len(n)):\n if n[i] == 1:print(9,end='')\n else:print(print(1,end=''))", "jacc_sim": 0.9130434782608695, "before_after_length": [42, 47], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "int()3len(n)int()print()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u455642216", "n_user": "u455642216", "pos": "n=input()\nprint(n.replace(\"9\",\"x\").replace(\"1\",\"9\").replace(\"x\",\"1\"))", "neg": "n=input()\nprint(n.replace(\"1\",\"x\").replace(\"9\",\"1\").replace(\"x\",\"1\"))", "jacc_sim": 1.0, "before_after_length": [28, 28], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "199119", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u537962130", "n_user": "u537962130", "pos": "n=input()\nn=n.replace('9','a')\nn=n.replace('1','9')\nn=n.replace('a','1')\nprint(n)", "neg": "n=input()\nn.replace('1','a')\nn.replace('9','1')\nn.replace('a','9')\nprint(n)", "jacc_sim": 1.0, "before_after_length": [42, 36], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "n=n.replace('9','a')\nn=a9=.replace('9','1')\n91", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u129978636", "n_user": "u129978636", "pos": "n = list(map( int, input()))\n \nh = 3\nfor i in range(h):\n if( n[i] == 1):\n n[i] = 9\n n[i] = str(n[i]) \n else:\n n[i] = 1\n n[i] = str(n[i])\n \na = \"\".join(n)\n \nprint(a)", "neg": "n = list(map( int, split()))\n \nh = 3\nfor i in range(h):\n if( n[i] == 1):\n n[i] = 9\n n[i] = str(n[i]) \n else:\n n[i] = 1\n n[i] = str(n[i])\n \na = \"\".join(n)\n \nprint(a)", "jacc_sim": 0.9310344827586207, "before_after_length": [100, 100], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "sinuli", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u106297876", "n_user": "u106297876", "pos": "c=list(input())\nans=str()\nans=str()\nfor i in range(len(c)):\n if c[i]=='9':\n c[i]='1'\n else:\n c[i]='9'\n \n ans+=c[i]\n \nprint(int(ans))", "neg": "c=list(input())\nans=str()\nfor i in range(len(c)):\n if c[i]=='9':\n c[i]='1'\n ans+=c[i]\nprint(int(ans))", "jacc_sim": 0.9583333333333334, "before_after_length": [79, 57], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": ")\nans=str(else:\n c[i]='9'\n \n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u501750652", "n_user": "u501750652", "pos": "from functools import reduce\n\nN = int(input())\nN_list = [int(x) for x in list(str(N))]\n\nN_ = []\nfor i in N_list:\n if i == 1:\n i = 9\n elif i == 9:\n i = 1\n N_.append(i)\n\nnew_N = int(reduce(lambda x,y: x+y, [str(x) for x in N_]))\n\nprint(new_N) \n", "neg": "from functools import reduce\n\nN = int(input())\nN_list = [int(x) for x in list(str(N))]\n\nN_ = []\nfor i in N_list:\n print(\"i\", i)\n if i == 1:\n i = 9\n elif i == 9:\n i = 1\n N_.append(i)\n\nnew_N = int(reduce(lambda x,y: x+y, [str(x) for x in N_]))\n\nprint(new_N)", "jacc_sim": 0.9705882352941176, "before_after_length": [118, 124], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\n print(\"i\", i) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u602850810", "n_user": "u602850810", "pos": "n = input()\n\ndef change(d):\n if d == '1':\n return '9'\n elif d == '9':\n return '1'\n else:\n return d\n\nprint(''.join([change(d) for d in n]))", "neg": "n = input()\n\ndef change(d):\n if d == '1':\n return '9'\n elif d == '9':\n \treturn '1'\n else\n \treturn d\n\nprint(''.join([change(d) for d in n]))", "jacc_sim": 1.0, "before_after_length": [63, 64], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\t :\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u333731247", "n_user": "u333731247", "pos": "n=int(input())\n\nN=[0]*3\nm=[0]*3\n\nN[0]=int(n/10)\nN[1]=int(N[0]/10)\nN[2]=int(N[1]/10)\n\nm[0]=int(n%10)\nm[1]=int(N[0]%10)\nm[2]=int(N[1]%10)\n\nfor i in range(0,3):\n if m[i]==1:\n m[i]=9\n elif m[i]==9:\n m[i]=1\n\nprint(int(m[2]*100+m[1]*10+m[0]))", "neg": "n=int(input())\n\nN=[0]*3\nm=[0]*3\n\nN[0]=int(n/10)\nN[1]=int(N[0]/10)\nN[2]=int(N[1]/10)\n\nm[0]=int(n%10)\nm[1]=int(N[0]%10)\nm[2]=int(N[1]%10)\n\nfor i in range(0,3):\n if m[i]==1:\n m[i]=9\n elif [i]==9:\n m[i]=1\nprint(N[0],N[1],N[2]) \nprint(m[0],m[1],m[2])\nprint(int(m[2]*100+m[1]*10+m[0]))", "jacc_sim": 1.0, "before_after_length": [172, 201], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "m\nint(mN[0],N[1],N) \nprint(m[0],m[1],m[2])\nprint(int(m[2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u752522099", "n_user": "u752522099", "pos": "num = input()\nlis = \"\"\n\nfor i in num:\n if i == \"1\":\n lis+=\"9\"\n else:\n lis+=\"1\"\n\nprint(int(lis))", "neg": "num = input()\nlis = \"\"\n\nfor i in num:\n if i == \"1\":\n lis+=\"9\"\n else:\n lis+=\"1\"\n\nprint(int(num))", "jacc_sim": 1.0, "before_after_length": [53, 52], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "numlis", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u671211357", "n_user": "u671211357", "pos": "N=input()\nans=[]\nfor i in range(len(N)):\n if N[i]==\"1\":\n ans.append(9)\n else:\n ans.append(1)\nprint(*ans,sep=\"\")\n", "neg": "N=input()\nans=[]\nfor i in range(len(N)):\n if N[i]==\"0\":\n ans.append(9)\n else:\n ans.append(0)\nprint(*ans,sep=\"\")", "jacc_sim": 0.9230769230769231, "before_after_length": [58, 57], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "0101\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u483005329", "n_user": "u483005329", "pos": "n=input()\nd={\"9\":\"1\",\"1\":\"9\"}\nprint(\"\".join(d[x] for x in n))", "neg": "n=input()\nd={\"9\":\"1\",\"1\":\"9\"}\n\"\".join(d[x] for in n)", "jacc_sim": 0.9523809523809523, "before_after_length": [32, 30], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "print(x )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u395761272", "n_user": "u395761272", "pos": "input_line = str(input())\ns = []\n\nfor i in range(len(input_line)):\n if input_line[i] == '9':\n s.append('1')\n elif input_line[i] == '1':\n s.append('9')\n else:\n s.append(input_line[i])\n\nmojiretu = ''\n\nfor x in s:\n mojiretu += x\n\nprint(int(mojiretu))\n", "neg": "input_line = str(input())\ns = []\n\nfor i in range(len(input_line)):\n if input_line == '9':\n s.append('1')\n elif input_line == '1':\n s.append('9')\n else:\n s.append(input_line[i])\n\nfor x in s:\n mojiretu += x\n \nprint(mojiretu)\n", "jacc_sim": 0.9642857142857143, "before_after_length": [122, 106], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "if f nput_lput_lin[i] elif input_linlif input_line[i] mojiretu = ''\n\n int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u230621983", "n_user": "u230621983", "pos": "n = input()\nans =''\nfor l in n:\n if l == '1':\n ans += '9'\n else:\n ans += '1'\nprint(ans)", "neg": "n = input()\nans = 0\nfor l in n:\n if l == '1':\n ans += 9\n else:\n ans += 1\nprint(ans)", "jacc_sim": 0.9444444444444444, "before_after_length": [45, 41], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": " 0''''''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u739798900", "n_user": "u794544096", "pos": "n = input()\nprint(n.replace('9','x').replace('1','9').replace('x','1'))", "neg": "n = input()\nprint(n.replace(\"1\", \"9\").replace(\"9\", \"1\"))", "jacc_sim": 0.9230769230769231, "before_after_length": [27, 24], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\"1\"'9''x' \"9\"\"'1','\"').replace('x'' \"\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u518064858", "n_user": "u518064858", "pos": "n=input()\nans=\"\"\nfor i in range(len(n)):\n if n[i]==\"1\":\n ans+=\"9\"\n else:\n ans+=\"1\"\nprint(ans)\n", "neg": "n=input()\nfor i in range(len(n)):\n if n[i]==\"1\":\n n[i]=\"9\"\n else:\n n[i]=\"1\"\nprint(n)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [53, 53], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": "\nans=\"\"as+[i]as+[i]as", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03242", "p_user": "u363992934", "n_user": "u363992934", "pos": "s = input()\nchanger = {\"1\":\"9\", \"9\":\"1\"}\nanswer = \"\"\nfor chr in s:\n answer += changer[chr] #+ answer\nprint(int(answer))", "neg": "s = input()\nchanger = {\"1\":\"9\", \"9\":\"1\"}\nanswer = \"\"\nfor chr in s:\n answer = changer[chr] + answer\nprint(int(answer))", "jacc_sim": 0.9565217391304348, "before_after_length": [48, 47], "nl": "Score: 100 points\n\nProblem Statement:\nCat Snuke is learning to write characters. Today, he practiced writing digits 1 and 9, but he did it the other way around. You are given a three-digit integer n written by Snuke. Print the integer obtained by replacing each digit 1 with 9 and each digit 9 with 1 in n.\n\nConstraints:\n111 \u2264 n \u2264 999\nn is an integer consisting of digits 1 and 9.\n\nInput:\nInput is given from Standard Input in the following format:\nn\n\nOutput:\nPrint the integer obtained by replacing each occurrence of 1 with 9 and each occurrence of 9 with 1 in n.\n\nSample Input 1:\n119\n\nSample Output 1:\n991\nReplace the 9 in the ones place with 1, the 1 in the tens place with 9, and the 1 in the hundreds place with 9. The answer is 991.\n\nSample Input 2:\n999\n\nSample Output 2:\n111", "diff_info": " +#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u705418271", "n_user": "u705418271", "pos": "n = int(input())\nalist = list(map(int,input().split()))\nlist1 = alist[1::2]\nlist2 = alist[0::2]\nfrom collections import Counter\ndic1 = Counter(list1).most_common()\ndic2 = Counter(list2).most_common()\ndic1.append([0,0])\ndic2.append([0,0])\nif dic1[0][0]!=dic2[0][0]:\n print(n - dic1[0][1] - dic2[0][1])\nelse:\n print(min(n - dic1[0][1] - dic2[1][1], n -dic1[1][1] - dic2[0][1]))", "neg": "n = int(input())\nalist = list(map(int,input().split()))\nlist1 = alist[1::2]\nlist2 = alist[0::2]\nfrom collections import Counter\ndic1 = Counter(list1).most_common()\ndic2 = Counter(list2).most_common()\n\nif dic1[0][0]!=dic2[0][0]:\n print(n - dic1[0][1] - dic2[0][1]+1)\nelse:\n print(min(n - dic1[0][1] - dic2[1][1]+1, n -dic1[1][1] - dic2[0][1]+1))", "jacc_sim": 0.9428571428571428, "before_after_length": [177, 164], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "dic1.append([0,0])\ndic2.append([0,0])+1+1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u896451538", "n_user": "u896451538", "pos": "import math\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10**7)\nmod = 10**9+7\ninf = 10**20\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\ndef counter_top(c,exclude):\n for a in c.most_common():\n if a[0]!=exclude:\n return a\n return (object(),0)\n\ndef conv_seq(seq,exclude = None):\n c = collections.Counter(seq)\n mc = counter_top(c,exclude)\n return sum(c.values()) - mc[1],mc[0]\n\nN = I()\nV = LI()\n\ns1,a = conv_seq(V[::2])\ns2,b = conv_seq(V[1::2])\n\n\nif s1!=s2:\n print(s1+s2)\nelse:\n s1_new,_ = conv_seq(V[::2],exclude=b)\n s2_new,_ = conv_seq(V[1::2],exclude=a)\n print(min(s1_new+s2,s1+s2_new))\n", "neg": "import math\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10**7)\nmod = 10**9+7\ninf = 10**20\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\ndef counter_top(c,exclude):\n for a in c.most_common():\n if a[0]!=exclude:\n return a\n return (object(),0)\n\ndef conv_seq(seq,exclude = None):\n c = collections.Counter(seq)\n mc = counter_top(c,exclude)\n return sum(c.values()) - mc[1],mc[0]\n\nN = I()\nV = LI()\n\nl = [V[i] for i in range(0,N,2)]\nr = [V[i] for i in range(1,N,2)]\n\ns1,a = conv_seq(V[::2])\ns2,b = conv_seq(V[1::2])\n\nif s1!=s2:\n print(a+b)\nelse:\n s1_new,_ = conv_seq(V[::2],exclude=b)\n s2_new,_ = conv_seq(V[1::2],exclude=a)\n print(min(s1_new+s2,s1+s2_new))", "jacc_sim": 0.9629629629629629, "before_after_length": [429, 465], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "ls1,a[conv_seq(i::2)\ns for i in range(0,N,,b)]\nr[conv_seq(i1::2)\n\n\n for fsin range(,N,!=s:)]\n print(+s2)\nelse:\n s1_newa_,exclude=b _newb_)\n\nif s1!=s2:\n print(a+b)\nelse:\n s1_new,_ = conv_seq(V[::2],exclude=b)\n s2_new,_ = conv_seq(V[1::2]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u159335277", "n_user": "u159335277", "pos": "from collections import defaultdict\n\nn = int(input())\nv = list(map(int, input().split()))\nv1 = [v[i] for i in range(0, n, 2)]\nv2 = [v[i] for i in range(1, n, 2)]\n\ncnt1 = defaultdict(int)\ncnt2 = defaultdict(int)\nfor x in v1:\n cnt1[x] += 1\nfor x in v2:\n cnt2[x] += 1\nvc1 = []\nvc2 = []\nfor k, v in cnt1.items():\n vc1.append((v, k))\nfor k, v in cnt2.items():\n vc2.append((v, k))\nvc1.sort()\nvc1.reverse()\nvc2.sort()\nvc2.reverse()\n\nvc1.append((0, vc1[0][0] + 1))\nvc2.append((0, vc2[0][0] + 1))\n\nans = n\nfor _, x1 in vc1[:2]:\n for _, x2 in vc2[:2]:\n if x1 == x2: continue\n s = 0\n for x in v1:\n if x != x1: s += 1\n for x in v2:\n if x != x2: s += 1\n ans = min(ans, s)\nprint(ans)", "neg": "from collections import defaultdict\n\nn = int(input())\nv = list(map(int, input().split()))\nv1 = [v[i] for i in range(0, n, 2)]\nv2 = [v[i] for i in range(1, n, 2)]\n\ncnt1 = defaultdict(int)\ncnt2 = defaultdict(int)\nfor x in v1:\n cnt1[x] += 1\nfor x in v2:\n cnt2[x] += 1\nvc1 = []\nvc2 = []\nfor k, v in cnt1.items():\n vc1.append((v, k))\nfor k, v in cnt2.items():\n vc2.append((v, k))\nvc1.sort()\nvc1.reverse()\nvc2.sort()\nvc2.reverse()\n\nvc1.append((0, vc1[0][0] + 1))\nvc2.append((0, vc2[0][0] + 1))\n\nans = n\nfor _, x1 in vc1[:2]:\n for _, x2 in vc2[:2]:\n s = 0\n for x in v1:\n if x != x1: s += 1\n for x in v2:\n if x != x2: s += 1\n ans = min(ans, s)\nprint(ans)", "jacc_sim": 0.9795918367346939, "before_after_length": [328, 318], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "if x1 == x2: continue\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u903948194", "n_user": "u903948194", "pos": "from collections import Counter\n\nn = int(input())\nV = [int(n) for n in input().split()]\n\nif len(set(V)) == 1:\n ans = len(V) // 2\nelse:\n vp_ = [v for i, v in enumerate(V) if i%2 == 0] \n vn_ = [v for i, v in enumerate(V) if i%2 != 0] \n\n vp = Counter(vp_).most_common()\n vn = Counter(vn_).most_common()\n\n if vp[0][0] != vn[0][0]:\n gp = vp[0][1]\n gn = vn[0][1]\n else:\n if vp[0][1] > vn[0][1]:\n gp = vp[0][1]\n gn = vn[1][1]\n elif vp[0][1] < vn[0][1]:\n gp = vp[1][1]\n gn = vn[0][1]\n else:\n if vp[1][1] >= vn[1][1]:\n gp = vp[1][1]\n gn = vn[0][1]\n else:\n gp = vp[0][1]\n gn = vn[1][1]\n \n ans = n - gp - gn\nprint(ans)", "neg": "from collections import Counter\n\nn = int(input())\nV = [int(n) for n in input().split()]\n\nif len(set(V)) == 1:\n ans = len(V) // 2\nelse:\n vp_ = [v for i, v in enumerate(V) if i%2 == 0] \n vn_ = [v for i, v in enumerate(V) if i%2 != 0] \n\n vp = Counter(vp_).most_common()\n vn = Counter(vn_).most_common()\n\n if vp[0][0] != vn[0][0]:\n gp = vp[0][1]\n gn = vn[0][1]\n else:\n if vp[0][1] > vn[0][1]:\n gp = vp[0][1]\n gn = vn[1][1]\n elif vp[0][1] < vn[0][1]:\n gp = vp[1][1]\n gn = vn[0][1]\n else vp[0][1] == vn[0][1]:\n if vp[1][1] >= vn[1][1]:\n gp = vp[1][1]\n gn = vp[0][1]\n else:\n gp = vp[0][1]\n gn = vp[1][1]\n \n ans = n - gp - gn\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [318, 330], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": " vp[0][1] == vn[0][1]p[0][1]\n else:\n gp = vp[0][1]\n g[0][1]\n=v else:\n g = vp[0][1]\n gn = vn", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u278057806", "n_user": "u278057806", "pos": "from collections import Counter\n\nn = int(input())\nV = list(map(int, input().split()))\n\nVodd = V[: len(V):2]\nVeven = V[1: len(V):2]\n\nVoc = Counter(Vodd)\nVec = Counter(Veven)\n\nVoc_val, Voc_cnt = zip(*Voc.most_common())\nVec_val, Vec_cnt = zip(*Vec.most_common())\n\nVoc_val, Voc_cnt = list(Voc_val), list(Voc_cnt)\nVec_val, Vec_cnt = list(Vec_val), list(Vec_cnt)\n\nnum = Voc.most_common()[0][1] + Vec.most_common()[0][1]\n\nif Voc_val[0] == Vec_val[0]:\n Voc_cnt.append(0)\n Vec_cnt.append(0)\n num += max(Voc_cnt[1] - Voc_cnt[0], Vec_cnt[1] - Vec_cnt[0])\n\nprint(n - num)\n", "neg": "from collections import Counter\n\nn = int(input())\nV = list(map(int, input().split()))\n\nVodd = V[: len(V):2]\nVeven = V[1: len(V):2]\n\nif Vodd == Veven:\n print(n // 2)\n\n\nVoc = Counter(Vodd)\nVec = Counter(Veven)\n\nVoc_val, Voc_cnt = zip(*Voc.most_common())\nVec_val, Vec_cnt = zip(*Vec.most_common())\n\nVoc_val, Voc_cnt = list(Voc_val), list(Voc_cnt)\nVec_val, Vec_cnt = list(Vec_val), list(Vec_cnt)\n\nnum = Voc.most_common()[0][1] + Vec.most_common()[0][1]\n\nif Voc_val[0] == Vec_val[0]:\n Voc_cnt.append(0)\n Vec_cnt.append(0)\n num += max(Voc_cnt[1] - Voc_cnt[0], Vec_cnt[1] - Vec_cnt[0])\n\nprint(n - num)\n", "jacc_sim": 0.9761904761904762, "before_after_length": [265, 283], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "ifVoc= Counter()\n == vec = Couter(Veven)\n\nVoc_val, Voc_cnt = zip(*Voc.most_common())\nVec_val, Vec_cnt = zip(*Vec.most_common())\n\nVoc_val, Voc_cnt = list(Voc_val), list(Voc_cnt)\nVec_val, Vec_cnt = list(Vec_val), list(Vec_cnt)\n\nnum = Voc.most_common()[0][1] + Vec.most_common()[0][1]\n\nif Voc_val[0] == Vec_val[0]Voc_cnt.append(0)\n Vec_cnt.append(0)\n num += max(Voc_cnt[1] - Voc_cnt[0], Vec_cnt[1] - Vec_cnt[0])\n\n// 2)\n\n\nVoc = Counter(Vodd)\nVec = Counter(Veven)\n\nVoc_val, Voc_cnt = zip(*Voc.most_common())\nVec_val, Vec_cnt = zip(*Vec.most_common())\n\nVoc_val, Voc_cnt = list(Voc_val), list(Voc_cnt)\nVec_val, Vec_cnt = list(Vec_val), list(Vec_cnt)\n\nnum = Voc.most_common()[0][1] + Vec.most_common()[0][1]\n\nif Voc_val[0] == Vec_val[0]:\n Voc_cnt.append(0)\n Vec_cnt.append(0)\n num += max(Voc_cnt[1] Voc_ct[0], Vec_cnt[1] - Vec_cnt[0])\n\nprint(n - n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u671060652", "n_user": "u671060652", "pos": "import itertools\nimport math\nimport fractions\nimport functools\nimport copy\n\nn = int(input())\nv = list(map(int, input().split()))\n\nkisu = [0]*(10**6)\ngusu = [0]*(10**6)\nfor i in range(n):\n if i % 2 == 0:\n gusu[v[i]] += 1\n else:\n kisu[v[i]] += 1\n\ncount = 0\ngusu_m = gusu.index(max(gusu))\nkisu_m = kisu.index(max(kisu))\n\nif gusu_m == kisu_m:\n\n gusu[gusu_m] = 0\n kisu[kisu_m] = 0\n if max(gusu) > max(kisu):\n gusu_m = gusu.index(max(gusu))\n else:\n kisu_m = kisu.index(max(kisu))\n\nfor i in range(n):\n if i % 2 == 0 and gusu_m != v[i]:\n count += 1\n if i % 2 != 0 and kisu_m != v[i]:\n count += 1\n\nprint(count)\n", "neg": "import itertools\nimport math\nimport fractions\nimport functools\nimport copy\n\nn = int(input())\nv = list(map(int, input().split()))\n\nkisu = [0]*(10**6)\ngusu = [0]*(10**6)\nfor i in range(n):\n if i % 2 == 0:\n gusu[v[i]] += 1\n else:\n kisu[v[i]] += 1\n\ncount = 0 \ngusu_m = gusu.index(max(gusu))\nkisu_m = kisu.index(max(kisu))\nfor i in range(n):\n if i % 2 == 0 and gusu_m != v[i]:\n count += 1\n if i % 2 != 0 and kisu_m != v[i]:\n count += 1\n\nprint(count)\n\n", "jacc_sim": 0.9782608695652174, "before_after_length": [320, 217], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": " \nif gusu_m == kisu_m:\n\n gusu[gusu_m] = 0\n kisu[kisu_m] = 0\n if max(gusu) > max(kisu):\n gusu_m = gusu.index(max(gusu))\n else:\n kisu_m = kisu.index(max(kisu))\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u285660186", "n_user": "u285660186", "pos": "import collections\n\nn=int(input())\nnum_str=input().split()\nlist=list(map(int, num_str))\n\nlist_e = [list[i] for i in range(0,n-1,2)]\nlist_o = [list[i] for i in range(1,n,2)]\ne = collections.Counter(list_e)\no = collections.Counter(list_o)\nmode_e=e.most_common(2)\nmode_o=o.most_common(2)\nmode_e.append((-1,0))\nmode_o.append((-1,0))\nif mode_e[0][0]==mode_o[0][0]:\n print(n-max(mode_e[0][1]+mode_o[1][1],mode_e[1][1]+mode_o[0][1]))\n # if mode_e[0][1]>mode_o[0][1]:\n # mode_e_value=mode_e[0][1]\n # mode_o_value=mode_o[1][1]\n # else:\n # mode_e_value=mode_e[1][1]\n # mode_o_value=mode_o[0][1]\nelse:\n mode_e_value = mode_e[0][1]\n mode_o_value = mode_o[0][1]\n print(n-mode_e_value-mode_o_value)\n", "neg": "import collections\n\nn=int(input())\nnum_str=input().split()\nlist=list(map(int, num_str))\n\nlist_e = [list[i] for i in range(0,n-1,2)]\nlist_o = [list[i] for i in range(1,n,2)]\ne = collections.Counter(list_e)\no = collections.Counter(list_o)\nmode_e=e.most_common(2)\nmode_o=o.most_common(2)\nif mode_e[0][0]==mode_o[0][0]:\n if mode_e[0][1]>mode_o[0][1]:\n mode_e_value=mode_e[0][1]\n mode_o_value=mode_o[1][1]\n else:\n mode_e_value=mode_e[1][1]\n mode_o_value=mode_o[0][1]\nelse:\n mode_e_value = mode_e[0][1]\n mode_o_value = mode_o[0][1]\nprint(n-mode_e_value-mode_o_value)\n", "jacc_sim": 0.9069767441860465, "before_after_length": [360, 285], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "mode_e.append((-1,0))\nmode_o.append((-1,0))\nprint(n-max(mode_e[0][1]+mode_o[1][1],mode_e[1][1]+mode_o[0][1]))\n # # # # # # ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u642528832", "n_user": "u642528832", "pos": "import collections\n\nn = int(input())\na = list(map(int,input().split()))\na1 = collections.Counter(a[0::2]).most_common()\na2 = collections.Counter(a[1::2]).most_common()\na1.append((0,0))\na2.append((0,0))\n#print(a1)\n#print(a2)\n\nif a1[0] != a2[0]:\n print(n-a1[0][1]-a2[0][1])\nelse:\n print(min(n-a1[0][1]-a2[1][1],n-a1[1][1]-a2[0][1]))\n\n", "neg": "import collections\n\nn = int(input())\na = list(map(int,input().split()))\na1 = collections.Counter(a[0::2]).most_common()\na2 = collections.Counter(a[1::2]).most_common()\n#a1.append((0,0))\n#a2.append((0,0))\nprint(a1)\nprint(a2)\n\nif a1[0] != a2[0]:\n print(n-a1[0][1]-a2[0][1])\nelse:\n print(min(n-a1[0][1]-a2[1][1],n-a1[1][1]-a2[0][1]))\n\n", "jacc_sim": 1.0, "before_after_length": [176, 176], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "a1.append((0,0))\na2.append((0,0))\na1.aperidta1)\n#printa2)\n\nif a1[] != a2[0]:\n print(n-a1[0][1]-a2[0][1])\nelse:\n print(min(n-a1[0][1]-a2[1][1]0))\n#a2.apped((0,0))\nprint(a1)\nprint(a2)\n\nif a1[0] != a2[0]:\n print(n0][-a20][)\nelse:\n print(min(n1[0][1]-a1][1],n-a1[1][1]-a2[", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u921168761", "n_user": "u921168761", "pos": "import itertools\n\"\"\"\nn = int(input())\nm, a, r, c, h = [0] * 5\nfor i in range(n):\n s = input()\n if s[0] == \"M\": m += 1\n if s[0] == \"A\": a += 1\n if s[0] == \"R\": r += 1\n if s[0] == \"C\": c += 1\n if s[0] == \"H\": h += 1\nx = [m, a, r, c, h]\ny = [\"M\", \"A\", \"R\", \"C\", \"H\"]\nans = 0\nfor i in itertools.combinations(x, 3):\n ans += i[0] * i[1] * i[2]\nprint(ans)\n\"\"\"\n\n# n <= 10**5\nn = int(input())\n# vi <= 10**5\nv = list(map(int, input().split()))\na = [[0] * 100010 for _ in range(2)]\nfor i in range(n):\n a[i % 2][v[i]] += 1\n\nod, ev = [], []\nfor i in range(100010):\n od.append([a[1][i], i])\n ev.append([a[0][i], i])\nod.sort()\nod.reverse()\nev.sort()\nev.reverse()\nif od[0][1] != ev[0][1]: print(n - od[0][0] - ev[0][0])\nelse: print(n - max(od[0][0] + ev[1][0], od[1][0] + ev[0][0]))", "neg": "import itertools\n\"\"\"\nn = int(input())\nm, a, r, c, h = [0] * 5\nfor i in range(n):\n s = input()\n if s[0] == \"M\": m += 1\n if s[0] == \"A\": a += 1\n if s[0] == \"R\": r += 1\n if s[0] == \"C\": c += 1\n if s[0] == \"H\": h += 1\nx = [m, a, r, c, h]\ny = [\"M\", \"A\", \"R\", \"C\", \"H\"]\nans = 0\nfor i in itertools.combinations(x, 3):\n ans += i[0] * i[1] * i[2]\nprint(ans)\n\"\"\"\n\n# n <= 10**5\nn = int(input())\n# vi <= 10**5\nv = list(map(int, input().split()))\na = [[0] * 100010 for _ in range(2)]\nfor i in range(n):\n a[i % 2][v[i]] += 1\n\nod, ev = [], []\nfor i in range(100010):\n od.append([a[1][i], i])\n ev.append([a[0][i], i])\nod.sort()\nod.reverse()\nev.sort()\nev.reverse()\nif od[0][1] != ev[0][1]: print(n - od[0][0] - ev[0][0])\nelse: print(n - max(od[0][0] + ev[0][1], od[1][0] + ev[0][0]))", "jacc_sim": 1.0, "before_after_length": [393, 393], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "0][, od1][,od+ ev01 + ev[0][0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u750378652", "n_user": "u750378652", "pos": "n=int(input())\nv=list(map(int, input().split()))\nimport collections\nv1=v[0::2]\nv11=collections.Counter(v1)\nv2=v[1::2]\nv22=collections.Counter(v2)\no=v11.most_common()+([(0,0)])\ne=v22.most_common()+([(0,0)])\nif o[0][0]!=e[0][0]:\n print(n-o[0][1]-e[0][1])\nelse:\n print(min(n-o[0][1]-e[1][1],n-o[1][1]-e[0][1]))", "neg": "n=int(input())\nv=list(map(int, input().split()))\nimport collections\nv1=v[0::2]\nv11=collections.Counter(v1)\nv2=v[1::2]\nv22=collections.Counter(v2)\no=v11.most_common()\ne=v22.most_common()\nif o[0][0]!=e[0][0] or e==o:\n print(n-o[0][1]-e[0][1])\nelse:\n print(min(n-o[0][1]-e[1][1],n-o[1][1]-e[0][1]))", "jacc_sim": 0.9444444444444444, "before_after_length": [175, 164], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "+([(0,0)])+([(0,0)]) or e==o", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u536113865", "n_user": "u536113865", "pos": "ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\na = ai()\nif all(i == a[0] for i in a):\n print(n//2)\n exit()\n\na1 = a[::2]\na2 = a[1::2]\n\nfrom collections import Counter\nc1 = Counter(a1)\nc2 = Counter(a2)\nm1 = c1.most_common(2)\nm2 = c2.most_common(2)\nif m1[0][0] == m2[0][0]:\n if len(c1) == 1:\n print(n-m1[0][1]-m2[1][1])\n elif len(c2) == 1:\n print(n - m1[0][1] - m2[1][1])\n else:\n print(min(n-m1[0][1]-m2[1][1], n-m1[1][1]-m2[0][1]))\nelse:\n print(n-m1[0][1] - m2[0][1])", "neg": "ai = lambda: list(map(int,input().split()))\nai_ = lambda: [int(x)-1 for x in input().split()]\n\nn = int(input())\na = ai()\nif all(i == a[0] for i in a):\n print(n//2)\n exit()\n\na1 = a[::2]\na2 = a[1::2]\n\nfrom collections import Counter\nc1 = Counter(a1)\nc2 = Counter(a2)\nm1 = c1.most_common(2)\nm2 = c2.most_common(2)\nif m1[0][0] == m2[0][0]:\n if len(c1) == 1:\n print(n-m1[0][1]-m2[1][1])\n elif len(c2) == 1:\n print(n - m1[0][1] - m2[1][1])\n else:\n print(min(n-m1[0][1]-m2[1][1], n-m1[1][1]-m2[0][1]))\nelse:\n print(n-m1[0", "jacc_sim": 1.0, "before_after_length": [294, 283], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "][1] - m2[0][1])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u625554679", "n_user": "u625554679", "pos": "n = int(input())\na = [int(aa) for aa in input().split()]\n\ndef add_entry(hist, aa):\n if aa in hist:\n hist[aa] += 1\n else:\n hist[aa] = 1\n\n\ndef make_hist(a):\n even_hist = {}\n odd_hist = {}\n\n for i in range(len(a)//2):\n add_entry(even_hist, a[2*i])\n add_entry(odd_hist, a[2*i+1])\n\n return even_hist, odd_hist\n\n\ndef get_sorted_hist(hist):\n return sorted(hist.items(), key=lambda x: -x[1])\n\neh, oh = make_hist(a)\nseh = get_sorted_hist(eh)\nsoh = get_sorted_hist(oh)\n\n\nif seh[0][0] != soh[0][0]:\n print(len(a) - seh[0][1] - soh[0][1])\nelse:\n if len(seh) == 1 and len(soh) == 1:\n print(len(a)//2)\n elif len(seh) == 1:\n print(len(a) - seh[0][1] - soh[1][1])\n elif len(soh) == 1:\n print(len(a) - soh[0][1] - seh[1][1])\n else:\n print(min(len(a) - seh[0][1] - soh[1][1], len(a) - soh[0][1] - seh[1][1]))\n", "neg": "n = int(input())\na = [int(aa) for aa in input().split()]\n\ndef add_entry(hist, aa):\n if aa in hist:\n hist[aa] += 1\n else:\n hist[aa] = 1\n\n\ndef make_hist(a):\n even_hist = {}\n odd_hist = {}\n\n for i in range(len(a)//2):\n add_entry(even_hist, a[2*i])\n add_entry(odd_hist, a[2*i+1])\n\n return even_hist, odd_hist\n\n\ndef get_sorted_hist(hist):\n return sorted(hist.items(), key=lambda x: -x[0])\n\n\neh, oh = make_hist(a)\nseh = get_sorted_hist(eh)\nsoh = get_sorted_hist(oh)\n\nif seh[0][0] != soh[0][0]\n print(len(a) - seh[0][1] - soh[0][1])\nelse:\n if seh[0][1] >= soh[0][1]:\n print(len(a) - seh[0][1] - soh[1][1])\n else:\n print(len(a) - seh[1][1] - soh[0][1])\n", "jacc_sim": 0.9245283018867925, "before_after_length": [410, 330], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "01\n\n:sln(h[0][1] >= oe[0][) == ] and len(soh) == 1//2 - seh[0][1] - soh[1][1]sif ln(seh) == 11][1] - soh[ - soh[1][1] elif len(soh) == 1:\n print(len(a) - soh[0][1] - seh[1][1])\n else:\n print(min(len(a) - seh[0][1] - soh[1][1], len(a) - soh[0][1] - seh[1][1]))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u857759499", "n_user": "u857759499", "pos": "from collections import Counter\nn,*v = map(int,open(0).read().split())\nv1 = Counter(v[::2])\nv2 = Counter(v[1::2])\nv1 = sorted([(i,v1[i]) for i in v1.keys()],key =lambda x:x[1],reverse=True)\nv2 = sorted([(i,v2[i]) for i in v2.keys()],key =lambda x:x[1],reverse=True)\nif v1[0][0] != v2[0][0]:\n print(n-v1[0][1]-v2[0][1])\nelse:\n e1 = n-v2[0][1] if len(v1) == 1 else n-v1[1][1]-v2[0][1]\n e2 = n-v1[0][1] if len(v2) == 1 else n-v1[0][1]-v2[1][1]\n print(min(e1,e2))", "neg": "from collections import Counter\nn,*v = map(int,open(0).read().split())\nv1 = Counter(v[::2])\nv2 = Counter(v[1::2])\nv1 = sorted([(i,v1[i]) for i in v1.keys()],key =lambda x:x[1],reverse=True)\nv2 = sorted([(i,v2[i]) for i in v2.keys()],key =lambda x:x[1],reverse=True)\nprint(v1,v2)\nif len(v1) == 1:\n if len(v2) == 1:\n if v1[0][0] != v2[0][0]:\n print(0)\n else:\n print(n//2)\n else:\n if v1[0][0] != v2[0][0]:\n print(n//2-v2[0][1])\n else:\n print(n//2-v2[1][1])\nelse:\n if len(v2) == 1:\n if v1[0][0] != v2[0][0]:\n print(n//2-v1[0][1])\n else:\n print(n//2-v1[1][1])\n else:\n if v1[0][0] != v2[0][0]:\n print(n-v1[0][1]-v2[0][1])\n else:\n print(min(n-v1[0][1]-v2[1][1],n-v1[1][1]-v2[0][1]))", "jacc_sim": 0.9333333333333333, "before_after_length": [250, 392], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "print(v1,v2)\nif len(v1) == 1:\n if len(v2) == 1:\n 0)\n else:\n prit(n//2)\n else:\n if v1[0][0] != v2[0][0]:\n print(n//22[0][])\n else:\n print(n//2-v21][1])\nelse:\n if len(v2) == 1:\n if v1[0] != v2[0][0]:\n print(n//2-v[0[1])\n else:\n print(n//21[1][1])\n else:\n if v1[0][0] != v0]:\n print(n-v[0[1]-v2[0][1] e print(min(n-v = [0][1]-v2[1][1],1[1][1]-v if len(v1 == 1 else n-v1[1][1]-v2[0][1]\n e2 = n-v1[0][1] if len(v2 == 1 else n-v1[0][1]-v2[1][1]\n print(min(e1,e2))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u419686324", "n_user": "u419686324", "pos": "n = int(input())\nA = [int(x) for x in input().split()]\n\nfrom collections import Counter\nimport operator\ndef f():\n evn = Counter(A[::2])\n odd = Counter(A[1::2])\n\n a = sorted(odd.most_common(2), key=operator.itemgetter(1, 0), reverse=True)\n b = sorted(evn.most_common(2), key=operator.itemgetter(1, 0), reverse=True)\n\n ac = (n // 2) - a[0][1]\n bc = (n // 2) - b[0][1]\n ret = ac + bc\n if a[0][0] == b[0][0]:\n bc_2 = n // 2 - (b[1][1] if len(b) != 1 else 0)\n ac_2 = n // 2 - (a[1][1] if len(a) != 1 else 0)\n ret = min(ac + bc_2, ac_2 + bc)\n return ret\nprint(f())", "neg": "n = int(input())\nA = [int(x) for x in input().split()]\n\nfrom collections import Counter\nimport operator\ndef f():\n evn = Counter(A[::2])\n odd = Counter(A[1::2])\n\n a = sorted(odd.most_common(2), key=operator.itemgetter(1, 0), reverse=True)\n b = sorted(evn.most_common(2), key=operator.itemgetter(1, 0), reverse=True)\n\n ac = a[0][1]\n bc = b[0][1]\n ret = n - ac + bc\n if a[0][0] == b[0][0]:\n bc_2 = b[1][1] if len(b) != 1 else 0\n ac_2 = a[1][1] if len(a) != 1 else 0\n ret = n - max(ac + bc_2, ac_2 + bc)\n return ret\nprint(f())", "jacc_sim": 0.9423076923076923, "before_after_length": [256, 236], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "(a[0][1]\n bc = b[0][1]\n ret = // 2)[0][1]\n bc = (n // 2) - b[0][1]\n ret = an // 2 - ()n // 2 - ()n - axin", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u033606236", "n_user": "u033606236", "pos": "import collections\n\n\nn = int(input())\nodd = []\neven = []\nfor i,j in enumerate(map(int,input().split())):\n if i % 2 == 0:\n even += [j]\n else:\n odd += [j]\nodd = sorted(collections.Counter(odd).items(),key=lambda x:(x[1]),reverse=True)\neven = sorted(collections.Counter(even).items(),key=lambda x:(x[1]),reverse=True)\n\nif len(odd) == 1 and len(even) == 1:\n if odd[0][0] == even[0][0]:\n print(n//2)\n exit()\n else:\n print(0)\n exit()\n\nif odd[0][0] == even[0][0]:\n if len(odd) >= 2 and len(even) >= 2:\n if odd[0][1] + even[1][1] > odd[1][1] + even[0][1]:\n print((n//2 - odd[0][1]) + (n//2 - even[1][1]))\n else:\n print((n//2 - odd[1][1]) + (n//2 - even[0][1]))\n else:\n if len(odd) == 1:\n print((n//2 - odd[0][1]) + (n//2 - even[1][1]))\n else:\n print((n//2 - odd[1][1]) + (n//2 - even[0][1]))\nelse:\n print((n//2 - odd[0][1]) + (n//2 - even[0][1]))", "neg": "import collections\n\n\nn = int(input())\nodd = []\neven = []\nfor i,j in enumerate(map(int,input().split())):\n if i % 2 == 0:\n even += [j]\n else:\n odd += [j]\nodd = sorted(collections.Counter(odd).items(),key=lambda x:(x[1]),reverse=True)\neven = sorted(collections.Counter(even).items(),key=lambda x:(x[1]),reverse=True)\n\nif len(odd) == 1 and len(even) == 1:\n if odd[0][0] == even[0][0]:\n print(n//2)\n else:\n print(0)\nelif len(odd) == 1 or len(even) == 1:\n if len(odd) == 1:\n print((n//2 - odd[0][1]) + (n//2 - even[1][1]))\n elif len(even) == 1:\n print((n//2 - odd[1][1]) + (n//2 - even[1][1]))\nelse:\n if odd[0][1] + even[1][1] > odd[1][1] + even[0][1]:\n print((n//2 - odd[0][1]) + (n//2 - even[1][1]))\n else:\n print((n//2 - odd[1][1]) + (n//2 - even[0][1]))", "jacc_sim": 0.9347826086956522, "before_after_length": [397, 349], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "else:\n print(0)\nxit()\n ese:\n print(0)\n exit()\n\nlen()[0][0]1 or ln(e) == 1[0][0]>=12 and len(even) >= 2 if odd[0][1] + even[1][1] > odd[1][1] + even[0][1]:\n se:\n print((n//2 - odd[1][1]) + (n//2 - even[0][1]))\n else:\n oddeven 10else:\nif else:\n print((n//2 - 0][[1])(eve//2[1][1]>-oddeven10))\nelse:\n print((n//2 - odd[0][1])even[0][1]:\n print(odd[0][1]) + (n//2 - 1][1]))\n else:\n print((n//2 - odd[1][1]) + (n//2 - even[", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u089142196", "n_user": "u089142196", "pos": "from collections import Counter\nn=int(input())\nv=list(map(int,input().split()))\n\nA=v[0::2]\nB=v[1::2]\na=len(A)\nb=len(B)\n\n#print(Counter(A).most_common()[0][0])\n#print(Counter(B).most_common()[0][0])\n\nif Counter(A).most_common()[0][0] !=Counter(B).most_common()[0][0]:\n s=Counter(A).most_common()[0][1]\n t=Counter(B).most_common()[0][1]\n print( (a-s)+(b-t))\nelse:\n r=a\n s=b\n if Counter(A).most_common()[0][1]= c2[1][1]:\n ans = N - c1[1][1] - c2[0][1]\n else:\n ans = N - c1[0][1] - c2[1][1]\n\nprint(ans)", "neg": "import collections\nc = collections.Counter\n\nN = int(input())\nv = list(map(int,input().split()))\n\nv_odd = v[::2]\nv_eve = v[1::2]\n\nc1 = c(v_odd).most_common(2)\nc2 = c(v_eve).most_common(2)\n\nif len(c1) == 1 and len(c2) == 1:\n ans = int(N/2)\nelse:\n if c1[0] != c2[0]:\n ans = N - c1[0][1] - c2[0][1]\n else:\n if c1[1][1] >= c2[1][1]:\n ans = N - c1[1][1] - c2[0][1]\n else:\n ans = N - c1[0][1] - c2[1][1]\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [255, 228], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "if c1[0][0] != c2[0][0]:\n ans = 0\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u626228246", "n_user": "u626228246", "pos": "import collections\nimport sys\nn = int(input())\na = list(map(int,input().split()))\nif len(set(a)) == 1:\n print(n//2)\n sys.exit()\na1 = [a[x] for x in range(0,n,2)]\nl_a1 = len(a1)\na2 = [a[y] for y in range(1,n,2)]\nl_a2 = len(a2)\nc1 = collections.Counter(a1)\nc2 = collections.Counter(a2)\nK_a1 = c1.most_common()[0][0]\nK_a2 = c2.most_common()[0][0]\nF_a1 = c1.most_common()[0][1]\nF_a2 = c2.most_common()[0][1]\nif K_a1 == K_a2:\n if F_a1 > F_a2:\n F_a2 = c2.most_common()[1][1]\n elif F_a1 == F_a2:\n if c1.most_common()[1][1] > c2.most_common()[1][1]:\n F_a1 = c1.most_common()[1][1]\n else:\n F_a2 = c2.most_common()[1][1]\n else:\n F_a1 = c1.most_common()[1][1]\nprint((l_a1 - F_a1)+(l_a2 - F_a2))", "neg": "import collections\nimport sys\nn = int(input())\na = list(map(int,input().split()))\n#if len(set(a)) == 1:\n # print(n//2)\n # sys.exit()\na1 = [a[x] for x in range(0,n,2)]\nl_a1 = len(a1)\na2 = [a[y] for y in range(1,n,2)]\nl_a2 = len(a2)\nc1 = collections.Counter(a1)\nc2 = collections.Counter(a2)\nK_a1 = c1.most_common()[0][0]\n#print(K_a1)\nK_a2 = c2.most_common()[0][0]\n#print(K_a2)\nF_a1 = c1.most_common(1)[0][1]\nF_a2 = c2.most_common(1)[0][1]\nif K_a1 == K_a2:\n if c1.most_common(2)[0][1] >= c2.most_common(2)[0][1]:\n F_a2 = c2.most_common()[1][1]\n else:\n F_a1 = c1.most_common()[1][1]\n # print(F_a1)\nprint((l_a1 - F_a1)+(l_a2 - F_a2))", "jacc_sim": 0.96, "before_after_length": [386, 347], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "####K_a2 = c2.most_common()[0][0]\nF_a1 = c1.most_common()[0][1]\nF_a2 = c2.most_common()[0][1]\nif K_a1 == K_a2:\n if F_a1 > F_a2:\n F_a2 = c2.most_common()[1][1]\n elif F_a1 == F_a2:\n if c1.most_common()[1][1] > c2.most_common()[1][1]:\n F_a1 = c1.most_common()[1][1]\n else:\n F_a2 = c2.most_common()[1][1]\n else:\n F_a1 = c1.most_common()[1][1]\nK_a1)\nK_a2 = c2.most_common()[0][0]\n#print(K_a2)\nF_a1 = c1.most_common(1)[0][1]\nF_a2 = c2.most_common(1)[0][1]\nif K_a1 == K_a2:\n if c1.most_common(2)[0][1] >= c2.most_common(2)[0][1]:\n F_a2 = c2.most_common()[1][1]\n else:\n F_a1 = c1.most_common()[1][1]\n # print(F_a1)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u869919400", "n_user": "u869919400", "pos": "N = int(input())\nV = list(map(int, input().split()))\nh = N//2\n\nfrom collections import Counter\nA = Counter(V[::2])\nB = Counter(V[1::2])\n\nac = sorted(A.items(), key=lambda x: -x[1])\nbc = sorted(B.items(), key=lambda x: -x[1])\n\nif len(ac) == 1 and len(bc) == 1:\n if ac[0][0] == bc[0][0]:\n print(h)\n else:\n print(0)\nelif len(ac) == 1:\n print(h-bc[0][1])\nelif len(bc) == 1:\n print(h-ac[0][1])\nelif ac[0][0] == bc[0][0]:\n if ac[0][1]-ac[1][1] == bc[0][1]-bc[1][1]:\n if ac[0][1] >= bc[0][1]:\n print((h-ac[0][1]) + (h-bc[1][1]))\n else:\n print((h-ac[1][1]) + (h-bc[0][1]))\n elif ac[0][1]-ac[1][1] > bc[0][1]-bc[1][1]:\n print((h-ac[0][1]) + (h-bc[1][1]))\n else:\n print((h-ac[1][1]) + (h-bc[0][1]))\nelse:\n print((h-ac[0][1]) + (h-bc[0][1]))", "neg": "N = int(input())\nV = list(map(int, input().split()))\nh = N//2\n\nfrom collections import Counter\nA = Counter(V[::2])\nB = Counter(V[1::2])\n\nac = sorted(A.items(), key=lambda x: -x[1])\nbc = sorted(B.items(), key=lambda x: -x[1])\n\nif len(ac) == 1 and len(bc) == 1:\n print(h)\nelif len(ac) == 1:\n print(h-bc[0][1])\nelif len(bc) == 1:\n print(h-ac[0][1])\nelif ac[0][0] == bc[0][0]:\n if ac[0][1]-ac[1][1] == bc[0][1]-bc[1][1]:\n if ac[0][1] >= bc[0][1]:\n print((h-ac[0][1]) + (h-bc[1][1]))\n else:\n print((h-ac[1][1]) + (h-bc[0][1]))\n elif ac[0][1]-ac[1][1] > bc[0][1]-bc[1][1]:\n print((h-ac[0][1]) + (h-bc[1][1]))\n else:\n print((h-ac[1][1]) + (h-bc[0][1]))\nelse:\n print((h-ac[0][1]) + (h-bc[0][1]))", "jacc_sim": 1.0, "before_after_length": [398, 372], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "print(h)\nellen() == 1:\n print(h-bc10 == bc[0][0]:\n print(h)\n else:\n print(0bc) == 1:\n print(h-c) == 1:\n print(h-blen(ac[0][0] == )[0][0]:\n==1:\n print(h-ac[0][1])\nel1]-ac[1][1] == bc[[1]-bc[1][1]:\n== bc[0][0]:\n-ac[1][1] == bc[0][1]-bc[1][1]:\n if ac[0][1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u810625173", "n_user": "u810625173", "pos": "from collections import defaultdict\nn = int(input())\nv = list(map(int, input().split()))\no = defaultdict(int)\ne = defaultdict(int)\nodd_num = 0\neven_num = 0\nfor i, v_one in enumerate(v):\n if i % 2 == 1:\n o[v_one] += 1\n odd_num += 1\n else:\n e[v_one] += 1\n even_num += 1\nsorted_o = sorted(o.items(), key=lambda x:-x[1])\nsorted_e = sorted(e.items(), key=lambda x:-x[1])\nif sorted_o[0][0] != sorted_e[0][0]:\n ans = odd_num - sorted_o[0][1] + even_num - sorted_e[0][1]\nelif len(sorted_o) >= 2 and len(sorted_e) >= 2:\n ans1 = odd_num - sorted_o[1][1] + even_num - sorted_e[0][1]\n ans2 = odd_num - sorted_o[0][1] + even_num - sorted_e[1][1]\n ans = min(ans1, ans2)\nelif len(sorted_o) >= 2:\n ans = sorted_o[0][1]\nelif len(sorted_e) >=2:\n ans = sorted_e[0][1]\nelse:\n ans = odd_num\nprint(ans)", "neg": "from collections import defaultdict\nn = int(input())\nv = list(map(int, input().split()))\no = defaultdict(int)\ne = defaultdict(int)\nodd_num = 0\neven_num = 0\nfor i, v_one in enumerate(v):\n if i % 2 == 1:\n o[v_one] += 1\n odd_num += 1\n else:\n e[v_one] += 1\n even_num += 1\nsorted_o = sorted(o.items(), key=lambda x:-x[1])\nsorted_e = sorted(e.items(), key=lambda x:-x[1])\nif sorted_o[0][0] != sorted_e[0][0]:\n ans = odd_num - sorted_o[0][1] + even_num - sorted_e[0][1]\nelse:\n ans1 = odd_num - sorted_o[1][1] + even_num - sorted_e[0][1]\n ans2 = odd_num - sorted_o[0][1] + even_num - sorted_e[1][1]\n ans = min(ans1, ans2)\nprint(ans)", "jacc_sim": 0.9245283018867925, "before_after_length": [356, 280], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "sif ln(sorted_o) >= 2 and len(sorted_e) >= 2elif len(sorted_o) >= 2:\n ans = sorted_o[0][1]\nelif len(sorted_e) >=2:\n ans = sorted_e[0][1]\nelse:\n ans = odd_num\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03244", "p_user": "u365364616", "n_user": "u365364616", "pos": "from collections import Counter\nn = int(input())\nv = list(map(int, input().split()))\na = Counter(v[::2]).most_common()\nb = Counter(v[1::2]).most_common()\nif len(a) == 1:\n a.append([0, 0])\nif len(b) == 1:\n b.append([0, 0])\nif a[0][0] == b[0][0]:\n if a[1][1] > b[1][1]:\n print(n - a[1][1] - b[0][1])\n else:\n print(n - a[0][1] - b[1][1])\nelse:\n print(n- a[0][1] - b[0][1])", "neg": "from collections import Counter\nn = int(input())\nv = list(map(int, input().split()))\na = Counter(v[::2]).most_common(2)\nb = Counter(v[1::2]).most_common(2)\nif a[0][0] == b[0][0]:\n if a[1][1] > b[1][1]:\n print(n - a[1][1] - b[0][1])\n else:\n print(n - a[0][1] - b[1][1])\nelse:\n print(n- a[0][1] - b[0][1])", "jacc_sim": 0.9375, "before_after_length": [189, 155], "nl": "You are given a sequence of numbers. You need to determine the minimum number of elements that need to be replaced in order to make the sequence follow a specific pattern. The pattern requires that for each index i, a_i should be equal to a_(i+2), and the sequence should contain exactly two different numbers. The input consists of the length of the sequence and the sequence itself. The output should be the minimum number of elements that need to be replaced to satisfy the given pattern.", "diff_info": "22)\nif len(a) == 1:\n a.append([0, 0])\nif len(b) == 1:\n b.append([0, 0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u695811449", "n_user": "u152638361", "pos": "A=list(map(int,input().split()))\nA.sort()\n\nprint(A[0]+A[1]+A[2]*10)\n", "neg": "A =list(map(int, input().split()))\nA.sort()\nprint(A)\nprint(A[2]*10+A[1]+A[0])", "jacc_sim": 1.0, "before_after_length": [37, 40], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": " print(A)20*102]*1]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u109632368", "n_user": "u109632368", "pos": "a,b,c = map(int, input().split())\n\nans = []\n\nans.append(10*a+b+c)\nans.append(10*b+c+a)\nans.append(10*c+a+b)\n\nprint(max(ans))", "neg": "a,b,c = map(int, input().split())\n\nans = []\n\nans.append(10*a+b+c)\nans.append(10*b+a+c)\nans.append(10*c+b+c)\n\nprint(max(ans))", "jacc_sim": 1.0, "before_after_length": [67, 67], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "c++ca++c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u601344838", "n_user": "u601344838", "pos": "a,b,c=map(int ,input().split())\nmaxs=a*10+b+c\nmaxs=max(a+b*10+c,maxs)\nmaxs=max(a+b+c*10,maxs)\nprint(maxs)", "neg": "a,b,c=map(int ,input().split())\nmaxs=a*10+b+c\nmaxs=max(a+b*10+c,maxs)\nprint(maxs)", "jacc_sim": 1.0, "before_after_length": [65, 48], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "maxs=max(a+b+c*10,maxs)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u757030836", "n_user": "u757030836", "pos": "a,b,c = sorted(map(int,input().split()))\n\nprint(10*c+b+a)\n", "neg": "a,b,c = sorted(map(int,input().split()))\n\nprint(10*a+b+c)", "jacc_sim": 1.0, "before_after_length": [30, 29], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "acca\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u768256617", "n_user": "u768256617", "pos": "l=list(map(int,input().split()))\nl.sort(reverse=True)\n \ns=10*l[0]+l[1]\nprint(s+l[2])", "neg": "l=list(map(int,input().split()))\nl.sort()\n\ns=10*l[0]+l[1]\nprint(s+l[2])", "jacc_sim": 0.9166666666666666, "before_after_length": [46, 41], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "reverse=True ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u597455618", "n_user": "u597455618", "pos": "n = list(map(int, input().split()))\nn.sort()\nprint(n[2]*10 + n[1] + n[0])", "neg": "n = list(map(int, input().split()))\nn.reverse()\nprint(n[0]*10 + n[1] + n[2])", "jacc_sim": 0.9090909090909091, "before_after_length": [36, 36], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "soteverse0220", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u787562674", "n_user": "u543173665", "pos": "inputs = list(map(int, input().split()))\n\ninputs.sort()\n\nprint(inputs[0] + inputs[1] + inputs[2] * 10)\n", "neg": "a = list(map(int,input().split())\na.sort()\nprint(10*a[2]+a[1]+a[0])", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 34], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "ainputs )a\ninputs\ninputs[0] + inputs[0*a] + inputs+a[ * ]+a[]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u902462889", "n_user": "u902462889", "pos": "\nlst_A = input().split()\n\nlst_A.sort()\n\nans = int(lst_A[2]) * 10 + int(lst_A[0]) + int(lst_A[1])\n\nprint(ans)", "neg": "\nlst_A = input().split()\n\nprint(lst_A)\n\nlst_A.sort()\n\nans = int(lst_A[2]) * 10 + int(lst_A[0]) + int(lst_A[1])\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [55, 63], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ")\n\nprint(lst_A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u259861571", "n_user": "u259861571", "pos": "A = list(map(int, input().split()))\na = sorted(A)\nk = str(a[-1])+str(a[1])\nprint(int(k)+a[0])\n", "neg": "A = list(map(int, input().split()))\na = sorted(A)\nk = str(A[-1])+str(A[1])\nprint(int(k)+A[0])\n", "jacc_sim": 1.0, "before_after_length": [48, 48], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "AaAaAa", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u071916806", "n_user": "u071916806", "pos": "A,B,C=input().split()\n\na=int(A)\nb=int(B)\nc=int(C)\n\nif a>=b:\n if a>=c:\n x=a\n if b>=c:\n y=b\n z=c\n else:\n y=c\n z=b\n else:\n x=c\n y=a\n z=b\nelse:\n if b>=c:\n x=b\n if a>=c:\n y=a\n z=c\n else:\n y=c\n z=a\n else:\n x=c\n y=b\n z=a\n\nn=x*10+y+z\nprint(n)", "neg": "A,B,C=input().split()\n\na=int(A)\nb=int(B)\nc=int(C)\n\nif a>=b:\n if a>=c:\n x=a\n if b>=c:\n y=b\n z=c\n else:\n y=c\n z=b\n else:\n x=c\n y=a\n z=b\nelse:\n if b>=c:\n x=b\n if a>=c:\n y=a\n z=c\n else:\n y=c\n z=a\n else:\n x=c\n y=b\n z=a\n\nn==x*100+y*10+z\nprint(n)", "jacc_sim": 0.9629629629629629, "before_after_length": [187, 189], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": " =*100+yy+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u748311048", "n_user": "u748311048", "pos": "L=sorted(list(map(int, input().split())))\nprint(int(str(L[2])+str(L[1]))+L[0])", "neg": "L=sorted(list(map(int, input().split())))\nprint(L[2]*L[1]+L[0])", "jacc_sim": 0.9047619047619048, "before_after_length": [38, 30], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "int(str(*)+str())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u218843509", "n_user": "u218843509", "pos": "a, b, c = map(int, input().split())\n[a, b, c] = sorted([a, b, c], reverse=True)\nprint(10 * a + b + c)", "neg": "a, b, c = map(int, input().split())\n[a, b, c] = sorted([a, b, c])\nprint(10 * a + b + c)", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 42], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ", reverse=True", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u112567325", "n_user": "u112567325", "pos": "A,B,C = list(map(int,input().split()))\nif A >= B and B >= C:\n print(A*10 + B+C)\nelif B >= C and C >=A:\n print(B*10 + C+A)\nelif C >= A and A >= B:\n print(C*10 + A+B)\nelif A >= B and C >= B:\n print(A*10 + B+C)\nelif B >= A and A >= C:\n print(B*10 + A+C)\nelif C >= A and B >= A:\n print(C*10 + A+B)", "neg": "A,B,C = list(map(int,input()))\nif A >= B and B >= C:\n print(A*10 + B+C)\nelif B >= C and C >=A:\n print(B*10 + C+A)\nelif C >= A and A >= B:\n print(C*10 + A+B)", "jacc_sim": 0.9090909090909091, "before_after_length": [154, 83], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ".s))\nif A >= B and B >= C:\n rint(A*10 + B+C)\nef B >= C and C >=A:\n prinB*10 + C+A\nelif C >= A and A >= B:\n print(C*10 + A+B)\nif A >= B and B >= C:\n print(A*10 + B+C)\nelif B >= C and C >=A:\n print(B*10 + C+A)\nelif C >= A and A >= B:\n print(C*10 + A+B)\nelif A >= B and C >= B:\n print(A*10 + B+C)\nelif B >= A and A >= C:\n print(B*10 + A+C)\nelif C >= A and B >= A:\n print(C*10 + A+B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u941407962", "n_user": "u941407962", "pos": "\nA, B, C = [int(i) for i in input().split(' ')]\n\nprint(max(A + B*10 + C, A*10 + B + C, C*10 + A + B))\n", "neg": "\nA, B, C = [int(i) for i in input().split(' ')]\n\nprint(max(A + B*10 + C, A*10 + B + C))\n", "jacc_sim": 1.0, "before_after_length": [52, 44], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ", C*10 + A + B", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u023185908", "n_user": "u023185908", "pos": "d = input().split()\n\na = int(d[0])\nb = int(d[1])\nc = int(d[2])\n\ne = 0\n\ne = a*10+b+c\n\nif e < b*10+a+c:\n e = b*10+a+c\n if e < c*10+a+b:\n e = c*10+a+b\n\nif e < c*10+a+b:\n e= c*10+a+b\n if e < b*10+a+c:\n e = b*10+a+c\n\nprint(e)\n", "neg": "d = input().split()\n\na = int(d[0])\nb = int(d[1])\nc = int(d[2])\n\nint e = 0\n\ne = a*10+b+c\n\nif e < b*10+a+c:\n e = b*10+a+c\n if e < c*10+a+b:\n e = c*10+a+b\n\nif e < c*10+a+b:\n e= c*10+a+b\n if e < b*10+a+c:\n e = b*10+a+c\n\nprint(e)\n", "jacc_sim": 1.0, "before_after_length": [153, 154], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "int ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u864013199", "n_user": "u864013199", "pos": "a,b,c = map(int,input().split())\nprint(max(10*a+b+c,a+10*b+c,a+b+10*c))\n", "neg": "a,b,c = map(int,input().split())\nprint(max(10*a+b+c,a+10*b+c,a+10*b+c))\n", "jacc_sim": 1.0, "before_after_length": [44, 44], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "b+b+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u888512581", "n_user": "u888512581", "pos": "N = list(map(int, input().split()))\nN.sort(reverse=True)\nprint(N[0]*10 + N[1] + N[2])\n", "neg": "N = list(map(int, input().split()))\nN.sort(reverse=True)\nprint(N)\nprint(N[0]*10 + N[1] + N[2])\n", "jacc_sim": 1.0, "before_after_length": [41, 46], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ")\nprint(N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u997346103", "n_user": "u280552586", "pos": "a, b, c = sorted(map(int, input().split()))\nprint(c*10+a+b)", "neg": "a, b, c = sorted(map(int, input().split()))\nprint(10*a+b+c)", "jacc_sim": 1.0, "before_after_length": [28, 28], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "c**++c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u543173665", "n_user": "u543173665", "pos": "a = list(map(int,input().split()))\na.sort()\nprint(10*a[2]+a[1]+a[0])\n", "neg": "a = list(int,input().split())\na.sort()\nprint(10*a[2]+a[1]+a[0])", "jacc_sim": 0.9523809523809523, "before_after_length": [36, 32], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "(map)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u859897687", "n_user": "u859897687", "pos": "a,b,c=map(int,input().split());print(max(a,b,c)*9+a+b+c)", "neg": "a,b,c=map(int,input().split());print(max(a,b,c)*9+a,b,c)", "jacc_sim": 1.0, "before_after_length": [32, 32], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ",+,+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u672898046", "n_user": "u672898046", "pos": "l = list(map(int, input().split()))\nl = sorted(l, reverse=True)\na = []\na.append(l[2])\nc = int(str(l[0]) + str(l[1]))\na.append(c)\nprint(sum(a))", "neg": "l = list(map(int, input().split()))\nl = sorted(l, reverse=True)\nprint(l)\na = []\na.append(l[2])\nc = int(str(l[0]) + str(l[1]))\na.append(c)\nprint(sum(a))", "jacc_sim": 1.0, "before_after_length": [69, 74], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ")\nprint(l", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u320325426", "n_user": "u320325426", "pos": "l = sorted(list(map(int, input().split())))\nprint(l[0] + int(str(l[2]) + str(l[1])))", "neg": "l = sorted(ist(map(int, input().split())))\nprint(l[0] + int(str(l[1]) + str(l[2])))", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 39], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "l1221", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u651047049", "n_user": "u651047049", "pos": "a,b,c=map(int,input().split())\nif a>=b and a>=c:\n print(a*10+b+c)\nelif b>=a and b>=c:\n print(b*10+a+c)\nelif c>=a and c>=b:\n print(c*10+a+b)\n", "neg": "a,b,c=map(int,input().split())\n\nif a>=b and a>=c:\n print(10*a+b+c)\n \nelif b>=a and b>=c:\n prnt(a+10*b+c)\n \nelif c>=a and c>=b:\n print(a+b+10*c)", "jacc_sim": 0.9545454545454546, "before_after_length": [89, 94], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "\na**a\n ia+b**b+a\n c*10++10*c\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u238084414", "n_user": "u238084414", "pos": "N = list(map(int, input().split()))\nN.sort()\n\nprint(int(str(N[2]) + str(N[1])) + N[0])", "neg": "N = list(map(int, input().split()))\n\nprint(int(str(N[2]) + str(N[1])) + N[0])", "jacc_sim": 0.95, "before_after_length": [42, 37], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ")\nN.sort(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u118642796", "n_user": "u226873514", "pos": "ABC = list(map(int,input().split()))\nABC.sort()\nprint(ABC[0]+ABC[1]+ABC[2]*10)", "neg": "a = list(map(int, input().split()))\na.sort()\n\nprint(a[0]*10+a[1]+a[2])", "jacc_sim": 0.9090909090909091, "before_after_length": [35, 36], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "aABC aABC\naABC]+ABC[1]+ABC[2+a[1]+a[2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u455177911", "n_user": "u455177911", "pos": "x = [int(a) for a in input().split(' ')]\nx = sorted(x)\nprint(x[0] + x[1] + x[2] * 10)", "neg": "x = sorted(int(a) for a in input().split(' '))\nprint(x[0] * 10 + x[1] + x[2])", "jacc_sim": 1.0, "before_after_length": [43, 36], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "[sorted(]\nx = sorted(x * 10 * 10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u492447501", "n_user": "u492447501", "pos": "*A,= map(int, input().split())\n\nA.sort(reverse=True)\n\nprint(A[0]*10+A[1]+A[2])\n", "neg": "*A,_= map(int, input().split())\n\nA.sort(reverse=True)\n\nprint(A[0]*10+A[1]+A[2])", "jacc_sim": 0.9565217391304348, "before_after_length": [41, 41], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": "_\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u941884460", "n_user": "u941884460", "pos": "a,b,c=map(int,input().split())\nprint(max(10*a+b+c,a+10*b+c,a+b+10*c))\n", "neg": "a,b,c=map(int,input().split())\nprint(max(10*a+b+c,a+10*b+c))", "jacc_sim": 1.0, "before_after_length": [44, 35], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ",a+b+10*c\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u667024514", "n_user": "u667024514", "pos": "a,b,c = map(int,input().split())\nprint(max(a,b,c)*10+a + b + c -max(a,b,c))", "neg": "a,b,c = map(int,input().split())\nprint(max(a * 10 + b + c,a + b * 10 + c))", "jacc_sim": 0.9444444444444444, "before_after_length": [41, 35], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": " ,b,c) +a -max(aa + , * 10 + ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03250", "p_user": "u255001744", "n_user": "u255001744", "pos": "a, b, c = map(int,input().split())\nprint(max(a*10+b+c, a+b*10+c, a+b+c*10))", "neg": "a, b, c = map(int,input().split())\nprint(max(a*10+b+c, a+b*10+c))", "jacc_sim": 1.0, "before_after_length": [43, 35], "nl": "You want to give your child an allowance based on the outcome of a game. The game involves three integer panels, each with a digit between 1 and 9, and one operator panel with a plus sign. The player arranges the panels to form a formula X + Y, and the allowance is equal to the resulting value. Given the values A, B, and C on the integer panels, find the maximum possible allowance. Constraints: A, B, and C are integers between 1 and 9. Input format: A B C. Output: Print the maximum possible allowance. Example: Input 1: 1 5 2, Output 1: 53 (panels arranged as 52+1). Input 2: 9 9 9, Output 2: 108. Input 3: 6 6 7, Output 3: 82.", "diff_info": ", a+b+c*10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u009414205", "n_user": "u017063101", "pos": "a, b = map(int, input().split())\nif a % 2 == 1 and b % 2 == 1 :\n print(\"Yes\")\nelse :\n print(\"No\")", "neg": "a,b=map(int,input().split())\nif a%2==1 and b%2==1:\n print(\"Yes\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9130434782608695, "before_after_length": [41, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " Oo", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u545314527", "n_user": "u170324846", "pos": "A,B = map(int, input().split())\n\nif A*B % 2 == 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "A, B = map(int, input()split())\nif (A * B) % 2 == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9545454545454546, "before_after_length": [39, 39], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " .\n( ) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u557284649", "n_user": "u204260373", "pos": "(a, b) = map(int, input().split(\" \"))\n\nif (a * b) % 2 == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b=map(int,input().split())\nif a*b%2==0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9130434782608695, "before_after_length": [44, 37], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "( ) \" \"\n( ) 0 1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u374829922", "n_user": "u374829922", "pos": "import sys\n\ndef odd_def(num):\n if num % 2 == 0:\n return False\n else:\n return True\n\ndef main():\n a,b = map(int, input().split())\n for c in range(1,4):\n mal = a*b*c\n if odd_def(mal):\n print('Yes')\n sys.exit()\n print('No')\n\n\nif __name__ == '__main__' :\n main()", "neg": "import sys\n\ndef odd_def(num):\n if num % 2 == 0:\n return False\n else:\n return True\n\ndef main():\n a,b = map(int, input().split())\n for i in range(1,4):\n mal = a*b*c\n if odd_def(mal):\n print('Yes')\n sys.exit()\n print('No')\n\n\nif __name__ == '__main__' :\n main()", "jacc_sim": 0.9761904761904762, "before_after_length": [115, 115], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "ic", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u545368057", "n_user": "u572193732", "pos": "A, B = map(int,input().split())\nif A*B%2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "A, B = map(int, input())\n\nif A*B % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9090909090909091, "before_after_length": [37, 36], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " .split(\n) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u556589653", "n_user": "u089230684", "pos": "A,B =map(int,input().split())\nif ((A*B)%2) ==0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "A, B = map(int, input().split())\n\nif ((A*B)%2 == 2):\n\tprint(\"No\")\nelse:\n\tprint(\"Yes\")", "jacc_sim": 0.9545454545454546, "before_after_length": [40, 40], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \n)0 2)\t \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u738037409", "n_user": "u282228874", "pos": "a, b = map(int, input().split())\nif a%2 == 0 or b%2 == 0: print(\"No\")\nelse: print(\"Yes\")", "neg": "a,b = map(int,input().split())\nif a == 2 or b == 2:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9090909090909091, "before_after_length": [37, 37], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " %220%220\n \"No\"'Yes'\n 'No'\"Yes\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u897436032", "n_user": "u897436032", "pos": "A, B = map(int, input().split())\n \njudge = False\nfor C in range(1,4):\n if (A*B*C) %2 == 1:\n judge = True\n \n \n \nif judge == True:\n print(\"Yes\")\nelse:\n print(\"No\")\n ", "neg": "A, B = map(int, input().split())\n\njudge = False\nfor c in range(1,4):\n if A*B*C %2 == 1:\n judge = True\n \n\n \nif judge == True:\n print(\"Yes\")\nelse:\n print(\"False\")\n \n ", "jacc_sim": 0.9354838709677419, "before_after_length": [78, 77], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " cC() NoFalse\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u331464808", "n_user": "u617659131", "pos": "a,b=map(int,input().split())\nif a%2 and b%2:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b = map(int, input().split())\nif a % 2 == 0 and b % 2 == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9545454545454546, "before_after_length": [37, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " == 0 == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u123756661", "n_user": "u648212584", "pos": "a,b=map(int,input().split())\nprint(\"Yes\" if (a*b)%2 else \"No\")\n", "neg": "a,b = map.(int,input().split())\n\nif ( a * b ) % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9090909090909091, "before_after_length": [30, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " .\nif ( a * b ) % 2 == 0:\n print(\"No\")\nelse:\n if (a*b%2 else \"No\")\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u453526259", "n_user": "u453526259", "pos": "a,b = map(int, input().split())\nc = 0\n\nfor i in range(1,3):\n if ((a*b*i)%2) == 1:\n c = 1\n\nif c == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "a,b = map(int, input().split())\nc = 0\n\nfor i in range(1,3):\n if (a*b*c%2) == 1:\n c = 1\n\nif c == 1:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [70, 69], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "(ci)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u551351897", "n_user": "u845333844", "pos": "a,b = map(int,input().split())\nif a % 2 == 1 and b % 2 == 1:\n print('Yes')\nelse:\n print('No')", "neg": "a,b = map(int, input().split())\n\nif (a*b)%2 = 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n \n", "jacc_sim": 0.9130434782608695, "before_after_length": [41, 42], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \n( *b) == 1 and b % 2 = \"'\"' \"'\"'\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u822738981", "n_user": "u822738981", "pos": "# -*- coding: utf-8 -*-\n\nA, B = map(int, input().split())\n\nprint('No' if A * B % 2 == 0 else 'Yes' )", "neg": "# -*- coding: utf-8 -*-\n\nA, B = map(int, input().split())\n\nprint('NO' if A * B % 2 == 0 else 'Yes' )\n\n\n", "jacc_sim": 0.9285714285714286, "before_after_length": [45, 48], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "Oo\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u794603719", "n_user": "u693953100", "pos": "a,b = map(int,input().split(\" \"))\nif a*b%2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "a,b = map(int,input().split(' '))\nif a*b%2:\n print('No')\nelse:\n print('Yes')\n ", "jacc_sim": 0.9545454545454546, "before_after_length": [39, 39], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "'\"'\" == 0 '\"'\" '\"'\"\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u754689966", "n_user": "u122195031", "pos": "a,b = map(int, input().split())\n\nif a*b % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "a,b = map(int,input().split())\nif a*b % 2 == 0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [38, 37], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \nprint(\"No\")\nelse:\n\nelse:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u585482323", "n_user": "u585482323", "pos": "#!usr/bin/env python3\nfrom collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef I(): return int(sys.stdin.readline())\ndef LS():return list(map(list, sys.stdin.readline().split()))\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = I()\n return l\ndef LIR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = LI()\n return l\ndef SR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = S()\n return l\ndef LSR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = LS()\n return l\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n#A\ndef A():\n a,b,c = LI()\n print(9*max(a,b,c)+a+b+c)\n return\n\n#B\ndef B():\n a,b = LI()\n if a*b %2:\n print(\"Yes\")\n else:\n print(\"No\")\n return\n\n#C\ndef C():\n k = I()\n print(k//2-1)*(k//2)\n return\n\n#D\ndef D():\n return\n\n#E\ndef E():\n return\n\n#F\ndef F():\n return\n\n#G\ndef G():\n return\n\n#H\ndef H():\n return\n\n#I\ndef I_():\n return\n\n#J\ndef J():\n return\n\n#Solve\nif __name__ == \"__main__\":\n B()\n", "neg": "#!usr/bin/env python3\nfrom collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef I(): return int(sys.stdin.readline())\ndef LS():return list(map(list, sys.stdin.readline().split()))\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = I()\n return l\ndef LIR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = LI()\n return l\ndef SR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = S()\n return l\ndef LSR(n):\n l = [None for i in range(n)]\n for i in range(n):l[i] = LS()\n return l\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n#A\ndef A():\n a,b,c = LI()\n print(9*max(a,b,c)+a+b+c)\n return\n\n#B\ndef B():\n a,b = LI()\n if a*b %2:\n print(\"Yes\")\n else:\n print(\"No\")\n return\n\n#C\ndef C():\n return\n\n#D\ndef D():\n return\n\n#E\ndef E():\n return\n\n#F\ndef F():\n return\n\n#G\ndef G():\n return\n\n#H\ndef H():\n return\n\n#I\ndef I_():\n return\n\n#J\ndef J():\n return\n\n#Solve\nif __name__ == \"__main__\":\n A()\n", "jacc_sim": 0.9882352941176471, "before_after_length": [506, 485], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "k = I()\n print(k//2-1)*(k//2)\n AB", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u748377775", "n_user": "u748377775", "pos": "A,B=map(int,input().split())\n\nif(A%2!=0 and B%2!=0):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "A,B=map(int,input().split())\n\nif(A%2==0 and B%2==0):\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9565217391304348, "before_after_length": [45, 43], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "=!=!NoYesNoYes", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u511899838", "n_user": "u597455618", "pos": "a, b = map(int, input().split())\n\nif (a*b) % 2 ==1:\n print(\"Yes\")\nelse:\n print(\"No\")\n\n", "neg": "a , b = map(int, input().split())\nif (a * b %% 2 == 1) :\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [42, 39], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \n*b)* b % ) \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u832039789", "n_user": "u403547519", "pos": "a,b = map(int,input().split())\nif a*b%2==1:\n print('Yes')\nelse:\n print('No')\n", "neg": "a,b=map(int,input().split())\nif a*b%2=1:\n print(Yes)\nelse:\n print(No)", "jacc_sim": 0.9545454545454546, "before_after_length": [38, 37], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " = '' ''\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u332386346", "n_user": "u332386346", "pos": "a, b = map(int, input().split())\n\nif a%2 == 1 and b%2 == 1:\n print('Yes')\nelse:\n print('No')", "neg": "a, b = map(int, input().split())\n\nif a%2 == 1 .and. b%2 == 1:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [42, 44], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "..", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u844902298", "n_user": "u394853232", "pos": "a,b = list(map(int,input().split()))\n\nif a%2 == 0 or b%2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "a, b = map(int, input().split())\nif a % 1 == 0 or b % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9166666666666666, "before_after_length": [45, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " list( )\n 2 1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u921615009", "n_user": "u921615009", "pos": "args = input().split()\nif ( int(args[0]) * int(args[1]) ) % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")\n", "neg": "args = input().split(\" \")\nif args[0]*args[1]%2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9545454545454546, "before_after_length": [44, 37], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "\" \"( int() int() ) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u614710626", "n_user": "u614710626", "pos": "a, b = map(int, input().split())\nfor c in range(1, 4):\n if a*b*c % 2 == 1:\n print('Yes')\n break\n else:\n if c == 3:\n print('No')\n", "neg": "a, b = map(int, input().split())\nfor n in range(1, 4):\n if a*b*c % 2 == 1:\n print('Yes')\n break\n else:\n if n == 3:\n print('No')", "jacc_sim": 0.9666666666666667, "before_after_length": [62, 61], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "ncnc\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u000349418", "n_user": "u228636605", "pos": "a,b= map(int,input().split(' '))\nif (a*b)%2 != 0:\n print('Yes')\nelse:\n print('No')", "neg": "a , b = map(int , input().split())\nif a * b % 2 == 0 :\n print(\"Yes\")\nelse :\n print(\"No\")\n", "jacc_sim": 0.9565217391304348, "before_after_length": [41, 38], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " ' '( ) =! \"'\"' \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u430726059", "n_user": "u797016134", "pos": "a,b=map(int, input().split())\nif a*b%2==1:\n print('Yes')\nelse:\n print('No')", "neg": "a,b = map(int, input().split())\nif a*b % :\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9090909090909091, "before_after_length": [37, 34], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " 2==1 \"'\"' \"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u693048766", "n_user": "u016572066", "pos": "a, b = map(int, input().split())\n\nif a*b%2 == 1:\n print('Yes')\nelse:\n print('No')", "neg": "a, b = map(int, input.split())\nif (a * b) % 2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "jacc_sim": 0.9130434782608695, "before_after_length": [38, 39], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "()\n( ) 01\"No\"'Yes''No'\"Yes\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u746849814", "n_user": "u746849814", "pos": "a, b = map(int, input().split())\nfor c in range(1, 4):\n if a*b*c%2 == 1:\n print('Yes')\n break\nelse:\n print('No')\n\n", "neg": "a, b = map(int, input().split())\nfor c in range(1, 4):\n if a*b*c%2 == 1:\n print('Yes')\n\tbreak\nelse:\n print('No')", "jacc_sim": 1.0, "before_after_length": [55, 53], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \t \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u504836877", "n_user": "u861141787", "pos": "A,B = map(int, input().split())\nif (A*B)%2 == 0:\n print(\"No\")\nelse:\n print(\"Yes\")", "neg": "A, B = map(int, input().split())\n\nif (A * B) % 2 == 0:\n print(\"No\")\nelse:\n print(\"YES\") ", "jacc_sim": 0.9130434782608695, "before_after_length": [39, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": " \n ESes ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u653005308", "n_user": "u886902015", "pos": "a,b=map(int,input().split())\nif a%2==1 and b%2==1 :\n print('Yes')\nelse :\n print('No')\n", "neg": "a,b=map(int,input().split())\nif a%2== and b%2==0:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9130434782608695, "before_after_length": [42, 40], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "101 \"'\"' \"'\"'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03260", "p_user": "u050428930", "n_user": "u050428930", "pos": "a,b=map(int,input().split())\nif (a*b)%2==1:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "a,b=map(int,input().split())\nif (a*b)%2==1:\n print(\"Yws\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9130434782608695, "before_after_length": [40, 41], "nl": "You are given two integers, A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A * B * C is an odd number. If there is such an integer, print \"Yes\"; otherwise, print \"No\".", "diff_info": "we", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u580697892", "n_user": "u580697892", "pos": "#coding: utf-8\nN = input()\nK = int(input())\nans = 0\nfor i in range(min(K, len(N))):\n if int(N[i]) != 1:\n ans = N[i]\n #print(N[i])\n break\nprint(ans if ans != 0 else 1)", "neg": "#coding: utf-8\nN = input()\nK = int(input())\nif N[0] == 1:\n for i in range(1, len(N)):\n if N[i] != 1:\n print(N[i])\n break\nelse:\n print(N[0])", "jacc_sim": 0.9333333333333333, "before_after_length": [80, 73], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "ansif N[0]=01: 1min(K) int()ans = N[i]\n # else:\n N[ans if ans != ] else 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u478266845", "n_user": "u478266845", "pos": "s = str(input())\nk = int(input())\n\n\n\nnum = 1\n\n\nfor i in range(len(s)):\n ind = i+1\n if s[i] != '1':\n num = int(s[i])\n break\n \nif k>= ind:\n ans = num\nelse:\n ans = 1\n \nprint(ans)", "neg": "s = str(input())\nk = int(input())\n\n\nind = 0\nnum = 1\n\n\nfor i in range(len(s)):\n ind = i+1\n if s[i] != 1:\n num = int(s[i])\n break\n \nif k>= ind:\n ans = num\nelse:\n ans = 1\n \nprint(ans)", "jacc_sim": 0.9310344827586207, "before_after_length": [93, 95], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "ind = 0''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u392319141", "n_user": "u371132735", "pos": "S = input()\nK = int(input())\n\nfor i in range(K) :\n if S[i] != '1' :\n print(S[i])\n break\nelse :\n print('1')", "neg": "S = input()\nK = int(input())\nans = \"1\"\nfor i in range(K):\n if S[i] != \"1\":\n ans = i\n break\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [53, 49], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "ans = \"1\" \"'\"' a prist(S[i])\n=i\n else :\n ans'1'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u812576525", "n_user": "u812576525", "pos": "S = list(input())\nK = int(input())\n\nfor i in range(K):\n if S[i] != '1':\n ans = S[i]\n break\n else:\n ans = 1\n continue\nprint(ans)", "neg": "S = list(input())\nK = int(input())\n\nfor i in range(K):\n if S[i] != '1':\n ans = s\n break\n else:\n ans = 1\n continue\nprint(ans)", "jacc_sim": 0.96, "before_after_length": [61, 58], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "sS[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u740284863", "n_user": "u740284863", "pos": "s = str(input())\nk = int(input())\nfor i in range(k):\n if s[i] != \"1\":\n print(s[i])\n exit()\nprint(1)", "neg": "s = str(input())\nk = int(input())\nfor i in range(k):\n if s[k] != 1:\n print(s[k])\n exit()\nprint(1)", "jacc_sim": 0.9523809523809523, "before_after_length": [49, 48], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "ki\"\"ki", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u038408819", "n_user": "u038408819", "pos": "S = input()\nK = int(input())\n\nfor i in range(len(S)):\n if S[i] != '1':\n print(int(S[i]))\n break\n else:\n if i == K - 1:\n print(1)\n break\n else:\n continue", "neg": "S = input()\nK = int(input())\n\nfor i in range(len(S)):\n if S[i] != '1':\n print(S[i])\n break\n else:\n if i == N - 1:\n print(1)\n break\n else:\n continue", "jacc_sim": 0.96, "before_after_length": [76, 74], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "int()NK", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u214434454", "n_user": "u214434454", "pos": "s = input()\nk = int(input())\nans = 1\nif k <= len(s):\n if s[:k] == \"1\" * k:\n ans = 1\n else:\n for i in range(len(s)):\n if s[i] != \"1\":\n ans = int(s[i])\n break\nelse:\n for i in range(len(s)):\n if s[i] != \"1\":\n ans = int(s[i])\n break\nprint(ans)", "neg": "s = input()\nk = int(input())\nans = 1\nif k =< len(s):\n if s[:k] == \"1\" * k:\n ans = 1\n else:\n ans = int(s[k-1])\nelse:\n for i in range(len(s)):\n if s[i] != \"1\":\n ans = int(s[i])\n break\nprint(ans)", "jacc_sim": 0.9615384615384616, "before_after_length": [126, 103], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "==ans = int(s[k-1])\nelse:\n ans=i at([ = nt(s[i else:\n for i in range(len(s)):\n if s[i] != \"1\":\n ans = int(s[i])\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u842170774", "n_user": "u842170774", "pos": "#C\nS=input()\nK=int(input())\nnum='23456789'\nif S[0]!='1':\n print(int(S[0]))\nelse:\n n=1\n while True:\n if n==len(S):\n n-=1\n break\n elif S[n]!='1':\n break\n n+=1\n if K-1 0:\n\t\ti += 1\n\t\tK -= 1\n\tprint(S[i])\n\n", "neg": "S = input()\nK = int(input())\n\nif K == 1:\n\tprint(S[0])\nelse:\n\ti = 0\n\tK -= 1\n\twhile S[i] == \"1\" and K > 0:\n\t\ti += 1\n\t\tK -= 1\n\tprint((i,S[i]))\n", "jacc_sim": 0.9166666666666666, "before_after_length": [80, 78], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "\n)\n\texit((i,)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u642823003", "n_user": "u642823003", "pos": "s = list(input())\nk = int(input())\n\nif s[0] != \"1\":\n print(int(s[0]))\n\nelif s[0] == \"1\" and k != 1:\n if len(s) < k:\n for i in s:\n if int(i) != 1:\n print(int(i))\n break\n\n else:\n for l in range(0, k):\n if int(s[l]) != 1:\n print(int(s[l]))\n break\n\n if l == k - 1:\n print(1)\n\nelif s[0] == \"1\" and k == 1:\n print(1)\n", "neg": "s = list(input())\nk = int(input())\n\nif s[0] == \"1\" and k != 1:\n if len(s) < k:\n for i in s:\n if int(i) != 1:\n print(int(s[int(i)]))\n\n else:\n for l in s[0:k:]:\n if int(k) != 1:\n print(int(s[int(l)]))\n break\n\n if l == k - 1:\n print(1)\n\nelif s[0] == \"1\" and k == 1:\n print(1)\n", "jacc_sim": 0.9333333333333333, "before_after_length": [170, 152], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "!= \"1\":\n print(int(s[0]))\n\nelif s[0] s[nt(i])\n breaks[range(,:k:]:\n if int():\n if int(s[l]int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u977389981", "n_user": "u977389981", "pos": "S = input()\nK = int(input())\none_count = 0\nans = 0\n\nfor i in range(len(S)):\n if S[i] != '1':\n ans = S[i]\n break\n else:\n one_count += 1\n\nif one_count >= K:\n print('1')\nelse:\n print(ans)", "neg": "S = input()\nK = int(input())\none_count = 0\n\nfor i in range(len(S)):\n if S[i] != '1':\n print(S[i])\n break\n else:\n one_count += 1\n\nif one_count >= K:\n print('1')\nelse:\n print('0')", "jacc_sim": 0.9629629629629629, "before_after_length": [90, 86], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "ans = 0\naprit(s = )'0'ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u382176416", "n_user": "u382176416", "pos": "n=list(input())\nk=int(input())\nif len(n)==1 and n[0]=='1':\n print('1')\nelse:\n one_list=[]\n while len(n)!=0:\n if n[0]=='1':\n one_list.append(n.pop(0))\n else:\n break\n if k<=len(one_list):\n print('1')\n else:\n print(n[0])\n\n", "neg": "n=list(input())\nk=int(input())\nif len(n)==1:\n print('1')\nelse:\n one_list=[]\n while len(n)!=0:\n if n[0]=='1':\n one_list.pop(n.pop(0))\n else:\n break\n if 0=K):\n print(S[i])\n sys.exit()\n", "neg": "import sys\n# N,M = [int(n) for n in input().split()]\n# S = str(input())\n# T = str(input())\n\nS = str(input())\nK = int(input())\nnumplace = 0\n\nfor i in range(len(S)):\n if (S[i] == \"1\"):\n numplace+=1\n else:\n numplace+= int(S[i])**5000000000000000\n if(numplace>=K):\n print(S[i])\n sys.exit()\n", "jacc_sim": 1.0, "before_after_length": [134, 134], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "int(S[i])5000000000000000int(S[i])5000000000000000", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u735763891", "n_user": "u735763891", "pos": "def abc106_c():\n s = input()\n k = int(input())\n\n if s[:k].replace(\"1\", \"\") == \"\":\n return 1\n else:\n return (s.replace(\"1\", \"\"))[0]\n\n\nprint(abc106_c())", "neg": "def abc106_c():\n s = input()\n k = int(input())\n\n if s[:k] == \"1\"*k:\n return 1\n else:\n return (s.replace(\"1\", \"\"))[0]\n\n\nprint(abc106_c())", "jacc_sim": 0.9565217391304348, "before_after_length": [70, 68], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": ".replace(\"1\", \"\")1*k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u814986259", "n_user": "u814986259", "pos": "S=list(map(int,list(input())))\nK=int(input())\n\nif S[0]==1:\n if K==1:\n print(1)\n else:\n for i in range(1,len(S)):\n if S[i] != 1:\n print(S[i])\n exit(0)\n if i == K-1:\n print(1)\n exit(0)\nelse:\n print(S[0])", "neg": "S=list(map(int,list(input())))\nK=int(input())\n\nif S[0]==1:\n if K==1:\n print(1)\n else:\n for i in range(1,len(S)):\n if S[i] != 1:\n print(S[i])\n exit(0)\n if i == K-1:\n print(1)\n exit(0)", "jacc_sim": 1.0, "before_after_length": [117, 106], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "\nelse:\n print(S[0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u375616706", "n_user": "u375616706", "pos": "s = input()\nk = (int)(input())\n\nc = 0\nfor ch in s:\n if not ch == '1':\n break\n c += 1\nn = s[c] if c < len(s) else None\na = n if n and c < k else s[0]\nprint(a)\n", "neg": "s = input()\nk = (int)(input())\n\nc = 0\nfor c in s:\n if not c == '1':\n break\n c += 1\nn = s[c] if c < len(S) else None\na = n if n and c < K else S[0]\nprint(a)\n", "jacc_sim": 0.9032258064516129, "before_after_length": [77, 77], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "hhSsKkSs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u510331904", "n_user": "u510331904", "pos": "#!/usr/bin/env python3\nimport sys\ndef input():\n return sys.stdin.readline()[:-1]\n\ndef main():\n S = input()\n K = int(input())\n\n if K >= 1e3:\n K = 105\n\n T = ''\n for i in range(len(S)):\n if S[i] == '1':\n T += '1'\n else:\n T += S[i] * K\n\n if S[i] != '1':\n break\n\n print(T[K - 1])\n\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\ndef input():\n return sys.stdin.readline()[:-1]\n\ndef main():\n S = input()\n K = int(input())\n\n T = ''\n for i in range(len(S)):\n if S[i] == '1':\n T += '1'\n else:\n T += S[i] * K\n\n if S[i] != '1':\n break\n\n print(T[K - 1])\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9333333333333333, "before_after_length": [158, 143], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "if K >= 1e3:\n K = 105\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u733608212", "n_user": "u733608212", "pos": "s = input()\nn = int(input())\n \ncount = 0\nfor i in s:\n count+=1\n if i != \"1\" or count == n:\n print(i)\n break\nelse:\n print(1)", "neg": "s = input()\nn = int(input())\n\ncount = 0\nfor i in s:\n \tcount += 1\n if i != \"1\" or count == n:\n print(i)\n break\nelse:\n print(1)", "jacc_sim": 1.0, "before_after_length": [60, 59], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": " \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u416758623", "n_user": "u416758623", "pos": "s = input()\nk = int(input())\ncount = 0\nans = 0\nfor i in range(len(s)):\n if s[i] == \"1\":\n count += 1\n if count == k:\n ans = 1\n break\n else:\n ans = s[i]\n break\nprint(ans)", "neg": "s = input()\nk = int(input())\nans = 0\ncount = 0\nfor i in range(len(s)):\n if k == \"1\":\n count += 1\n if count == k:\n ans = 1\n break\n else:\n ans = s[i]\n break\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [81, 78], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "acoustacoutsks[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u838644735", "n_user": "u838644735", "pos": "S = input()\nK = int(input())\n# print(S, K)\nfor i in range(len(S)):\n s = S[i]\n if i >= K:\n break\n if s != '1':\n print(s)\n exit()\nprint('1')\n", "neg": "S = input()\nK = int(input())\n# print(S, K)\nfor i in range(len(S)):\n if i >= K:\n break\n if s != '1':\n print(s)\n exit()\nprint('1')\n", "jacc_sim": 0.9230769230769231, "before_after_length": [72, 64], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "\n s = S[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u348868667", "n_user": "u348868667", "pos": "S = input()\nK = int(input())\nif S[0]*len(S) == S and S[0] == \"1\":\n print(\"1\")\nelse:\n ans = 0\n ind = 0\n for i in range(len(S)):\n if S[i] != \"1\":\n ans = S[i]\n ind = i+1\n break\n if ind > K:\n print(\"1\")\n else:\n print(ans)", "neg": "S = input()\nK = int(input())\nif S[0]*len(S) == S:\n print(\"1\")\nelse:\n ans = 0\n ind = 0\n for i in range(len(S)):\n if S[i] != \"1\":\n ans = S[i]\n ind = i+1\n if ind > K:\n print(\"1\")\n else:\n print(ans)", "jacc_sim": 0.9310344827586207, "before_after_length": [115, 104], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": " and S[0] == \"1\" break\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03282", "p_user": "u623819879", "n_user": "u623819879", "pos": "s=input()\nk=int(input())\nfl=0\nt=0\nans='1'\nfor i in range(len(s)):\n if s[i]=='1' and fl==0:\n t+=1\n else:\n if fl==0:\n ans=s[i]\n fl=1\nif t>=k:\n ans='1'\nprint(ans)", "neg": "s=input()\nk=int(input())\nfl=0\nt=0\nfor i in range(len(s)):\n if s[i]=='1' and fl=0:\n t+=1\n else:\n if fl==0:\n ans=s[i]\n fl=1\nif t<=k:\n ans='1'\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [98, 93], "nl": "Mr. Infinity has a string S consisting of digits from 1 to 9. Each day, the string changes as follows: Each occurrence of a digit d in S is replaced with d repeated d times. For example, if S is 1324, it becomes 1333224444 the next day, and so on. You need to find the K-th character from the left in the string after 5 * 10^15 days. Constraints: S is a string of length between 1 and 100, K is an integer between 1 and 10^18, and the length of the string after 5 * 10^15 days is at least K. Input is given as S and K, and the output should be the K-th character from the left in Mr. Infinity's string after 5 * 10^15 days.", "diff_info": "\nans='1'=<>", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u931462344", "n_user": "u931462344", "pos": "a = list(map(int,input().split()))\nMin = min(a)\nMax = max(a)\nMid = sum(a) - Max - Min\n \nans = Mid-Min + Max-Mid\nprint(ans)", "neg": "a = map(int,input().split())\nMin = min(a)\nMax = max(a)\nMid = sum(a) - Max - Min\n\nans = Mid-Min + Max-Mid\nprint(ans)", "jacc_sim": 0.9523809523809523, "before_after_length": [56, 52], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "list() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u573754721", "n_user": "u573754721", "pos": "L = list(map(int,input().split()))\nL.sort()\ns=0\nfor i in range(1,3):\n s+=L[i]-L[i-1]\nprint(s)\n", "neg": "L=map(int,input().split())\nL.sort()\ns=0\nfor i in range(1,3):\n s+=L[i]-L[i-1]\nprint(s)", "jacc_sim": 0.9615384615384616, "before_after_length": [54, 50], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": " list()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u623349537", "n_user": "u623349537", "pos": "A1, A2, A3 = map(int, input().split())\nprint(min(abs(A1 - A2) + abs(A2 - A3), abs(A1 - A3) + abs(A2 - A3), abs(A2 - A1) + abs(A1 - A3), abs(A2 - A3) + abs(A3 - A1), abs(A3 - A1) + abs(A1 - A2), abs(A3 - A2) + abs(A2 - A1))\n )", "neg": "A1, A2, A3 = map(int, input().split())\nprint(min(abs(A1 - A2) + abs(A2 - A3), abs(A1 - A3) + abs(A2 - A3), abs(A2 - A1) + abs(A1 - A3), abs(A2 - A3) + abs(A3 - A1), abs(A3 - A1) + abs(A1 - A2), abs(A3 - A2) + abs(A2 - A1))", "jacc_sim": 1.0, "before_after_length": [127, 124], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "\n )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u538956308", "n_user": "u538956308", "pos": "A = list(map(int,input().split()))\nans = []\na = abs(A[0]-A[1])+abs(A[1]-A[2])##0\u21921\u21922\nb = abs(A[0]-A[2])+abs(A[2]-A[1])##0\u21922\u21921\nc = abs(A[1]-A[0])+abs(A[0]-A[2])##1\u21920\u21922\nans.append(a)\nans.append(b)\nans.append(c)\nprint(min(ans))\n", "neg": "A = list(map(int,input().split()))\nans = []\na = abs(A(0)-A(1))+abs(A(1)-A(2))##0\u21921\u21922\nb = abs(A(0)-A(2))+abs(A(2)-A(1))##0\u21922\u21921\nc = abs(A(1)-A(0))+abs(A(0)-A(2))##1\u21920\u21922\nans.append(a)\nans.append(b)\nans.append(c)\nprint(min(ans))\n", "jacc_sim": 1.0, "before_after_length": [154, 148], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "([)]([)]([)]([])([)]([)]([)]([)]([)]([)]([)]([)]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u075155299", "n_user": "u075155299", "pos": "a,b,c = map(int,input().split())\n\ns=[abs(a-b),abs(a-c),abs(b-c)]\ns.sort()\nprint(s[0]+s[1])", "neg": "a,b,c = map(int,input().split())\n\ns=[abs(a-b),abs(a-c),abs(b-c)]\ns.sort()\nprint(abs(s[0]-s[1]))", "jacc_sim": 0.9545454545454546, "before_after_length": [52, 55], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "abs(-+)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u686036872", "n_user": "u686036872", "pos": "list=list(map(int, input().split()))\nprint(max(list)-min(list))", "neg": "c= list(map(int, input().split()))\nprint(max(list)-min(list))", "jacc_sim": 0.9333333333333333, "before_after_length": [24, 24], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "clist ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u977642052", "n_user": "u977642052", "pos": "def main(a: list):\n a = sorted(a)\n\n cost = 0\n\n cost += abs(a[0] - a[1])\n cost += abs(a[1] - a[2])\n\n return cost\n\n\nif __name__ == '__main__':\n print(main(list(map(int, input().split(' ')))))\n", "neg": "def main(a: list):\n a = sorted(a)\n\n cost = 0\n\n cost += abs(a[0] - a[1])\n print(cost)\n cost += abs(a[1] - a[2])\n print(cost)\n\n return cost\n\n\nif __name__ == '__main__':\n print(main(list(map(int, input().split(' ')))))\n", "jacc_sim": 1.0, "before_after_length": [89, 101], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "print(cost)\n print(cost)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u644516473", "n_user": "u644516473", "pos": "a = sorted(map(int, input().split()))\nans = 0\nfor i, j in zip(a, a[1:]):\n ans += abs(j - i)\nprint(ans)\n", "neg": "a = map(int, input().split())\na.sort()\nans = 0\nfor i, j in zip(a, a[1:]):\n ans += abs(j - i)\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [48, 49], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "sorted(\na.sort(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u488178971", "n_user": "u488178971", "pos": "#103\nA =[int(j) for j in input().split()]\nA.sort()\nprint(abs(A[2]-A[0]))", "neg": "#103\nA =[int(j) for j in input().split()]\nprint(abs(A[2]-A[0]))", "jacc_sim": 0.9523809523809523, "before_after_length": [37, 32], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "A.sort()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u306142032", "n_user": "u306142032", "pos": "a = [i for i in input().split()]\n\nb = sorted(map(int, list(set(a))))\n\nif len(b) == 1:\n print(0)\nelif len(b) == 2:\n print(int(b[1])-int(b[0]))\nelse:\n print(int(b[2]) - int(b[0]))\n", "neg": "a = [i for i in input().split()]\n\nb = sorted(list(set(a)))\nif len(b) == 1:\n print(0)\nelif len(b) == 2:\n print(int(b[0])-int(b[1]))\nelse:\n print(int(b[2]) - int(b[0]))\n\n\nprint(b)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [93, 94], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "map(int, )\n0110\n\nprint(b)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u487288850", "n_user": "u487288850", "pos": "a,b,c = map(int,input().split())\nl=sorted([a,b,c])\nprint(l[2]-l[1]+l[1]-l[0])\n", "neg": "a,b,c = map(int,input().split())\na,b,c = map(int,input().split())\nl=sorted([a,b,c])\nprint(l[2]-l[1]+l[1]-l[0])\n", "jacc_sim": 1.0, "before_after_length": [47, 62], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "a,b,c = map(int,input().split())\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u131406572", "n_user": "u131406572", "pos": "L=list(map(int,input().split()))\nL.sort()\na=0\nfor i in range(1,len(L)):\n a=a+(L[i]-L[i-1])\n #print(L[i]-L[i-1])\nprint(a)", "neg": "L=list(map(int,input().split()))\nL.sort()\na=0\nfor i in range(len(L)-1):\n a+=L[i]-L[i-1]\n #print(i)\nprint(a)", "jacc_sim": 1.0, "before_after_length": [74, 62], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "1,-1=a=()L[]-L[i-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u909991537", "n_user": "u909991537", "pos": "l = [int(i) for i in input().split()] \nans = 0\n\nfor j in range(len(l) - 1):\n\tfor i in range(len(l) - 1):\n\t\tif l[i+1] < l[i]:\n\t\t\ttmp = l[i+1]\n\t\t\tl[i+1] = l[i]\n\t\t\tl[i] = tmp\n \nfor i in range(len(l) - 1):\n\tans += l[i+1] - l[i]\n \nprint(ans)", "neg": "l = [int(i) for i in input().split()] \nans = 0\n\nfor i in range(len(l) - 1):\n\tif l[i+1] < l[i]:\n\ttmp = l[i+1]\n\tl[i+1] = l[i]\n\tl[i] = tmp\n\nfor i in range(len(l) - 1):\n\tans += l[i+1] - l[i]\n\nprint(ans)", "jacc_sim": 0.9615384615384616, "before_after_length": [134, 114], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "ijfor i in range(len(l) - 1):\n\t\t\t\t\t\t\t\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u893063840", "n_user": "u767664985", "pos": "a = list(map(int, input().split()))\n\na.sort()\n\nprint(a[2] - a[0])\n", "neg": "a = list(map(int, input().split()))\nprint(a[2] - a[0])\n", "jacc_sim": 0.9444444444444444, "before_after_length": [33, 26], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "\na.sort()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u246820565", "n_user": "u246820565", "pos": "a = list(map(int, input().split()))\na.sort()\nprint(0+abs(a[1]-a[0])+abs(a[2]-a[1]))\n", "neg": "a = list(map(int, input().split()))\na.sort()\nprint(0+abs(a[2]-a[1])+abs(a[3]-a[2]))", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 46], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "21103221\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u604655161", "n_user": "u604655161", "pos": "def ABC_103_A():\n A1,A2,A3 = map(int, input().split())\n\n cost1 = 0 + abs(A2-A3) + abs(A3-A1)\n cost2 = 0 + abs(A2-A1) + abs(A3-A2)\n cost3 = abs(A1-A2) + 0 + abs(A3-A1)\n cost4 = abs(A1-A3) + 0 + abs(A3-A2)\n cost5 = abs(A1-A3) + abs(A2-A1) + 0\n cost6 = abs(A1-A2) + abs(A2-A3) + 0\n\n print(min(cost1,cost2,cost3,cost4,cost5,cost6))\n\nif __name__ == '__main__':\n\n ABC_103_A()", "neg": "def ABC_103_A():\n A1,A2,A3 = map(int, input().split())\n\n cost1 = 0 + abs(A2-A1) + abs(A3-A2)\n cost2 = 0 + abs(A3-A1) + abs(A2-A3)\n cost3 = abs(A1-A2) + 0 + abs(A3-A1)\n cost4 = abs(A2-A3) + 0 + abs(A3-A2)\n cost5 = abs(A1-A3) + abs(A2-A1) + 0\n cost6 = abs(A1-A2) + abs(A2-A3) + 0\n\n print(min(cost1,cost2,cost3,cost4,cost5,cost6))\n\nif __name__ == '__main__':\n\n ABC_103_A()", "jacc_sim": 1.0, "before_after_length": [216, 216], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "1) + abs(A-A2\n cost2 = 0 \n+ab cot(A- = 0 + abs(2-A1) + abs(A-A221", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u371467115", "n_user": "u371467115", "pos": "s=list(map(int,input().split()))\ns.sort()\nprint(s[2]-s[0])\n", "neg": "s=list(map(int,input())\ns.sort()\nprint(s[2]-s[0])\n", "jacc_sim": 0.9444444444444444, "before_after_length": [31, 28], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": ").split()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u212941574", "n_user": "u212941574", "pos": "# coding: utf-8\nn = input()\nlist = n.split(\" \")\nnum = [int(x) for x in list ]\n\nprint(max(num)-min(num))\n ", "neg": "# coding: utf-8\nn = input()\nlist = n.split(\" \")\nnum = [int(x) for x in list ]\n\nprint(num.max - num.min)\n ", "jacc_sim": 1.0, "before_after_length": [46, 46], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "max(.)-in(ax - ).min", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u199295501", "n_user": "u199295501", "pos": "# -*- coding: utf-8 -*-\n\nAn = list(map(int, input().split()))\n\nAn.sort()\ni = 0\nAi = An[0]\nsum = 0\nfor j,Aj in enumerate(An):\n i = Aj - Ai\n sum += i\n Ai = Aj\n\nprint(sum)\n", "neg": "# -*- coding: utf-8 -*-\n\nAn = list(map(int, input().split()))\n\nAn.sort()\n\nprint(An)\n\ni = 0\nAi = An[0]\nsum = 0\nfor j,Aj in enumerate(An):\n i = Aj - Ai\n sum += i\n Ai = Aj\n\nprint(sum)\n", "jacc_sim": 1.0, "before_after_length": [88, 95], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "\n\nprint(An)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u546853743", "n_user": "u546853743", "pos": "\nS=list(map(int,input().split()))\nS.sort()\nsum=0\nsum += (S[2]-S[0])\nprint(sum)", "neg": "\nS=list(map(int,input().split()))\nS.sort\nsum=0\nsum += (S[1]-S[0])+(S[2]-S[1])\nprint(sum)", "jacc_sim": 0.9523809523809523, "before_after_length": [41, 51], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "()12])+(S[2]-S[1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u860312915", "n_user": "u860312915", "pos": "# -*- coding: utf-8 -*-\n\nlist = list(map(int,input().split()))\nlist.sort()\nsum = list[2]-list[1]+list[1]-list[0]\n\nprint(sum)\n", "neg": "# -*- coding: utf-8 -*-\n\nlist = list(map(int,input().split()))\n\nprint(list)\n\nlist.sort()\nsum = 0;\nsum = list[2]-list[1]+list[1]-list[0]\n\nprint(sum)\n", "jacc_sim": 0.9629629629629629, "before_after_length": [60, 72], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "\nprint(list)\n\n\nsum = 0;", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u923279197", "n_user": "u923279197", "pos": "a=list(map(int,input().split()))\nans=abs(a[0]-a[1])+abs(a[0]-a[2])\nans=min(ans,abs(a[1]-a[0])+abs(a[1]-a[2]))\nans=min(ans,abs(a[2]-a[1])+abs(a[0]-a[2]))\nprint(ans)", "neg": "a_list=list(int,input().split())\nans=abs(a[0]-a[1])+abs(a[0]-a[2])\nans=min(ans,abs(a[1]-a[0])+abs(a[1]-a[2]))\nans=min(ans,abs(a[2]-a[1])+abs(a[0]-a[2]))\nprint(ans)", "jacc_sim": 0.9130434782608695, "before_after_length": [104, 103], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "_list(map)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u217940964", "n_user": "u217940964", "pos": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(A: \"List[int]\"):\n print(max(A) - min(A))\n return\n\n\n# Generated by 1.1.4 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n A = [ int(next(tokens)) for _ in range(3) ] # type: \"List[int]\"\n solve(A)\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(A: \"List[int]\"):\n print(abs(A[0] - A[1] + abs(A[1] - A[2]))\n return\n\n\n# Generated by 1.1.4 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n A = [ int(next(tokens)) for _ in range(3) ] # type: \"List[int]\"\n solve(A)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9166666666666666, "before_after_length": [185, 199], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "mxbs)[0]min([1] + abs(A[1] - A[2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u168416324", "n_user": "u168416324", "pos": "l=list(map(int,input().split()))\nl.sort(reverse=True)\nans=0\nbef=l[0]\nfor i in l:\n ans+=abs(bef-i)\n bef=i\nprint(ans)\n", "neg": "l=list(map(int,input().split()))\nl.sort(reverse=True)\nans=0\nbef=l[0]\nfor i in l:\n ans+=abs(bef-i)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [64, 57], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": " bef=i\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u607729897", "n_user": "u607729897", "pos": "A=list(map(int,input().split()))\nA.sort()\nres=0\nfor i in range(len(A)):\n if i==0:\n continue\n else:\n res=res+A[i]-A[i-1]\nprint(res)", "neg": "A=list(map(int,input().split()))\nA.sort()\nfor i in range(len(A)):\n if i=0:\n continue\n else:\n res=A[i]-A[i-1]\nprint(res)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [69, 64], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "res=0\n=res+\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u281876758", "n_user": "u281876758", "pos": "a = list(map(int, input().split()))\nans = (int(max(a))) - (int(min(a)))\nprint(ans)\n", "neg": "a = list(map(int, input().split()))\nprint(max(a))\nprint(min(a))\nans = (int(max(a))) - (int(min(a)))\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [37, 51], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "))\nprint(max(a))\nprint(min(a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u155687575", "n_user": "u155687575", "pos": "# A\nlst = list(map(int, input().split()))\nsor = sorted(lst)\ncost = 0\nfor i in range(len(sor)):\n if i == 0:\n continue\n else:\n cost += abs(sor[i]-sor[i-1])\nprint(cost)", "neg": "lst = list(map(int, input().split()))\nsor = sorted(lst)\ncost = 0\nfor i in range(len(sor)):\n if i == 0:\n continue\n else:\n cost = abs(sor[i]-sor[i-1])\nprint(cost)", "jacc_sim": 0.9090909090909091, "before_after_length": [74, 71], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "# A\n+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u333731247", "n_user": "u333731247", "pos": "A1,A2,A3=map(int,input().split())\n\nprint(abs(A1-A2)+abs(A2-A3)+abs(A3-A1)-max(abs(A1-A2),abs(A2-A3),abs(A3-A1)))", "neg": "A1,A2,A3=map(int,input().split())\n\nprint(abs(A1-A2)+abs(A2-A3)+abs(A3-A1)-max(A1-A2,A2-A3,A3-A1))", "jacc_sim": 1.0, "before_after_length": [71, 65], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "abs()abs()abs()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u239375815", "n_user": "u239375815", "pos": "a = list(map(int,input().split()))\na = sorted(a)\ncost = 0\nfor i in range(len(a)-1):\n cost += a[i+1]-a[i]\nprint(cost)", "neg": "a = sorted(map(int,input().split()))\n\ncost = 0\nfor i in range(1,len(a)-1):\n cost += a[i+1]-a[i]\nprint(cost)", "jacc_sim": 0.9615384615384616, "before_after_length": [56, 52], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": "lioreda = sorted(a)1,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03292", "p_user": "u256833330", "n_user": "u163449343", "pos": "a,b,c=sorted(map(int,input().split()))\nprint(c-a)\n", "neg": "a,b,c = map(int, input().split())\nprint(c-a)", "jacc_sim": 0.9333333333333333, "before_after_length": [25, 21], "nl": "You have three tasks to complete. The first task can be completed at no cost. After completing the i-th task, you can complete the j-th task at a cost of |A_j - A_i|. Find the minimum total cost to complete all tasks. All input values are integers, and 1 \u2264 A_1, A_2, A_3 \u2264 100. Input is given as A_1 A_2 A_3, and the output should be the minimum total cost. For example, given input 1 6 3, the minimum total cost is 5.", "diff_info": " sorted( )\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u013629972", "n_user": "u013629972", "pos": "import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nN -= K\nresult = N / (K-1) + 1\nif result % 1 != 0:\n result //= 1\n result += 1\n\nprint(int(result))\n\n", "neg": "import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\n\nN, K = LI()\nA = LI()\n\nif N == K:\n print(1)\n exit()\nresult = 0\nN -= K\nresult += 1\nresult += N / (K-1)\nif N % (K-1) != 0:\n result = round(result) + 1\n\nprint(result)\n", "jacc_sim": 0.9859154929577465, "before_after_length": [349, 355], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "result = 0\n= N / (K-1) =if result % 1 != 0:\n result //= 1\n N / (K-)if N % (K-1) != 0: result = round(result) + 1\n\ninresul(result)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u300968187", "n_user": "u227082700", "pos": "n,k=map(int,input().split());print((n-2)//(k-1)+1)", "neg": "n,k=map(int,input().split());print(((n+2)//(k-1))+1)", "jacc_sim": 1.0, "before_after_length": [26, 28], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "(+-)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u384679440", "n_user": "u384679440", "pos": "import math\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nprint(math.ceil((N-1)/(K-1)))", "neg": "import math\nN, K = map(int, input().split())\nA = list(map(int, input().split()))\nprint((N - 1) // (K - 1) + 1)", "jacc_sim": 0.9047619047619048, "before_after_length": [46, 45], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "math.ceil( / + 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u862359372", "n_user": "u862359372", "pos": "import math\n\nb, c = [int(a) for a in input().split()]\nprint (math.ceil((b - 1) / ((c - 1) * 1.0)))", "neg": "import math\n\nb, c = [int(a) for a in input().split()]\nprint (math.ceil(b / ((c - 1) * 1.0)))", "jacc_sim": 1.0, "before_after_length": [45, 42], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "( - 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u408325839", "n_user": "u408325839", "pos": "import math\nn, k = map(int,input().split())\ninput()\nprint(math.ceil((n-1)/(k-1)))\n", "neg": "import math\nn, k = map(int,input().split())\ninput()\nprint(int(math.ceil((n - 1)//(k - 1))))\n", "jacc_sim": 1.0, "before_after_length": [36, 40], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "int( / )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03317", "p_user": "u578953945", "n_user": "u578953945", "pos": "N,K=map(int,input().split())\nTMP=K\nANS=1\nif N <= K:\n ANS=1\nelse:\n while True:\n TMP+=(K-1)\n ANS+=1\n if N <= TMP:\n break\nprint(ANS)", "neg": "N,K=map(int,input.split())\nTMP=K\nANS=1\nif N =< K:\n ANS=1\nelse:\n TMP=(K-1)\n ANS+=1\n if N <= K:\n break\nprint(ANS)\n", "jacc_sim": 0.9166666666666666, "before_after_length": [73, 68], "nl": "You are given a sequence of length N: A_1, A_2, ..., A_N, initially a permutation of 1, 2, ..., N. Snuke can choose K consecutive elements and replace each with the minimum value among them. The goal is to make all elements equal. Find the minimum number of operations required. Constraints: 2 \u2264 K \u2264 N \u2264 100000. Input format: N K followed by A_1, A_2, ..., A_N. Output the minimum number of operations. Example: Input 4 3, sequence 2 3 1 4, Output 2.", "diff_info": "()<temp:\n temp = len(kaburi)\nprint(temp)", "neg": "N = int(input())\nS = input()\ntemp=0\nfor i in range(N-1):\n S1=S[0:i+1]\n S2=S[i+1:N]\n# print(S1 + \" \" + S2)\n kaburi=[]\n for s in S1:\n if s in S2 and s not in kaburi:\n kaburi.append(s)\n print (kaburi)\n if len(kaburi)>temp:\n temp = len(kaburi)\nprint(temp)", "jacc_sim": 1.0, "before_after_length": [132, 140], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "print (kaburi)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u294385082", "n_user": "u294385082", "pos": "n = int(input())\ns = input()\nc = 0\n \nfor i in range(1,n):\n s1 = set(s[:i])\n s2 = set(s[i:])\n w = len(s1&s2)\n if w > c:\n c = w\n \nprint(c)", "neg": "n = int(input())\ns = input()\nc = 0\n\nfor i in range(1,n):\n s1 = set(s[:i])\n s2 = set(s[i:])\n w = lin(s1&s2)\n if w > c:\n c = w\n \nprint(c)", "jacc_sim": 0.9285714285714286, "before_after_length": [81, 80], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " ie", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u598009172", "n_user": "u598009172", "pos": "N = int(input())\nS = str(input())\nans=0\nfor i in range(1,N-1):\n X = S[:i]\n Y = S[i:]\n Z = set(X) & set(Y)\n if len(Z) > ans :\n ans = len(Z)\nprint(ans)", "neg": "N = int(input())\nS = str(input())\nans=0\nfor i in range(1:N-1):\n X = S[:i]\n Y = S[i:]\n Z = set(X) & set(Y)\n if len(Z) > ans :\n ans = len(Z)\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [81, 81], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": ":,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u953379577", "n_user": "u953379577", "pos": "n = int(input())\n\ns = list(input())\n\nans = 0\n\nfor i in range(n):\n x = s[:i+1]\n y = s[i+1:]\n ans = max(ans,len(set(x)&set(y)))\n\nprint(ans)", "neg": "n = int(input())\n\ns = list(input())\n\nans = 0\n\nfor i in range(n):\n x = s[:i+1]\n y = s[i:]\n ans = max(ans,len(set(x)&set(y)))", "jacc_sim": 0.9629629629629629, "before_after_length": [73, 65], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "+1\n\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u662430503", "n_user": "u662430503", "pos": "import math\ndef main():\n n = int(input())\n s = input()\n ans=0\n for i in range(0,n):\n sum=0\n x=s[:i+1]\n y=s[i+1:]\n while len(x)>0:\n if x[0] in y :\n sum+=1\n x=x.replace(x[0],'')\n if sum>ans:\n ans=sum\n print(ans)\nmain()", "neg": "import math\ndef main():\n n = int(input())\n s = input()\n ans=0\n print(int(n/2)+1)\n for i in range(0,int(n/2)+2):\n sum=0\n x=s[:i+1]\n y=s[i+1:]\n while len(x)>0:\n if x[0] in y :\n sum+=1\n x=x.replace(x[0],'')\n if sum>ans:\n ans=sum\n print(ans)\nmain()\n", "jacc_sim": 0.9444444444444444, "before_after_length": [122, 141], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "print(int(n/2)+1)\n it(n/2)+2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u644907318", "n_user": "u644907318", "pos": "N = int(input())\nS = input().strip()\ncmax = 0\nfor n in range(1,N-1):\n X = S[:n]\n Y = S[n:]\n Cx = {}\n Cy = {}\n for i in range(n):\n a = X[i]\n if a not in Cx:\n Cx[a] = 0\n Cx[a] += 1\n for i in range(N-n):\n a = Y[i]\n if a not in Cy:\n Cy[a]=0\n Cy[a] += 1\n cnt = 0\n for a in Cx:\n if a in Cy:\n cnt += 1\n cmax = max(cmax,cnt)\nprint(cmax)", "neg": "N = int(input())\nS = input().strip()\ncmax = 0\nfor n in range(1,N-1):\n X = S[:n]\n Y = S[n:]\n Cx = {}\n Cy = {}\n for i in range(n):\n a = X[i]\n if a not in Cx:\n Cx[a] = 0\n Cx[a] += 1\n for i in range(N-n):\n a = Y[i]\n if a not in Cy:\n Cy[a]=0\n Cy[a] += 1\n cnt = 0\n for a in Cx:\n if a in Cy:\n cnt += 1\n cmax = max(cmax,cnt)", "jacc_sim": 0.9714285714285714, "before_after_length": [187, 181], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "\nprint(cmax)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u606033239", "n_user": "u606033239", "pos": "n = int(input())\ns = input()\na = 0\nfor i in range(1,n):\n a = max(a, len(set(s[:i]) & set(s[i:])))\n\nprint(a)", "neg": "n = int(input())\ns = input()\na = 0\nfor i in range(1,n):\n a = max(a,set(s[:i]) & set(s[i:]))\n\nprint(a)\n", "jacc_sim": 0.9565217391304348, "before_after_length": [55, 54], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " len()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u999893056", "n_user": "u999893056", "pos": "n = int(input())\ns = input()\n\nm = 0\nfor i in range(1, n - 1):\n a = s[:i]\n b = s[i:]\n c = len(set(a) & set(b))\n if c >= m:\n m = c\n\nprint(m)\n", "neg": " n = int(input())\n s = input()\n\n m = 0\n for i in range(1, n - 1):\n a = s[:i]\n b = s[i:]\n c = len(set(a) & set(b))\n if c >= m:\n m = c\n\n print(m)", "jacc_sim": 1.0, "before_after_length": [78, 81], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u352623442", "n_user": "u352623442", "pos": "n = int(input())\ns = input()\nans = 0\n \nfor i in range(n):\n a = s[:i]\n b = s[i:]\n tes = 0\n c = []\n for cha in a:\n if cha in b:\n if cha not in c:\n c.append(cha)\n tes += 1\n ans = max(tes,ans)\n\n \nprint(ans)\n", "neg": "n = int(input())\ns = input()\nans = 0\n\nfor i in range(n):\n a = s[:i]\n b = s[i+1:]\n tes = 0\n c = []\n for cha in a:\n if cha in b:\n if cha not in c:\n c.append(cha)\n tes += 1\n ans = max(tes,ans)\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [110, 109], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " +1 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u594956556", "n_user": "u594956556", "pos": "n=int(input())\ns=input()\nc=0\nfor i in range(1,n):\n x=set(s[:i])\n y=set(s[i:])\n a = len(x & y)\n if a > c:\n c = a\nprint(c)\n", "neg": "n=int(input())\ns=input()\nc=0\nfor i in range(1,N):\n x=set(s[:i])\n y=set(s[i:])\n a=x&y\n an=len(a)\n if an>c:\n c=an\nprint(c)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [74, 79], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "Nn x&y\n an=ax & yn n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u685662874", "n_user": "u685662874", "pos": "N=int(input())\nS=input()\nprint(max(len(set(S[:i]) & set(S[i:])) for i in range(N)))", "neg": "N=int(input())\nS=input()\nprint(max(len(set(S[:i]&set(S[i:])) for i in range(N))))", "jacc_sim": 1.0, "before_after_length": [39, 40], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": ") )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u495218088", "n_user": "u495218088", "pos": "n = int(input())\ns = input()\n\nmax_diff = 0\nfor i in range(1, len(s)):\n s1 = s[:i]\n s2 = s[i:]\n diff = len(set(s1) & set(s2))\n if diff > max_diff:\n max_diff = diff\nprint(max_diff)", "neg": "n = int(input())\ns = input()\n\nmax_diff = 0\nfor i in range(1, len(s)):\n s1 = s[:i]\n s2 = s[i:]\n diff = len(set(s1) & set(s2))\n if diff > max_diff:\n max_diff = diff\nprint max_diff", "jacc_sim": 1.0, "before_after_length": [89, 87], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u172569352", "n_user": "u172569352", "pos": "import collections\n\nN = int(input())\nS = input()\n\nm = 0\nindex = 0\nfor i in range(N):\n a = set(S[:i])\n b = set(S[i:])\n d = 0\n for c in a:\n if c in b:\n d += 1\n if d > m:\n m = d\n index = i\nprint(m)", "neg": "import collections\n\nN = int(input())\nS = input()\n\nm = 0\nindex = 0\nfor i in range(1, N):\n a = set(S[:i])\n b = set(S[i:])\n #print(a)\n #print(b)\n d = 0\n for c in a:\n if c in b:\n d += 1\n if d > m:\n m = d\n index = i\nprint(index - 1)", "jacc_sim": 0.90625, "before_after_length": [99, 117], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "1, #pd = 0\n fo c t():#pr f c i t()\n d = 0\n for c in a:\n if c in bmindex - 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u779728630", "n_user": "u779728630", "pos": "N = int(input())\nS = input()\n\ndef f(s, t):\n set_s = set()\n set_t = set()\n for i in s:\n set_s.add(i)\n for i in t:\n set_t.add(i)\n return len( set_s & set_t )\n\nans = 0\nfor i in range(1,N):\n s = S[i:]\n t = S[:i]\n ans = max(ans, f(s ,t))\nprint(ans)", "neg": "N = int(input())\nS = input()\n\ndef f(s, t):\n set_s = set()\n set_t = set()\n for i in s:\n set_s.add(i)\n for i in t:\n set_t.add(i)\n return len( set_s & set_t )\n\nfor i in range(1,N):\n s = S[i:]\n t = S[:i]\n ans = max(ans, f(s ,t))\nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [133, 129], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "ans = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u371467115", "n_user": "u371467115", "pos": "n=int(input())\ns=list(input())\na=[]\nl=[]\nfor i in range(n):\n kind=0\n l.append(s.pop(0))\n for j in list(set(l)):\n if j in list(set(s)):\n kind+=1\n a.append(kind)\nprint(max(a))\n", "neg": "n=int(input())\ns=list(input())\na=[]\nl=[]\nfor i in s:\n kind=0\n l.append(i)\n for j in list(set(l)):\n if j in list(set(s)):\n kind+=1\n a.append(kind)\nprint(max(a))", "jacc_sim": 0.9310344827586207, "before_after_length": [92, 85], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "srange(n)is.pop(0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u076764813", "n_user": "u076764813", "pos": "n=int(input())\ns=list(input())\n\nnum=0\nfor i in range(n):\n x=set(s[:i])\n y=set(s[i:])\n if len(x&y)>num:\n num=len(x&y)\n\nprint(num)\n\n\n", "neg": "n=int(input())\ns=list(input())\n\nnum=0\nfor i in range(n):\n x=set(s[:n])\n y=set(s[n:])\n if len(x&y)>num:\n num=len(x&y)\n\nprint(num)\n\n\n", "jacc_sim": 1.0, "before_after_length": [78, 78], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "nini", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u055687574", "n_user": "u581603131", "pos": "N = int(input())\nS = list(input())\n\nans = max([len(set(S[:i])&set(S[i:])) for i in range(N)])\nprint(ans)", "neg": "N = int(input())\nS = input()\nprint(max(len(set[:i]&set[i:])) for i in range(N))", "jacc_sim": 0.9047619047619048, "before_after_length": [48, 35], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "list()\naprit(s = [(S)(S]\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u118211443", "n_user": "u118211443", "pos": "N=int(input())\nS=list(input())\nans=0\nfor i in range(N-1):\n a=set(S[:i+1])\n b=set(S[i+1:])\n ans=max(ans,len(a&b))\nprint(ans)", "neg": "N=int(input())\nS=list(input())\nfor i in range(N-1):\n a=set(S[:i+1])\n b=set(S[i+1:])\n ans=max(ans,len(a&b))\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [71, 67], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "\nans=0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u027622859", "n_user": "u027622859", "pos": "def main():\n N = int(input())\n S = input()\n\n count = 0\n max_ = 0\n\n for i in range(N):\n x = set(S[:i])\n y = set(S[i:])\n\n max_ = max(len(x&y), max_)\n\n print(max_)\n\n\nif __name__=='__main__':\n main()", "neg": "def main():\n N = int(input())\n S = input()\n\n count = 0\n max_ = 0\n\n for i in range(N):\n x = set(S[:i])\n y = set(S[:i])\n\n max_ = max(len(x&y), max_)\n\n print(max_)\n\n\nif __name__=='__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [101, 100], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "::", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u394853232", "n_user": "u394853232", "pos": "n = int(input())\nst = input()\nb = 0\nfor i in range(n):\n k = list(set(st[:i]))\n u = 0\n for j in range(len(k)):\n if k[j] in st[i:]:\n u += 1\n if u > b:\n b = u\nprint(str(b))", "neg": "n = int(input())\nst = input()\nb = 0\nfor i in range(1,n):\n k = list(set(st[:i]))\n u = 0\n for j in range(len(k)):\n if st[j] in st[i:]:\n u += 1\n if u > b:\n b = u\nprint(str(b))", "jacc_sim": 0.9655172413793104, "before_after_length": [89, 91], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "1,kst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u882359130", "n_user": "u882359130", "pos": "N = int(input())\nS = input()\nS_set = list(set(S))\nmx_ans = 0\nfor n in range(N):\n X = S[:n]\n Y = S[n:]\n ans = 0\n for i in range(len(S_set)):\n if (X.count(S_set[i])>0) and (Y.count(S_set[i])>0):\n ans += 1\n if mx_ans < ans:\n mx_ans = ans\nprint(mx_ans)", "neg": "N = int(input())\nS = input()\nS_set = list(set(S))\nmx_ans = 0\nfor n in range(N):\n X = S[:n]\n Y = S[n:]\n ans = 0\n for i in range(len(S_set)):\n if X.count(S_set[i]) == Y.count(S_set[i]):\n ans += 1\n if mx_ans < ans:\n mx_ans = ans\nprint(mx_ans)", "jacc_sim": 0.9393939393939394, "before_after_length": [131, 124], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "(>0)==and(>0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u796269639", "n_user": "u796269639", "pos": "n = int(input())\ns = input()\n\ncommon = 0\nfor i in range(1,len(s)+1):\n common = max(common, len(set(s[:i]).intersection(set(s[i:]))))\n\nprint(common)", "neg": "n = int(input())\ns = input()\n\ncommon = 0\nfor i in range(1,len(s)+):\n common = min(common, len(set(s[:i]).intersection(set[i:])))\n\nprint(common)", "jacc_sim": 0.9230769230769231, "before_after_length": [63, 59], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "1inax(s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u341855122", "n_user": "u341855122", "pos": "n = input()\ns = input()\nl = int(n)\ncount = 0\nfor i in range(1,l):\n s1 = set(s[:i])\n s2 = set(s[i:])\n count = max(count,len(s1 & s2))\nprint(count)\n\n\n", "neg": "n = input()\ns = input()\nl = int(n)\ncount = 0\nfor i in range(0,l):\n s1 = len(set(s[:i]))\n s2 = len(set(s[i:]))\n count = max(count,s1 & s2)\nprint(count)\n", "jacc_sim": 0.9615384615384616, "before_after_length": [77, 77], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "01len()len()len()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u698837729", "n_user": "u698837729", "pos": "N = int(input())\nS = input()\n\nposDevide = 1\nmaxMatchWordNum = 0\n\nwhile posDevide <= N - 1:\n arrayNum = 0\n matchWordNum = 0\n while arrayNum < posDevide:\n if arrayNum == S.find( S[ arrayNum ], 0, posDevide):\n matchWordNum = matchWordNum + 1 if bool( S.count( S[ arrayNum ], posDevide, N )) else matchWordNum\n\n arrayNum += 1\n\n maxMatchWordNum = matchWordNum if matchWordNum > maxMatchWordNum else maxMatchWordNum\n posDevide += 1\n\nprint(maxMatchWordNum)", "neg": "N = int(input())\nS = input()\n\nposDevide = 1\nmaxMatchWordNum = 0\n\nwhile posDevide < N:\n arrayNum = 1\n matchWordNum = 0\n while arrayNum <= posDevide:\n matchWordNum = matchWordNum + 1 if bool( S.count( S[ arrayNum - 1 ], posDevide, N-1 )) else matchWordNum\n arrayNum += 1\n\n maxMatchWordNum = matchWordNum if matchWordNum > maxMatchWordNum else maxMatchWordNum\n posDevide += 1\n\nprint(maxMatchWordNum)", "jacc_sim": 0.9696969696969697, "before_after_length": [166, 144], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "= - 11\n matchWordNum = matchWordNum = 0\n = matchWordNum = matchWordNum + 1 arrayNum ==bool(ficoutd- 1 0, ):\n matchWordNum = matchWordNum + 1 if bool( S.count( S[ arrayNum ]posDevide, -1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u386819480", "n_user": "u386819480", "pos": "n = int(input())\ns = list(input())\n\n\nmax = 0\nfor i in range(1,n):\n xs = set(s[:i])\n ys = set(s[i:])\n l = len(xs&ys)\n if l > max:\n max = l\n\nprint(max)\n\n", "neg": "n = int(input())\ns = list(input())\n\nmax = 0\nfor i in range(1,n):\n l = len(set(s[:i]&s[i:]))\n if l > max:\n max = l\n\nprint(max)", "jacc_sim": 0.9285714285714286, "before_after_length": [80, 64], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "\nlxslen(&)\n ys = set(\n l = len(xs&ys\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u426501657", "n_user": "u426501657", "pos": "N = int(input())\nS = list(map(str,input()))\n\nnum=[]\nfor i in range(0,N-1):\n\ticchi=[]\n\tp_list=[]\n\tq_list=[]\n\tfor p in range(0,i+1):\n\t\tp_list.append(S[p])\n\tfor q in range(i+1,N):\n\t\tq_list.append(S[q])\n\tfor x in range(0,len(p_list)):\n\t\tfor y in range(0,len(q_list)):\n\t\t\tif(p_list[x]==q_list[y]):\n\t\t\t\ticchi.append(p_list[x])\n\t\t\t\tbreak\n\tnum.append(len(set(icchi)))\nprint(max(num))", "neg": "N = int(input())\nS = list(map(str,input()))\nprint(S)\nicchi=[]\nnum=[]\nfor i in range(0,N-1):\n\tp_list=[]\n\tq_list=[]\n\tfor p in range(0,i+1):\n\t\tp_list.append(S[p])\n\tfor q in range(i+1,N):\n\t\tq_list.append(S[q])\n\tfor x in range(0,len(p_list)):\n\t\tfor y in range(0,len(q_list)):\n\t\t\tif(p_list[x]==q_list[y]):\n\t\t\t\ticchi.append(p_list[x])\n\t\t\t\tbreak\n\tnum.append(len(set(icchi)))\nprint(max(num))", "jacc_sim": 1.0, "before_after_length": [197, 200], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "print(S)\nicchi=[]icchi=[]\n\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u939585142", "n_user": "u939585142", "pos": "N = int(input())\nS = input()\n\nans = 0\nfor i in range(N):\n cnt = 0\n X = set(S[:i])\n Y = set(S[i:])\n for j in X:\n if j in Y:\n cnt += 1\n ans = max(cnt,ans)\nprint(ans) ", "neg": "N = int(input())\nS = input()\n\nans = 0\nfor i in range(N):\n cnt = 0\n X = S[:i]\n Y = S[i + 1:]\n for j in range(i):\n if X[j] in Y:\n cnt += 1\n ans = max(cnt,ans)\nprint(ans) ", "jacc_sim": 0.9629629629629629, "before_after_length": [85, 87], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "set()set( + 1)Xrange(i)X[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u642120132", "n_user": "u403355272", "pos": "n = int(input())\ns = input()\nans = 0\nfor i in range(1, n-1):\n ans = max(ans, len(set(s[:i]) & set(s[i:])))\nprint(ans)", "neg": "n = int(input())\ns = list(input())\n\nans = 0\nfor i in range(1,n-1):\n ans = max(ans, len(list(set(s[:i]) & set(s[i:]))))\n print(set(s[:i]) & set(s[i:]))\nprint(ans)", "jacc_sim": 0.96, "before_after_length": [56, 80], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "list()\n list()\n print(set(s[:i]) & set(s[i:]))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u225388820", "n_user": "u863442865", "pos": "n=int(input())\ns=list(input())\nans=0\nfor i in range(1,n):\n ans=max(ans,len(set(s[:i])&set(s[i:])))\nprint(ans)", "neg": "n = int(input())\ns = input()\n\nans = 0\n\nfor i in range(n):\n ans = max(ans, len(set[:i] & set[i:]))\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [56, 50], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": " list(\n) \n1, (s ) (s)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03338", "p_user": "u057079894", "n_user": "u057079894", "pos": "n=int(input())\ns=input()\nans=0\nfor i in range(n):\n x=s[:i]\n y=s[i:]\n X=set(list(x))\n Y=set(list(y))\n ans=max(ans,len(X&Y))\nprint(ans)\n", "neg": "n=int(input())\ns=input()\nans=0\nfor i in range(n):\n x=s[:i]\n y=s[i:]\n X=set(x)\n Y=set(y)\n ans=max(ans,X&Y)\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [79, 72], "nl": "You are given a string S of length N consisting of lowercase English letters. The task is to cut this string at one position into two strings X and Y to maximize the number of different letters contained in both X and Y. Find the largest possible number of different letters contained in both X and Y when the string is cut at the optimal position. Constraints: 2 \u2264 N \u2264 100, S consists of lowercase English letters. Input is given as N and S, and the output should be the largest possible number of different letters contained in both X and Y.", "diff_info": "list()list()len()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u600402037", "n_user": "u600402037", "pos": "x=int(input())\nans=1\nfor i in range(1,x):\n for j in range(2,x):\n if i**j<=x:\n ans=max(ans,i**j)\n else:break\nprint(ans)", "neg": "x=int(input())\nans=1\nfor i in range(1,x):\n for j in range(2,x):\n if i**j x:\n break\n else:\n ans = max(ans, k)\n j += 1\n \nprint(ans)", "neg": "x = int(input())\nans = 1\n\nfor i in range(2, int(x**(0.5))+1):\n j = 2\n while True:\n k = i**j\n if k > x:\n break\n else:\n ans = max(ans, i)\n j += 1\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [84, 84], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "ik", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u322185540", "n_user": "u322185540", "pos": "n = int(input())\nans = 1\nfor i in range(1,1001):\n for j in range(2,1001):\n if i**j > n:\n break\n if ans < i**j <= n:\n ans = i**j\nprint(ans) ", "neg": "n = int(input())\nans = 0\nfor i in range(1,1001):\n for j in range(2,1001):\n if i**j >n:\n break\n if ans < i**j < n:\n ans = i**j\nprint(ans) ", "jacc_sim": 0.9583333333333334, "before_after_length": [69, 69], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "01 =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u488934106", "n_user": "u488934106", "pos": "def Exponential(x):\n\n ans = 0\n if x == 1:\n ans = 1\n else:\n for i in range(1, x + 1):\n for w in range(2, x + 1):\n if i ** w > x:\n break\n else:\n ans = max(ans, i ** w)\n\n return ans\n\ndef main():\n x = int(input())\n print(Exponential(x))\n\nif __name__ == '__main__':\n main()", "neg": "def Exponential(x):\n\n ans = 0\n if x == 1:\n ans = 1\n else:\n for i in range(1, x + 1):\n for w in range(2, x + 1):\n if i ** w <= x:\n ans = max(ans, i ** w)\n\n return ans\n\ndef main():\n x = int(input())\n print(Exponential(x))\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9090909090909091, "before_after_length": [124, 117], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "><=:\n break\n else", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u281303342", "n_user": "u281303342", "pos": "X = int(input())\n\ns = [1]\nfor i in range(X+1):\n for j in range(2,X+1):\n if i**j <= X and i**j not in s:\n s.append(i**j)\n if i**j > X:\n break\nprint(max(s)) ", "neg": "X = int(input())\n\ns = []\nfor i in range(X+1):\n for j in range(2,X+1):\n if i**j <= X and i**j not in s:\n s.append(i**j)\n if i**j > X:\n break\nprint(max(s)) ", "jacc_sim": 1.0, "before_after_length": [82, 80], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u017810624", "n_user": "u017810624", "pos": "x=int(input())\na=[]\nfor i in range(2,10):\n for j in range(1,32):\n if j**i<=x:a.append(j**i)\nprint(max(a))", "neg": "x=int(input())\na=[]\nfor i in range(2,10):\n for j in range(1,32):\n if j**i<=x:a.append(j**i)\nprint(max(a))\u200b", "jacc_sim": 0.9642857142857143, "before_after_length": [56, 59], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "\u200b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u980492406", "n_user": "u980492406", "pos": "X = int(input())\nx = int(X**0.5)\nnum = []\nif X <= 3 :\n print(1)\nelse :\n for b in range(2,x+1) :\n p = 2\n while b**p <= X :\n p += 1\n num.append(b**(p-1))\n print(max(num))", "neg": "X = int(input())\nx = int(X**0.5)\nnum = []\nfor b in range(2,x+1) :\n p = 2\n while b**p <= X :\n p += 1\n num.append(b**(p-1))\nprint(max(num))", "jacc_sim": 0.9090909090909091, "before_after_length": [90, 73], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "if X <= 3 :\n print(1)\nelse :\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u963915126", "n_user": "u963915126", "pos": "ni = lambda: int(input())\nnm = lambda: map(int, input().split())\nnl = lambda: list(map(int, input().split()))\n\nx = ni()\n\nnum = 1\n\nfor i in range(100):\n for j in range(2,10):\n if i**j <= x:\n num = max(num,i**j)\n\nprint(num)", "neg": "ni = lambda: int(input())\nnm = lambda: map(int, input().split())\nnl = lambda: list(map(int, input().split()))\n\nx = ni()\n\nnum = 1\n\nfor i in range(100):\n for j in range(10):\n if i**j <= x:\n num = i**j\n\nprint(num)", "jacc_sim": 0.9354838709677419, "before_after_length": [95, 88], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "2,max(num,\n\nprint(num\n\nprint(num)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u408375121", "n_user": "u408375121", "pos": "X = int(input())\nl = []\nif X < 4:\n print(1)\nelse:\n for i in range(2, int(X ** 0.5) + 1):\n j = 2\n while i ** j <= X:\n l.append(i ** j)\n j += 1\n l.sort()\n print(l[-1])\n", "neg": "X = int(input())\nl = []\nfor i in range(1, int(X ** 0.5) + 1):\n j = 2\n while i ** j <= X:\n j += 1\n l.append(i ** j)\nl.sort()\nprint(l[-1])\n", "jacc_sim": 0.90625, "before_after_length": [89, 71], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "if X < 4:\n print(1)\nelse:\n 12 j += 1\n j += 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u910358825", "n_user": "u910358825", "pos": "x=int(input())\nres=0\nfor b in range(x+1):\n for p in range(2,x+2):\n if res<(b**p)<=x:\n res=b**p\n elif b**p>x:\n break\nprint(res)\n\n", "neg": "x=int(input())\nres=0\nfor b in range(x):\n for p in range(2,x):\n if res<(b**p)<=x:\n res=b**p\n elif b**p>x:\n break\nprint(res)\n\n", "jacc_sim": 0.92, "before_after_length": [73, 69], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "+1+2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u466331465", "n_user": "u466331465", "pos": "N = int(input())\nans = 0\nif N ==1:\n print(1)\n exit()\nelse:\n for i in range(int(N**0.5)+1):\n for j in range(100):\n if i**j<=N:\n ans =max(ans,i**j)\n else:\n break\nprint(ans)\n ", "neg": "N = int(input())\nans = 0\nif N ==1:\n print(1)\nelse:\n for i in range(int(N**0.5)+1):\n for j in range(100):\n if i**j<=N:\n ans =max(ans,i**j)\n else:\n break\nprint(ans)\n ", "jacc_sim": 0.9642857142857143, "before_after_length": [91, 87], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": " exit()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u557437077", "n_user": "u557437077", "pos": "x = int(input())\nmax = 0\nif x == 1:\n print(1)\n exit()\nfor b in range(1, 1001):\n for p in range(2, 10):\n if b**p <= x:\n if b**p >= max:\n max = b**p\nprint(max)", "neg": "x = int(input())\nmax = 0\nif x == 1:\n print(1)\n exit()\nfor b in range(2, 1000):\n for p in range(10):\n if b**p <= x:\n if b**p >= max:\n max = b**p\nprint(max)", "jacc_sim": 0.9230769230769231, "before_after_length": [78, 75], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "21012, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u622045059", "n_user": "u622045059", "pos": "X = int(input())\n\nmax_v = 1\n\nfor i in range(2, X+1):\n for j in range(2, X+1):\n if i ** j <= X:\n max_v = max(max_v, i ** j)\n else:\n break\nprint(max_v)\n\n", "neg": "X = int(input())\n\nmax_v = 1\n\nfor i in range(2, X+1):\n for j in range(2, X+1):\n if i ** j <= X:\n max_v = max(max_v, i ** j)\nprint(max_v)\n\n", "jacc_sim": 0.9166666666666666, "before_after_length": [80, 73], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": " else:\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u766566560", "n_user": "u766566560", "pos": "X = int(input())\nans = 1\n\nfor i in range(1, X+1):\n for j in range(2, X+1):\n num = i ** j\n if num > X:\n break\n if num >= ans: \n ans = num\n\nprint(ans)", "neg": "X = int(input())\nans = 0\n\nfor i in range(1, X):\n for j in range(2, X):\n num = i ** j\n if num >= X:\n break\n ans = num\n\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [71, 60], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "01+1+1= if num >= ans: \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u279461856", "n_user": "u279461856", "pos": "from math import log\nx = int(input())\nlx = log(x)\nans = 1\nfor b in range(2, int(x**(1/2))+1):\n h = b\n while h*b <= x:\n h *= b\n if h > ans: ans = h\n\nprint(ans)\n", "neg": "from math import log\nx = int(input())\nlx = log(x)\nans = 1\nfor b in range(2, int(b**(1/2))+1):\n h = int(lx/log(b))\n if b**h > ans: ans = b**h\n\nprint(ans)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [79, 77], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "bxb\n whnt(e h*b <= /log(:\n h *= ))b**b**", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u835283937", "n_user": "u835283937", "pos": "import math\ndef main():\n X = int(input())\n ma = 1\n for b in range(2, X):\n for p in range(2, X):\n if b**p <= X:\n if ma < b**p:\n ma = b**p\n else:\n break\n print(ma) \nmain()", "neg": "import math\ndef main():\n X = int(input())\n ma = 1\n for b in range(2, X):\n for p in range(2, X):\n if b**p <= X:\n if ma < b**p:\n ma = b**p\n print(ma) \nmain()", "jacc_sim": 0.9230769230769231, "before_after_length": [83, 76], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "print(ma) else:m brek\n prtma \nmain()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u727787724", "n_user": "u727787724", "pos": "# coding: utf-8\n# Your code here!\nx=int(input())\nans=[]\nif x==1:\n print(1)\nelse:\n for i in range(1,x+1):\n for j in range(2,x+1):\n if i**j<=x:\n ans.append(i**j)\n else:\n break\n ans.sort(reverse=True)\n print(ans[0])\n#print(ans)", "neg": "# coding: utf-8\n# Your code here!\nx=int(input())\nans=[]\nfor i in range(1,x+1):\n for j in range(2,x+1):\n if i**j<=x:\n ans.append(i**j)\n else:\n break\nans.sort(reverse=True)\nprint(ans[0])\n#print(ans)", "jacc_sim": 1.0, "before_after_length": [115, 97], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "if x==1:\n print(1)\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u222634810", "n_user": "u222634810", "pos": "import sys\n\nX = int(input())\narray = []\nfor i in range(2, 11):\n for j in range(1, 33):\n if pow(j, i) > X:\n break\n else:\n array.append(pow(j, i))\n \nprint(max(array))", "neg": "import sys\n\nX = int(input())\narray = []\nfor i in range(2, 11):\n for j in range(1, 33):\n if pow(j, i) > X:\n break\n else:\n array.append(pow(i, j))\n \nprint(min(array))", "jacc_sim": 0.9375, "before_after_length": [75, 75], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "i, , iin(rrx(rra", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u923270446", "n_user": "u923270446", "pos": "from math import sqrt\nx = int(input())\ncnt = 0\nl = []\nfor i in range(1, x + 1):\n for j in range(1, int(sqrt(i)) +1):\n for k in range(2, 10):\n if j ** k == i:\n l.append(i)\nprint(max(l))", "neg": "from math import sqrt\nx = int(input())\ncnt = 0\nl = []\nfor i in range(1, x + 1):\n for j in range(1, int(sqrt(i)) +1):\n for k in range(2, i):\n if j ** k == i:\n l.append(i)\nprint(max(l))", "jacc_sim": 0.9696969696969697, "before_after_length": [84, 84], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "i10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u597017430", "n_user": "u597017430", "pos": "x = int(input())\nif x < 4:\n print(1)\n exit()\nimport math\nresult = 1\nfor i in range(2,x+1):\n if math.floor(math.log(x,i)+1/100000) > 1:\n result = max(result, i ** math.floor(math.log(x,i)+1/100000))\n \nprint(result)\n", "neg": "x = int(input())\nif x < 4:\n print(1)\n exit()\nimport math\nfor i in range(2,x):\n if math.floor(math.log(x,i))>1:\n result = max(result, i ** math.floor(math.log(x,i)))\nprint(result)", "jacc_sim": 0.9032258064516129, "before_after_length": [101, 82], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "result = 1\n+1+1/100000 +1/100000 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u552837040", "n_user": "u552837040", "pos": "a=int(input())\n\nres=0\n\nfor i in range(1,1000):\n for j in range(2,10):\n if resi**j and i**j<=a:\n res=i**j\nprint(res)", "jacc_sim": 0.96, "before_after_length": [63, 59], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": " \n \n >< \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u079022693", "n_user": "u079022693", "pos": "X=int(input())\nn=1\nfor b in range(2,X):\n p=2\n while(True):\n x=b**p\n if x<=X:\n n=max(x,n)\n p+=1\n else:\n break\n \nprint(n)", "neg": "X=int(input())\nn=1\nfor b in range(2,X):\n p=2\n while(True):\n x=b**p\n print(x)\n if x<=X:\n n=x\n p+=1\n else:\n break\n \nprint(n)", "jacc_sim": 0.9629629629629629, "before_after_length": [76, 77], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "print(x)\n ma(x,n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u454524105", "n_user": "u454524105", "pos": "x = int(input())\nans = 1\nfor i in range(x):\n for j in range(2, x):\n if x < i**j: break\n else: ans = max(ans, i**j)\nprint(ans)", "neg": "x = int(input())\nans = 1\nfor i in range(100):\n for j in range(100):\n if x < i**j: break\n else: ans = max(ans, i**j)\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [58, 56], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "x1001002, x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u665038048", "n_user": "u665038048", "pos": "x = int(input())\nset_x = set(n**e for n in range(32) for e in range(2, 11) if n**e <= x)\nans = max(set_x)\nprint(ans)", "neg": "x = int(input())\nset_x = set(n**e for n in range(32) for e in range(2, 11) if n**e <= X)\nans = max(set_x)\nprint(ans)", "jacc_sim": 0.9583333333333334, "before_after_length": [53, 53], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "Xx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u333945892", "n_user": "u333945892", "pos": "from collections import defaultdict\nimport sys,heapq,bisect,math,itertools,string,queue,datetime\nsys.setrecursionlimit(10**8)\nINF = float('inf')\nmod = 10**9+7\neps = 10**-7\nAtoZ = [chr(i) for i in range(65,65+26)]\natoz = [chr(i) for i in range(97,97+26)]\n\ndef inpl(): return list(map(int, input().split()))\ndef inpl_str(): return list(input().split())\n\nli = [1]\n\nfor i in range(2,33):\n\tSUM = i\n\twhile SUM <= 1000:\n\t\tSUM *= i\n\t\tli.append(SUM)\n\nli = list(set(li))\nli.sort()\n\nN = int(input())\nind = bisect.bisect_right(li,N)\nprint(li[ind-1])\n", "neg": "from collections import defaultdict\nimport sys,heapq,bisect,math,itertools,string,queue,datetime\nsys.setrecursionlimit(10**8)\nINF = float('inf')\nmod = 10**9+7\neps = 10**-7\nAtoZ = [chr(i) for i in range(65,65+26)]\natoz = [chr(i) for i in range(97,97+26)]\n\ndef inpl(): return list(map(int, input().split()))\ndef inpl_str(): return list(input().split())\n\nli = []\n\nfor i in range(2,33):\n\tSUM = i\n\twhile SUM <= 1000:\n\t\tSUM *= i\n\t\tli.append(SUM)\n\nli = list(set(li))\nli.sort()\n\nN = int(input())\nind = bisect.bisect_left(li,N)\nprint(li[ind-1])", "jacc_sim": 0.9714285714285714, "before_after_length": [224, 221], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "1lefrigh\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u853185302", "n_user": "u853185302", "pos": "X = int(input())\nc = 1\nfor b in range(1,X+1):\n for p in range(2,X):\n if b**p <= X:c=max(c,b**p)\n else:break\nprint(c)", "neg": "X = int(input())\nc = 1\nfor b in range(1,X+1):\n for p in range(2,X+1):\n if b**p <= X: c=max(c,b**p)\nprint(c)", "jacc_sim": 0.9166666666666666, "before_after_length": [62, 59], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "+1 else:break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03352", "p_user": "u562015767", "n_user": "u562015767", "pos": "import math\n\nx = int(input())\nans = [1]\ns = int(math.sqrt(x))\nif s >= 2:\n for i in range(2,s+1):\n temp = i\n while True:\n temp *= i\n if temp <= x:\n ans.append(temp)\n else:\n break\n\nprint(max(ans))", "neg": "import math\n\nx = int(input())\nans = [1]\ns = math.sqrt(x)\nif s >= 2:\n for i in range(2,s+1):\n temp = i\n while True:\n temp *= i\n if temp <= n:\n ans.append(temp)\n else:\n break\n\nprint(max(ans))", "jacc_sim": 0.9722222222222222, "before_after_length": [91, 89], "nl": "You are given a positive integer X. Find the largest perfect power that is at most X. A perfect power is an integer that can be represented as b^p, where b is an integer not less than 1 and p is an integer not less than 2. Constraints: 1 \u2264 X \u2264 1000. Input is given as X. Output the largest perfect power that is at most X. For example, if the input is 10, the output should be 9.", "diff_info": "int()nx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u489108157", "n_user": "u489108157", "pos": "n=int(input())\na1=list(map(lambda x: int(x), input().split()))\na2=list(map(lambda x: int(x), input().split()))\n\ntmp=a1[0]+sum(a2)\nans=tmp\nfor i in range(n-1):\n tmp=tmp+a1[i+1]-a2[i]\n ans=max(ans,tmp)\nprint(ans)", "neg": "n=int(input())\na1=list(map(lambda x: int(x), input().split()))\na2=list(map(lambda x: int(x), input().split()))\n\nans=a1[0]+sum(a2)\nfor i in range(n-1):\n ans=max(ans, ans+a1[i+1]-a2[i])\nprint(ans)", "jacc_sim": 0.967741935483871, "before_after_length": [108, 98], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "anstmpans=tmp\ntans=p=tmpax(ans, ans\n ans=max(ans,tmp", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u957872856", "n_user": "u826637752", "pos": "n = int(input())\na = list(map(int,input().split()))\nb = list(map(int,input().split()))\nans = 0\nfor i in range(n):\n ans = max(ans,sum(a[:i+1])+sum(b[i:]))\nprint(ans)", "neg": "n = int(input())\n\na = list(map(int,input().split()))\nb = list(map(int,input().split()))\nans = []\nfor i in range(n):\n ans.append(sum(a[0:i+1] + sum(b[i:n]))\n\nprint(max(ans))", "jacc_sim": 0.9642857142857143, "before_after_length": [75, 81], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": " \n0[]. = mppex(ad(s,0 ) n\nmax()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u876438858", "n_user": "u876438858", "pos": "import sys\nfrom math import sqrt\nfrom collections import Counter\n\ninput = sys.stdin.readline\n\n\ndef I():\n return int(sys.stdin.readline())\n\n\ndef MI():\n return map(int, sys.stdin.readline().split())\n\n\ndef LI():\n return list(MI())\n\n\ninf = float(\"inf\")\nmod = 10 ** 9 + 7\n\n\ndef main():\n n = I()\n a1 = LI()\n a2 = LI()\n\n max = 0\n for i in range(n):\n candy = sum(a1[0 : i + 1]) + sum(a2[i:n])\n if candy > max:\n max = candy\n print(max)\n pass\n\n\nif __name__ == \"__main__\":\n main()\n\n", "neg": "import sys\nfrom math import sqrt\nfrom collections import Counter\n\ninput = sys.stdin.readline\n\n\ndef I():\n return int(sys.stdin.readline())\n\n\ndef MI():\n return map(int, sys.stdin.readline().split())\n\n\ninf = float(\"inf\")\nmod = 10 ** 9 + 7\n\n\ndef main():\n n = I()\n a1 = MI()\n a2 = MI()\n\n max = 0\n for i in range(n):\n candy = sum(a1[0:i]) + sum(a2[i:n])\n if candy > max:\n max = candy\n print(max)\n pass\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9454545454545454, "before_after_length": [200, 184], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "())\n\n\ndef LI():\n return list(MIMLML + 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u406114804", "n_user": "u406114804", "pos": "N = int(input())\nA = list(map(int,input().split()))\nA2 = list(map(int,input().split()))\ntotal = A[0] + sum(A2)\ntotal2 = [total]\np = 0\nif N > 1:\n for i in range(N-1) :\n total = total + A[i+1] - A2[i]\n total2.append(total)\n print(max(total2))\nelse:\n print(total)", "neg": "N = int(input())\nA = list(map(int,input().split()))\nA2 = list(map(int,input().split()))\ntotal = A[0] + sum(A2)\ntotal2 = [total]\np = 0\nif N > 1:\n for i in range(N-1) :\n total = total + A[i+1] - A2[i]\n total2.append(total)\n print(max(total2))\n print(total2)\nelse:\n print(total)", "jacc_sim": 1.0, "before_after_length": [122, 129], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": " print(total2)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u640303028", "n_user": "u640303028", "pos": "n = int(input())\na = str(input()).split()\nb = str(input()).split()\nc = [a,b]\nd = [a,b]\ndef max(x,y):\n if x > y:\n return x\n else:\n return y \nfor j in range(0,2):\n for k in range(0,n):\n if j == 0 and k == 0:\n d[j][k] = int(c[j][k])\n elif j == 0:\n d[j][k] = d[j][k-1] + int(c[j][k])\n elif k == 0:\n d[j][k] = d[j-1][k] + int(c[j][k])\n else:\n d[j][k] = max(d[j][k-1],d[j-1][k]) + int(c[j][k])\nprint(d[1][n-1])\n ", "neg": "n = int(input())\na = str(input()).split()\nb = str(input()).split()\nc = [a,b]\nd = [a,b]\ndef max(x,y):\n if x > y:\n return x\n else:\n return y \nfor j in range(0,2):\n for k in range(0,n):\n if j == 0 and k == 0:\n d[j][k] = int(c[j][k])\n elif j == 0:\n d[j][k] = d[j][k-1] + int(c[j][k])\n elif k == 0:\n d[j][k] = d[j-1][k] + int(c[j][k])\n else:\n d[j][k] = max(d[j][k-1],d[j-1][k]) + int(c[j][k])\nprint(d[1][n-1])\n\n ", "jacc_sim": 1.0, "before_after_length": [239, 240], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": " \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u581187895", "n_user": "u581187895", "pos": "# dp\nN = int(input())\nA = [list(map(int, input().split())) for _ in range(2)]\ndp = [[0]*(N) for _ in range(2)]\n\ndp[0][0] = A[0][0]\ndp[1][0] = A[0][0] + A[1][0]\nfor i in range(1, N):\n dp[0][i] = dp[0][i-1] + A[0][i]\n dp[1][i] = max(dp[0][i],dp[1][i-1]) + A[1][i]\n \nprint(dp[1][-1]) ", "neg": "# dp\nN = int(input())\nA = [list(map(int, input().split())) for _ in range(2)]\n\ndp = [[0]*(N) for _ in range(N)]\ndp[0][0] = A[0][0]\ndp[1][0] = A[0][0] + A[1][0]\nfor i in range(1, N):\n dp[0][i] = dp[0][i-1] + A[0][i]\n dp[1][i] = max(dp[0][i],dp[1][i-1]) + A[1][i]\n \nprint(dp[1][-1]) ", "jacc_sim": 1.0, "before_after_length": [162, 162], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "\nN2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u486251525", "n_user": "u486251525", "pos": "N = int(input())\nA1 = list(map(int, input().split()))\nA2 = list(map(int, input().split()))\nans1 = []\nans2 = []\n\nfor x in range(N):\n if x == 0:\n ans1.append(A1[x])\n ans2.append(A1[x] + A2[x])\n else:\n ans1.append(ans1[x - 1] + A1[x])\n ans2.append(max(ans1[x], ans2[x - 1]) + A2[x])\nprint(ans2[N - 1])\n", "neg": "N = int(input())\nA1 = list(map(int, input().split()))\nA2 = list(map(int, input().split()))\nans1 = []\nans2 = []\n\nfor x in range(N):\n if x == 0:\n ans1.append(A1[x])\n ans2.append(A1[x] + A2[x])\n else:\n ans1.append(ans1[x - 1] + A1[x - 1])\n ans2.append(max(ans1[x], ans2[x - 1]) + A2[x])\nprint(ans2[N - 1])\n", "jacc_sim": 1.0, "before_after_length": [154, 156], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "])\n ans2.append(max(ans1[x], ans2[x\n+A ans.append(max(ans1, a)\nprit(anxN + A2[x])print(ans2[N - 1])\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u222841610", "n_user": "u222841610", "pos": "n = int(input())\na1 = list(map(int, input().split()))\na2 = list(map(int, input().split()))\ncount = 0\nmax1 = 0\nfor i in range(n):\n for j in range(n):\n if j < i:\n count += a1[j]\n elif j==i:\n count += (a1[j] + a2[j])\n else:\n count += a2[j]\n if max1 < count:\n max1 = count\n count = 0\nprint (max1)", "neg": "n = int(input())\na1 = list(map(int, input().split()))\na2 = list(map(int, input().split()))\ncount = 0\nmax1 = 0\nfor i in range(n):\n for j in range(n):\n if j < i:\n count += a1[j]\n print (i,j,count)\n elif j==i:\n count += (a1[j] + a2[j])\n print (i,j,count)\n else:\n count += a2[j]\n print (i,j,count)\n if max1 < count:\n max1 = count\n print (count,max1)\n count = 0\nprint (max1)", "jacc_sim": 1.0, "before_after_length": [139, 178], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "\n print (i,j,count) print (i,j,count)\n print (i,j,count)\n print (, = 0\nprint (\n count = 0\nprint (max1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u887207211", "n_user": "u887207211", "pos": "N = int(input())\nA = [list(map(int,input().split())) for _ in range(2)]\n\nma = 0\nfor i in range(N):\n ma = max(ma, sum(A[0][0:i+1])+sum(A[1][i:]))\nprint(ma)", "neg": "N = int(input())\nA = [list(map(int,input().split())) for _ in range(2)]\n\nma = 0\nfor i in range(1,N):\n ma = max(ma, sum(A[0][:i+1])+sum(A[1][i:N]))\nprint(ma)", "jacc_sim": 1.0, "before_after_length": [76, 78], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "1,0N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u639426108", "n_user": "u639426108", "pos": "N = int(input())\nx_list = list(map(int, input().split()))\ny_list = list(map(int, input().split()))\nans = 0\nif N == 1:\n\tprint(x_list[0] + y_list[0])\nelse:\n\tfor i in range(N):\n\t\ta = sum(x_list[0:i+1]) + sum(y_list[i:N])\n\t\tif ans < a:\n\t\t\tans = a\n\tprint(ans)", "neg": "N = int(input())\nx_list = list(map(int, input().split()))\ny_list = list(map(int, input().split()))\nans = 0\nif N == 1:\n\tprint(x_list[0] + y_list[0])\nelse:\n\tfor i in range(1, N+1):\n\t\ta = sum(x_list[0:i]) + sum(y_list[i:N+1])\n\t\tif ans < a:\n\t\t\tans = a\n\tprint(ans)", "jacc_sim": 1.0, "before_after_length": [125, 129], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "1, ):\n\t\ta = sum(x_list[0:i):\n\t\ta = sum(x_list[0:i+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u013408661", "n_user": "u013408661", "pos": "n=int(input())\nline1=list(map(int,input().split()))\nline2=list(map(int,input().split()))\nline=[line1,line2]\npoint=0\nplace=0\ndef judge(i):\n status1=0\n status2=0\n possible=1\n for k in range(n-i-1):\n status1+=line[0][i+k+1]\n status2+=line[1][i+k]\n if status1>=status2:\n possible=0\n break\n return possible\nfor i in range(n):\n point+=line[place][i]\n if place==0 and judge(i)==1:\n place=1\n point+=line[place][i]\nprint(point)\n", "neg": "n=int(input())\nline1=list(map(int,input().split()))\nline2=list(map(int,input().split()))\nline=[line1,line2]\npoint=0\nplace=0\ndef judge(i):\n status1=0\n status2=0\n possible=1\n for k in range(n-i-1):\n status1+=line[0][i+k+1]\n status2+=line[1][i+k]\n if status1>=status2:\n possible=0\n break\n return possible\nfor i in range(n):\n point+=line[place][i]\n if judge(i)==1:\n place=1\n point+=[place][i]\nprint(point)", "jacc_sim": 0.9743589743589743, "before_after_length": [198, 191], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "place==0 and line\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u115682115", "n_user": "u115682115", "pos": "N = int(input())\n\na = [list(map(int,input().split())) for i in range(2)]\nsaidaiti = []\nfor i in range(N):\n saidaiti.append(sum(a[0][:i+1]+a[1][i:]))\nprint(max(saidaiti))\n", "neg": "N = int(input())\n\na = [list(map(int,input().split())) for i in range(2)]\nsaidaiti = []\nfor i in range(N):\n saidaiti.append(sum(a[0][:i+1]+a[1][i:]))\n print(a[0][:i+1])\n print(a[1][i:])\nprint(max(saidaiti))", "jacc_sim": 1.0, "before_after_length": [82, 105], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": " print(a[0][:i+1])\n print(a[1][i:])\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u431981421", "n_user": "u431981421", "pos": "N=int(input())\nli = []\n\nfor n in range(2):\n li.append(list(map(int,input().split())))\n\nmax = 0\n\nfor x in range(N):\n now = 0\n \n for y in range(x + 1):\n now += li[0][y]\n\n for y in range(N):\n if y < x:\n continue\n now += li[1][y]\n\n if max < now:\n max = now\n\nprint(max)", "neg": "N=int(input())\nli = []\n\nfor n in range(2):\n li.append(list(map(int,input().split())))\n\nmax = 0\n\nfor x in range(N):\n now = 0\n for y in range(x):\n now += li[0][y]\n\n for y in range(N - x):\n now += li[0][y]\n \n now += li[1][N-1]\n\n if max < now:\n max = now\n\nprint(max)", "jacc_sim": 0.9393939393939394, "before_after_length": [126, 129], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "for y in range(x):f nwr y in range(x 1):\n now + - x\n if y < x:\n continue0][y]\n \n now += li[yN-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u381246791", "n_user": "u381246791", "pos": "# -*- coding:utf-8 -*-\nimport sys\nN=int(input())\nList_1=list(map(int,input().split()))\nList_2=list(map(int,input().split()))\n\nanswer=[]\nscore=0\nfor i in range(N):\n score+=sum(List_1[:i+1])\n score+=sum(List_2[i:])\n answer.append(score)\n score=0\n\nprint(max(answer))", "neg": "# -*- coding:utf-8 -*-\nimport sys\nN=int(input())\nList_1=[map(int,input()split())]\nList_2=[map(int,input()split())]\n\nanswer=[]\nfor i in range(N):\n score+=sum(List_1[:i])\n score+=sum(List_2[i:])\n answer.append(score)\n score=0\n\nprint(max(answer))", "jacc_sim": 0.9459459459459459, "before_after_length": [121, 111], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "[list(.])[list(.])score=0\n+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u373047809", "n_user": "u373047809", "pos": "n, *a = map(int, open(0).read().split())\nm = 0\nfor i in range(n): m = max(m, sum(a[:i+1] + a[n+i:]))\nprint(m)", "neg": "n, *a = map(int, open(0).read().split())\nm = 0\nfor i in range(n+1):\n m = max(m, sum(a[:i] + a[n+i:]))\nprint(m)", "jacc_sim": 1.0, "before_after_length": [56, 58], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "+1\n +1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u125348436", "n_user": "u125348436", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\nmaxn=0\nfor i in range(n):\n maxn=max(maxn,sum(a[:i+1])+sum(b[i:]))\nprint(maxn)", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=list(map(int,input().split()))\n\nmaxn=0\nfor i in range(n):\n maxn=max(maxn,sum(a[:i+1],b[i:]))\nprint(maxn)", "jacc_sim": 1.0, "before_after_length": [79, 77], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "\n ,)+sum(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u819135704", "n_user": "u819135704", "pos": "N = int(input())\nA = [[int(i) for i in input().split()] for j in range(2)]\ncount = 0\nMax = 0\n\nfor i in range(N):\n for j in range(i+1):\n count += A[0][j]\n for j in range(N-i):\n count += A[1][i+j]\n Max = max(Max, count)\n count = 0\n\nprint(Max)\n", "neg": "N = int(input())\nA = [[int(i) for i in input().split()] for j in range(2)]\ncount = 0\nMax = 0\n\nfor i in range(N):\n for j in range(i+1):\n count += A[0][j]\n for j in range(N-i-1):\n count += A[1][i+j]\n Max = max(Max, count)\n\nprint(Max)\n", "jacc_sim": 1.0, "before_after_length": [112, 109], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "-):\n count += A[):\n count += A[1\npri cou = 0(Max)\nprint(Max)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u626468554", "n_user": "u626468554", "pos": "n = int(input())\na1 = list(map(int,input().split()))\na2 = list(map(int,input().split()))\n\nttl = 0\nli1 = []\nfor i in range(n):\n ttl += a1[i]\n li1.append(ttl)\n\nttl = 0\nli2 = []\nfor i in range(1,n+1):\n ttl += a2[i*(-1)]\n li2.append(ttl)\n\nans = 0\nfor i in range(n):\n #print(li1[i]+li2[i])\n ans = max(ans,li1[i]+li2[(i+1)*(-1)])\n\nprint(ans)", "neg": "n = int(input())\na1 = list(map(int,input().split()))\na2 = list(map(int,input().split()))\n\nttl = 0\nli1 = []\nfor i in range(n):\n ttl += a1[i]\n li1.append(ttl)\n\nttl = 0\nli2 = []\nfor i in range(1,n+1):\n ttl += a2[i*(-1)]\n li2.append(ttl)\n\nans = 0\nfor i in range(n):\n ans = max(ans,li1[i]+li2[i])", "jacc_sim": 0.9393939393939394, "before_after_length": [174, 146], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "#print(li1[i]+li2[i])\n (]+1*(-1)])\n\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u440061288", "n_user": "u440061288", "pos": "n = int(input())\na = [[int(i) for i in input().split()] for i in range(2)] \n \nans = 0\nfor i in range(n):\n ans = max(ans,(sum(a[0][0:i+1])+sum(a[1][i:n])))\n\nprint(ans)", "neg": "n = int(input())\na = [[int(i) for i in input().split()] for i in range(2)] \n\nprint(a)\n \nans = 0\nfor i in range(n):\n ans = max(ans,(sum(a[0][0:i+1])+sum(a[1][i:n])))\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [82, 88], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "\n\nprint(a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u934868410", "n_user": "u934868410", "pos": "n = int(input())\na1 = list(map(int,input().split()))\na2 = list(map(int,input().split()))\ns1 = [a1[0]]\ns2 = [a2[-1]]\nfor i in range(n-1):\n s1 += [s1[i]+a1[i+1]]\n s2 += [s2[i]+a2[n-i-2]]\n \nans = 0\nfor i in range(n):\n ans = max(ans, s1[i] + s2[n-1-i])\nprint(ans)", "neg": "n = int(input())\na1 = list(map(int,input().split()))\na2 = list(map(int,input().split()))\ns1 = [a1[0]]\ns2 = [a2[-1]]\nfor i in range(n-1):\n s1 += [s1[i]+a1[i+1]]\n s2 += [s2[i]+a2[n-i-2]]\n\nans = 0\nfor i in range(n):\n ans += max(ans, s1[i] + s2[n-1-i])\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [146, 145], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": " +", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u962127640", "n_user": "u962127640", "pos": "import numpy as np\n\nN = int(input())\na1 = list(map(int, input().split(' ')))\na2 = list(map(int, input().split(' ')))\ncount = np.zeros(N)\na = np.array([a1,a2])\nfor i in range(N):\n count[i] += a.T[i].sum()\n count[i] += a[0][:i].sum()\n count[i] += a[1][i+1:].sum() if i+1 < N else 0\nprint(int(count.max()))", "neg": "import numpy as np\n\nN = int(input())\na1 = list(map(int, input().split(' ')))\na2 = list(map(int, input().split(' ')))\ncount = np.zeros(N)\na = np.array([a1,a2])\nfor i in range(N):\n count[i] += a.T[i].sum()\n count[i] += a[0][:i-1].sum() if i-1 >=0 else 0\n count[i] += a[1][i:].sum()\nprint(int(count.max()))", "jacc_sim": 0.926829268292683, "before_after_length": [141, 141], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "-].sum()\n count[i] += a[][i+1:-+>=< N else else 0\n count[i] += a[1][i:].sum()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u501643136", "n_user": "u501643136", "pos": "N = int(input())\nA1 = list(map(int,input().split()))\nA2 = list(map(int,input().split()))\n\nA3=[sum(A1[0:i+1]) for i in range(N)]\nA4=[0] + [sum(A2[0:i+1]) for i in range(N)]\nans=0\nfor i in range(N):\n ans = max(ans, A3[i]+A4[N]-A4[i])\nprint(ans)", "neg": "N = int(input())\nA1 = list(map(int,input().split()))\nA2 = list(map(int,input().split()))\nA3=[]\nA4=[0]\nfor i in range(N):\n A3.append(sum(A1[0:i]))\nfor i in range(N):\n A4.append(sum(A2[0:i]))\nans=0\nfor i in range(N):\n ans = max(ans, A3[:i]+A4[i:])\nprint(ans)\n", "jacc_sim": 0.9032258064516129, "before_after_length": [126, 132], "nl": "You are given a 2xN grid with candies in each square. Starting from the top-left square, you need to reach the bottom-right square by moving right or down. You collect candies from each square you visit. Determine the maximum number of candies you can collect. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 A_{i, j} \u2264 100. Input format: N followed by the grid of candies. Output the maximum number of candies that can be collected.", "diff_info": "\n]\nsum(14=:i+1\n) ]\nA4=[0] + [sum(A2[0\n A3.append(sum(A1[0:+1 )\n:\n A4.append(sum(A2[0:i)):Ni:)\npr-A4[]nt(ansprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03449", "p_user": "u446531810", "n_user": "u446531810", "pos": "N=int(input())\nrow_1=list(map(lambda x:int(x),input().split()))\nrow_2=list(map(lambda x:int(x),input().split()))\n\nmax_value=0\n\nfor i in range(N):\n sum_row_1=sum(row_1[0:i+1])\n sum_row_2=sum(row_2[i:N])\n if max_value b:\n cnt += 1\nprint(cnt)\n", "neg": "n = int(input())\nd = sorted([int(input()) for _ in range(n)])\ncnt = 1\nfor a, b in zip(cnt[1:], cnt):\n if a > b:\n cnt += 1\nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [60, 60], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "dcntdcnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u549161102", "n_user": "u549161102", "pos": "N = int(input())\nl = [input() for i in range(N)]\nprint(len(set(l)))", "neg": "N = int(input())\nfor i in range(N):\n l = [input()]\nprint(len(set(l)))", "jacc_sim": 0.9411764705882353, "before_after_length": [28, 31], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "l = [input() ):\n l = [input(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u540761833", "n_user": "u546440137", "pos": "N= int(input()) \nd = set([int(input()) for i in range(N)])\nprint(len(d))", "neg": "N=int(input())\nd = [int(input()) for i in range(n)]\n\nprint(len(set(d)))", "jacc_sim": 0.9411764705882353, "before_after_length": [31, 31], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": " set(nN\n)set()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u151305655", "n_user": "u151305655", "pos": "n = int(input()) \nd = [int(input()) for i in range(n)] \nk=0\nc=0\nfor i in range(n):\n for j in range(n-i-1):\n if d[j] > d[j+1]:\n k = d[j]\n d[j] = d[j+1]\n d[j+1] = k\n \nfor i in range(n-1):\n if d[i]==d[i+1]:\n c=c+1\n \nprint(n-c) \n ", "neg": "n = int(input()) \nd = [int(input()) for i in range(n)] \nk=0\nc=0\nfor i in range(n):\n for j in range(i-1):\n if d[j] > d[j+1]:\n k = d[j]\n d[j] = d[j+1]\n d[j+1] = k\n \nfor i in range(n-1):\n if d[i]!=d[i+1]:\n c=c+1\n if i==n-2:\n c=c+1\n \nprint(c) \n ", "jacc_sim": 0.9230769230769231, "before_after_length": [142, 155], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "n-!d[i+1]:\n cd[c+1\n +1]f i==n-2 n-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u929793345", "n_user": "u929793345", "pos": "n = int(input())\ncake = [input() for i in range(n)]\nprint(len(set(cake)))", "neg": "n = int(input())\ncake = [input() for i range(n)]\n \nprint(len(set(cake)))\n", "jacc_sim": 0.9375, "before_after_length": [28, 30], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "in \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u735008991", "n_user": "u735008991", "pos": "print(len(set([int(input()) for i in range(int(input())) ])))", "neg": "print(set([int(input()) for i in range(int(input())) ]))", "jacc_sim": 0.9230769230769231, "before_after_length": [22, 20], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "(len)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u626337957", "n_user": "u626337957", "pos": "N = int(input())\nrice_cakes = [int(input()) for _ in range(N)]\nprint(len(set(rice_cakes)))\n", "neg": "N = int(input())\nrice_cakes = [int(input()) for _ in range(N)]\nprint(len(set(rice_cakes))\n ", "jacc_sim": 1.0, "before_after_length": [37, 38], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": ") ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u871867619", "n_user": "u871867619", "pos": "import numpy as np\n\nn = int(input())\nd = [int(input()) for i in range(n)]\n \nprint(len(np.unique(d)))", "neg": "import numpy as np\n\nn = int(input())\nd = [int(i) for i in input().split()] \n\n\nprint(len(np.unique(d)))", "jacc_sim": 0.9090909090909091, "before_after_length": [40, 41], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "nput()irageputn).split(\n\n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u686036872", "n_user": "u686036872", "pos": "N = int(input())\nlist=[]\nfor i in range(N):\n list.append(int(input()))\nprint(len(set(list)))", "neg": "S = int(input())\nlist=[]\nfor i in range(N):\n list.append(input())\nprint(len(set(list)))", "jacc_sim": 0.95, "before_after_length": [38, 35], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "SNt(in)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u478296955", "n_user": "u478296955", "pos": "n = int(input())\nS = set([int(input()) for i in range(n)])\nprint(len(S))", "neg": "n = input()\nS = set([int(input()) for in range(n)])\nprint(len(S))", "jacc_sim": 0.9375, "before_after_length": [30, 27], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "t(in) i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u096983897", "n_user": "u096983897", "pos": "def main():\n array = []\n \n size = int(input())\n for i in range(size):\n array.append(int(input()))\n \n array.sort(reverse=True)\n \n result = 1\n for i in range(len(array)-1):\n if array[i] != array[i+1]:\n result+=1\n \n print(result)\n \n \nmain()", "neg": "def main():\n array = []\n \n size = input()\n for i in range(size):\n array.append(int(input()))\n \n array.sort(reverse=True)\n \n result = 1\n for i in range(len(array)-1):\n if array[i] != array[i+1]:\n result+=1\n \n print(result)\n \n \nmain()\n ", "jacc_sim": 1.0, "before_after_length": [102, 102], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "puinput()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u780675733", "n_user": "u780675733", "pos": "N = int(input())\nLIST = [input() for i in range(N)]\nLIST.sort()\n\ncnt = 1\ntmp = LIST.pop()\nwhile True:\n if len(LIST) == 0:\n break\n Di = LIST.pop()\n if Di < tmp:\n cnt = cnt + 1\n tmp = Di\n\nprint(cnt)", "neg": "N = int(input())\nLIST = [input() for i in range(N)]\nLIST.sort()\n\ncnt = 1\ntmp = LIST.pop()\nwhile True:\n if len(LIST) == 0:\n break\n if LIST.pop() < tmp:\n cnt = cnt + 1\n\nprint(cnt)", "jacc_sim": 0.9666666666666667, "before_after_length": [86, 76], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "Di = LIST.pop()\n DiLIST.pop()\nprin (cmp = Di\n\npri(cnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u254050469", "n_user": "u254050469", "pos": "N=input()\ndi = []\nfor i in range(int(N)):\n di.append(int(input()))\nprint(len(list(set(di))))", "neg": "N=input()\ndi = []\nfor i in range(N):\n di.append(input())\nprint(len(list(set(di))))", "jacc_sim": 0.95, "before_after_length": [42, 36], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "int()t(in)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u951480280", "n_user": "u951480280", "pos": "n = int(input())\nd = [int(input()) for i in range(n)]\ncnt = 1\nd = sorted(d)\nfor i in range(n-1):\n if d[i+1] > d[i]:\n cnt += 1\n elif d[i+1] < d[i]:\n break\nprint(cnt)", "neg": "n = int(input())\nd = [int(input()) for i in range(n)]\ncnt = 1\nd = sorted(d)\nprint(d)\nfor i in range(n-1):\n if d[i+1] > d[i]:\n cnt += 1\n elif d[i+1] < d[i]:\n break\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [83, 88], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "(d)\nprint", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u433697974", "n_user": "u433697974", "pos": "N = int(input())\na = []\nfor i in range(N):\n a.append(int(input()))\na.sort()\ncount = 1\nj = 0\nwhile j < N-1:\n if a[j] != a[j+1]:\n count += 1\n j += 1\nprint(count)\n\n", "neg": "N = int(input())\na = []\nfor i in range(N):\n a.append(int(input()))\na.sort\ncount = 1\ni = 0\nwhile i < N-1:\n if a[i] != a[i+1]:\n count += 1\n i += 1\nprint(count)", "jacc_sim": 0.9642857142857143, "before_after_length": [81, 78], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "()ijijijijij\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u292220197", "n_user": "u292220197", "pos": "n = int(input())\nan = []\ncnt = 1\n\nfor i in range(n):\n an.append(int(input()))\n \nsorted_an = sorted(an, reverse=True)\n\nfor i in range(len(sorted_an)-1):\n if sorted_an[i] > sorted_an[i+1]:\n cnt += 1\n\nprint(cnt)", "neg": "n = int(input())\nan = []\ncnt = 0\n\nfor i in range(n):\n an.append(int(input()))\n \nsorted_an = sorted(an, reverse=True)\n\nfor i in range(len(sorted_an)-1):\n if i == 0:\n cnt += 1\n else:\n if sorted_an[i] > sorted_an[i+1]:\n cnt += 1\n\nprint(cnt)", "jacc_sim": 0.9354838709677419, "before_after_length": [93, 109], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "01 if i == 0:\n cnt += 1\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u310956674", "n_user": "u310956674", "pos": "N = int(input())\nnum = list(map(int, (input() for h in range(N))))\nnum.sort()\ncount = 1\n\nfor i in range(N-1):\n if not num[i] == num[i+1]:\n count += 1\nprint(count)", "neg": "N = int(input())\nnum = list(map(int, input().split()))\nnum.sort()\ncount = 1\n\nfor i in range(N-1):\n if not num[i] == num[i+1]:\n count += 1\nprint(count)", "jacc_sim": 0.9285714285714286, "before_after_length": [72, 66], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "(.spl for h tn rangeN)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u869728296", "n_user": "u743154453", "pos": "N=int(input())\na=[]\n\nfor i in range(N):\n d=int(input())\n a.append(d)\n\na=set(a)\n\nprint(len(a))\n", "neg": "N = int(input())\n\nd = []\n\nfor i in range(N):\n d.append(int(input()))\n print(d[i])\n\nprint(len(set(d)))\n", "jacc_sim": 0.95, "before_after_length": [52, 50], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": " a\nd =.append()a.ariped(d)\n\na=sead[i]aset(d)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u755944418", "n_user": "u755944418", "pos": "n = int(input())\n\nlst = map(int, [input() for i in range(n)])\n\nprint(len(set(lst)))", "neg": "n = int(input())\n\nlst = list(map(int, [input() for i in range(n)]))\n\nset(lst)\n\nprint(len(lst))", "jacc_sim": 0.9473684210526315, "before_after_length": [35, 41], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "list()\n\nset(lst)set()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u648679668", "n_user": "u648679668", "pos": "n = int(input())\n\nd = []\nfor i in range(n):\n d.append(int(input()))\n\nd_2 = sorted(d, reverse=True)\nans = 1\nfor i in range(1, n):\n if d_2[i] < d_2[i-1]:\n ans += 1\n else:\n continue\n\nprint(ans)", "neg": "n = int(input())\n\nd = []\nfor i in range(n):\n d.append(int(input()))\n\nd_2 = sorted(d, reverse=True)\nans = 1\nfor i in range(1, n):\n if d_2[i] < d_2[i-1]:\n ans += 1\n else:\n break\n\nprint(ans)", "jacc_sim": 0.9354838709677419, "before_after_length": [94, 94], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "cobreak\n\nprii(aue\n\nprint(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u760636024", "n_user": "u760636024", "pos": "N = int(input())\nA = []\nfor i in range(N):\n A.append(int(input()))\nprint(len(set(A)))", "neg": "N = int(input())\nA = []\nfor i in len(N):\n A.append(int(input))\nprint(len(set(A)))", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 37], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "lrangn()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u363610900", "n_user": "u363610900", "pos": "N = int(input())\nd = [int(input()) for i in range(N)]\ncnt = set(d)\nprint(len(cnt))", "neg": "N = int(input())\nd = [int(input()) for i in range(N)]\ncnt = set(l)\nprint(len(cnt))", "jacc_sim": 0.9444444444444444, "before_after_length": [35, 35], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "ld", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u504770075", "n_user": "u504770075", "pos": "n=int(input())\n\nd=[]\n\nfor i in range(n):\n d.append(int(input()))\n\nk=0\n\n\nfor i in range(n-1):\n\n for j in range(i+1,n):\n if d[i]==d[j]:\n j -= 1\n break\n\n if j == n-1:\n k += 1\nk += 1\n\nprint(k)", "neg": "n=int(input())\n\nd=[]\nprint('n=',n)\nfor i in range(n):\n d.append(int(input()))\n\nk=0\n\n\nfor i in range(n-1):\n print('i =',i)\n for j in range(i+1,n):\n if d[i]==d[j]:\n j -= 1\n break\n print('j =',j)\n if j == n-1:\n k += 1\nk += 1\n\nprint('k =',k)", "jacc_sim": 0.9629629629629629, "before_after_length": [107, 133], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "p\nfo it(' rage(n):\n d.append(int(input()))\n\nk'0\n\n\nfor i in range(n-1):\n\n for j in range(i+1\nfor i in range(n)d.append(int(input()))\n\nk=0\n\n\nforiinrange(n if d[i]==d[j]:\n j 1):\n print('i ',i)\n1\nforjin bang(ak\n\n f j == n-1:\n k 1,n):\n if d[i]=d[j]:\n j -= break\n print('j =',j)\n if j == n-1:\n k += 1\n' =',k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u574590381", "n_user": "u574590381", "pos": "\nn=int(input())\nd = [input() for i in range(n)]\n\nprint(len(set(d)))\n", "neg": "\nn=int(input())\nd = [input() for i in range(n)]\n\nprint(d)\n\nprint(len(set(d)))\n", "jacc_sim": 1.0, "before_after_length": [31, 37], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "d)\n\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u993138647", "n_user": "u993138647", "pos": "N = int(input())\nD = []\n\nfor _ in range(N):\n D.append(int(input()))\nprint(len(set(D)))\n", "neg": "N = int(input())\n D = []\n\n for _ in range(N):\n D.append(int(input()))\n\n print(len(set(D)))\n", "jacc_sim": 1.0, "before_after_length": [40, 44], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": " \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u683134447", "n_user": "u683134447", "pos": "n = int(input())\ndl = []\nfor _ in range(n):\n d = int(input())\n dl.append(d)\n\nprint(len(set(dl)))", "neg": "n = int(input())\ndl = []\nfor _ in range(n):\n dl.append(d)\n\nprint(len(set(dl)))", "jacc_sim": 1.0, "before_after_length": [44, 36], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": " = int(input())\n d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u780698286", "n_user": "u175590965", "pos": "n =int(input())\nd = [int(input()) for i in range(n)]\nprint(len(set(d)))", "neg": "n = int(input())\nd = [list(input())for i in range(n)]\nprint(len(set(d)))\n", "jacc_sim": 0.9411764705882353, "before_after_length": [31, 31], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": " lsn \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03470", "p_user": "u493491792", "n_user": "u493491792", "pos": "n=int(input())\nlista=[]\nfor i in range(n):\n lista.append(int(input()))\n\nlista=set(lista)\n\nprint(len(lista))", "neg": "n=int(input())\nlista=[]\nfor i in range(n):\n lista.append(int(input()))\n\nlista=set(lista)\nprint(lista)\nprint(len(lista))\n ", "jacc_sim": 1.0, "before_after_length": [49, 56], "nl": "Score: 200 points\nProblem Statement:\nAn X-layered kagami mochi (X \u2265 1) is a pile of X round mochi (rice cake) stacked vertically where each mochi (except the bottom one) has a smaller diameter than that of the mochi directly below it. For example, if you stack three mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, you have a 3-layered kagami mochi; if you put just one mochi, you have a 1-layered kagami mochi.\nLunlun the dachshund has N round mochi, and the diameter of the i-th mochi is d_i centimeters. When we make a kagami mochi using some or all of them, at most how many layers can our kagami mochi have?\nConstraints:\n1 \u2264 N \u2264 100\n1 \u2264 d_i \u2264 100\nAll input values are integers.\nInput:\nInput is given from Standard Input in the following format:\nN\nd_1\n:\nd_N\nOutput:\nPrint the maximum number of layers in a kagami mochi that can be made.\nSample Input 1:\n4\n10\n8\n8\n6\nSample Output 1:\n3\nIf we stack the mochi with diameters of 10, 8, and 6 centimeters from bottom to top in this order, we have a 3-layered kagami mochi, which is the maximum number of layers.\nSample Input 2:\n3\n15\n15\n15\nSample Output 2:\n1\nWhen all the mochi have the same diameter, we can only have a 1-layered kagami mochi.\nSample Input 3:\n7\n50\n30\n50\n100\n50\n80\n30\nSample Output 3:\n4", "diff_info": "print(lista)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u422267382", "n_user": "u422267382", "pos": "N,a,b=map(int,input().split())\nNum=0\nNum_sum=0\n\nfor number in range(1,N+1):\n for num in str(number):\n num=int(num)\n Num+=num\n\n if Num>=a and Num<=b:\n Num_sum+=number\n Num=0\nprint(Num_sum)", "neg": "N=int(input(\"N:\"))\na,b=map(int,input().split())\nNum=0\nnum_new=0\nNum_sum=0\n\nfor number in range(1,N+1):\n for num in str(number):\n num=int(num)\n Num+=num\n\n if Num>=a and Num<=b:\n Num_sum+=number\n Num=0\nprint(Num_sum)\n", "jacc_sim": 0.9354838709677419, "before_after_length": [94, 109], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": ",=int(input(\"N:\"))\n=0\nnum_new\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u249218227", "n_user": "u249218227", "pos": "N, A, B = map(int, input().split())\nans = 0\nfor i in range(N+1):\n youso_wa = 0\n a = i\n while True:\n youso_wa += int(a % 10)\n a = int(a / 10)\n if a == 0:\n break\n if youso_wa >= A and youso_wa <= B:\n ans += i\nprint(ans)", "neg": "N, A, B = map(int, input().split())\nprint(N, A, B)\nans = 0\nfor i in range(N+1):\n youso_wa = 0\n a = i\n while True:\n amari = int(a % 10)\n a = int(a / 10)\n youso_wa += amari\n if a == 0:\n break\n if youso_wa >= A and youso_wa <= B:\n ans += i\nprint(ans)", "jacc_sim": 0.9714285714285714, "before_after_length": [114, 130], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": ")\nprint(N, A, Byouso_wmari+if youso_w == 0:\n break\n if youso_wa >= A and youso_wa <= B:\n ansamar if a == 0:\n break\n if youso_wa >= A and youso_wa <= B:\n ans += i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u003475507", "n_user": "u003475507", "pos": "n,a,b = map(int,input().split())\nres=0\n\nfor i in range(1,n+1):\n sum=0\n for j in list(str(i)):sum+=int(j)\n if a <= sum <= b:res+=i\n\nprint(res)\n", "neg": "n,a,b = map(int,input().split())\ncnt=sum=0\n\nfor i in range(1,n+1):\n for j in list(str(i)):sum+=int(j)\n if a <= sum <= b:cnt+=1\n\nprint(cnt)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [75, 72], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "recnt=um\n sum=0cntres1icntres", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u625428807", "n_user": "u625428807", "pos": "n, a, b = map(int, input().split())\nans = 0\nfor i in range(n+1):\n num_list = list(map(int, list((str(i)))))\n if a <= sum(num_list) <= b:\n ans += i\nprint(ans)", "neg": "n,a,b = map(int, input().split())\nans = 0\n\nfor i in range(n+1):\n if a <= sum(list(str(i))) <= b:\n ans += i\nprint(ans)\n", "jacc_sim": 0.9642857142857143, "before_after_length": [71, 56], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": " \nnum_list = list(map(int, list((str(i)))))\n num_(str(i)) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u549161102", "n_user": "u549161102", "pos": "n,a,b = map(int, input().split())\ntotal = 0\nfor i in range(1,n+1):\n array = list(map(int,str(i)))\n if a<= sum(array) and sum(array)<=b :\n total += i\nprint(total)\n", "neg": "n,a,b = map(int, input().split())\ntotal = 0\nfor i in range(1,n+1):\n array = list(map(int,str(i)))\n if a< sum(array) and sum(array)= a and l+m+n+o+p <= b:\n sum += x\n\nprint(sum)", "neg": "from sys import stdin\nn, a, b = [int(x) for x in stdin.readline().rstrip().split()]\nsum = 0\n\nfor x in range(1,n+1):\n l = x // 10000\n m = (x % 10000) // 1000\n n = (x % 1000) // 100\n o = (x % 100) // 10\n p = x % 10\n if l+m+n+o+p >= a and l+m+n+o+p <= b:\n sum += x\n print(l,m,n,o,p,sum)\n\nprint(sum)", "jacc_sim": 1.0, "before_after_length": [132, 148], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\n l,m,n,o,p,\n\nprint(sum)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u401487574", "n_user": "u401487574", "pos": "def sumC(x):\n s = x%10\n s1 = (x-s)/10 %10\n s2 = (x-s-s1*10)/100 %10\n s3 = (x-s-s1*10-s2*100)/1000 %10\n s4 = (x-s-s1*10-s2*100-s3*1000)/10000 %10\n return(int(s+s1+s2+s3+s4))\n \nn,a,b = map(int,input().split())\nans = 0\nfor i in range(1,n+1):\n if a<= sumC(i) <= b:\n ans += i\nprint(ans) ", "neg": "def sumC(x):\n s = x//10\n s1 = (x-s)//100\n s2 = (x-s-s1*10)//1000\n s3 = (x-s-s1*10-s2*100)//10000\n s4 = (x-s-s1*10-s2*100-s3*1000)//100000\n return(s+s1+s2+s+3+s4)\n \nn,a,b = map(int,input().split)\nans = 0\nfor i in range(1,n+1):\n if a<= sumC(i) <= b:\n ans += i\nprint(ans) ", "jacc_sim": 0.9318181818181818, "before_after_length": [173, 169], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "%///0\n% s2 = (x-s-s*1)//\n s2 = (x-s-s*1)/10 %1/ %1/ %1int(+)()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u166621202", "n_user": "u166621202", "pos": "N,A,B=map(int,input().split())\nans = 0\nfor i in range(1,N+1):\n sum = 0\n j = i\n while j !=0:\n sum += j % 10\n j = j//10\n if A <= sum <= B:\n ans += i\nprint(ans)\n", "neg": "N,A,B=map(int,input().split())\nans = 0\nfor i in range(1,N+1):\n sum = 0\n while j !=0:\n sum += j % 10\n j = j//10\n if A <= sum <= B:\n ans += i\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [81, 75], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\n j = i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u889106068", "n_user": "u889106068", "pos": "N, A, B = map(int, input().split(' '))\nsum_digits = 0\nfor num in range(1, N + 1):\n sum_digit = 0\n tmp = num\n while True:\n if tmp < 10:\n sum_digit += tmp\n break\n digit = tmp % 10\n tmp //= 10\n sum_digit += digit\n\n if A <= sum_digit <= B:\n sum_digits += num\n\nprint(sum_digits)\n", "neg": "N, A, B = map(int, input().split(' '))\nsum_digits = 0\nfor num in range(1, N + 1):\n sum_digit = 0\n tmp = num\n while True:\n if tmp < 10:\n sum_digit += tmp\n break\n digit = tmp % 10\n tmp //= 10\n sum_digit += digit\n\n if A <= sum_digit <= B:\n sum_digits += num\n print(sum_digit)\n\nprint(sum_digits)\n", "jacc_sim": 1.0, "before_after_length": [116, 124], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": " print(sum_digit)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u107091170", "n_user": "u107091170", "pos": "n,a,b=map(int, input().split())\nans = 0\nfor i in range(n+1):\n d = i\n c = 0\n while d >0:\n c += (d%10)\n d = d // 10\n# print(i,c)\n if a <= c <= b:\n ans += i\nprint(ans)\n\n", "neg": "n,a,b=map(int, input().split())\nans = 0\nfor i in range(n):\n d = i\n c = d\n while d >0:\n c += (d%10)\n d = i // 10\n if a <= c <= b:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.96875, "before_after_length": [91, 79], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "+1d0id\n# print(i,c)1i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u963963908", "n_user": "u963963908", "pos": "N,A,B = map(int,input().split())\nK = 0\nfor i in range(1,N+1):\n if A <= sum(map(int,str(i))) <= B:\n K += i\nprint(K)\n \n\n", "neg": "N,A,B = map(int,input().split())\nK = 0\nfor i in range(1,N+1):\n if A <= sum(list(map(int,str(i)))) <= B:\n K += 1\nprint(K)\n \n\n", "jacc_sim": 0.9629629629629629, "before_after_length": [62, 65], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "list()1i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u024768467", "n_user": "u024768467", "pos": "n,a,b=map(int,input().split())\n \ndef find_sum_of_digits(n):\n sum = 0\n int(n)\n while n > 0:\n sum += n % 10\n n //= 10\n return sum\n \ntotal = 0\nfor i in range(1, n+1):\n sum_of_digits_tmp = find_sum_of_digits(i)\n if a <= sum_of_digits_tmp and sum_of_digits_tmp <= b:\n total += i\n \nprint(total)", "neg": "n,a,b=map(int,input().split())\n\ndef find_sum_of_digits(n):\n sum = 0\n int(n)\n while n > 0:\n sum += n % 10\n n //= 10\n return sum\n\ntotal = 0\nfor i in range(1, n+1):\n sum_of_digits_tmp = find_sum_of_digits(i)\n print(sum_of_digits_tmp)\n if a <= sum_of_digits_tmp and sum_of_digits_tmp <= b:\n total += i", "jacc_sim": 1.0, "before_after_length": [136, 139], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": " print(sum_of_digits_tmp)\n \n \nprint(total)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u430223993", "n_user": "u186893542", "pos": "n, a, b = map(int, input().split())\ns = str(n)\nselected = 0\nfor i in range(1,n+1):\n sum = 0\n for j in str(i):\n sum += int(j)\n if a <= sum <= b:\n selected += i\nprint(selected)", "neg": "n, a, b = map(int, input().split())\nres = 0\nfor i in range(a, n+1):\n s = str(i)\n sum = 0\n for j in s:\n sum += int(s)\n if a <= sum <= b:\n res += sum\nprint(res)", "jacc_sim": 0.9310344827586207, "before_after_length": [78, 77], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "s = st(n)\nsslecteda1 s = str(i)\n tr(i) sj r sslectedisumrsslected", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u829796346", "n_user": "u829796346", "pos": "N,A,B = map(int, input().split())\nret = 0\nfor i in range(N+1):\n s = sum([int(c) for c in str(i)])\n if A <= s and s <= B:\n ret += i\nprint(ret)", "neg": "N,A,B = map(int, input().split())\nret = 0\nfor i in range(N):\n c = sum([int(c) for c in str(i)])\n if A <= c and c <= B:\n ret += 1\nprint(ret)\n", "jacc_sim": 0.967741935483871, "before_after_length": [67, 66], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "+1cscscs1i\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u429541300", "n_user": "u429541300", "pos": "n, a, b = map(int, input().split())\nans = 0\nfor i in range(n+1):\n m = 0\n i0 = i\n while i != 0:\n m += int(i % 10)\n i = int(i / 10)\n if a <= m <= b:\n ans += i0\nprint(ans)\n", "neg": "n, a, b = map(int, input().split())\nans = 0\nfor i in range(n+1):\n m = 0\n while i != 0:\n m += int(n % 10)\n i = i / 10\n if a <= m <= b:\n ans += m\nprint(ans)\n", "jacc_sim": 0.967741935483871, "before_after_length": [87, 77], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "i0 = i\n nint(i)mi0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u305534505", "n_user": "u305534505", "pos": "def main():\n num = list(map(int, input().split()))\n total_sum = 0\n for i in range(1,num[0]+1):\n current = i\n current_sum=0\n while i >=1:\n current_sum += int( i %10)\n i = i//10\n if ((current_sum >= num[1]) and (current_sum <= num[2])):\n total_sum += current\n print(total_sum)\nmain()", "neg": "def main():\n num = list(map(int, input().split()))\n total_sum = 0\n print(num[0])\n for i in range(1,num[0]+1):\n current = i\n current_sum=0\n while i >= 1:\n current_sum += i %10\n i /=10\n if ((current_sum >= num[1]) and (current_sum <= num[2])):\n total_sum += current\n print(total_sum)\nmain()", "jacc_sim": 1.0, "before_after_length": [119, 122], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\n print(num[0]) nt( i)= i=/", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u034369223", "n_user": "u034369223", "pos": "n, a, b = map(int,input().split(' '))\ntotal = 0\nfor num in range(1,n+1):\n split_nums = [int(s) for s in list(str(num))]\n sum = 0\n for s in split_nums:\n sum += s\n if a <= sum and sum <= b:\n total += num\nprint(total)", "neg": "n, a, b = map(int,input().split(' '))\ntotal = 0\nfor num in range(1,n+1):\n split_nums = [int(s) for s in list(str(num))]\n sum = 0\n for s in split_nums:\n sum += s\n if a <= sum and sum <= b:\n print(split_nums, sum)\n total += num\nprint(total)", "jacc_sim": 1.0, "before_after_length": [93, 103], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "print(split_nums, sum)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u305760064", "n_user": "u305760064", "pos": "n,a,b=map(int,input().split())\nsum=0\nfor i in range(n+1):\n wa = int((i / 10000) % 10)+int((i / 1000) % 10) + int((i / 100) % 10) + int((i / 10) % 10) + int(i % 10)\n if a <= wa and wa<=b:\n sum += i\nprint(sum)", "neg": "n,a,b=map(int,input().split())\nsum=0\nfor i in range(n):\n wa = int(i//1000) + int(i//100) + int((i / 10) % 10) + int(i % 10)\n if a <= wa and wa<=b:\n sum += i\n print(wa)\nprint(sum)", "jacc_sim": 0.9375, "before_after_length": [100, 90], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "+1i//1000) + int / 000) % 10)+int((i / 1000) % 10) + int((i / 100) % 1 wa)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u597013723", "n_user": "u597013723", "pos": "n, a, b = map(int, input().split())\n\nans = 0\nfor x in range(1,n+1):\n sum = 0\n y = x\n while x > 0:\n sum += x%10\n x = int(x/10)\n if a<= sum <= b: \n ans += y\nprint(ans)", "neg": "n, a, b = map(int, input().split())\n\nans = 0\nfor x in range(1,n+1):\n print('x=='+str(x))\n sum = 0\n y = x\n while x > 0:\n sum += x%10\n x = int(x/10)\n if a<= sum <= b: \n print(a)\n ans += y\nprint(ans)", "jacc_sim": 0.9393939393939394, "before_after_length": [85, 102], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\n print('x=='+str(x))print(a)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u897436032", "n_user": "u897436032", "pos": "N, A, B = map(int, input().split())\noutput = 0\nfor i in range(1, N + 1):\n # set each condition for i < 10^4\n if i < 10:\n digitsum = i\n elif i < 100:\n digitsum = i // 10 + i % 10\n elif i < 1000:\n digitsum = i // 100 + (i % 100) // 10 + (i % 100) % 10\n elif i < 10000:\n digitsum = i // 1000 + (i % 1000) // 100 + ((i % 1000) % 100) // 10 + ((i % 1000) % 100) % 10\n else:\n digitsum = 1\n\n if A <= digitsum and digitsum <= B:\n output = output + i\n\nprint (output)", "neg": "N,A,B = map(int,input().split())\n\noutput = 0\ndigitsum = 0\n\nfor i in range(N): \n # set condition for i < 10^4\n if i < 10:\n\tdigitsum = i//10 + i%10\n elif i<100:\n digitsum = i//10+i%10\n elif i<1000:\n digitsum = i//100+(i%100)//10+(i%100)%10\n elif i<10000:\n digitsum= i//1000+(i%1000)//100+((i%1000)%100)//10+((i%1000)%100)%10\n else:\n digitsum = 0\n\n if A <= digitsum and digitsum <= B:\n \toutput += i\n \nprint (output)\n\n", "jacc_sim": 0.95, "before_after_length": [188, 197], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": " \n\ndigitsum = 0\n1, ):+ 1): eachifi< 10:\n\tdfgitsum= //10+ 0:\n \n tmp = tmp // 10\n val += tmp % 10\n if val >= A and val <= B:\n cnt += n\nprint(cnt)", "neg": "N,A,B = list(map(int,input().split()))\n\ncnt = 0\nfor n range(1,N):\n val = 0\n tmp = N\n while tmp // N > 0:\n val = tmp % 10\n tmp = tmp // 10\n \n if val >= A and val <= B:\n cnt += 1\nprint(cnt)", "jacc_sim": 0.9696969696969697, "before_after_length": [92, 87], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "in +1n0\n%10\ntmp=Ntmp = nN10\nval tmp = tmp // 10\n val +\n tmp = tmp // 10\n 1n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u803865203", "n_user": "u803865203", "pos": "N,A,B = map(int,input().split())\nans = 0\nfor i in range(int(N)+1):\n array = list(map(int,list(str(i))))\n if(sum(array)>=A and sum(array)<=B):\n ans += int(i)\nprint(ans)\n", "neg": "N,A,B = map(int,input().split())\nans = 0\nfor i in range(int(N)+1):\n array = list(map(int,list(str(i))))\n print(array)\n if(sum(array)>=A and sum(array)<=B):\n ans += int(i)\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [81, 87], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "print(array)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u607139498", "n_user": "u607139498", "pos": "# -*- coding: utf-8 -*-\n# Some Sums\n\n\ndef calcSumOfDigits(n):\n sum = 0\n while n > 0:\n sum += n % 10\n # print(sum)\n n = n // 10\n return sum\n\na = list(map(int, input().split()))\nN = a[0]\nA = a[1]\nB = a[2]\n\ntotal = 0\nfor i in range(N):\n sumOfDigits = calcSumOfDigits(i+1)\n # print(\"sumOfDigits: \", sumOfDigits)\n if sumOfDigits >= A and sumOfDigits <= B:\n # print(\"N: \", i+1)\n total += i+1\n# print(\"total: \", total)\nprint(total)", "neg": "# -*- coding: utf-8 -*-\n# Some Sums\n\n\ndef calcSumOfDigits(n):\n sum = 0\n while n > 0:\n sum += n % 10\n n /= 10\n return sum\n\na = list(map(int, input().split()))\nN = a[0]\nA = a[1]\nB = a[2]\n\ntotal = 0\nfor i in range(N):\n sumOfDigits = calcSumOfDigits(i+1)\n if sumOfDigits >= A and sumOfDigits <= B:\n total += sumOfDigits\nprint(total)", "jacc_sim": 0.9807692307692307, "before_after_length": [191, 147], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "# print(sum)\n n = =/# print(\"sumOfDigits: \", sumOfDigits)\n #totalprint(\"N: \", i1= sumOfDigits\nprint(total\n total += i+1\n# print(\"total: \", total)\nprint(total)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u033982315", "n_user": "u033982315", "pos": "s=list(map(int,input().split()))\n\noklist=[]\n\ndef keta(x):\n ketalist=[]\n for j in range(len(x)):\n ketalist.append(int(x[j]))\n return(sum(ketalist))\n \n \n\nfor i in range(s[0]+1):\n check=keta(str(i))\n if(s[1]<=check and check<=s[2]):\n oklist.append(i) \nsum_=sum(oklist)\nprint(sum_)", "neg": "s=list(map(int,input().split()))\n\noklist=[]\n\ndef keta(x):\n ketalist=[]\n for j in range(len(x)):\n ketalist.append(int(x[j]))\n return(sum(ketalist))\n \n \n\nfor i in range(s[0]+1):\n check=keta(str(i))\n if(s[1]<=check and check<=s[2]):\n oklist.append(i)\n print('ok') \nsum_=sum(oklist)\n", "jacc_sim": 0.9512195121951219, "before_after_length": [146, 147], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\n print('ok') print(sum_)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u158899997", "n_user": "u158899997", "pos": "def main():\n N, A, B = map(int,input().split())\n #print('N:%d A:%d B: %d' % (N,A,B)) \n\n answer = []\n for i in range(N+1):\n s = sum( map(int,list(str(i)) )) # list of int -> sum\n if s >= A and s <= B: answer.append(i)\n #print('i:%d s:%d' % (i,s))\n print(sum(answer))\n\nif __name__ == \"__main__\":\n main()", "neg": "import sys\ndef main():\n input = sys.stdin.readline\n N, A, B = map(int,input.split())\n #print('N:%d A:%d B: %d' % (N,A,B)) \n\n answer = []\n for i in range(N+1):\n s = sum( map(int,list(str(i)) )) # list of int -> sum\n if s >= A and s <= B: answer.append(i)\n #print('i:%d s:%d' % (i,s))\n print(sum(answer))\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9130434782608695, "before_after_length": [141, 154], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "import sys\nN, A, B = map(int, = sys.stdin.readline\n N, A, B = map)int,input", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u953379577", "n_user": "u953379577", "pos": "n,a,b = map(int,input().split())\nans = 0\nfor i in range(1,n+1):\n s = 0\n for t in str(i):\n s += int(t)\n if a-1< s < b+1:\n ans += i\nprint(ans)", "neg": "n,a,b = map(int,input().split())\nans = 0\nfor i in range(1,n+1):\n s = 0\n for t in str(i):\n s\u3000 += int(t)\n if a-1< s < b+1:\n ans += str(i)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [75, 81], "nl": "Score: 200 points\nProblem Statement:\nFind the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nConstraints:\n- 1 \u2264 N \u2264 10^4\n- 1 \u2264 A \u2264 B \u2264 36\n- All input values are integers.\n\nInput:\nInput is given from Standard Input in the following format:\nN A B\n\nOutput:\nPrint the sum of the integers between 1 and N (inclusive), whose sum of digits written in base 10 is between A and B (inclusive).\n\nSample Input 1:\n20 2 5\n\nSample Output 1:\n84\nAmong the integers not greater than 20, the ones whose sums of digits are between 2 and 5, are: 2, 3, 4, 5, 11, 12, 13, 14, and 20. We should print the sum of these, 84.\n\nSample Input 2:\n10 1 2\n\nSample Output 2:\n13\n\nSample Input 3:\n100 4 16\n\nSample Output 3:\n4554", "diff_info": "\u3000str()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03478", "p_user": "u603324902", "n_user": "u603324902", "pos": "n, a, b = map(int,input().split())\n\nans = 0\nfor x in range(n+1):\n x_1 = x%10\n x_2 = (x%100)//10 + x_1\n x_3 = (x%1000)//100 + x_2\n x_4 = (x%10000)//1000 + x_3\n x_5 = (x%100000)//10000 + x_4\n if a<=x_1 and x_1<=b and x<10:\n ans += x\n if a<=x_2 and x_2<=b and 10<=x and x<100:\n ans += x\n if a<=x_3 and x_3<=b and 100<=x and x<1000:\n ans += x\n if a<=x_4 and x_4<=b and 1000<=x and x<10000:\n ans += x\n if a<=x_5 and x_5<=b and 10000<=x and x<=100000:\n ans += x\n\nprint(ans)\n", "neg": "n, a, b = map(int,input().split())\n\nans = 0\nfor x in range(n+1):\n x_1 = x\n x_2 = x//10 + x%10\n x_3 = x//100 + x//10 + x%10\n x_4 = x//1000 + x//100 + x//10 + x%10\n x_5 = x//10000 + x//1000 + x//100 + x//10 + x%10\n if a<=x_1 and x_1<=b and x<10:\n ans += x\n elif a<=x_1 and x_2<=b and 10=X:\n ans += 1\n X*=2\nprint(ans)", "neg": "X, Y = map(int, input().split())\nans = 0\nwhile X < Y:\n X *= 2\n ans += 1\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [39, 37], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": " Y>= < Y X *= 2\n X*=2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u167681750", "n_user": "u167681750", "pos": "X, Y = list(map(int, (input().split())))\n\nnum = X\ncounter = 0\n\nif num == 1:\n counter += 1\n num += 1\n\nfor i in range (1, Y):\n if num > Y:\n break\n\n else:\n counter += 1\n num *= 2\n\nprint(counter)", "neg": "X, Y = list(map(int, (input().split())))\n\nnum = X\ncounter = 0\n\nif num == 1:\n counter += 1\n num += 1\n\nfor i in range (1, Y):\n if num >= Y:\n print(num,counter)\n break\n\n else:\n print(num)\n counter += 1\n num *= 2\n\nprint(counter)", "jacc_sim": 1.0, "before_after_length": [84, 98], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "=\n print(num,counter)print(num)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u604398799", "n_user": "u604398799", "pos": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Jun 24 21:42:42 2019\n\n@author: Owner\n\"\"\"\n\n\nX, Y = list(map(int, input().split()))\ncnt = 0\nfor n in range(Y):\n if X*2**n ==Y:\n cnt = n +1\n break\n elif X*2**n >Y:\n cnt = n\n break\n else:\n pass\n\nprint(cnt)", "neg": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Jun 24 21:42:42 2019\n\n@author: Owner\n\"\"\"\n\n\nX, Y = list(map(int, input().split()))\ncnt = 0\nfor n in range(Y):\n if X*2**n >=Y:\n cnt = n\n break\n else:\n pass\n\nprint(cnt)", "jacc_sim": 0.9361702127659575, "before_after_length": [118, 97], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "==Y:\n cnt = n +1\n break\n elif X*2**n =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u853010060", "n_user": "u853010060", "pos": "X, Y = map(int, input().split())\nb = 0\nwhile True:\n Y = Y//2\n if Y < X:\n b += 1\n break\n b += 1\nprint(b)\n", "neg": "X, Y = map(int, input().split())\na, b = 0, 0\nwhile True:\n X = X//2\n if X < 2:\n break\n a += 1\nwhile True:\n Y = Y//2\n if Y < 2:\n break\n b += 1\nprint(b-a+1)\n", "jacc_sim": 0.9230769230769231, "before_after_length": [53, 82], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "a, , 0\nwhile True:\n X = X//2\n if X < 2:\n break\n a += 12X\n b += 1-a+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u190405389", "n_user": "u552746936", "pos": "x,y = map(int, input().split())\n\nans = 0\n\ns = x\n\nwhile s<=y:\n ans += 1\n s *=2\n\nprint(ans)\n", "neg": "x, y = map(int, input().split())\n\nans = 0\n\nwhile x < y:\n x *= 2\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9545454545454546, "before_after_length": [47, 40], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": " s = x\n\nsx =\n x *= 2 s *=2\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u948986080", "n_user": "u948986080", "pos": "x,y=map(int,input().split())\nlen=1\nwhile True:\n if x*2<=y:\n len+=1\n else:\n break\n x*=2\nprint(len)", "neg": "x,y=map(int,input().split())\nlen=1\nwhile True:\n x*=2\n if x*2 Y:\n break\nprint(count)", "neg": "X, Y = map(int, input().split())\ncount = 0\nwhile True:\n count++\n X = X * 2\n if X > Y:\n break\nprint(count)", "jacc_sim": 0.9583333333333334, "before_after_length": [49, 46], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": " = count + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u755180064", "n_user": "u755180064", "pos": "def main():\n f, t = [int(v) for v in input().split(' ')]\n count = 0\n d = 1\n tmp = f\n while True:\n tmp = tmp * 2\n if tmp > t:\n break\n count += 1\n\n print(count + 1)\n\n\n\nif __name__ == '__main__':\n main()\n", "neg": "\ndef main():\n f, t = [int(v) for v in input().split(' ')]\n count = 0\n d = 1\n while True:\n tmp = f * 2\n if tmp > t:\n break\n count += 1\n print(tmp)\n d += 1\n f = tmp\n print(count + 1)\n print(read_val.get_file_value(\"ans\"))\n\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9210526315789473, "before_after_length": [92, 119], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "\ntmp = f\n ftmp print(tmp) dprint(count=\n f = tmp\n print(count + 1 print(read_val.get_file_value(\"ans\"))\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u502389123", "n_user": "u819135704", "pos": "X, Y = map(int, input().split())\ncount = 0\n\nwhile X <= Y:\n count += 1\n X *= 2\n\nprint(count)\n", "neg": "X, Y = map(int, input().split())\n\na = X\ncount = 1\nwhile a <= Y:\n count += 1\n a *= 2\n\nprint(count)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [40, 44], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "\na = X\n10\naXaX", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u780962115", "n_user": "u037098269", "pos": "x,y=map(int,input().split())\nc=0\nwhile x<=y:\n x=x*2\n c+=1\nprint(c)", "neg": "x,y = map(int, input().split())\ncount = 0\nwhile x*2 <= y:\n x = x*2\n count += 1\nprint(count)", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 41], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": " ount *2 ount ount", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u239342230", "n_user": "u004025573", "pos": "X,Y=map(int,input().split())\ncnt=0\nwhile(X<=Y):\n X=X*2\n cnt+=1\nprint(cnt)", "neg": "\nX,Y=map(int,input().split())\n\ncount = 0\n\nwhile X y:\n print(cnt)\n exit()\n else:\n cnt += 1\n t *= 2\n", "neg": "x, y = map(int, input().split())\nt = x\ncnt = 0\nwhile True:\n print(t)\n if t > y:\n print(cnt)\n exit()\n else:\n cnt += 1\n t *= 2\n", "jacc_sim": 1.0, "before_after_length": [56, 62], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": "\n print(t)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03479", "p_user": "u598229387", "n_user": "u806999568", "pos": "x,y=map(int,input().split())\n\nans=0\nwhile x<=y:\n x*=2\n ans+=1\nprint(ans)", "neg": "x, y = map(int, input().split())\n\nans = 1\nwhile x * 2 ** ans < y:\n ans += 1\n\nprint(ans)\n", "jacc_sim": 0.9523809523809523, "before_after_length": [41, 39], "nl": "Takahashi wants to give his mother an integer sequence as a token of gratitude. The sequence, denoted as A, must meet the following conditions: A consists of integers between X and Y (inclusive), and for each 1 \u2264 i \u2264 |A|-1, A_{i+1} must be a multiple of A_i and strictly greater than A_i. The task is to find the maximum possible length of the sequence. The constraints are 1 \u2264 X \u2264 Y \u2264 10^18, and all input values are integers. The input is given in the format X Y, and the output should be the maximum possible length of the sequence. For example, given input 3 20, the output is 3, as the sequence 3, 6, 18 satisfies the conditions.", "diff_info": " 0 1 * 2 ** ans =\n x*=2 \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u566619532", "n_user": "u566619532", "pos": "a = input()\nb = input()\na = int(a)\nb = b.split()\nb = [int(s) for s in b]\nc = 0\nflag = True\nwhile True:\n \n for i in range(a):\n if b[i] % 2 != 0:\n flag = False\n b[i] = b[i] / 2\n \n if flag == False:\n break\n c += 1\n\n \n\n \nprint(c)", "neg": "a = input()\nb = input()\na = int(a)\nb = b.split()\nb = [int(s) for s in b]\nb.sort()\nc = 0\nwhile True:\n for i in range(a):\n b[i] = b[i] / 2\n if b[0] % 2 != 0:\n break\n c += 1\n \nprint(c)", "jacc_sim": 0.9090909090909091, "before_after_length": [117, 99], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "b.sort()\n\nflag = True\n if b[i] % 2 != 0:\n flag = False\n ifb[0]%2\n!=0 if flag == False\n \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u561828236", "n_user": "u561828236", "pos": "n = int(input())\nl = list(map(int,input().split()))\n\nj = 0\nnew = []\nwhile True:\n for m,i in enumerate(l):\n if i % 2 == 0:\n l[m] = i/2\n \n if m+1 == n:\n j +=1\n else:\n print(j)\n break\n else:\n continue\n break \n \n", "neg": "n = int(input())\nl = [list(map(int,input().split()))]\nj = 0\nnew = []\nwhile True:\n for m,i in enumerate(l):\n if i % 2 == 0:\n l[i] = i/2\n if m == n:\n j +=1\n else:\n print(j)\n exit()\n ", "jacc_sim": 0.9166666666666666, "before_after_length": [105, 92], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "[]\nim\n +1brakxit()else:\n continue\n break \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u820351940", "n_user": "u820351940", "pos": "n = int(input())\na = list(map(int, input().split()))\ncnt = 0\nwhile True:\n for i in range(n):\n if a[i] & 1:\n print(cnt)\n __import__(\"sys\").exit(0)\n a[i] //= 2\n cnt += 1", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nwhile True:\n for i in range(n):\n if a[i] & 1:\n print(i)\n __import__(\"sys\").exit(0)\n a[i] //= 2", "jacc_sim": 0.9411764705882353, "before_after_length": [77, 70], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "cnt = 0icnt\n cnt += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u957390897", "n_user": "u957390897", "pos": "n = int(input())\naList = list(map(int, input().split()))\ncount = 0\n\nwhile True:\n flag = True\n for i in range(n):\n if aList[i] % 2 != 0:\n flag = False\n aList[i] /= 2\n \n if flag == False:\n break\n\n count += 1\n\nprint(count)", "neg": "n = int(input())\naList = list(map(int, input().split()))\ncount = 0\n\nwhile True:\n flag = True\n for i in range(n):\n if aList[i] % 2 != 0:\n flag = False\n aList[i] /= 2\n \n if flag = False:\n break\n\n count += 1", "jacc_sim": 0.9714285714285714, "before_after_length": [94, 88], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "=\n\nprint(count)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u957275485", "n_user": "u957275485", "pos": "#3\n#8 12 40\nn=int(input())\nai=list(map(int,input().split()))\nb=[]\nfor a in ai:\n count =0\n while a%2==0 :\n count+=1\n a/=2\n b.append(count)\nprint(min(b))", "neg": "#3\n#8 12 40\nn=int(input())\nai=list(map(int(),input.split()))\n \nfor a in ai:\n count =0\n while a%2==0 :\n count+=1\n a/=2\n b.append(count)\nprint(min(b))\n", "jacc_sim": 0.9428571428571428, "before_after_length": [79, 78], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "()()b=[] \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u925406312", "n_user": "u925406312", "pos": "N = int(input())\nA= list(map(int,input().split()))\n\nres = 0\nwhile True:\n for i in range(N):\n if A[i] % 2 == 0:\n A[i] //= 2\n else:\n break\n else:\n res += 1\n continue\n break\n\nprint(res)", "neg": "N = int(input())\nA= list(map(int,input().split()))\n\nres = 0\nwhile True:\n for i in range(N):\n if A[i] % 2 == 0:\n A[i] //= 2\n else:\n break\n else:\n res += 1\n print(\"#########\")\n print(res)\n continue\n break\n\nprint(res)", "jacc_sim": 0.9428571428571428, "before_after_length": [87, 100], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "print(\"#########\")\n print(res)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u056599756", "n_user": "u056599756", "pos": "input()\na=list(map(int, input().split())) \ncount=0\nwhile all(x%2==0 for x in a):\n a=[x/2 for x in a]\n count+=1\nprint(count)", "neg": "n=int(input())\n\na=list(map(int, input().split())) \n\ncount=0\n\nwhile all(x%2==0 for x in a):\n x=[x/2 for x in a]\n count+=1\n\nprint(count)", "jacc_sim": 0.9642857142857143, "before_after_length": [58, 65], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "n=int()\n\n\nxa\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u292810930", "n_user": "u292810930", "pos": "N=int(input())\nA=list(map(int, input().split()))\nt=0\ni=0\nwhile i < N:\n if A[i] % 2 == 0:\n A[i] = A[i]//2\n if i == N - 1:\n t += 1\n i = -1\n i += 1\n else:\n break\nprint(t)\n", "neg": "N=int(input())\nA=list(map(int, input().split()))\nB=A[:]\ni=0\nwhile i < N:\n if A[i] % 2 == 0:\n A[i] = A[i]//2\n print(A[i])\n if i == N-1:\n B = A[:]\n i = -1\n i =+ 1\n else:\n break\nprint(B)", "jacc_sim": 0.9354838709677419, "before_after_length": [97, 109], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "Bt0A[:]print(A[i])\n 1:\n1 B = A[]\n t += 1==Bt\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u077127204", "n_user": "u077127204", "pos": "N = int(input())\nA = list(map(int, input().split()))\n \ncount = 0\nwhile True:\n A, mod = zip(*[divmod(a, 2) for a in A])\n if sum(mod) > 0:\n break\n count += 1\nprint(count)", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\ncount = 0\nwhile True:\n A, mod = zip([divmod(a, 2) for a in A])\n if sum(mod) > 0:\n break\n count++\nprint(count)", "jacc_sim": 0.9411764705882353, "before_after_length": [74, 71], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": " * += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u371350984", "n_user": "u371350984", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ni = 0\nper = True\nwhile per == True:\n for index in range(n):\n num = a[index]\n ans = divmod(num, 2)\n if num == 0 or ans[1] != 0:\n per = False\n break\n a[index] = ans[0]\n if per == True:\n i += 1\nprint(i)", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ni = 0\nper = True\nwhile per == True:\n for index in range(n):\n num = a[index]\n ans = divmod(num, 2)\n if num == 0 or ans[1] != 0:\n per = False\n break\n a[index] = ans[0]\n i += 1\nprint(i)", "jacc_sim": 1.0, "before_after_length": [112, 105], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "f per == True:\n i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u189397279", "n_user": "u189397279", "pos": "# -*- coding: utf-8 -*-\n \nN = int(input())\na = list(map(int, input().split(\" \")))\nc = []\n \nfor i in a:\n count = 0\n while not(i % 2):\n i = int(i / 2)\n count += 1\n c.append(count)\nprint(min(c))", "neg": "# -*- coding: utf-8 -*-\n\nN = int(input())\na = list(map(int, input().split(\" \")))\nc = []\n\nfor i in a:\n count = 0\n while not(a % 2):\n a = int(a / 2)\n count += 1\n c.append(count)\nprint(min(c))", "jacc_sim": 1.0, "before_after_length": [92, 90], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": " aia = = iai ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u914529932", "n_user": "u914529932", "pos": "dbflag=0\ndef debug(*args):\n\tif dbflag: print(*args)\n\nresult = 0\n\nN = input() \nN=int(N)\n\n#A = map(int,input() .split())\nA = [int(i) for i in input().split(' ')]\n\nflag= 1\n\nwhile flag:\n\tfor i in range(len(A)):\n\t\tdebug(i, A[i])\n\t\tif A[i] %2 == 0:\n\t\t\tA[i] = A[i] //2\n\t\telse:\n\t\t\tflag = 0\n\t\t\tbreak\n\t\t\n\tif flag:\n\t\tresult += 1\n\nprint(result)\n\n", "neg": "dbflag=0\ndef debug(*args):\n if dbflag: print(*args)\n\nresult = 0\n\nN = input() \nN=int(N)\n\n#A = map(int,input() .split())\nA = [int(i) for i in input().split(' ')]\n\nflag= 1\n\nwhile flag:\n\tfor i in range(len(A)):\n\t\tdebug(i, A[i])\n\t\tif A[i] %2 == 0:\n\t\t\tA[i] = A[i] //2\n\t\telse:\n\t\t\tflag = 0\n\t\t\tbreak\n\t\t\n\tif flag:\n\t\tresult += 1\n\nprint(result", "jacc_sim": 1.0, "before_after_length": [168, 165], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "\t )\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u118645446", "n_user": "u118645446", "pos": "kazu = int(input())\nnumbers_list = list(map(int, input().split()))\ncount = 0\nseisu = 0\nwhile True:\n for index in range(kazu):\n if numbers_list[index] % 2 != 0:\n seisu = 1\n break\n else:\n numbers_list[index] = numbers_list[index] / 2\n if seisu == 1:\n break\n count += 1\nprint(count)", "neg": "kazu = int(input())\nnumbers_list = list(map(int, input().split()))\ncount = 0\nseisu = 0\nwhile True:\n for index in range(kazu):\n if numbers_list(index) % 2 == 0:\n numbers_list[inedx] = numbers_list[index] / 2\n count += 1\n else:\n seisu = 1\n break\n if seisu == 1:\n break\nprint(count)", "jacc_sim": 0.9428571428571428, "before_after_length": [116, 117], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "([x) % 2 == 0:\n numbers_list[ined% 2 ! 0:\n seisu = 1\n break\n else:\n = numbers_list[index] ifseisu==1:\n break\n else:\n seisu = 1\n break\n if seisu == 1:\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u595375942", "n_user": "u595375942", "pos": "n=int(input())\nl=list(map(int,input().split()))\nans=0\nc=True\n\nwhile c == True:\n for i in range(n):\n if l[i]%2==1:\n c = False\n if c == False:\n break\n else:\n for i in range(n):\n l[i]/=2\n ans+=1\nprint(ans)", "neg": "n=int(input())\nl=list(map(int,input().split()))\nans=0\nc=True\n\nwhile c == True:\n for i in range(n):\n if l[i]%2==1:\n c = False\n break\n for i in range(n):\n l[i]/=2\n ans+=1\nprint(ans)", "jacc_sim": 0.9705882352941176, "before_after_length": [103, 92], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "if c == False:\nelse:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u593567568", "n_user": "u593567568", "pos": "N = int(input())\nA = list(map(int,input().split()))\n\nans = 10 ** 6\n\nfor a in A:\n c = 0\n while a % 2 == 0:\n a //= 2\n c += 1\n ans = min(c,ans)\n \nprint(ans)\n", "neg": "N = int(input())\nA = list(map(int,input().split()))\n\nans = 10 ** 6\n\nfor a in A:\n c = 0\n while a % 2 == 0:\n a //= 2\n ans = min(c,ans)\n \nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [77, 71], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": " c += 1\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u306071800", "n_user": "u306071800", "pos": "def divide_count(n):\n cnt = 0\n while n % 2 == 0:\n n /= 2\n cnt += 1\n return cnt\n\nn = int(input())\na = list(map(int, input().split()))\nprint(min(map(divide_count, a)))\n", "neg": "def divide_count(n):\n cnt = 0\n while n % 2 == 0:\n n /= 2\n cnt += 1\n return cnt\n\nn = int(input())\na = list(map(int, input().split()))\nprint(list(map(divide_count, a)))\n", "jacc_sim": 0.9615384615384616, "before_after_length": [72, 72], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "lmnst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u965581346", "n_user": "u965581346", "pos": "# -*- coding: utf-8 -*-\ninput()\nnumbers = list(map(int, input().split()))\n \ncount = 0\nwhile(True):\n\tif sum(list(map(lambda x: x % 2, numbers))) == 0:\n\t\tnumbers = list(map(lambda x: x / 2, numbers))\n\t\tcount += 1\n\telse:\n\t\tbreak\nprint(count)", "neg": "# -*- coding: utf-8 -*-\n\nnumbers = list(map(int, input().split()))\n\ncount = 0\nwhile(True):\n\tif sum(list(map(lambda x: x % 2, numbers))) == 0:\n\t\tnumbers = list(map(lambda x: x / 2, numbers))\n\t\tcount += 1\n\telse:\n\t\tbreak\nprint(count)", "jacc_sim": 1.0, "before_after_length": [98, 95], "nl": "You are given a set of positive integers written on a blackboard. When all integers are even, you can replace each integer with its value divided by 2. Find the maximum number of operations that can be performed. Constraints: 1 \u2264 N \u2264 200, 1 \u2264 Ai \u2264 10^9. Input format: N followed by N integers. Output the maximum possible number of operations.", "diff_info": "input() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03494", "p_user": "u095426154", "n_user": "u095426154", "pos": "n=int(input())\nl=list(map(int,input().split(\" \")))\nans=0\nj=0\nwhile j==0:\n i=0\n while i 0):\n q = queue.popleft()\n if checked[q]:\n continue\n else:\n checked[q] = True\n mat = matrix[q]\n for i in range(n):\n if mat[i] == 1:\n queue.append(i)\n if not all(checked):\n ans+=1\n \n matrix[a][b] = 1\n matrix[b][a] = 1\n\nprint(ans)", "neg": "from collections import deque\nn,m = tuple(map(int,input().split()))\n\nedge = []\n\nfor i in range(m):\n edge.append(tuple(map(lambda a:int(a)-1,input().split())))\n \nmatrix = [[0]*n for _ in range(n)]\n \nfor a,b in edge:\n matrix[a][b] = 1\n matrix[b][a] = 1\n \nans = 0\n\nfor a,b in edge:\n matrix[a][b] = 0\n matrix[a][b] = 0\n \n checked = [False]*n\n queue = deque([0])\n while(len(queue)>0):\n q = queue.pop()\n if checked[q]:\n continue\n else:\n checked[q] = True\n mat = matrix[q]\n for i in range(n):\n if matrix[i] == 1:\n queue.append(i)\n \n if not all(checked):\n ans+=1\n \n matrix[a][b] = 1\n matrix[b][a] = 1\n\nprint(ans)", "jacc_sim": 0.9622641509433962, "before_after_length": [274, 275], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "a][][aleftrix \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u936985471", "n_user": "u936985471", "pos": "N,M=map(int,input().split())\ne=[[] for i in range(N)]\ntester=[None]*M\nfor i in range(M):\n a,b=map(int,input().split())\n a,b=a-1,b-1\n e[a].append(b)\n e[b].append(a)\n tester[i]=set([a,b])\n \nans=0\nfor test in tester:\n stack=[]\n stack.append([0,-1])\n seen=[0 for i in range(N)]\n while stack:\n node=stack.pop()\n v=node[0]\n parent=node[1]\n if seen[v]==1:\n continue\n seen[v]=1\n childs=e[v]\n for child in childs:\n if child==parent:\n continue\n if test==set([v,child]):\n continue\n stack.append([child,v])\n \n if sum(seen)!=N:\n ans+=1\nprint(ans)", "neg": "N,Mmap(int,input())\ne=[[] for i in range(N)]\ntester=[None]*M\nfor i in range(M):\n a,b=map(int,input().split())\n a,b=a-1,b-1\n e[a].append(b)\n e[b].append(a)\n tester[i]=set(a,b)\n \nans=0\nseen=[0 for i in range(N)]\nfor test in tester:\n stack=[]\n stack.append([0,-1])\n while stack:\n node=stack.pop()\n v=node[0]\n parent=node[1]\n if seen[v]==1:\n continue\n seen[v]=1\n childs=e[v]\n for child in childs:\n if child==parent:\n continue\n if len(test&set([v,child]))==2:\n continue\n stack.append([child,v])\n \n if sum(seen)!=N:\n ans+=1\nprint(ans)\n \n \n \n\n\n", "jacc_sim": 0.92, "before_after_length": [264, 273], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "=t().spli[]\nseen=[0 for i in range(N)]seen=[0 for i in range(N)]\n len(&==)==2\n \n \n \n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u223904637", "n_user": "u223904637", "pos": "n,m=map(int,input().split())\ne=[]\nfor i in range(m):\n e.append(list(map(int,input().split())))\nans=0\nfor i in range(m):\n g=[[] for _ in range(n)]\n for j in range(m):\n if i==j:\n continue\n g[e[j][0]-1].append(e[j][1])\n g[e[j][1]-1].append(e[j][0])\n visited=[0]*n\n visited[0]=1\n q=[1]\n while len(q)>0:\n a=q.pop(0)\n visited[a-1]=1\n for k in g[a-1]:\n if visited[k-1]==0:\n q+=[k]\n if sum(visited)!=n:\n ans+=1\nprint(ans)\n \n", "neg": "n,m=map(int,input().split())\ne=[]\nfor i in range(m):\n e.append(list(map(int,input().split())))\nans=0\nfor i in range(m):\n g=[[] for _ in range(n)]\n for j in range(m):\n if i==j:\n continue\n g[e[j][0]-1].append(e[j][1])\n g[e[j][1]-1].append(e[j][0])\n visited=[0]*n\n visited[0]=1\n q=[1]\n while len(q)>0:\n a=pop(q)\n visited[a-1]=1\n for k in g[a-1]:\n if visited[k-1]==0:\n q+=[k]\n if sum(visited)!=n:\n ans+=1\nprint(ans)\n \n", "jacc_sim": 1.0, "before_after_length": [232, 230], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "pop(.pop(0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u722535636", "n_user": "u722535636", "pos": "n,m=map(int,input().split())\ng=[list() for _ in range(n+1)]\nside=[list(map(int,input().split())) for i in range(m)]\nfor a,b in side:\n\tg[a].append(b)\n\tg[b].append(a)\ncnt=0\ndef dfs(x,s):\n\ted[x-1]=1\n\tfor i in g[x]:\n\t\tif s!={x,i} and ed[i-1]==0:dfs(i,s)\ncnt=0\nfor i in range(m):\n\ted=[0]*n\n\tdfs(1,set(side[i]))\n\tif 0 in ed:cnt+=1\nprint(cnt)\n", "neg": "n,m=map(int,input().split())\ng=[list() for _ in range(n+1)]\nside=[list(map(int,input().split())) for i in range(m)]\nfor a,b in side:\n\tg[a].append(b)\n\tg[b].append(a)\ncnt=0\ndef dfs(r,x,s):\n\ted[x-1]=1\n\tfor i in g[x]:\n\t\tif i!=r and s!={x,i}:dfs(x,i,s)\ncnt=0\nfor i in range(m):\n\ted=[0]*n\n\tdfs(0,1,set(side[i]))\n\tif 0 in ed:cnt+=1\nprint(cnt)", "jacc_sim": 0.9772727272727273, "before_after_length": [181, 181], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "r,i!=r and : an ed[i-1]==0:dx,0,\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u846101221", "n_user": "u846101221", "pos": "n , m = map(int, input().split())\ncombis = [set(list(map(int, input().split()))) for i in range(m)]\ncount = 0\nfor i in range(m):\n combis_x = combis[0:i] + combis[i+1:m]\n islands = []\n for combi in combis_x:\n # init\n if not islands:\n islands.append(combi)\n continue\n # compare existed islands\n new_islands = islands\n joint_i = []\n for j, island in enumerate(islands):\n if not island.isdisjoint(combi):\n new_islands[j] = island | combi\n joint_i.append(j)\n else:\n if not joint_i:\n new_islands.append(combi)\n elif len(joint_i) == 2:\n new_islands[joint_i[0]] = new_islands[joint_i[0]] | new_islands[joint_i[1]]\n new_islands.pop(joint_i[1])\n islands = new_islands\n\n # judge\n if len(islands) == 1 and len(islands[0]) == n:\n continue\n elif len(islands) == 1 and len(islands[0]) == n - 1:\n count += 1\n else:# len(islands) == 2 and islands[0].isdisjoint(islands[1]):\n count += 1\nprint(count)\n\n", "neg": "n , m = map(int, input().split())\ncombis = [set(list(map(int, input().split()))) for i in range(m)]\ncount = 0\nfor i in range(m):\n combis_x = combis[0:i] + combis[i+1:m]\n islands = []\n for combi in combis_x:\n # init\n if not islands:\n islands.append(combi)\n continue\n # compare existed islands\n new_islands = islands\n joint_i = []\n for j, island in enumerate(islands):\n if not island.isdisjoint(combi):\n new_islands[j] = island | combi\n joint_i.append(j)\n else:\n if not joint_i:\n new_islands.append(combi)\n elif len(joint_i) == 2:\n new_islands[joint_i[0]] = new_islands[joint_i[0]] | new_islands[joint_i[1]]\n new_islands.pop(joint_i[1])\n islands = new_islands\n\n # judge\n if len(islands) == 1 and len(islands[0]) == n:\n continue\n elif len(islands) == 1 and len(islands[0]) == n - 1:\n count += 1\n else:# len(islands) == 2 and islands[0].isdisjoint(islands[1]):\n count += 1\nprint(\"count\", count)\n\n", "jacc_sim": 0.9811320754716981, "before_after_length": [390, 392], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "\"\", count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u043844098", "n_user": "u043844098", "pos": "from typing import List, Tuple\n\n\ndef main():\n n, m = map(int, input().split())\n g = []\n for _ in range(m):\n a, b = map(int, input().split())\n g.append((a, b))\n print(bb(n, m, g))\n\n\ndef bb(n: int, m: int, g: List[Tuple[int, int]]):\n ret = 0\n for i in range(m):\n v = set()\n w = [1]\n while w:\n now = w.pop()\n v.add(now)\n for j, node in enumerate(g):\n if j == i:\n continue\n if node[0] == now and node[1] not in v:\n w.append(node[1])\n elif node[1] == now and node[0] not in v:\n w.append(node[0])\n if len(v) != n:\n ret += 1\n return ret\n\n\nif __name__ == '__main__':\n main()\n", "neg": "from typing import List, Tuple\n\n\ndef main():\n n, m = map(int, input().split())\n g = []\n for _ in range(m):\n a, b = map(int, input().split())\n g.append((a, b))\n print(b(n, m, g))\n\n\ndef b(n: int, m: int, g: List[Tuple[int, int]]):\n ret = 0\n for i in range(m):\n v = set()\n w = []\n w.append(1)\n while w:\n now = w.pop()\n v.add(now)\n for j, node in enumerate(g):\n if j == i:\n continue\n if node[0] == now and node[1] not in v:\n w.append(node[1])\n elif node[1] == now and node[0] not in v:\n w.append(node[0])\n if len(v) != n:\n ret += 1\n return ret\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9824561403508771, "before_after_length": [262, 268], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "bb]\n w.append()]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u513081876", "n_user": "u513081876", "pos": "def DFS(N, copyedge):\n matrix = [[] for i in range(N)]\n for a, b in copyedge:\n matrix[a] += [b]\n matrix[b] += [a]\n check = [True]*N\n check[0] = False\n Que = [0]\n \n while len(Que) != 0:\n now = Que.pop()\n for j in matrix[now]:\n if check[j] == True:\n check[j] = False\n Que.append(j)\n if check == [False]*N:\n return 0\n else:\n return 1 \n\nans = 0\nN, M = map(int, input().split())\nedge = []\n\nfor i in range(M):\n edge.append([int(i)-1 for i in input().split()])\n\nfor i in range(M):\n copyedge = edge[:i]+edge[i+1:]\n ans += DFS(N, copyedge)\nprint(ans)", "neg": "def DFS(N, copyedge):\n matrix = [[] for i in range(M)]\n for a, b in copyedge:\n matrix[a].append(b)\n matrix[b].append(a)\n \n check = [True]*N\n check[0] = False\n Que = [0]\n\n while len(Que) != 0:\n now = Que.pop()\n for i in matrix[now]:\n if check[i] == True:\n check[i] = False\n Que.append(i)\n if True not in check:\n return 0\n else:\n return 1\n \n \n\nans = 0\nN, M = map(int, input().split())\nedge = []\n\nfor i in range(M):\n edge.append([int(i) - 1 for i in input().split()])\n \nfor i in range(M):\n copyedge = edge[:i] + edge[i+1:] \n ans += DFS(N, copyedge)\nprint(ans)", "jacc_sim": 0.9574468085106383, "before_after_length": [242, 247], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "MN += [.append()].append(a)\n+=[a] ijijijij True not in == [False]*N\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u620945921", "n_user": "u620945921", "pos": "import sys\ninput = sys.stdin.readline\nfrom collections import deque\n\nN,M=[int(val) for val in input().split()]\na=deque()\nb=deque()\n\nfor i in range(M):\n x,y = (int(val) for val in input().split())\n a.append(x)\n b.append(y)\n\ncnt=0\nfor j in range(M):\n \n val_a=a.popleft()\n val_b=b.popleft()\n\n stack=deque([1])\n visited=deque()\n\n while len(stack) > 0:\n val=stack.pop()\n if visited.count(val)==0:\n visited.append(val)\n for i in range(len(a)):\n if a[i]==val:\n if b[i] != visited:\n stack.append(b[i])\n for i in range(len(b)):\n if b[i]==val:\n if a[i] != visited:\n stack.append(a[i]) \n \n if len(visited) < N:\n cnt+=1\n \n a.append(val_a)\n b.append(val_b)\n\nprint(cnt)", "neg": "import sys\ninput = sys.stdin.readline\nfrom collections import deque\n\nN,M=[int(val) for val in input().split()]\na=deque()\nb=deque()\n\nfor i in range(M):\n x,y = (int(val) for val in input().split())\n a.append(x)\n b.append(y)\n\ncnt=0\nfor j in range(M):\n \n val_a=a.popleft()\n val_b=b.popleft()\n\n stack=deque([1])\n visited=deque()\n\n while len(stack) > 0:\n val=stack.pop()\n if visited.count(val)==0:\n visited.append(val)\n for i in range(len(a)):\n if a[i]==val:\n if b[i] != visited:\n stack.append(b[i])\n for i in range(len(b)):\n if b[i]==val:\n if a[i] != visited:\n stack.append(a[i]) \n \n if len(visited) < N:\n cnt+=1\n \n a.append(val_a)\n b.append(val_b)\n\nprint(cnt)\n", "jacc_sim": 1.0, "before_after_length": [312, 313], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": " \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u499259667", "n_user": "u499259667", "pos": "N , M = map(int,input().split())\n\ndotlist = [[] for i in range(N)]\nsidlist = []\ncount = 0 \n\nfor m in range(M):\n a,b = map(int,input().split())\n dotlist[a -1].append(b)\n dotlist[b -1].append(a)\n sidlist.append([a,b])\n\ndef check(anum,bnum,cnum):\n donedot[cnum-1] = True\n for i in dotlist[cnum - 1]: \n if (anum == cnum and i == bnum) or (bnum == cnum and i == anum):\n pass\n elif donedot[i - 1] == False:\n check(anum,bnum,i)\n\ndonedot = None\n\nfor m in range(M):\n donedot = [False for i in range(N)]\n a,b = sidlist[m]\n check(a,b,1)\n TorF = True\n for i in donedot:\n TorF = TorF and i\n if not TorF:\n count += 1\n\nprint(count)\n", "neg": "N , M = map(int,input().split())\n\ndotlist = [[] for i in range(N)]\nsidlist = []\ncount = 0 \n\nfor m in range(M):\n a,b = map(int,input().split())\n dotlist[a -1].append(b)\n dotlist[b -1].append(a)\n sidlist.append([a,b])\n\nif N -1 == M:\n print(0)\n exit()\n\ndef check(anum,bnum,cnum):\n for i in dotlist[cnum - 1]: \n if (anum == cnum and i == bnum) or (bnum == cnum and i == anum):\n pass\n elif donedot[i - 1] == False:\n donedot[i - 1] = True\n print(cnum,i)\n check(anum,bnum,i)\n\ndonedot = None\n\nfor m in range(M):\n donedot = [False for i in range(M)]\n a,b = sidlist[m]\n check(a,b,1)\n TorF = True\n for i in donedot:\n TorF = TorF and i\n if not TorF:\n count += 1\n\nprint(count)\n", "jacc_sim": 0.9791666666666666, "before_after_length": [289, 316], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "ideNcheck(anum,bnum,cnum):\n donedot[cnum]=True\n for i in dotlist[cnum - 1]: \n if (anum == cnum and i == bnum) or (bnum == cnum and i == anum):\n pass\n elif donedot[i - 1] == False:\n check(anum,bnum,i)\n\ndonedot = None\n\nfor m in range()print(0)\n exit()\n\nef check(anum,bnum,cnum):\n fr i i dotlist[cnum - 1]: \n if (anum == cnum and i == bnum) or (bnum == cnum and i == anum):\n pass\n lif nedo[i- 1] =[:\nf dnedot[i - 1] = Tue\n prnt(cnum,i)\n check(anum,bnum,)\n\ndoedot= range(one\n\nfor m in range(M):\n donedot = [False for i in range(M", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u941434715", "n_user": "u941434715", "pos": "#coding: utf-8\nimport math\nimport heapq\nimport bisect\nimport numpy as np\nfrom collections import Counter\n#from scipy.misc import comb\n\nN,M = map(int, input().split())\nG = [[] for _ in range(N)]\n\nE = []\nfor _ in range(M):\n a,b = map(int, input().split())\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n E.append((a-1,b-1))\n\nd = [0] + [-1]*(N-1)\n\ndef dfs(n):\n d[n] = 0\n for v in G[n]:\n if d[v] == -1:\n dfs(v)\n\nans = 0\nfor a,b in E:\n G[a].remove(b)\n G[b].remove(a)\n\n dfs(0)\n\n if -1 in d:\n ans += 1\n \n for i in range(1,N):\n d[i] = -1\n G[a].append(b)\n G[b].append(a)\n\nprint(ans)", "neg": "#coding: utf-8\nimport math\nimport heapq\nimport bisect\nimport numpy as np\nfrom collections import Counter\n#from scipy.misc import comb\n\nN,M = map(int, input().split())\nG = [[] for _ in range(N)]\n\nE = []\nfor _ in range(M):\n a,b = map(int, input().split())\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n E.append((a-1,b-1))\n\nd = [0] + [-1]*(N-1)\n\ndef dfs(n):\n for v in G[n]:\n if d[v] == -1:\n dfs(v)\n\nans = 0\nfor a,b in E:\n G[a].remove(b)\n G[b].remove(a)\n\n dfs(0)\n\n if -1 in d:\n ans += 1\n \n for i in range(1,N):\n d[i] = -1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [288, 260], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "d[n] = 0\n G[\nprint(].appesd(b\n G[b].append(a)\n\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u442877951", "n_user": "u442877951", "pos": "N,M = map(int,input().split())\n\nroad = [[] for _ in range(N)]\n\nfor _ in range(M):\n a,b = map(int,input().split())\n road[a-1].append(b-1)\n road[b-1].append(a-1)\n\ndef dfs(v,w):\n l = [0 for _ in range(N)]\n l[v] = 1\n stack = [v]\n while stack:\n vv = stack.pop()\n for i in road[vv]:\n if i == w and v == vv or i == vv and v == w:\n continue\n else:\n if l[i] == 0:\n l[i] = 1\n stack.append(i)\n return sum(l)\n\nans = 0\ncheck = [[0 for _ in range(N)] for _ in range(N)]\n\nfor n in range(N):\n for m in range(len(road[n])):\n if check[n][road[n][m]] == 0 or check[road[n][m]][n] == 0:\n check[n][road[n][m]] = 1\n check[road[n][m]][n] = 1\n d = dfs(n,road[n][m])\n if d != N:\n ans += 1\n\nprint(ans)", "neg": "N,M = map(int,input().split())\n\nroad = [[] for _ in range(N)]\n\nfor _ in range(M):\n a,b = map(int,input().split())\n road[a-1].append(b-1)\n road[b-1].append(a-1)\n\ndef dfs(v,w):\n l = [0 for _ in range(N)]\n l[v] = 1\n stack = [v]\n while stack:\n vv = stack.pop()\n for i in road[vv]:\n if i == w and v == vv or i == vv and v == w:\n continue\n else:\n if l[i] == 0:\n l[i] = 1\n stack.append(i)\n return sum(l)\n\nans = 0\ncheck = [[0 for _ in range(N)] for _ in range(N)]\n\nfor n in range(N):\n for m in range(len(road[n])):\n if check[n][road[n][m]] == 0 or check[road[n][m]][n] == 0:\n check[n][road[n][m]] = 1\n check[road[n][m]][n] = 1\n d = dfs(n,road[n][m])\n if d != N:\n ans += 1\n\nprint(ans,road)", "jacc_sim": 1.0, "before_after_length": [335, 337], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": ",road", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u879870653", "n_user": "u879870653", "pos": "from collections import deque\nfrom copy import deepcopy\n\nN,M = map(int,input().split())\nMatrix = [[False for x in range(N)] for y in range(N)]\n\nPath = []\nfor i in range(M) :\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n Path.append((a,b))\n Matrix[a][b] = True\n Matrix[b][a] = True\n\nINF = 63\nans = 0\nfor i in range(M) :\n Matrix_duplicated = deepcopy(Matrix)\n a,b = Path[i]\n Matrix_duplicated[a][b] = False\n Matrix_duplicated[b][a] = False\n Distance = [INF for i in range(N)]\n Distance[0] = 0\n Queue = deque([0])\n while Queue :\n now = Queue.popleft()\n for i in range(N) :\n if Matrix_duplicated[now][i] :\n Matrix_duplicated[now][i] = False\n Matrix_duplicated[i][now] = False\n Distance[i] = min(Distance[now]+1, Distance[i])\n Queue.append(i)\n if INF in Distance :\n ans += 1\nprint(ans)\n", "neg": "from collections import deque\nfrom copy import deepcopy\n\nN,M = map(int,input().split())\nMatrix = [[False for x in range(N)] for j in range(N)]\n\nPath = []\nfor i in range(M) :\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n Path.append((a,b))\n Matrix[a][b] = True\n Matrix[b][a] = True\n\nINF = 63\nans = 0\nfor i in range(M) :\n Matrix_duplicated = deepcopy(Matrix)\n a,b = Path[i]\n Matrix_duplicated[a][b] = False\n Matrix_duplicated[b][a] = False\n Distance = [INF for i in range(N)]\n Distance[0] = 0\n Queue = deque([0])\n while Queue :\n now = Queue.popleft()\n Visited.append(now)\n for i in range(N) :\n if Matrix_duplicated[now][i] :\n Matrix_duplicated[now][i] = False\n Matrix_duplicated[i][now] = False\n Distance[i] = min(Distance[now]+1, Distance[i])\n Queue.append(i)\n if INF in Distance :\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9411764705882353, "before_after_length": [312, 321], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "jyVisited.append(now)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u617515020", "n_user": "u617515020", "pos": "n,m=map(int,input().split())\ne=[list(map(int,input().split())) for _ in range(m)]\n\ncnt=0\nfor x in e:\n l=list(range(n))\n for y in e:\n if y!=x:l=[l[y[0]-1] if l[i]==l[y[1]-1] else l[i] for i in range(n)]\n if len(set(l))!=1:cnt+=1\nprint(cnt)", "neg": "n,m=map(int,input().split())\ne=[list(map(int,input().split())) for _ in range(m)]\n\ncnt=0\nfor x in e:\n l=list(range(n))\n for y in e:\n print('y',y)\n if y!=x:l=[l[y[0]-1] if l[i]==l[y[1]-1] else l[i] for i in range(n)]\n print('l',l)\n if len(set(l))!=1:cnt+=1\nprint(cnt)", "jacc_sim": 0.9722222222222222, "before_after_length": [129, 145], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "print('y',y)\n print('l',l)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u112002050", "n_user": "u112002050", "pos": "def dfs(v):\n visited[v] = True\n for v2 in range(N):\n if graph[v][v2] == False:\n continue\n if visited[v2] == True:\n continue\n dfs(v2)\n\nglobal N, M, graph, visited\nN, M = [int(i) for i in input().split()]\ngraph = [[False for _ in range(50)] for _ in range(50)]\nvisited = [False for _ in range(50)] \na = [0 for _ in range(50)]\nb = [0 for _ in range(50)]\nfor i in range(M):\n a[i], b[i] = [int(i) for i in input().split()]\n a[i] -= 1\n b[i] -= 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\n \nans = 0\nfor i in range(M):\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = False\n for j in range(N):\n visited[j] = False\n dfs(0)\n\n bridge = False\n for j in range(N):\n if visited[j] == False:\n bridge = True\n if bridge:\n ans += 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\nprint(ans)\n", "neg": "def dfs(v):\n visited[v] = True\n for v2 in range(N):\n if graph[v][v2] == False:\n continue\n if visited[v2] == True:\n continue\n dfs(v2)\n\nglobal N, M, graph, visited\nN, M = [int(i) for i in input().split()]\ngraph = [[False for _ in range(50)] for _ in range(50)]\nvisited = [False for _ in range(50)] \na = [0 for _ in range(50)]\nb = [0 for _ in range(50)]\nfor i in range(N):\n a[i], b[i] = [int(i) for i in input().split()]\n a[i] -= 1\n b[i] -= 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\n \nans = 0\nfor i in range(M):\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = False\n for j in range(N):\n visited[j] = False\n dfs(0)\n\n bridge = False\n for j in range(N):\n if visited[j] == False:\n bridge = True\n if bridge:\n ans += 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [356, 356], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "M):\n a[i], b[i] = [int(i) for i in input().split()]\n a[i] -= 1\n b[i] -= 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\n \nans = 0\nfor i in range(M):\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = False\n for j in range(a[i],b[i]=[int(i)vfor snted[j]= False\n dfs(0)\n\n brdge = False\n for j ip range(N):\n if visited[j] == False:\n bridge = Tret().split()]a[]f-bridge:\n ans +b[i] -= 1\n \nans = 0\nfor i in range(M):\n grah[a[i]][b[i]] = gaph[b[]][a[i]] = False\n for j i range(N):\n visied[j] = False\n dfs0)\n\n bridge = Flse\n for j i range(N):\n if viited[j] == False:\n bridge = True\n if bridge:\n ans += 1\n graph[a[i]][b[i]] = graph[b[i]][a[i]] = True\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u484710012", "n_user": "u484710012", "pos": "def dfs(num):\n global visited\n for next_num in edge[num]:\n if visited[next_num]:\n continue\n if has_edge[num][next_num]:\n visited[next_num]=1\n dfs(next_num)\n \nN,M = map(int,input().split())\nab = []\nedge = [[] for x in range(N+1)]\nhas_edge = [[0 for x in range(N+1)] for x in range(N+1)]\nfor i in range(M):\n a,b = map(int,input().split())\n ab.append([a,b])\n edge[a].append(b)\n edge[b].append(a)\n has_edge[a][b] = 1\n has_edge[b][a] = 1\n \ncount = 0\nfor a,b in ab:\n visited = [0 for x in range(N+1)]\n visited[1] = 1\n has_edge[a][b] = 0\n has_edge[b][a] = 0\n dfs(1)\n if sum(visited) != N:\n count += 1\n has_edge[a][b] = 1\n has_edge[b][a] = 1\nprint(count)", "neg": "def dfs(num):\n global visited\n for next_num in num:\n if visited[next_num]:\n continue\n if has_edge[num][next_num]:\n visited[next_num]=1\n dfs(next_num)\n \nN,M = map(int,input().split())\nab = []\nedge = [[] for x in range(N+1)]\nhas_edge = [[0 for x in range(N+1)] for x in range(N+1)]\nfor i in range(M):\n a,b = map(int,input().split())\n ab.append([a,b])\n edge[a].append(b)\n edge[b].append(a)\n has_edge[a][b] = 1\n has_edge[b][a] = 1\n \ncount = 0\nfor a,b in ab:\n visited = [0 for x in range(N+1)]\n visited[1] = 1\n has_edge[a][b] = 0\n has_edge[b][a] = 0\n dfs(1)\n if sum(visited) != N:\n count += 1\n has_edge[a][b] = 1\n has_edge[b][a] = 1\nprint(count)", "jacc_sim": 1.0, "before_after_length": [308, 306], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "edge[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u811169796", "n_user": "u811169796", "pos": "n,m = map(int,input().split())\ndata = []\nG = [[] for i in range(n)]\nfor i in range(m):\n a,b = map(int,input().split())\n data.append((a-1,b-1))\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(v,seen):\n if seen[v]: return\n seen[v] = True\n for nv in G[v]:\n dfs(nv,seen)\n\ncnt = 0\n\nfor i in range(m):\n ra,rb = data[i]\n G[ra].remove(rb)\n G[rb].remove(ra)\n seen = [False]*n\n dfs(0,seen)\n cnt += (sum(seen) != n)\n G[ra].append(rb)\n G[rb].append(ra)\n\nprint(cnt)", "neg": "n,m = map(int,input().split())\ndata = []\nG = [[] for i in range(n)]\nfor i in range(m):\n a,b = map(int,input().split())\n data.append((a-1,b-1))\n G[a].append(b)\n G[b].append(a)\n\ndef dfs(v,seen):\n if seen[v]: return\n seen[v] = True\n for nv in G[v]:\n dfs(nv,seen)\n\ncnt = 0\n\nfor i in range(m):\n ra,rb = data[i]\n G[ra].remove(rb)\n G[rb].remove(ra)\n seen = [False]*n\n cnt += (sum(seen) == n)\n G[a].append(b)\n G[b].append(a)\n\nprint(cnt)", "jacc_sim": 0.9772727272727273, "before_after_length": [232, 216], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "-1-1-1-1dfs(0,seen)\n !=rrrr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u252828980", "n_user": "u252828980", "pos": "from collections import deque\nn,m = map(int,input().split())\nL =[list(map(int, input().split())) for _ in range(m)]\n#print(L)\ncnt = 0\nfor i in range(m):\n G = [[] for _ in range(n)]\n \n for j in range(m):\n if i == j:\n continue\n a,b = L[j][0],L[j][1]\n #print(a-1,b-1)\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n #print(G)\n Q = deque()\n Q.append(0)\n visited = [0]*n\n visited[0] = 1\n while Q:\n q = Q.pop()\n for g in G[q]:\n if visited[g] == 0:\n visited[g] = 1\n #print(visited)\n Q.append(g)\n\n if 0 in visited:\n cnt +=1\nprint(cnt)", "neg": "from collections import deque\nn,m = map(int,input().split())\nL = [[] for _ in range(n)]\n\nfor i in range(m):\n a,b = map(int,input().split())\n a,b = a-1,b-1\n L[a].append(b)\n L[b].append(a)\n#print(L)\ncnt = 0\n\nfor i in range(m):\n G = [[] for _ in range(n)]\n visited = [0]*n\n for j in range(m):\n if i == j:\n continue\n Q = deque([0])\n while Q:\n q = Q.pop()\n for g in G[q]:\n if visited[g] == 0:\n visited[g] = 1\n #print(visited)\n Q.append(g)\n if 0 in visited:\n cnt +=1\nprint(cnt)", "jacc_sim": 0.9782608695652174, "before_after_length": [260, 224], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": " []list(map(int, input().split()))nm#print(L)\ncnt = 0 G = [[] for _ in range(n)]\n \n for j in range(m):\n if i == j:\n continue\n map(intL[j][0]L[j][1]input().split())a,b= #print()L G-1-1L G-1-1 L)\ncnt = 0\n\nfor i in range(m):\n = [[] for _ in range(n]\n visited = [0]*n\n for j in range(m):\n if i == j:\n continue[)\n Q.append(]\n visited = [0]*n\n visited[0] = 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u536113865", "n_user": "u536113865", "pos": "f = lambda: list(map(int,input().split()))\nf_ = lambda: [int(x)-1 for x in input().split()]\n\n\nclass UnionFind(object):\n def __init__(self, size):\n self.parent = [i for i in range(size)]\n self.rank = [0 for _ in range(size)]\n\n def find(self, x):\n if self.parent[x] == x:\n return x\n else:\n return self.find(self.parent[x])\n\n def unite(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n\n if self.rank[x] < self.rank[y]:\n self.parent[x] = y\n else:\n self.parent[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n\nn,m = f()\nE = []\nfor _ in range(m):\n E.append(f_())\n\nans = 0\nfor edge in E:\n e = [i for i in E if not i == edge]\n u = UnionFind(n)\n for a,b in e:\n u.unite(a,b)\n\n f = False\n k = u.find(0)\n for i in range(n):\n if u.find(i) is not k:\n f = True\n break\n if f:\n ans += 1\nprint(ans)\n", "neg": "f = lambda: list(map(int,input().split()))\nf_ = lambda: [int(x)-1 for x in input().split()]\n\n\nclass UnionFind(object):\n def __init__(self, size):\n self.parent = [i for i in range(size)]\n self.rank = [0 for _ in range(size)]\n\n def find(self, x):\n if self.parent[x] == x:\n return x\n else:\n return self.find(self.parent[x])\n\n def unite(self, x, y):\n x = self.find(x)\n y = self.find(y)\n if x == y:\n return\n\n if self.rank[x] < self.rank[y]:\n self.parent[x] = y\n else:\n self.parent[y] = x\n if self.rank[x] == self.rank[y]:\n self.rank[x] += 1\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n\nn,m = f()\nu = UnionFind(n)\ne = []\nfor _ in range(m):\n e.append(f_())\n\nans = 0\nfor edge in e:\n e.remove(edge)\n for a,b in e:\n u.unite(a,b)\n\n f = False\n k = u.find(0)\n for i in range(n):\n if u.find(i) is not k:\n f = True\n break\n if f:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.967741935483871, "before_after_length": [414, 405], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "E = []\nfor _ in range(m):\n E.append(f_())\n\nans = 0\nfor edge in E:\n e = [i for i in E if not i == edge]\n )\ne = []\nfor _ in range(m):\n e.append(f_())\n\nans = 0\nfor edge in e:\n e.remove(edge", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u411203878", "n_user": "u411203878", "pos": "import copy \nn,m = map(int,input().split())\ncount = 0\nab = []\nfor _ in range(m):\n a, b = (int(x) for x in input().split())\n ab.append([a, b])\n\nfor i in range(m):\n root = [[] for i in range(n)]\n done = [False]*n\n cd = copy.copy(ab)\n cd.pop(i)\n for j in range(m-1):\n a, b = cd[j]\n root[b-1].append(a-1)\n root[a-1].append(b-1)\n \n stack=[0]\n while len(stack):\n v = stack.pop()\n for k in root[v]:\n if done[k]: continue\n done[k] = True\n stack.append(k)\n if False in done:\n count += 1\n\nprint(count)", "neg": "n,m = map(int,input().split())\ncount = 0\nab = []\nfor _ in range(m):\n a, b = (int(x) for x in input().split())\n ab.append([a, b])\n\nfor i in range(m):\n root = [[] for i in range(n)]\n done = [False]*n\n cd = copy.copy(ab)\n cd.pop(i)\n for j in range(m-1):\n a, b = cd[j]\n root[b-1].append(a-1)\n root[a-1].append(b-1)\n \n stack=[0]\n while len(stack):\n v = stack.pop()\n for k in root[v]:\n if done[k]: continue\n done[k] = True\n stack.append(k)\n if False in done:\n count += 1\n\nprint(count)", "jacc_sim": 0.9787234042553191, "before_after_length": [231, 227], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "import copy \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u210827208", "n_user": "u210827208", "pos": "from collections import deque\nn,m=map(int,input().split())\nX=[]\nM=[[] for _ in range(n)]\nfor i in range(m):\n a,b=map(int,input().split())\n X.append([a,b])\n M[a-1].append(b-1)\n M[b-1].append(a-1)\nans=0\nfor i in range(m):\n a,b=X[i][0],X[i][1]\n M[a-1].remove(b-1)\n M[b-1].remove(a-1)\n q=deque([0])\n visited=[0]*n\n while q:\n s=q.popleft()\n if visited[s]==1:\n continue\n visited[s]=1\n for x in M[s]:\n q.append(x)\n M[a-1].append(b-1)\n M[b-1].append(a-1)\n if sum(visited)!=n:\n ans+=1\nprint(ans)", "neg": "from collections import deque\nn,m=map(int,input().split())\nX=[]\nM=[[] for _ in range(n)]\nfor i in range(m):\n a,b=map(int,input().split())\n X.append([a,b])\n M[a-1].append(b-1)\n M[b-1].append(a-1)\nans=0\nfor i in range(m):\n se={X[i][0],X[i][1]}\n q=deque([0])\n visited=[0]*n\n while q:\n s=q.popleft()\n if visited[s]==1:\n continue\n visited[s]=1\n for x in M[s]:\n if {s,x}!=se:\n q.append(x)\n if sum(visited)!=n:\n ans+=1\nprint(ans)", "jacc_sim": 0.9183673469387755, "before_after_length": [268, 222], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "sea,b{}\n M[a-1].remove(b-1)\n M[b-1].remove(a-1)if {s,q.append(})\n M[a-1].append(b-1)\n M[b-1].append(a-1)\n if sum(visited)nse q.append(x)\n if sum(visited)!=n:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u995062424", "n_user": "u995062424", "pos": "N, M = map(int, input().split())\n\nE = [[] for i in range(N)]\n\nab = []\nfor i in range(M):\n a, b = map(int, input().split())\n ab.append([a-1, b-1])\n\nvisited = []\n\n\ndef search(pos):\n for n_pos in E[pos]:\n if n_pos not in visited:\n visited.append(n_pos)\n search(n_pos)\n\ncount = 0\nfor i in range(M):\n visited = []\n E = [[] for i in range(N)]\n for j in range(M):\n if j == i:\n continue\n E[ab[j][0]].append(ab[j][1])\n E[ab[j][1]].append(ab[j][0])\n search(0)\n if len(visited) < N:\n count += 1\n\nprint(count)", "neg": "N, M = map(int, input().split())\nE = [[] for i in range(N)]\nvisited = []\nab = []\nfor i in range(M):\n a, b = map(int, input().split())\n ab.append([a-1, b-1])\n \ndef DFS(pos):\n for n_pos in E[pos]:\n if n_pos not in visited:\n visited.append(n_pos)\n DFS(n_pos)\ncnt = 0\nfor i in range(M):\n visited = []\n E = [[] for i in range(N)]\n for j in range(M):\n if j == 1:\n continue\n E[ab[j][0]].append(ab[j][1])\n E[ab[j][1]].append(ab[j][0])\n DFS(0)\n if(len(visited) < N):\n cnt += 1\nprint(cnt)", "jacc_sim": 0.9047619047619048, "before_after_length": [233, 229], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "\nvisited = [] dvisitfdDFS= []\n\n\ndef searchDFSsearch\noui:\n continue\n E[ab[j][0]].append(ab[j][:]) coE[ab[j][1]].appetd(ab[j][0])\n search(0)\n f le(visited) < N:\n coe\n E[ab[j][0]].appet += d(ab[j][]) E[ab[j][1]].append(ab[j][0]) DFS(0)\n if(len(visited) < N):\n cnt += 1\nou", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u543954314", "n_user": "u543954314", "pos": "from collections import defaultdict as dd\nn,m = map(int, input().split())\ndic = dd(list)\nl = []\ncnt = 0\nfor _ in range(m):\n a,b = map(int, input().split())\n l.append((a,b))\n dic[a].append(b)\n dic[b].append(a)\ndef con(x):\n visit.add(x)\n for i in dic[x]:\n if i in visit:\n continue\n con(i)\n return visit == set(range(1,n+1))\nfor x,y in l:\n dic[x].remove(y)\n dic[y].remove(x)\n visit = set()\n if not con(x):\n cnt += 1\n dic[x].append(y)\n dic[y].append(x)\nprint(cnt)", "neg": "from collections import defaultdict as dd\nn,m = map(int, input().split())\ndic = dd(list)\nl = []\ncnt = 0\nfor _ in range(m):\n a,b = map(int, input().split())\n l.append(a,b)\n dic[a].add(b)\n dic[b].add(a)\ndef con(x):\n visit.add(x)\n for i in [j for j in dic[x] if j not in visited]:\n con(i)\n return visit == set(range(1,n+1))\nfor x,y in l:\n dic[x].remove(y)\n dic[y].remove(x)\n visit = set()\n if not con(x):\n cnt += 1\n dic[x].add(y)\n dic[y].add(x)\nprint(cnt)", "jacc_sim": 0.94, "before_after_length": [212, 213], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "()dppenppdd(a)\ndf co(x):\n visit.adxa for i in [j for j in ic[x] if j not in visitd]f con(x)\n visit.add(x)\n for i in dic[x]:\n if i in visit:\n continuedppendd(x)\nripetdxcnt\nprint(cnt)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u013408661", "n_user": "u013408661", "pos": "import sys\nn,m=map(int,input().split())\nvertex=[[int(i) for i in l.split()] for l in sys.stdin]\ndef find(x):\n if root[x]==x:\n return x\n root[x]=find(root[x])\n return root[x]\ndef check(x,y):\n return find(x)==find(y)\ndef union(x,y):\n x=find(x)\n y=find(y)\n if size[x]>=size[y]:\n root[y]=x\n else:\n root[x]=y\n if size[x]==size[y]:\n size[x]+=1\nans=0\nfor i in range(m):\n root=[i for i in range(n+1)]\n size=[0]*(n+1)\n for j in range(m):\n if j!=i:\n if check(vertex[j][0],vertex[j][1]):\n pass\n else:\n union(vertex[j][0],vertex[j][1])\n for j in range(1,n):\n if check(j,j+1)==True:\n pass\n else:\n ans+=1\n break\nprint(ans)\n\n", "neg": "import sys\nn,m=map(int,input().split())\nvertex=[[int(i) for i in l.split()] for l in sys.stdin]\ndef generate(x):\n root=[i for i in range(1,x+1)]\n size=[0]*x\ndef find(x):\n if root[x]==x:\n return x\n return find(root[x])\ndef check(x,y):\n return find(x)==find(y)\ndef union(x,y):\n x=find(x)\n y=find(y)\n if size[x]>=size[y]:\n root[y]=x\n else:\n root[x]=y\n if size[x]==size[y]:\n size[x]+=1\nans=0\nfor i in range(m):\n generate(n)\n for j in range(m):\n if j!=i:\n if check(vertex[j][0],vertex[j][1]):\n pass\n else:\n union(vertex[j][0],vertex[j][1])\n for j in range(n-1):\n if check(j,j+1)==0:\n pass\n else:\n ans+=1\n break\nprint(ans)", "jacc_sim": 0.9375, "before_after_length": [318, 315], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "generate(x):\n root=[i for i in range(1,x+1)]\n size=[0]*x\ndef oot[x]=find(root[x])\n rfind()root=[i for i in rannerate+1)]\n size=[0]*(n+1n-,n0True\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u480847874", "n_user": "u480847874", "pos": "import copy\n\n\ndef m():\n N, M = map(int, input().split())\n graph = [[] for _ in range(N + 1)]\n E = []\n visited = []\n for i in range(M):\n a, b = map(int, input().split())\n E.append((a, b))\n\n for m in range(M):\n a, b = E[m]\n graph[a].append(b)\n graph[b].append(a)\n\n def dfs(v, g):\n if visited[v] == True:\n return\n visited[v] = True\n for i in g[v]:\n dfs(i, g)\n\n def is_all_visited(v):\n for i in range(1, N + 1):\n if v[i]:\n pass\n else:\n return False\n return True\n\n ans = 0\n for j in range(M):\n y, z = E[j]\n visited = [False] * (N + 1)\n tmp = copy.deepcopy(graph)\n tmp[y].remove(z)\n tmp[z].remove(y)\n dfs(1, tmp)\n if is_all_visited(visited):\n pass\n else:\n ans += 1\n\n return ans\n\n\nprint(m())\n", "neg": "import copy\n\ndef m():\n N, M = map(int, input().split())\n graph = [[] for _ in range(N+1)]\n E = []\n visited = []\n for i in range(M):\n a, b = map(int, input().split())\n E.append((a,b))\n\n for m in range(M):\n a, b = E[m]\n graph[a].append(b)\n graph[b].append(a)\n\n\n def dfs(v, g):\n if visited[v] == True:\n return\n visited[v] = True\n for i in g[v]:\n dfs(i,g)\n\n\n def is_all_visited(v):\n for i in range(1, N):\n if v[i]:\n pass\n else:\n return False\n return True\n ans = 0\n for j in range(M):\n y,z = E[j]\n visited = [False] * (N + 1)\n tmp = copy.deepcopy(graph)\n tmp[y].remove(z)\n tmp[z].remove(y)\n dfs(1,tmp)\n if is_all_visited(visited):\n pass\n else:\n ans +=1\n\n return ans\n\n\nprint(m())\n", "jacc_sim": 1.0, "before_after_length": [328, 326], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "\n \n \n + 1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u145600939", "n_user": "u145600939", "pos": "from collections import deque\nn,m = map(int,input().split())\npath = [[] for _ in range(n)]\nab = [[] for _ in range(m)]\nfor i in range(m):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n ab[i] = (a,b)\n path[a].append(b)\n path[b].append(a)\ndef dfs(a,b):\n que = deque()\n reach = [False]*n\n reach[0] = True\n que.append(0)\n while que:\n p = que.pop()\n for i in path[p]:\n if (p,i)!=(a,b)!=(i,p) and not reach[i]:\n que.append(i)\n reach[i] = True\n return reach != [True] * n\nans = 0\nfor a,b in ab:\n ans += dfs(a,b)\nprint(ans)\n", "neg": "from collections import deque\nn,m = map(int,input().split())\npath = [[] for _ in range(n)]\nab = [[] for _ in range(m)]\nfor i in ragne(m):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n ab[i] = (a,b)\n path[a].append(b)\n path[b].append(a)\ndef dfs(a,b):\n que = deque()\n reach = [False]*n\n reach[0] = True\n que.append(0)\n while que:\n p = que.pop()\n for i in path[p]:\n if (p,i)!=(a,b)!=(i,p) and not reach[i]:\n p.append(i)\n reach[i] = True\n return reach != [True] * n\nans = 0\nfor a,b in ab:\n ans += dfs(a,b)\nprint(ans)\n", "jacc_sim": 0.98, "before_after_length": [245, 247], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "nnpque", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u762420987", "n_user": "u762420987", "pos": "class UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n\n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n\n if x == y:\n return\n\n if self.parents[x] > self.parents[y]:\n x, y = y, x\n\n self.parents[x] += self.parents[y]\n self.parents[y] = x\n\n def size(self, x):\n return -self.parents[self.find(x)]\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n\n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n\n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n\nN, M = map(int, input().split())\ndef int_(num):\n return int(num) - 1\nablist = [list(map(int_, input().split())) for _ in range(M)]\nans = 0\nfor ng in range(M):\n uf = UnionFind(N)\n for i in range(M):\n if i != ng:\n uf.union(*ablist[i])\n if uf.group_count() != 1:\n ans += 1\nprint(ans)", "neg": "N, M = map(int, input().split())\nablist = [list(map(int, input().split())) for _ in range(M)]\nclass UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n\n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n\n if x == y:\n return\n\n if self.parents[x] > self.parents[y]:\n x, y = y, x\n\n self.parents[x] += self.parents[y]\n self.parents[y] = x\n\n def size(self, x):\n return -self.parents[self.find(x)]\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n\n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n\n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\nans = 0\nfor i in range(M):\n uf = UnionFind(N)\n for j in range(M):\n if i != j:\n uf.union(*ablist[j])\n if uf.group_count() >= 2:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.921875, "before_after_length": [488, 471], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "class UnionFind():\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n\n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n\n if x == y:\n return\n\n if self.parents[x] > self.parents[y]:\n x, y = y, x\n\n self.parents[x] += self.parents[y]\n self.parents[y] = x\n\n def size(self, x):\n return -self.parents[self.find(x)]\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n\n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n\n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n\ndef int_(num):\n return int(num) - 1\n_clns = 0\nfor ng in range(M):\n uf =N:deo __init__(self, n):\n self.n = n\n self.paents=iin[-1]range(M):\n if i != ng:\n uf.union( n\n\n def find(self, x):\n if self.prents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n\n if x == y:\n return\n\n if self.parents[x] > self.parents[y]:\n x, y = y, x\n\n self.parents[x] += self.parents[y]\n self.parents[y] = x\n\n def size(self, x):\n return -self.parents[self.find(x)]\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def memers(sef, x):\n root = self.fnd(x)\n return [i for i in range(elf.n) if self.find(i) == roo]\n\n def roots(self):\n return for i, x in enumerate(self.parents) if x < 0)\nideuf.self:\n return len(self.roots())\n\n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\nans = 0\nfor i in range(M):\n uf = UnionFind(N)\n for j in range(M):\n if i1j:\n uf.union(*ablist[j])\n if uf.group_count() >= 2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u653837719", "n_user": "u653837719", "pos": "from collections import deque\n\nn, m = map(int, input().split())\ne = [list(map(int, input().split())) for _ in range(m)]\n\nres = 0\nfor i in range(m):\n edge = [[] for _ in range(n)]\n for j in range(m):\n if i == j:\n continue\n a, b = e[j]\n edge[a-1].append(b-1)\n edge[b-1].append(a-1)\n \n flag = False\n for j in range(n):\n d = deque([j])\n visited = [False] * n\n visit_cnt = 0\n while d:\n node = d.popleft()\n visited[node] = True\n visit_cnt += 1\n for next_node in edge[node]:\n if not visited[next_node]:\n d.append(next_node)\n if visit_cnt < n:\n flag = True\n break\n \n if flag:\n res += 1\n\nprint(res)", "neg": "from collections import deque\n\nn, m = map(int, input().split())\ne = [list(map(int, input().split())) for _ in range(m)]\n\nres = 0\nfor i in range(m):\n edge = [[] for _ in range(n)]\n for j in range(m):\n if i == j:\n continue\n a, b = e[j]\n edge[a-1].append(b-1)\n edge[b-1].append(a-1)\n\n d = deque([0])\n visited = [False] * n\n visit_cnt = 0\n while d:\n node = d.popleft()\n visited[node] = True\n visit_cnt += 1\n for next_node in edge[node]:\n if not visited[next_node]:\n d.append(next_node)\n if visit_cnt < n:\n res += 1\n\nprint(res)", "jacc_sim": 0.9615384615384616, "before_after_length": [258, 228], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": " flag = False\n for j in range(n):\n 0j flag = True\n break\n \n if flag:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u652150585", "n_user": "u652150585", "pos": "n, m = map(int, input().split())\nedges = [list(map(int, input().split())) for i in range(m)]\ncount = 0\n \nfor x in edges:\n l = list(range(n))\n for y in edges:\n if y != x:\n l = [l[y[0]-1] if l[i] == l[y[1]-1] else l[i] for i in range(n)]\n if len(set(l)) != 1:\n count += 1\n \nprint(count)", "neg": "n, m = map(int, input().split())\nedges = [list(map(int, input().split())) for i in range(m)]\ncount = 0\nprint(n,m,edges)\n\nfor x in edges:\n l = list(range(n))\n print(l)\n for y in edges:\n if y != x:\n l = [l[y[0]-1] if l[i] == l[y[1]-1] else l[i] for i in range(n)]\n print(l)\n if len(set(l)) != 1:\n count += 1\n\nprint(count)", "jacc_sim": 1.0, "before_after_length": [135, 154], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "p \nfo x t(n,m,)\n\nfor x in edges)\n print(l print(l)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03575", "p_user": "u968404618", "n_user": "u968404618", "pos": "# https://atcoder.jp/contests/abc075/tasks/abc075_c\nclass UnionFind():\n def __init__(self, N):\n self._root = [-1 for _ in range(N)]\n\n def find(self, x):\n if self._root[x] < 0: return x\n self._root[x] = self.find(self._root[x])\n return self._root[x]\n\n def unite(self, x, y):\n gx = self.find(x)\n gy = self.find(y)\n if gx == gy: return False\n if self._root[gx] > self._root[gy]:\n gx, gy = gy, gx\n self._root[gx] += self._root[gy]\n self._root[gy] = gx\n return True\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def size(self, x):\n return -(self._root[self.find(x)])\n\n def roots(self):\n return [i for i in self._root if i < 0]\n\n\nn, m = map(int, input().split())\n\nnodes = []\nfor _ in range(m):\n a, b = map(int, input().split())\n nodes.append((a, b))\n\ncnt = 0\nfor i in range(m):\n uf = UnionFind(n)\n for j in range(m):\n if i != j:\n uf.unite(nodes[j][0]-1, nodes[j][1]-1)\n cnt += (len(uf.roots()) != 1)\nprint(cnt)", "neg": "# https://atcoder.jp/contests/abc075/tasks/abc075_c\nclass UnionFind():\n def __init__(self, N):\n self._root = [-1 for _ in range(N)]\n\n def find(self, x):\n if self._root[x] < 0: return x\n self._root[x] == self.find(self._root[x])\n return self._root[x]\n\n def unite(self, x, y):\n gx = self.find(x)\n gy = self.find(y)\n if gx == gy:\n return False\n if self._root[gx] > self._root[gy]:\n gx, gy = gy, gx\n self._root[gx] += self._root[gy]\n self._root[gy] = gx\n print(self._root)\n return True\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def size(self, x):\n return -(self._root[self.find(x)])\n\n def roots(self):\n return [i for i in self._root if i < 0]\n\n\nn, m = map(int, input().split())\n\nnodes = []\nfor _ in range(m):\n a, b = map(int, input().split())\n nodes.append((a,b))\n\ncnt = 0\nfor i in range(m):\n uf = UnionFind(n)\n for j in range(m):\n if i != j: \n uf.unite(nodes[j][0]-1, nodes[j][1]-1)\n cnt += (len(uf.roots()) != 1)\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [422, 432], "nl": "You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges. The i-th edge (1 \u2264 i \u2264 M) connects Vertex a_i and Vertex b_i. An edge whose removal disconnects the graph is called a bridge. Find the number of edges that are bridges among the M edges.\n\nNotes:\n- A self-loop is an edge i such that a_i = b_i (1 \u2264 i \u2264 M).\n- Double edges are a pair of edges i, j such that a_i = a_j and b_i = b_j (1 \u2264 i < j \u2264 M).\n- An undirected graph is said to be connected when there exists a path between every pair of vertices.\n\nConstraints:\n- 2 \u2264 N \u2264 50\n- N-1 \u2264 M \u2264 min(N(N\u22121)\u20442, 50)\n- 1 \u2264 a_i < b_i \u2264 N\n- The given graph does not contain self-loops and double edges.\n- The given graph is connected.\n\nInput:\nInput is given from Standard Input in the following format:\nN M\na_1 b_1\na_2 b_2\n...\na_M b_M\n\nOutput:\nPrint the number of edges that are bridges among the M edges.\n\nSample Input 1:\n7 7\n1 3\n2 7\n3 4\n4 5\n4 6\n5 6\n6 7\n\nSample Output 1:\n4\n\nSample Input 2:\n3 3\n1 2\n1 3\n2 3\n\nSample Output 2:\n0\n\nSample Input 3:\n6 5\n1 2\n2 3\n3 4\n4 5\n5 6\n\nSample Output 3:\n5", "diff_info": "=\n \n print(self._root) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u174394352", "n_user": "u174394352", "pos": "N=int(input())\nK=int(input())\ndef ans(s):\n n=int(s)\n return 2*min(K-n,n)\nx=list(map(ans,input().split()))\nprint(sum(x))\n\n", "neg": "N=int(input())\nK=int(input())\ndef ans(s):\n n=int(s)\n return 2*min(K-n,n)\nx=list(map(int,input().split()))\nprint(sum(x))\n\n", "jacc_sim": 1.0, "before_after_length": [63, 63], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "iats", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u629350026", "n_user": "u629350026", "pos": "n=int(input())\nk=int(input())\nx=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if abs(x[i]-k)>=x[i]:\n ans=ans+x[i]*2\n else:\n ans=ans+abs(x[i]-k)*2\nprint(ans)", "neg": "n=int(input())\nk=int(input())\nx=list(map(int,input().split()))\nans=0\nfor i in range(len(x)):\n if abs(x[i]-k)>=x[i]:\n ans=ans+x[i]*2\n else:\n ans=ans+(x[i]-k)*2\nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [93, 95], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "le(x)abs", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u644907318", "n_user": "u644907318", "pos": "N = int(input())\nK = int(input())\nX = list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n x = X[i]\n cnt += 2*min(K-x,x)\nprint(cnt)", "neg": "N = int(input())\nK = int(input())\nX = list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n cnt += 2*min(K-x,x)\nprint(cnt)", "jacc_sim": 0.9310344827586207, "before_after_length": [66, 58], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "x = X[i]\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u790301364", "n_user": "u790301364", "pos": "def main48():\n n = int(input())\n k = int(input())\n data = input().split()\n x = []\n for i in range(n):\n x.append(int(data[i]))\n result = 0\n for i in range(n):\n if x[i] < k-x[i]:\n result = result + x[i] * 2\n else:\n result = result + (k-x[i]) * 2\n print(result)\n\nif __name__ == \"__main__\":\n main48()", "neg": "def main48():\n n = int(input())\n k = int(input())\n data = input().split()\n x = []\n for i in range(n):\n x.append(int(data[i]))\n result = 0\n for i in range(n):\n if x[i] < k-x[i]:\n result = result + x[i]\n else:\n result = result + k-x[i]\n print(result)\n\nif __name__ == \"__main__\":\n main48()", "jacc_sim": 0.9411764705882353, "before_after_length": [135, 130], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": " * 2() * 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u765401716", "n_user": "u765401716", "pos": "N = int(input())\nK = int(input())\nX = list(map(int, input().split()))\ncount = 0\nfor i in X:\n A = i\n B =abs(i - K)\n if A >= B:\n count = count + 2*B\n else:\n count = count + 2*A\nprint(count)", "neg": "N = int(input())\nK = int(input())\nX = list(map(int, input().split()))\ncount = 0\nfor i in X:\n A = i\n B =abs(i - K)\n if A >= B:\n count = count + B\n else:\n count = count + A\nprint(count)", "jacc_sim": 0.9333333333333333, "before_after_length": [86, 82], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "2*2*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u230621983", "n_user": "u726439578", "pos": "n = int(input())\nk = int(input())\nx = list(map(int, input().split()))\nans = 0\nfor i in x:\n ans += 2*min(i,abs(i-k))\nprint(ans)", "neg": "n=int(input())\nk=int(input())\nx=list(map(int,input().split()))\nans=0\nfor i in x:\n ans+=min(abs(x-k),abs(x))*2\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [58, 61], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": " 2*iabs(x-k)xi-k*2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u251123951", "n_user": "u251123951", "pos": "n=int(input())\nk=int(input())\nans=0\nfor i in list(map(int,input().split())):\n if 2*i= K - x[i]:\n sum += 2 * (K - x[i])\n \n else:\n sum += 2 * x[i]\n\nprint(sum)", "neg": "N = int(input())\nK = int(input())\nx = list(map(int, input().split()))\n\nsum = 0\n\nfor i in range(N):\n if x[i] >= K - x[i]:\n sum += K - x[i]\n \n else:\n sum += x[i]\n\nprint(sum)", "jacc_sim": 0.9333333333333333, "before_after_length": [89, 84], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "2 * ()2 * ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u277802731", "n_user": "u277802731", "pos": "#74b\nn = int(input())\nk = int(input())\nx = list(map(int,input().split()))\nans=0\nfor i in range(n):\n ans+=min(2*x[i],2*(k-x[i]))\nprint(ans)", "neg": "#74b\nn = int(input())\nk = int(input())\nx = list(map(int,input().split()))\nans=0\n\nfor i in range(n):\n ans+=min(2*x[i],2*k-x[i])\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [69, 71], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "\n(\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u843722521", "n_user": "u843722521", "pos": "_,k=int(input()),int(input())\nprint(sum([min([i,k-i])*2 for i in list(map(int,input().split()))]))\n", "neg": "_,k=int(input()),int(input())\nprint(sum([min([i,k-i])for i in list(map(int,input().split()))]))\n", "jacc_sim": 0.9130434782608695, "before_after_length": [44, 42], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "*2 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u750651325", "n_user": "u750651325", "pos": "N = int(input())\nK = int(input())\na = list(map(int, input().split()))\nsum_a = 0\n\nfor i in range(N):\n A = 2*a[i]\n B = 2*(K-a[i])\n sum_a += min(A,B)\n \n \nprint(sum_a)", "neg": "N = int(input())\nK = int(input())\na = list(map(int, input().split()))\nsum_a = 0\n\nfor i in range(N):\n A = a[i]\n B = K-a[i]\n sum_a += min(A,B)\n \n \nprint(sum_a)", "jacc_sim": 0.9333333333333333, "before_after_length": [87, 83], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "2*2*()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u260764792", "n_user": "u260764792", "pos": "N=int(input())\nK=int(input())\nc=list(map(int, input().split()))\nl=[K]*N\nsub=[]\nres=[]\nfor i in range(0, N):\n\tsub.append(l[i]-c[i])\n\tif (sub[i]<=c[i]):\n\t\tres.append(2*sub[i])\n\telse:\n\t\tres.append(2*c[i])\nprint(sum(res))", "neg": "N=int(input())\nK=int(input())\nc=list(map(int, input().split()))\nl=[K]*N\nsub=[]\nres=[]\nfor i in range(0, N):\n\tsub.append(l[i]-c[i])\n\tif (sub[i]<=c[i]):\n\t\tres.append(2*sub[i])\n\telse:\n\t\tres.append(2*c[i])", "jacc_sim": 0.9393939393939394, "before_after_length": [118, 111], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "\nprint(sum(res))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u813450984", "n_user": "u813450984", "pos": "NUM = int(input())\nK = int(input())\nPOS = list(map(int, input().split()))\nsum = 0\nfor i in POS:\n a = i * 2\n b = abs(i - K) * 2\n sum += min(a, b)\nprint(sum)\n\n", "neg": "NUM = int(input())\nK = int(input())\nPOS = list(map(int, input().split()))\na = 0\nb = 0\nsum = 0\nfor i in POS:\n a = pow(i, 2)\n b = pow(abs((i - K)), 2)\n sum += min(a, b)\nprint(sum)\n\n", "jacc_sim": 0.9310344827586207, "before_after_length": [73, 87], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "a = 0\nb = 0\npow(, *)pow((), *)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u063896676", "n_user": "u063896676", "pos": "# -*- coding: utf-8 -*-\n\nn = int(input())\nk = int(input())\nx = list(map(int, input().split())) #x[0->(n-1)]\n\nsum = 0\n\nfor i in x:\n if i < k - i:\n sum = sum + i\n else:\n sum = sum + k - i\n\nprint(sum*2)", "neg": "# -*- coding: utf-8 -*-\n\nn = int(input())\nk = int(input())\nx = list(map(int, input().split())) #x[0->(n-1)]\n\nsum = 0\n\nfor i in x:\n if i > k - i:\n sum = sum + i\n else:\n sum = sum + k - i\n\nprint(sum)", "jacc_sim": 0.9428571428571428, "before_after_length": [100, 98], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "><*2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u858136677", "n_user": "u858136677", "pos": "N = int(input())\nK = int(input())\nx = list(map(int,input().split()))\nL = 0\nfor i in range(N):\n if K - x[i] >= x[i]:\n L += x[i]\n else:\n L += K -x[i]\nprint (2 * L)", "neg": "N = int(input())\nK = int(input())\nx = list(map(int,input().split()))\nL = 0\nfor i in range(N):\n if K - x[i] <= x[i]:\n L = L + x[i]\n else:\n L = K -x[i]\nprint (2 * L)", "jacc_sim": 0.9354838709677419, "before_after_length": [82, 84], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "<>+ L ++", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u094565093", "n_user": "u094565093", "pos": "N=int(input())\nK=int(input()) \nS=list(map(int, input().split()))\ntotal=0\nfor i in range(N):\n if abs(S[i]-K)=x[i]:\n total = total + x[i]*2\n else:\n total = total + (K-x[i])*2\nprint(total)", "neg": "\nN = int(input())\nK = int(input())\nx = list(map(int, input().split()))\nK_half = 10/2\n\ntotal=0\n\nfor i in range(N):\n if K_half>=x[i]:\n total = total + x[i]*2\n else:\n total = total + (K-x[i])*2\nprint(total)", "jacc_sim": 0.9696969696969697, "before_after_length": [98, 98], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "K10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u796563423", "n_user": "u796563423", "pos": "a=int(input())\nb=int(input())\nc=list(map(int,input().split()))\ntotal=0\nfor i in range(a):\n d=2*c[i]\n e=2*abs(b-c[i])\n total+=min(d,e)\nprint(total)", "neg": "a=int(input())\nb=int(input())\nc=list(map(int,input().split()))\ntotal=0\nfor i in range(2):\n d=2*c[i]\n e=2*abs(9-c[i])\n total+=min(d,e)\nprint(total)", "jacc_sim": 0.96875, "before_after_length": [79, 79], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "2a9b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u818283165", "n_user": "u953379577", "pos": "n = int(input())\nk = int(input())\nx = list(map(int,input().split()))\nans = 0\nfor i in x:\n ans += min(i*2,abs(i-k)*2)\nprint(ans)", "neg": "n = int(input())\nk = int(input())\nx = list(map(int,input().split()))\nans = 0\n\nfor i in x:\n ans += min(abs(x-k),x)\n \nprint(ans)", "jacc_sim": 0.9230769230769231, "before_after_length": [60, 59], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "\n i*2,xi,x*2\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u749512407", "n_user": "u749512407", "pos": "N = int(input())\nK = int(input())\nX = list(map(int, input().split()))\n\nline = K // 2\nans = 0\n\nfor x in X:\n\tif x <= line:\n\t\tans += x\n\telse:\n\t\tans += (K - x)\nans *= 2\nprint(ans)", "neg": "N = int(input())\nK = int(input())\nX = list(map(int, input().split()))\n\nline = K // 2\nans = 0\n\nfor x in X:\n\tif x <= line:\n\t\tans += x\n\telse:\n\t\tans += K - line\nans *= 2\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [81, 79], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": "(x)line", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03598", "p_user": "u340781749", "n_user": "u340781749", "pos": "n = int(input())\nk = int(input())\nxxx = list(map(int, input().split()))\nans = sum(min(x, abs(k - x)) for x in xxx) * 2\nprint(ans)\n", "neg": "n = int(input())\nk = int(input())\nxxx = list(map(int, input().split()))\nans = sum(min(x, abs(k - x)) for x in xxx)\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [55, 52], "nl": "You are given N balls in the xy-plane, each located on a different line y = 1, 2, ..., N. To collect these balls, Snuke has prepared 2N robots (N type A and N type B). Each type-A robot is placed at (0, i) and each type-B robot at (K, i). When activated, a robot moves to collect a ball on its line and returns to its original position. Find the minimum total distance covered by the robots to collect all the balls. Constraints: 1 \u2264 N \u2264 100, 1 \u2264 K \u2264 100, 0 < xi < K. Input format: N, K, and N values of xi. Output the minimum total distance covered by the robots. Example: Input: 2 9 3 6, Output: 12.", "diff_info": " * 2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u266874640", "n_user": "u266874640", "pos": "import collections\n\nN = int(input())\nA = list(map(int,input().split()))\nB = collections.Counter(A)\nC = []\nfor a,c in B.items():\n C += [a] * (c//2)\nC.sort()\n\nif len(C) >= 2:\n print(C[-1]*C[-2])\nelse:\n print(0)\n", "neg": "import collections\n\nN = int(input())\nA = list(map(int,input().split())), reverse = True\nB = collections.Couter(A)\nC = []\nfor a,c in B.items():\n C += [a] * c//2\nC.sort()\n\nif len(C) >= 2:\n print(C[-1]*C[-2])\nelse:\n print(0)\n", "jacc_sim": 0.9024390243902439, "before_after_length": [97, 99], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": ",\nBreverse Trcollections.Coe\nB = collectios.Cou()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u076917070", "n_user": "u076917070", "pos": "import sys\ninput=sys.stdin.readline\nimport collections\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n d = collections.defaultdict(int)\n for a in A:\n d[a] += 1\n for k,v in list(d.items()):\n if v < 2:\n d.pop(k)\n d = sorted(d.items(), key=lambda x: x[0], reverse=True)\n if len(d) >= 1 and d[0][1] >= 4:\n print(d[0][0]**2)\n elif len(d) >= 2:\n print(d[0][0]*d[1][0])\n else:\n print(0)\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\ninput=sys.stdin.readline\nimport collections\n\ninput = open(sys.argv[1], \"r\").readline\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n d = collections.defaultdict(int)\n for a in A:\n d[a] += 1\n for k,v in list(d.items()):\n if v < 2:\n d.pop(k)\n d = sorted(d.items(), key=lambda x: x[0], reverse=True)\n if len(d) >= 1 and d[0][1] >= 4:\n print(d[0][0]**2)\n elif len(d) >= 2:\n print(d[0][0]*d[1][0])\n else:\n print(0)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9473684210526315, "before_after_length": [204, 221], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "\n\ninput = open(sys.argv[1], \"r\").readline", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u315485238", "n_user": "u315485238", "pos": "N=int(input())\nA=list(map(int, input().split()))\n\nA.sort(reverse=True)\n\nj=0\nprev=A[0]\n\nlonger_edge=0\n\nfor i,a in enumerate(A+[0,0,0,0,-1]):\n if a==prev:\n pass\n else:\n if not longer_edge:\n if (i-j)>=4:\n print(prev**2)\n exit()\n elif (i-j)>=2:\n longer_edge=prev\n elif longer_edge:\n if (i-j)>=2:\n print(prev*longer_edge)\n exit()\n prev=a\n j=i\n", "neg": "N=int(input())\nA=list(map(int, input().split()))\n\nA.sort(reverse=True)\n\nj=0\nprev=A[0]\n\nlonger_edge=0\n\nfor i,a in enumerate(A):\n if a==prev:\n pass\n else:\n if not longer_edge:\n if (j-i)>=4:\n print(a**2)\n exit()\n elif (j-i)>=2:\n longer_edge=a\n elif longer_edge:\n if (j-i)>=2:\n print(a*longer_edge)\n prev=a", "jacc_sim": 0.9512195121951219, "before_after_length": [184, 161], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "+[0,0,0,0,-1]i--iaprevi-)>=2:\n longer_edge=prev\n elif longer_edge:\n if (iijprint(prev*)=aeliflonger_edge:\nex tf )\n prev=a\n -i)>2:\n prnt(a*longer_edge) prev=a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u721970149", "n_user": "u721970149", "pos": "N = int(input())\nA = [int(x) for x in input().split()]\n\nfrom collections import Counter\nAco = Counter(A)\n\ning = []\ning2 = []\nfor a in Aco.keys() :\n if Aco[a] >= 2 :\n ing.append(a)\n if Aco[a] >= 4 :\n ing2.append(a)\n\ning.sort(reverse = True)\ning2.sort(reverse = True)\nif ing2 :\n if ing2[0] == ing[0] :\n print(ing2[0]**2)\n exit()\n\nif len(ing) <= 1 :\n print(0)\nelse :\n print(ing[0] * ing[1])\n", "neg": "N = int(input())\nA = [int(x) for x in input().split()]\n\nfrom collections import Counter\nAco = Counter(A)\n\ning = []\ning2 = []\nfor a in Aco.keys() :\n if Aco[a] >= 2 :\n ing.append(a)\n if Aco[a] >= 4 :\n ing2.append(a)\n\ning.sort(reverse = True)\ning2.sort(reverse = True)\nif ing2 :\n print(ing2[0]**2)\nelse :\n if len(ing) <= 1 :\n print(0)\n else :\n print(ing[0] * ing[1])\n", "jacc_sim": 0.975, "before_after_length": [183, 169], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "if ing2[0] == ing[0] :\n xit()\n\nif sn( :\n fng)<= 1 :\n print(0)\nesn(ing)<=:\n print(ing[0] * ing[ :\n print(0)\n else :\n print(ing[0 * ing[1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u626337957", "n_user": "u626337957", "pos": "N = int(input())\nsticks = list(map(int, input().split()))\ns_dict = {}\nfor stick in sticks:\n if stick in s_dict:\n s_dict[stick] += 1\n else:\n s_dict[stick] = 1\nsorted_dict = sorted(s_dict.items(), key=lambda x:-x[0])\nside1 = 0\nside2 = 0\nfor elem in sorted_dict:\n if elem[1] >= 4:\n if side1 == 0:\n side1 = side2 = elem[0]\n else:\n side2 = elem[0]\n elif elem[1] == 2 or elem[1] == 3:\n if side1 == 0:\n side1 = elem[0]\n else:\n side2 = elem[0]\n if side1 != 0 and side2 != 0:\n print(side1*side2)\n exit()\nprint(0)", "neg": "N = int(input())\nsticks = list(map(int, input().split()))\ns_dict = {}\nfor stick in sticks:\n if stick in s_dict:\n s_dict[stick] += 1\n else:\n s_dict[stick] = 1\nsorted_dict = sorted(s_dict.items(), key=lambda:-x[0])\nside1 = 0\nside2 = 0\nfor elem in sorted_dict:\n if elem[1] >= 4:\n side1 = side2 = elem[0]\n elif elem[1] == 2 or elem[1] == 3:\n if side1 == 0:\n side1 = elem[0]\n else:\n side2 = elem[0]\n if side1 != 0 and side2 != 0:\n print(side1*side2)\n exit()\nprint(0)", "jacc_sim": 1.0, "before_after_length": [232, 210], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": " xsfde1side1 = 0:\n side1 = side2 = elem[0]\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u739843002", "n_user": "u739843002", "pos": "N = int(input())\nA = [int(a) for a in input().split(\" \")]\n\nA.sort(reverse=True)\nl1 = 0\nc1 = 0\nl2 = 0\nc2 = 0\n\nL1 = 0\nL2 = 0\n\nfor i in range(len(A)):\n if L1 and L2:\n break\n elif L1:\n if l2 == A[i]:\n c2 += 1\n elif l2 != A[i]:\n l2 = A[i]\n c2 = 1\n if c2 == 2:\n L2 = l2\n else:\n if l1 == A[i]:\n c1 += 1\n elif l1 != A[i]:\n l1 = A[i]\n c1 = 1\n if c1 == 2:\n L1 = l1\n\nprint(L1 * L2)", "neg": "N = int(input())\nA = [int(a) for a in input().split(\" \")]\n\nA.sort(reverse=True)\nl1 = 0\nc1 = 0\nl2 = 0\nc2 = 0\n\nL1 = 0\nL2 = 0\n\nfor i in range(len(A)):\n print(\" \".join([str(s) for s in [i, l1, c1, l2, c2, L1, L2]]))\n if L1 and L2:\n break\n elif L1:\n if l2 == A[i]:\n c2 += 1\n elif l2 != A[i]:\n l2 = A[i]\n c2 = 1\n if c2 == 2:\n L2 = l2\n else:\n if l1 == A[i]:\n c1 += 1\n elif l1 != A[i]:\n l1 = A[i]\n c1 = 1\n if c1 == 2:\n L1 = l1\n\nprint(L1 * L2)", "jacc_sim": 0.9090909090909091, "before_after_length": [220, 256], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "print(\" \".join([str(s) for s in [i, l1, c1, l2, c2, L1, L2]]))\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u503228842", "n_user": "u503228842", "pos": "N = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\n#print(A)\ncnt = 0\nprev = 0\ncandidates = []\nfor i in A:\n if i == prev:\n cnt += 1\n prev = i\n elif i != prev:\n prev = i\n cnt = 0\n if cnt >= 3:\n print(i**2)\n exit()\n if cnt == 1:\n candidates.append(i)\n if len(candidates) == 2:\n print(candidates[0]*candidates[1])\n exit()\n\nprint(0)", "neg": "N = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\ncnt = 0\nprev = 0\ncandidates = []\nfor i in A:\n if i == prev:\n cnt += 1\n if cnt >= 3:\n print(i**2)\n exit()\n if cnt == 2:\n candidates.append(i)\n if len(candidates) == 2:\n print(candidates[0]*candidates[1])\n exit()\n if i != prev:\n prev = i\n cnt = 0\nprint(0)", "jacc_sim": 0.9487179487179487, "before_after_length": [153, 141], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "#print(A)\n\n prev = i\n elif i != prev:\n prev = i\n cnt = 021 if i != prev: ev = \n c( = \nprint(0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u350093546", "n_user": "u350093546", "pos": "n=int(input())\na=list(map(int,input().split()))\na.sort(reverse=True)\npin=a[0]\ncnt=1\nx=[]\nfor i in range(1,n):\n if a[i]==pin and i!=(n-1):\n cnt+=1\n elif a[i]!=pin:\n if cnt>=4:\n x+=[pin]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n break\n pin=a[i]\n cnt=1\n \n elif i==(n-1):\n if pin==a[i]:\n cnt+=1\n if cnt>=4:\n x+=[pin]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n break\n pin=a[i]\n cnt=1\n\n \nif len(x)<=1:\n print(0)\nelse:\n print(x[0]*x[1])\n", "neg": "n=int(input())\na=list(map(int,input().split()))\na.sort(reverse=True)\npin=a[0]\ncnt=1\nx=[]\nfor i in range(1,n):\n if a[i]==pin:\n cnt+=1\n else:\n if cnt>=4:\n x+=[pin]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n break\n pin=a[i]\n \nif len(x)<=1:\n print(0)\nelse:\n print(x[0]*x[1])", "jacc_sim": 0.9285714285714286, "before_after_length": [277, 166], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": ":\na cdt+=1\ni!=(n-1):\n cnt+=1\n elif a[i]!=pin:\n if cnt>=4:\n x+=[pin]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n break\n pin=a[i]\n cnt=1\n \n elif i==(n-1):\n if pin==a[i]:\n cnt+=1\n if cnt>=4:\n x+=[pin]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n break\n pin=a[i]\n cnt=1\n\n \nif len(x)<=1:\n print(0)\n if cnt>=4:\n x+=[in]\n x+=[pin]\n elif cnt>=2:\n x+=[pin]\n if len(x)>=2:\n beak\n p=a[i]\n \nif len(x)<=1:\n prinx[)\nelse:\n print(x[0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u798129018", "n_user": "u798129018", "pos": "n = int(input())\na = list(map(int,input().split()))\n\na.sort(reverse=True)\nfor i in range(len(a)-1):\n if a[i] == a[i+1]:\n a1 = a[i]\n break\n elif i == len(a)-2:\n print(0)\n exit()\n else:\n continue\nb = []\nl=0\nfor i in range(len(a)):\n if a[i] == a1 and l<2:\n l += 1\n else:\n b.append(a[i])\nb.sort(reverse=True)\nfor i in range(len(b)-1):\n if b[i] == b[i+1]:\n a2 = b[i]\n break\n elif i == len(b)-2:\n print(0)\n exit()\n else:\n continue\nprint(a1*a2)\n", "neg": "n = int(input())\na = list(map(int,input().split()))\n\na.sort(reverse=True)\nfor i in range(len(a)-1):\n if a[i] == a[i+1]:\n a1 = a[i]\n break\n elif i == len(a)-2:\n print(0)\n exit()\n else:\n continue\nb = []\nfor i in range(len(a)):\n if a[i] == a1:\n continue\n else:\n b.append(a[i])\nb.sort()\nfor i in range(len(b)-1):\n if b[i] == b[i+1]:\n a2 = b[i]\n break\n elif i == len(b)-2:\n print(0)\n exit()\n else:\n continue\nprint(a1*a2)", "jacc_sim": 0.9302325581395349, "before_after_length": [234, 219], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "l=0\n:\na cotid l<2:\n l += 1\n else:\n b.apped(a[i])\nb.sort(reverse=Tr\n else:\n b.append(a[i])\nb.sort(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u617515020", "n_user": "u617515020", "pos": "n=int(input())\na=list(map(int,input().split()))\n\ne=[]\na.sort(reverse=True)\nfor i in range(len(a)-1):\n if a[i] == a[i+1] and a[i] not in e:\n e.append(a[i])\n if len(e) == 2:\n break\ne.sort(reverse=True)\n\nc4 = 0\nfor i in e:\n if a.count(i)>=4:\n c4=i\n break\n\nif c4 == 0 and len(e)<2:\n print(0)\nelif c4 == 0 and len(e)>=2:\n print(e[0]*e[1])\nelif c4 > 0 and len(e)<2:\n print(c4**2)\nelse:\n print(max(c4**2,e[0]*e[1]))", "neg": "n=int(input())\na=list(map(int,input().split()))\n\ne=[]\na.sort()\nfor i in range(len(a)-1):\n if a[i] == a[i+1]:\n e.append(a[i])\ne.sort(reverse=True)\n\nc4 = 0\nfor i in e:\n if a.count(i)>=4:\n c4=i\n break\n\nif c4 == 0 and len(e)<2:\n print(0)\nelif c4 == 0 and len(e)>=2:\n print(e[0]*e[1])\nelif c4 > 0 and len(e)<2:\n print(c4**2)\nelse:\n print(max(c4**2,e[0]*e[1]))", "jacc_sim": 0.9772727272727273, "before_after_length": [230, 204], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "reverse=True and a[i] not in e if len(e) == 2:\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u946969297", "n_user": "u946969297", "pos": "\ndef C():\n n = int(input())\n a = sorted(list(map(int,input().split())),reverse=True)\n i=0\n longer = 0\n shorter = 0\n while i < len(a)-1:\n if a[i] == a[i+1]:\n if longer == 0:\n longer = a[i]\n i+=1\n elif shorter == 0:\n shorter = a[i]\n i+=1\n i+=1\n print(longer*shorter)\nC()", "neg": "\ndef C():\n n = int(input())\n a = sorted(list(map(int,input().split())),reverse=True)\n i=0\n print(a)\n longer = 0\n shorter = 0\n while i < len(a)-1:\n print(i,a[i])\n if a[i] == a[i+1]:\n if longer == 0:\n longer = a[i]\n i+=1\n elif shorter == 0:\n shorter = a[i]\n i+=1\n i+=1\n print(longer*shorter)\nC()", "jacc_sim": 1.0, "before_after_length": [134, 150], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "print(a)\n prf nt(i,) == a[i+1]: longer == 0:\n longer = \n i+1\n elif shorter == 0:\n shorter ]\n i=]: f+=1\n print( == 0:\n longer = a[i]\n i+=1\n elif shorter == 0:\n shorter = a[i]\n i+=1\n i+=1\n print(longer", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u121921603", "n_user": "u121921603", "pos": "n=int(input())\na=list(map(int,input().split()))\nfrom collections import Counter\nc=Counter(a).items()\nf=0\ns=0\nfor k,v in c:\n if v>=4:\n if k>f:\n s=k\n f=k\n elif k>s:\n s=k\n if v>=2:\n if k>f:\n s=f\n f=k\n elif k>s:\n s=k\n\nprint(s*f)\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nfrom collections import Counter\nc=Counter(a).items()\nf=0\ns=0\nfor k,v in c:\n if v>=4:\n if v>f:\n s=v\n f=v\n elif v>s:\n s=v\n if v>=2:\n if v>f:\n s=f\n f=v\n elif v>s:\n s=v\n\nprint(s*f)\n", "jacc_sim": 1.0, "before_after_length": [133, 133], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "k>f:\n s=k\n f=k\n elif k>s:\n s=k\n if f:\n s=v\n f=v\n elif v>s:\n s=v\n if v>vkvkvkvk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u943004959", "n_user": "u943004959", "pos": "def solve(): # 071C - Make a Rectangle\n n = int(input())\n sides = list(map(int, input().split(\" \")))\n check_dual = {}\n possible_sides = []\n\n for i in sides:\n if i in check_dual:\n check_dual[i] += 1\n else:\n check_dual[i] = 1\n\n tmp_square = 0\n for k, v in check_dual.items():\n if v >= 4 and k > tmp_square:\n tmp_square = k\n possible_sides.append(k)\n elif v == 2 or v == 3:\n possible_sides.append(k)\n else:\n pass\n\n possible_sides.sort(reverse=True)\n if tmp_square == 0 and len(possible_sides) < 2:\n print(0)\n elif tmp_square != 0 and len(possible_sides) == 0:\n print(tmp_square ** 2)\n elif tmp_square != 0 and len(possible_sides) == 1:\n print(max(tmp_square ** 2, tmp_square * possible_sides[0]))\n else:\n print(max(tmp_square ** 2, possible_sides[0] * possible_sides[1]))\n\nsolve()", "neg": "def solve(): # 071C - Make a Rectangle\n n = int(input())\n sides = list(map(int, input().split(\" \")))\n check_dual = {}\n possible_sides = []\n\n for i in sides:\n if i in check_dual:\n check_dual[i] += 1\n else:\n check_dual[i] = 1\n\n for k, v in check_dual.items():\n if v >=4:\n possible_sides.append(k)\n possible_sides.append(k)\n elif v == 2 or v == 3:\n possible_sides.append(k)\n\n possible_sides.sort(reverse=True)\n if len(possible_sides) < 2:\n print(0)\n else:\n print(possible_sides[0] * possible_sides[1])", "jacc_sim": 0.9137931034482759, "before_after_length": [322, 217], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "tmp_square = 0\n and k > tmp_square\n tmp_square = kelif v == 2 or v == 3:\n se:\n pass\n\n possible_sides.sort(reverse=True)\n vtmp_square 0 and len(possible_sides) < or v == 3print(0)\nelif tmp_square != 0 and len(.append(k\n\n==0:\n print(tmp_square ** 2)\n elif tmp_square != 0 and len(.sort(reverse=True\n==1:\niflen(possible_sides)< print(max(tmp_square **,:\n prinm(0)\n else:\n _squaint(e * ))\n else:\n print(max(tmp_square ** 2, possible_sides[0])\n\nsolve()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u781262926", "n_user": "u781262926", "pos": "from collections import Counter\nn, *A = map(int, open(0).read().split())\nB = sorted([(k, v) for k, v in Counter(A).items() if v >= 2], reverse=1)\nif len(B) == 0:\n print(0)\nelif len(B) == 1:\n if B[0][1] >= 4:\n \tprint(B[0][0] ** 2)\n else:\n print(0)\nelse:\n if B[0][1] >= 4:\n \tprint(B[0][0] ** 2)\n else:\n \tprint(B[0][0]*B[1][0])", "neg": "from collections import Counter\nn, *A = map(int, open(0).read().split())\nB = sorted([(k, v) for k, v in Counter(A).items() if v >= 2], reverse=1)\nif len(B) == 0:\n print(0)\nelif len(B) == 1:\n if B[0][1] >= 4:\n \tprint(B[0][0] ** 2)\n else:\n print(0)\nelse:\n if B[0][1] >= 4:\n \tprint(B[0][0] ** 2)\n else:\n \tprint(B[0]*B[1])", "jacc_sim": 1.0, "before_after_length": [163, 159], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "*B10*B[1][0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u989306199", "n_user": "u989306199", "pos": "from collections import Counter\n\nn = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\npair = []\n# print(c)\nfor x, cnt in c.items():\n pair += [x] * (cnt//2)\n\n# print(pair)\npair.sort()\n\nans = 0\nif len(pair) >= 2:\n ans = pair[-1] * pair[-2]\nprint(ans)", "neg": "from collections import Counter\n\nn = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\npair = []\nprint(c)\nfor x, cnt in c.items():\n pair += [x] * (cnt//2)\n\n# print(pair)\npair.sort()\n\nans = 0\nif len(pair) >= 2:\n ans = pair[-1] * pair[-2]\nprint ans", "jacc_sim": 1.0, "before_after_length": [111, 108], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "# ()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u190405389", "n_user": "u190405389", "pos": "N = int(input())\nA = [int(x) for x in input().split()]\n\nA.sort()\n\nfor i in range(N - 1):\n if A[i] == A[i + 1]:\n A[i + 1] = 0\n else:\n A[i] = 0\n\nA[N - 1] = 0\n\nA.sort()\nA.reverse()\nprint(A[0] * A[1])\n", "neg": "N = int(input())\nA = [int(x) for x in input().split()]\n\nA.sort()\n\nfor i in range(N - 1):\n if A[i] == A[i + 1]:\n A[i + 1] = 0\n else:\n A[i] = 0\n\nA.sort()\nA.reverse()\nprint(A[0] * A[1])\n", "jacc_sim": 1.0, "before_after_length": [109, 99], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "[N - 1] = 0\n\nA", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u273010357", "n_user": "u273010357", "pos": "N = int(input())\na = list(map(int, input().split()))\na.sort(reverse=True)\nb = []\ni = 0\nwhile i+1=2:\n print(ans[0]*ans[1])\nelse:\n print(0)", "neg": "n = int(input())\nA = list(map(int,input().split()))\nA.sort(reverse=True)\nswitch = 1\nans = []\n\nfor i in range(n-1):\n if switch == 1:\n if A[i] == A[i+1]:\n ans.append(A[i])\n switch = 0\n if switch == 0:\n switch = 1\n\nif len(ans)>=2:\n print(ans[0]*ans[1])\nelse:\n print(0)", "jacc_sim": 1.0, "before_after_length": [125, 128], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "ifelse: \n =1\n\nif len(ans)>=2:\n print(ans[]*:\n switch = 1\n\nif len()>=2:\n print(ans1])\nelse:\n print(]*ans[1]\nelse:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u869919400", "n_user": "u869919400", "pos": "N = int(input())\nA = sorted(list(map(int, input().split())))\n\nfrom collections import Counter\nc = Counter(A)\nw = 0\nh = 0\nfor k, v in sorted(c.items(), key=lambda x: -x[0]):\n if v < 2:\n continue\n if v >= 4:\n if w == 0:\n w = h = k\n break\n else:\n h = k\n break\n elif v >= 2:\n if w == 0:\n w = k\n elif h == 0:\n h = k\n break\nprint(w*h)", "neg": "N = int(input())\nA = sorted(list(map(int, input().split())))\n\nfrom collections import Counter\nc = Counter(A)\nw = 0\nh = 0\nprint(sorted(c.items(), key=lambda x: -x[0]))\nfor k, v in sorted(c.items(), key=lambda x: -x[0]):\n if v >= 4:\n if w == 0:\n w = h = k\n else:\n h = k\n break\n if v >= 2:\n if w == 0:\n w = k\n elif h == 0:\n h = k\n break\nprint(w*h)", "jacc_sim": 0.9545454545454546, "before_after_length": [153, 159], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "pfo k, v t():fork, iflam 4:\n if w == 0:\n w = h = k\n drek x: -x[0]): else:\n h = k\n break\n el42h = seif h == 0 if v >= 2:\n if w == 0:\n w = k\n elif h == 0:\n h = k\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u239375815", "n_user": "u239375815", "pos": "n = int(input())\na = list(map(int,input().split()))\na.sort(reverse=True)\nbn = 0\nans = 0\ncount = 0\ni = 0\n\nwhile(i=2:\n print(ans)\nelse:\n print(0)", "neg": "n = int(input())\na = list(map(int,input().split()))\na.sort(reverse=True)\nbn = 0\nans = 0\ncount = 0\ni = 0\n\nwhile(i=2:\n print(ans)\nelse:\n print(0)", "jacc_sim": 1.0, "before_after_length": [166, 178], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "prf bt(==:,i,ans) count == 0:\n ans = a[i]\n if i+1= 2:\n if val >= 4:\n count_at_least_2 += 2\n else:\n count_at_least_2 += 1\n\nif count_at_least_2 < 2:\n import sys\n print(0)\n sys.exit(0)\n\nelse:\n bar_length_count = sorted({k:v for k, v in bar_length_count.items() if v >= 2}.items(), key=lambda x: x[0], reverse=True)\n if bar_length_count[0][1] >= 4:\n print(bar_length_count[0][0]**2)\n else:\n print(bar_length_count[0][0]*bar_length_count[1][0])\n ", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nbar_length_count = dict()\nfor a in A:\n bar_length_count[a] = bar_length_count.get(a, 0) + 1\n\nfor val in bar_length_count.values():\n pass\n\ncount_at_least_2 = 0\nfor val in bar_length_count.values():\n if val >= 2:\n if val >= 4:\n count_at_least_2 += 2\n else:\n count_at_least_2 += 1\n\nif count_at_least_2 < 2:\n import sys\n print(0)\n sys.exit(0)\n\nelse:\n bar_length_count = sorted({k:v for bar_length_count.items() if v >= 2}, reverse=True)\n if bar_length_count[0][1] >= 4:\n print(bar_length_count[0][0]**2)\n else:\n print(bar_length_count[0][0]*bar_length_count[1][0])\n ", "jacc_sim": 0.94, "before_after_length": [284, 269], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "k, v in .items(), key=lambda x: x[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u142415823", "n_user": "u142415823", "pos": "import collections\n\nN = int(input())\nA = [int(i) for i in input().split()]\n\nstick_num = collections.Counter(A)\nflag = True\nans = 0\nfor i in sorted(stick_num, reverse=True):\n if stick_num[i] >= 4:\n ans = i * i if flag else a * i\n break\n elif stick_num[i] >= 2:\n if flag:\n a = i\n flag = False\n else:\n ans = a * i\n break\n\nprint(ans)", "neg": "import collections\n\nN = int(input())\nA = [int(i) for i in input().split()]\n\nstick_num = collections.Counter(A)\nflag = True\nans = 0\nfor i in sorted(stick_num, reverse=True):\n if stick_num[i] % 4 == 0:\n ans = i * i\n elif stick_num[i] % 2 >= 0:\n if flag:\n a = i\n flag = False\n else:\n ans = a * i\n break\n\nprint(ans)", "jacc_sim": 0.9736842105263158, "before_after_length": [137, 132], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "%>= == 0 if flag else a * i\n break%>= >= 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u870518235", "n_user": "u870518235", "pos": "import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nA = collections.Counter(A).most_common()\nN = len(A)\n\nans = [0]\n\nfor i in range(N):\n if A[i][1] >= 4:\n ans.append(A[i][0]**2)\n\nref = []\nfor j in range(N):\n if A[j][1] >= 2:\n ref.append(A[j][0])\nref = sorted(ref)\nif len(ref) >= 2:\n ans.append(ref[-2]*ref[-1])\n\nprint(max(ans))\n", "neg": "import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nA = collections.Counter(A).most_common()\nN = len(A)\n\nans = [0]\n\nfor i in range(N):\n if A[i][1] >= 4:\n ans.append(A[i][0]**2)\n\nref = []\nfor j in range(N):\n if A[i][1] >= 2:\n ref.append(A[i][0])\n\nif len(ref) >= 2:\n ans.append(ref[0]*ref[1])\n\nprint(max(ans))", "jacc_sim": 0.9487179487179487, "before_after_length": [164, 157], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "ijijref = sorted(ref)0-2-\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u731368968", "n_user": "u731368968", "pos": "n = int(input())\na = list(map(int, input().split()))\na.sort()\na.reverse()\n\nx, y = 0, 0\n\ni = 0\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n x = a[i]\n i += 2\n break\n i += 1\n\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n y = a[i]\n i += 2\n break\n i += 1\nprint(x * y)", "neg": "n = int(input())\na = list(map(int, input().split()))\na.sort()\na.reverse()\n\nx, y = 0, 0\n\ni = 0\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n x = a[i]\n i += 2\n break\n i += 1\nn = int(input())\na = list(map(int, input().split()))\na.sort()\na.reverse()\n\nx, y = 0, 0\n\ni = 0\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n x = a[i]\n i += 2\n break\n i += 1\n\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n y = a[i]\n i += 2\n break\n i += 1\nprint(x * y)\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n y = a[i]\n i += 2\n break\n i += 1\nprint(x * y)", "jacc_sim": 1.0, "before_after_length": [138, 276], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "n = int(input())\na = list(map(int, input().split()))\na.sort()\na.reverse()\n\nx, y = 0, 0\n\ni = 0y = a[i]\n i += 2\n break\n i += 1\nprint(*= a[i]\n i += 2\n break\n i += 1\n\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n = a[i]\n i += 2\n break\n i += 1\nprint(x * y\nwhile i < n - 1:\n if a[i] == a[i + 1]:\n y = a[i]\n i += 2\n break\n i += 1\nprint(x * y)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u013408661", "n_user": "u013408661", "pos": "n=int(input())\na=list(map(int,input().split()))\na.sort()\nstack=a[-1]\nans=[]\nfor i in range(n-2,-1,-1):\n if len(ans)==2:\n break\n if a[i]==stack:\n ans.append(stack)\n stack=-1\n else:\n stack=a[i]\nif len(ans)==2:\n print(ans[0]*ans[1])\nelse:\n print(0)", "neg": "n=int(input())\na=list(map(int,input().split()))\na.sort()\nstack=a[-1]\nans=[]\nfor i in range(n-2,-1,-1):\n if len(ans)==2:\n break\n if a[i]==stack:\n ans.append(stack)\n else:\n stack=a[i]\nif len(ans)==2:\n print(ans[0]*ans[1])\nelse:\n print(0)", "jacc_sim": 1.0, "before_after_length": [130, 125], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": " stack=-1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u368796742", "n_user": "u368796742", "pos": "n = int(input())\nl = list(map(int,input().split()))\nl.sort(reverse=True)\na = 0\nb = 0\ncheck = -1\nfor i in range(n-1):\n if l[i]==l[i+1]:\n if check != i:\n if a == 0:\n a = l[i]\n check = i+1\n elif b == 0:\n b = l[i]\nprint(a*b)\n \n \n", "neg": "n = int(input())\nl = list(map(int,input().split()))\nl.sort(reverse=True)\na = 0\nb = 0\ncheck = -1\nfor i in range(n-1):\n if l[i]==l[i+1]:\n if check != i:\n if a == 0:\n a = l[i]\n check = i+1\n else:\n b = l[i]\nprint(a*b)\n \n ", "jacc_sim": 0.9428571428571428, "before_after_length": [120, 117], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "seif b == 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u305366205", "n_user": "u305366205", "pos": "import collections\ndd = collections.defaultdict(int)\nn = int(input())\na = list(map(int, input().split()))\ncandidate = []\nfor i in range(n):\n dd[str(a[i])] += 1\nfor k in dd.keys():\n if dd[k] >= 2:\n candidate.append(int(k))\n if dd[k] >= 4:\n candidate.append(int(k))\ncandidate.sort(reverse=True)\nif len(candidate) < 2:\n print(0)\nelse:\n print(candidate[0] * candidate[1])", "neg": "n = int(input())\na = list(map(int, input().split()))\ncandidate = []\nfor i in range(n):\n dd[str(a[i])] += 1\nfor k in dd.keys():\n if dd[k] >= 2:\n candidate.append(int(k))\ncandidate.sort(reverse=True)\nif len(candidate) < 2:\n print(0)\nelse:\n print(candidate[0] * candidate[1])", "jacc_sim": 0.9069767441860465, "before_after_length": [146, 113], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "n = mnt(inort collections\ndd = collections.defaltdict(int)\nn = int(inpu if dd[k] >= 4:\n candidate.append(int(k))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u846372029", "n_user": "u846372029", "pos": "#Make a Rectangle\nN = int(input())\nA = list(map(int, input().split()))\n\na = sorted(A, reverse=True)\nb = []\n\ni = 0\nwhile i1):\n break\n\nif (len(b)<2):\n print(0)\nelse:\n print(b[0]*b[1])", "neg": "#Make a Rectangle\nN = int(input())\nA = list(map(int, input().split())\n\na = sorted(A, reverse=True)\nb = []\n\ni = 0\nwhile i=2):\n break\n\nif (len(b)<2):\n print(0)\nelse:\n print(b[0]*b[1])", "jacc_sim": 1.0, "before_after_length": [142, 142], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": ")1:\n if ( a[i]==a[i+1] ):\n b+=[a[i]]\n i+=\n else\n i+=1 a[i]==a[i+1] ):\n b+=[a[i]]\n i+=2\n else:\n i+=1\n if (1=2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u863370423", "n_user": "u863370423", "pos": "n = int(input())\nvals = list(map(int, input().split()))\nd= {}\na = [0, 0]\n\nfor i in range(n):\n if(vals[i] in d.keys()):\n d[vals[i]] += 1\n else:\n d[vals[i]] = 1\n\n\nfor i in d.keys():\n if(d[i] >= 4):\n a.append(i)\n a.append(i)\n elif(d[i] >= 2):\n a.append(i)\na.sort()\n\nprint(a[-1]*a[-2])", "neg": "n = int(input())\nvals = list(map(int, input().split()))\nd= {}\na = [0, 0]\n\nfor i in range(n):\n if(vals[i] in d.keys()):\n d[vals[i]] += 1\n else:\n d[vals[i]] = 1\n\nprint(d)\n\nfor i in d.keys():\n if(d[i] >= 2):\n a.append(i)\na.sort()\n\nprint(a[-1]*a[-2])", "jacc_sim": 0.9473684210526315, "before_after_length": [152, 130], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "print(d)\nif(d[i] >= 4):\n a.append(i)\n a.append(i)\n el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03625", "p_user": "u514118270", "n_user": "u514118270", "pos": "import sys\nimport math\nimport itertools\nimport bisect\nfrom copy import copy\nfrom collections import deque,Counter\nfrom decimal import Decimal\ndef s(): return input()\ndef i(): return int(input())\ndef S(): return input().split()\ndef I(): return map(int,input().split())\ndef L(): return list(input().split())\ndef l(): return list(map(int,input().split()))\ndef lcm(a,b): return a*b//math.gcd(a,b)\nsys.setrecursionlimit(10 ** 9)\nINF = 10**9\nmod = 10**9+7\n\nN = i()\nA = l()\nA.sort(reverse=True)\nlist = []\nstart = 0\nwhile start < N-1: \n if A[start] == A[start+1]:\n list.append(A[start])\n start += 2\n else:\n if start == N-2:\n break\n start += 1\nif len(list) >= 2:\n print(list[0]*list[1])\nelse:\n print(0)", "neg": "import sys\nimport math\nimport itertools\nimport bisect\nfrom copy import copy\nfrom collections import deque,Counter\nfrom decimal import Decimal\ndef s(): return input()\ndef i(): return int(input())\ndef S(): return input().split()\ndef I(): return map(int,input().split())\ndef L(): return list(input().split())\ndef l(): return list(map(int,input().split()))\ndef lcm(a,b): return a*b//math.gcd(a,b)\nsys.setrecursionlimit(10 ** 9)\nINF = 10**9\nmod = 10**9+7\n\nN = i()\nA = l()\nA.sort(reverse=True)\nlist = []\nstart = 0\nwhile start < N:\n if A[start] == A[start+1]:\n list.append(A[start])\n start += 2\n else:\n start += 1\nif len(list) >= 2:\n print(list[0]*list[1])\nelse:\n print(0)", "jacc_sim": 0.9692307692307692, "before_after_length": [257, 243], "nl": "You are given a set of sticks with different lengths. The task is to select four sticks and form a rectangle (including a square) using these sticks as sides. Find the maximum possible area of the rectangle. The constraints are: 4 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where A_i is an integer. The input is given in the format: N followed by the lengths of the sticks. Output the maximum possible area of the rectangle. If no rectangle can be formed, output 0.", "diff_info": "-1 \n if start == N-2:\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u507456172", "n_user": "u507456172", "pos": "N = int(input())\nA = list(map(int,input().split()))\nX = [0,0,0]\n\nfor i in range(len(A)):\n if A[i]%4 == 0:\n X[2] += 1\n elif A[i]%2 == 0:\n X[1] += 1\n else:\n X[0] += 1\n\nif 2*X[2] + 1 >= N:\n print(\"Yes\")\nelif 2*X[2] + X[1]>= N:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\nA = list(map(int,input().split()))\nX = [0,0,0]\n\nfor i in range(len(A)):\n if A[i]%4 == 0:\n X[2] += 1\n elif A[i]%2 == 0:\n X[1] += 1\n else:\n X[0] += 1\n\nif 2*X[2] + X[1] >= N:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [147, 126], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "X[]if 2*X[2] + X[1]>= N:\n print(\"Yes\")\nel", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u505830998", "n_user": "u505830998", "pos": "import sys\nbbn=1000000007\n\t\n#+++++\n\t\t\ndef main():\n\tn = int(input())\n\tal = list(map(int, input().split()))\n\t\n\tb4=0\n\todd=0\n\tb2=0\n\tfor v in al:\n\t\tif v % 4 == 0:\n\t\t\tb4+=1\n\t\telif v % 2 == 1:\n\t\t\todd+=1\n\t\telse:\n\t\t\tb2+=1\n\tret = 'Yes' if (b4 + (b2==0))>= odd else 'No'\n\tprint(ret)\n\t\n\t\n#+++++\nisTest=False\n\ndef pa(v):\n\tif isTest:\n\t\tprint(v)\n\nif __name__ == \"__main__\":\n\tif sys.platform =='ios':\n\t\tsys.stdin=open('inputFile.txt')\n\t\tisTest=True\n\telse:\n\t\tpass\n\t\t#input = sys.stdin.readline\n\t\t\t\n\tret = main()\n\tif ret is not None:\n\t\tprint(ret)", "neg": "import sys\nbbn=1000000007\n\t\n#+++++\n\t\t\ndef main():\n\tn = int(input())\n\tal = list(map(int, input().split()))\n\t\n\tb4=0\n\todd=0\n\tfor v in al:\n\t\tif v % 4 == 0:\n\t\t\tb4+=1\n\t\telif v % 2 == 1:\n\t\t\todd+=1\n\tret = 'Yes' if b4 >= odd else 'No'\n\tprint(ret)\n\t\n\t\n#+++++\nisTest=False\n\ndef pa(v):\n\tif isTest:\n\t\tprint(v)\n\nif __name__ == \"__main__\":\n\tif sys.platform =='ios':\n\t\tsys.stdin=open('inputFile.txt')\n\t\tisTest=True\n\telse:\n\t\tpass\n\t\t#input = sys.stdin.readline\n\t\t\t\n\tret = main()\n\tif ret is not None:\n\t\tprint(ret)", "jacc_sim": 0.9827586206896551, "before_after_length": [268, 240], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "b2=0\n\t\telse:\n\t\t\tb2+=1\n\t(+ (b2==0))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u699296734", "n_user": "u699296734", "pos": "n = int(input())\na = list(map(int, input().split()))\nfour = 0\ntwo = 0\nfor i in range(n):\n if a[i] % 4 == 0:\n four += 1\n elif a[i] % 2 == 0:\n two += 1\n\nif 2 * four + 1 >= n:\n print(\"Yes\")\nelif 2 * four + two >= n:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nfour = 0\ntwo = 0\nfor i in range(n):\n if a[i] % 4 == 0:\n four += 1\n elif a[i] % 2 == 0:\n two += 1\n\nif four + two // 3 >= n // 2:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9210526315789473, "before_after_length": [115, 100], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "2 * four + 1 >= n:\n print(\"Yes\")\nelif 2 * // 3 // 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u405256066", "n_user": "u405256066", "pos": "from sys import stdin\nN = int(stdin.readline().rstrip())\na = [int(x) for x in stdin.readline().rstrip().split()]\nv1 = 0\nv2 = 0\nv4 = 0\nfor i in a:\n if i % 4 == 0:\n v4 += 1\n elif i % 2 == 0:\n v2 += 1\n else:\n v1 += 1\n#print(v4,v2,v1)\nif v4 >= (v1 + v2 - 1):\n print(\"Yes\")\nelse:\n if (v4 >= v1) and (v2 >= 2):\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "from sys import stdin\nN = int(stdin.readline().rstrip())\na = [int(x) for x in stdin.readline().rstrip().split()]\nv1 = 0\nv2 = 0\nv4 = 0\nfor i in a:\n if i % 4 == 0:\n v4 += 1\n elif i % 2 == 0:\n v2 += 1\n else:\n v1 += 1\n\nif (v4 >= v1) and (v2 >= 2):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9285714285714286, "before_after_length": [169, 133], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "\n#prf ntv4,v2,v1)\nif v1) and 1 + v - 1):\n print(\"Yes\")\nelse:\n if (v42v1 and (v2 >= 2) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u631914718", "n_user": "u631914718", "pos": "import collections as col\n\n\ndef convert(x):\n if x % 4 == 0:\n return 4\n elif x % 2 == 0:\n return 2\n else:\n return 1\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = map(int, input().split())\n\n count = col.Counter(map(convert, a))\n\n if count[1] >= 1:\n if count[4] >= count[1]:\n print('Yes')\n elif count[1] == count[4] + 1 and count[2] == 0:\n print('Yes')\n else:\n print('No')\n\n else: # count[1] == 0\n if count[4] >= 1:\n print('Yes')\n elif count[2] >= 2:\n print('Yes')\n else:\n print('No')\n", "neg": "import collections as col\n\n\ndef convert(x):\n if x % 4 == 0:\n return 4\n elif x % 2 == 0:\n return 2\n else:\n return 1\n\nif __name__ == \"__main__\":\n n = int(input())\n a = map(int, input().split())\n\n count = col.Counter(map(convert, a))\n\n if count[4] >= count[1]:\n print('Yes')\n elif count[1] == count[4] + 1 and count[2]:\n print('Yes')\n else:\n print('No')\n", "jacc_sim": 0.9761904761904762, "before_after_length": [216, 147], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "\n1] >= 1:\n if count[ == 0 \n else: # count[1] == 0\n if count[4] >= 1:\n print('Yes')\n elif count[2] >= 2:\n print('Yes')\n else:\n print('No')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u892487306", "n_user": "u892487306", "pos": "def main():\n N = int(input())\n A = list(map(int, input().split(' ')))\n c_4, c_2, c_0 = 0, 0, 0\n for a in A:\n if a % 4 == 0:\n c_4 += 1\n elif a % 2 == 0:\n c_2 += 1\n else:\n c_0 += 1\n if c_2 == N:\n print('Yes')\n elif 0 < c_2 < N:\n print('Yes' if c_4 > 0 and c_4 >= c_0 else 'No')\n else:\n print('Yes' if c_4 >= c_0 - 1 else 'No')\n\n\nif __name__ == '__main__':\n main()", "neg": "def main():\n N = int(input())\n A = list(map(int, input().split(' ')))\n c_4, c_2, c_0 = 0, 0, 0\n for a in A:\n if a % 4 == 0:\n c_4 += 1\n elif a % 2 == 0:\n c_2 += 1\n else:\n c_0 += 1\n print('Yes' if c_4 >= c_0 else 'No')\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.925, "before_after_length": [186, 131], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "if c_2 == N:\n )\n el 0 < c_2 < N:\n print('Yes' if c_4 > 0 and else:\n print('Yes' if c_4 >= c_0 - 1 else 'No')\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u672475305", "n_user": "u672475305", "pos": "n = int(input())\nlst = [int(i) for i in input().split()]\n\nb1 = 0\nb2 = 0\nb4 = 0\n\nfor i in range(n):\n if lst[i] % 2 != 0:\n b1 += 1\n elif lst[i] % 4 == 0:\n b4 += 1\n else:\n b2 += 1\n\nflg = True\nif b2 == 0:\n if b1 > b4 + 1:\n flg = False\nelse:\n if b1 > b4:\n flg = False\n\nif flg:\n print('Yes')\nelse:\n print('No')", "neg": "n = int(input())\nlst = [int(i) for i in input().split()]\n\nb1 = 0\nb2 = 0\nb4 = 0\n\nfor i in range(n):\n if lst[i] % 2 != 0:\n b1 += 1\n elif lst[i] % 4 == 0:\n b4 += 1\n else:\n b2 += 1\n\nflg = True\nif b2 == 0:\n if b1 > b4 + 1:\n flg = False\nelse:\n if b1 > b4:\n fla = False\n\nif flg:\n print('Yes')\nelse:\n print('No')", "jacc_sim": 0.9736842105263158, "before_after_length": [162, 162], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "ag", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u984276646", "n_user": "u984276646", "pos": "N = int(input())\nA = list(map(int, input().split()))\nodd, four = 0, 0\nfor i in range(N):\n if A[i] % 4 == 0:\n four += 1\n else:\n if A[i] % 2 == 1:\n odd += 1\nif four < odd and four + odd < N:\n print('No')\nelif odd - four > 1 and four + odd == N:\n print('No')\nelse:\n print('Yes')", "neg": "N = input()\nA = list(map(int, input().split()))\nodd, four = 0, 0, 0\nfor i in range(N):\n if A[i] % 4 == 0:\n four += 1\n else:\n if A[i] % 2 == 1:\n odd += 1\nif four < odd and four + odd < N:\n print('No')\nelse:\n print('Yes')\n", "jacc_sim": 0.9210526315789473, "before_after_length": [122, 102], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "puinput(), 0if odd - four > 1 and four + odd == N:\n print('No')\nel\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u239342230", "n_user": "u239342230", "pos": "N=int(input());A=input().split();v=[int(i)%4 for i in A];print('Yes' if v.count(0)+v.count(2)//2>=N//2 else 'No')", "neg": "N=int(input());A=input().split();v=[int(i)%4 for i in A];print('Yes' if v.count(0)*2+v.count(2)>=N else 'No')", "jacc_sim": 0.9354838709677419, "before_after_length": [53, 51], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "*2//2//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u344959886", "n_user": "u344959886", "pos": "n = int(input())\na = list(map(int, input().split()))\nf = 0\nt = 0\nk = 0\nfor i in a:\n if i % 4 == 0:\n f += 1\n elif i % 2 == 0:\n t += 1\n else:\n k += 1\n\nif t > 0:\n if f >= k:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n if f + 1 >= k:\n print(\"Yes\")\n else:\n print(\"No\")\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nf = 0\nt = 0\nk = 0\nfor i in a:\n if i % 4 == 0:\n f += 1\n elif i % 2 == 0:\n t += 1\n else:\n k += 1\n\n\nif t > 0:\n if f >= k:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n if f >= k + 1:\n print(\"Yes\")\n else:\n print(\"No\")\n", "jacc_sim": 1.0, "before_after_length": [134, 135], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "\n+ 1 + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u923270446", "n_user": "u923270446", "pos": "n = int(input())\na = list(map(int, input().split()))\no = 0\nt = 0\nf = 0\nfor i in a:\n if i % 4 == 0:\n f += 1\n elif i % 2 == 0:\n t += 1\n else:\n o += 1\nif t > 0:\n print(\"Yes\" if f >= o else \"No\")\nelse:\n print(\"Yes\" if f >= o - 1 else \"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\no = 0\nf = 0\nfor i in a:\n if i % 4 == 0:\n f += 1\n elif i % 2 == 1:\n o += 1\nprint(\"Yes\" if f >= o - 1 else \"No\")", "jacc_sim": 0.9705882352941176, "before_after_length": [114, 77], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "t = 0\n10ot else:\n o += 1\nif t > 0:\n else \"No\")\nelse:\n print(\"Yes\" if f >= o ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u399721252", "n_user": "u399721252", "pos": "n = int(input())\nnum = [ int(v) for v in input().split() ]\na, b, c = 0, 0, 0\nfor i in num:\n\tif i % 2 != 0:\n\t\ta += 1\n\telif i % 4 != 0:\n\t\tb += 1\n\telse:\n\t\tc += 1\nif b == 0:\n\tif c >= a - 1:\n\t\tprint(\"Yes\")\n\telse:\n\t\tprint(\"No\")\nelse:\n\tif c >= a:\n\t\tprint(\"Yes\")\n\telse:\n\t\tprint(\"No\")\n", "neg": "n = int(input())\nnum = [ int(v) for v in input().split() ]\na, b, c = 0, 0, 0\nfor i in num:\n\tif i % 2 != 0:\n\t\ta += 1\n\telif i % 4 != 0:\n\t\tb += 1\n\telse:\n\t\tc += 1\nprint(a,c)\nif c >= a - 1:\n\tprint(\"Yes\")\nelse:\n\tprint(\"No\")", "jacc_sim": 1.0, "before_after_length": [143, 111], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "prnt(a,c)f b == 0:\t\t\t\t\nelse:\n\tif c >= a:\n\t\tprint(\"Yes\")\n\telse:\n\t\tprint(\"No\")\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u017050982", "n_user": "u017050982", "pos": "N = int(input())\na = list(map(int,input().rstrip().split(\" \")))\ncounter = [0,0,0]\nfor i in a:\n if i % 4 == 0:\n counter[2] += 1\n elif i % 2 == 0:\n counter[1] += 1\n else:\n counter[0] += 1\ncounter[0] += min(1,counter[1])\n\nif counter[2] + 1 >= counter[0]:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "N = int(input())\na = list(map(int,input().rstrip().split(\" \")))\ncounter = [0,0,0]\nfor i in a:\n if i % 4 == 0:\n counter[2] += 1\n elif i % 2 == 0:\n counter[1] += 1\n else:\n counter[0] += 1\nif (counter[1] - 1) + counter[2] * 1 >= counter[0]:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.918918918918919, "before_after_length": [129, 123], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "counter[0] += min(1,counter[1])\n\n(counter[1] - 1) + *+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u096294926", "n_user": "u096294926", "pos": "import math\nN = int(input())\nA = list(map(int,input().split()))\nl = list()\nll = list()\nfor i in range(len(A)):\n if A[i]%4 == 0:\n l.append(A[i])\n if A[i]%2 == 0:\n ll.append(A[i])\nfour = len(l)\ntwo = len(ll)-four\nzero = N-two\na = math.floor(N/2)\nif a <= four:\n print(\"Yes\")\nelif a-two/2 <= four:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "import math\nN = int(input())\nA = list(map(int,input().split()))\nl = list()\nll = list()\nfor i in range(len(A)):\n if A[i]%4 == 0:\n l.append(A[i])\n if A[i]%2 == 0:\n ll.append(A[i])\nfour = len(l)\ntwo = len(ll)-four\nzero = N-two\na = math.floor(N/2)\nif a <= four and b == 0:\n print(\"Yes\")\nelif a-two <= four:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9565217391304348, "before_after_length": [161, 163], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " and b == 0/2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u595289165", "n_user": "u595289165", "pos": "n = int(input())\na = list(map(int, input().split()))\nnum_2 = 0\nnum_4 = 0\nfor i in a:\n if i % 4 == 0:\n num_4 += 1\n elif i % 2 == 0:\n num_2 += 1\nx = num_4 * 2\nif num_4 >= n // 2:\n print(\"Yes\")\nelif num_2 >= n - x:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\nnum_2 = 0\nnum_4 = 0\nfor i in a:\n if i % 4 == 0:\n num_4 += 1\n num_2 += 1\n elif i % 2 == 0:\n num_2 += 1\nx = num_4 * 2\nif num_4 >= n // 2:\n print(\"Yes\")\nelif num_2 >= n - x:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 1.0, "before_after_length": [120, 127], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " += 1\n num_2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u855866205", "n_user": "u855866205", "pos": "n = int(input())\na = list(map(int, input().split()))\nk = 0\ng = 0\nfor i in a:\n if(i%4 == 0):g+=1\n if(i%2 == 1):k+=1\n#print(g,k)\nif(g>=k or (g+1>=k and g+k==n)):print(\"Yes\")\nelse:print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\nk = 0\ng = 0\nfor i in a:\n if(i%4 == 0):g+=1\n if(i%2 == 1):k+=1\n#print(g,k)\nif(g>=k):print(\"Yes\")\nelse:print(\"No\")", "jacc_sim": 0.9411764705882353, "before_after_length": [104, 89], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " or (g+1>=k and g+k==n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u498487134", "n_user": "u498487134", "pos": "import sys\ninput = sys.stdin.readline\n\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\n\ndef main():\n mod=10**9+7\n N=I()\n a=LI()\n tw=0\n fo=0\n for i in range(N):\n if a[i]%4==0:\n fo+=1\n elif a[i]%2==0:\n tw+=1\n if tw>=1:\n tw-=1\n \n N2=N-tw\n if N2//2<=fo:\n print(\"Yes\")\n else:\n print(\"No\")\n\nmain()\n", "neg": "import sys\ninput = sys.stdin.readline\n\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\n\ndef main():\n mod=10**9+7\n N=I()\n a=LI()\n tw=0\n fo=0\n for i in range(N):\n if a[i]%4==0:\n fo+=1\n elif a[i]%2==0:\n tw+=1\n \n N2=N-tw\n if N2//2<=fo:\n print(\"Yes\")\n else:\n print(\"No\")\n\nmain()\n\n", "jacc_sim": 0.9814814814814815, "before_after_length": [187, 174], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "iftw>=1:\n tw-=1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u609738635", "n_user": "u609738635", "pos": "# -*- coding: utf-8 -*-\n\ndef main(N,A):\n count4 = count2 = count = 0\n for a in A:\n if(a%4==0):\n count4 += 1\n elif(a%2==0):\n count2 += 1\n else:\n count += 1\n \n if(count2==0):\n if(count-1<=count4):\n print(\"Yes\")\n else:\n print(\"No\")\n else:\n if(count<=count4):\n print(\"Yes\")\n else:\n print(\"No\")\n \nif __name__ == '__main__':\n N = int(input())\n A = [int(a) for a in input().split()]\n main(N,A)", "neg": "# -*- coding: utf-8 -*-\n\ndef main(N,A):\n count4 = count2 = count = 0\n for a in A:\n if(a%4==0):\n count4 += 1\n elif(a%2==0):\n count2 += 1\n else:\n count += 1\n \n if(count-1<=count4 and count2!=1):\n print(\"Yes\")\n else:\n print(\"No\")\n \n \nif __name__ == '__main__':\n N = int(input())\n A = [int(a) for a in input().split()]\n main(N,A)", "jacc_sim": 0.9555555555555556, "before_after_length": [194, 163], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "2==0):\n if(count and count2!=1 else:\n if(count<=count4):\n print(\"Yes\")\n else:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u777283665", "n_user": "u543954314", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nd = {2:0, 4:0, 1:0}\n\nfor i in a:\n if i % 4 == 0:\n d[4] += 1\n elif i % 2 == 0:\n d[2] += 1\n else:\n d[1] += 1\n\nd[2] = d[2] % 2\n\nif d[2] == 0:\n if d[1] - 1 <= d[4]:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n if d[1] <= d[4]:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "n = int(input())\na = list(map(int, input().split()))\nd = {1:0, 2:0, 4:0}\nfor i in a:\n if i % 4 == 0:\n d[4] += 1\n elif i % 2 == 0:\n d[2] += 1\n else:\n d[1] += 1\nprint(d)\nif (d[2] >= 1 and d[1] <= d[4]) or d[1]-1 <= d[4]:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9230769230769231, "before_after_length": [174, 140], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "\n122441\nprint(d)if (>1 an d12 % 2\n\nif d[2] == 0:\n if d[1] - 1) or d[1]-1 <= d[4] else:\n if d[1] <= d[4]:\n print(\"Yes\")\n else:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u343437894", "n_user": "u343437894", "pos": "n= int(input())\n\na= list(map(int, input().split(\" \")))\n\nk = len(list(filter(lambda x: x%4 == 0, a)))\nj = len(list(filter(lambda x: x%2 == 0, a)))-k\ni = len(a)-j-k\n\nif (j > 0) and (i <= k):\n print(\"Yes\")\nelif (j == 0) and (i-1 <= k):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n= int(input())\n\na= list(map(int, input().split(\" \")))\n\nk = len(filter(lambda(x, x%4), a))\nj = len(filter(lambda(x, x%2), a))-k\ni = len(a)-j-k\n\nif (j > 0) and (i+1 <= k):\n print(\"Yes\")\nif (j == 0) and (i-1 <= k):\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9459459459459459, "before_after_length": [126, 122], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "(list( ,:) == 0)(list( ,:) == 0)+1el\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u722535636", "n_user": "u722535636", "pos": "n=int(input())\nc2=0\nc4=0\nfor a in map(int,input().split()):\n\tif a%4==0:c4+=1\n\telif a%2==0:c2+=1\nif c2>1:n-=c2-1\nprint('Yes' if c4>=n//2 else 'No')\n\t", "neg": "n=int(input())\nc2=0\nc4=0\nfor a in map(int,input().split()):\n\tif a%4==0:c4+=1\n\telif a%2==0:c2+=1\nn-=c2\nprint('Yes' if c4>=n//2 else 'No')\n\t", "jacc_sim": 1.0, "before_after_length": [91, 83], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "if c2>1:-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u652569315", "n_user": "u652569315", "pos": "def main():\n n=int(input())\n a=tuple(map(int,input().split()))\n cnt2,cnt4=0,0\n for i in a:\n cnt2+=1 if i%2==0 and i%4>0 else 0\n cnt4+=1 if i%4==0 else 0\n print('Yes' if (cnt2>=2 and cnt4>=(n-cnt2)/2) or (cnt2<2 and cnt4>=n//2) else 'No')\nif __name__=='__main__':\n main()", "neg": "def main():\n n=int(input())\n a=tuple(map(int,input().split()))\n cnt2,cnt4=0,0\n for i in a:\n cnt2+=1 if i%2==0 and i%4>0 else 0\n cnt4+=1 if i%4==0 else 0\n print('Yes' if (n-cnt2)/2<=cnt4 else 'No')\nif __name__=='__main__':\n main()", "jacc_sim": 0.975, "before_after_length": [138, 116], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "cnt2>=2 and cnt4>=() or (cnt2=c2 ad cn>=n//2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u600195339", "n_user": "u600195339", "pos": "n = int(input())\na = list(map(int, input().split()))\nfCount = 0\ntCount = 0\noCount = 0\n\nfor i in range(n):\n if a[i] % 4 == 0:\n fCount += 1\n elif a[i] % 2 == 0:\n tCount += 1\n else:\n oCount += 1\n\nans = 0\n# ans = n - fCount * 3 - (tCount // 2) * 2\n#print(fCount, tCount)\n\nif tCount > 1:\n if fCount > 0:\n if oCount >= fCount:\n ans = n - (2 * fCount + 1) - tCount + 1\n else:\n #print(2 * fCount + 1 + tCount)\n ans = n - (2 * fCount + 1) - tCount\n else:\n ans = n - tCount\nelse:\n if fCount > 0:\n ans = n - (2 * fCount + 1)\n else:\n ans = n\n\n#print(ans)\n\nif ans > 0:\n print('No')\nelse:\n print('Yes')\n\n\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nfCount = 0\ntCount = 0\n\nfor i in range(n):\n if a[i] % 4 == 0:\n fCount += 1\n elif a[i] % 2 == 0:\n tCount += 1\n\n# ans = n - fCount * 3 - (tCount // 2) * 2\nans = n - fCount * 3 - tCount\n\nif ans > 0:\n print('No')\nelse:\n print('Yes')\n\n\n", "jacc_sim": 0.9767441860465116, "before_after_length": [282, 132], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "oCount = 0\n else:\n oCount += 1\n\nans = 0#print(fCount, tCount)\n\nif tCount > 1:\n if fCount > 0:\n if oCount >= fCount:\n (2fCount3fCount + 1) + 1\n else:\n #print(2 * fCount + 1 + tCount)\n ans = n - (2 * fCount + 1) - tCount\n else:\n ans = n - tCount\nelse:\n if fCount > 0:\n ans = n - (2 * fCount + 1)\n else:\n ans = n\n\n#print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u288430479", "n_user": "u288430479", "pos": "n = int(input())\nl = list(map(int,input().split()))\nc = len([i for i in l if i%4==0])\nl1 = [i for i in l if (i%2==0 and i%4!=0)]\nif len(l1)>=1:\n a = n-len(l1)+1\n a = a-c\n if a<=c+1:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n a = n-c\n if a<=c+1:\n print(\"Yes\")\n else:\n print(\"No\")", "neg": "n = int(input())\nl = list(map(int,input().split()))\nc = len([i for i in l if i%4==0])\nl1 = [i for i in l if not (i%2==0 and i%4!=0)]\nif len(l1)>=1:\n a = n-len(l1)+1\n a = a-c\n if a<=c-1:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n if a<=c-1:\n print(\"Yes\")\n else:\n print(\"No\")", "jacc_sim": 0.975, "before_after_length": [155, 148], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "not+1:\n print(\"Yes\")\n else:\n print(\"No\")\nelse:\n a = nc\n if a<=c+\nelse:\n if a<=c-1:\n print(\"Yes\")\n else:\n print(\"No\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u373047809", "n_user": "u373047809", "pos": "n, *a = map(int, open(0).read().split())\ns = [i%4 for i in a]\nf, t = s.count(0), s.count(2)\nprint(\"YNeos\"[n-f-t+(t>0) > f+1::2])", "neg": "n, *a = map(int, open(0).read().split())\ns = [i%4 for i in a]\nf, k = s.count(0), s.count(2)\nprint(\"YNeos\"[n-f-k > f+(k>0)::2])", "jacc_sim": 0.9142857142857143, "before_after_length": [71, 69], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "ktkt+(t>0)1(k>0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u160414758", "n_user": "u160414758", "pos": "import math\nN = input()\nA = list(map(int, input().split()))\n\nf,e,d = 0,0,0\n\nfor a in A:\n x = a % 4\n if(x==0):\n f = f+1\n elif(x==2):\n e = e+1\n else:\n d = d+1\nif(e>0):\n d = d+1\nif(f >= d-1):\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "import math\nN = input()\nA = list(map(int, input().split()))\n\nf,e,d = 0,0,0\n\nfor a in A:\n x = a % 4\n if(x==0):\n f = f+1\n elif(x==2):\n e = e+1\n else:\n d = d+1\nif(e>0): d = d+1\nif(d <= f):\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.9473684210526315, "before_after_length": [127, 123], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " d = d+1if(d<= d = d+1\ni(f >= d-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u395202850", "n_user": "u395202850", "pos": "n = int(input())\na = map(int, input().split())\nnum4 = 0\nnum1 = 0\nfor i in a:\n if i % 4 == 0:\n num4 += 1\n continue\n if i % 2 == 1:\n num1 += 1\nif num4 >= num1:\n print(\"Yes\")\nelif num4 + 1 == num1 and (num4 + num1) % 2 == 1 and n - (num4 + num1) == 0:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "neg": "n = int(input())\na = map(int, input().split())\nnum4 = 0\nnum1 = 0\nfor i in a:\n if i % 4 == 0:\n num4 += 1\n continue\n if i % 2 == 1:\n num1 += 1\nif num4 >= num1:\n print(\"Yes\")\nelif num4 + 1 == num1 and (num4 + num1) % 2 == 1:\n print(\"Yes\")\nelse:\n print(\"No\")\n", "jacc_sim": 0.9705882352941176, "before_after_length": [131, 119], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " and n - (num4 + num1) == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u796424048", "n_user": "u796424048", "pos": "N = int(input())\na = list(map(int,input().split()))\none = 0\nfour = 0\ntwo = 0\n\nfor j in range(N):\n\n if a[j]%2 == 1:\n one += 1\n elif a[j]%4 == 0:\n four += 1\n else :\n two +=1\n\n \nif one <= four or (two == 0 and four == one -1):\n print('Yes')\n\nelse:\n\n print('No')", "neg": "N = int(input())\na = list(map(int,input().split()))\none = 0\nfour = 0\ntwo = 0\n\nfor j in range(N):\n\n if a[j]%2 == 1:\n one += 1\n elif a[j]%4 == 0:\n four += 1\n else :\n two +=1\n\n \nif one <= four:\n print('Yes')\nelse :\n if two == 0:\n if four == one + 1:\n print('Yes')\n else:\n print('No')\n\n", "jacc_sim": 0.9230769230769231, "before_after_length": [123, 138], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": " or (two == 0 and four == one -1)else : if two == 0:\n if four == on + 1:\n print('Yes')\n e\n \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u263824932", "n_user": "u263824932", "pos": "N=int(input())\na=input().split()\nnumbers=[int(b) for b in a]\nkazu=0\nsuuji=0\nfor z in numbers:\n if z%2==0:\n kazu+=1\nfor y in numbers:\n if y%4==0:\n suuji+=1\nkazu-=suuji\nif kazu==N:\n print('Yes')\nelif suuji>=N//2:\n print('Yes')\nelif kazu>=N-suuji*2:\n print('Yes')\nelse:\n print('No')\n", "neg": "N=int(input())\na=input().split()\nnumbers=[int(b) for b in a]\nkazu=0\nsuuji=0\nfor z in numbers:\n if z%2==0:\n kazu+=1\nfor y in numbers:\n if y%4==0:\n suuji+=1\nif kazu==N:\n print('Yes')\nelif suuji==N//2:\n print('Yes')\nelif kazu>=N-kazu*3+1:\n print('Yes')\nelse:\n print('No')\n", "jacc_sim": 0.9736842105263158, "before_after_length": [156, 148], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "kazu-=suuji\n=>skazuji23+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03637", "p_user": "u518042385", "n_user": "u518042385", "pos": "n=int(input())\nl=list(map(int,input().split()))\ncount2=0\ncount4=0\nfor i in range(n):\n if l[i]%4==0:\n count4+=1\n elif l[i]%2==0:\n count2+=1\nif count4*2+count2>=n or count4*2+1>=n:\n print(\"Yes\")\nelse:\n print(\"No\")", "neg": "n=int(input())\nl=list(map(int,input().split()))\ncount2=0\ncount4=0\nfor i in range(n):\n if l[i]%4==0:\n count4+=1\n elif l[i]%2==0:\n count2+=1\nif count4*2+count2>n:\n print(\"Yes\")\nelse:\n print(\"No\")", "jacc_sim": 0.972972972972973, "before_after_length": [114, 103], "nl": "You are given a sequence of positive integers. The objective is to rearrange the sequence so that the product of each pair of consecutive elements is a multiple of 4. Determine if this objective can be achieved. The input consists of the sequence length and the sequence itself. Output \"Yes\" if the objective can be achieved, and \"No\" otherwise.", "diff_info": "=n or count4*2+1>=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u319612498", "n_user": "u319612498", "pos": "n=int(input())\n\nfor i in range(n):\n if 2**i>n:\n print(2**(i-1))\n break\n elif 2**i==n:\n print(n)\n break\n", "neg": "n=int(input())\nfor i in range(n):\n if 2**i>n:\n print(2**(i-1))\n break\n ", "jacc_sim": 0.95, "before_after_length": [57, 39], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "\nelif 2**i==n:\n print(n)\n break\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u952022797", "n_user": "u952022797", "pos": "# -*- coding: utf-8 -*-\nimport sys\nimport copy\nimport collections\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom collections import defaultdict\nfrom heapq import heappop, heappush\nimport math\nimport itertools\n \n# NO, PAY-PAY\n#import numpy as np\n#import statistics\n#from statistics import mean, median,variance,stdev\n \ndef inputInt(): return int(input())\ndef inputMap(): return map(int, input().split())\ndef inputList(): return list(map(int, input().split()))\n \ndef main():\n N = inputInt()\n \n if N == 1:\n print(1)\n sys.exit()\n \n ans = 0\n ansans = 0\n for i in range(1, N+1):\n tmp = 0\n han = i\n aaa = i\n while True:\n if han % 2 == 0:\n han = han / 2\n tmp += 1\n else:\n break\n if tmp > ans:\n ans = tmp\n ansans = aaa\n \n print(ansans)\n \nif __name__ == \"__main__\":\n\tmain()\n", "neg": "# -*- coding: utf-8 -*-\nimport sys\nimport copy\nimport collections\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom collections import defaultdict\nfrom heapq import heappop, heappush\nimport math\nimport itertools\n \n# NO, PAY-PAY\n#import numpy as np\n#import statistics\n#from statistics import mean, median,variance,stdev\n \ndef inputInt(): return int(input())\ndef inputMap(): return map(int, input().split())\ndef inputList(): return list(map(int, input().split()))\n \ndef main():\n N = inputInt()\n \n ans = 0\n ansans = 0\n for i in range(1, N+1):\n tmp = 0\n han = i\n aaa = i\n while True:\n if han % 2 == 0:\n han = han / 2\n tmp += 1\n else:\n break\n if tmp > ans:\n ans = tmp\n ansans = aaa\n \n print(ansans)\n \nif __name__ == \"__main__\":\n\tmain()\n", "jacc_sim": 0.9864864864864865, "before_after_length": [291, 270], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "if N == 1:\n print(1)\n sys.exit()\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u163320134", "n_user": "u163320134", "pos": "n=int(input())\nif n<2**1:\n print(1)\nelif n<2**2:\n print(2)\nelif n<2**3:\n print(4)\nelif n<2**4:\n print(8)\nelif n<2**5:\n print(16)\nelif n<2**6:\n print(32)\nelif n<2**7:\n print(64)", "neg": "n=int(input())\nelif n<2**1:\n print(1)\nelif n<2**2:\n print(2)\nelif n<2**3:\n print(4)\nelif n<2**4:\n print(8)\nelif n<2**5:\n print(16)\nelif n<2**6:\n print(32)\nelif n<2**7:\n print(64)\n ", "jacc_sim": 0.9565217391304348, "before_after_length": [110, 113], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "el\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u977389981", "n_user": "u977389981", "pos": "n = int(input())\n\nmax_cnt = 0\nans = 0\nfor i in range(1, n+1):\n cnt = 0\n x = i\n while x % 2 == 0:\n x //= 2\n cnt += 1\n if cnt >= max_cnt:\n max_cnt = cnt\n ans = i\n\nprint(ans)", "neg": "n = int(input())\nans = 0\ntmp = 0\nfor i in range(1, n + 1):\n cnt = 0\n x = i\n while x % 2 == 0:\n x //= 2\n cnt += 1\n if cnt > tmp:\n tmp = cnt\n ans = i\nprint(ans)", "jacc_sim": 0.9259259259259259, "before_after_length": [87, 78], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "\nmax_cnt = 0\n = 0\ntmp =t pax_cnttpax_cnt\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u780698286", "n_user": "u780698286", "pos": "n = int(input())\nans = 0\nfor i in range(1, n+1):\n cnt = 0\n x = i\n while x % 2 == 0:\n x //= 2\n cnt += 1\n ans = max(ans, cnt)\nprint(2 ** ans)", "neg": "n = int(input())\nans = 0\nfor i in range(1, n):\n cnt = 0\n x = i\n while x % 2 == 0:\n x //= 2\n cnt += 1\n ans = max(ans, cnt)\nprint(ans)", "jacc_sim": 0.96, "before_after_length": [69, 65], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "+12 ** ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u041196979", "n_user": "u041196979", "pos": "N = int(input())\nif N == 1:\n print(1)\n exit()\nX = [2, 4, 8, 16, 32, 64, 128]\nfor i, x in enumerate(X):\n if N < x:\n print(X[i - 1])\n exit()", "neg": "N = int(intput())\nif N == 1:\n print(1)\n exit()\nX = [2, 4, 8, 16, 32, 64, 128]\nfor i, x in enumerate(X):\n if N < x:\n print(X[i - 1])\n", "jacc_sim": 0.9333333333333333, "before_after_length": [71, 69], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "t exit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u143509139", "n_user": "u143509139", "pos": "from math import log2;print(2**int(log2(int(input()))))", "neg": "from math import log2;print(int(log2(int(input())))**2)", "jacc_sim": 1.0, "before_after_length": [21, 21], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "2****2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u562016607", "n_user": "u562016607", "pos": "N = int(input())\nfor i in range(7):\n if 2**i <= N and 2**(i+1) > N:\n print(2**i)\n break\n", "neg": "N = int(input())\nfor i in range(7):\n if 2**i < N and 2**i > N:\n print(2**i)\n break\n", "jacc_sim": 0.9090909090909091, "before_after_length": [45, 41], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "=(+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u576434377", "n_user": "u576434377", "pos": "N = int(input())\nn = 1\nwhile n <= N:\n n *= 2\n \nprint(n // 2)", "neg": "N = int(input())\nn = 1\nwhile n < N:\n n *= 2\n\nprint(n // 2)", "jacc_sim": 1.0, "before_after_length": [30, 29], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "= ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u441320782", "n_user": "u441320782", "pos": "import math\nn = int(input())\nx = [i for i in range(1,n+1)]\nres = []\njudge = 0\n\nwhile len(x)>1:\n for j in x:\n if j%2==0:\n res.append(j/2)\n else:\n x = res\n res = []\n judge += 1\n\nprint(math.floor(x[0]*(2**judge)))\n ", "neg": "n = int(input())\nx = [i for i in range(1,n+1)]\nres = []\njudge = 0\n\nwhile len(x)>1:\n for j in x:\n if j%2==0:\n res.append(j/2)\n else:\n x = res\n res = []\n judge += 1\n\nprint(x[0]*(2**judge))\n ", "jacc_sim": 0.9166666666666666, "before_after_length": [111, 103], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "import math\n(math.floor)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u569117803", "n_user": "u569117803", "pos": "n = int(input())\nn += 1\n\nimport copy\n\nans = 0\nans_c = 0\n\nfor i in reversed(range(n)):\n check = copy.copy(i)\n div = 0\n count = 0\n\n while div == 0:\n div = (i % 2)\n i = i // 2\n if div == 0:\n count += 1\n if i == 0:\n break\n if ans_c < count:\n ans = check\n ans_c = count\nif ans == 0:\n ans += 1\n \nprint(ans)", "neg": "n = int(input())\nn = n + 1\n\nimport copy\n\nans = 0\nans_c = 0\n\nfor i in reversed(range(n)):\n check = copy.copy(i)\n div = 0\n count = 0\n\n while div == 0:\n div = (i % 2)\n i = i // 2\n if div == 0:\n count += 1\n if i == 0:\n break\n if ans_c < count:\n ans = check\n ans_c = count\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [142, 133], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "n = = \nprf nt( == 0:\n ans += 1\n \nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u174028570", "n_user": "u174028570", "pos": "import logging\nlogging.basicConfig(level=logging.CRITICAL,format=' %(asctime)s - %(levelname)s - %(message)s')\n\ndef power(n):\n i = 1\n logging.info('func start')\n while n > 0:\n i *= 2\n n -= 1\n logging.debug('i = {}, n = {}'.format(i,n))\n logging.info('func end')\n return i\n\ni = 0\nn = int(input())\nlogging.info('in loop')\nwhile not (power(i + 1) > n):\n i = i + 1\n logging.debug('i = {}, pow(i) = {}'.format(i,power(i)))\n\nlogging.info('out loop')\nprint(power(i ))\n", "neg": "import logging\nlogging.basicConfig(level=logging.CRITICAL,format=' %(asctime)s - %(levelname)s - %(message)s')\n\ndef power(n):\n i = 1\n logging.info('func start')\n while n > 0:\n i *= 2\n n -= 1\n logging.debug('i = {}, n = {}'.format(i,n))\n logging.info('func end')\n return i\n\ni = 0\nn = int(input())\nlogging.info('in loop')\nwhile power(i+1) < n:\n i = i + 1\n logging.debug('i = {}, pow(i) = {}'.format(i,power(i)))\n\nlogging.info('out loop')\nprint(power(i ))\n", "jacc_sim": 0.9583333333333334, "before_after_length": [184, 182], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "pnt werpower( <>)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u650245944", "n_user": "u650245944", "pos": "#!/usr/bin\n# -*- coding=\"utf-8\" -*-\n \nn = int(input())\nif n >= 64:\n a = 64\nelif n >= 32:\n a = 32\nelif n >= 16:\n a = 16\nelif n >= 8:\n a= 8\nelif n >= 4:\n a = 4\nelif n >= 2:\n a = 2\nelse:\n a = 1\nprint(a)", "neg": "#!/usr/bin\n# -*- coding=\"utf-8\" -*-\n \nn = raw_input()\nif n >= 64:\n a = 64\nelif n >= 32:\n a = 32\nelif n >= 16:\n a = 16\nelif n >= 8:\n a= 8\nelif n >= 4:\n a = 4\nelif n >= 2:\n a = 2\nelse:\n a = 1\nprint(a)", "jacc_sim": 0.9032258064516129, "before_after_length": [113, 113], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "raw_int()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u438662618", "n_user": "u438662618", "pos": "N = int(input())\n\nnList = [i + 1 for i in range(N)]\nres = -1\ncounter = -1\nfor n in nList :\n count = 0\n buf = n\n while buf % 2 == 0 :\n count += 1\n buf = buf / 2\n if counter < count :\n counter = count\n res = n\nprint(res)\n", "neg": "N = int(input())\n\nnList = [i + 1 for i in range(N)]\nres = -1\nfor n in nList :\n count = 0\n buf = n\n while buf % 2 == 0 :\n count += 1\n buf = buf / 2\n if res < count :\n res = n\nprint(res)\n", "jacc_sim": 0.9666666666666667, "before_after_length": [94, 83], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": " = -1\ncounterrcountsrcounter = count\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u258391277", "n_user": "u258391277", "pos": "N = int(input())\nnum_list = [64, 32, 16, 8, 4, 2, 1]\n\nfor i in num_list:\n if N>=i:\n print(i)\n exit(0)\n\nprint(0)", "neg": "N = int(input())\nnum_list = [64, 32, 16, 8, 4, 2]\n\nfor i in num_list:\n if N>=i:\n print(i)\n exit(0)\n\nprint(0)", "jacc_sim": 0.9615384615384616, "before_after_length": [61, 59], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": ", 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u819135704", "n_user": "u819135704", "pos": "n = int(input())\n\ncount = 0\nlist_count = []\nmax_number = 0\n\nfor i in range(n):\n a = i + 1\n while a % 2 == 0:\n count += 1\n a /= 2\n list_count.append(count)\n if max(list_count) == count:\n max_number = i + 1\n count = 0\n\nprint(max_number)\n", "neg": "n = int(input())\n\ncount = 0\nlist_count = []\nmax_number = 0\n\nfor i in range(n):\n a = i + 1\n while a % 2 == 0:\n count += 1\n a /= 2\n list_count.append(count)\n if max(list_count) == count:\n max_number = i + 1\n\nprint(max_number)\n", "jacc_sim": 1.0, "before_after_length": [103, 98], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": " count = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u217627525", "n_user": "u217627525", "pos": "n=int(input())\nans=1\nwhile ans<=n:\n ans*=2\nprint(ans//2)", "neg": "n=int(input())\nans=1\nwhile(ans<=n):\n ans*2\nprint(ans//2)", "jacc_sim": 1.0, "before_after_length": [30, 30], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "( )=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u506549878", "n_user": "u506549878", "pos": "n = int(input())\ndata = [i*2 for i in range(1,n//2+1)]\ndef f(x):\n cnt = 0\n flg = 0\n while flg==0:\n if x%2==0:\n cnt += 1\n x = x/2\n else:\n flg = 1\n return cnt \naim = 0\nfor i in data:\n if aim < f(i):\n aim = f(i)\n num = i\n else:\n continue\nif n==1:\n print(1)\nelse: \n print(num) ", "neg": "n = int(input())\ndata = [i*2 for i in range(1,n//2+1)]\ndef f(x):\n cnt = 0\n flg = 0\n while flg==0:\n if x%2==0:\n cnt += 1\n x = x/2\n else:\n flg = 1\n return cnt \naim = 0\nfor i in data:\n if aim < f(i):\n aim = f(i)\n num = i\n else:\n continue\nprint(num) ", "jacc_sim": 1.0, "before_after_length": [151, 134], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "if n==1:\n 1num\nelse:\n print(num) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u989157442", "n_user": "u989157442", "pos": "n = int(input())\nl = [1, 2, 4, 8, 16, 32, 64, 128]\ni = 0\nwhile l[i] <= n:\n i += 1\nelse:\n print(l[i-1])", "neg": "n = int(input())\nl = [1, 2, 4, 8, 16, 32, 64]\ni = 0\nwhile l[i] < n:\n i += 1\nelse:\n print(l[i])\n", "jacc_sim": 0.9259259259259259, "before_after_length": [57, 54], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": ", 128=-1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u882370611", "n_user": "u882370611", "pos": "n=int(input())\nans=0\nwhile 2**ans <=n:\n ans+=1\nprint(2**(ans-1))\n", "neg": "n=int(input())\nans=0\nwhile 2**ans 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "=(-1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u714300041", "n_user": "u714300041", "pos": "N = int(input())\nnum = 1\n \nwhile num*2 <= N:\n num *= 2\n \nprint(num)\n", "neg": "N = int(input())\nnum = 1\n\nwhile num < N:\n num *= 2\n\nprint(num) ", "jacc_sim": 1.0, "before_after_length": [33, 29], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": " *2= \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u442877951", "n_user": "u442877951", "pos": "N = int(input())\nk = 0\nwhile 1:\n if 2**k > N:\n break\n ans = 2**k\n k += 1\nprint(ans)", "neg": "N = int(input())\nk = 0\nwhile 1:\n if k**2 > N:\n break\n ans = k**2\n k += 1\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [43, 43], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "k22kk22k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u571999153", "n_user": "u571999153", "pos": "import numpy as np\n\nn = int(input())\neven_count = [0 for i in range(n)]\nfor i in range(1,n+1):\n j = i\n count = 0\n while True:\n if i % 2 == 0:\n count += 1\n i = int(i / 2)\n else:\n break\n even_count[j-1] = count\nprint(np.argmax(even_count)+1)", "neg": "import numpy as np\n\nn = int(input())\neven_count = [0 for i in range(n+1)]\nfor i in range(1,n+1):\n j = i\n count = 0\n while True:\n if i % 2 == 0:\n count += 1\n i = int(i / 2)\n else:\n break\n even_count[j] = count\nprint(np.argmax(even_count))", "jacc_sim": 0.9722222222222222, "before_after_length": [110, 108], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "+1-1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u286422818", "n_user": "u286422818", "pos": "#!/usr/local/bin/python3\n# https://atcoder.jp/contests/abc068/tasks/abc068_b\nimport math\n\ndef fact(N):\n ans = {}\n for i in range(2, math.ceil(math.sqrt(N))+1):\n if N % i != 0:\n continue\n ex = 0\n\n while N % i == 0:\n ex += 1\n N /= i\n ans[i] = ex\n\n if N != 1:\n ans[int(N)] = 1\n return ans\n\nN = int(input())\nmax_x = 0\nmax_n = 0\n\nif N == 1:\n print(1)\n exit()\n\nfor i in range(N+1):\n num = fact(i)\n num = num.get(2, 0)\n if num > max_n:\n max_x = i\n max_n = num\n\nprint(max_x)\n", "neg": "#!/usr/local/bin/python3\n# https://atcoder.jp/contests/abc068/tasks/abc068_b\nimport math\n\ndef fact(N):\n ans = {}\n for i in range(2, math.ceil(math.sqrt(N))+1):\n if N % i != 0:\n continue\n ex = 0\n\n while N % i == 0:\n ex += 1\n N /= i\n ans[i] = ex\n\n if N != 1:\n ans[int(N)] = 1\n return ans\n\nN = int(input())\nmax_x = 0\nmax_n = 0\n\nfor i in range(N+1):\n num = fact(i)\n num = num.get(2, 0)\n if num > max_n:\n max_x = i\n max_n = num\n\nprint(max_x)\n", "jacc_sim": 0.9818181818181818, "before_after_length": [239, 222], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "if N == 1:\n print(1)\n exit()\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u845674689", "n_user": "u845674689", "pos": "N = int(input())\narr = [i for i in range(1, N + 1)]\n# N == len(arr)\nnums = N*[0]\nfor j in range(N):\n target = arr[j]\n num = 0\n while target % 2 == 0:\n num += 1\n target /= 2\n nums[j] = num\n\n# print(nums)\n\nmax = 0\nfor k in range(N):\n if nums[k] > max:\n max_index = k\n max = nums[k]\n elif N == 1:\n max_index=0\n \nprint(arr[max_index])", "neg": "N = int(input())\narr = [i for i in range(1, N + 1)]\n# N == len(arr)\nnums = N*[0]\nfor j in range(N):\n target = arr[j]\n num = 0\n while target % 2 == 0:\n num += 1\n target /= 2\n nums[j] = num\n \nmax_index = 0\nfor k in range(N):\n if nums[k] > max:\n max_index = k\n \nprint(arr[max_index])", "jacc_sim": 0.9722222222222222, "before_after_length": [155, 129], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": " # print(nums)\n\nmax = 0\nfor k in range(N):\n if nums[k] > max:\n 0\nfor in range(N):if max =\n>max elif N == 1 0 k", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u578958929", "n_user": "u578958929", "pos": "N = int(input())\ncnt_max = 0\nans = 1\n\nfor i in range(1, N + 1):\n cnt = 0\n num = i\n while True:\n if num % 2 == 0:\n cnt += 1\n num /= 2\n else:\n break\n if cnt_max < cnt:\n cnt_max = cnt\n ans = i\n\nprint(ans)\n", "neg": "N = int(input())\ncnt_max = 0\nans = 0\n\nfor i in range(1, N):\n cnt = 0\n num = i\n while True:\n if num % 2 == 0:\n cnt += 1\n num /= 2\n else:\n break\n if cnt_max < cnt:\n cnt_max = cnt\n ans = i\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [98, 96], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "01 + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u931889893", "n_user": "u931889893", "pos": "n = int(input())\nresults = 0\nnumber = 0\nfor i in range(n + 1):\n if i == 0:\n continue\n if i == 1:\n number = 1\n continue\n count = 0\n v = i\n\n while v % 2 == 0:\n count += 1\n v = v / 2\n if results < count:\n results = count\n number = i\n continue\nprint(number)", "neg": "n = int(input())\nresults = 0\nnumber = 0\nfor i in range(n):\n print(i)\n if i == 0:\n continue\n count = 0\n v = i + 1\n\n while v % 2 == 0:\n count += 1\n v = v / 2\n if results < count:\n results = count\n number = i + 1\n continue\nprint(number)", "jacc_sim": 1.0, "before_after_length": [106, 99], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": " + 1print(i)\n if i == 1:\n number = 1\n continue\n + 1 + 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u474423089", "n_user": "u474423089", "pos": "def main():\n n=int(input())\n two_pow = 2\n while two_pow <= n:\n two_pow *=2\n print(two_pow//2)\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n n=int(input())\n two_pow = 2\n while two_pow < n:\n two_pow *=2\n print(two_pow/2)\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [59, 59], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "=/", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u455533363", "n_user": "u455533363", "pos": "n = int(input())\na = []\nb=[]\n\nfor i in range(1,n+1):\n a.append(i)\ncount = 0\n\n\nfor i in range(1,n+1):\n \n count = 0\n while True:\n if (a[i-1]%2) == 0:\n count += 1\n a[i-1] = a[i-1]/2\n \n else:\n break\n b.append(count)\n\n\nc =max(b)\nprint(b.index(c)+1)", "neg": "n = int(input())\na = []\nb=[]\n\nfor i in range(1,n+1):\n a.append(i)\ncount = 0\nprint(a)\nprint(len(a),n)\n\nfor i in range(1,n+1):\n b.append(count)\n count = 0\n while True:\n if (a[i-1]%2) == 0:\n count += 1\n a[i-1] = a[i-1]/2\n print(a[i-1])\n else:\n break\n \nprint(max(b)+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [138, 149], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "print(a)p\nfo i rt(len()nge(1)\n\nfor i in range(1,nb.append(count)print(a[i-1])\nb.aripetdcount)\n\n\nc =+1\nprint(b.index(c+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03644", "p_user": "u500297289", "n_user": "u500297289", "pos": "\"\"\" AtCoder \"\"\"\n\nN = int(input())\nans_list = [2, 4, 8, 16, 32, 64]\nans_list = ans_list[::-1]\n\nif N == 1:\n print(1)\n exit()\n\nfor i in range(7):\n if N >= ans_list[i]:\n print(ans_list[i])\n break\n", "neg": "\"\"\" AtCoder \"\"\"\n\nN = int(input())\nans_list = [1, 2, 4, 8, 16, 32, 64]\nans_list = ans_list[::-1]\n\nfor i in range(7):\n if N > ans_list[i]:\n print(ans_list[i])\n break\n", "jacc_sim": 0.96875, "before_after_length": [95, 80], "nl": "You are given a positive integer N. Find the integer between 1 and N (inclusive) that is divisible by 2 the most number of times. The solution is always unique. The number of times an integer can be divided by 2 is how many times the integer can be divided by 2 without remainder. For example, 6 can be divided by 2 once (6 -> 3), 8 can be divided by 2 three times (8 -> 4 -> 2 -> 1), and 3 can be divided by 2 zero times. Constraints: 1 \u2264 N \u2264 100. Input is given as N. Output the answer.", "diff_info": "1, if N == 1:\n print(1)\n exit()\n\n=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u672620970", "n_user": "u511630329", "pos": "N,P = map(int,input().split(\" \"))\nA = list(map(int,input().split(\" \")))\nB = [1,0]\nfor _ in range(N):\n a = A.pop()%2\n p,q = B\n B = [p+q,q+p] if a else [2*p,2*q]\nprint(B[P])", "neg": "N,P = map(int,input().split(\" \"))\nA = list(map(int,input().split(\" \")))\nB = [1,0]\nfor _ in range(N):\n a = A.pop()%2\n p,q = B\n B = [p+q,q+p] \nprint(B[P])", "jacc_sim": 0.9142857142857143, "before_after_length": [94, 83], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if a else [2*p,2*q]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u294283114", "n_user": "u294283114", "pos": "import math\n\ndef C(n, r):\n if (n == r or r == 0):\n return 1\n if (r > n):\n return 0\n f = math.factorial\n\n ret = f(n) / (f(r) * f(n - r))\n return int(ret)\n\n\nn,p = map(int, input().split())\nx = list(map(int, input().split()))\n\nodd = even = ans = 0\n\nfor i in range(n):\n if (x[i] % 2 == 0):\n even+=1\n else:\n odd+=1\n\nprint(\"\")\n\nfor i in range(n + 1):\n for j in range(i + 1):\n if (p == 1 and j % 2 == 1) or (p == 0 and j % 2 == 0):\n ans += C(even, i - j) * C(odd, j)\n\nprint(ans)", "neg": "import math\n\ndef C(n, r):\n if (n == r or r == 0):\n return 1\n if (r > n):\n return 0\n\n ret = math.factorial(n) / math.factorial(r) / math.factorial(n - r)\n return int(ret)\n\n\nn,p = map(int, input().split())\nx = list(map(int, input().split()))\n\nodd = even = 0\nans = 0\n\nfor i in range(n):\n if (x[i] % 2 == 0):\n even+=1\n else:\n odd+=1\n\nfor i in range(n + 1):\n for j in range(i + 1):\n if (p == 1 and j % 2 == 1) or(p == 0 and j % 2 == 0):\n ans += C(even, i - j) * C(odd, j)\n\nprint(ans)\n", "jacc_sim": 0.9583333333333334, "before_after_length": [230, 228], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "\nfret\n\n ret = f(f(r) * f(n - r))\n return int(ret)\n\n\nn,p = p(inh, input()spfactoriaitr)\nx/=list(p(inh, input()spfactoria(n - r)\n return int(ret)\n\n\nn,p = map(int, input().split())\nx = list(map(int, input().spl0\nprint(\"\")\n\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u672475305", "n_user": "u672475305", "pos": "n,k = map(int,input().split())\nlst = list(map(int,input().split()))\ne,o = 0,0\nfor i in range(n):\n if lst[i]%2==0:\n e += 1\n else:\n o += 1\n\nif o==0:\n if k==0:\n print(2**n)\n else:\n print(0)\nelse:\n print(2**(n-1))", "neg": "n,k = map(int,input().split())\nlst = list(map(int,input().split()))\ne,o = 0,0\nfor i in range(n):\n if lst[i]%2==0:\n e += 1\n else:\n o += 1\n\nif o==0:\n if p==0:\n print(2**n)\n else:\n print(0)\nelse:\n print(2**(n-1))", "jacc_sim": 0.9696969696969697, "before_after_length": [114, 114], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "pk", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u057993957", "n_user": "u057993957", "pos": "import collections\nn, p = list(map(int, input().split()))\na = list(map(int, input().split()))\na2 = [ai%2 for ai in a]\na2 = collections.Counter(a2)\n\nif p == 0:\n if a2[1] == 0:\n print(2 ** n)\n else:\n print(2 ** (n - 1))\n \nelse:\n if a2[1] == 0:\n print(0)\n else:\n print(2 ** (n-1))\n\n", "neg": "import collections\nn, p = list(map(int, input().split()))\na = list(map(int, input().split()))\na2 = [ai%2 for ai in a]\na2 = collections.Counter(a2)\n\nif p == 0:\n if a2[1] == 0:\n print(2 ** n)\n else:\n print(2 ** (n - 1))\n \nelse:\n print(2 ** (n-1))\n\n", "jacc_sim": 1.0, "before_after_length": [136, 115], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if a2[1] == 0:\n print(0)\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u503228842", "n_user": "u503228842", "pos": "N, P = map(int,input().split())\nA = list(map(int,input().split()))\nodd = len(list(filter(lambda x:x%2==1 ,A)))\neven = N-odd\nif odd == 0:\n if P == 0:print(2**(N))\n else:print(0)\nelse:\n print(2**(N-1))\n", "neg": "N, P = map(int,input().split())\nA = list(map(int,input().split()))\nodd = len(list(filter(lambda x:x%2==1 ,A)))\neven = N-odd\nif odd == 0:\n print(2**(N))\nelse:\n print(2**(N-1))\n", "jacc_sim": 1.0, "before_after_length": [95, 82], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if P == 0:)\n else:print(0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u846694620", "n_user": "u846694620", "pos": "import math\n\n\ndef comb(n, r):\n return math.factorial(n) / math.factorial(r) / math.factorial(n - r)\n\n\ndef main():\n n, p = map(int, input().split())\n a = tuple(map(lambda x: int(x) % 2, input().split()))\n\n if n == 1 and a[0] % 2 != p:\n print(0)\n return 0\n\n t = len(tuple(filter(lambda x: x == 1, a)))\n f = n - t\n\n f_comb = 0\n for j in range(f + 1):\n f_comb += comb(f, j)\n\n t_comb = 0\n if p == 0:\n for i in range(t + 1):\n if i % 2 == 0:\n t_comb += comb(t, i)\n else:\n for i in range(t + 1):\n if i % 2 == 1:\n t_comb += comb(t, i)\n\n print(int(t_comb * f_comb))\n\n return 0\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import math\n\n\ndef comb(n, r):\n return math.factorial(n) / math.factorial(r) / math.factorial(n - r)\n\n\ndef main():\n n, p = map(int, input().split())\n a = tuple(map(lambda x: int(x) % 2 == 0, input().split()))\n\n if n == 1 and a[0] == bool(p):\n print(0)\n return 0\n\n t = len(tuple(filter(lambda x: x, a)))\n f = n - t\n\n f_comb = 0\n for j in range(f + 1):\n f_comb += comb(f, j)\n\n t_comb = 0\n if p == 0:\n for i in range(t + 1):\n if i % 2 == 0:\n t_comb += comb(t, i)\n else:\n for i in range(t + 1):\n if i % 2 == 1:\n t_comb += comb(t, i)\n\n print(int(t_comb * f_comb))\n\n return 0\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9629629629629629, "before_after_length": [288, 288], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": " == 0%==bool(2 != ) == 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u309141201", "n_user": "u667084803", "pos": "import math\nN, P = map(int, input().split())\nA = list(map(int, input().split()))\neven = 0\nodd = 0\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nfor i in range(N):\n if A[i] % 2 == 0:\n even += 1\n else:\n odd += 1\n\noddcmb = 0\nif P == 0:\n for i in range(odd+1)[::2]:\n # print(i)\n oddcmb += comb(odd, i)\n ans = 2**even*oddcmb\n # oddcmb = comb()\nelse:\n for i in range(1, odd+1)[::2]:\n # print(i)\n oddcmb += comb(odd, i)\n ans = 2**even*oddcmb\n\nprint(ans)", "neg": "import math\ndef comb(n,r):\n return int(math.factorial(n)/(math.factorial(r)*math.factorial(n-r)))\n\nN,P=map(int,input().split())\nA=list(map(int,input().split()))\nodd=0\neven=0\ntotal=0\nfor i in range(N):\n total+=A[i]\n if A[i]%2==0:\n even+=1\n else: \n odd+=1\ntotal=total%2\nevens=2**even\n\nans=0\nif total==even%2:\n for i in range(int((odd+1)/2)): \n ans+=comb(odd,2*i)\n print(comb(odd,2*i))\nelse:\n for i in range(int((odd+1)/2)):\n ans+=comb(odd,2*i+1)\n print(comb(odd,2*i+1))\nprint(ans*evens)", "jacc_sim": 0.9130434782608695, "before_after_length": [230, 247], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "Ndef comb(nr):\nPre= map(in, inprn in).split())\nA = list(map(int, input().split()))\neven = 0\nodd = 0\ndef comb(n, r):\n return / n - n-)for i in range(,P=map(int,input(.split())\nA=list(map(int,input().split()))\nodd=0\neven=0\ntotal=0\nfor i in range(N) if total+=\n if A[i] else:\nelse:\n total=total%2evensoddcmb 2**even\n\nans=P total 0even%2 (int(/[::])) a # prist(i)\n oddcmb i)\n ans = i)\n print(comb(odd,2i))\nvls:n*oddcmb # oddcmb = comb()\nelse:\n 1, int((/[::]))a # prist(i)\n oddcmb i)\n ans = i+1)\n print(comb(odd,2*i+1))\nprint(ans*oddcmb\n\nprint(an", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u191874006", "n_user": "u191874006", "pos": "#!/usr/bin/env python3\n#AGC17 A\n\nimport sys\nimport math\nimport bisect\nsys.setrecursionlimit(1000000000)\nfrom heapq import heappush, heappop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9 + 7\n\nn,p = map(int,sys.stdin.readline().split())\na = list(map(int,sys.stdin.readline().split()))\nfact = [1]*51\nfor i in range(1,51):\n fact[i] = fact[i-1]*i\ndef comb(n,r):\n return fact[n]//fact[n-r]//fact[r]\nx = list(map(lambda x:x % 2,a))\nc = x.count(1)\nans = 0\nif p:\n for i in range(c+1):\n if i % 2:\n for j in range(n-c+1):\n ans += comb(c,i)*comb(n-c,j)\nelse:\n for i in range(c+1):\n if i % 2 == 0:\n for j in range(n-c+1):\n ans += comb(c,i)*comb(n-c,j)\nprint(ans)\n", "neg": "#!/usr/bin/env python3\n#AGC17 A\n\nimport sys\nimport math\nimport bisect\nsys.setrecursionlimit(1000000000)\nfrom heapq import heappush, heappop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9 + 7\n\nn,p = map(int,sys.stdin.readline().split())\na = list(map(int,sys.stdin.readline().split()))\ndef comb(n,r):\n return math.factorial(n)/math.factorial(n-r)/math.factorial(r)\nx = list(map(lambda x:x % 2,a))\nc = x.count(1)\nans = 0\nif p:\n for i in range(c+1):\n if i % 2:\n for j in range(n-c+1):\n ans += comb(c,i)*comb(n-c,j)\nelse:\n for i in range(c+1):\n if i % 2 == 0:\n for j in range(n-c+1):\n if j % 2 == 0:\n ans += comb(c,i)*comb(n-c,j)\nprint(ans)\n", "jacc_sim": 0.9342105263157895, "before_after_length": [324, 309], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "fact = [1]*51\nfor i in range(1,51):\n fact[i] = fact[i-1]*i\nmath.[orial()]/math.[orial()]/math.o[]ial(r)ifans+= comb(c,i)*comb(n-c, % 2 == 0:\n ans += comb(c,i*comb(n-c,j)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u456353530", "n_user": "u456353530", "pos": "N, P = list(map(int, input().split()))\nA = list(map(int, input().split()))\n\nev = 0\nad = 0\nfor i in A:\n if i % 2 == 0:\n ev += 1\n else:\n ad += 1\n\nif P == 1:\n if ad == 0:\n print(\"0\")\n exit()\n \n\nf = [1, 1]\nfor i in range(2, ad + 1):\n f.append(f[-1] * i)\nnum = 0\nfor i in range(P, ad + 1, 2):\n num += f[ad] // (f[i] * f[ad - i])\n\nprint(pow(2, ev) * num)\n\n", "neg": "N, P = list(map(int, input().split()))\nA = list(map(int, input().split()))\n\nev = 0\nad = 0\nfor i in A:\n if i % 2 == 0:\n ev += 1\n else:\n ad += 1\n\nR = 1\nif P == 1:\n if ad == 0:\n print(\"0\")\n exit()\n R = ad\n ad -= 1\n \n\nf = [1, 1]\nfor i in range(2, ad + 1):\n f.append(f[-1] * i)\nnum = 1\nfor i in range(2, ad + 1, 2):\n num += f[ad] // (f[i] * f[ad - i])\n\nprint(pow(2, ev) * num * R)\n\n", "jacc_sim": 0.975, "before_after_length": [180, 196], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "R = 1\nR = ad\nf=ad[1,1]\nfor i in range(2, ad + 1):\n f.append(f[= \n \n\nf = [1, 1 * i)\nnum = 0P2, ad + 1):\n f.append(f[-1] * i)\nnum = 1\nfor i in range(2 * R", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u540761833", "n_user": "u540761833", "pos": "import math\nN,P = map(int,input().split())\nA = list(map(int,input().split()))\nA = [i%2 for i in A]\nodd = A.count(1)\neven = A.count(0)\nsumo = 0\nfor i in range(odd+1):\n if i%2 == P:\n sumo += int(math.factorial(odd)//(math.factorial(odd-i)*math.factorial(i)))\nans = sumo*(2**even)\nprint(ans)", "neg": "import math\nN,P = map(int,input().split())\nA = [i%2 for i in list(map(int,input().split()))]\nodd,even = A.count(1),A.count(0)\nsumo = 0\nfor i in range(0,odd+1,P+1):\n sumo += int(math.factorial(odd)//(math.factorial(odd-i)*math.factorial(i)))\nprint(sumo*(2**even))", "jacc_sim": 0.9473684210526315, "before_after_length": [130, 117], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "list(map(int,input().split()))\nA = Alist(map(int,input().split())), = A.count(1)\n1),A.count(0,,):\n if i%2 == +1) aprit(s = \nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u954774382", "n_user": "u954774382", "pos": "import sys\nfrom functools import lru_cache, cmp_to_key\nfrom heapq import merge, heapify, heappop, heappush\nfrom math import *\nfrom collections import defaultdict as dd, deque, Counter as C\nfrom itertools import combinations as comb, permutations as perm\nfrom bisect import bisect_left as bl, bisect_right as br, bisect\nfrom time import perf_counter\nfrom fractions import Fraction\nsys.setrecursionlimit(int(pow(10,6)))\n# sys.stdin = open(\"input.txt\", \"r\")\n# sys.stdout = open(\"output.txt\", \"w\")\nmod = int(pow(10, 9) + 7)\nmod2 = 998244353\ndef data(): return sys.stdin.readline().strip()\ndef out(*var, end=\"\\n\"): sys.stdout.write(' '.join(map(str, var))+end)\ndef l(): return list(sp())\ndef sl(): return list(ssp())\ndef sp(): return map(int, data().split())\ndef ssp(): return map(str, data().split())\ndef l1d(n, val=0): return [val for i in range(n)]\ndef l2d(n, m, val=0): return [l1d(n, val) for j in range(m)]\n# @lru_cache(None)\n\nn,p=l()\nA=l()\no=e=0\nfor i in range(n):\n if(A[i]%2):\n o+=1\n else:\n e+=1\nif(o):\n print(2**(n-1))\nelse:\n if(p):\n print(0)\n else:\n print(2**n)\n\n\n\n", "neg": "import sys\nfrom functools import lru_cache, cmp_to_key\nfrom heapq import merge, heapify, heappop, heappush\nfrom math import *\nfrom collections import defaultdict as dd, deque, Counter as C\nfrom itertools import combinations as comb, permutations as perm\nfrom bisect import bisect_left as bl, bisect_right as br, bisect\nfrom time import perf_counter\nfrom fractions import Fraction\nsys.setrecursionlimit(int(pow(10,6)))\n# sys.stdin = open(\"input.txt\", \"r\")\n# sys.stdout = open(\"output.txt\", \"w\")\nmod = int(pow(10, 9) + 7)\nmod2 = 998244353\ndef data(): return sys.stdin.readline().strip()\ndef out(*var, end=\"\\n\"): sys.stdout.write(' '.join(map(str, var))+end)\ndef l(): return list(sp())\ndef sl(): return list(ssp())\ndef sp(): return map(int, data().split())\ndef ssp(): return map(str, data().split())\ndef l1d(n, val=0): return [val for i in range(n)]\ndef l2d(n, m, val=0): return [l1d(n, val) for j in range(m)]\n# @lru_cache(None)\n\nn,p=l()\nA=l()\no=e=0\nfor i in range(n):\n if(A[i]%2):\n o+=1\n else:\n e+=1\nif(o):\n print(2**(n-1))\nelse:\n print(2**n)\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [415, 399], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if(p):\n print(0)\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u143509139", "n_user": "u413165887", "pos": "n, p = map(int, input().split())\na = list(map(int, input().split()))\nodd_count = sum([i % 2 == 1 for i in a])\nif p == 0:\n if odd_count == 0:\n print(2**(n-odd_count))\n else:\n print((2**(n-odd_count)) * (2 ** (odd_count - 1)))\nelse:\n if odd_count == 0:\n print(0)\n else:\n print((2**(n-odd_count)) * (2 ** (odd_count - 1)))\n", "neg": "n, p = map(int, input().split())\na = [1 if i%2==0 else 0 for i in map(int,input().split())]\nsum_a = sum(a)\n\nif p==0:\n print(n*(n-1)-sum_a*(n-sum_a))\nelse:\n print(sum_a*(n-sum_a))", "jacc_sim": 0.9032258064516129, "before_after_length": [146, 90], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "[1 if i%2==0 ese 0 for st( in )\nodd_count = sum([i % 2 == 1 for i in a\nsum_a = sum(a\n prf odd_cou( == 0:\n pri*t2**(odd_count))\n else:\n print((2**(n-odd_count)) * (2 ** (odd_count - -sum_a*(n-sum_aprf oddnt(sumcoa*(n-sm_ant == 0:\n print(0\n else:\n print((2**(n-odd_count) * (2 ** (odd_count - 1)))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u054514819", "n_user": "u054514819", "pos": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nN, P = mapint()\nAs = list(mapint())\nbit = [a%2 for a in As]\n\npos = {}\npos[0] = 1\nfor i in range(1, N+1):\n pos[i] = pos[i-1]*i\ndic = {}\ndic[0] = 0\ndic[1] = 0\nfor i in bit:\n dic[i] += 1\n\nans = 2**dic[0]\nif P==1:\n if dic[1]<1:\n print(0)\n exit(0)\n else:\n pass\n # ans*=dic[1]\n # dic[1] -= 1\nval = 0\nfor i in range(dic[1]//2+1):\n val += pos[dic[1]]//pos[i*2]//pos[dic[1]-i*2]\nprint(val*ans)", "neg": "import sys\ndef input(): return sys.stdin.readline().strip()\ndef mapint(): return map(int, input().split())\nsys.setrecursionlimit(10**9)\n\nN, P = mapint()\nAs = list(mapint())\nbit = [a%2 for a in As]\n\npos = {}\npos[0] = 1\nfor i in range(1, N+1):\n pos[i] = pos[i-1]*i\ndic = {}\ndic[0] = 0\ndic[1] = 0\nfor i in bit:\n dic[i] += 1\n\nans = 2**dic[0]\nif P<1:\n if dic[1]<1:\n print(0)\n exit(0)\n else:\n ans*=dic[1]\n dic[1] -= 1\nval = 0\nfor i in range(dic[1]//2+1):\n val += pos[dic[1]]//pos[i*2]//pos[dic[1]-i*2]\nprint(val*ans)", "jacc_sim": 0.9629629629629629, "before_after_length": [259, 254], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "==1:\n if dic[1]if dic[1]<1:\n pns*=dic[1] # ans*=dic[1]\n #", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u814986259", "n_user": "u814986259", "pos": "from math import factorial\nN,P=map(int,input().split())\na=list(map(int,input().split()))\nodd=0\neven=0\nfor i in range(N):\n if a[i]%2==0:\n even+=1\n else:\n odd+=1\nans=2**even\nk=0\nif P==0:\n k=0\nelse:\n k=1\ntmp=0\nfor i in range(k,odd+1,2):\n tmp+=factorial(odd)//factorial(odd-i)//factorial(i)\n\nprint(ans*tmp)\n", "neg": "from math import factorial\nN,P=map(int,input().split())\na=list(map(int,input().split()))\nodd=0\neven=0\nfor i in range(N):\n if a[i]%2==0:\n even+=1\n else:\n odd+=1\nans=2**even\nk=0\nif P==0:\n k=odd//2 +1\nelse:\n k=(odd+1)//2\ntmp=0\nfor i in range(1,k+1):\n tmp+=factorial(odd)//factorial(odd-i)//factorial(i)\n\nprint(ans*tmp)", "jacc_sim": 1.0, "before_after_length": [156, 162], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "0\nelse:\n k=1\ntmp=0\nfr i in range(k,o+1,2):\n tmp+=factorial(odd)fact2 +1\nelse:\n k=(rial(o+1-i2\ntmp=0\nfor i in range(1,k+1):\n tmp+=odd)//factorial(odd-i)//factorial(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u960524878", "n_user": "u960524878", "pos": "# -*- coding: utf-8 -*-\nimport sys\ninput = sys.stdin.readline\n\ndef main():\n N, P = map(int, input().split())\n A = list(map(int, input().split()))\n\n A = list(map(lambda x: x % 2, A))\n if A.count(1):\n ans = pow(2,N-1)\n else:\n if P == 0:\n ans = pow(2,N)\n else:\n ans = 0\n\n print(ans)\n\nif __name__ == '__main__':\n main()\n", "neg": "# -*- coding: utf-8 -*-\nimport sys\ninput = sys.stdin.readline\n\ndef main():\n N, P = map(int, input().split())\n A = list(map(int, input().split()))\n\n A = list(map(lambda x: x % 2, A))\n if A.count(1):\n ans = pow(2,N-1)\n else:\n if P == 0:\n ans = pow(2,N)\n else:\n ans = pow(2,N-1)\n\n print(ans)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [150, 157], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "0pow(2,N-1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u634461820", "n_user": "u634461820", "pos": "import collections\nimport itertools\nimport numpy as np\nimport sys\nMAX_INT = int(10e10)\ninput = sys.stdin.readline\ndef IL(): return list(map(int,input().split()))\ndef SL(): return input().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\ndef combi(a,b):\n\tnum = 1\n\tfor j in range(b):\n\t\tnum = num*(a-j)//(j+1)\n\treturn num\n\nN,P = IL()\nA = IL()\n\nodd = 0\neven = 0\nfor i in A:\n\tif i%2 != 0:\n\t\todd += 1\n\telse:\n\t\teven += 1\n\nzero = 1\nif even != 0:\n\tfor i in range(1,even+1):\n\t\tzero += combi(even,i)\n\nif P == 1:\n\tans = 0\n\tfor i in range(1,odd+1,2):\n\t\tans += combi(odd,i)*zero\nelse:\n\tans = 0\n\tfor i in range(0,odd+1,2):\n\t\tans += combi(odd,i)*zero\n\nprint(ans)", "neg": "import collections\nimport itertools\nimport numpy as np\nimport sys\nMAX_INT = int(10e10)\ninput = sys.stdin.readline\ndef IL(): return list(map(int,input().split()))\ndef SL(): return input().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\ndef combi(a,b):\n\tnum = 1\n\tfor j in range(b):\n\t\tnum = num*(a-j)//(j+1)\n\treturn num\n\nN,P = IL()\nA = IL()\n\nodd = 0\neven = 0\nfor i in A:\n\tif i%2 != 0:\n\t\todd += 1\n\telse:\n\t\teven += 1\n\nzero = 1\nif even != 0:\n\tfor i in range(1,even+1):\n\t\tzero += combi(even,i)\n\t\tprint(zero)\n\nif P == 1:\n\tans = 0\n\tfor i in range(1,odd+1,2):\n\t\tans += combi(odd,i)*zero\nelse:\n\tans = 0\n\tfor i in range(0,odd+1,2):\n\t\tans += combi(odd,i)*zero\n\t\t\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [299, 307], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "\t\tprint(zero)\n\t\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u015467545", "n_user": "u015467545", "pos": "import math\ndef combinations(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\nn,p=map(int,input().split())\na=list(map(int,input().split()))\nn0=0\nn1=0\nans=0\nfor i in range(len(a)):\n if a[i]%2:\n a[i]=1\n n1+=1\n else:\n a[i]=0\n n0+=1\ns=sum(a)\nfor i in range(0,s+1,2):\n ans+=combinations(n1,i)\n if p==1 and s==0:\n print(0)\n exit()\nprint(ans*(2**n0))", "neg": "import math\ndef combinations(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\nn,p=map(int,input().split())\na=list(map(int,input().split()))\nn0=0\nn1=0\nans=0\nfor i in range(len(a)):\n if a[i]%2:\n a[i]=1\n n1+=1\n else:\n a[i]=0\n n0+=1\ns=sum(a)\nfor i in range(0,s+1,2):\n ans+=combinations(n1,i)\nprint(ans*(2**n0))", "jacc_sim": 0.9565217391304348, "before_after_length": [201, 180], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": " if p==1 and s==0:\n print(0)\n exit()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u624617831", "n_user": "u624617831", "pos": "from operator import mul\nfrom functools import reduce\n\nn, p = map(int, input().split())\n\na_list = list(map(int, input().split()))\n\na_0 = []\na_1 = []\nfor j in a_list:\n if j % 2 == 0:\n a_0.append(j)\n else:\n a_1.append(j)\n\ndef combinations_count(n, r):\n r = min(r, n - r)\n numer = reduce(mul, range(n, n - r, -1), 1)\n denom = reduce(mul, range(1, r + 1), 1)\n return numer // denom\n\n\nif p == 0:\n ans = 1\n\n tmp_2 = 0\n if len(a_0) >= 1:\n for i in range(1,len(a_0)+1):\n tmp_2 += combinations_count(len(a_0), i)\n #print(tmp_2)\n ans += tmp_2\n \n tmp_1 = 0\n if len(a_1) > 2:\n for i in range(2,len(a_1)+1, 2):\n #print(i)\n tmp_1 += combinations_count(len(a_1), i)\n elif len(a_1) == 2:\n tmp_1 += 1\n ans += tmp_1\n #print(tmp_1)\n\n ans += tmp_1*tmp_2\n\n\nelif p == 1:\n ans = 0\n\n tmp_2 = 1\n if len(a_0) >= 1:\n for i in range(1,len(a_0)+1):\n tmp_2 += combinations_count(len(a_0), i)\n #print(tmp_2)\n\n if len(a_1) >= 1:\n for i in range(1,len(a_1)+1, 2):\n #print(i)\n tmp = combinations_count(len(a_1), i)\n ans += tmp*tmp_2\n\nprint(ans)\n", "neg": "from operator import mul\nfrom functools import reduce\n\nn, p = map(int, input().split())\n\na_list = list(map(int, input().split()))\n\na_0 = []\na_1 = []\nfor j in a_list:\n if j % 2 == 0:\n a_0.append(j)\n else:\n a_1.append(j)\n\ndef combinations_count(n, r):\n r = min(r, n - r)\n numer = reduce(mul, range(n, n - r, -1), 1)\n denom = reduce(mul, range(1, r + 1), 1)\n return numer // denom\n\n\nif p == 0:\n ans = 1\n\n if len(a_0) >= 1:\n for i in range(1,len(a_0)+1):\n ans += combinations_count(len(a_0), i)\n \n if len(a_1) > 2:\n for i in range(2,len(a_1), 2):\n print(i)\n ans += combinations_count(len(a_1), i)\n elif len(a_1) == 2:\n ans += 1\n\nelif p == 1:\n ans = 0\n\n tmp_2 = 1\n if len(a_0) >= 1:\n for i in range(1,len(a_0)+1):\n tmp_2 += combinations_count(len(a_0), i)\n #print(tmp_2)\n\n if len(a_1) >= 1:\n for i in range(1,len(a_1), 2):\n #print(i)\n tmp = combinations_count(len(a_1), i)\n ans += tmp*tmp_2\n\nprint(ans)\n", "jacc_sim": 0.9821428571428571, "before_after_length": [507, 437], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "tmpif len(a2 = \n if len(a_0anstmp_2#print(tmp_2)\n ans += tmp_2\n \n tmp_1 = 0, 2):\n print(i)\n ans 1, 2):\n #print(i)\n tmp_1 +anstmp_1 ans += tmp_1\n #print(tmp_1)\n\n ans += tmp_1*tmp_2\n\n+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u060793972", "n_user": "u060793972", "pos": "import math\ndef AGC017C(a,f):\n p=0\n for i in range(f,a+1,2):\n p+=math.factorial(a)//math.factorial(a-i)//math.factorial(i)\n return p\n\nn,p=map(int,input().split())\nd={1:0,0:0}\na=list(map(int,input().split()))\nfor i in a:\n d[i%2]+=1\nif p==0:\n print((2**d[0])*AGC017C(d[1],0))\nelse:\n if d[1]==0:\n print(0)\n else:\n print((2**d[0])*(AGC017C(d[1],1)))", "neg": "import math\ndef AGC017C(a,f):\n p=0\n for i in range(f,a,2):\n p+=math.factorial(a)//math.factorial(a-i)//math.factorial(i)\n return p\n\nn,p=map(int,input().split())\nd={1:0,0:0}\na=list(map(int,input().split()))\nfor i in a:\n d[i%2]+=1\nprint(d)\nprint(AGC017C(2,0))\nif p==0:\n print((2**d[0])*AGC017C(d[1]),0)\nelse:\n if d[1]==0:\n print(0)\n else:\n print((2**d[0])*(AGC017C(d[1],1)))", "jacc_sim": 1.0, "before_after_length": [198, 215], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "+1prf nt(d)\n==0:\n p(2**d[0])*d[1],0))\nelse:\n if d[1]==0:\n print(0)\n else:\n print((,0))\nif p==0:\n print((2()0)\nelse:\n if d[]==0:\n print(0\n else:\n print((2**d[0]*(AGC017C(d[1],1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u644907318", "n_user": "u644907318", "pos": "N,P = map(int,input().split())\nA = list(map(int,input().split()))\nce = 0\nco = 0\nfor i in range(N):\n if A[i]%2==0:\n ce += 1\n else:\n co += 1\nif co>0:\n n = (2**ce)*(2**(co-1))\nelse:\n n = 2**ce\nif P==0:\n print(n)\nelse:\n print(2**N-n)", "neg": "N,P = map(int,input().split())\nA = list(map(int,input().split()))\nce = 0\nco = 0\nfor i in range(N):\n if A[i]%2==0:\n ce += 1\n else:\n co += 1\nn = (2**ce)*2**(co-1)\nif P==0:\n print(n)\nelse:\n print(2**N-n)", "jacc_sim": 0.9705882352941176, "before_after_length": [126, 108], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "nif= (2**e)o>0:\n n = (2*ce)*()\nelse:\n n = 2**ce", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u056358163", "n_user": "u309141201", "pos": "import math\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nN, P = map(int, input().split())\nA = list(map(int, input().split()))\n\nn = [0] * 2\n\nfor a in A:\n n[a % 2] += 1\n\n\nif P == 1:\n ans = 0\n for i in range(1, n[1]+1, 2):\n ans += comb(n[1], i)\n ans *= 2 ** n[0]\nelse:\n ans = 0\n for i in range(0, n[1]+1, 2):\n if i == 0:\n ans += 1\n else:\n ans += comb(n[1], i)\n ans *= 2 ** n[0]\n #ans += 1\n\nprint(ans)", "neg": "import math\nN, P = map(int, input().split())\nA = list(map(int, input().split()))\neven = 0\nodd = 0\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nfor i in range(N):\n if A[i] % 2 == 0:\n even += 1\n else:\n odd += 1\n\noddcmb = 0\nif P == 0:\n for i in range(odd)[::2]:\n # print(i)\n oddcmb += comb(odd, i)\n ans = 2**even*oddcmb\n # oddcmb = comb()\nelse:\n for i in range(1, odd)[::2]:\n # print(i)\n oddcmb += comb(odd, i)\n ans = 2**even*oddcmb\n\nprint(ans)", "jacc_sim": 0.9111111111111111, "before_after_length": [220, 226], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "\nN, P = map(int, input().split())\nA = list(map(int, input().split()))\neven = 0\nodd = 0N, P = map(int, input().split())\nA = list(map(int, input().split()))\n\nn = [0] * 2\n\nfor a in A:\n n[a % 2] += 1\n\n\nif P == 1:\n ans = 0\n 1,N):\nn if Ai1 %+1,) == 0aeve += 1\n ele:\n odd 1\n\noddo(n[1],= 0\nf)\nP== ans *= 2 ** n[]\nelse\n ans = 0odd)0, n::1]+1, ]) if i == 0:\n ans += 1\n else:\n ans += comb(n[1], i)\n ans *= 2 ** n[0]\n print(i)\n oddcmb += comb(odd, i)\n = 2**even*oddcmb\n # oddcmb = comb()\nelse:\n for i in range(1, odd)[::2]:\n # print(i)\n oddcmb 1comb(odd, i) ans = 2**even*oddcmb\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u678167152", "n_user": "u678167152", "pos": "def solve():\n N, P = map(int, input().split())\n A = list(map(int, input().split()))\n zero,one = 0,0\n for i in range(N):\n if A[i]%2==0:\n zero += 1\n else:\n one += 1\n ans = pow(2,N-1)\n if P==1 and one == 0:\n return 0\n if P==0 and one == 0:\n return pow(2,N)\n return ans\nprint(solve())", "neg": "def solve():\n N, P = map(int, input().split())\n A = list(map(int, input().split()))\n zero,one = 0,0\n for i in range(N):\n if A[i]%2==0:\n zero += 1\n else:\n one += 1\n if P==1:\n ans = pow(2,N-1)\n else:\n ans = pow(2,N-1)\n return ans\nprint(solve())", "jacc_sim": 0.972972972972973, "before_after_length": [132, 120], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if P==1:\n ifelse:\nP ans =1 and one == 0:\n return 0\n if P==0 and one == 0:\n return-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u386089355", "n_user": "u386089355", "pos": "n, p = map(int, input().split())\nls = list(map(int, input().split()))\n\nodd = 0\neven = 0\n\nfor i in range(n):\n if ls[i] % 2 == 0:\n even += 1\n elif ls[i] % 2 == 1:\n odd += 1\n\nif p == 0:\n print((2 ** even) * max(2 ** (odd - 1), 1))\nelif p == 1:\n if odd == 0:\n print(0)\n else:\n print((2 ** even) * max((2 ** (odd - 1), 1)))", "neg": "n, p = map(int, input().split())\nls = list(map(int, input().split()))\n\nodd = 0\neven = 0\n\nfor i in range(n):\n if ls[i] % 2 == 0:\n even += 1\n elif ls[i] % 2 == 1:\n odd += 1\n\nif p == 0:\n print((2 ** even) * max(2 ** (odd - 1), 1))\nelif p == 1:\n print((2 ** even) * max(2 ** (odd - 1) - 1, 0))", "jacc_sim": 0.9705882352941176, "before_after_length": [149, 135], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if odd == 0:\n print(0)\n else:\n ( - 101)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u143051858", "n_user": "u143051858", "pos": "N,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nodd = 0\nfor v in A:\n if v % 2:\n odd += 1 \neven = N-odd\nif odd != 0:\n print((2**even)*int(2**(odd-1)))\nelse:\n if P == 0:\n print(2**N)\n else:\n print(0)", "neg": "N,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nodd = 0\nfor v in A:\n if v % 2:\n odd += 1 \neven = N-odd\n\nans = (2**even)*(2**(odd-1))\n\nprint(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [108, 80], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if\nans=odd(2**eve!= 0:\n pri)t((2*even)*int\n\nprint(ans\nelse:\n if P == 0:\n print(2**N)\n else:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u813098295", "n_user": "u813098295", "pos": "def nCr(n, r):\n ret = 1\n for i in range(1, n+1):\n ret *= i\n for i in range(1, r+1):\n ret //= i\n for i in range(1, n-r+1):\n ret //= i\n return ret\n\nn, p = map(int, input().split())\na = map(int, input().split())\neven, odd = 0, 0\n\nfor i in a:\n if i & 1:\n odd += 1\n else:\n even += 1\n\nc_even = 2**even\nc_odd = 0\n\nstart = 1 if p else 0\n\nwhile start <= odd:\n c_odd += nCr(odd, start)\n start += 2\n\nprint(c_even * c_odd)", "neg": "def nCr(n, r):\n ret = 1\n for i in range(1, n+1):\n ret *= i\n for i in range(1, r+1):\n ret //= i\n for i in range(1, n-r+1):\n ret //= i\n return ret\n\nn, p = map(int, input().split())\na = map(int, input().split())\neven, odd = 0, 0\n\nfor i in a:\n if i & 1:\n odd += 1\n else:\n even += 1\n\nc_even = 2**even\nc_odd = 0\n\nstart = 1 if p else 0\n\nwhile start <= odd:\n c_odd += nCr(odd, start)\n start += 2\nprint(c_even, c_odd)\nprint(c_even * c_odd)\n", "jacc_sim": 1.0, "before_after_length": [197, 208], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "\n, *\nprint(c_even * c_odd)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u904943473", "n_user": "u904943473", "pos": "import math\nN,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nodd = []\neven = []\nans = 0\nfor i in A:\n if (i % 2 == 1):\n odd.append(i)\n else:\n even.append(i)\n\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n \nif (P == 0):\n l_odd = len(odd)\n num = 0\n while l_odd >= num:\n ans += combinations_count(l_odd, num)\n num += 2\n if (len(even)!=0):\n ans *= 2**len(even)\nelse:\n l_odd = len(odd)\n num = 1\n while l_odd >= num:\n ans += combinations_count(l_odd, num)\n num += 2\n if (len(odd)!=0):\n ans *= 2**len(even)\nprint(ans)\n ", "neg": "import math\nN,P = map(int,input().split())\nA = list(map(int,input().split()))\n\nodd = []\neven = []\nans = 0\nfor i in A:\n if (i % 2 == 1):\n odd.append(i)\n else:\n even.append(i)\n\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n \nif (P == 0):\n l_odd = len(odd)\n ans += 1\n num = 2\n while l_odd >= num:\n ans += combinations_count(l_odd, num)\n num += 2\n if (len(even)!=0):\n ans *= 2**len(even)\nelse:\n l_even = len(even)\n ans += 1\n num = 2\n while l_even >= num:\n ans += combinations_count(l_even, num)\n num += 2\n if (len(odd)!=0):\n ans *= 2**len(odd)\nprint(ans)\n ", "jacc_sim": 0.9795918367346939, "before_after_length": [267, 277], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "as += 1\n n20oddevenoddevenasum+\n num = 2oddevenoddeveneveodd)\nprit(ansprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u760636024", "n_user": "u760636024", "pos": "N,P = map(int, input().split())\nA = list(map(int, input().split()))\nin_odd = False\nfor i in range(N):\n if A[i]%2:\n in_odd = True\n break\nif not in_odd:\n if P:\n print(0)\n else:\n print(2**N)\nelse:\n print(2**(N-1))", "neg": "N,P = map(int, input().split())\nA = list(map(int, input().split()))\nin_odd = False\nfor i in range(N):\n if A[i]%2:\n in_odd = True\n break\nif not in_odd:\n if P == 0:\n print(0)\nelse:\n print(2**(N-1))", "jacc_sim": 1.0, "before_after_length": [104, 94], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": ":\n== print(:)else:\n 02**N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u859897687", "n_user": "u859897687", "pos": "n,p=map(int,input().split())\nl=list(map(lambda x:int(x)%2,input().split()))\na,b=0,0\nfor i in l:\n if i>0:\n a+=1\n else:\n b+=1\nif a==0:\n if p==0:\n print(2**n)\n else:\n print(0)\nelse:\n print(2**(n-1))", "neg": "n,p=map(int,input().split())\nl=list(map(lambda x:int(x)%2,input().split()))\na,b=0,0\nfor i in l:\n if l%2>0:\n a+=1\n else:\n b+=1\nif a==0:\n if p==0:\n print(2**n)\n else:\n print(0)\nelse:\n print(2**(n-1))", "jacc_sim": 1.0, "before_after_length": [116, 118], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "il%2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u591503175", "n_user": "u591503175", "pos": "def resolve():\n '''\n code here\n '''\n N, P = [int(item) for item in input().split()]\n As = [int(item)%2 for item in input().split()]\n\n is_all_even = True\n for item in As:\n if item == 1:\n is_all_even = False\n \n res = 0\n if is_all_even:\n if P == 0:\n res = 2 ** N\n else:\n res = 0\n else:\n res = 2**(N-1)\n \n print(res)\n\nif __name__ == \"__main__\":\n resolve()\n", "neg": "def resolve():\n '''\n code here\n '''\n N, P = [int(item) for item in input().split()]\n As = [int(item)%2 for item in input().split()]\n\n is_all_even = True\n for item in As:\n if item == 1:\n is_all_even = False\n res = 0\n if is_all_even:\n if P == 0:\n res = 2 ** N\n else:\n res = 0\n else:\n print(2**(N-1))\n\nif __name__ == \"__main__\":\n resolve()\n", "jacc_sim": 1.0, "before_after_length": [162, 152], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "\n pint(es = \n \n print(res", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03665", "p_user": "u227888331", "n_user": "u227888331", "pos": "input1 = list(map(int,input(\"\").split(\" \")))\nA = list(map(int,input(\"\").split(\" \")))\nN = input1[0]\nP = input1[1]\n\neven = []\nodd = []\nfor a in A:\n\tif a % 2 == 0:\n\t\teven.append(a)\n\telse:\n\t\todd.append(a)\n\nif len(odd) == 0:\n\tif P == 0:\n\t\tresult = 2**N\n\telse:\n\t\tresult = 0\nelse:\n\tresult = 2**len(even) * 2**(len(odd)-1)\n\nprint(result)", "neg": "input1 = list(map(int,input(\"\").split(\" \")))\nA = list(map(int,input(\"\").split(\" \")))\nN = input1[0]\nP = input1[1]\n\neven = []\nodd = []\nfor a in A:\n\tif a % 2 == 0:\n\t\teven.append(a)\n\telse:\n\t\todd.append(a)\n\nresult = 2**len(even) * 2**(len(odd)-1)\nprint(result)", "jacc_sim": 1.0, "before_after_length": [158, 119], "nl": "You have N bags of biscuits, each containing A_i biscuits. Takaki wants to select some bags so that the total number of biscuits inside is congruent to P modulo 2. How many ways can he do this? Constraints: 1 \u2264 N \u2264 50, P = 0 or 1, 1 \u2264 A_i \u2264 100. Input format: N P followed by A_1 to A_N. Output: Number of ways to select bags satisfying the condition. Example: Input 2 0, 1 3. Output: 2. Example 2: Input 1 1, 50. Output: 0. Example 3: Input 3 0, 1 1 1. Output: 4. Example 4: Input 45 1, 17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26. Output: 17592186044416.", "diff_info": "if len(odd) == 0:\n\tif P == 0:\n\t\tN\n\telse:\n\t\tresult = 0\nelse:\n\tresult = 2**\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u371467115", "n_user": "u371467115", "pos": "S=int(input().replace(\" \",\"\"))\nif S%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "neg": "S=map(int,input().replace(\" \",\"\"))\nif S%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.95, "before_after_length": [35, 36], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "map(,(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u772180901", "n_user": "u003501233", "pos": "r,g,b = map(int,input().split())\nnum = 100*r+10*g+b\nif num%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b=map(int,input().split()))\nans=100*r+10*g+b\n\nif ans % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9285714285714286, "before_after_length": [49, 51], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " )asum \nas um ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u879870653", "n_user": "u045408189", "pos": "r,g,b = map(int,input().split())\nif (100*r+10*g+b) % 4 == 0 :\n print(\"YES\")\nelse :\n print(\"NO\")\n \n ", "neg": "r,g,b=map(int,input().split())\nprint('YES' if 10*g+b%4==0 else 'NO')", "jacc_sim": 0.9230769230769231, "before_after_length": [51, 33], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " if (100*r+10*g+b) % 4 == 0 :\n '\"\")\n' if 10*g+b%4==0 ':\n print(\"'\"\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u934547177", "n_user": "u934547177", "pos": "r, g, b = map(int, input().split())\nprint(['NO', 'YES'][(10*g + b) % 4 == 0])", "neg": "r, b, g = map(int, input().split())\nprint(['NO', 'YES'][(10*b+g)%4 == 0]", "jacc_sim": 1.0, "before_after_length": [36, 36], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "bggbg + +g )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u216631280", "n_user": "u481026841", "pos": "r, g, b = map(int, input().split())\nif (100 * r + 10 * g + b) % 4 == 0:\n\tprint('YES')\nelse:\n\tprint('NO')", "neg": "r,g,b = map(int,input().split())\nn == r*100 + g*10 + b\nif n % 4 = 0:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9629629629629629, "before_after_length": [47, 49], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " nif(== r** r g* * g)\nif n=\t \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u094565093", "n_user": "u094565093", "pos": "r,g,b=input().split()\nx=int(r+g+b)\n\nif x%4==0:\n print('YES')\nelse:\n print('NO')\n", "neg": "r,g,b=map(int,input().split())\nx=int(r+g+b)\nif x%4==0:\n print('YES')\nelse:\n print('NO')\nr,g,b=map(int,input().spklit())\nx=int(r+g+b)\nif x%4==0:\n print('YES')\nelse:\n print('NO')\n", "jacc_sim": 0.92, "before_after_length": [46, 100], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "map(int,)\nr,g,b=map(int,input().spklit())\nx=int(r+g+b)\nif x%4==0:\n print('YES')\nelse:\n print('NO')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u203414902", "n_user": "u542294769", "pos": "r,g,b=map(int,input().split())\n\ns=100*r+10*g+b\nif s%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r, g, b = map(int(), input().split())\n\nA = 100*r + 10*g + b\n\nif(A % 4 == 0):\n\tprint(\"YES\")\nelse:\n\tprint(\"NO\")", "jacc_sim": 0.9285714285714286, "before_after_length": [50, 52], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " () sA \n(As )\t \t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u982471399", "n_user": "u982471399", "pos": "r,g,b = list(map(int,input().split()))\nA=r*100+g*10+b\n\nif A%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b = list(map(int,input().split()))\nA=r*100+g*10+b\n\nif A==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9285714285714286, "before_after_length": [53, 51], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "%4", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u405660020", "n_user": "u527190736", "pos": "r,g,b=map(int,input().split())\n\nif (g*10+b)%4==0:\n print('YES')\nelse:\n print('NO')", "neg": "r, g, b = map(int, input().split())\n\nif r * g * b % 4 == 0:\n print('YES')\nelse:\n print('NO')\n", "jacc_sim": 0.92, "before_after_length": [44, 43], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " r (g10+ g * ) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u102242691", "n_user": "u102242691", "pos": "r,g,b = input().split()\nr = int(r)\ng = int(g)\nb = int(b)\n\nnumber = r * 100 + g * 10 + b\n\nif number % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "\nr,g,b = input().split()\nr = int(r)\ng = int(g)\nb = int(b)\n\nif (r * 100 + g * 10 * b) % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "jacc_sim": 0.9615384615384616, "before_after_length": [68, 67], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "\nifnumber(= *+)\n\nif number\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u029169777", "n_user": "u044097841", "pos": "r,g,b=map(int,input().split())\n\nif (r*100+g*10+b)%4==0:\n print('YES')\nelse:\n print('NO')", "neg": "a, b, c = map(int, input().split())\nif (100*r + 10*g + b)%4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9285714285714286, "before_after_length": [48, 47], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "ar g,, c \nr*+gr + *g \"'\"' \"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u739721456", "n_user": "u598229387", "pos": "r,g,b=map(int,input().split())\nrgb=r*100+g*10+b\nif rgb%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r, g, b = map(int , input(),split())\nrgb = r*100 + g*10 + b\nif rgb % 4 == 0:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9629629629629629, "before_after_length": [49, 49], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " ,. '\"'\"'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u314089899", "n_user": "u314089899", "pos": "#64a\nr,g,b = map(int, input().split())\n\nif (r*100+g*10+b)%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "#64a\nr,g,b = map(int, input().split())\n\nif (r*100+g*10*b)%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [52, 52], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "*+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u024442309", "n_user": "u024442309", "pos": "r, g, b = map(int, input().split())\nif (r*100+g*10+b)%4:\n print('NO')\nelse:\n print('YES')", "neg": "r, g, b = map(int, input().split())\nif (r*100+g*10+b)%4:\n print('N0')\nelse:\n print('YES')", "jacc_sim": 0.9230769230769231, "before_after_length": [45, 46], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "0O", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u725044506", "n_user": "u619903722", "pos": "r, g, b = map(int, input().split())\n\nnum = r * 100 + g * 10 + b\n\nif num % 4 == 0:\n print('YES')\nelse:\n print('NO')\n", "neg": "r,g,b=map(int,input().split())\nif 100*r+10*g+b%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "jacc_sim": 0.9629629629629629, "before_after_length": [52, 46], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " if\nnum = r * + g r+ *g \n\nif num \"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u411923565", "n_user": "u411923565", "pos": "r,g,b = map(str,input().split())\nlist_C = [r,g,b]\nnum = int(''.join(list_C))\nif num%4 == 0:\n print('YES')\nelse:\n print('NO')", "neg": "r,g,b = map(str,input().split())\nlist_C = [r,g,b]\nnum = int(''.join(list_c))\nif num%4 == 0:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9655172413793104, "before_after_length": [61, 61], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "cC ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u509094491", "n_user": "u509094491", "pos": "r,g,b=input().split()\nsum=100*r+10*g+b\nif int(sum)%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b=input().split()\nsum=100*r+10*g+b\nif sum%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9615384615384616, "before_after_length": [48, 45], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "int() ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u687574784", "n_user": "u687574784", "pos": "# -*- coding: utf-8 -*-\nr,g,b = list(map(int, input().split()))\nprint('YES' if (10*g + b)%4==0 else 'NO')", "neg": "# -*- coding: utf-8 -*-\nr,g,b = list(map(int, input().split()))\nprint('YES' if 10*(g + b)%4==0 else 'NO')", "jacc_sim": 1.0, "before_after_length": [51, 50], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "((", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u150641538", "n_user": "u670840762", "pos": "r,g,b = map(int,input().split())\nif (10*g+b)%4 ==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b = map(int,input().split())\nif r*g*b%4==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.92, "before_after_length": [43, 41], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "r(10*+) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u170650966", "n_user": "u363610900", "pos": "r,g,b = input().split()\nprint(\"YES\" if int(r+g+b) % 4 == 0 else \"NO\")\n", "neg": "r,g,b = input().split()\nprint('YES' if r+g+b%4==0 else 'NO')", "jacc_sim": 0.9523809523809523, "before_after_length": [33, 29], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "'\"'\"int() '\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u588633699", "n_user": "u458608788", "pos": "a, b, c = map(int,input().split())\nif (a*100+b*10+c)%4==0:\n print('YES')\nelse:\n print('NO')", "neg": "a,b,c=map(int,input().split())\nprint(\"NO\" if 100*a+10*b+c%4 else \"YES\")", "jacc_sim": 0.9230769230769231, "before_after_length": [47, 35], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " if (a*100+b*10+c)%4==0:\n 'YES')\n\"NO\" if 100*a+10*b+c%4 :\n\"YES\" print('NO'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u525529288", "n_user": "u440129511", "pos": "r, b, g = input().split()\nnum = int(r + b + g)\nif num % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b=map(int,input().split())\nif ((g+b)%4) == 0 :print('YES')\n else:print('NO')", "jacc_sim": 0.9166666666666666, "before_after_length": [44, 39], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " b, ,b map(int,\nnum = int(r + b + gnum ((g+b) ):\n: '\"'\" \n '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u780354103", "n_user": "u780354103", "pos": "r,g,b = map(int,open(0).read().split())\n\nif (r * 100 + g * 10 + b) % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "r,g,b = map(int,open(0).read().split())\n\nif r * 100 + g * 10 + b % 4:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [52, 48], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "() == 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u474925961", "n_user": "u474925961", "pos": "import sys\n\nif sys.platform =='ios':\n sys.stdin=open('input_file.txt')\n \nr,g,b=map(int,input().split())\n\nif (10*g+b)%4==0:\n\tprint(\"YES\")\nelse:\n\tprint(\"NO\")", "neg": "import sys\n\nif sys.platform =='ios':\n sys.stdin=open('input_file.txt')\n \nr,g,b=map(int,input().split())\n\nif (10*b+g)%4==0:\n\tprint(\"YES\")\nelse:\n\tprint(\"NO\")", "jacc_sim": 1.0, "before_after_length": [73, 73], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "g++g", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u003928116", "n_user": "u003928116", "pos": "a, b, c = map(int, input().split())\nd = 100*a + 10*b + c\nif d%4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "a, b, c = map(int, input().split())\nif (100*a + 10*b + c) %4 = 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9629629629629629, "before_after_length": [49, 47], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "dif(= )\nifd=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u662449766", "n_user": "u662449766", "pos": "import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n print(\"YES\" if int(\"\".join(input().split())) % 4 == 0 else \"NO\")\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n print(\"YES\" if int(input()) % 4 == 0 else \"NO\")\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9230769230769231, "before_after_length": [60, 54], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "\"\".join().split()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u990896548", "n_user": "u990896548", "pos": "if __name__ == '__main__':\n r, g, b = map(int, input().split())\n num = 100 * r + 10 * g + b\n if num % 4 == 0:\n print(\"YES\")\n else:\n print(\"NO\")", "neg": "if __name__ == '__main__':\n r, g, b = map(int, input().split())\n num = 100 * r + 10 * g + b\n if num % 4 == True:\n print(\"YES\")\n else:\n print(\"NO\")", "jacc_sim": 0.9333333333333333, "before_after_length": [63, 63], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": "0True", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u441526315", "n_user": "u768951609", "pos": "r, g, b = map(int, input().split())\nif (100*r+10*g+b) % 4 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "neg": " r,g,b=map(int,raw_input().split(' '))\n \n if (r*100+g*10+b)%4==0:\n print \"YES\"\n else:\n print \"NO\"", "jacc_sim": 0.9259259259259259, "before_after_length": [48, 56], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " raw_' ' \n r**rg**g () ()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u514299323", "n_user": "u514299323", "pos": "a,b, c = map(int, input().split())\nif (10*b+c)%4 ==0:\n print('YES')\n \nelse:\n print('NO')", "neg": "a,b,c = map(int,input.split())\nif 10*b+c%4==0:\n return 'YES'\n\nelse:\n return 'NO'", "jacc_sim": 0.9230769230769231, "before_after_length": [45, 42], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " ()() pein(urn ) pein(urn )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03693", "p_user": "u462214100", "n_user": "u703442202", "pos": "r, g, b = map(int, input().split())\nif ((100*r + 10*g + b) % 4) == 0:\n print('YES')\nelse:\n print('NO')", "neg": "r,g,b = map(int(input().split()))\ntest = 100*r + 10*g + b\namari = test % 4\nif amari == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9285714285714286, "before_after_length": [48, 56], "nl": "AtCoDeer has three cards, one red, one green, and one blue. An integer between 1 and 9 (inclusive) is written on each card: r on the red card, g on the green card, and b on the blue card. Arrange the cards in the order red, green, and blue from left to right, and read them as a three-digit integer. Determine if this integer is a multiple of 4. Constraints: 1 \u2264 r, g, b \u2264 9. Input is given in the format r g b. If the three-digit integer is a multiple of 4, print \"YES\"; otherwise, print \"NO\". Example: Input: 4 3 2, Output: YES (432 is a multiple of 4). Input: 2 3 4, Output: NO (234 is not a multiple of 4).", "diff_info": " (, )iftest= (()\namari = test)\nif amari\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u657541767", "n_user": "u657541767", "pos": "n = int(input())\na = list(map(int, input().split()))\na.sort()\nres = 0\nfor i in range(n - 1):\n res += a[i+1] - a[i]\nprint(res)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\na.sort()\nres = 0\nfor i in range(n - 1):\n res += a[i+1] - a[i]\nprint(a)\n", "jacc_sim": 1.0, "before_after_length": [60, 60], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "ares", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u361826811", "n_user": "u361826811", "pos": "\"\"\"\nauthor : halo2halo\ndate : 30, Jan, 2020\n\"\"\"\n\nimport sys\nimport itertools\n\n# import numpy as np\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN,*A = map(int, read().split())\nA.sort()\nprint(A[-1]-A[0])\n", "neg": "\"\"\"\nauthor : halo2halo\ndate : 30, Jan, 2020\n\"\"\"\n\nimport sys\nimport itertools\n\n# import numpy as np\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nN,*A = map(int, readline().split())\nA.sort()\nprint(A[-1]-A[0])\n", "jacc_sim": 1.0, "before_after_length": [102, 102], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "line", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u749491107", "n_user": "u185464141", "pos": "n = int(input())\na = list(map(int, input().split()))\nprint(max(a) - min(a))", "neg": "n = map(int, input.split())\na = list(map(int, input().split()))\nprint(max(a) - min(a))", "jacc_sim": 1.0, "before_after_length": [32, 36], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "map((, t.spli", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u016620620", "n_user": "u016620620", "pos": "houseTime = int(input())\nplace = input().split() \nplace = [int(i) for i in place]\nplace = sorted(place)\nprint(place[houseTime - 1] - place[0])", "neg": "houseTime = int(input())\nplace = input().split() \nplace = int(i) for i in place\nplace = sorted(place)\nprint(place[houseTime - 1] - place[0])\n", "jacc_sim": 1.0, "before_after_length": [50, 49], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "[]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u768816323", "n_user": "u768816323", "pos": "N=int(input())\na=[int(i) for i in input(). split ()]\nmi=a[0]\nma=a[0]\ni=0\nwhile ima:\n ma=a[i]\n if a[i]ma:\n ma=a[i]\n if a[i] -*-\n\nn = int(input())\na = list(map(int, input().split()))\n\nA = sorted(a)\nprint(A[-1] - A[0])", "neg": "# -*- coding: -*-\n\nn = int(input())\na = list[map(int(), input().split())]\n\nA = sorted(a)\nprint(A[-1] - A[0])", "jacc_sim": 1.0, "before_after_length": [55, 55], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "[(()])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u220345792", "n_user": "u220345792", "pos": "_ = input()\nA = list(map(int, input().split()))\nA.sort()\nprint(A[-1]-A[0])\n", "neg": "_\nA = list(map(int, input().split()))\nA.sort()\nprint(A[-1]-A[0])", "jacc_sim": 1.0, "before_after_length": [36, 32], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": " = input()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u780475861", "n_user": "u780475861", "pos": "_ = input()\nlst = [int(i) for i in input().split()]\n\nprint(max(lst) - min(lst))", "neg": "lst = [int(i) for i in input().split()]\n\nprint(max(lst) - min(lst))", "jacc_sim": 0.9444444444444444, "before_after_length": [33, 28], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "_ = input()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u594956556", "n_user": "u594956556", "pos": "N = int(input())\na = list(map(int, input().split()))\na.sort()\nprint(a[-1]-a[0])\n", "neg": "N = int(input())\na = list(map(int, input().split())).sort()\nprint(a[-1]-a[0])", "jacc_sim": 1.0, "before_after_length": [38, 34], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "\na\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u102242691", "n_user": "u705418271", "pos": "\nn = int(input())\na = list(map(int,input().split()))\n\na = set(a)\na = list(a)\na.sort()\n\n#print(a)\nprint(a[-1] - a[0])\n", "neg": "n=int(input())\na=list(map(int,input().split()))\na.sort()\nprint(a[n-1]a[0])", "jacc_sim": 0.9047619047619048, "before_after_length": [61, 38], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "\n \na = set(a)\na = list(a)\n)\n\n#print(an - \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u710789518", "n_user": "u453500284", "pos": "N = int(input())\na = list(map(int, input().split()))\nprint(max(a)-min(a))\n", "neg": "a = list(map(int, input().split()))\nprint(max(a) - min(a))", "jacc_sim": 0.9375, "before_after_length": [32, 25], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "N = int(input())\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u716660050", "n_user": "u716660050", "pos": "N=int(input())\na=list(set(list(map(int,input().split()))))\nans=0\na.sort()\nfor i in range(1,len(a)):\n ans+=a[i]-a[i-1]\nprint(ans)", "neg": "N=int(input())\na=list(set(list(map(int,input().split()))))\nans=0\na.sort()\nfor i in range(1,N):\n ans+=a[i]-a[i-1]\nprint(ans)", "jacc_sim": 0.9642857142857143, "before_after_length": [68, 65], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "Nlen(a)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u667024514", "n_user": "u667024514", "pos": "n = int(input())\nlis = list(map(int,input().split()))\nprint(max(lis)-min(lis))\n", "neg": "n = int(input())\nlis = list(int,input().split())\nprint(max(lis)-min(lis))", "jacc_sim": 0.9375, "before_after_length": [35, 31], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "map()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u062881897", "n_user": "u062881897", "pos": "N = int(input())\nList = list(map(int,input().split()))\nLIst = sorted(List)\nprint(LIst[-1]-LIst[0])", "neg": "N = int(input())\nList = list(map(int,input().split()))\nsorted(List)\nprint(List[-1]-List[0])", "jacc_sim": 0.95, "before_after_length": [42, 37], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "LIst = iIiI", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u408375121", "n_user": "u408375121", "pos": "N = int(input())\nA = list(map(int, input().split()))\nA.sort()\nprint(A[-1] - A[0])\n", "neg": "N = int(input())\nA = list(map(int, input()))\nA.sort()\nprint(A[-1] - A[0])", "jacc_sim": 0.9473684210526315, "before_after_length": [38, 35], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": ".split()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u580225095", "n_user": "u580225095", "pos": "# -*- coding: utf-8 -*-\n \nx = int(input())\n#x = 8\n \ny = input().split()\n#y = [\"3\",\"1\",\"4\",\"1\",\"5\",\"9\",\"2\",\"6\"]\n \nfor i in range(x):\n y[i] = int(y[i])\n \nMax = max(y)\nMin = min(y)\n \nans = Max - Min\n \nprint(ans)", "neg": "# -*- coding: utf-8 -*-\n\nx = int(input())\n#x = 8\n\ny = input()\n#y = [\"3\",\"1\",\"4\",\"1\",\"5\",\"9\",\"2\",\"6\"]\n\nfor i in range(x):\n y[i] = int(y[i])\n\nMax = max(y)\nMin = min(y)\n\nans = Max - Min\n\nprint(ans)\n", "jacc_sim": 0.9459459459459459, "before_after_length": [110, 103], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": " .split() \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u045408189", "n_user": "u045408189", "pos": "input()\nx=sorted(map(int,input().split()))\nprint(x[-1]-x[0])\n", "neg": "\nx=map(int,input().split())\nprint(x[-1]-x[0])\n", "jacc_sim": 0.9411764705882353, "before_after_length": [29, 24], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "input()sorted()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u296160120", "n_user": "u296160120", "pos": "n = int(input())\nl = list(map(int,input().split()))\nl.sort()\nprint(abs(l[0]-l[len(l)-1]))", "neg": "n = int(input())\nl = list(map(int.input().split()))\nl.sort()\nprint(abs(l[0]-l[len(l)-1]))", "jacc_sim": 0.9523809523809523, "before_after_length": [43, 43], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": ".,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u762008592", "n_user": "u762008592", "pos": "N=int(input())\na_n=[int(i) for i in input().split()]\n\nprint(max(a_n)-min(a_n))", "neg": "N=int(input())\na_n=[int(x) for i in input().split()]\n\nprint(max(a_n)-min(a_n))", "jacc_sim": 0.9473684210526315, "before_after_length": [39, 39], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "xi", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u568789901", "n_user": "u568789901", "pos": "N=int(input())\nA=list(map(int,input().split()))\nA=sorted(A)\nprint(A[-1]-A[0])\n", "neg": "A=list(map(int,input().split()))\nA=sorted(A)\nprint(A[-1]-A[0])\n", "jacc_sim": 0.9473684210526315, "before_after_length": [40, 33], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "N=int(input())\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03694", "p_user": "u339199690", "n_user": "u339199690", "pos": "# %%\nn = int(input())\na = list(map(int, input().split()))\nnew = sorted(a)\nprint(new[-1] - new[0])", "neg": "# %%\nn = int(input())\na = list(map(int, input().split()))\nnew = sorted(a)\nprint(a[-1] - a[0])", "jacc_sim": 1.0, "before_after_length": [42, 42], "nl": "Score: 200 points\n\nProblem Statement:\nIt is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts. There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses. Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.\n\nConstraints:\n- 1 \u2264 N \u2264 100\n- 0 \u2264 a_i \u2264 1000\n- a_i is an integer.\n\nInput:\nInput is given from Standard Input in the following format:\nN\na_1 a_2 ... a_N\n\nOutput:\nPrint the minimum distance to be traveled.\n\nSample Input 1:\n4\n2 3 7 9\n\nSample Output 1:\n7\nThe travel distance of 7 can be achieved by starting at coordinate 9 and traveling straight to coordinate 2. It is not possible to do with a travel distance of less than 7, and thus 7 is the minimum distance to be traveled.\n\nSample Input 2:\n8\n3 1 4 1 5 9 2 6\n\nSample Output 2:\n8\nThere may be more than one house at a position.", "diff_info": "anewanew", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u606045429", "n_user": "u606045429", "pos": "N, S = open(0)\nS = S.strip()\n\ncnt = left = 0\nfor s in S:\n if s == \"(\":\n cnt += 1\n else:\n cnt -= 1\n\n if cnt < 0:\n left = max(left, -cnt)\n\nS = \"(\" * left + S\n\nright = 0\nfor s in S:\n if s == \"(\":\n right += 1\n else:\n right -= 1\n\nS = S + \")\" * right\n\nprint(S)", "neg": "N, S = open(0)\n\ncnt = left = 0\nfor s in S:\n if s == \"(\":\n cnt += 1\n else:\n cnt -= 1\n\n if cnt < 0:\n left = max(left, -cnt)\n\nS = \"(\" * left + S\n\nright = 0\nfor s in S:\n if s == \"(\":\n right += 1\n else:\n right -= 1\n\nS = S + \")\" * right\n\nprint(S)", "jacc_sim": 0.9259259259259259, "before_after_length": [124, 117], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "S = S.strip()\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u402629484", "n_user": "u402629484", "pos": "N = int(input())\nS = input()\n \nans = []\nst = 0\nfor c in S:\n if c == '(':\n st += 1\n ans.append('(')\n else:\n if st > 0:\n st -= 1\n else:\n ans.insert(0, '(')\n ans.append(')')\n \nans.extend(')' * st)\n \nprint(*ans, sep='')", "neg": "N = int(input())\nS = input()\n\nans = []\nst = 0\nfor c in S:\n if c == '(':\n st += 1\n ans.append('(')\n else:\n if st > 0:\n st -= 1\n else:\n ans.insert(0, '(')\n ans.append(')')\n print(*ans, sep='')\n\nans.extend(')' * st)\n\nprint(*ans, sep='')\n", "jacc_sim": 1.0, "before_after_length": [106, 113], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": " \nans.extend(')'*st)\n\n\n\nans.extend(')' * st)\n\nprint(*ans, sep='')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u498487134", "n_user": "u498487134", "pos": "\n\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\n\ndef main():\n mod=10**9+7\n N=I()\n S=input()\n \n st=0\n a=\"\"\n b=\"\"\n for i in range(N):\n s=S[i]\n if st==0 and s==\")\":\n a+=\"(\"\n elif s==\"(\":\n st+=1\n else:\n st-=1\n b+=\")\"*st\n print(a+S+b)\n\nmain()\n", "neg": "import sys\ninput = sys.stdin.readline\n\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\n\ndef main():\n mod=10**9+7\n N=I()\n S=input()\n \n st=0\n a=\"\"\n b=\"\"\n for i in range(N):\n s=S[i]\n if st==0 and s==\")\":\n a+=\"(\"\n elif s==\"(\":\n st+=1\n else:\n st-=1\n b+=\")\"*st\n print(a+S+b)\n\nmain()\n", "jacc_sim": 0.9166666666666666, "before_after_length": [162, 173], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "import sys\ninput = sys.stdin.readline", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u580225095", "n_user": "u580225095", "pos": "# -*- coding: utf-8 -*-\nx = int(input())\ny = input()\n\nz = y\n\nwhile z.find(\"()\") != -1:\n z = z.replace(\"()\",\"\")\n\na = z.count(\"(\")\nb = z.count(\")\")\n\nans = y\n\nfor i in range(a):\n ans = ans + \")\"\n\nfor i in range(b):\n ans = \"(\" + ans\n\nprint(ans)\n", "neg": "# -*- coding: utf-8 -*-\nx = int(input())\ny = input()\n\nz = y\n\nwhile z.find(\"()\") != -1:\n z = z.replace(\"()\",\"\")\n\na = z.count(\"(\")\nb = z.count(\")\")\n\nans = z\n\nfor i in range(a):\n ans = ans + \")\"\n\nfor i in range(b):\n ans = \"(\" + ans\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [117, 117], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "zy", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u259190728", "n_user": "u259190728", "pos": "n=int(input())\ns=input()\nl=[]\nfor i in s:\n if i==')':\n if len(l)>0:\n if l[-1]=='(':\n l.pop()\n else:\n l.append(i)\n else:\n l.append(i)\n else:\n l.append(i)\nprint(l.count(')')*'(' + s +l.count('(')*')')\n", "neg": "n=int(input())\ns=input()\nl=[]\nfor i in s:\n if i==')':\n if len(l)>0:\n if l[-1]=='(':\n l.pop()\n else:\n l.append(i)\n else:\n l.append(i)\nprint(len(l)*'(' + s)", "jacc_sim": 0.9655172413793104, "before_after_length": [114, 90], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": " else:\n l.append(i)\ne.coutl')' +l.count('('*')')\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u652737716", "n_user": "u652737716", "pos": "import re\n\nN = int(input())\nS = input()\n\nwhile True:\n pre = S\n S = re.sub(r'\\(((L|R)*?)\\)', r'L\\1R', S)\n if pre == S:\n break\n\nS = '(' * S.count(')') + S + ')' * S.count('(')\nS = S.replace('L', '(')\nS = S.replace('R', ')')\nprint(S)", "neg": "import re\n\nS = input()\n\nwhile True:\n pre = S\n S = re.sub(r'\\(((L|R)*?)\\)', r'L\\1R', S)\n if pre == S:\n break\n\nS = '(' * S.count(')') + S + ')' * S.count('(')\nS = S.replace('L', '(')\nS = S.replace('R', ')')\nprint(S)", "jacc_sim": 0.9354838709677419, "before_after_length": [113, 106], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "\nN = int(input())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u696444274", "n_user": "u696444274", "pos": "\nimport math\nimport itertools\nimport statistics\n#import collections\nn = int(input())\ns = input()\n\namari = 0\nplus = 0\n\nfor i in range(n):\n if s[i]==\"(\":\n plus += 1\n else:\n if plus <= 0:\n amari +=1\n else:\n plus -= 1\n\nfor i in range(amari):\n print(\"(\", end=\"\")\n\nprint(s, end=\"\")\n\nfor i in range(plus):\n print(\")\", end=\"\")\n\n\n", "neg": "\nimport math\nimport itertools\nimport statistics\n#import collections\nn = int(input())\ns = input()\n\namari = 0\nplus = 0\n\nfor i in range(n):\n if s[i]==\")\":\n plus += 1\n else:\n if plus <= 0:\n amari +=1\n else:\n plus -= 1\n\nfor i in range(plus):\n print(\"(\", end=\"\")\n\nprint(s, end=\"\")\n\nfor i in range(amari):\n print(\")\", end=\"\")\n\n\n\n\n", "jacc_sim": 1.0, "before_after_length": [134, 136], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": ")(plusamariplusamari\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u584174687", "n_user": "u584174687", "pos": "\ndef main():\n num = int(input())\n data = list(input())\n\n left, righ = 0, 0\n for i in range(num):\n ele = data[i]\n if ele == '(':\n righ += 1\n else:\n if righ > 0:\n righ -= 1\n else:\n left += 1\n\n ans = ['(' for i in range(left)] + data + [')' for i in range(righ)]\n print(''.join(ans))\n\n\n\n\n\n\nif __name__ == '__main__':\n main()\n", "neg": "\n\ndef main():\n num = int(input())\n data = list(input())\n\n left, righ = 0, 0\n for i in range(num)[::-1]:\n ele = data[i]\n if ele == ')':\n righ += 1\n elif ele == '(':\n if righ > 0:\n righ -= 1\n else:\n data[i] = '()'\n add_data = ['(' for i in range(righ)]\n data = add_data + data\n print(''.join(data))\n\n\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.918918918918919, "before_after_length": [145, 153], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "\n:\n ele = datai]\n if ele == '('\n righ += 1\n else\n if righ > 0:\n righ = \n else:\n left += 1\n\n ans = ['(' for i in range(left):\n+ ele = + ')' for in range(righ)\n if ele == ')':\n righ += 1\n elif ele == '(':\n if righ > 0:\n righ -= 1\n else:\n data[i] = '()'\n add_data = ['(' for i in range(righ)]\n data = add_data + datadta))\n\n\n\n\nif __same__ == '__main__':\n main()\n\n\n\n\n\nif __name__ == '__main__':\n main()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u107639613", "n_user": "u107639613", "pos": "import sys\nfrom collections import defaultdict\ndef input(): return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n S = input()\n height = 0\n deepest = 0\n for c in S:\n if c == '(':\n height += 1\n else:\n height -= 1\n deepest = min(deepest, height)\n ans = '(' * (-deepest) + S + ')' * (height - deepest)\n print(ans)\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\nfrom collections import defaultdict\ndef input(): return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n S = input()\n height = 0\n deepest = 0\n for c in S:\n if c == '(':\n height += 1\n else:\n height -= 1\n deepest = min(deepest, height)\n print(deepest, height)\n ans = '(' * (-deepest) + S + ')' * (height - deepest)\n print(ans)\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 1.0, "before_after_length": [134, 143], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "aprit(deepet,= '(' * (-deepest) + S + ')' * ()\n ans = '(' * (deepest) + S + ')' * (height -", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u368780724", "n_user": "u368780724", "pos": "N = input()\ns = input()\ns1 = s\ns2 = ''\nwhile s1 != s2: \n s2 = s1\n s1 = s1.replace('()','')\ns2 = s1.replace('(','')\n\nprint(len(s2)*'(' + s + (len(s1)-len(s2))*')')\n", "neg": "N = input()\ns = input()\ns1 = s\ns2 = ''\nwhile s1 != s2: \n s2 = s1\n s1 = s1.replace('()','')\nprint(s1)\ns2 = s1.replace('(','')\n\nprint(len(s2)*'(' + s + (len(s1)-len(s2))*')')\n", "jacc_sim": 1.0, "before_after_length": [88, 94], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "print(s1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u442810826", "n_user": "u442810826", "pos": "import numpy as np\nimport copy\n\nN= int(input())\nS=input()\nSS= copy.copy(S)\nS = list(S)\n#N, A, B = map(int, input().split())\n\nflag = 1\n#print(len(S))\nwhile flag == 1:\n flag = 0\n flag2 = 1\n i = 0\n while flag2 and len(S)>1:\n # for i in range(len(S)-1):\n #print(S)\n if S[i]==\"(\" and S[i+1] ==\")\":\n # print(S, i)\n flag = 1\n del S[i] \n del S[i]\n i -= 1\n # print(S, i)\n i += 1\n i = max(0,i)\n if i+1>=len(S):\n flag2 = 0\na=0\nb=0\nfor i in range(len(S)):\n if S[i]==\"(\":\n b+=1\n elif S[i]==\")\":\n a+=1\n#print(S)\n# initialization of string to \"\"\nA = \"\"\nB = \"\"\n\n# traverse in the string\nfor x in range(a):\n \n A += \"(\" \nfor x in range(b): \n B += \")\" \n\n \n#print(str(A)+SS+str(B))\nprint(A+SS+B)\n \n\n", "neg": "import numpy as np\nimport copy\n\nN= int(input())\nS=input()\nSS= copy.copy(S)\nS = list(S)\n#N, A, B = map(int, input().split())\n\nflag = 1\nprint(len(S))\nwhile flag == 1:\n flag = 0\n flag2 = 1\n i = 0\n while flag2:\n # for i in range(len(S)-1):\n print(i)\n if S[i]==\"(\" and S[i+1] ==\")\":\n flag = 1\n del S[i] \n del S[i+1]\n i -= 2\n i += 1\n i = max(0,i)\n if i>len(S):\n flag2 = 0\na=0\nb=0\nfor i in range(len(S)):\n if S[i]==\"(\":\n b+=1\n elif S[i]==\")\":\n a+=1\nprint(S)\n# initialization of string to \"\"\nA = \"\"\nB = \"\"\n\n# traverse in the string\nfor x in range(a):\n \n A += \"(\" \nfor x in range(b): \n B += \")\" \n\n \n#print(str(A)+SS+str(B))\nprint(A+SS+B)\n \n", "jacc_sim": 0.9818181818181818, "before_after_length": [355, 325], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "# and len(S)>1#iS# print(S, i)\n +121\n # print(S, i)+1=#\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u225388820", "n_user": "u225388820", "pos": "n=int(input())\ns=input()\na=0 #\"(\"\nb=0 #\")\"\ncnt=0\nfor i in range(n):\n if s[i]==\"(\":\n if a left_cnt:\n B.append(\"(\")\n else:\n right_cnt += 1\n\nC = [\")\"] * (left_cnt - right_cnt)\nB.extend(A)\nB.extend(C)\nprint(\"\".join(B))\n", "neg": "from collections import deque\nN = int(input())\nS = list(input())\nA = deque()\nB = []\n\nleft_cnt = 0\nright_cnt = 0\nfor s in S:\n if s == \"(\":\n left_cnt += 1\n A.append(\"(\")\n else:\n A.append(\")\")\n if right_cnt + 1 <= left_cnt:\n B.append(\"(\")\n else:\n right_cnt += 1\n\nC = [\")\"] * (left_cnt - right_cnt)\nB.extend(A)\nB.extend(C)\nprint(\"\".join(B))\n", "jacc_sim": 0.9473684210526315, "before_after_length": [152, 152], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "><=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u405256066", "n_user": "u405256066", "pos": "from sys import stdin\nN = int(stdin.readline().rstrip())\nS = (stdin.readline().rstrip())\nstack = []\nl = 0\nr = 0\nfor i in range(N):\n if S[i] == \"(\":\n stack.append(1)\n elif S[i] == \")\":\n if not stack:\n l += 1\n else:\n stack.pop()\n\nr = len(stack)\nprint(l*\"(\" + S + r*\")\")", "neg": "from sys import stdin\nN = int(stdin.readline().rstrip())\nS = (stdin.readline().rstrip())\nstack = []\nl = 0\nr = 0\nfor i in range(N):\n if S[i] == \"(\":\n stack.append(1)\n elif S[i] == \")\":\n if not stack:\n r += 1\n else:\n stack.pop()\n\nl = len(stack)\nprint(l*\"(\" + S + r*\")\")", "jacc_sim": 1.0, "before_after_length": [119, 119], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "rllr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u155687575", "n_user": "u155687575", "pos": "n = int(input())\ns = input()\n\nleft = 0\nleftplus = 0\nfor i in range(len(s)):\n if s[i] == '(':\n left += 1\n else:\n if left == 0:\n leftplus += 1\n else:\n left -= 1\n\nright = 0\nrightplus = 0\nr = s[::-1]\nfor i in range(len(r)):\n if r[i] == ')':\n right += 1\n else:\n if right == 0:\n rightplus += 1\n else:\n right -= 1\nprint('('*leftplus + s + ')'*rightplus)", "neg": "n = int(input())\ns = input()\n\nleft = 0\nleftplus = 0\nfor i in range(len(s)):\n if s[i] == '(':\n left += 1\n else:\n if left == 0:\n leftplus += 1\n else:\n left -= 1\n\nright = 0\nrightplus = 0\nr = s[::-1]\nfor i in range(len(reverse)):\n if r[i] == ')':\n right += 1\n else:\n if right == 0:\n rightplus += 1\n else:\n right -= 1\nprint('('*leftplus + s + ')'*rightplus)", "jacc_sim": 0.9666666666666667, "before_after_length": [159, 159], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "everse", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u977193988", "n_user": "u977193988", "pos": "import sys\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\nsys.setrecursionlimit(10 ** 9)\n\n\ndef main():\n N = int(input())\n S = list(input())\n answer = \"\"\n right = 0\n left = 0\n for s in S:\n if s == \"(\":\n if right > 0:\n answer = \"(\" * right + answer\n answer += \")\" * right\n right = 0\n left += 1\n answer += \"(\"\n else:\n if left > 0:\n answer += \")\"\n left -= 1\n else:\n right += 1\n if left > 0:\n answer += \")\" * left\n if right > 0:\n answer = \"(\" * right + answer + \")\" * right\n print(answer)\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "import sys\n\n\ndef input():\n return sys.stdin.readline().strip()\n\n\nsys.setrecursionlimit(10 ** 9)\n\n\ndef main():\n N = int(input())\n S = list(input())\n answer = \"\"\n cnt = 0\n for s in S:\n if s == \"(\":\n cnt += 1\n answer += \"(\"\n else:\n if cnt > 0:\n answer += \")\"\n cnt -= 1\n else:\n answer += \"()\"\n if cnt > 0:\n answer += \")\" * cnt\n print(answer)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.925, "before_after_length": [209, 157], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "cnrighleft = 0\n cif right > 0:\n aswer = \"(\" * right + answer\n answer += \")\" * right\n right = 0\n lefcnlefcnlefanswe += \"()\"\n fghtcn+= 1\n if lefcleft\n if right > 0:\n aswer = \"(\" * right + answer + \")\" * righ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u413165887", "n_user": "u413165887", "pos": "n = int(input())\ns = str(input())\n\nr = 0\nl = 0\nfor i in range(n):\n if r <= 0:\n if s[i] == ')':\n l += 1\n else:\n r += 1\n else:\n if s[i] == ')':\n r -= 1\n else:\n r += 1\nresult = '('*abs(l) + s + ')'*abs(r)\n\nprint(result)", "neg": "n = int(input())\ns = str(input())\n\nif s[0] == ')':\n s = '(' + s\nif s[-1] == '(':\n s += ')'\n\nr = 0\nl = 0\nfor i in range(n):\n if r <= 0:\n if s[i] == ')':\n l += 1\n else:\n r += 1\n else:\n if s[i] == ')':\n r -= 1\n else:\n r += 1\nresult = '('*abs(l) + s + ')'*abs(r)\n\nprint(result)", "jacc_sim": 1.0, "before_after_length": [113, 144], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "\n\nif s[0] == ')':\n s = '(' + s\nif s[-1] == '(':\n s += ')'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u970899068", "n_user": "u970899068", "pos": "n=int(input())\ns=list(input())\n\nfor i in range(n):\n if s[i]==')':\n s[i]=1\n else:\n s[i]=-1\n\nans=0\nv=[]\nfor i in range(n):\n ans+=s[i]\n if ans>0:\n v.append(-1)\n ans-=1\ns=v+s\nif ans<0:\n for i in range(abs(ans)):\n s.append(1)\nfor i in range(len(s)):\n if s[i]==-1:\n s[i]='('\n else:\n s[i]=')'\nprint(''.join(s))\n \n \n \n \n \n\n \n \n", "neg": "n=int(input())\ns=list(input())\n\nfor i in range(n):\n if s[i]==')':\n s[i]=1\n else:\n s[i]=-1\n\nans=0\nv=[]\nfor i in range(n):\n ans+=s[i]\n if ans>0:\n v.append(-1)\n ans-=1\ns=v+s\nif ans<0:\n for i in range(abs(ans)):\n s.append(1)\nfor i in range(len(s)):\n if s[i]==-1:\n s[i]='('\n else:\n s[i]=')'\nprint(*s)\n \n \n \n \n \n\n \n \n", "jacc_sim": 0.9393939393939394, "before_after_length": [197, 194], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "*''.join()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u466331465", "n_user": "u466331465", "pos": "from itertools import groupby\nN = int(input())\nS = input()\nans = []\n#S1 = groupby(S)\na=0\na1=0\nb=0\nb1=0\nS1 = groupby(list(S))\nfor key,group in S1:\n group = list(group)\n if list(key)==['(']:\n a1+=len(group)\n else:\n if a1<=len(group):\n b1+=len(group)-a1\n a1 = 0\n else:\n a1 -=len(group)\nS = S+\")\"*a1\nS = \"(\"*b1+S\nprint(S)", "neg": "from itertools import groupby\nN = int(input())\nS = input()\nans = []\n#S1 = groupby(S)\na=0\na1=0\nb=0\nb1=0\nS1 = groupby(list(S))\nfor key,group in S1:\n group = list(group)\n if list(key)==['(']:\n a=len(group)\n a1+=a\n else:\n b=len(group)\n b1+=b-a\n a1-=b\nS = \"(\"*b1+S\nS = S+\")\"*a1\nprint(\"\".join(S))", "jacc_sim": 0.9230769230769231, "before_after_length": [164, 154], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "=len(group)\n aa\n es:\n b=le else:\n if a1<=len(group):\n blen(group)\n a\n a1 = 0\n else:\n a1 blen(group)S+()ba+SS+)(ab+\nprint(\"\".join(\nprint(S)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u057109575", "n_user": "u057109575", "pos": "N = int(input())\nS = input()\n\nd = [0] * (N + 1)\nfor i in range(N):\n d[i + 1] = d[i] + int(S[i] == \"(\") - int(S[i] == \")\")\n\na = d[-1]\nb = min(d)\n\nprint(\"(\" * -b + S + \")\" * (a - b))\n", "neg": "N = int(input())\nS = input()\n\nd = [0] * (N + 1)\nfor i in range(N):\n d[i + 1] = d[i] + int(S[i] == \"(\") - int(S[i] == \")\")\n\na = d[-1]\nb = min(d)\n\nprint(\"(\" * -a + S + \")\" * (b - a))\n\n", "jacc_sim": 1.0, "before_after_length": [99, 100], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "abbaab\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u614550445", "n_user": "u614550445", "pos": "N = int(input())\nS = input()\ns = S[:]\nwhile '()' in s:\n s = s.replace('()', '')\nans = '(' * s.count(')') + S + ')' * s.count('(')\nprint(ans)\n", "neg": "N = int(input())\nS = input()\ns = S[:]\nwhile '()' in s:\n s.replace('()', '')\nans = '(' * s.count(')') + S + ')' * s.count('(')\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [63, 61], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": " s =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u944209426", "n_user": "u944209426", "pos": "n=int(input())\ns=input()\nx=[]\ny=0\nfor i in range(n):\n if s[i]==\"(\":\n x.append(\"(\")\n y+=1\n elif y>0:\n x.append(\")\")\n y-=1\n else:\n x.append(\")\")\n x=[\"(\"]+x\nx=x+[\")\"]*y\nprint(\"\".join(x))", "neg": "n=int(input())\ns=input()\nx=[]\ny=0\nfor i in range(n):\n if s[i]==\"(\":\n x.append(\"(\")\n y+=1\n elif y>0:\n x.append(\")\")\n y-=1\n else:\n x.append(\")\")\n x=[\"(\"]+x\nprint(\"\".join(x))", "jacc_sim": 0.9666666666666667, "before_after_length": [109, 100], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "x=x+[\")\"]*y\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u089142196", "n_user": "u089142196", "pos": "N=int(input())\nS=input()\nstack= []\nans=\"\"\nL=0\nR=0\n\nfor i in range(N):\n if S[i]==\"(\":\n stack.append(S[i])\n else:\n if len(stack)>0:\n stack.pop()\n else:\n L += 1\n\nR=len(stack)\nans = L * \"(\" + S + R * \")\"\n\nprint(ans)", "neg": "N=int(input())\nS=input()\nstack= []\nans=\"\"\nL=0\nR=0\n\nfor i in range(N):\n if S[i]==\"(\":\n stack.append(S[i])\n else:\n if len(stack)>0:\n stack.pop()\n else:\n R += 1\n\nL=len(stack)\nans = L * \"(\" + ans + R * \")\"\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [111, 111], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "L += 1\n\n=len(stack)\nans = L * \"(\"=S1\n\nL=len(stack)\nans=+LR(\" + ans + R * \"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u888092736", "n_user": "u888092736", "pos": "N = int(input())\nS = input()\ndiff = [0] * (N + 1)\nfor i in range(N):\n if S[i] == \"(\":\n diff[i + 1] = diff[i] + 1\n else:\n diff[i + 1] = diff[i] - 1\nmin_diff = min(diff)\nprint(\"(\" * -min_diff + S + \")\" * (diff[N] - min_diff))\n", "neg": "N = int(input())\nS = input()\ndiff = [0] * (N + 1)\nfor i in range(N):\n if S[i] == \"(\":\n diff[i + 1] = diff[i] + 1\n else:\n diff[i + 1] = diff[i] - 1\nmin_diff = min(diff)\nprint(\"(\" * min_diff + S + \")\" * (diff[N] - min_diff))\n", "jacc_sim": 1.0, "before_after_length": [109, 108], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u248670337", "n_user": "u248670337", "pos": "input()\ns=t=input()\nl,r=o=\"()\"\nexec('s=s'+'.replace(o,\"\")'*50)\nprint(l*(c:=s.count)(r)+t+r*c(l))", "neg": "input()\ns=t=input()\nl,r=o=\"()\"\nexec('s=s'+'.replace(o,\"\")'*50)\nprint(l*(c:=s.count)(l)+t+r*c(r))", "jacc_sim": 1.0, "before_after_length": [57, 57], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "lrrl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u268554510", "n_user": "u268554510", "pos": "N=int(input())\nS=input()\nsl=list(S)\nchange=[0]\nfor i in range(1,N):\n if (sl[i-1]==')')and(sl[i]=='('):\n change.append(i)\n\nchange.append(N)\nr_add=0\nl_add=0\nfor i in range(len(change)-1):\n A=sl[change[i]:change[i+1]]\n r=0\n l=0\n for a in A:\n if a=='(':\n l+=1\n else:\n r+=1\n \n if r==l:\n continue\n elif r>l:\n if r_add>0:\n if r_add>=r-l:\n r_add-=r-l\n else:\n l_add+=r-l-r_add\n r_add=0\n \n else:\n l_add+=r-l\n \n else:\n r_add+=l-r\n \nprint('('*l_add+S+')'*r_add)", "neg": "N=int(input())\nS=input()\nsl=list(S)\nchange=[0]\nfor i in range(1,N):\n if (sl[i-1]==')')and(sl[i]=='('):\n change.append(i)\n\nchange.append(N)\nr_add=0\nl_add=0\nfor i in range(len(change)-1):\n A=sl[change[i]:change[i+1]]\n r=0\n l=0\n for a in A:\n if a=='(':\n l+=1\n else:\n r+=1\n \n if r==l:\n continue\n elif r>l:\n l_add+=r-l\n r_add-=r-l\n else:\n r_add+=l-r\n l_add-=l-r\n \nprint('('*l_add+S+')'*r_add)", "jacc_sim": 1.0, "before_after_length": [277, 233], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "ifl_add+=r-l\n >0-=r-l\n elser_add+=l-r\nifr l>=rl:\n r_add-=r-l\n else:\n l_add+=r-l-r_add\n r_add=0\n \n else:\n l_add+=r-l\n \n else:\n r_add+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03696", "p_user": "u414458988", "n_user": "u414458988", "pos": "def main():\n n = int(input())\n s = input()\n left = 0\n right = 0\n for i in range(n):\n if s[i] == '(':\n right += 1\n else:\n if right == 0:\n left += 1\n else:\n right -= 1\n print('('*left+s+')'*right)\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n n = int(input())\n s = list(input())\n left = 0\n right = 0\n for i in range(n):\n if s[i] == '(':\n right += 1\n else:\n if right == 0:\n left += 1\n else:\n right -= 1\n res = ''\n print('('*left+s+')'*right)\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9354838709677419, "before_after_length": [106, 113], "nl": "You are given a string S of length N consisting of ( and ). Your task is to insert some number of ( and ) into S to obtain a correct bracket sequence. A correct bracket sequence is defined as follows: () is a correct bracket sequence. If X is a correct bracket sequence, the concatenation of (, X, and ) in this order is also a correct bracket sequence. If X and Y are correct bracket sequences, the concatenation of X and Y in this order is also a correct bracket sequence. Find the shortest correct bracket sequence that can be obtained. If there is more than one such sequence, find the lexicographically smallest one.\n\nConstraints:\n- The length of S is N.\n- 1 \u2264 N \u2264 100\n- S consists of ( and ).\n\nInput:\nInput is given from Standard Input in the following format:\nN\nS\n\nOutput:\nPrint the lexicographically smallest string among the shortest correct bracket sequences that can be obtained by inserting some number of ( and ) into S.\n\nSample Input 1:\n3\n())\n\nSample Output 1:\n(())\n\nSample Input 2:\n6\n)))())\n\nSample Output 2:\n(((()))())\n\nSample Input 3:\n8\n))))((((\nSample Output 3:\n(((())))(((())))", "diff_info": "list()res = ''\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u366959492", "n_user": "u774380666", "pos": "a,b=(int(x) for x in input().split())\nif a+b>=10:\n print(\"error\")\nelse:\n print(a+b)\n ", "neg": "a,b=int(x) for x in input().split(' ')\nprint(\"error\" if a+b>=10 else a+b)", "jacc_sim": 0.9545454545454546, "before_after_length": [43, 33], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "()' 'if a+b>=10:\n )\n if a+b>=10 :\n print(\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u318661636", "n_user": "u318661636", "pos": "a,b = map(int,input().split())\n\nprint(a+b if a+b < 10 else 'error')\n", "neg": "a,b = map(int,input().split())\n\nprint(a+b if a+b < 10 else error)", "jacc_sim": 0.9473684210526315, "before_after_length": [30, 28], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "''\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u127856129", "n_user": "u334712262", "pos": "a,b=map(int,input().split())\nif a+b>=10:\n print(\"error\")\nelse:\n print(a+b)\n", "neg": "a, b = map(int, input().split())\nif a + b >10:\n print('error')\nelse:\n print(a+b)", "jacc_sim": 1.0, "before_after_length": [39, 37], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " ='\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u552822163", "n_user": "u552822163", "pos": "def print_add():\n\tA, B = [int(i) for i in input().split()]\n\n\tif A+B > 9:\n\t\tprint('error')\n\t\treturn \n\tprint(A+B)\n\treturn\n\t\nprint_add()", "neg": "A, B = [int(i) for i in input().split()]\n\nif A+B > 9:\n\tprint('error')\n\treturn\nprint(A+B)", "jacc_sim": 0.9230769230769231, "before_after_length": [63, 42], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "def print_add():\n\t\t\t\t \t\n\treturn\n\t\nprint_add()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u771532493", "n_user": "u771532493", "pos": "a,b=(int(i) for i in input().split())\nif a+b>=10:\n print('error')\nelse:\n print(a+b)", "neg": "a,b=(int(i) for i in input().split())\nif a+b>+10:\n print('error')\nelse:\n print(a+b)", "jacc_sim": 1.0, "before_after_length": [41, 41], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "+=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u047535298", "n_user": "u047535298", "pos": "a, b = map(int, input().split())\nans = \"error\" if(a + b >= 10) else a + b\nprint(ans)\n", "neg": "a, b = map(int, input().spkit())\nans = \"error\" if(a + b >= 10) else a + b\nprint(ans)\n", "jacc_sim": 0.9047619047619048, "before_after_length": [36, 37], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "kl", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u015318523", "n_user": "u077019541", "pos": "A, B = map(int, input().split())\nif A + B >= 10:\n print('error')\nelse:\n print(A + B)\n ", "neg": "A,B = map(int,input().split())\nif A+B<=10:\n print(\"error\")\nelse:\n print(A+B)", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 38], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " < > \"'\"' \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u526532903", "n_user": "u481026841", "pos": "a,b = list(map(int, input().split()))\nif a + b >= 10:\n print(\"error\")\nelse:\n print(a + b)\n", "neg": "a,b = map(int,input().split())\nn = a + b\nif n >= 10:\n print('error')\nelse:\n print('n')", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 39], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "list( )ifn =\nif n'\"'\"'n'a + b\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u392029857", "n_user": "u309120194", "pos": "A, B = map(int, input().split())\nif 10 <= (A+B):\n print('error')\nelse:\n print(A+B)", "neg": "A, B = map(int, input().split())\n\nif A + B < 10: print(C)\nelse: print('error')", "jacc_sim": 0.9523809523809523, "before_after_length": [38, 32], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "\n10A + B=10(A+B)\n print(C)\nelse:\nelse:\n print(A+B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u609061751", "n_user": "u609061751", "pos": "import sys\ninput = sys.stdin.readline\nA, B = [int(x) for x in input().split()]\nif A + B >= 10:\n print(\"error\")\nelse:\n print(A + B)\n", "neg": "import sys\ninput = sys.stdin.readline\nA, B = [int(x) for x in inpput().split()]\nif A + B >= 10:\n print(\"error\")\nelse:\n print(A + B)", "jacc_sim": 0.9655172413793104, "before_after_length": [55, 55], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "p\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u083668616", "n_user": "u609062428", "pos": "A, B = map(int, input().split())\nif A+B >= 10: print('error')\nelse: print(A+B)", "neg": "S,A,B = map(int, input().split())\nS=A+B\nif S>=10:\n\tprint('error')\nelse:\n\tprint(S)\n\n", "jacc_sim": 0.9523809523809523, "before_after_length": [33, 44], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "S, S=if \nifS \n\t \n\tSA+B\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u547748135", "n_user": "u547748135", "pos": "a, b = map(int,input().split())\n\nif( (a+b) >= 10):\n print(\"error\")\nelse:\n print(a+b)", "neg": "a, b = map(int,input().split())\n\nif( (a+b) >= 10):\n print(\"error\")\nelse:\n print(A+B)", "jacc_sim": 0.9090909090909091, "before_after_length": [41, 41], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "AaBb", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u637824361", "n_user": "u760794812", "pos": "A, B = map(int, input().split())\nif A + B < 10:\n print(A+B)\nelse:\n print(\"error\")", "neg": "A,B = map(int,input().split()) \nif A + B < 10:\n prin(A+B)\nelse:\n print('error')", "jacc_sim": 0.9523809523809523, "before_after_length": [37, 39], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " t'\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u962718741", "n_user": "u962718741", "pos": "#!/usr/bin/env python3\n\ndef main():\n a, b = map(int, input().split())\n print(a + b if a + b < 10 else 'error')\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "#!/usr/bin/env python3\n\ndef main():\n a, b = map(int, input().split())\n print(a + b if a + b < 10 else 'errpr')\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9375, "before_after_length": [63, 64], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "po", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u157085392", "n_user": "u157085392", "pos": "[a,b] = [int(x) for x in input().split()]\nif a+b < 10:\n print(a+b)\nelse:\n print(\"error\")\n ", "neg": "[a,b] = [int(x) for x in input().split()]\nif a+b < 10:\n print(a+b)\nelse:\n print(\"None\")\n ", "jacc_sim": 0.92, "before_after_length": [46, 46], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "Nerrrne", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u887207211", "n_user": "u887207211", "pos": "A, B = map(int,input().split())\n\nif(A+B < 10):\n print(A+B)\nelse:\n print(\"error\")", "neg": "A, B = map(int,input().split())\nif(A+B > 10):\n print(\"error\")\nelse:\n print(A+B)", "jacc_sim": 0.9047619047619048, "before_after_length": [39, 38], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "\n><:\n print(A+B)\nelse\nelse:\n print(A+B)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u668503853", "n_user": "u145600939", "pos": "a,b=map(int,input().split())\nif a+b >=10:print(\"error\")\nelse:print(a+b)", "neg": "a,b = map(int,input().split())\nif a+b >= 10:\n print('error')\nelse:\n print('a+b')", "jacc_sim": 1.0, "before_after_length": [33, 37], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " \n '\"'\"\n ''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u425278297", "n_user": "u163320134", "pos": "a,b = map(int,input().split())\ns = a+b\nprint('error') if s>=10 else print(s)\n", "neg": "a,b=map(int,input().split())\nif a+b>=10:\n print('error')\nelse:\n print('a+b')", "jacc_sim": 0.9047619047619048, "before_after_length": [34, 38], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " ifs =>=10: \n if s>=10 :\n s'a+b'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u319805917", "n_user": "u518556834", "pos": "a,b=map(int,input().split())\nif a+b>=10:\n print(\"error\")\nelse:\n print(a+b)", "neg": "a,b = map(int(input().split()))\nif a+b >= 10:\n print(\"error\")\nelse:\n print(a+b)", "jacc_sim": 1.0, "before_after_length": [38, 38], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " (,) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u919521780", "n_user": "u717626627", "pos": "\na, b = list(map(int, input().split()))\n\nif a + b < 10:\n\tprint(a + b)\nelse:\n\tprint('error')", "neg": "a,b = map(int, input().split())\n\nif a + b < 10:\n print('Yes')\nelse:\n print('error')", "jacc_sim": 0.9090909090909091, "before_after_length": [42, 36], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "\n list()\t 'Yes'a + b\t ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u936035004", "n_user": "u903005414", "pos": "a,b = map(int,input().split())\nprint(\"error\" if a+b>=10 else a+b)", "neg": "a, b = map(int, input().split())\nprint('error' if a + b > 10 else a + b)", "jacc_sim": 1.0, "before_after_length": [29, 28], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " '\"'\" = ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u098613858", "n_user": "u571832343", "pos": "a, b = map(int, input().split())\nif a+b>=10:\n print('error')\nelse:\n print(a+b)\n", "neg": "a,b = map(int,input().split())\nif a+b > 10:\n print('error')\nelse:\n print(a+b)", "jacc_sim": 1.0, "before_after_length": [39, 37], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " = \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u667084803", "n_user": "u609814378", "pos": "A,B=map(int, input().split())\n\nif A+B<10:\n print(A+B)\nelse:\n print(\"error\")", "neg": "A,B = map(int, input().split())\n\nA_B = (A+B)\n\nif A <= 10:\n print(A_B)\nelse:\n print(\"error\")", "jacc_sim": 0.9523809523809523, "before_after_length": [38, 47], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " A_B = (A+B)\n\n +B= _+ ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u897575257", "n_user": "u478296955", "pos": "a,b = map(int, input().split())\nif (a+b>=10):\n\tprint(\"error\")\nelse:\n\tprint(a+b)\n", "neg": "a, b = map(int, input().split())\nprint(\"error\" if a+b>10 else a+b)", "jacc_sim": 0.95, "before_after_length": [40, 28], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " if (a+b>=10):\n\t)\n if a+b>10 :\n\tprint(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u371467115", "n_user": "u371467115", "pos": "A,B=map(int,input().split())\nif A+B<10:\n print(A+B)\nelse:\n print(\"error\")\n", "neg": "A,B=map(int,input().split())\nif A+B<10:\n print(A+B)\nelse:\n print(\"erorr\")", "jacc_sim": 0.9047619047619048, "before_after_length": [38, 39], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "rr\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u385309449", "n_user": "u385309449", "pos": "x,y = map(int,input().split())\nif x+y >= 10:\n print('error')\nelse:\n print(x+y)", "neg": "x,y = map(int,input().split())\nif x+y >= 10:\n print(x+y)\nelse:\n print('error')", "jacc_sim": 1.0, "before_after_length": [37, 37], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "x+y'error'x+y'error'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u266874640", "n_user": "u813371068", "pos": "A,B = map(int,input().split())\nif A + B >= 10:\n print(\"error\")\nelse:\n print(A + B)\n", "neg": "A,B=map(int,input().split())\nprint(A+B if A+B>10 else 'error')", "jacc_sim": 0.95, "before_after_length": [38, 28], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " if A + B >= 10:\n print(\"error\")\nelse:\n if A+B>10 else 'error'\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u788856752", "n_user": "u788856752", "pos": "A, B = map(int, input().split())\n\nprint([\"error\", A + B] [A + B < 10])\n", "neg": "A, B = map(int, input().split())\n\nprint([\"error\", A + B] A + B < 10)\n", "jacc_sim": 1.0, "before_after_length": [31, 30], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": "[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u626468554", "n_user": "u626468554", "pos": "#n = int(input())\n#n,k = map(int,input().split())\n#x = list(map(int,input().split()))\n\na,b = map(int,input().split())\n\nif a+b >= 10:\n print(\"error\")\nelse:\n print(a+b)\n\n", "neg": "#n = int(input())\n#n,k = map(int,input().split())\n#x = list(map(int,input().split()))\n\na = int(input())\nb = int(input())\n\nif a+b >= 10:\n print(\"error\")\nelse:\n print(a+b)\n\n", "jacc_sim": 1.0, "before_after_length": [79, 79], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": ",b map((,.spl)\nb = nt(inpu", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03697", "p_user": "u788023488", "n_user": "u129978636", "pos": "a,b = map(int, input().split())\nprint(a+b) if a+b <10 else print('error')", "neg": "a,b=map(int,input().split())\nprint(a+b if(a+b)<=10 else 'error')", "jacc_sim": 1.0, "before_after_length": [30, 31], "nl": "You are given two integers A and B as input. Output the value of A + B. However, if A + B is 10 or greater, output \"error\" instead. Constraints: A and B are integers, and 1 \u2264 A, B \u2264 9. Input is given in the format A B. If A + B is 10 or greater, print \"error\"; otherwise, print the value of A + B.", "diff_info": " )( ) =print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u353919145", "n_user": "u863370423", "pos": "N, A, B = [int(i) for i in input().split()]\nres = max(0, (N-2) * B - (N-2) * A + 1)\nprint(res)", "neg": "N, A, B = [int(i) for i in input().split()]\nres = max(0, (N-2) * B - (N-2) * B + 1)\nprint(res)", "jacc_sim": 1.0, "before_after_length": [49, 49], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "BA", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u423585790", "n_user": "u423585790", "pos": "#!/usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nfrom bisect import bisect_left, bisect_right\nimport sys, random, itertools, math\nsys.setrecursionlimit(10**5)\ninput = sys.stdin.readline\nsqrt = math.sqrt\ndef LI(): return list(map(int, input().split()))\ndef LF(): return list(map(float, input().split()))\ndef LI_(): return list(map(lambda x: int(x)-1, input().split()))\ndef II(): return int(input())\ndef IF(): return float(input())\ndef LS(): return list(map(list, input().split()))\ndef S(): return list(input().rstrip())\ndef IR(n): return [II() for _ in range(n)]\ndef LIR(n): return [LI() for _ in range(n)]\ndef FR(n): return [IF() for _ in range(n)]\ndef LFR(n): return [LI() for _ in range(n)]\ndef LIR_(n): return [LI_() for _ in range(n)]\ndef SR(n): return [S() for _ in range(n)]\ndef LSR(n): return [LS() for _ in range(n)]\nmod = 1000000007\ninf = 1e10\n\n#solve\ndef solve():\n n, a, b = LI()\n print(max(b * n + a - b - (a * n - a + b - 1),0))\n return\n\n\n#main\nif __name__ == '__main__':\n solve()\n", "neg": "#!/usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nfrom bisect import bisect_left, bisect_right\nimport sys, random, itertools, math\nsys.setrecursionlimit(10**5)\ninput = sys.stdin.readline\nsqrt = math.sqrt\ndef LI(): return list(map(int, input().split()))\ndef LF(): return list(map(float, input().split()))\ndef LI_(): return list(map(lambda x: int(x)-1, input().split()))\ndef II(): return int(input())\ndef IF(): return float(input())\ndef LS(): return list(map(list, input().split()))\ndef S(): return list(input().rstrip())\ndef IR(n): return [II() for _ in range(n)]\ndef LIR(n): return [LI() for _ in range(n)]\ndef FR(n): return [IF() for _ in range(n)]\ndef LFR(n): return [LI() for _ in range(n)]\ndef LIR_(n): return [LI_() for _ in range(n)]\ndef SR(n): return [S() for _ in range(n)]\ndef LSR(n): return [LS() for _ in range(n)]\nmod = 1000000007\ninf = 1e10\n\n#solve\ndef solve():\n n, a, b = LI()\n print(b * n + a - b - (a * b - a + b - 1))\n return\n\n\n#main\nif __name__ == '__main__':\n solve()\n", "jacc_sim": 0.9764705882352941, "before_after_length": [383, 379], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "max(n - a + a + b - ),0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u608297208", "n_user": "u223646582", "pos": "N,A,B = map(int,input().split())\nprint(max((B * (N- 1) + A) - (A * (N- 1) + B) + 1,0))", "neg": "N, A, B = map(int, input().split())\nprint(max(0, B*(N-1)+A-(A*(N-1)+B)))\n", "jacc_sim": 1.0, "before_after_length": [46, 39], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " 0,(BB ) + 1,0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u091051505", "n_user": "u064408584", "pos": "n, a, b = map(int, input().split())\nans = ((b - a) * (n - 2)) + 1\nif ans < 0:\n ans = 0\nprint(ans)", "neg": "n,a,b=map(int, input().split())\nans=(n-2)*(b-a)*2+1\nif n==1:\n if a!=b:\n ans=0\n else:\n ans=1\nif bb or n==1 and a!=b:print(0)\nelif n<3:print(1)\nelse:print((b-a)*(n-2)+1)", "neg": "n, a, b = map(int , input().split())\nif a > b or n < 2:\n print(0)\nelif a == b or (n == 1 and a == b):\n print(1)\nelse:\n print((b * (n-1) + a) - (a * (n-1) + b) + 1)", "jacc_sim": 0.9310344827586207, "before_after_length": [60, 84], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " ==1 B:\n print(0)\n exit()\nif N == 1:\n if A == B:\n print(1)\n else:\n print(0)\n exit()\nprint((B - A ) * (N - 2) + 1)", "neg": "N, A, B = map(int, input().split())\n\nif A > B:\n print(0)\n exit()\n\nif A == B:\n if N == 1:\n print(1)\n exit()\n else:\n print(0)\n exit()\n\nprint((N-2)*(B-A)+1)", "jacc_sim": 0.9230769230769231, "before_after_length": [85, 84], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "# AGC015\n\n:\n print(0)\n exit()\n\nif A == B:\n if N == 1:\n print(1)\n exit()\n elseif N == 1:\n if A == B:\n print(1)\n else:\n print(0)\n exit()B - A ) * ( *(B-A) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u637175065", "n_user": "u637175065", "pos": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n n,a,b = LI()\n if n == 1:\n if a == b:\n return 1\n return 0\n\n if a > b:\n return 0\n\n if n == 2:\n return 1\n\n return (b*(n-1)+a) - (a*(n-1)+b) + 1\n\n\nprint(main())\n", "neg": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\nmod = 10**9 + 7\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\n\n\ndef main():\n n,a,b = LI()\n if n == 1:\n if a == b:\n return 1\n return 0\n\n if a > b:\n return 0\n\n return min((b*(n-1)+a) - (a*(n-1)+b) + 1, n)\n\n\nprint(main())\n", "jacc_sim": 0.967741935483871, "before_after_length": [277, 269], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "return mf ( == 2:\n return 1\n\n return , n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u427222815", "n_user": "u077337864", "pos": "n, a, b = map(int, input().split())\nif a > b:\n print(0)\n exit(0)\nif a == b:\n print(1)\n exit(0)\nif n == 1:\n if a != b:\n print(0)\n else:\n print(1)\nelif n == 2:\n print(1)\nelse:\n print(b * (n - 2) - a * (n - 2) + 1)\n", "neg": "n, a, b = map(int, input().split())\n\nif n == 1:\n if a != b:\n print(0)\n else:\n print(1)\nelif n == 2:\n print(1)\nelse:\n if a == b:\n print(1)\n else:\n print((b-a) * (n-2) + 1)", "jacc_sim": 0.9230769230769231, "before_after_length": [118, 94], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "\nna>==1b print(0)\n exit(0)\nif a == b:\n print(1)\n exit(0)\nif n == 1:\n ifa== b:\n 1)\n else:\n print(( * (n a 2 - a \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u888337853", "n_user": "u888337853", "pos": "import sys\nimport re\nimport math\nimport collections\nimport decimal\nimport bisect\nimport itertools\nimport fractions\nimport functools\nimport copy\n\n# import heapq\n# from collections import deque\n# import decimal\n\nsys.setrecursionlimit(10000001)\nINF = sys.maxsize\nMOD = 10 ** 9 + 7\n\nni = lambda: int(sys.stdin.readline())\nns = lambda: map(int, sys.stdin.readline().split())\nna = lambda: list(map(int, sys.stdin.readline().split()))\n\n\n# ===CODE===\n\ndef main():\n n, a, b = ns()\n\n if n == 2:\n print(1)\n exit(0)\n\n if a > b:\n print(0)\n exit(0)\n\n if n==1:\n if a==b:\n print(1)\n exit(0)\n else:\n print(0)\n exit(0)\n\n minimum_sum = a * n + (b - a)\n maximum_sum = b * n - (b - a)\n print(maximum_sum - minimum_sum + 1)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "import sys\nimport re\nimport math\nimport collections\nimport decimal\nimport bisect\nimport itertools\nimport fractions\nimport functools\nimport copy\n\n# import heapq\n# from collections import deque\n# import decimal\n\nsys.setrecursionlimit(10000001)\nINF = sys.maxsize\nMOD = 10 ** 9 + 7\n\nni = lambda: int(sys.stdin.readline())\nns = lambda: map(int, sys.stdin.readline().split())\nna = lambda: list(map(int, sys.stdin.readline().split()))\n\n\n# ===CODE===\n\ndef main():\n n, a, b = ns()\n\n if n == 2:\n print(1)\n exit(0)\n\n if a > b or n < 2:\n print(0)\n exit(0)\n\n minimum_sum = a * n + (b - a)\n maximum_sum = a * n - (b - a)\n print(maximum_sum - minimum_sum + 1)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9523809523809523, "before_after_length": [294, 255], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " or n < 2if n==1:\n if a==b:\n print(1)\n exit(0)\n else:\n print(0)\n exit(0)\n\n ab", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u712187387", "n_user": "u835482198", "pos": "N,A,B=map(int,input().split())\n\ntmp=(N-2)*(B-A)+1\nif tmp>0:\n print(tmp)\nelse:\n print(0)", "neg": "\nN, A, B = map(int, input().split())\nif A > B:\n print(0)\nelse:\n print((B - A) * (N - 2) + 1)", "jacc_sim": 0.9583333333333334, "before_after_length": [49, 47], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "\n \ntmp=(N-2)*(B-A)+1\nA tmp0 B0tmp0(B - A * (N - 2) + 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u594567187", "n_user": "u594567187", "pos": "length,min_num,max_num = (int(n) for n in input().split(\" \"))\nif min_num > max_num or (length == 1 and min_num != max_num):\n print(0)\nelif min_num == max_num or length == 2:\n print(1)\nelse:\n max_max = max_num * (length - 1) + min_num\n min_min = min_num * (length - 1) + max_num\n print(max_max - min_min + 1)", "neg": "length,min_num,max_num = (int(n) for n in input().split(\" \"))\nif min_num > max_num or length == 1:\n print(0)\nelif min_num == max_num:\n print(1)\nelse:\n max_max = max_num * (length - 1) + min_num\n min_min = min_num * (length - 1) + max_num\n print(max_max - min_min + 1)", "jacc_sim": 0.90625, "before_after_length": [129, 116], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "( and min_num != max_num) or length == 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u592099403", "n_user": "u624613992", "pos": "n,a,b = map(int,input().split())\n\nif(a>b):\n ans=0\nelif(a==b and n==1):\n ans=1\nelif(a==b and n!=1):\n ans=1\nelif(aa:\n ans = 1+(b-a)*(n-2)\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [118, 66], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " \nif(ns>b):\n= ans=el(a==badn==1):\n ans=1\nelif(a==b and n1):\n ans=1\nelif(aa:\n sdn=2):\n ans=\nelse:\n ans=(2-n)*(a-b)1(b-a)*(n-2)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u687574784", "n_user": "u687574784", "pos": "n,a,b = list(map(int, input().split()))\nif n == 1:\n if a==b:\n print(1)\n else:\n print(0)\nelif a>b:\n print(0)\nelse:\n MIN = a * (n-1) + b\n MAX = a * 1 + b * (n-1)\n print(MAX-MIN+1)", "neg": "n,a,b = list(map(int, input().split()))\nif n == 1:\n print(0)\nelif a>b:\n print(0)\nelse:\n MIN = a * (n-1) + b\n MAX = a * 1 + b * (n-1)\n print(MAX-MIN+1)", "jacc_sim": 1.0, "before_after_length": [100, 83], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " if a==b:\n print(1)\n else:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u270681687", "n_user": "u367130284", "pos": "n, a, b = map(int, input().split())\n\nif n == 1:\n if a == b:\n print(1)\n else:\n print(0)\nelse:\n if a < b:\n low = a * (n - 1) + b\n high = a + b * (n - 1)\n print(high - low + 1)\n elif a == b:\n print(1)\n else:\n print(0)", "neg": "n,a,b=map(int,input().split())\nif a==b:\n if n==1:\n print(1)\n else:\n print(0)\nelif b-a<0:\n print(0)\nelse:\n print( a+b*(n-1) - (a*(n-1)+b) +1 )", "jacc_sim": 0.92, "before_after_length": [113, 86], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " if a==b: :\n if a == bifse:\n if a < :\n low = a * (n 1) + b\n high = < + b * (n - 1)\n print(high - low + 1)\n elif a == b:\n print(1)\n else:\n print(:\n print(0\nelse:\n print( a+b*(n-1) - (a*(n-1)+b) +1 )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u178536051", "n_user": "u178536051", "pos": "S = list(map(int, input().split()))\nN = S[0]\nA = S[1]\nB = S[2]\ncombi = 0\nif(A > B):\n print(0)\nelif(N == 1):\n combi = 1 if (A == B) else 0\n print(combi)\nelse:\n cand = N - 2\n combi = (cand * B) - (cand * A) + 1\n print(combi)\n", "neg": "S = list(map(int, input().split()))\nN = S[0]\nA = S[1]\nB = S[2]\ncombi = 0\nif(A > B or N == 1):\n print(0)\nelse:\n cand = N - 2\n combi = (cand * B) - (cand * A) + 1\n print(combi)\n", "jacc_sim": 0.9354838709677419, "before_after_length": [119, 94], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "):\no p int(0)\nelif(combi = 1 if (A == B) else 0\n 0combi", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u329865314", "n_user": "u329865314", "pos": "tmp = list(map(int,input().split()))\nn , a, b = tmp[0],tmp[1],tmp[2]\nif a>b:\n print(0)\n quit()\nif (n ==2):\n print(1)\nelif (n == 1):\n if a != b:\n print(0)\n else:\n print(1)\nelse:\n print((b-a) * (n-2) + 1)", "neg": "tmp = list(map(int,input().split()))\nn , a, b = tmp[0],tmp[1],tmp[2]\nif (n ==2):\n print(1)\nelif (n == 1):\n if a != b:\n print(0)\n else:\n print(1)\nelse:\n print((b-a) * (n-2) + 1)", "jacc_sim": 0.9333333333333333, "before_after_length": [110, 96], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "a>b:\n print(0)\n quit()\nif ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u329706129", "n_user": "u921773161", "pos": "N, A, B = map(int, input().split())\nans = (B * (N - 1) + A) - (B + A * (N - 1)) + 1\nprint(ans) if(ans > 0) else print(0)", "neg": "N, A, B = map(int, input().split())\n\nif A > B :\n ans = 0\nelif A == B :\n ans = 1\nelse:\n ans = (B*(N-1)+A) - (A*(N-1)+B) + 1\n\nprint(ans)", "jacc_sim": 0.9166666666666666, "before_after_length": [57, 72], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "\nif A > B :\n ans = 0\nelif A == B :\n ans = 1\nelse:\n B + +B\n if(ans > 0) else print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u582243208", "n_user": "u017810624", "pos": "n, a, b = map(int, input().split())\nif a > b:\n print(0)\nelif n == 1:\n if a != b:\n print(0)\n else:\n print(1)\nelse:\n print((n - 2) * (b - a) + 1)", "neg": "n,a,b=map(int,input().split())\nif a>b:print(0)\nelif n==1 and a!=b:print(0)\nelse:print((n-2)*(b-a)+1)\u200b", "jacc_sim": 0.9259259259259259, "before_after_length": [76, 59], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " \n :\n ifnda \n \n print(1)\nelse:\n \u200b", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u341087021", "n_user": "u341087021", "pos": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef FI(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline().split())\ndef S(): return input()\n\nn, a, b = LI()\n\nif a>b:\n\tprint(0)\nelif n==1 and a!=b:\n\tprint(0)\nelse:\n\tmi = a*(n-1)+b\n\tma = a+b*(n-1)\n\tprint(ma-mi+1)", "neg": "import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time\n\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef FI(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline().split())\ndef S(): return input()\n\nn, a, b = LI()\n\nif a>b:\n\tprint(0)\nelse:\n\tmi = a*(n-1)+b\n\tma = a+b*(n-1)\n\tprint(ma-mi+1)", "jacc_sim": 0.9454545454545454, "before_after_length": [204, 186], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "b:\n\tprint(0)\nelif n==1 and a!=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u571969099", "n_user": "u333139319", "pos": "n, a, b = [int(i) for i in input().split()]\nif a > b:\n print(0)\nelif a != b and n == 1:\n print(0)\nelse:\n c = a * (n - 1) + b\n d = a + b * (n - 1)\n print(d-c+1)\n", "neg": "[n,a,b] = [int(i) for i in input().split()]\nc = 1\nif a > b:\n c = 0\nif n == 1 and a != b:\n c = -1\n\nif c == 1:\n print(b * (n-1) + a - (a * (n-1) + b) + 1)\n", "jacc_sim": 0.9032258064516129, "before_after_length": [88, 88], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "[ ]c = 1\nc = print()el n == 1 and:\nandn c = -1\n\nif c0)\nelse:\n c = a * (n - 1) + b\n d = a + -1) + a (a * (n-1) + b) + print(d-c+1)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u314050667", "n_user": "u314050667", "pos": "import sys\n\nn,a,b = map(int, input().split())\n\nif n == 0:\n\tprint(0)\n\tsys.exit()\nif n == 1:\n\tif a == b:\n\t\tprint(1)\n\t\tsys.exit()\n\telse:\n\t\tprint(0)\n\t\tsys.exit()\nif a > b:\n\tprint(0)\n\tsys.exit()\n\nmaximum = (a+b) + b*(n-2)\nminimum = (a+b) + a*(n-2)\n\nprint(maximum-minimum+1)", "neg": "import sys\n\nn,a,b = map(int, input().split())\n\nif n == 1:\n\tif a == b:\n\t\tprint(1)\n\telse:\n\t\tprint(0)\n\t\tsys.exit()\nif a > b:\n\tprint(0)\n\tsys.exit()\n\nmaximum = (a+b) + b*(n-2)\nminimum = (a+b) + a*(n-2)\n\nprint(maximum-minimum+1)", "jacc_sim": 1.0, "before_after_length": [141, 116], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "0:\n\tprint(0)\n\tsys.exit()\nif n == )\n\t\tsys.exit(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u504562455", "n_user": "u777207626", "pos": "n, a, b = [int(i) for i in input().split()]\nif n == 1:\n if a == b:\n print(1)\n else:\n print(0)\nelif a > b:\n print(0)\nelse:\n top = a + b + (n-2)*b\n bottom = a + b + (n-2)*a\n print(top-bottom+1)\n", "neg": "n,a,b = [int(i) for i in input().split()]\nif n == 1:\n print(0)\nelif a > b:\n print(0)\nelse: \n ans = b*(n-2)-a*(n-2)+1\n print(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [103, 71], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " if a == b:\n print(1)\n else:\n anstopa + * + -ab\n bottom = a + b + *a\n print(top-bottom\n print(ans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u067983636", "n_user": "u699944218", "pos": "N, A, B = list(map(int, input().split()))\n\nif A > B:\n print(0)\n\nelif N == 1 and A!= B:\n print(0)\n \nelse:\n print(B*(N-1) + A - A*(N-1) - B + 1)", "neg": "N, A, B = list(map(int,input().split()))\nif A > B:\n print(0)\nelif A == B:\n print(1)\nelse:\n print((B * (N-1) + A) - (B + (N-1) * A))", "jacc_sim": 0.9230769230769231, "before_after_length": [78, 71], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " \n \nAN= 1 and A! 10\n ( )A*(B + *-AB + 1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u399721252", "n_user": "u399721252", "pos": "n, a, b = [ int(v) for v in input().split() ]\nif n == 1:\n if a != b:\n ans = 0\n else:\n ans = 1\nelse:\n if a <= b:\n maxsum = a + b*(n-1)\n minsum = a*(n-1) + b\n ans = maxsum - minsum + 1\n\n else:\n ans = 0\nprint(ans)", "neg": "n, a, b = [ int(v) for v in input().split() ]\nif n == 1:\n if a != b:\n ans = 1\n else:\n ans = 0\nelse:\n if a <= b:\n maxsum = a + b*(n+1)\n minsum = a*(n+1) + b\n ans = maxsum - minsum + 1\n\n else:\n ans = 0\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [108, 109], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "1\n else:\n ans = else:\n ans = 1\n+-+-\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u454524105", "n_user": "u454524105", "pos": "n, a, b = (int(x) for x in input().split())\nif n == 1:\n if a == b: print(1)\n else: print(0)\nelif a > b: print(0)\nelse: print((a + b * (n - 1) - (a * (n - 1) + b) + 1))", "neg": "n, a, b = (int(x) for x in input().split())\nif n == 1 or a > b: print(0)\nelse: print((a + b * (n - 1) - (a * (n - 1) + b) + 1))", "jacc_sim": 0.9230769230769231, "before_after_length": [83, 61], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": ":\no if a == b: pint(1)\n else: print(0)\nelif", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u318127926", "n_user": "u136090046", "pos": "n, a, b = map(int, input().split())\nif a>b or (n==1 and a 1):\n print(0)\nelse:\n if n == 1:\n print(1)\n else:\n print(tmp**(n-2) - tmp**2)", "jacc_sim": 0.9285714285714286, "before_after_length": [57, 83], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "tmp = abs(b-a)+1\na> < a a<-a > 1if n == 1:\n 1)\n else:\n print(tmp** *b(n- tmp***a+1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u649326276", "n_user": "u649326276", "pos": "s = input().split(\" \");\nn = int(s[0]);\na = int(s[1]);\nb = int(s[2]);\nif a > b :\n print(0);\nelse :\n if n == 1 :\n if a==b :\n print(1);\n else :\n print(0);\n else :\n ans = (b - a)*(n - 2)+1;\n print(ans);", "neg": "s = input().split(\" \");\nn = s[0];\na = s[1];\nb = s[2];\nif a > b :\n print(0);\nelse\n if n = 1 or n = 2:\n print(1);\n else\n ans = (b - a)*(n - 2)+1;\n print(ans);", "jacc_sim": 0.9285714285714286, "before_after_length": [106, 85], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": "int()int()int() : 1 or n 1 :\n if a==b :\n print(1);\n else :\n print(0);\n else :\n ans = (b - a)*(n -:\n print(1);\n else\n ans = (b - a)*(n - 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03705", "p_user": "u636387751", "n_user": "u135116520", "pos": "N, A, B = map(int, input().split())\nif A > B or (N == 1 and A != B):\n print(0)\nelse:\n print((B*(N-1)+A)-(A*(N-1)+B)+1)\n", "neg": "N,A,B=map(int,input().split())\nif A>B:\n print(0)\nif B-A>=1 and N==1:\n print(0)\nelse:\n print((B-A)**N+1)", "jacc_sim": 0.92, "before_after_length": [62, 61], "nl": "Snuke has N integers. Among them, the smallest is A, and the largest is B. We are interested in the sum of those N integers. How many different possible sums are there? Constraints: 1 \u2264 N, A, B \u2264 10^9. Input is given in the format: N A B. Output the number of different possible sums.", "diff_info": " B:\n print(0)\nif-A> or (N = NA !=1 B) *(N1)+-(A*(-1)+B)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u739843002", "n_user": "u739843002", "pos": "N, K = [int(x) for x in input().split(\" \")]\n \nplaced = 0\nelm = []\nfor i in range(N):\n a, b = input().split(\" \")\n elm.append({\n \"order\": i + 1,\n \"element\": int(a),\n \"count\": int(b)\n })\n\nelm.sort(key=lambda e: (e[\"element\"], e[\"order\"]))\nfor i in range(len(elm)):\n e = elm[i]\n placed += e[\"count\"]\n if placed >= K:\n print(e[\"element\"])\n break", "neg": "N, K = [int(x) for x in input().split(\" \")]\n \nplaced = 0\nelm = []\nfor i in range(N):\n a, b = input().split(\" \")\n elm.append({\n \"order\": i + 1,\n \"element\": int(a),\n \"count\": int(b)\n })\n\nelm.sort(key=lambda e: (e[\"element\"], e[\"order\"]))\nfor i in range(len(elm)):\n placed = e[\"count\"]\n if placed >= K:\n print(e[\"element\"])\n break\n", "jacc_sim": 1.0, "before_after_length": [152, 145], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "placd= elm[i]\n placed +\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u652081898", "n_user": "u652081898", "pos": "n, k = map(int, input().split())\nab = sorted([list(map(int, input().split())) for _ in range(n)])\n\ncount = 0\nfor x in ab:\n count += x[1]\n if k <= count:\n print(x[0])\n break", "neg": "n k = map(int, input().split())\nab = [[map(int, input().split())] for _ in range(n)]\n\ncount = 0\nfor x in ab:\n count += x[1]\n if k <= count:\n print(x[0])\n break\n", "jacc_sim": 0.9333333333333333, "before_after_length": [73, 70], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": " ,sorted([list(]))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u887207211", "n_user": "u887207211", "pos": "N, K = map(int,input().split())\nAB = sorted([list(map(int,input().split())) for _ in range(N)])\ncnt = 0\nfor a, b in AB:\n if(cnt < K - b):\n cnt += b\n else:\n print(a)\n break", "neg": "N, K = map(int,input().split())\nAB = sorted([[list(map(int,input().split())) for _ in range(N)]])\ncnt = 0\nfor a, b in AB:\n if(cnt < K - b)\n cnt += b\n else:\n print(a)\n break\n", "jacc_sim": 1.0, "before_after_length": [76, 78], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "[]:\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u753803401", "n_user": "u753803401", "pos": "def slove():\n import sys\n input = sys.stdin.readline\n n, k = list(map(int, input().rstrip('\\n').split()))\n ab = sorted([list(map(int, input().rstrip('\\n').split())) for _ in range(n)])\n t = 0\n for a, b in ab:\n t += b\n if t >= k:\n print(a)\n exit()\n\n\nif __name__ == '__main__':\n slove()\n", "neg": "def slove():\n import sys\n input = sys.stdin.readline\n n, k = list(map(int, input().rstrip('\\n').split()))\n ab = sorted([ist(map(int, input().rstrip('\\n').split())) for _ in range(n)])\n t = 0\n for a, b in ab:\n t += b\n if t >= k:\n print(a)\n exit()\n\n\nif __name__ == '__main__':\n slove()\n", "jacc_sim": 0.9761904761904762, "before_after_length": [128, 128], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "l", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u309141201", "n_user": "u309141201", "pos": "n, k = map(int, input().split())\na = [0] * n\nb = [0] * n\nsum = 0\narr = []\nfor i in range(n):\n a[i], b[i] = map(int, input().split())\narr_list = list(zip(a, b))\narr_list = sorted(arr_list)\n# print(arr_list)\nfor i in range(n):\n sum += arr_list[i][1]\n # print(sum, arr_list[i])\n if sum >= k:\n answer = arr_list[i][0]\n break\n\nprint(answer)\n", "neg": "\tn, k = map(int, input().split())\na = [0] * n\nb = [0] * n\nsum = 0\narr = []\nfor i in range(n):\n a[i], b[i] = map(int, input().split())\narr_list = list(zip(a, b))\narr_list = sorted(arr_list)\n# print(arr_list)\nfor i in range(n):\n sum += arr_list[i][1]\n # print(sum, arr_list[i])\n if sum >= k:\n answer = arr_list[i]\n break\n\nprint(answer)\n", "jacc_sim": 1.0, "before_after_length": [157, 156], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "\t[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u393512980", "n_user": "u393512980", "pos": "from collections import defaultdict\nn, k = map(int, input().split())\ndic = defaultdict(int)\nfor _ in range(n):\n a, b = map(int, input().split())\n dic[a] += b\ncnt = 0\nfor key in sorted(dic):\n if cnt + dic[key] < k:\n cnt += dic[key]\n else:\n print(key)\n break", "neg": "from collections import defaultdict\nn, k = map(int, input().split())\ndic = defaultdict(int)\nfor _ in range(n):\n a, b = map(int, input().split())\n dic[a] += b\ndic = sorted(dic, key = lambda x: x[0])\ncnt = 0\nfor key in dic:\n if cnt + dic[key] < k:\n cnt += dic[key]\n else:\n print(key)\n break\n ", "jacc_sim": 0.9459459459459459, "before_after_length": [99, 115], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "din = sored(dic,key 0\nfor key in sorted(dic):\n if cnt + dic[key] < k:\n cnt += dic[key]\n eamse:\n print(key)\n da x: x[0])\ncnt = 0\nfo ky in dic:\n if cnt + dic[key] < k:\n cnt += dic[key]\n else:\n print(key)\n bre\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u598229387", "n_user": "u598229387", "pos": "n,k=map(int,input().split())\nab=[[int(i) for i in input().split()]for j in range(n)]\ndic={}\nfor a,b in ab:\n if a in dic:\n dic[a]+=b\n else:\n dic[a]=b\ndic=sorted(dic.items() , key=lambda x:x[0])\ncheck=0\nfor i,j in dic:\n check+=j\n if check>=k:\n print(i)\n break", "neg": "\nn,k=map(int,input().split())\nab=[[int(i) for i in input().split()]for j in range(n)]\ndic={}\nfor a,b in ab:\n if a in dic:\n dic[a]+=j\n else:\n dic[a]=j\ndic=sorted(dic.items() , key=lambda x:x[0])\ncheck=0\nfor i,j in dic:\n check+=j\n if check>=k\n print(i)\n break", "jacc_sim": 1.0, "before_after_length": [127, 127], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "\nb\n else:\n dic[a]=b\ndic=sorted(dic.items() , key=lambda x:x[0])\ncheck=0\nfor i,\n else:\n dn di[a]:\n check+dic=sorted(dic.items(),key=lambda if x:x[0])\n=0\nfor i,j in dic:\n check+=j\n if check:print(i)\nbpint(i)\n br", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u112007848", "n_user": "u112007848", "pos": "n, k = map(int, input().split(\" \"))\na = sorted([list(map(int, input().split(\" \"))) for i in range(n)])\ncount = 0\nfor x, y in a:\n count += y\n if k <= count:\n print(x)\n break\nelse:\n print(\"None\")", "neg": "n, k = map(int, input().split(\" \"))\na = [list(map(int, input().split(\" \"))) for i in range(n)]\ncount = 0\nfor x, y in a:\n count += y\n if k >= y:\n print(x)\n break\nelse:\n print(\"None\")", "jacc_sim": 0.9117647058823529, "before_after_length": [81, 79], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "sorted()>= K:\n print(a)\n break", "neg": "#coding: utf-8\nimport math\nimport heapq\nimport bisect\nimport numpy as np\nfrom collections import Counter, deque\n#from scipy.misc import comb\n\nN,K = map(int, input().split())\nA = [list(map(int, input().split())) for i in range(N)]\nA.sort()\n\ncnt = 0\nfor a,b in A:\n cnt += b\n if cnt >= K:\n print(a)", "jacc_sim": 0.9795918367346939, "before_after_length": [111, 108], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u029234056", "n_user": "u029234056", "pos": "N,K=map(int,input().split())\nA_B=[list(map(int,input().split())) for _ in range(N)]\nans=0\nA_B.sort()\nfor i in range(N):\n ans+=A_B[i][1]\n if ans>=K:\n print(A_B[i][0])\n break", "neg": "N,K=map(int,input().split())\nA_B=[list(map(int,input().split())) for _ in range(N)]\nans=0\nfor i in range(N):\n ans+=A_B[0][1]\n if ans>=K:\n print(A_B[0][0])\nprint(ans)\n\n", "jacc_sim": 0.9333333333333333, "before_after_length": [90, 87], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "A_B.sort()\n0i0ip beint(kns)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u785205215", "n_user": "u785205215", "pos": "from sys import stdin, stdout\nfrom collections import defaultdict\ndef readLine_int_list():return list(map(int, stdin.readline().split()))\ndef main():\n n,k = readLine_int_list()\n \n l = defaultdict(lambda: 0)\n for i in range(n):\n a,b =readLine_int_list()\n l[a] += b\n \n cnt = 0\n for key in sorted(l.keys()):\n val = l[key]\n cnt += val\n if cnt >= k:\n print(key)\n break\n\n\nif __name__ == \"__main__\":\n main()", "neg": "from sys import stdin, stdout\nfrom collections import defaultdict\ndef readLine_int_list():return list(map(int, stdin.readline().split()))\ndef main():\n\tn,k = readLine_int_list()\n\t_k = 0\n\tl = defaultdict(lambda: 0)\n\tfor i in range(n):\n\t a,b =readLine_int_list()\n\t l[a] += b\n\t\n\tcnt = 0\n\tfor key in sorted(l.keys()):\n\t val = l[key]\n\t cnt += val\n\t if cnt >= k:\n\t print(key)\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.96, "before_after_length": [156, 164], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "\t \t_k \n l defaultdict(lambda:\n\tl = defaultdict(lambda: 0\t \t \t \t \t \t \t \t \t \t break\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u690781906", "n_user": "u690781906", "pos": "n, k = map(int, input().split())\nab = [list(map(int, input().split())) for _ in range(n)]\nab.sort()\ntotal = 0\nfor i in range(n):\n total += ab[i][1]\n if total >= k:\n print(ab[i][0])\n exit()", "neg": "n, k = map(int, input().split())\nab = [list(map(int, input().split())) for _ in range(n)]\nab.sort()\nprint(ab)\ntotal = 0\nfor i in range(n):\n total += ab[i][1]\n if total >= k:\n print(ab[i][0])\n exit()\n", "jacc_sim": 1.0, "before_after_length": [82, 88], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "print(ab)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u143492911", "n_user": "u143492911", "pos": "n,k=map(int,input().split())\nnum=[list(map(int,input().split()))for _ in range(n)]\np=0\nnum.sort()\nfor i in range(n):\n p+=num[i][1]\n if k<=p:\n ans=num[i][0]\n break\nprint(ans)", "neg": "n,k=map(int,input().split())\nnum=[list(map(int,input().split()))for _ in range(n)]\np=0\nnum.sort()\nfor i in range(n):\n p+=num[i][1]\n if k<=p:\n ans=num[i][0]\n exit()\nprint(ans)\n", "jacc_sim": 0.9375, "before_after_length": [87, 89], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "brakxit()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u780962115", "n_user": "u780962115", "pos": "n,k=map(int,input().split())\nlists=[0]*n\nfor i in range(n):\n lists[i]=tuple(map(int,input().split()))\nlists=sorted(lists,key=lambda x: x[0])\n\ncount=0\nnum=0\nfor j in range(n):\n if count= K:\n\t\tprint(a[0])\n\t\tbreak", "neg": "import sys\nfrom collections import deque\n\nif sys.platform in ['ios','win32','darwin']:\n\tsys.stdin=open('Untitled.txt')\ninput = sys.stdin.readline\ndef INT(): return int(input())\ndef MAP(): return [int(s) for s in input().split()]\n\nN, K = MAP()\nA = [MAP() for _ in range(N)]\n\ntmp = []\ncur = 0\nfor a in A:\n\ttmp.append(a)\n\tcur += a[1]\n\tif cur >= K-1:\n\t\ttmp.sort()\n\t\tprint(tmp[-1][0])\n\t\tbreak", "jacc_sim": 0.9411764705882353, "before_after_length": [139, 157], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "A.sor()mp = []tmp.append(a)\n\t-1tm.sot()\n\t\tpratmp[-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u223904637", "n_user": "u223904637", "pos": "n,k=map(int,input().split())\n\nl=[]\nfor i in range(n):\n l.append(list(map(int,input().split())))\n \nl.sort()\n\ni=0\nans=0\nwhile k>0:\n k=k-l[i][1]\n ans=l[i][0]\n i=i+1\nprint(ans)", "neg": "n,k=map(int,input().split())\n\nl=[]\nfor i in range(n):\n l.append(list(map(int,input().split())))\n \nl.sort()\n\ni=n-1\nans=0\nwhile k>0:\n k=k-l[i][1]\n ans=l[i][0]\n i=i-1\nprint(ans)", "jacc_sim": 0.9666666666666667, "before_after_length": [98, 100], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "0n-1-+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u536113865", "n_user": "u536113865", "pos": "f = lambda: list(map(int,input().split()))\nf_ = lambda: [int(x)-1 for x in input().split()]\n\nn,k = f()\nd = []\nfor _ in range(n):\n a,b = f()\n d.append((a,b))\nd.sort(key=lambda x: x[0])\ncount = 0\nfor x,y in d:\n count += y\n if count >= k:\n break\nprint(x)", "neg": "f = lambda: list(map(int,input().split()))\nf_ = lambda: [int(x)-1 for x in input().split()]\n\nn,k = f()\nd = []\nfor _ in range(n):\n a,b = f()\n d.append((a,b))\nd.sort(key=lambda x: x[0])\ncount = 0\nfor x,y in d:\n count += x\n if count >= k:\n break\nprint(y)", "jacc_sim": 1.0, "before_after_length": [119, 119], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "xyyx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u188745744", "n_user": "u188745744", "pos": "N,K = list(map(int,input().split()))\nlistA = []\nfor i in range(N):\n listA.append(list(map(int,input().split())))\nnow = 0\nlistA.sort()\nfor i in range(N):\n if now <= K <= now+listA[i][1]:\n print(listA[i][0])\n exit()\n else:\n now += listA[i][1]", "neg": "N,K = list(map(int,input().split()))\nlistA = []\nfor i in range(N):\n listA.append(list(map(int,input().split())))\nnow = 0\nlistA.sort()\nprint(listA)\nfor i in range(N):\n if now <= K <= now+listA[i][1]:\n print(listA[i][0])\n exit()\n else:\n now += listA[i][1]", "jacc_sim": 1.0, "before_after_length": [111, 117], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "print(listA)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u049595114", "n_user": "u049595114", "pos": "from operator import itemgetter\n\nN, K = [int(x) for x in input().split()]\nArray = list()\nA = list()\ncount = 0\nans = 0\nfor i in range(N):\n\tA.append([int(x) for x in input().split()])\n\nA.sort(key=itemgetter(0))\nfor i in range(N):\n\tcount += A[i][1]\n\tif count >= K:\n\t\tans = A[i][0]\n\t\tbreak\n\t\t\nprint(ans)", "neg": "from operator import itemgetter\n\nN, K = [int(x) for x in input().split()]\nArray = list()\nA = list()\ncount = 0\nans = 0\nfor i in range(N):\n\tA.append([int(x) for x in input().split()])\nprint(A)\n\nA.sort(key=itemgetter(0))\nfor i in range(N):\n\tcount += A[i][1]\n\tif count >= K:\n\t\tans = A[i][0]\n\t\tbreak\n\t\t\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [127, 132], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "print(A)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u573754721", "n_user": "u573754721", "pos": "n,k=map(int,input().split())\nL=[]\nfor i in range(n):\n a,b=map(int,input().split())\n L+=[[a,b]]\nL.sort(key=lambda x:x[0])\n\nsm=0\nfor i in range(n):\n sm+=L[i][1]\n if sm>=k:\n print(L[i][0])\n exit()", "neg": "n,k=map(int,input().split())\nL=[]\nfor i in range(n):\n a,b=map(int,input().split())\n L+=[[a,b]]\nL.sort(key=lambda x:x[0])\nprint(L)\n\n\nsm=0\nfor i in range(n):\n sm+=L[i][1]\n if sm>=k:\n print(L[i][0])\n exit()\n", "jacc_sim": 1.0, "before_after_length": [108, 115], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "print(L)\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u920621778", "n_user": "u920621778", "pos": "n, k = map(int, input().split())\na_list = []\nfor i in range(n):\n\ta, b = map(int, input().split())\n\ta_list.append([a, b])\na_list.sort(key=lambda x: x[0])\nfor i in range(n):\n\tk -= a_list[i][1]\n\tif k <= 0:\n\t\tprint(a_list[i][0])\n\t\tbreak\n", "neg": "n, k = map(int, input().split())\na_list = []\nfor i in range(n):\n\ta, b = map(int, input().split())\n\ta_list.append([a, b])\na_list.sort(key=lambda x: x[0])\nfor i in range(n):\n\tk -= a_list[i][1]\n\tif k <= 0:\n\t\tprint(a_list[i][0])", "jacc_sim": 0.9696969696969697, "before_after_length": [113, 108], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "\n\t\tbreak\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u644907318", "n_user": "u644907318", "pos": "N,K = map(int,input().split())\nC = {}\nA = []\nfor _ in range(N):\n a,b = map(int,input().split())\n if a not in C:\n C[a] = 0\n C[a] += b\n A.append(a)\nA = sorted(list(set(A)))\ncnt = 0\nfor i in range(len(A)):\n cnt += C[A[i]]\n if cnt>=K:\n print(A[i])\n break\n", "neg": "N,K = map(int,input().split())\nC = {}\nA = []\nfor _ in range(N):\n a,b = map(int,input().split())\n if a not in C:\n C[a] = 0\n C[a] += b\n A.append(a)\nA = sorted(list(set(A)))\ncnt = 0\nfor i in range(len(A)):\n cnt += C[i]\n if cnt>=K:\n print(i)\n break\n", "jacc_sim": 1.0, "before_after_length": [130, 126], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "A[]A[]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u140251125", "n_user": "u140251125", "pos": "# input\nN, K = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(N)]\n\nA = sorted(A)\n\ncount = 0\n\nfor i in range(N):\n count += A[i][1]\n if count >= K:\n print(A[i][0])\n break", "neg": "# input\nN, K = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(M)]\n\ncount = 0\n\nfor i in range(N):\n count += A[i][1]\n if count >= K:\n print(A[i][0])\n break", "jacc_sim": 0.9375, "before_after_length": [89, 81], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "MN\n\nA = sorted(A)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u077337864", "n_user": "u077337864", "pos": "N, K = map(int, input().strip().split())\nab = []\nfor _ in range(N):\n ab.append(tuple(map(int, input().strip().split())))\n\nkc = 0\nfor a, b in sorted(ab, key=lambda x: x[0]):\n if kc + b >= K:\n break\n kc += b\n\nprint(a)\n", "neg": "N, K = map(int, input().strip().split())\nab = []\nfor _ in range(N):\n ab.append(tuple(map(int, input().strip())))\n\nkc = 0\nfor a, b in sorted(ab, key=lambda x: x[0]):\n if kc + b >= K:\n break\n kc += b\n\nprint(a)\n", "jacc_sim": 1.0, "before_after_length": [95, 93], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "().split", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u336093806", "n_user": "u336093806", "pos": "N, M = map(int,input().split()) \nP = [list(map(int,input().split())) for i in range(N)]\nP.sort()\na = 0\nfor i in range(N):\n if M <= P[i][1]:\n break\n M = M-P[i][1]\n a += 1\n\n\nprint(P[a][0])", "neg": "N, M = map(int,input().split()) \nP = [list(map(int,input().split())) for i in range(N)]\nP1 = P.sort()\na = 0\nfor i in range(N):\n if M < P[i][1]:\n break\n M = M-P[i][1]\n a += 1\n\nprint(P[a][0])", "jacc_sim": 0.967741935483871, "before_after_length": [94, 96], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "1 = P=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u368796742", "n_user": "u368796742", "pos": "n,k = map(int,input().split())\nl = [list(map(int,input().split())) for i in range(n)]\nl.sort()\ncount = 0\nfor i,j in l:\n if j < k:\n k -= j\n else:\n print(i)\n exit()\n", "neg": "n,k = map(int,input().split())\nl = [list(map(int,input().split())) for i in range(n)]\nl.sort()\ncount = 0\nfor i,j in l:\n if j < count:\n count += j\n else:\n print(i)\n exit()", "jacc_sim": 0.9354838709677419, "before_after_length": [78, 77], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "kcountkcount+-\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u647102103", "n_user": "u647102103", "pos": "n,k=map(int,input().split())\nli = [list(map(int, input().split())) for i in range(n)]\nli.sort()\nc=0\nfor i in range(n):\n c+=li[i][1]\n if c>=k:\n print(li[i][0])\n \n break\n ", "neg": "n,k=map(int,input().split())\nli = [list(map(int, input().split())) for i in range(n)]\nli.sort()\nc=0\nfor i in range(n):\n c+=li[i][0]*li[i][1]\n if c>=k:\n print(li[i][0])\n \n break\n ", "jacc_sim": 0.9666666666666667, "before_after_length": [87, 93], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "0]*li[i][", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u496687522", "n_user": "u496687522", "pos": "N, K = map(int, input().split())\na_b = [list(map(int, input().split())) for i in range(N)]\na_b.sort()\nindex = 0\n\nfor i in range(N):\n index += a_b[i][1]\n if index >= K:\n print(a_b[i][0])\n exit()", "neg": "N, K = map(int, input().split())\na_b = [list(input().split()) for i in range(N)]\na_b.sort()\nindex = 0\nprint(a_b)\nfor i in range(N):\n index += int(a_b[i][1])\n if index >= K:\n print(a_b[i][0])\n break", "jacc_sim": 0.9333333333333333, "before_after_length": [91, 93], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "map(int, )print(a_b)int()brakxit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u401487574", "n_user": "u401487574", "pos": "ma = lambda:map(int,input().split())\nn,k = ma()\nab = []\nfor i in range(n):\n ab.append((list(ma())))\nab.sort()\nc = 0\nfor a,b in ab:\n c+=b\n if c>=k:\n print(a)\n break\n", "neg": "ma = lambda:map(int,input().split())\nn,k = ma()\nab = []\nfor i in range(n):\n ab.append((list(ma)))\nab.sort()\nc = 0\nfor a,b in ab:\n c+=b\n if c>=k:print(a) \n", "jacc_sim": 0.9696969696969697, "before_after_length": [84, 78], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": "()\n \n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03721", "p_user": "u806855121", "n_user": "u806855121", "pos": "N, K = map(int, input().split())\nnums = []\nfor _ in range(N):\n nums.append(list(map(int, input().split())))\nnums.sort()\n\nsumb = 0\nfor n in nums:\n sumb += n[1]\n if sumb >= K:\n print(n[0])\n break", "neg": "N, K = map(int, input().split())\nnums = []\nfor _ in range(N):\n nums.append(list(map(int, input().split())))\nnums.sort()\nprint(nums)\n\nsumb = 0\nfor n in nums:\n sumb += n[1]\n if sumb >= K:\n print(n[0])\n break", "jacc_sim": 1.0, "before_after_length": [86, 91], "nl": "You are given an empty array, and you need to perform N operations to insert integers into the array. In the i-th operation (1\u2264i\u2264N), bi copies of an integer ai are inserted. Find the K-th smallest integer in the array after the N operations. Constraints: 1\u2264N\u226410^5, 1\u2264ai, bi\u226410^5, 1\u2264K\u2264b1+...+bn. All input values are integers. Input is given in the format: N K, a1 b1, ..., aN bN. Output the K-th smallest integer in the array after the N operations.", "diff_info": ")\nprint(nums", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u652057333", "n_user": "u652057333", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nans = 10**10\n\n# 1 -1 1 -1...\ncost1 = 0\ns = 0\nfor i in range(n):\n t = 1 if i % 2 == 0 else -1\n c = 0\n if i % 2 == 0:\n if s + a[i] > 0:\n s += a[i]\n else:\n c = abs(s - t)\n s += c\n cost1 += abs(c - a[i])\n else:\n if s + a[i] < 0:\n s += a[i]\n else:\n c = abs(s - t)\n s -= c\n cost1 += abs(- c - a[i])\n\ncost2 = 0\ns = 0\nfor i in range(n):\n t = -1 if i % 2 == 0 else 1\n c = 0\n if i % 2 == 1:\n if s + a[i] > 0:\n s += a[i]\n else:\n c = abs(s - t)\n s += c\n cost2 += abs(c - a[i])\n else:\n if s + a[i] < 0:\n s += a[i]\n else:\n c = abs(s - t)\n s -= c\n cost2 += abs(- c - a[i])\n\nprint(min(cost1, cost2))\n# -1 1 -1 1..\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nans = 10**10\n\n# 1 -1 1 -1...\ncost1 = 0\ns = 0\nfor i in range(n):\n t = 1 if i % 2 == 0 else -1\n c = 0\n if i % 2 == 0:\n if s + a[i] > 0:\n s += a[i]\n else:\n c = abs(s - t)\n s += c\n cost1 += abs(c - a[i])\n else:\n if s + a[i] < 0:\n s += a[i]\n else:\n c = abs(s - t)\n s -= c\n cost1 += abs(c - a[i])\n\ncost2 = 0\ns = 0\nfor i in range(n):\n t = -1 if i % 2 == 0 else 1\n c = 0\n if i % 2 == 1:\n if s + a[i] > 0:\n s += a[i]\n else:\n c = abs(s - t)\n s += c\n cost2 += abs(c - a[i])\n else:\n if s + a[i] < 0:\n s += a[i]\n else:\n c = abs(s - t)\n s -= c\n cost2 += abs(- c - a[i])\n\nprint(cost1, cost2)\nprint(min(cost1, cost2))\n# -1 1 -1 1..\n", "jacc_sim": 1.0, "before_after_length": [366, 375], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "- cost1, cost2)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u576432509", "n_user": "u576432509", "pos": "n=int(input())\n\na=list(map(int,input().split()))\n\nkp=0\nasum=0\nflag=-1\nfor i in range(n):\n asum=asum+a[i]\n if flag==-1:\n if asum>=0:\n kp=kp+asum+1\n asum=-1\n else:\n if asum<=0:\n kp=kp+1-asum\n asum=1\n flag=-flag\n# print(asum)\n#print(\"-----\",kp) \nkm=0\nasum=0\nflag=1\nfor i in range(n):\n asum=asum+a[i]\n if flag==-1:\n if asum>=0:\n km=km+asum+1\n asum=-1\n else:\n if asum<=0:\n km=km+1-asum\n asum=1\n flag=-flag\n# print(asum)\n#print(\"-----\",km) \n\nprint(min(kp,km))\n ", "neg": "n=int(input())\n\na=list(map(int,input().split()))\n\nkp=0\nasum=0\nflag=-1\nfor i in range(n):\n asum=asum+a[i]\n if flag==-1:\n if asum>=0:\n kp=kp+asum+1\n asum=-1\n else:\n if asum<=0:\n kp=kp+1-asum\n asum=1\n flag=-flag\n print(asum)\nprint(\"-----\",kp) \nkm=0\nasum=0\nflag=1\nfor i in range(n):\n asum=asum+a[i]\n if flag==-1:\n if asum>=0:\n km=km+asum+1\n asum=-1\n else:\n if asum<=0:\n km=km+1-asum\n asum=1\n flag=-flag\n print(asum)\nprint(\"-----\",km) \n\nprint(min(kp,km))\n ", "jacc_sim": 0.9714285714285714, "before_after_length": [273, 269], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "####", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u968404618", "n_user": "u968404618", "pos": "n = input()\nA = list(map(int, input().split()))\n\ndef Chk(a, pos):\n cnt = 0\n tmp = 0\n\n for a in A:\n tmp += a\n\n if pos and tmp < 1:\n cnt += 1 - tmp\n tmp = 1\n elif not pos and tmp > -1:\n cnt += 1 + tmp\n tmp = -1\n\n pos = not pos\n return cnt\n\nprint(min(Chk(A, True), Chk(A, False)))", "neg": "n = input()\nA = list(map(int, input().split()))\n\ndef Chk(a, pos):\n cnt = 0\n tmp = 0\n \n for a in A:\n tmp += a\n \n if pos and tmp < 1:\n cnt += 1 - tmp\n tmp = 1\n elif not pos and tmp > -1:\n cnt += 1 + tmp\n tmp = -1\n \n pos = not pos\n return cnt\n\nprint(min(Chk(A, True), Chk(a, False)))", "jacc_sim": 1.0, "before_after_length": [128, 131], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": " aA", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u471539833", "n_user": "u471539833", "pos": "n=int(input())\na=list(map(int,input().split()))\nb=a[:]\n\nx=0#pmpm\ny=0\nsum1=0\nsum2=0\n\nfor i in range(n):\n sum1+=a[i]\n sum2+=b[i]\n if(i%2==0):\n if(sum1<=0):\n x+=1-sum1\n a[i]+=1-sum1\n sum1+=1-sum1\n if(sum2>=0):\n y+=sum2+1\n b[i]-=sum2+1\n sum2-=sum2+1\n else:\n if(sum1>=0):\n x+=sum1+1\n a[i]-=1+sum1\n sum1-=1+sum1\n if(sum2<=0):\n y+=1-sum2\n b[i]+=1-sum2\n sum2+=1-sum2\nprint(min(x,y))", "neg": "n=int(input())\na=list(map(int,input().split()))\nb=a[:]\n\nx=0#pmpm\ny=0\nsum1=0\nsum2=0\n\nfor i in range(n):\n sum1+=a[i]\n sum2+=b[i]\n if(i%2==0):\n if(sum1<=0):\n x+=1-sum1\n a[i]+=1-sum1\n if(sum2>=0):\n y+=sum2+1\n b[i]-=sum2+1\n else:\n if(sum1>=0):\n x+=sum1+1\n a[i]-=1+sum1\n if(sum2<=0):\n y+=1-sum2\n b[i]+=1-sum2\nprint(min(x,y))", "jacc_sim": 1.0, "before_after_length": [263, 223], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": " sum1+=1-sum1\n -=sum2+1\n sum2 sum1-=1+sum1\n +=1-sum2\n sum2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u024804656", "n_user": "u024804656", "pos": "n = int(input())\nsa = input().split()\n\na = [0 for i in range(n)]\nsumeven = 0\nsumodd = 0\nfor i,sai in enumerate(sa):\n a[i] = int(sai)\n\n if i % 2 == 0:\n sumeven += a[i]\n else:\n sumodd += a[i]\n\nret = 0\nsm = 0\nfor i,ai in enumerate(a):\n if i % 2 == 1:\n ret += max(-sm+1-ai,0)\n sm += max(ai, -sm+1)\n else:\n ret += max(sm+1 + ai, 0)\n sm += min(ai, -(sm+1))\nret2 = 0\nsm = 0\nfor i,ai in enumerate(a):\n if i % 2 == 0:\n ret2 += max(-sm+1-ai,0)\n sm += max(ai, -sm+1)\n else:\n ret2 += max(sm+1 + ai, 0)\n sm += min(ai, -(sm+1))\n \nprint(min(ret,ret2))", "neg": "n = int(input())\nsa = input().split()\n\na = [0 for i in range(n)]\nsumeven = 0\nsumodd = 0\nfor i,sai in enumerate(sa):\n a[i] = int(sai)\n\n if i % 2 == 0:\n sumeven += a[i]\n else:\n sumodd += a[i]\n\nret = 0\nsm = 0\nfor i,ai in enumerate(a):\n if i % 2 == 1:\n ret += max(-sm+1-ai,0)\n sm += max(ai, -sm+1)\n else:\n ret += max(sm+1 + ai, 0)\n sm += min(ai, -(sm+1))\nret2 = 0\nsm = 0\nfor i,ai in enumerate(a):\n if i % 2 == 0:\n ret2 += max(-sm+1-ai,0)\n sm += max(ai, -sm+1)\n else:\n ret2 += max(sm+1 + ai, 0)\n sm += min(ai, -(sm+1))\n \nprint(max(ret,ret2))\n ", "jacc_sim": 1.0, "before_after_length": [280, 282], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": " axin\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u626468554", "n_user": "u626468554", "pos": "n = int(input())\na = list(map(int,input().split()))\n\ndef wh(cst,ttl,flg):\n for i in range(n):\n ttl += a[i]\n\n if ttl*flg < 0:\n flg *= -1\n else:\n if flg > 0:\n memo = abs(ttl)+1\n ttl -= memo\n cst += memo\n elif flg < 0:\n memo = abs(ttl)+1\n ttl += memo\n cst += memo\n flg *= -1\n\n \n return cst\n\n\n\n\nttl = 0\ncst = 0\n\n\n\ncst = wh(cst,ttl,1)\nttl = 0\ncst2 = 0\ncst2 = wh(cst2,ttl,-1)\n \n\nprint(min(cst,cst2))\n\n", "neg": "n = int(input())\na = list(map(int,input().split()))\n\nttl = a[0]\ncst = 0\n\nif a[0]>0:\n flg = 1\n\nelif a[0]<0:\n flg = -1\n\nfor i in range(1,n):\n ttl += a[i]\n \n\n if ttl*flg < 0:\n flg *= -1\n else:\n if flg > 0:\n memo = abs(ttl)+1\n ttl -= memo\n cst += memo\n elif flg < 0:\n memo = abs(ttl)+1\n ttl += memo\n cst += memo\n flg *= -1\n \n\n\nttl = a[0]\ncst2 = 0\n\n\n \n\nprint(min(cst,cst2))\n\n", "jacc_sim": 0.925, "before_after_length": [214, 207], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "ttldefwh(cst,ttl,flg):\n for i in range(n):\n ttl +0icst = 0\nifa[0]> if ttl*flg < flg=1\n\nelifa[0]<0:\nflgflg *\nforiinr else:\n if flg > 0:\n memo = bsngettl)+,n)\n ttl -= memo\n cst += memo\n elif flg < 0ttl memo = abs(ttl)1= a[i]\n\nifttl*flg<0: ttl += memo cst += memo\n else:if flg > 0:r mmo = abs(urn cs\n\n\n\n\ntt)+ = 0\ncst = 0\n\n\n\ncst = wh(cst,ttl,\n ttl -= memo\n cst += memo\n elif flg < 0:\n memo = abs(ttl+1 +0memo 2+0memocst2 flg *wh(cst2,ttl,)\n \n\n\nttl = a[0]\ncst2 = 0\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u554954744", "n_user": "u554954744", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ns_pos = 0\ns_neg = 0\n\n# start neg val\ncum = 0\nfor i in range(n):\n cum += a[i]\n if i % 2 == 0 and cum >= 0:\n s_neg += abs(cum) + 1\n cum = -1\n if i % 2 != 0 and cum <= 0:\n s_neg += abs(cum) + 1\n cum = 1\n\n# start pos val\ncum = 0\nfor i in range(n):\n cum += a[i]\n if i % 2 == 0 and cum <= 0:\n s_pos += abs(cum) + 1\n cum = 1\n if i % 2 != 0 and cum >= 0:\n s_pos += abs(cum) + 1\n cum = -1\n\nans = min(s_pos, s_neg)\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ns_pos = 0\ns_neg = 0\n\n# start neg val\ncum = 0\nfor i in range(n):\n cum += a[i]\n if i % 2 == 0 and cum >= 0:\n s_neg += abs(cum) + 1\n cum = -1\n if i % 2 != 0 and cum <= 0:\n s_neg += abs(cum) + 1\n cum = 1\n\n# start pos val\ncum = 0\nfor i in range(n):\n cum += a[i]\n if i % 2 == 0 and cum <= 0:\n s_pos += abs(cum) + 1\n cum = -1\n if i % 2 != 0 and cum >= 0:\n s_pos += abs(cum) + 1\n cum = 1\n\nans = min(s_pos, s_neg)\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [226, 226], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "1\n if i % 2 != 0 and cum >= 0:\n s_pos += abs(cum) + 1\n cum = if i % 2 != 0 and cum >= 0:\n s_pos += abs(cum) + 1\n cum = 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u426108351", "n_user": "u426108351", "pos": "n = int(input())\na = list(map(int, input().split()))\n\na_orig = a[:]\n\nans1 = 0\nans2 = 0\ntot = [0 for i in range(n)]\ntot[0] = a[0]\n\nif a[0] <= 0:\n a[0] = 1\n tot[0] = 1\n\n\nfor i in range(1, n):\n tot[i] = tot[i-1] + a[i]\n if i % 2 == 0:\n if tot[i] <= 0:\n tot[i] = 1\n a[i] = tot[i] - tot[i-1]\n\n else:\n if tot[i] >= 0:\n tot[i] = -1\n a[i] = tot[i] - tot[i-1]\n\nfor i in range(n):\n ans1 += abs(a[i]-a_orig[i])\n\n\n\na = a_orig[:]\ntot = [0 for i in range(n)]\ntot[0] = a[0]\n\nif a[0] >= 0:\n a[0] = -1\n tot[0] = -1\n\nfor i in range(1, n):\n tot[i] = tot[i-1] + a[i]\n if i % 2 == 1:\n if tot[i] <= 0:\n tot[i] = 1\n a[i] = tot[i] - tot[i-1]\n\n else:\n if tot[i] >= 0:\n tot[i] = -1\n a[i] = tot[i] - tot[i-1]\n\nfor i in range(n):\n ans2 += abs(a[i]-a_orig[i])\nprint(min(ans1, ans2))\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\na_orig = a[:]\n\nans1 = 0\nans2 = 0\ntot = [0 for i in range(n)]\ntot[0] = a[0]\n\nif a[0] <= 0:\n a[0] = 1\n tot[0] = 1\n\n\nfor i in range(1, n):\n tot[i] = tot[i-1] + a[i]\n if i % 2 == 0:\n if tot[i] <= 0:\n tot[i] = 1\n a[i] = tot[i] - tot[i-1]\n\n else:\n if tot[i] >= 0:\n tot[i] = -1\n a[i] = tot[i] - tot[i-1]\nprint(tot)\nprint(a)\nfor i in range(n):\n ans1 += abs(a[i]-a_orig[i])\n\n\n\na = a_orig[:]\ntot = [0 for i in range(n)]\ntot[0] = a[0]\n\nif a[0] >= 0:\n a[0] = -1\n tot[0] = -1\n\nfor i in range(1, n):\n tot[i] = tot[i-1] + a[i]\n if i % 2 == 1:\n if tot[i] <= 0:\n tot[i] = 1\n a[i] = tot[i] - tot[i-1]\n\n else:\n if tot[i] >= 0:\n tot[i] = -1\n a[i] = tot[i] - tot[i-1]\n\nfor i in range(n):\n ans2 += abs(a[i]-a_orig[i])\nprint(tot)\nprint(a)\nprint(min(ans1, ans2))\n", "jacc_sim": 1.0, "before_after_length": [448, 467], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "print(tot)\nprint(a)tot)\nprint(a)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u254871849", "n_user": "u254871849", "pos": "n = int(input())\na = [int(a) for a in input().split()]\n\ndef f(times, prefix_sum):\n for i in range(1, n):\n if prefix_sum < 0:\n if prefix_sum + a[i] > 0:\n prefix_sum += a[i]\n else:\n times += 1 - (prefix_sum + a[i])\n prefix_sum = 1 \n elif prefix_sum > 0:\n if prefix_sum + a[i] < 0:\n prefix_sum += a[i]\n else:\n times += abs(-1 - (prefix_sum + a[i]))\n prefix_sum = -1\n \n return times\n\nif a[0] > 0:\n t1 = 0\n p1 = a[0]\nelse:\n t1 = 1 - a[0]\n p1 = 1\n\n\nif a[0] < 0:\n t2 = 0\n p2 = a[0]\nelse:\n t2 = abs(-1 - a[0])\n p2 = -1\n \n\nprint(min(f(t1, p1), f(t2, p2)))", "neg": "n = int(input())\na = [int(a) for a in input().split()]\n\ndef f(times, prefix_sum):\n for i in range(1, n):\n if prefix_sum < 0:\n if prefix_sum + a[i] > 0:\n prefix_sum += a[i]\n else:\n times += 1 - (prefix_sum + a[i])\n prefix_sum = 1 \n elif prefix_sum > 0:\n if prefix_sum + a[i] < 0:\n prefix_sum += a[i]\n else:\n times += abs(-1 - (prefix_sum + a[i]))\n prefix_sum = -1\n \n return times\n\nt1 = 0\np1 = a[0]\n\nt2 = 0\nif a[0] > 0:\n t2 += abs(-1 - a[0])\n p2 = -1\nelif a[0] < 0:\n t2 += 1 - a[0]\n p2 = 1\nelse: # a[0] == 0\n t1 = 1\n p1 = -1\n t2 = 1\n p2 = 1\n\nprint(min(f(t1, p1), t2))", "jacc_sim": 0.9743589743589743, "before_after_length": [290, 301], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "t1if= 0\np1 = > 0: t1 = 0 p1 = a[0]\nelse:\n t1 = 1 - a[0]\n p1 = 1\n\n\nif a[0] < 0:\n ifa[0]>0:\np t+= a[0]\nelse:\n t2 elifa[0]<0:\n\n\nprint(min(f(t1,p1), f(, += 1 - a[0]\n = 1\nelse: # a[0] == 0\n t1 = 1\n p1 = -1\n t2 = 1\n p2 = 1\n\nprint(min(f(t1, p1, t2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u189023301", "n_user": "u189023301", "pos": "from functools import lru_cache\nn = int(input())\ns = list(map(int, input().split()))\n\n\n@lru_cache(maxsize=None)\ndef cost_e():\n res = 0\n sum = 0\n for j, y in enumerate(s, 1):\n tmp = sum + y\n if j & 1 and tmp >= 0:\n sum = -1\n res += abs(tmp) + 1\n elif not j & 1 and tmp <= 0:\n sum = 1\n res += abs(tmp) + 1\n else:\n sum = tmp\n return res\n\n\n@lru_cache(maxsize=None)\ndef cost_o():\n res = 0\n sum = 0\n for j, y in enumerate(s, 1):\n tmp = sum + y\n if j & 1 and tmp <= 0:\n sum = 1\n res += abs(tmp) + 1\n elif not j & 1 and tmp >= 0:\n sum = -1\n res += abs(tmp) + 1\n else:\n sum = tmp\n return res\n\n\nprint(min(cost_e(), cost_o()))\n", "neg": "from functools import lru_cache\nn = int(input())\ns = list(map(int, input().split()))\n\n\n@lru_cache(maxsize=None)\ndef cost_e():\n res = 0\n sum = 0\n for j, y in enumerate(s, 1):\n tmp = sum + y\n if j & 1 and tmp >= 0:\n sum = -1\n res += abs(tmp) + 1\n elif not j & 1 and tmp <= 0:\n sum = 1\n res += abs(tmp) + 1\n else:\n sum = tmp\n return res\n\n\n@lru_cache(maxsize=None)\ndef cost_o():\n res = 0\n sum = 0\n for j, y in enumerate(s, 1):\n tmp = sum + y\n if j & 1 and tmp <= 0:\n sum = -1\n res += abs(tmp) + 1\n elif not j & 1 and tmp >= 0:\n sum = 1\n res += abs(tmp) + 1\n else:\n sum = tmp\n return res\n\n\nprint(min(cost_e(), cost_o()))\n", "jacc_sim": 1.0, "before_after_length": [278, 278], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "1\n res += abs(tmp) + 1\n elif not j & 1 and tmp >= 0:\n sum = if not j & 1 and tmp >= 0:\n sum = 1\n res += abs(tmp) + 1\n el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u311379832", "n_user": "u311379832", "pos": "n = int(input())\na = list(map(int, input().split()))\nrui = [0] * n\ncnt = 0\nif a[0] > 0:\n rui[0] = a[0]\nelse:\n rui[0] = 1\n cnt += abs(a[0]) + 1\nfor i in range(1, n):\n tmp = rui[i - 1] + a[i]\n if tmp == 0:\n if rui[i - 1] > 0:\n rui[i] = tmp - 1\n cnt += 1\n else:\n rui[i] = tmp + 1\n cnt += 1\n else:\n if rui[i - 1] > 0 and tmp > 0:\n rui[i] = -1\n cnt += abs(tmp) + 1\n elif rui[i - 1] < 0 and tmp < 0:\n rui[i] = 1\n cnt += abs(tmp) + 1\n else:\n rui[i] = tmp\n\ncnt1 = 0\nif a[0] < 0:\n rui[0] = a[0]\nelse:\n rui[0] = -1\n cnt1 += abs(a[0]) + 1\nfor i in range(1, n):\n tmp = rui[i - 1] + a[i]\n if tmp == 0:\n if rui[i - 1] > 0:\n rui[i] = tmp - 1\n cnt1 += 1\n else:\n rui[i] = tmp + 1\n cnt1 += 1\n else:\n if rui[i - 1] > 0 and tmp > 0:\n rui[i] = -1\n cnt1 += abs(tmp) + 1\n elif rui[i - 1] < 0 and tmp < 0:\n rui[i] = 1\n cnt1 += abs(tmp) + 1\n else:\n rui[i] = tmp\n\nprint(min(cnt, cnt1))", "neg": "n = int(input())\na = list(map(int, input().split()))\nrui = [0] * n\ncnt = 0\nif a[0] > a[1]:\n rui[0] = a[0]\nelse:\n if a[0] >= 0:\n rui[0] = -1\n cnt += a[0] + 1\n else:\n rui[0] = 1\n cnt += abs(a[0]) + 1\n\nfor i in range(1, n):\n tmp = rui[i - 1] + a[i]\n if tmp == 0:\n if rui[i - 1] > 0:\n rui[i] = tmp - 1\n cnt += 1\n else:\n rui[i] = tmp + 1\n cnt += 1\n else:\n if rui[i - 1] > 0 and tmp > 0:\n rui[i] = -1\n cnt += abs(tmp) + 1\n elif rui[i - 1] < 0 and tmp < 0:\n rui[i] = 1\n cnt += abs(tmp) + 1\n else:\n rui[i] = tmp\n\nprint(cnt)", "jacc_sim": 0.9459459459459459, "before_after_length": [490, 293], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "0a[1]if a[0] >= 0:\n - cnt += a[0] + 1\n else:\n rui[0] = 1\n \nprint(1 = 0\nif a[0] < 0:\n rui[0] = a[0]\nelse:\n rui[0] = -1\n cnt1 += abs(a[0] + 1\nfor i in range(1, n):\n tmp = rui[i - 1] + a[i]\n if tmp == 0:\n if rui[i - 1] > 0:\n rui[i] = tmp - 1\n cnt1 += 1\n else:\n rui[i] = tmp + 1\n cnt1 += 1\n else:\n if rui[i - 1] > 0 and tmp > 0:\n rui[i] = -1\n cnt1 += abs(tmp) + 1\n elif rui[i - 1] < 0 and tmp < 0:\n rui[i] = 1\n cnt1 += abs(tmp) + 1\n else:\n rui[i] = tmp\n\nprint(min(cnt, cnt1))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u327310087", "n_user": "u327310087", "pos": "n = int(input())\na = list(map(int, input().split()))\n\n# +, -, +, -, ...\nsum = 0\ncount = 0\nfor i in range(n):\n sum += a[i]\n if i % 2 == 0:\n if sum <= 0:\n count += abs(sum) + 1\n sum = 1\n else:\n if sum >= 0:\n count += abs(sum) + 1\n sum = -1\n\n# -, +, -, +, ...\nsum2 = 0\ncount2 = 0\nfor i in range(n):\n sum2 += a[i]\n if i % 2 == 0:\n if sum2 >= 0:\n count2 += abs(sum2) + 1\n sum2 = -1\n else:\n if sum2 <= 0:\n count2 += abs(sum2) + 1\n sum2 = 1\n\nprint(min(count, count2))\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\n# +, -, +, -, ...\nsum = 0\ncount = 0\nfor i in range(n):\n sum += a[i]\n if i % 2 == 0:\n if sum <= 0:\n sum = 1\n count += abs(sum) + 1\n else:\n if sum >= 0:\n sum = -1\n count += abs(sum) + 1\n\n# -, +, -, +, ...\nsum2 = 0\ncount2 = 0\nfor i in range(n):\n sum2 += a[i]\n if i % 2 == 0:\n if sum2 >= 0:\n sum2 = -1\n count2 += abs(sum2) + 1\n else:\n if sum2 <= 0:\n sum2 = 1\n count2 += abs(sum2) + 1\n \nprint(min(count, count2))\n", "jacc_sim": 1.0, "before_after_length": [231, 232], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "sum = 1\n 1\n sum =count += abs(sum) + 1\n 1\n count += abs(sum) + count2 += abs(sum2) + 1\n 1\n count2 += abs(sum2) + sum2 = 1\n sum2 = 1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u285443936", "n_user": "u285443936", "pos": "n = int(input())\na = [int(i) for i in input().split()]\ntmp1 = 0\ntmp2 = 0\nS = [0]*n\n\nif a[0] > 0:\n S[0] = a[0]\nelse:\n S[0] = 1\n tmp1 += abs(1-a[0])\n \nfor i in range(1,n):\n tmpS = a[i] + S[i-1]\n if tmpS*S[i-1] < 0:\n S[i] = tmpS\n continue\n else:\n if i%2 == 0:\n S[i] = 1\n tmp1 += abs(1 - tmpS)\n else:\n S[i] = -1\n tmp1 += abs(-1-tmpS)\nif a[0] < 0:\n S[0] = a[0]\nelse:\n S[0] = -1\n tmp2 += abs(-1-a[0])\nfor i in range(1,n):\n tmpS = a[i] + S[i-1]\n if tmpS*S[i-1] < 0:\n S[i] = tmpS\n continue\n else:\n if i%2 == 0:\n S[i] = -1\n tmp2 += abs(-1 - tmpS)\n else:\n S[i] = 1\n tmp2 += abs(1-tmpS)\nprint(min(tmp1,tmp2))", "neg": "n = int(input())\na = [int(i) for i in input().split()]\ntmp1 = 0\ntmp2 = 0\nS = [0]*n\n\nif a[0] > 0:\n S[0] = a[0]\nelse:\n S[0] = 1\n tmp1 += abs(1-a[0])\n \nfor i in range(1,n):\n tmpS = a[i] + S[i-1]\n if tmpS*S[i-1] < 0:\n S[i] = tmpS\n continue\n else:\n if i%2 == 0:\n S[i] = 1\n tmp1 += abs(1 - tmpS)\n else:\n S[i] = -1\n tmp1 += abs(-1-tmpS)\nif a[0] < 0:\n S[0] = a[0]\nelse:\n S[0] = -1\n tmp2 += abs(-1-a[0])\n\nfor i in range(1,n):\n tmpS = a[i] + S[i-1]\n if tmpS*S[i-1] < 0:\n continue\n else:\n if i%2 == 1:\n S[i] = -1\n tmp2 += abs(-1 - tmpS)\n else:\n S[i] = 1\n tmp2 += abs(1-tmpS)\nprint(min(tmp1,tmp2))", "jacc_sim": 1.0, "before_after_length": [364, 356], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "\nS[i] = tmpS\n 10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u633914031", "n_user": "u633914031", "pos": "n=int(input())\nb=list(map(int,input().split()))\na=b[:]\n\ncnt=0\nwa=0\ncondition='plus'\nfor i in range(n):\n wa+=a[i]\n if condition == 'plus':\n condition='minus'\n if wa<=0:\n cnt+=abs(wa)+1\n a[i]+=abs(wa)+1\n wa+=abs(wa)+1\n elif condition == 'minus':\n condition='plus'\n if wa>=0:\n cnt+=abs(wa)+1\n a[i]-=abs(wa)+1\n wa-=abs(wa)+1\n\ncnt1=cnt\na=b[:]\ncnt=0\nwa=0\ncondition='minus'\nfor i in range(n):\n wa+=a[i]\n if condition == 'plus':\n condition='minus'\n if wa<=0:\n cnt+=abs(wa)+1\n a[i]+=abs(wa)+1\n wa+=abs(wa)+1\n elif condition == 'minus':\n condition='plus'\n if wa>=0:\n cnt+=abs(wa)+1\n a[i]-=abs(wa)+1\n wa-=abs(wa)+1\n\ncnt2=cnt\nprint(min(cnt1,cnt2))", "neg": "n=int(input())\nb=list(map(int,input().split()))\na=b[:]\ncondition=''\ncnt=0\nwa=0\nfor i in range(n):\n wa+=a[i]\n if i == 0:\n if a[i]>0:\n condition='minus'\n else:\n condition='plus'\n elif condition == 'plus':\n condition='minus'\n if wa<=0:\n cnt+=abs(wa)+1\n a[i]+=abs(wa)+1\n wa+=abs(wa)+1\n elif condition == 'minus':\n condition='plus'\n if wa>=0:\n cnt+=abs(wa)+1\n a[i]-=abs(wa)+1\n wa-=abs(wa)+1\n\ncnt1=cnt\na=b[:]\ncondition=''\ncnt=0\nwa=0\nfor i in range(n):\n a[i]=a[i]/abs(a[i])*(-1)\n cnt+=abs(a[i])+1\n wa+=a[i]\n if i == 0:\n if a[i]>0:\n condition='minus'\n else:\n condition='plus'\n elif condition == 'plus':\n condition='minus'\n if wa<=0:\n cnt+=abs(wa)+1\n a[i]+=abs(wa)+1\n wa+=abs(wa)+1\n elif condition == 'minus':\n condition='plus'\n if wa>=0:\n cnt+=abs(wa)+1\n a[i]-=abs(wa)+1\n wa-=abs(wa)+1\n\ncnt2=cnt\nprint(min(cnt1,cnt2))", "jacc_sim": 0.9285714285714286, "before_after_length": [348, 445], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "condition=''\ncondition='plus'i == 0:\n if a[i]>0:\n condition='minus'\n else:\n condition='plus'\n elif ondition=''\nc\ncondition='minus'wa+==a[i]/abs(a[i])*(-1)cnt+=abs(a[i])+1\n wa+=a[i]\n if i == 0:\n if a[i]>0:\n condition='minus'\n else:\n condition='plus'\n el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u413165887", "n_user": "u413165887", "pos": "n = int(input())\na = list(map(int, input().split(' ')))\nresult = 0\ncounter = 0\nif a[0] == 0:\n counter += 1\n result += 1\nelse:\n counter += a[0]\n\nfor i in range(1, n):\n if counter < 0:\n counter += a[i]\n if counter == 0:\n counter += 1\n result +=1\n elif counter > 0:\n continue\n else:\n result += 1-counter\n counter = 1\n else:\n counter += a[i]\n if counter == 0:\n counter -= 1\n result += 1\n elif counter < 0:\n continue\n else:\n result += counter+1\n counter = -1\nout = []\nout.append(result)\nresult = 0\ncounter = 0\nif a[0] == 0:\n counter -= 1\n result +=1\nelif a[0]< 0:\n counter += 1\n result += 1-a[0]\nelse:\n counter -= 1\n result += 1+a[0]\n\nfor i in range(1, n):\n if counter < 0:\n counter += a[i]\n if counter == 0:\n counter += 1\n result += 1\n elif counter > 0:\n continue\n else:\n result += 1-counter\n counter = 1\n else:\n counter += a[i]\n if counter == 0:\n counter -= 1\n result +=1\n elif counter < 0:\n continue\n else:\n result += counter+1\n counter = -1\nout.append(result)\nprint(min(out))", "neg": "n = int(input())\na = list(map(int, input().split(' ')))\nresult = 0\nh = 0\nif a[0] == 0:\n counter += 1\n result += 1\nelse:\n counter += a[0]\n\nfor i in range(1, n):\n if counter < 0:\n counter += a[i]\n if counter == 0:\n counter += 1\n result +=1\n elif counter > 0:\n continue\n else:\n result += 1-counter\n counter = 1\n else:\n counter += a[i]\n if counter == 0:\n counter -= 1\n result += 1\n elif counter < 0:\n continue\n else:\n result += counter+1\n counter = -1\nout = []\nout.append(result)\nresult = 0\ncounter = 0\nif a[0] == 0:\n counter -= 1\n result +=1\nelif a[0]< 0:\n counter += 1\n result += 1-a[0]\nelse:\n counter -= 1\n result += 1+a[0]\n\nfor i in range(1, n):\n if counter < 0:\n counter += a[i]\n if counter == 0:\n counter += 1\n result += 1\n elif counter > 0:\n continue\n else:\n result += 1-counter\n counter = 1\n else:\n counter += a[i]\n if counter == 0:\n counter -= 1\n result +=1\n elif counter < 0:\n continue\n else:\n result += counter+1\n counter = -1\nout.append(result)\nprint(min(out))", "jacc_sim": 0.972972972972973, "before_after_length": [404, 404], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "hcounter", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u141610915", "n_user": "u141610915", "pos": "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\nres = max(0, -a[0] + 1)\nsm = 1\nif a[0] >= 1:\n res = 0\n sm = a[0]\n#print(res, sm)\nfor i in range(1, N):\n if sm > 0:\n res += max(-1, a[i] + sm) + 1\n sm = min(-1, sm + a[i])\n else:\n res += -min(1, sm + a[i]) + 1\n sm = max(1, sm + a[i])\n #print(res, sm)\nres2 = max(0, a[0] + 1)\nsm = -1\nif a[0] <= -1:\n res2 = 0\n sm = a[0]\nfor i in range(1, N):\n if sm > 0:\n res2 += max(-1, a[i] + sm) + 1\n sm = min(-1, sm + a[i])\n else:\n res2 += -min(1, sm + a[i]) + 1\n sm = max(1, sm + a[i])\n #print(res2, sm)\n#print(res, res2)\nprint(min(res, res2))", "neg": "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\nres = -max(0, ~a[0])\nsm = 1\nif a[0] > 1: sm = a[0]\nfor i in range(1, N):\n if sm > 0:\n res += max(0, a[i] + sm + 1)\n sm = min(-1, a[i])\n else:\n res += max(0, sm - a[i] + 1)\n sm = max(1, a[i])\nres2 = max(0, a[0] + 1)\nsm = -1\nif a[0] < -1: sm = a[0]\nfor i in range(1, N):\n if sm > 0:\n res2 += max(0, a[i] + sm + 1)\n sm = min(-1, a[i])\n else:\n res2 += max(0, sm - a[i] + 1)\n sm = max(1, a[i])\nprint(min(res, res2))", "jacc_sim": 0.9487179487179487, "before_after_length": [331, 270], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "-~- + 1 1: sm a[1:\n res = \n sm = a[0\n#print(res, sm)0, a[i] + sm + 1)\n sm = min( a[i] + sm) + 1\n sm = min(-1, sm +-min(1, sm + a[i]) + 1\n sm = 0, sm - a[i] + ,)\n + a[i])\n #print(res, sm)\nres210i0 + 1sm = -1\nif a[0] <= -1:\n max(, a[0] + 1)sm= -1\nif a[0] < -1:0, a[i] + sm + 1)\n sm = min( a[i] + sm) + 1\n sm = min(-1, sm +-min(1, sm + a[i]) + 1\n sm = 0, sm - a[i] + )\n sm = max(1a[i])\nprint(min(re,m+ a[i])\n #print(, sm\n#print(res, res2\nprint(min(res, res2))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u472883337", "n_user": "u472883337", "pos": "n = int(input())\na = list(map(int, input().split()))\nl = len(a)\nb = []\nfor i in range(l):\n b.append(a[i])\n \nans = 0\nAns = 0\nsummary = a[0]\n\nif(summary == 0):\n summary = 1\n ans+= 1\n Summary = -1\n Ans+= 1\nelse:\n b[0] = int(-a[0]/ abs(a[0]))\n Ans+= abs(a[0]- b[0])\n Summary = b[0] \n \nfor i in range(1, l):\n if(summary* (summary+ a[i])>= 0):\n if(summary > 0):\n ans+= a[i]+ summary+ 1\n a[i] = -summary- 1 \n summary= -1\n else:\n ans+= -summary+ 1- a[i]\n a[i] = -summary+ 1\n summary= 1\n else:\n summary+= a[i]\n\nfor i in range(1, l):\n if(Summary* (Summary+ b[i])>= 0):\n if(Summary > 0):\n Ans+= b[i]+ Summary+ 1\n b[i] = -Summary- 1 \n Summary= -1\n else:\n Ans+= -Summary+ 1- b[i]\n b[i] = -Summary+ 1\n Summary= 1\n else:\n Summary+= b[i]\n \nprint(min(ans, Ans))", "neg": "n = int(input())\na = list(map(int, input().split()))\nl = len(a)\nb = []\nfor i in range(l):\n b.append(a[i])\n \nans = 0\nAns = 0\nsummary = a[0]\n\nif(summary == 0):\n a[0] = 1\n ans+= 1\n b[0] = -1\n Ans+= 1\nelse:\n b[0] = int(-a[0]/ abs(a[0]))\n Ans+= abs(a[0]- b[0])\n\nSummary = b[0] \n \nfor i in range(1, l):\n if(summary* (summary+ a[i])>= 0):\n if(summary > 0):\n ans+= a[i]+ summary+ 1\n a[i] = -summary- 1 \n summary= -1\n else:\n ans+= -summary+ 1- a[i]\n a[i] = -summary+ 1\n summary= 1\n else:\n summary+= a[i]\n\nfor i in range(1, l):\n if(Summary* (Summary+ b[i])>= 0):\n if(Summary > 0):\n Ans+= b[i]+ Summary+ 1\n b[i] = -Summary- 1 \n Summary= -1\n else:\n Ans+= -Summary+ 1- b[i]\n b[i] = -Summary+ 1\n Summary= 1\n else:\n Summary+= b[i]\n \nprint(min(ans, Ans))\nprint(a, b)", "jacc_sim": 1.0, "before_after_length": [385, 398], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "a[0] = 1\n an+=ummary=1\n1\nb[0] ans+= 1\n Summary\n \nprint(a, b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u074220993", "n_user": "u074220993", "pos": "n = int(input())\na = [int(x) for x in input().split()]\n\ndef odd_positive(List):\n sum_a = 0\n cost = 0\n i = 0\n for a in List:\n i += 1\n sum_a += a\n if i & 1 and sum_a <= 0:\n cost += - sum_a + 1\n sum_a = 1\n elif (not i & 1) and sum_a >= 0:\n cost += sum_a + 1\n sum_a = -1\n return cost\n\n\ndef odd_negative(List):\n sum_a = 0\n cost = 0\n i = 0\n for a in List:\n i += 1\n sum_a += a\n if i & 1 and sum_a >= 0:\n cost += sum_a + 1\n sum_a = -1\n elif (not i & 1) and sum_a <= 0:\n cost += - sum_a + 1\n sum_a = 1\n return cost\n \nans = min(odd_positive(a), odd_negative(a)) \nprint(ans)\n", "neg": "n = int(input())\na = [int(x) for x in input().split()]\n\ndef odd_positive(List, n):\n sum_a = 0\n cost = 0\n for a in List:\n nextsum = sum_a + a\n if i & 1 and nextsum <= 0:\n cost = - nextsum + 1\n sum_a = 1\n elif (not i & 1) and nextsum >= 0:\n cost = nextsum + 1\n sum_a = -1\n return cost\n\n\ndef odd_negative(List, n):\n sum_a = 0\n cost = 0\n for a in List:\n nextsum = sum_a + a\n if i & 1 and nextsum >= 0:\n cost = nextsum + 1\n sum_a = -1\n elif (not i & 1) and nextsum <= 0:\n cost = - nextsum + 1\n sum_a = 1\n return cost\n \nans = min(odd_positive(a,n), odd_negative(a,n)) \nprint(ans)\n", "jacc_sim": 0.9743589743589743, "before_after_length": [273, 259], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "):\n sum_a = 0\n cost = 0\n i = 0\n for a in List:\n i += 1\n sum_a += a\n if i & 1 and sum_a <= 0:\n cost += - sum_a + 1\n sum_a = 1\n elif (not i & 1) and sum_a >= 0:\n cost += sum_a + 1\n sum_a = -1\n return cost\n\n\ndef odd_negative(List):\n sum_a = 0\n cost = 0\n i = 0\n for a in List:\n i += 1\n sum_a += a\n if i & 1 and sum_a >= 0:\n cost += sum_a + 1\n sum_a = -1\n elif (not i & 1) and sum_a <= 0:\n cost += - sum_a + 1\n sum_a = 1\n return cost\n \nans = min(odd_positive(a)n):\n sum_a = 0\n cost = 0\n for a in List:\n nextsum = sum_a + a\n if i & 1 and nextsum <= 0:\n cost = - nextsum + 1\n sum_a = 1\n elif (not i & 1) and nextsum >= 0:\n cost = nextsum + 1\n sum_a = -1\n return cost\n\n\ndef List, n):\n sum_ = 0\n cost = 0\n for a in List:\n nextsum = sum_a + a\n if i & 1 and nextsum >= 0:\n cost = nextsum + 1\n sum_a = -1\n elif (not i & 1) and nextsum <= 0:\n cost = - nextsum + 1\n sum_a = 1\n return cost\n \nans = min(odd_positive(a,n), odd_negative(a,n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u177411511", "n_user": "u177411511", "pos": "import sys\nimport copy\nimport math\nfrom _bisect import *\nfrom collections import *\nfrom operator import itemgetter\nfrom math import factorial\n\"\"\"\nfrom fractions import gcd\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n\"\"\"\nstdin = sys.stdin\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline()\n\nn = ni()\nli = na()\nans = [0, 0]\nfor j in range(2):\n tmp = j\n s = 0\n for i in range(n):\n tmp = 1 - tmp\n s += li[i]\n if tmp:\n if s <= 0:\n d = abs(s - 1)\n ans[j] += d\n s = 1\n else:\n if s >= 0:\n d = abs(s - (-1))\n ans[j] += d\n s = -1\nprint(min(ans))\n\n\n", "neg": "import sys\nimport copy\nimport math\nfrom _bisect import *\nfrom collections import *\nfrom operator import itemgetter\nfrom math import factorial\n\"\"\"\nfrom fractions import gcd\ndef lcm(x, y):\n return (x * y) // gcd(x, y)\n\"\"\"\nstdin = sys.stdin\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline()\n\nn = ni()\nli = na()\nans = [0, 0]\ns = li[0]\nfor j in range(2):\n code = j\n for i in range(n - 1):\n code = 1 - code\n if code:\n if s + li[i + 1] > 0:\n s += li[i + 1]\n else:\n ans[j] += abs(s * (-1) + 1 - li[i + 1])\n s = 1\n else:\n if s + li[i + 1] < 0:\n s += li[i + 1]\n else:\n ans[j] += abs(s * (-1) - 1 - li[i + 1])\n s = -1\nprint(min(ans))\n\n\n", "jacc_sim": 0.9516129032258065, "before_after_length": [253, 300], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "sforj in range(2):\n tmp = j\n s = 0\n for i in range(n):\n tmp = 1 - tmp\n s +i]\n if tmp:\n if s <= ]\nfor j in range(2)code=j\nforiinr d = bsngens:\n code = 1 - code\n if code:\n if s + li[i + 1] > 0:\n s += li[i + 1]\n else:d\n s = 1\n else:\n if s >= 0:\n d = *- + 1 - li[i + 1]\n s = 1\n else:\n if s + li[i + 1] < 0:\n s += li[i + 1]\n else:d\nabs(s*( s = ) - 1 - li[i + 1]) s = -1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u391731808", "n_user": "u391731808", "pos": "N = int(input())\n*A, = map(int,input().split())\nans1 = 0\nS = A[0]\nif S <= 0:\n ans1 = abs(S)+1\n S = 1\nfor a in A[1:]:\n S1 = S+a\n if S1*S >= 0:\n ans1 += abs(S1)+1\n S1 = -S//abs(S)\n S = S1\nans2 = 0\nS = A[0]\nif S >= 0:\n ans2 = abs(S)+1\n S = -1\nfor a in A[1:]:\n S1 = S+a\n if S1*S >= 0:\n ans2 += abs(S1)+1\n S1 = -S//abs(S)\n S = S1\nprint(min(ans1,ans2))", "neg": "N = int(input())\n*A, = map(int,input().split())\nans1 = 0\nS = A[0]\nif S <= 0:\n S = 1\n ans1 = -S+1\nfor a in A[1:]:\n S1 = S+a\n if S1*S >= 0:\n ans1 += abs(S1)+1\n S1 = -S//abs(S)\n S = S1\nans2 = 0\nS = A[0]\nif S >= 0:\n S = -1\n ans1 = -S+1\nfor a in A[1:]:\n S1 = S+a\n if S1*S >= 0:\n ans2 += abs(S1)+1\n S1 = -S//abs(S)\n S = S1\nprint(min(ans1,ans2))", "jacc_sim": 1.0, "before_after_length": [209, 207], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "S = 1\n -abs()1\n S = ans2 = abs(S)+1\n 1\n ans1 = -S+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u513081876", "n_user": "u513081876", "pos": "n = int(input())\na = [int(i) for i in input().split()]\nans1 = 0\nans2 = 0\nsumm = 0\nsumm2 = 0\na2 = a[:]\n\n\nfor i in range(n):\n if i % 2 == 0:\n if summ + a[i] <= 0:\n ans1 += abs(summ + a[i]) + 1\n a[i] = -summ + 1\n summ = 1\n else:\n summ += a[i]\n else:\n if summ + a[i] >= 0:\n ans1 += abs(summ + a[i]) + 1\n a[i] = -summ -1\n summ = -1\n else:\n summ += a[i]\n#-+-\nfor i in range(n):\n if i % 2 != 0:\n if summ2 + a2[i] <= 0:\n ans2 += abs(summ2 + a2[i]) + 1\n a2[i] = -summ2 + 1\n summ2 = 1\n else:\n summ2 += a2[i]\n else:\n if summ2 + a2[i] >= 0:\n ans2 += abs(summ2 + a2[i]) + 1\n a2[i] = -summ2 -1\n summ2 = -1\n else:\n summ2 += a2[i]\n\n\nprint(min(ans1, ans2))\n", "neg": "n = int(input())\na = [int(i) for i in input().split()]\nans1 = 0\nans2 = 0\nsumm = 0\nsumm2 = 0\na2 = a[:]\n\n\nfor i in range(n):\n if i % 2 == 0:\n if summ + a[i] <= 0:\n ans1 += abs(summ + a[i]) + 1\n a[i] = -summ + 1\n summ = 1\n else:\n summ += a[i]\n else:\n if summ + a[i] >= 0:\n ans1 += abs(summ + a[i]) + 1\n a[i] = -summ -1\n summ = -1\n else:\n summ += a[i]\n\nfor i in range(n):\n if i % 2 != 0:\n if summ2 + a2[i] <= 0:\n ans2 += abs(summ2 + a2[i]) + 1\n a2[i] = -summ2 + 1\n summ2 = 1\n else:\n summ2 += a[i]\n else:\n if summ2 + a2[i] >= 0:\n ans2 += abs(summ2 + a2[i]) + 1\n a2[i] = -summ2 -1\n summ2 = -1\n else:\n summ2 += a2[i]\n\nprint(min(ans1, ans2))\n", "jacc_sim": 0.972972972972973, "before_after_length": [372, 367], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "#-+-2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u026155812", "n_user": "u026155812", "pos": "n = int(input())\na = [int(i) for i in input().split()]\ncur = 0\nans1, ans2 = 0,0\nfor i, x in enumerate(a):\n cur += x\n if i%2 == 0:\n if cur >= 1:\n continue\n else:\n ans1 += abs(1-cur)\n cur = 1\n else:\n if cur <= -1:\n continue\n else:\n ans1 += abs(-1-cur)\n cur = -1\ncur = 0\nfor i, x in enumerate(a):\n cur += x\n if i%2 != 0:\n if cur >= 1:\n continue\n else:\n ans2 += abs(1-cur)\n cur = 1\n else:\n if cur <= -1:\n continue\n else:\n ans2 += abs(-1-cur)\n cur = -1\nprint(min(ans1, ans2))", "neg": "n = int(input())\na = [int(i) for i in input().split()]\ncur = 0\nans1, ans2 = 0,0\nfor i, x in enumerate(a):\n cur += x\n if i%2 == 0:\n if cur >= 1:\n continue\n else:\n ans1 += abs(1-x)\n else:\n if cur <= -1:\n continue\n else:\n ans1 += abs(-1-x)\nfor i, x in enumerate(a):\n cur += x\n if i%2 != 0:\n if cur >= 1:\n continue\n else:\n ans2 += abs(1-x)\n else:\n if cur <= -1:\n continue\n else:\n ans2 += abs(-1-x)\nprint(min(ans1, ans2))", "jacc_sim": 1.0, "before_after_length": [231, 205], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "xcur\n cur = 1xcur\n cur = -1\ncur = 0xcur\n cur = 1xcur\n cur = -1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u167681750", "n_user": "u167681750", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nsa = 0\ncount = [0, 0]\n\nfor i in range(n):\n now = a[i]\n sa += now\n if sa <= 0 and i%2 == 0:\n count[0] += 1 - sa\n sa = 1\n elif sa >= 0 and i%2 == 1:\n count[0] += 1 + sa\n sa = -1\n\nsa = 0\n\nfor i in range(n):\n now = a[i]\n sa += now\n if sa <= 0 and i%2 == 1:\n count[1] += 1 - sa\n sa = 1\n elif sa >= 0 and i%2 == 0:\n count[1] += 1 + sa\n sa = -1\n\nprint(min(count))", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nsa = 0\ncount = [0, 0]\n\nfor i in range(n):\n now = a[i]\n sa += now\n if sa <= 0 and i%2 == 0:\n count[0] += 1 - sa\n sa = 1\n elif sa >= 0 and i%2 == 1:\n count[0] += 1 + sa\n sa = -1\n\nsa = 0\n\nfor i in range(n):\n now = a[i]\n sa += now\n if sa <= 0 and i%2 == 1:\n count[1] += 1 - sa\n sa = 1\n elif sa >= 0 and i%2 == 0:\n count[1] += 1 + sa\n sa = -1\n\nprint(count)", "jacc_sim": 0.9714285714285714, "before_after_length": [204, 202], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "micou(coun)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u538632589", "n_user": "u538632589", "pos": "N = int(input())\na = list(map(int, input().split()))\n\nres = []\nfor start in [1, -1]:\n\n ans = 0\n _a = []\n prev_sign = start\n for i in range(0, N):\n c = a[i]\n if c >= 0 and prev_sign > 0:\n ans += abs(c - (-1))\n c = -1\n elif c <= 0 and prev_sign < 0:\n ans += abs(c - 1)\n c = 1\n if c > 0:\n prev_sign = 1\n else:\n prev_sign = -1\n _a.append(c)\n\n __a = [_a[0]]\n acm_sum = _a[0]\n for i in range(1, N):\n c = _a[i]\n if abs(acm_sum) >= abs(c):\n if c < 0:\n c = -1*(abs(acm_sum)+1)\n else:\n c = abs(acm_sum)+1\n acm_sum += c\n ans += abs(c - _a[i])\n __a.append(c)\n res.append(ans)\n\nprint(min(res))", "neg": "N = int(input())\na = list(map(int, input().split()))\n\nres = []\nfor start in [1, -1]:\n\n ans = 0\n _a = [a[0]]\n prev_sign = start\n for i in range(0, N):\n c = a[i]\n if c >= 0 and prev_sign > 0:\n ans += abs(c - (-1))\n c = -1\n elif c <= 0 and prev_sign < 0:\n ans += abs(c - 1)\n c = 1\n if c > 0:\n prev_sign = 1\n else:\n prev_sign = -1\n _a.append(c)\n\n __a = [_a[0]]\n acm_sum = _a[0]\n for i in range(1, N):\n c = _a[i]\n if abs(acm_sum) >= abs(c):\n if c < 0:\n c = -1*(abs(acm_sum)+1)\n else:\n c = abs(acm_sum)+1\n acm_sum += c\n ans += abs(c - _a[i])\n __a.append(c)\n res.append(ans)\n\nprint(min(res))", "jacc_sim": 1.0, "before_after_length": [307, 311], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "a[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u901582103", "n_user": "u901582103", "pos": "def z(s,l):\n\tfor i in range(n-1):\n\t\tr=l+a[i+1]\n\t\tif r*l>=0:\n\t\t\tif l<=0:\n\t\t\t\ts+=1-r\n\t\t\t\tr=1\n\t\t\telse:\n\t\t\t\ts+=1+r\n\t\t\t\tr=-1\n\t\tl=r\n\treturn s\nn=int(input())\na=list(map(int,input().split()))\ns1=0\nl1=a[0]\nif a[0]<=0:\n\ts1=1-a[0]\n\tl1=1\ns2=0\nl2=a[0]\nif a[0]>=0:\n\ts2=a[0]+1\n\tl2=-1\nprint(min(z(s1,l1),z(s2,l2)))", "neg": "def z(s,l):\n\tfor i in range(n-1):\n\t\tr=l+a[i+1]\n\t\tif r*l>=0:\n\t\t\tif l<=0:\n\t\t\t\ts+=1-r\n\t\t\t\tr=1\n\t\t\telse:\n\t\t\t\ts+=1+r\n\t\t\t\tr=-1\n\t\tprint(a[i+1],r,s)\n\t\tl=r\n\treturn s\nn=int(input())\na=list(map(int,input().split()))\ns1=0\nl1=a[0]\nif a[0]<=0:\n\ts1=1-a[0]\n\tl1=1\ns2=0\nl2=a[0]\nif a[0]>=0:\n\ts2=a[0]+1\n\tl2=-1\nprint(min(z(s1,l1),z(s2,l2)))", "jacc_sim": 1.0, "before_after_length": [217, 232], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "print(a[i+1],r,s)\n\t\t", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u254871849", "n_user": "u254871849", "pos": "import sys\n\nn, *a = map(int, sys.stdin.read().split())\n\ndef main():\n s1 = s2 = c1 = c2 = 0\n for i in range(n):\n s1 += a[i]\n s2 += a[i]\n if i & 1:\n if s1 >= 0:\n c1 += abs(-1 - s1)\n s1 = -1\n\n if s2 <= 0:\n c2 += 1 - s2\n s2 = 1\n else:\n if s1 <= 0:\n c1 += 1 - s1\n s1 = 1\n\n if s2 >= 0:\n c2 += abs(-1 - s2)\n s2 = -1\n \n return min(c1, c2)\n\nif __name__ == '__main__':\n ans = main()\n print(ans)", "neg": "import sys\n\nn, *a = map(int, sys.stdin.read().split())\n\ndef main():\n c1 = c2 = s1 = s2 = 0\n for i in range(n):\n s1 += a[i]\n s2 += a[i]\n if i & 1:\n if s1 >= 0:\n c1 += s1 + 1\n s1 = -1\n if s2 <= 0:\n c2 += 1 - s2\n s2 = 1\n else:\n if s1 <= 0:\n c1 += 1 - s2\n s1 = 1\n if s2 >= 0:\n c2 += s2 + 1\n s2 = -1\n print(min(c1, c2))\n\nif __name__ == '__main__':\n main()", "jacc_sim": 0.9333333333333333, "before_after_length": [217, 201], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "c1 = c2 = 2 = c1 = cab(- - s1)\n s1 = -1\n\n if s2 <= 0:\n c2 1\n s1 -\n- if \n s2 = 1\n else:\n if s1212\n s2 = else:\n if <= 1\n\n if s2 >12ab1 - (2\n s1 = 1\n if s2 >= 0:\n c2 += s2 + 1\n s2 = - s2)\n s2 = -1\n \n return min(c1, c2)\n\nif __name__ == '__main__':\n ans = main()min(c1, c2))\n\nif __nme__ == '__mais__':\n main(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u252228075", "n_user": "u252228075", "pos": "n = int(input())\ni = input()\n\ni = i.split()\nfor item in range(len(i)):\n i[item] = int(i[item])\n\ntotn = 0\ntotp = 0\n\ncountp = 0\ncountn = 0\n\nfor x in range(len(i)):\n totp += i[x]\n totn += i[x]\n \n if x == 0:\n if totp == 0: \n totn = -1\n countn = 1\n\n totp = 1\n countp = 1\n \n elif totp < 0:\n countp = abs(totp) + 1\n totp = 1\n\n elif totp > 0:\n countn = abs(totn) + 1\n totn = -1\n\n elif x %2 == 1:\n if totn == 0:\n countn += 1\n totn = 1\n elif totn < 0:\n countn += abs(totn) + 1\n totn = 1\n\n if totp == 0:\n countp += 1\n totp = -1\n elif totp > 0:\n countp += abs(totp) + 1\n totp = -1\n\n elif x %2 == 0:\n if totn == 0:\n countn += 1\n totn = -1\n elif totn > 0:\n countn += abs(totn) + 1\n totn = -1\n\n if totp == 0:\n countp += 1\n totp = 1\n elif totp < 0:\n countp += abs(totp) + 1\n totp = 1\n '''print('totn', totn)\n print('countn', countn)\n print('totp', totp)\n print('countp', countp) ''' \ncount = min(countn, countp)\nprint(count)\n", "neg": "n = int(input())\ni = input()\n\ni = i.split()\nfor item in range(len(i)):\n i[item] = int(i[item])\n\ntotn = 0\ntotp = 0\n\ncountp = 0\ncountn = 0\n\nfor x in range(len(i)):\n totp += i[x]\n totn += i[x]\n''' \n if x == 0:\n if totp == 0: \n totn = -1\n countn = 1\n\n totp = 1\n countp = 1\n \n elif totp < 0:\n countp = abs(totp) + 1\n totp = 1\n\n elif totp > 0:\n countn = abs(totn) + 1\n totn = -1\n'''\n if x %2 == 1:\n if totn == 0:\n countn += 1\n totn = 1\n elif totn < 0:\n countn += abs(totn) + 1\n totn = 1\n\n if totp == 0:\n countp += 1\n totp = -1\n elif totp > 0:\n countp += abs(totp) + 1\n totp = -1\n\n elif x %2 == 0:\n if totn == 0:\n countn += 1\n totn = -1\n elif totn > 0:\n countn += abs(totn) + 1\n totn = -1\n\n if totp == 0:\n countp += 1\n totp = 1\n elif totp < 0:\n countp += abs(totp) + 1\n totp = 1\n '''print('totn', totn)\n print('countn', countn)\n print('totp', totp)\n print('countp', countp) ''' \ncount = min(countn, countp)\nprint(count)\n", "jacc_sim": 1.0, "before_after_length": [464, 466], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "''''''el", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u760802228", "n_user": "u760802228", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ndef check(f):\n flag = f \n t = 0 \n c = 0 \n for i in range(n):\n if t + a[i] <= 0 and flag == 1:\n c += 1 - t - a[i]\n t = 1 \n elif t + a[i] >= 0 and flag == -1: \n c += 1 + t + a[i]\n t = -1\n else:\n t += a[i] \n flag *= -1\n return c \n \ntotal_p = check(1)\ntotal_m = check(-1)\nprint(min(total_p, total_m))", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ndef check(f):\n flag = f \n t = 0 \n c = 0 \n for i in range(n):\n if t + a[i] <= 0 and flag == 1:\n c += 1 - t - a[i]\n t = 1 \n elif t + a[i] >= 0 and flag == -1: \n c += 1 + t + a[i]\n t = -1\n else:\n t += a[i] \n flag *= -1\n print(t)\n return c \n \ntotal_p = check(1)\ntotal_m = check(-1)\nprint(min(total_p, total_m))", "jacc_sim": 1.0, "before_after_length": [174, 180], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": " print(t)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03739", "p_user": "u975024434", "n_user": "u975024434", "pos": "\ndef check1(a):\n sum = 0\n ans = 0\n for i in range(len(a)):\n if(i % 2 == 0):\n sum += a[i]\n if(sum >= 0):\n a[i] -= abs(sum)+1\n ans += abs(sum)+1\n sum -= abs(sum)+1\n else:\n sum += a[i]\n if(sum <= 0):\n a[i] += abs(sum)+1\n ans += abs(sum)+1\n sum += abs(sum)+1\n return ans\n\ndef check2(a):\n sum = 0\n ans = 0\n for i in range(len(a)):\n if(i % 2 == 0):\n sum += a[i]\n if(sum <= 0):\n a[i] += abs(sum)+1\n ans += abs(sum)+1\n sum += abs(sum)+1\n else:\n sum += a[i]\n if(sum >= 0):\n a[i] -= abs(sum)+1\n ans += abs(sum)+1\n sum -= abs(sum)+1\n return ans\n\n\n\nn = input()\nb = input().split()\na = [int(b[i]) for i in range(len(b))]\na2 = list(a)\n\nans1 = check1(a)\nans2 = check2(a2)\n\n\nprint(ans1) if(ans1= 0):\n a[i] += -abs(sum)-1\n sum += -abs(sum)-1\n ans += abs(sum)+1\n else:\n sum += a[i]\n if(sum <= 0):\n a[i] += abs(sum)+1\n sum += abs(sum)+1\n ans += abs(sum)+1\n return ans\n\ndef check2(a):\n sum = 0\n ans = 0\n for i in range(len(a)):\n if(i % 2 == 0):\n sum += a[i]\n if(sum <= 0):\n a[i] += abs(sum)+1\n sum += abs(sum)+1\n ans += abs(sum)+1\n else:\n sum += a[i]\n if(sum >= 0):\n a[i] += -abs(sum)-1\n sum += -abs(sum)-1\n ans += abs(sum)+1\n return ans\n\n\n\nn = input()\nb = input().split()\na = [int(b[i]) for i in range(len(b))]\na2 = list(a)\n\nans1 = check1(a)\nans2 = check2(a2)\n\n\nprint(ans1) if(ans1 -1:\n t1 += (s1+1)\n s1 = -1\nt2, s2 = 0, 0\nfor i, x in enumerate(a):\n s2 += x\n if i % 2 == 0:\n if s2 > -1:\n t2 += (s2+1)\n s2 = -1\n else:\n if s2 < 1:\n t2 += (1-s2)\n s2 = 1\nprint(min(t1, t2))", "neg": "a = list(map(int, input().split()))\nt1, s1 = 0, 0\nfor i, x in enumerate(a):\n s1 += x\n if i % 2 == 0:\n if s1 < 1:\n t1 += (1-s1)\n s1 = 1\n else:\n if s1 > -1:\n t1 += (s1+1)\n s1 = -1\nt2, s2 = 0, 0\nfor i, x in enumerate(a):\n s2 += x\n if i % 2 == 0:\n if s2 > -1:\n t2 += (s2+1)\n s2 = -1\n else:\n if s2 < 1:\n t2 += (1-s2)\n s2 = 1\nprint(min(t1, t2))", "jacc_sim": 0.9705882352941176, "before_after_length": [213, 206], "nl": "You are given an integer sequence of length N. In one operation, you can select a term and either increment or decrement it by one. Determine the minimum number of operations needed to satisfy the following conditions: For every i (1\u2264i\u2264n), the sum of the terms from the 1st through i-th term is not zero, and for every i (1\u2264i\u2264n-1), the sign of the sum of the terms from the 1st through i-th term is different from the sign of the sum of the terms from the 1st through (i+1)-th term. Constraints: 2 \u2264 n \u2264 10^5, |a_i| \u2264 10^9, and each a_i is an integer. Input is given as n followed by a sequence of n integers. Output the minimum necessary count of operations.", "diff_info": "a = list(map(it,= int()\na = list(map(int, input()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u270681687", "n_user": "u270681687", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nans = 1\nup = None\nfor l, r in zip(a, a[1:]):\n if l == r:\n continue\n if l < r:\n if up is None:\n up = True\n elif not up:\n ans += 1\n up = None\n else:\n if up is None:\n up = False\n elif up:\n ans += 1\n up = None\n\nprint(ans)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nans = 1\nup = None\nfor l, r in zip(a, a[1:]):\n if l == r:\n continue\n if l < r:\n if up is None:\n up = True\n elif not up:\n ans += 1\n up = None\n else:\n if up is None:\n up = True\n elif up:\n ans += 1\n up = None\n\nprint(ans)\n", "jacc_sim": 0.9714285714285714, "before_after_length": [127, 127], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "TruFals", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u678167152", "n_user": "u678167152", "pos": "N = int(input())\nA = list(map(int, input().split()))\ndef solve(N,A):\n ans = 1\n lis = [A[0]]\n for i in range(1,N):\n if len(lis)==1 or diff==0:\n diff = A[i]-A[i-1]\n elif (A[i]-A[i-1])*diff<0:\n ans += 1\n lis = []\n lis.append(A[i])\n a = A[i]\n return ans\nprint(solve(N,A))", "neg": "N = int(input())\nA = list(map(int, input().split()))\ndef solve(N,A):\n ans = 0\n lis = []\n lis.append(A[0])\n a = A[0]\n for i in range(1,N):\n if len(lis)==1 or prev==0:\n prev = A[i]-a\n elif (A[i]-a)*prev<0:\n ans += 1\n lis = []\n lis.append(A[i])\n a = A[i]\n return ans\nprint(solve(N,A))", "jacc_sim": 0.9487179487179487, "before_after_length": [147, 152], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "1\n lis = [A[\n lis = [\n lis.append(A[0])\n a = A[0prevdiffprevdiffa\n elif (]a1]\n elif (A[i]-A[i-1]prevdiff", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u598229387", "n_user": "u598229387", "pos": "n=int(input())\na=[int(i) for i in input().split()]\n\nans=0\ndef plus_minus(i):\n while True:\n if i==n-1:\n break\n if a[i]==a[i+1]:\n i+=1\n continue\n if a[i]a[i+1]:\n return -1\n\ncheck=plus_minus(0) \nans=1\nfor j in range(n-1):\n if check==1:\n if a[j] <= a[j+1]:\n continue\n else:\n ans+=1\n check=plus_minus(j+1)\n else:\n if a[j]>=a[j+1]:\n continue\n else:\n ans+=1\n check=plus_minus(j+1)\nprint(ans)", "neg": "n=int(input())\na=[int(i) for i in input().split()]\n\nans=0\ndef plus_minus(i):\n while True:\n if a[i]==a[i+1]:\n i+=1\n continue\n if a[i]a[i+1]:\n return -1\n\nplus_minus(0) \nans=1\nfor j in range(i,n-1):\n if check==1:\n if a[j] <= a[j+1]:\n continue\n else:\n ans+=1\n check=plus_minus(j+1)\n else:\n if a[j]>=a[j+1]:\n continue\n else:\n ans+=1\n check=plus_minus(j+1)\nprint(ans)", "jacc_sim": 0.9444444444444444, "before_after_length": [231, 219], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "i==n-1:\n break\n if check=i,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u426108351", "n_user": "u426108351", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nans = 1\nflag = 0\nbase = -1\ncount = 0\nfor i in range(n):\n if count == 0:\n count += 1\n base = a[i]\n elif count == 1:\n \n if a[i] < base:\n flag = 0\n count += 1\n elif a[i] > base:\n flag = 1\n count += 1\n else:\n continue\n else:\n if flag == 0:\n if a[i] <= a[i-1]:\n continue\n else:\n count = 1\n base = a[i]\n ans += 1\n else:\n if a[i] >= a[i-1]:\n continue\n else:\n count = 1\n base = a[i]\n ans += 1\nprint(ans)\n \n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nans = 1\nflag = 0\nbase = -1\ncount = 0\nfor i in range(n):\n if count == 0:\n count += 1\n base = a[i]\n elif count == 1:\n count += 1\n if a[i] < base:\n flag = 0\n elif a[i] > base:\n flag = 1\n else:\n continue\n else:\n if flag == 0:\n if a[i] <= a[i-1]:\n continue\n else:\n count = 1\n base = a[i]\n ans += 1\n else:\n if a[i] >= a[i-1]:\n continue\n else:\n count = 1\n base = a[i]\n ans += 1\n\n ", "jacc_sim": 0.9705882352941176, "before_after_length": [223, 211], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "\n if a[i] < base:\n flag = 0\n elif a[i] > base:\n flag = 1\n count += 1\n else:\n continue\n else:\n if flag == 0:\n = a[i-1]:\n continue\n else:\n count = 1\n :\n flag 0a[i] ans += 1\n se:\n = a[i-1]:\n continue\n else:\n count = 1\n :\n flag = 1\n else:\n continue\n else:\n if flag == 0:\n if a[i] <= a[i-1]:\n continue\n else:\n count = 1\n basepr else:\n f a[i] >= a[i-1]:\n co(inue\n else:\n count = 1\n bse = a[i]\n a) += 1\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u856232850", "n_user": "u905582793", "pos": "n = int(input())\n\na = list(map(int,input().split()))\n\nb = 0\nans = 1\n\nfor i in range(n-1):\n if a[i] == a[i+1]:\n continue\n elif a[i] > a[i+1]:\n if b <= 0:\n b = -1\n else:\n b = 0\n ans += 1\n else:\n if b >= 0:\n b = 1\n else:\n b = 0\n ans += 1\nprint(ans)", "neg": "n = int(input())\na = list(map(int,input().split()))\nflg = 0\nans = 0\nfor i in range(1,n):\n if a[i] == a[i-1]:\n continue\n elif a[i] > a[i-1]:\n if flg == -1:\n ans += 1\n flg = 1\n elif a[i] < a[i-1]:\n if flg == 1:\n ans += 1\n flg = -1\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [134, 129], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "\nflg = 0bans\nans = 1\n1,-1 -+ +1]:\n if b <= 0:\n b = ]:ifflg==-1 else b = 0\n flg = 1\n seif a[i] < a[i-1]ifflg==1 if b >= 0 b = 1\n else:\n b = 0\n flg = -1\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u761529120", "n_user": "u665038048", "pos": "N = int(input())\n\nA = list(map(int, input().split()))\n\ncnt = 1\nflag = 0\n\nfor i in range(1,N):\n if flag == 0:\n if A[i-1] < A[i]:\n flag = 1\n elif A[i-1] > A[i]:\n flag = -1\n if flag == 1:\n if A[i-1] > A[i]:\n flag = 0\n cnt += 1\n if flag == -1:\n if A[i-1] < A[i]:\n flag = 0\n cnt +=1\n\nprint(cnt)", "neg": "N = int(input())\nA = list(map(int, input().split()))\ncnt = 1\nflg = 0\nfor i in range(1, len(A)):\n if flg == 0:\n if A[i-1] < A[i]:\n flg = 1\n elif A[i-1] > A[i]:\n flg = -1\n elif flg == -1:\n if A[i-1] < A[i]:\n flg = 1\n cnt += 1\n if flg == 1:\n if A[i-1] > A[i]:\n flg = -1\n cnt += 1\nprint(cnt)", "jacc_sim": 0.90625, "before_after_length": [156, 164], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "\n\na\nN):\n if fag == 0:\n if A[i-1] < A[i]:\n flag = 1\n n(A)):\n if fgifA[i-1] > A[i]:\n flag -1\n if flag == 1:\n if A[i-1] > A[i]:\n flag \n cnt += 1\n if flag == -1a01\n elif A[i-1] > A[i]:\n flg = -1\n elif flg == -1:\n if A[i-1] < A[i]:\n flg = 1 if flg == 1:pr nt(f A[i-1] > A[i]:\n flg = -1\n += 1\nprint(cnt", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u556160473", "n_user": "u556160473", "pos": "\nn = int(input())\na_ = list(map(int, input().split(' ')))\na = [-1]\ni = 0\nwhile i < n:\n if a[-1] != a_[i]:\n a.append(a_[i])\n i += 1\na = a[1:]\nn = len(a)\n\nret = 1\n\ni = 0\nwhile i < n-2:\n if (a[i] > a[i+1] and a[i+1] < a[i+2]) or (a[i] < a[i+1] and a[i+1] > a[i+2]):\n ret += 1\n i += 2\n else:\n i += 1\n \nprint(ret)", "neg": "n = int(input())\na_ = list(map(int, input().split(' ')))\na = [-1]\ni = 0\nwhile i < n:\n if a[-1] != a_[i]:\n a.append(a_[i])\n i += 1\na = a[1:]\n\nret = 1\n\ni = 0\nwhile i < n-2:\n if (a[i] > a[i+1] and a[i+1] < a[i+2]) or (a[i] < a[i+1] and a[i+1] > a[i+2]):\n ret += 1\n i += 2\n else:\n i += 1\n \nprint(ret)", "jacc_sim": 0.9714285714285714, "before_after_length": [184, 176], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "\nn = len(a)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u923270446", "n_user": "u923270446", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = 1\nm = 0\nfor i in range(1, n):\n if (a[i] - a[i - 1]) * m < 0:\n ans += 1\n m = 0\n elif a[i] - a[i - 1] != 0:\n m = a[i] - a[i - 1]\nprint(ans)", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = 1\nm = 0\nfor i in range(n):\n if (a[i] - a[i - 1]) * m < 0:\n ans += 1\n m = 0\n elif a[i] - a[i - 1] != 0:\n m = a[i] - a[i - 1]\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [105, 103], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "1, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u166340293", "n_user": "u166340293", "pos": "N=int(input())\ncount=1\nsize=1\np=list(map(int,input().split()))\nq=[p[0]]\nfor i in range (1,N):\n if p[i]!=p[i-1]:\n q.append(p[i])\n size+=1\nj=0\nwhile True:\n if j>=size-2:\n break\n while (q[j]-q[j+1])*(q[j+1]-q[j+2])>=0:\n if j>=size-3:\n count-=1\n break\n j+=1 \n count+=1\n j+=2\nprint(count)", "neg": "N=int(input())\ncount=1\nsize=1\np=list(map(int,input().split()))\nq=[p[0]]\nfor i in range (1,N):\n if p[i]!=p[i-1]:\n q.append(p[i])\n size+=1\nj=0\nwhile True:\n if j>=size-3:\n break\n while (q[j]-q[j+1])*(q[j+1]-q[j+2])>=0:\n j+=1\n count+=1\n j+=2\nprint(count)", "jacc_sim": 1.0, "before_after_length": [173, 153], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "32if +>1size-3: -=1\n break\n j+=1 \n count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u391731808", "n_user": "u391731808", "pos": "N=int(input())\n*A, = map(int,input().split())\n\nans = 0\nl = 0\nud = 0\nfor a in A:\n if l==0:\n ans += 1\n l+=1\n elif l==1:\n if ba:\n ud = -1\n l+=1\n else:\n if ba and ud == 1:\n ans += 1\n l = 1\n b = a\nprint(ans)\n", "neg": "N=int(input())\n*A, = map(int,input().split())\n\nans = 0\nl = 0\nud = 0\nfor a in A:\n if l==0:\n ans += 1\n elif l==1:\n if b>a:\n ud = 1\n l+=1\n elif ba and ud == -1:\n ans += 1\n l = 1\n elif b a[i+1]:\n if x == 1:\n ans += 1\n x = 0\n elif x == 0:\n x = -1\nprint(ans)", "neg": "n = int(input())\na = list(map(int,input().split()))\nans = 1\nfor i in range(1,n-1):\n if a[i-1] < a[i] > a[i+1]:\n ans += 1\n elif a[i-1] > a[i] < a[i+1]:\n ans += 1\nprint(ans) ", "jacc_sim": 0.9333333333333333, "before_after_length": [133, 94], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": " \n\nx = 0\n1,] < a[i+1]:\n if x == :\n ans += 1\n x = 0\n elif x == 0:\n x = 1\n elif a[i<>+1:\n>a[ f x == 1:\n ans 1]:\n ans + x = 0\n a[ix == 0:\n x = ] > a[i] < a[i+1]:\n ans += 1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u332385682", "n_user": "u332385682", "pos": "import sys\n\ndef solve():\n n = int(input())\n a = [int(i) for i in input().split()]\n\n ans = 0\n\n mode = 0\n\n for i in range(1, n):\n if a[i] > a[i - 1]:\n if mode == -1:\n ans += 1\n mode = 0\n else:\n mode = 1\n elif a[i] < a[i - 1]:\n if mode == 1:\n ans += 1\n mode = 0\n else:\n mode = -1\n else:\n pass\n\n ans += 1\n\n print(ans)\n\nif __name__ == '__main__':\n solve()", "neg": "import sys\n\ndef solve():\n n = int(input())\n a = [int(i) for i in input().split()]\n\n ans = 0\n\n mode = 0\n\n for i in range(1, n):\n if a[i] > a[i - 1]:\n if mode == -1:\n ans += 1\n flag = 0\n else:\n mode = 1\n elif a[i] < a[i - 1]:\n if mode == 1:\n ans += 1\n mode = 0\n else:\n mode = -1\n else:\n pass\n\n ans += 1\n\n print(ans)\n\nif __name__ == '__main__':\n solve()", "jacc_sim": 0.9736842105263158, "before_after_length": [173, 173], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "flagmode", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u787456042", "n_user": "u787456042", "pos": "N,*A=map(int,open(0).read().split());f=a=0\nfor i,j in zip(A,A[1:]):\n if f<0:\n if ij)\n else:\n if i>j:a+=1;f=0\nprint(a+1)", "neg": "N,*A=map(int,open(0).read().split());f=a=0\nfor i,j in zip(A,A[1:]):\n if f:\n if(f<0)&(if)&(i>j):a+=1;f=0\n else:f=(ij)\nprint(a+1)", "jacc_sim": 0.9166666666666666, "before_after_length": [100, 95], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "<0 (f<0)&()|(0>f)&(i>j)seif f<1 else:\n if i>j:a+=1;f=0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u187109555", "n_user": "u187109555", "pos": "N = input()\nAs = [int(x) for x in input().split()]\n\nnew_As = [As[0]]\nfor i in range(1, len(As)):\n if As[i-1] != As[i]:\n new_As.append(As[i])\nAs = new_As\n\nidx = 0\nmode_change_count = 1\nwhile True: \n if idx >= (len(As)-2):\n break\n if (As[idx+1] - As[idx])*(As[idx+2] - As[idx+1]) > 0:\n idx += 1\n elif (As[idx+1] - As[idx])*(As[idx+2] - As[idx+1]) < 0:\n idx += 2\n mode_change_count += 1\n \nprint(mode_change_count)", "neg": "N = input()\nAs = [int(x) for x in input().split()]\n\nnew_As = []\nfor i in range(1, len(As)):\n if As[i-1] != As[i]:\n new_As.append(As[i-1])\nAs = new_As\n\nidx = 0\nmode_change_count = 1\nwhile True: \n if idx >= (len(As)-2):\n break\n if (As[idx+1] - As[idx])*(As[idx+2] - As[idx+1]) > 0:\n idx += 1\n elif (As[idx+1] - As[idx])*(As[idx+2] - As[idx+1]) < 0:\n idx += 2\n mode_change_count += 1\n\n \nprint(mode_change_count)", "jacc_sim": 1.0, "before_after_length": [203, 202], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "As[0]-1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u744857643", "n_user": "u861141787", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ncnt = 0\nflag = 0\nfor i in range(n - 1):\n if flag == 0:\n if a[i] < a[i + 1]:\n flag = 1\n elif a[i] > a[i + 1]:\n flag = -1\n elif flag == 1:\n if a[i] < a[i + 1]:\n flag = 1\n elif a[i] > a[i + 1]:\n flag = 0\n cnt += 1\n elif flag == -1:\n if a[i] > a[i + 1]:\n flag = -1\n if a[i] < a[i + 1]:\n flag = 0\n cnt += 1\nprint(cnt + 1)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ncnt = 0\n\njug = 2\n\nfor i in range(n - 1):\n if jug == 2:\n if a[i] < a[i+1]:\n jug = 0\n elif a[i] > a[i+1]:\n jug = 1 \n elif jug == 0:\n if a[i] > a[i+1]:\n jug = 2\n cnt += 1\n elif jug == 2:\n if a[i] < a[i+1]:\n jug = 0\n cnt +=1\n\nprint(cnt+1)\n", "jacc_sim": 0.90625, "before_after_length": [195, 165], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "\njufla02\njufla20+1]:\n+1]:\nju flag = 1\n elif a[i] > a[i + 1]:\n flag = -1\n elif flag == 1:\n if a[i] < a[i + 1]:\n flag = 1\n elif a[i] > a[i + 1]:\n fla cnt += 1\n flag == -1:\n if +1]:\n+ jug = ]:elifjug flag -1\n if a[i] < a[i + 1]:\n flag :\n if a[i] > a[i+1]:\n jug = 2\n elif jug == 2:\n if a[i] < a[i+1]:\n jug = 0\n cnt +=1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u944643608", "n_user": "u944643608", "pos": "N = int(input())\nA = list(map(int, input().split()))\ncount = 0\nup = 0\ndown = 0\nbefore = A[0]\ntmp = 0\nfor i in range(1,N):\n tmp = A[i]\n if (up == 0) and (down == 0):\n if tmp > before:\n up = 1\n before = tmp\n elif tmp < before:\n down = 1\n before = tmp\n else:\n continue\n elif up == 1:\n if tmp < before:\n count += 1\n up = 0\n before = tmp\n else:\n before = tmp\n elif down == 1:\n if tmp > before:\n count += 1\n down = 0\n before = tmp\n else:\n before = tmp\ncount += 1\nprint(count)\n \n", "neg": "N = int(input())\nA = list(map(int,input().split()))\ncount = 0\nup = 0\ndown = 0\nbefore = A[0]\ntmp = 0\nfor i in range(1,N):\n tmp = A[i]\n if (up == 0) and (down == 0):\n if tmp > before:\n up = 1\n before = tmp\n elif tmp < before:\n down = 1\n before = tmp\n else:\n continue\n elif up == 1:\n if tmp < before:\n count += 1\n up = 0\n before = tmp\n elif down = 1:\n if tmp > before:\n count += 1\n down = 0\n before = tmp\ncount += 1\nprint(count)\n ", "jacc_sim": 1.0, "before_after_length": [204, 185], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": " else:\n before = tmp\n = else:\n before = tmp\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u434208140", "n_user": "u434208140", "pos": "n=int(input())\na=list(map(int,input().split()))\nt=1\np=a[0]\nm=0\nfor i in a:\n if(p==i):\n continue\n if(m>0):\n if(ip):\n t+=1\n m=0\n else:\n if(i>p):\n m=1\n elif(i0):\n if(ip):\n t+=1\n m=0\n else:\n if(i>p):\n m=1\n eif(i i:\n count += 1\n buff = False\n else:\n pass\n else:\n if buff:\n if bef <= i:\n pass\n else:\n ans += 1\n count = 1\n else:\n if bef >= i:\n pass\n else:\n ans += 1\n count = 1\n bef = i\nprint(ans)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\ncount = 0\nans = 1\nbef = 0\nbuff = True\nfor i in A:\n if count == 0:\n count = 1\n elif count == 1:\n if bef < i:\n count += 1\n elif bef > i:\n count += 1\n buff = False\n else:\n pass\n else:\n if buff:\n if bef <= i:\n pass\n else:\n ans += 1\n count = 1\n else:\n if bef >= i:\n pass\n else:\n ans += 1\n count = 1\n bef = i", "jacc_sim": 0.96875, "before_after_length": [181, 170], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": " buff = True\n \nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u190079347", "n_user": "u190079347", "pos": "n = int(input())\na = list(map(int,input().split()))\nstate = 100\ncount = 1\ntmp = a[0]\nfor i in a:\n if i == tmp:\n pass\n elif i > tmp:\n if state == 1:\n pass\n elif state == 0:\n count += 1\n state = 100\n else:\n state = 1\n else:\n if state == 0:\n pass\n elif state == 1:\n count += 1\n state = 100\n else:\n state = 0\n tmp = i\nprint(count)", "neg": "n = int(input())\na = list(map(int,input().split()))\nstate = 1\ncount = 1\ntmp = a[0]\nfor i in a:\n if i == tmp:\n tmp = i\n elif i > tmp:\n state = 1\n break\n else:\n state = 0\n break\ntmp = a[0]\nfor i in a:\n if i == tmp:\n pass\n elif i > tmp:\n if state == 1:\n pass\n else:\n state = 0\n count += 1\n else:\n if state == 0:\n pass\n else:\n state = 1\n count += 1\n tmp = i\nprint(count)", "jacc_sim": 0.9375, "before_after_length": [144, 172], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "00tmass = iifstate=state1\n==1:\nb pass\n elif state == 0:\n count += 1\n state = 100\n else:\n state = 1\n else:\n if state == 0:\n pass\n elif state == 1:\n count += 1\n state = 100\n else:\n state = 0\n tmp = i\npeak\n else:\n state = 0\n break\ntmp = a[0]\nfor i a:\n if i == (mp:\n pass\n elif i > tmp:\n if state == 1:\n pass\n else:\n state = 0\n += 1\n else:\n if state == 0:\n pass\n else:\n state = 1\n count += 1\n tmp = i\nprint(count", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u353919145", "n_user": "u997607103", "pos": "n = int(input())\nl = [int(x) for x in input().split()]\n\norder = 0\nsubs = []\ntmp = []\n\nprev = 0\nd = []\nt = [l[0]]\nfor x in range(len(l)-1):\n a,b = l[x],l[x+1]\n c = a-b\n # print(a,b,c, prev)\n if c == 0:\n t.append(b)\n elif prev == 0:\n t.append(b)\n prev = c\n elif (c < 0 and prev < 0) or (c > 0 and prev > 0):\n t.append(b)\n else:\n prev = 0\n d.append(t)\n t = [b]\nd.append(t)\n\nprint(len(d))\n", "neg": "n = int(input())\nl = [int(x) for x in input().split()]\n\norder = 0\nsubs = []\ntmp = []\n\nprev = 0\nd = []\nt = [l[0]]\nfor x in range(len(l)-1):\n a,b = l[x],l[x+1]\n c = a-b\n print(a,b,c, prev)\n if c == 0:\n t.append(b)\n elif prev == 0:\n t.append(b)\n prev = c\n elif (c < 0 and prev < 0) or (c > 0 and prev > 0):\n t.append(b)\n else:\n prev = 0\n d.append(t)\n t = [b]\nd.append(t)\n", "jacc_sim": 0.975609756097561, "before_after_length": [206, 197], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "# \nprint(len(d))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u276204978", "n_user": "u276204978", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\ncnt = 1\ninc = False\ndec = False\np = A.pop(0)\n\nfor Ai in A:\n if (not inc) and (not dec):\n if Ai < p:\n dec = True\n elif Ai > p:\n inc = True\n elif inc:\n if Ai < p:\n cnt += 1\n inc = False\n elif dec:\n if Ai > p:\n cnt += 1\n dec = False\n p = Ai\n \nprint(cnt)", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\ncnt = 1\ninc = False\ndec = False\np = A.pop(0)\n\nfor Ai in A:\n if (not inc) and (not dec):\n if Ai < p:\n dec = True\n else:\n inc = True\n elif inc:\n if Ai < p:\n cnt += 1\n inc = False\n elif dec:\n if Ai > p:\n cnt += 1\n dec = False\n p = Ai\n \nprint(cnt)", "jacc_sim": 0.9705882352941176, "before_after_length": [147, 143], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "seif Ai > p", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u442877951", "n_user": "u442877951", "pos": "N = int(input())\nA = list(map(int,input().split()))\n\ncount = 1\nup,down = 1,1\n\nfor i in range(1,N):\n if A[i-1] > A[i]:\n up = 0\n if down == 0:\n count += 1\n up,down = 1,1\n elif A[i-1] < A[i]:\n down = 0\n if up == 0:\n count += 1\n up,down = 1,1\n\nprint(count)\n", "neg": "N = int(input())\nA = list(map(int,input().split()))\n\ncount = 1\n\nfor i in range(1,N-1):\n if A[i-1] > A[i]:\n up,down = 0,1\n elif A[i-1] < A[i]:\n up,down = 1,0\n if up == 1 and A[i] > A[i+1]:\n count += 1\n elif down == 1 and A[i] < A[i+1]:\n count += 1\n \nprint(count)\n", "jacc_sim": 0.96875, "before_after_length": [131, 138], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "up,down = 1,1\n):\n if A[i):\n if A[i-1,down\n if down == 0:\n count += 1\n up,down = 1up,1,ifup== 1 and A[]f>upA[i== 0:\n count 1]:\n count +elifdown==1and A[i] < A[i+1]:\n cop,dowt+,1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u691896522", "n_user": "u691896522", "pos": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nif n <= 2:\n print(1)\n exit()\npre = a[1] - a[0]\ni = 2\nwhile i < n:\n if pre * (a[i] - a[i-1]) < 0:\n ans += 1\n pre = 0\n i += 1\n if i == n:\n break\n if a[i] != a[i-1]:\n pre = a[i] - a[i-1]\n i += 1\nprint(ans + 1)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nans = 0\nif n <= 2:\n print(1)\n exit()\npre = a[1] - a[0]\ni = 2\nwhile i < n:\n if pre * (a[i] - a[i-1]) < 0:\n ans += 1\n i += 1\n if i == n:\n break\n if a[i] != a[i-1]:\n pre = a[i] - a[i-1]\n i += 1\nprint(ans + 1)\n", "jacc_sim": 1.0, "before_after_length": [149, 144], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "pre = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u312025627", "n_user": "u312025627", "pos": "def main():\n N = int(input())\n A = [int(i) for i in input().split()]\n ans = 0\n i = 0\n while i < N:\n while i+1 < N and A[i] == A[i+1]:\n i += 1\n pos1, pos2 = i, i\n while pos1+1 < N and A[pos1] <= A[pos1+1]:\n pos1 += 1\n while pos2+1 < N and A[pos2] >= A[pos2+1]:\n pos2 += 1\n ans += 1\n i = max(pos1, pos2) + 1\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "neg": "def main():\n N = int(input())\n A = [int(i) for i in input().split()]\n ans = 0\n i = 0\n while i < N:\n pos1, pos2 = i, i\n while pos1+1 < N and A[pos1] <= A[pos1+1]:\n pos1 += 1\n while pos2+1 < N and A[pos2] > A[pos2+1]:\n pos2 += 1\n ans += 1\n i = max(pos1, pos2) + 1\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 1.0, "before_after_length": [181, 156], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "pos1, pos2 = i, i\n ipos1ipos1< A[pos1+1]:\n pos1 +A[i+]:\n i += 1\n pos1, pos2 = i, i211] <= A[pos1+1]:\n pos1 += 1\n while pos2+1 < N and A[pos=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u553919982", "n_user": "u757030836", "pos": "N = int(input())\nA = list(map(int,input().split()))\n\nup = False\ndown = False\ncount = 1\nfor i in range(N-1):\n if A[i] < A[i+1]:\n up = True\n elif A[i] > A[i+1]:\n down = True\n if up ==True and down == True:\n count += 1\n up = False\n down = False\nprint(count)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nans = 1\nup,down = False,False\nfor i in range(N-1):\n if A[i] < A[i+1]:\n up = True\n elif A[i] > A[i+1]:\n down = True\n if up and dn:\n ans +=1\n up,down = False,False\n \nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [113, 109], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": " ans = 1\n,down,\ndown = \ncount = 1 up=Tr p = Tru down=True\nif up an dow:\n=True\n if up ==True sd down == True:\n count1\n1 up,down = False,False\n u = Frint(nle\n down = False\nprint(count\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u464205401", "n_user": "u464205401", "pos": "from collections import deque\n \nn = int(input())\na = list(map(int,input().split()))\nd = deque(a)\n \ntmp = []\ncnt = 0\nwhile d:\n v = d.popleft()\n if len(tmp)<=1:\n pass\n else:\n if not (v >= tmp[-1] >= tmp[-2] >= tmp[0] or v <= tmp[-1] <= tmp[-2] <= tmp[0]):\n tmp = []\n cnt += 1\n tmp.append(v)\n# print(d,tmp,cnt)\nif tmp:\n cnt+=1\nprint(cnt)", "neg": "from collections import deque\n\nn = int(input())\na = list(map(int,input().split()))\nd = deque(a)\n\ntmp = []\ncnt = 0\nwhile d:\n v = d.popleft()\n if len(tmp)<=1:\n pass\n else:\n if not v >= tmp[-1] >= tmp[-2] or v <= tmp[-1] <= tmp[-2]:\n tmp = []\n cnt += 1\n tmp.append(v)\n# print(d,tmp,cnt)\nif tmp:\n cnt+=1\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [158, 144], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": " (>= tmp[0] <= tmp[0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u541883958", "n_user": "u541883958", "pos": "n = int(input())\na = [int(c) for c in input().split(' ')]\n#a = [1 ,2 ,1 ,2 ,1 ,2 ,1 ,2 ,1]\nl = len(a)\nprev = None\nc = 1\ninc = None\n\nfor i in range(l):\n current = a[i]\n if i == 0 :\n continue\n if inc == None:\n if a[i] > a[i-1] :\n inc = True\n elif a[i] < a[i - 1]:\n inc = False\n else:\n continue \n elif inc == True:\n if a[i-1] < a[i]:\n pass\n elif a[i -1] > a[i]:\n c += 1\n inc = None\n elif inc == False:\n if a[i-1] > a[i]:\n pass\n elif a[i - 1] < a[i]:\n c += 1\n inc = None\nprint(c)\n", "neg": "n = int(input())\na = [int(c) for c in input().split(' ')]\nprev = None\nc = 1\ninc = None\n\nfor i in range(l):\n current = a[i]\n if i == 0 :\n continue\n if inc == None:\n if a[i] > a[i-1] :\n inc = True\n elif a[i] < a[i - 1]:\n inc = False\n else:\n continue \n elif inc == True:\n if a[i-1] < a[i]:\n pass\n elif a[i -1] > a[i]:\n c += 1\n inc = None\n elif inc == False:\n if a[i-1] > a[i]:\n pass\n elif a[i - 1] < a[i]:\n c += 1\n inc = None\nprint(c)\n", "jacc_sim": 0.9024390243902439, "before_after_length": [248, 218], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "#a = [1 ,2 ,1 ,2 ,1 ,2 ,1 ,2 ,1]\nl = len(a)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u863076295", "n_user": "u863076295", "pos": "import numpy as np\n\nn = int(input())\na = list(map(int,input().split()))\n\ncnt = 1\ndirect = 0\ntemp = a[0]\nfor i in range(1,n):\n dif = a[i] - temp\n if dif != 0:\n if direct == 0:\n direct = np.sign(dif)\n \n elif np.sign(a[i] - temp) != direct:\n cnt+=1\n direct = 0\n temp = a[i]\nprint(cnt)", "neg": "import numpy as np\n\nn = int(input())\na = list(map(int,input().split()))\n\nflg = np.sign(a[1] - a[0])\nskp = 1\ncnt = 1\ntemp = a[0]\nfor i in range(1,n):\n dif = a[i] - temp\n direct = np.sign(dif)\n if dif != 0:\n if skp:\n flg = direct\n skp = 0\n continue\n \n elif direct != flg:\n flg = direct\n cnt+=1\n skp = 1\n temp = a[i]\nprint(cnt)", "jacc_sim": 0.9230769230769231, "before_after_length": [129, 159], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "cflg = t = p.sign(a[] - a[0])direskp = 1\nn10if dif != 0:\n if direct == 0:\n ifd \n el np.sign(a[i] - temp)0directif skp:\n flg = direct\n skp = 0\n continue\n \n elif direct != flg:\n flg = direct\n skpdirect10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u798818115", "n_user": "u798818115", "pos": "# coding: utf-8\n# Your code here!\n_=int(input())\nA=list(map(int,input().split()))\nN=len(A)\n\ntrend=0\nans=0\nfor i in range(N-1):\n temp=A[i+1]-A[i]\n if trend==0:\n if temp>0:\n trend=1\n ans+=1\n elif temp<0:\n trend=-1\n ans+=1\n else:\n pass\n elif trend==1:\n if temp>0:\n pass\n elif temp<0:\n trend=0\n else:\n pass\n elif trend==-1:\n if temp>0:\n trend=0\n elif temp<0:\n pass\n else:\n pass\n\nprint(ans if trend!=0 else ans+1)\n", "neg": "# coding: utf-8\n# Your code here!\n_=int(input())\nA=list(map(int,input().split()))\nN=len(A)\n\ntrend=0\nans=0\nfor i in range(N-1):\n temp=A[i+1]-A[i]\n if trend==0:\n if temp>0:\n trend=1\n ans+=1\n elif temp<0:\n trend=-1\n ans+=1\n else:\n pass\n elif trend==1:\n if temp>0:\n pass\n elif temp<0:\n trend=0\n else:\n pass\n elif trend==-1:\n if temp>0:\n trend=0\n elif temp<0:\n pass\n else:\n pass\nprint(trend)\nprint(ans if trend!=0 else ans+1)\n", "jacc_sim": 1.0, "before_after_length": [222, 227], "nl": "You are given an array A of length N. Your task is to divide it into several contiguous subarrays. All subarrays obtained must be sorted in either non-decreasing or non-increasing order. Find the minimum number of subarrays needed to divide A. Constraints: 1 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9, where each A_i is an integer. Input is given as N followed by A_1, A_2, ..., A_N. Output the minimum possible number of subarrays after division of A. For example, given input 6 and array [1, 2, 3, 2, 2, 1], the output should be 2.", "diff_info": "print(trend)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03745", "p_user": "u306950978", "n_user": "u629350026", "pos": "n = int(input())\na = list(map(int,input().split()))\np = 0\nans = 0\nfor i in range(1,n):\n if p == 0 and a[i-1] < a[i]:\n p = 1\n elif p == 0 and a[i-1] > a[i]:\n p = 2\n elif p == 1 and a[i-1] > a[i]:\n p = 0\n ans += 1\n elif p == 2 and a[i-1] < a[i]:\n p = 0\n ans += 1\nprint(ans+1)", "neg": "n=int(input())\na=list(map(int,input().split()))\nans=1\ntemp=0\nfor i in range(1,n):\n if a[i-1]a[i] and temp==0:\n temp=2\n elif a[i-1]>a[i] and temp==1:\n temp=2\n ans=ans+1\n elif a[i-1] a[i]:\n p = 2\n lifmp==0:\np==1tand a[i-1] > a[i]:\n p = 0\n ans += 1\n mp=1\n e p == 2 and>a[i]a[i] and temp==1temp=2\np ans 0\n 1\n elif a[i-1] int:\n if len(lost_list) == node_num:\n return 1\n counter = 0\n for i in tree[root]:\n if i not in lost_list:\n tmp = deepcopy(lost_list)\n tmp.append(i)\n counter += _wfs(tree, i, tmp)\n return counter\n\n return _wfs(tree, 0, lost_list)\n\n\nn, m = input().rstrip().split()\nn, m = int(n), int(m)\nv = [list() for i in range(n)]\nfor _ in range(m):\n line = [int(i) - 1 for i in input().rstrip().split()]\n v[line[0]].append(line[1])\n v[line[1]].append(line[0])\n\nprint(wfs(v, 0, n))", "neg": "from copy import deepcopy\n\n\n\ndef wfs(tree, root, node_num):\n lost_list = [root]\n\n def _wfs(tree, root, lost_list) -> int:\n if len(lost_list) == node_num:\n print(lost_list)\n return 1\n counter = 0\n for i in tree[root]:\n if i not in lost_list:\n tmp = deepcopy(lost_list)\n tmp.append(i)\n counter += _wfs(tree, i, tmp)\n return counter\n\n return _wfs(tree, 0, lost_list)\n\n\nn, m = input().rstrip().split()\nn, m = int(n), int(m)\nv = [list() for i in range(n)]\nfor _ in range(m):\n line = [int(i) - 1 for i in input().rstrip().split()]\n v[line[0]].append(line[1])\n v[line[1]].append(line[0])\n\nprint(wfs(v, 0, n))", "jacc_sim": 1.0, "before_after_length": [255, 266], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "\n\nprint(lost_list)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u134520518", "n_user": "u134520518", "pos": "from itertools import permutations\n\nn, m = map(int, input().split())\n\ntu = [[] for j in range(n+1)]\n\nfor i in range(m):\n a, b = map(int, input().split())\n tu[a].append(b)\n tu[b].append(a)\n\nna = [i for i in range(2,n+1)]\nans = 0\n\nfor nara in permutations(na):\n st = 1\n f = True\n for i in range(n-1):\n if not nara[i] in tu[st]:\n f = False\n st = nara[i]\n if f == True:\n ans += 1\n\n\n\nprint(ans)", "neg": "from itertools import permutations\n\nn, m = map(int, input().split())\n\ntu = [[] for j in range(n+1)]\n\nfor i in range(m):\n a, b = map(int, input().split())\n tu[a].append(b)\n tu[b].append(a)\n\nna = [i for i in range(2,n+1)]\nans = 0\n\n\nprint(permutations(na))\nfor nara in permutations(na):\n st = 1\n f = True\n for i in range(n-1):\n if not nara[i] in tu[st]:\n f = False\n st = nara[i]\n if f == True:\n\n ans += 1\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [180, 188], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "\nprint(permutations(na))\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u936985471", "n_user": "u936985471", "pos": "n,m=map(int,input().split())\nnexts=[None for i in range(n)]\nfor i in range(m):\n a,b=map(int,input().split())\n a,b=a-1,b-1\n if nexts[a]==None:\n nexts[a]=[b]\n elif b not in nexts[a]:\n nexts[a].append(b)\n if nexts[b]==None:\n nexts[b]=[a]\n elif a not in nexts[b]:\n nexts[b].append(a)\n\nans=0\nstack=[]\nstack.append([0,[]])\nwhile stack:\n node=stack.pop()\n v=node[0]\n seen=node[1][:]\n seen.append(v)\n if len(seen)==n:\n ans+=1\n continue\n childs=nexts[v]\n if childs:\n for child in (set(childs)-set(seen)):\n stack.append([child,seen])\n \nprint(ans)\n", "neg": "n,m=map(int,input().split())\nnexts=[None for i in range(n)]\nfor i in range(n):\n a,b=map(int,input().split())\n a,b=a-1,b-1\n if nexts[a]==None:\n nexts[a]=[b]\n else:\n nexts[a].append(b)\n\nans=0\nstack=[]\nstack.append([0,set()])\nwhile stack:\n node=stack.pop()\n v=node[0]\n seen=node[1]\n seen.add(v)\n if len(seen)==n:\n ans+=1\n continue\n childs=nexts[v]\n if childs:\n for child in (set(childs)-seen):\n stack.append(child,seen)\n \nprint(ans)", "jacc_sim": 0.9111111111111111, "before_after_length": [267, 213], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "nmifse:\n nexts[a].append( not in nexts[a]:\n nexts[a].append(b)\n if nexts[b]==None:\n nexts[b]=[a]\n elif a not in nexts[b]:\n nexts[b].append(a[]set()[:]dppent(se)[]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u371763408", "n_user": "u371763408", "pos": "n,m=map(int,input().split())\n\nedges=[[] for i in range(n)]\n\nfor i in range(m):\n s,t = map(int,input().split())\n edges[s-1].append(t-1)\n edges[t-1].append(s-1)\n\ncnt =0\n\nV=[0]*n\n\ndef dfs(V,s):\n global cnt\n V=V[:]\n V[s]=1\n if sum(V)==n:\n cnt+=1\n else:\n for v in edges[s]:\n if V[v]==0:\n dfs(V,v)\n # print(V)\ndfs(V,0)\nprint(cnt)", "neg": "n,m=map(int,input().split())\n\nedges=[[] for i in range(n)]\n\nfor i in range(m):\n s,t = map(int,input().split())\n edges[s-1].append(t-1)\n edges[t-1].append(s-1)\n\ncnt =0\n\nV=[0]*n\n\ndef dfs(V,s):\n global cnt\n V[s]=1\n V_c=V[:]\n if sum(V_c)==n:\n cnt+=1\n else:\n for v in edges[s]:\n if V_c[v]==0:\n dfs(V_c,v)\ndfs(V,0)\nprint(cnt)", "jacc_sim": 0.9487179487179487, "before_after_length": [181, 182], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "[s]1\n _[:]\n V[s]=1\n if sum(V)==n:\n nt+1V[:]elif um(e:\n for v in edges[s]:\n if _[v]==0:\n dfs(V,v)\n # print(V)\ndfs(V,0)\nprint()==:\n cn+=1\n else:\n for v in edges[s]:\n if V_c[v]==0:\n dfs(V_c,v\ndfs(V,0)\nprint(cnt)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u905203728", "n_user": "u905203728", "pos": "def DFS(s):\n global ans,color\n color[s]=\"black\"\n if \"white\" not in color:\n ans +=1\n for i in M[s]:\n if color[i]==\"white\":\n DFS(i)\n color[s]=\"white\"\n\n\nn,m=map(int,input().split())\n\nM=[[] for _ in range(n)]\nfor i in range(m):\n a,b=map(int,input().split())\n M[a-1].append(b-1)\n M[b-1].append(a-1)\n\ncolor=[\"white\" for _ in range(n)]\nans=0\nDFS(0)\n\nprint(ans)", "neg": "def DFS(num):\n global ans,color\n color[num]=\"black\"\n if \"white\" not in color:\n ans +=1\n for i in M[num]:\n DFS(i)\n color[num]=\"white\"\n\n\nn,m=map(int,input().split())\nAB=[list(map(int,input().split())) for _ in range(m)]\n\nM=[[] for _ in range(n)]\ncolor=[\"white\" for _ in range(n)]\nfor a,b in AB:\n M[a-1].append(b-1)\n M[b-1].append(a-1)\n\nans=0\nDFS(0)\nprint(ans)", "jacc_sim": 0.9047619047619048, "before_after_length": [175, 171], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "snumsnumsnum if color[i]==\"white\":\n snumAB\nMl[] for _ stn range(n)]\nfor i in rangeap(int,input(:.split())) for _ in range(m)]\nM=[[]for_in range(n)]\ncolor=[\"white\" for _ in range(n)]\nfor =map( AB:t,input().split())color=[\"white\" for _ in range(n)]\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u934868410", "n_user": "u934868410", "pos": "import itertools\nn,m = map(int,input().split())\ne = [[False]*n for _ in range(n)]\nfor _ in range(m):\n a,b = map(int,input().split())\n e[a-1][b-1] = True\n e[b-1][a-1] = True\n\nans = 0\nl = [i for i in range(1,n)]\nfor p in itertools.permutations(l):\n p = [0] + list(p)\n reach = 1\n for i in range(n-1):\n if not e[p[i]][p[i+1]]:\n reach = 0\n break\n ans += reach\n\nprint(ans)", "neg": "from collections import defaultdict\nimport itertools\n\nn,m = map(int,input().split())\ne = [[False]*n for _ in range(n)]\n\nfor _ in range(m):\n a,b = map(int,input().split())\n e[a-1][b-1] = True\n e[b-1][a-1] = True\n\nans = 0\nl = [i for i in range(1,n)]\nfor p in itertools.permutations(l):\n p = [0] + p\n reach = 1\n for i in range(n-1):\n if not e[p[i]][p[i+1]]:\n reach = 0\n break\n ans += reach\n\nprint(ans)", "jacc_sim": 0.9090909090909091, "before_after_length": [174, 178], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "from collectons idefaultdc\nimport it\n\nlist()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u053699292", "n_user": "u053699292", "pos": "def saiki(arr_lst,count,path,N):\n\tif len(path) == N:\n\t\tcount[0] += 1\n\telse:\n\t\there = path[-1]\n\t\tarrival = arr_lst[here]\n\t\tfor next in arrival:\n\t\t\tif not next in path:\n\t\t\t\tnewpath = path[:]\n\t\t\t\tnewpath.append(next)\n\t\t\t\tsaiki(arr_lst,count,newpath,N)\n\n\nif __name__ == '__main__':\n\tN, M = map(int, input().split())\n\tarr_lst = [[]]\n\n\tfor i in range(1,N+1):\n\t\tarr_lst.append([])\n\n\tfor _ in range(M):\n\t\ta, b = map(int, input().split())\n\t\tarr_lst[a].append(b)\n\t\tarr_lst[b].append(a)\n\n\tcount = [0]\n\n\tsaiki(arr_lst,count,[1],N)\n\n\tprint(count[0])", "neg": "def saiki(arr_lst,count,path,N):\n\tprint(path)\n\tif len(path) == N:\n\t\tcount[0] += 1\n\telse:\n\t\there = path[-1]\n\t\tarrival = arr_lst[here]\n\t\tfor next in arrival:\n\t\t\tif not next in path:\n\t\t\t\tnewpath = path[:]\n\t\t\t\tnewpath.append(next)\n\t\t\t\tsaiki(arr_lst,count,newpath,N)\n\n\nif __name__ == '__main__':\n\tN, M = map(int, input().split())\n\tarr_lst = [[]]\n\n\tfor i in range(1,N+1):\n\t\tarr_lst.append([])\n\n\tfor _ in range(M):\n\t\ta, b = map(int, input().split())\n\t\tarr_lst[a].append(b)\n\t\tarr_lst[b].append(a)\n\n\tcount = [0]\n\n\tsaiki(arr_lst,count,[1],N)\n\n\tprint(count[0])", "jacc_sim": 1.0, "before_after_length": [256, 262], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "\n\tprint(path)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u634208461", "n_user": "u634208461", "pos": "from itertools import permutations\nN, M = map(int, input().split())\nedge = []\nfor _ in range(M):\n a, b = map(int, input().split())\n edge.append(set((a, b)))\n\np = list(map(lambda x: [1] + list(x), permutations([i for i in range(2, N + 1)])))\n\nans = 0\n\nfor root in p:\n for i in range(len(root) - 1):\n if not set((root[i], root[i + 1])) in edge:\n break\n else:\n ans += 1\n\nprint(ans)\n", "neg": "from itertools import permutations\nN, M = map(int, input().split())\nedge = []\nfor _ in range(M):\n a, b = map(int, input().split())\n edge.append(set((a, b)))\n\np = list(map(lambda x: [1] + list(x), permutations([i for i in range(2, N + 1)])))\n\nans = 0\n\nfor root in p:\n for i in range(len(root) - 1):\n if not set((root[i], root[i + 1])) in edge:\n break\n else:\n print(root)\n ans += 1\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [153, 159], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "print(root)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u858523893", "n_user": "u858523893", "pos": "from itertools import permutations\n\nn, m = map(int, input().split())\npaths = set()\n\nfor i in range(m) :\n _a, _b = map(int, input().split())\n paths.add((_a, _b))\n paths.add((_b, _a))\n \nprint(sum(all(s in paths for s in zip((1,) + p, p)) for p in permutations(range(2, n + 1))))\n\n", "neg": "from itertools import permutations\n\nn, m = map(int, input().split())\npaths = set()\n\nfor i in range(n) :\n _a, _b = map(int, input().split())\n paths.add((_a, _b))\n paths.add((_b, _a))\n \n# print(sum(all(s in paths for s in zip((1,) + p, p)) for p in permutations(range(2, n + 1))))\n\n", "jacc_sim": 0.9714285714285714, "before_after_length": [114, 115], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "nm# ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u872887731", "n_user": "u872887731", "pos": "N,M = map(int,input().split())\npat = [[int(i) for i in input().split()] for _ in range(M)]\nGraph = [[0 for i in range(N)] for _ in range(N)]\nfor i,j in pat:\n Graph[i-1][j-1] = 1\n Graph[j-1][i-1] = 1\n\ndef dfs(v,N,visit_list):\n\n all_visit = True\n\n for i in range(N):\n if visit_list[i] == False:\n all_visit = False\n \n if all_visit:\n return 1\n\n ret = 0\n\n for k in range(N):\n if Graph[v][k] == False:\n continue\n if visit_list[k] :\n continue\n \n visit_list[k] = True\n ret += dfs(k,N,visit_list)\n visit_list[k] = False\n return ret\n\nvisit_list = [False for i in range(N)]\nvisit_list[0] = True\nprint(dfs(0,N,visit_list))\n \n\n", "neg": "N,M = map(int,input().split())\npat = [[int(i) for i in input().split()] for _ in range(M)]\nGraph = [[0 for i in range(N)] for _ in range(N)]\nfor i,j in pat:\n Graph[i-1][j-1] = 1\n Graph[j-1][i-1] = 1\n\ndef dfs(v,N=N,visit_list):\n\n all_visit = True\n\n for i in range(N):\n if visit_list[i] == False:\n all_visit = False\n \n if all_visit:\n return 1\n\n ret = 0\n\n for k in range(N):\n if Graph[v][k] == False:\n continue\n if visit_list[k] :\n continue\n \n visit_list[k] = True\n ret += dfs(k,N,visit_list)\n visit_list[k] = False\n return ret\n\nvisit_list = [False for i in range(N)]\nvisit_list[0] = True\nprint(dfs(0,N,visit_list))\n \n\n", "jacc_sim": 1.0, "before_after_length": [278, 280], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "=N", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u379559362", "n_user": "u379559362", "pos": "import itertools\n\nn, m = map(int, input().split())\nroad = [[0] * n for i in range(n)]\n\ngraph = [[] for i in range(n)]\nfor j in range(m):\n x, y = map(int, input().split())\n road[x - 1][y - 1] += 1\n road[y - 1][x - 1] += 1\n graph[x - 1].append(y - 1)\n graph[y - 1].append(x - 1)\n# print(road)\n# print(graph)\n\ncount = 0\n\nfor can in itertools.permutations(range(n)):\n if can[0] != 0:\n break\n # print(can)\n plus = 1\n for k in range(n - 1):\n # print(road[can[k]][can[k + 1]])\n plus *= road[can[k]][can[k + 1]]\n count += plus\n\n\ndef dfs(node, prev, visited):\n visited.append(node)\n if len(visited) == n:\n return 1\n\n res = 0\n for edge in graph[node]:\n if edge == prev:\n continue\n if edge in visited:\n continue\n res += dfs(edge, prev, visited[:])\n\n return res\n\n\ndfs = dfs(0, -1, [])\n\nif count == dfs:\n print(dfs)\n", "neg": "import itertools\n\n\nn, m = map(int, input().split())\nroad = [[0] * n for i in range(n)]\n\ngraph = [[] for i in range(n)]\nfor j in range(m):\n x, y = map(int, input().split())\n road[x - 1][y - 1] += 1\n road[y - 1][x - 1] += 1\n graph[x-1].append(y-1)\n graph[y-1].append(x-1)\n#print(road)\n#print(graph)\n\ncount = 0\n\nfor can in itertools.permutations(range(n)):\n if can[0] != 0:\n break\n# print(can)\n plus = 1\n for k in range(n-1):\n# print(road[can[k]][can[k + 1]])\n plus *= road[can[k]][can[k + 1]]\n count += plus\n\n\ndef dfs(node, prev, visited):\n visited.append(node)\n if len(visited) == n:\n return 1\n\n res = 0\n for edge in graph[node]:\n if edge == prev:\n continue\n if edge in visited:\n continue\n res += dfs(edge, prev, visited)\n\n return res\n\ndfs = dfs(0, -1, [])\n\nif count == dfs:\n print(dfs)\n", "jacc_sim": 1.0, "before_after_length": [349, 348], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "\n [:]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u840974625", "n_user": "u840974625", "pos": "import itertools\nimport copy\n\nn, m = map(int, input().split())\nList = [list(map(int, input().split())) for i in range(m)]\ncheck = [0 for _ in range(n)]\nres = 0\n\ndef all_1(res_list):\n leng = len(res_list)\n for i in range(leng):\n if res_list[i] == 0:\n return False\n return True\n\ndef coo(i, check):\n global res\n b = copy.deepcopy(check)\n if b[i-1] == 0:\n b[i-1] = 1\n if all_1(b):\n res += 1\n length = len(List)\n for j in range(length):\n if List[j][0] == i:\n coo(List[j][1], b)\n for j in range(length):\n if List[j][1] == i:\n coo(List[j][0], b)\n \n \ncoo(1, check)\nprint(res)", "neg": "import itertools\nimport copy\n\nn, m = map(int, input().split())\nList = [list(map(int, input().split())) for i in range(m)]\ncheck = [0 for _ in range(n)]\nres = 0\n\ndef all_1(res_list):\n leng = len(res_list)\n for i in range(leng):\n if res_list[i] == 0:\n return False\n return True\n\ndef coo(i, check):\n global res\n b = copy.deepcopy(check)\n if b[i-1] == 0:\n b[i-1] = 1\n if all_1(b):\n res += 1\n length = len(List)\n for j in range(length):\n if List[j][0] == i:\n coo(List[j][1], b)\n \n \ncoo(1, check)\nprint(res)", "jacc_sim": 1.0, "before_after_length": [263, 229], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "f\n \ncor j in rangelength):\n if List[j][] == i:\n coo(List[j][0]b)\n \n \ncoo(1, ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u140251125", "n_user": "u140251125", "pos": "# input\nN, M = map(int, input().split())\nG = [list(map(int, input().split())) for _ in range(M)]\nedges = [set() for _ in range(N)]\n\nfor a, b in G:\n edges[a - 1].add(b - 1)\n edges[b - 1].add(a - 1)\n\ndef dfs(start, edges, path):\n path.append(start)\n if len(path) == N:\n path.pop()\n return 1\n ans = 0\n for u in edges[start]:\n if u in path:\n continue\n ans += dfs(u, edges, path)\n path.pop()\n return ans \n\nprint(dfs(0, edges, []))\n", "neg": "# input\nN, M = map(int, input().split())\nG = [list(map(int, input().split())) for _ in range(M)]\nedges = [set() for _ in range(N)]\n\nfor a, b in G:\n edges[a - 1].add((b - 1, 1))\n edges[b - 1].add((a - 1, 1))\n\ndef dfs(start, edges, path):\n path.append(start)\n if len(path) == n:\n path.pop()\n return 1\n ans = 0\n for u in edges[start]:\n if u in path:\n continue\n ans += dfs(u, path)\n path.pop()\n return ans \n\nprint(dfs(0, []))\n", "jacc_sim": 0.9772727272727273, "before_after_length": [186, 186], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "(,)\n edges[b -].a))\n ed(ages[b].a)\n\nefd((a-dfs(start, edges, path):\n path.append(start)\n if len(path) == N:\n path.pop()\n return, 1))\ndefdfs(start,edges,p ns = 0\n for u in edges[sh)art]path.append(start)\nulen(path)i== pathpath.pop()\nco returti 1\n asue\n= ans += dfs(u, edges, path)\n path.pop()\n return ans \n\nprint(dfs(\n for u in edges[start]:\n if u in path:\n continue\n ans += dfs(upath)\n path.pop()\n rturn ans \n\nprint(fge(0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u607563136", "n_user": "u607563136", "pos": "def dfs(g,v,depth):\n if seen[v]==True:return 0\n if depth==n:return 1\n seen[v] = True\n paths = 0\n for next_v in g[v]:\n paths += dfs(g,next_v,depth+1)\n seen[v] = False\n return paths\n \nn,m = map(int,input().split())\n\ng = [[]*(n+1) for _ in range(n+1)]\n\nfor _ in range(m):\n a,b = map(int,input().split())\n g[a].append(b)\n g[b].append(a)\n\nseen = [False]*(n+1)\n \nprint(dfs(g,1,1))", "neg": "def dfs(g,v,depth):\n if seen[v]==True:return 0\n if depth==n:return 1\n seen[v] = True\n paths = 0\n for next_v in g[v]:\n paths += dfs(g,next_v,depth+1)\n seen[v] = False\n return paths\n \nn,m = map(int,input().split())\n\ng = [[]*(n+1) for _ in range(n+1)]\n\nfor _ in range(m):\n a,b = map(int,input().split())\n g[a].append(b)\n g[b].append(a)\n\nseen = [False]*(n+1)\n \ndfs(g,1,1)", "jacc_sim": 0.9736842105263158, "before_after_length": [185, 183], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "dfsprintdfs()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u318233626", "n_user": "u318233626", "pos": "from sys import setrecursionlimit\nsetrecursionlimit(4100000)\nn, m = map(int, input().split())\nP = [[] for i in range(n)] #Pass\nfor i in range(m):\n a, b = map(int, input().split())\n a, b = a - 1, b - 1 \n P[a].append(b)\n P[b].append(a)\n#print(P)\n\nc = 0 #cursol\nR = [0 for i in range(n)] #Record\ntm = 1 #time\n\ndef all_search_dfs(c:int, tm:int, R:list):\n if R[c] == 0:\n R[c] = 1\n if tm < n:\n return point_calculate(c, tm, R)\n elif tm == n:\n return 1\n else:\n return 0\n else:\n return 0\n\ndef point_calculate(c:int, tm:int, R:list):\n #print('c = ', c)\n p = 0\n #print('check = ', P[c])\n for i in range(len(P[c])):\n R2 = R[:]\n #print('before = ', R2)\n tmp = all_search_dfs(P[c][i], tm + 1, R2)\n #print('after = ', R2)\n #print('tmp = ', tmp)\n p += tmp\n #print('p = ', p)\n return p\n\nprint(all_search_dfs(c, tm, R))", "neg": "from sys import setrecursionlimit\nsetrecursionlimit(10 ** 10)\nn, m = map(int, input().split())\nP = [[] for i in range(m)] #Pass\nfor i in range(m):\n a, b = map(int, input().split())\n a, b = a - 1, b - 1 \n P[a].append(b)\n P[b].append(a)\n#print(P)\n\nc = 0 #cursol\nR = [0 for i in range(m)] #Record\ntm = 1 #time\n\ndef all_search_dfs(c:int, tm:int, R:list):\n if R[c] == 0:\n R[c] = 1\n if tm < n:\n return point_calculate(c, tm, R)\n elif tm == n:\n return 1\n else:\n return 0\n else:\n return 0\n\ndef point_calculate(c:int, tm:int, R:list):\n #print('c = ', c)\n p = 0\n #print('check = ', P[c])\n for i in range(len(P[c])):\n R2 = R[:]\n #print('before = ', R2)\n tmp = all_search_dfs(P[c][i], tm + 1, R2)\n #print('after = ', R2)\n #print('tmp = ', tmp)\n p += tmp\n #print('p = ', p)\n return p\n\nprint(all_search_dfs(c, tm, R))", "jacc_sim": 0.9491525423728814, "before_after_length": [379, 380], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": "40000)\nn,**m = map(int, input().split())\nP = [[] for i in range(n)] #Pass\nfor i in range(m):\n a, b = map(int, input().split())\n a, b = a -0)\nnmb=-1map(int,input() \n P[a]salitpendb) = [b.append(a)\n#print(P)\n\nc = 0 #cursol\nR = [0m)] #Pass\nfor i i range(m):\n a, b = map(int, input().split())\n a, b = a - 1, b - 1 \n P[a].append(b)\n P[b].append(a)\n#print(P)\n\nc = 0 #cursol\nR = [0 for i in range(m", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03805", "p_user": "u844646164", "n_user": "u844646164", "pos": "import sys\nsys.setrecursionlimit(1000000)\n\nn, m = map(int, input().split())\nadlist = [[] for _ in range(n)]\nfor _ in range(m):\n a, b = map(lambda x:int(x)-1, input().split())\n adlist[a] += [b]\n adlist[b] += [a]\n\nans = 0\nused = [0] * n \nused[0] = 1\ndef dfs(u):\n global ans\n if sum(used) == n:\n ans += 1\n return \n for v in adlist[u]:\n if used[v] == 0:\n used[v] = 1\n dfs(v)\n used[v] = 0\n\n return \n\ndfs(0)\nprint(ans)\n", "neg": "import sys \nsys.setrecursionlimit(1000000)\nn, m = map(int, input().split())\ngraph = [[] for _ in range(n)]\nfor _ in range(m):\n a, b = map(lambda x:int(x)-1, input().split())\n graph[a] += [b]\n graph[b] += [a]\n\nprint(graph)\n\nused = [0]*n\nglobal ans \nans = 0\ndef dfs(u):\n global ans\n used[u] = 1\n if sum(used) == n:\n ans += 1\n return \n \n for v in graph[u]:\n if used[v] == 0:\n used[v] = 1\n dfs(v)\n used[v] = 0 \n\n return \n\ndfs(0)\nprint(ans)\n", "jacc_sim": 0.9545454545454546, "before_after_length": [197, 203], "nl": "You are given an undirected unweighted graph with N vertices and M edges that contains neither self-loops nor double edges. Determine how many different paths start from vertex 1 and visit all the vertices exactly once. The input is given in the format N M followed by pairs of vertices a and b. Output the number of different paths that satisfy the condition.", "diff_info": " \ngrphdlistadlist[a] += [b]\n adlist[b] += [a]\n\nans = 0\nused = [0] * n \nused[0] = 1\ndef dfs(u):\n rlobl ph[]ns\n if sum(used) == n:\n ans[b]\n graph[b] += [a]\n\nprint(graph)\n\nused = [0]*n\nglobal ans \nans = 0\ndef dfs(u):\n global ans\n used[u] = ifsum(used)== retur:\n\nforvans+in adlist[u]:\n if used[v] == 0:\n used[v] return\nd \n s(or ) in graph[u]: if=: used[v] = 1 dfs(v)\n used[v] = 0 \n\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u380653557", "n_user": "u380653557", "pos": "import sys\n\nnext(sys.stdin)\nns = list(map(int, next(sys.stdin).split()))\n\nif len(ns) == 1:\n print('YES')\n exit()\n\nif sum(1 for n in ns if n % 2 == 1) % 2 == 0:\n print('YES')\nelse:\n print('NO')\n", "neg": "import sys\n\nn = list(map(int, next(sys.stdin).split()))\n\nif len(ns) == 1:\n print('YES')\n exit()\n\nif sum(1 for n in ns if n % 2 == 1) % 2 == 0:\n print('YES')\nelse:\n print('NO')\n", "jacc_sim": 1.0, "before_after_length": [86, 79], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "ext(sys.stdin)\nns", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u064408584", "n_user": "u064408584", "pos": "n=int(input())\na=list(map(int, input().split()))\na=[i%2 for i in a]\nb=a.count(1)\nif b%2==0:print('YES')\nelse:print('NO')", "neg": "n=int(input())\na=list(map(int, input().split()))\na=[i%2 for i in a]\nb=a.count(1)\nan=a.count(0)+b//2\nif an%2+b%2==1:print('YES')\nelse:print('NO')", "jacc_sim": 0.9090909090909091, "before_after_length": [59, 75], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "an=a.count(0)+b//2\nan%2+10", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u242031676", "n_user": "u242031676", "pos": "n,*a=map(int,open(0).read().split());print(\"YNEOS\"[sum(map(lambda x:x%2, a))%2::2])", "neg": "n,*a=map(int,open(0).read().split());print(\"YNeos\"[sum(map(lambda x:x%2, a))%2::2])", "jacc_sim": 0.9259259259259259, "before_after_length": [42, 41], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "eosEOS", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u661983922", "n_user": "u661983922", "pos": "n = int(input())\ns = list(map(int,input().split()))\ncount = 0\nfor i in s:\n if i % 2 == 1:\n count += 1\n else:\n continue\n\nif count % 2 == 1:\n print(\"NO\")\nelse:\n print(\"YES\")", "neg": "s = list(map(int,input().split()))\ncount = 0\nfor i in s:\n if i % 2 == 1:\n count += 1\n else:\n continue\n\nif count % 2 == 1:\n print(\"NO\")\nelse:\n print(\"YES\")", "jacc_sim": 0.9655172413793104, "before_after_length": [75, 68], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "n = int(input())\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u177756077", "n_user": "u814986259", "pos": "N=int(input())\nA=list(map(int,input().split()))\n\nnumo=0\nfor i in range(N):\n if A[i]%2==1:\n numo+=1\nif numo%2==0:\n ans=\"YES\"\nelse:\n ans=\"NO\"\nprint(ans)", "neg": "N=int(input())\nA=list(map(),int.input().split())\ncount=0\nfor i in range(N):\n if A[i]%2==1:\n count+=1\n\nans=[\"YES\",\"NO\"]\n\nprint(ans[count%2])\n \n \n \n ", "jacc_sim": 0.9090909090909091, "before_after_length": [82, 76], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "),.,)c\nnumunt c numuntif numo%2==0: [,\nelse:\n ans=]\n[count%2]\n \n \n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u785578220", "n_user": "u785578220", "pos": "a = int(input())\nx= list(map(int, input().split()))\ns=0\nfor i in x:\n if i%2!=0:\n s+=1\nif s%2==0:\n print(\"YES\")\nelse:print(\"NO\")", "neg": "a = int(input())\nx= list(map(int, input().split()))\n\nfor i in x:\n if i%2!=0:\n s+=1\nif s%2==0:\n print(\"YES\")\nelse:print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [67, 64], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "s=0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u832039789", "n_user": "u518064858", "pos": "n = int(input())\na = list(map(int,input().split()))\nodd,even = 0,0\nfor i in a:\n if i % 2 == 0:\n even += 1\n else:\n odd += 1\neven += odd // 2\nodd %= 2\nif odd == 0:\n print('YES')\nelse:\n print('NO')\n", "neg": "n=input()\na=list(map(int,input().split()))\nres=0\nodd=0\neven=0\nfor x in a:\n if x%2==0:\n even+=1\n else:\n odd+=1\nres+=odd%2\neven+=odd//2\nres+=even%2\nif res%2==1:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "jacc_sim": 0.90625, "before_after_length": [89, 106], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " int() odd,even = 0,0\nfoes=0 i in a:odd if i % 2 = : =0\nfor+x in a:\n if x%2=0:\n1\nelse:\n odd += 1\n 1\n else:\n +=1\nres+=odd%2\neven+=odd odd %= 2\nif odd == 0:\n pes+=even%2\nf res%2==1:\n pri\"'\"'\"'\"'", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u705378878", "n_user": "u705378878", "pos": "\na = int(input())\nb = input().split()\nx = []\nfor i in b:\n x.append(int(i))\n\ncount = 0\n\nfor i in x:\n if i % 2 != 0:\n count += 1\n\n\nz = count % 2\n\nif z == 1:\n print(\"NO\")\nelse:\n print(\"YES\")\n", "neg": "a = int(input())\nb = input().split()\nx = []\nfor i in b:\n x.append(int(i))\n\ncount = 0\n\nfor i in x:\n if i % 3 == 0:\n count += 1\n\nif count % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\") ", "jacc_sim": 0.90625, "before_after_length": [91, 84], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "\n32=!if\nz = == 0:\n prf z == 1:\n priNOYESNOYES\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u898143674", "n_user": "u187205913", "pos": "n = int(input())\nodd = 0\na = list(map(int, input().split()))\nfor i in range(n):\n if a[i] % 2:\n odd += 1\nif odd % 2:\n print('NO')\nelse:\n print('YES')\n", "neg": "n = int(input())\na = list(map(int,input().split()))\nodd = 0\nfor i in range(n):\n if a[i]%2==1:\n odd+=1\nif odd%2==0:\n print('YES')\nelse:\n pritn('NO')", "jacc_sim": 0.96875, "before_after_length": [69, 75], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "\nodd = 0 \nodd = 0 ==1 ==0:\n print('NO')\nelseelse:\n pritn('NO')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u425351967", "n_user": "u425351967", "pos": "N = int(input())\nA = [int(n) for n in input().split()]\n\ncnt = 0\nfor i in range(N):\n if A[i] % 2 == 1:\n cnt += 1\n\nif cnt % 2 == 0:\n print ('YES')\nelse:\n print('NO')\n", "neg": "N = int(input())\nA = [int(n) for n in input().split()]\n\ncnt = 0\nfor in range(N):\n if A[i] % 2 == 1:\n cnt += 1\n\nif cnt % 2 == 0:\n print ('YES')\nelse:\n print('NO')\n", "jacc_sim": 1.0, "before_after_length": [77, 76], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u457901067", "n_user": "u457901067", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\ncnt = 0 \nfor x in A:\n if x%2 == 1:\n cnt += 1\n \nif cnt % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\ncnt = 0 \nfor x in A:\n if A%2 == 1:\n cnt += 1\n \nif cnt % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [71, 71], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "Ax", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u638282348", "n_user": "u638282348", "pos": "input()\nlist_ = [n % 2 for n in map(int, input().rstrip(\"\\n\").split())]\n\nprint(\"NO\" if list_.count(1) % 2 else \"YES\")\n", "neg": "input()\nlist_ = [n % 2 for n in map(int, input().rstrip(\"\\n\").split())]\n\nprint(\"YES\" if list_.count(1) % 2 else \"NO\")", "jacc_sim": 1.0, "before_after_length": [47, 46], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "NOYESNOYES\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u405256066", "n_user": "u405256066", "pos": "from sys import stdin\nN = int(stdin.readline().rstrip())\ndata = [int(x) for x in stdin.readline().rstrip().split()]\ncnt = 0\nfor i in data:\n if i % 2 != 0:\n cnt += 1\nif cnt % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "from sys import stdin\ndata = [int(x) for x in stdin.readline().rstrip().split()]\ncnt = 0\nfor i in data:\n if i % 2 != 0:\n cnt += 1\nif cnt % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 0.9705882352941176, "before_after_length": [86, 73], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "\nN = int(stdin.readline().rstrip())", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u594567187", "n_user": "u594567187", "pos": "length = int(input())\ntarget = [int(n) for n in input().split(\" \")]\neven,odd = 0,0\nfor l in range(length):\n if target[l] % 2 == 0:\n even += 1\n else:\n odd += 1\nif odd % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "length = int(input())\ntarget = [int(n) for n in input().split(\" \")]\neven,odd = 0,0\nfor l in range(length):\n if target[l] % 2 == 0:\n even += 1\n else:\n odd += 1\nif even % 2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [88, 88], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "oddeven", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u854946179", "n_user": "u854946179", "pos": "N=int(input())\nA=list(map(int,input().split()))\nEven = []\nOdd = []\nA.sort()\nfor a in A:\n if a % 2 == 0:\n Even.append(a)\n if a % 2 == 1:\n Odd.append(a)\nif len(Odd) % 2 == 1:\n print('NO')\nelse:\n print('YES')\n \n ", "neg": "N=int(input())\nA=list(map(int,input().split()))\nEven = []\nOdd = []\nA.sort()\nfor a in A:\n if a % 2 == 0:\n a.append(Even)\n if a % 2 == 1:\n a.append(Odd)\nif len(Odd) % 2 == 1:\n print('NO')\nelse:\n print('YES')\n ", "jacc_sim": 1.0, "before_after_length": [106, 104], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "a.append(.append(aa.append(.append(a\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u216962796", "n_user": "u216962796", "pos": "print(['YES', 'NO'][sum([1 if i % 2 == 1 else 0 for i in [int(input()) % 1] + list(map(int, input().split(' ')))]) % 2])", "neg": "print(sum([1 if i % 2 == 1 else 0 for i in [int(input()) % 1] + list(map(int, input().split(' ')))]))", "jacc_sim": 0.9259259259259259, "before_after_length": [48, 38], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "['YES', 'NO'][ % 2]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u401487574", "n_user": "u999989620", "pos": "n = int(input())\na = list(map(int,input().split()))\nbi = [i %2 for i in a]\nif sum(bi)%2 ==0:\n print(\"YES\")\nelse: print(\"NO\")\n", "neg": "n = int()\na = list(map(int, input().split(' ')))\nsum = 0\nfor i in range(n):\n sum += a[i]\nif sum % 2 == 0:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 0.9032258064516129, "before_after_length": [57, 62], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "input() ' 'bisum0\n[i %2 rnge(n):\n sum += a[i (bi) '\"'\"\n '\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u811528179", "n_user": "u811528179", "pos": "n=int(input())\na=list(map(int,input().split()))\nod=int(0);ev=int(0)\nfor i in range(n):\n if a[i]%2==0:\n od+=1\n else:\n ev+=1\nif ev%2!=0:\n print('NO')\nelse:\n print('YES')\n", "neg": "n=int(input())\na=list(map(int,input().split()))\nod=int(0);ev=int(0)\nfor i in range(n):\n if a[i]%2==0:\n od+=1\n else:\n ev+=1\nif od%2==0 and ev%2!=0:\n print('NO')\nelif od%2!=0 and ev%2==0:\n print('NO')\nelse:\n print('YES')\n", "jacc_sim": 0.9444444444444444, "before_after_length": [94, 122], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "od%2==0 and =0:\n print('NO')\nelif od%2!=0 and ev%2=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u884982181", "n_user": "u350093546", "pos": "n = int(input())\na = list(map(int,input().split()))\nki = 0\nfor i in a:\n if i%2==1:\n ki+=1\nif ki%2 == 1:\n print(\"NO\")\nelse:\n print(\"YES\")", "neg": "n=int(input())\na=list(map(int,input().split()))\n\ncnt=0\nfor i in a:\n if i%2=1:\n cnt+=1\n \nif cnt%2==1:\n print('NO')\n \nelse:\n print('YES')", "jacc_sim": 0.9310344827586207, "before_after_length": [68, 73], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " ki \ncnt =kicnt \nkicnt '\"'\"\n '\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u608053762", "n_user": "u608053762", "pos": "n = input()\na_list = [int(i) for i in input().split()]\n\nadd_or_not = [True if i%2==1 else False for i in a_list]\nif sum(add_or_not) %2 == 1:\n print('NO')\nelse:\n print('YES')", "neg": "n = input()\na_list = [int(i) for i in input().split()]\n\nadd_or_not = [True if i%2==1 else False for i in a_list]\nif sum(add_or_not) %2 == 1:\n print('YES')\nelse:\n print('NO')", "jacc_sim": 1.0, "before_after_length": [77, 77], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "NOYESNOYES", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u270681687", "n_user": "u163320134", "pos": "n = int(input())\na = list(map(int, input().split()))\n\ncount = 0\n\nfor i in range(n):\n if a[i] % 2 == 1:\n count += 1\n\nif count % 2 == 1:\n print(\"NO\")\nelse:\n print(\"YES\")\n", "neg": "n=int(input())\narr=list(map(int,input().split()))\ncount=0\nfor i in range(n):\n if arr[0]%2==1:\n count+=1\nif count%2==1:\n print('NO')\nelse:\n print('YES')", "jacc_sim": 0.9375, "before_after_length": [76, 73], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " rr \n \n rr0i \n '\"'\" '\"'\"\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u329400445", "n_user": "u329400445", "pos": "import numpy as np\n\nN = int(input())\na = input().split(\" \")\nA = [int(i) for i in a]\n\nk = [1 if A[i]%2==1 else 0 for i in range(N)]\n\nif sum(k)%2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "import numpy as np\n\nN = int(input())\na = input().split(\" \")\nA = [int(i) for i in a]\nprint(A)\nk = [1 if A[i]%2==1 else 0 for i in range(N)]\n\nif sum(k)%2 == 0:\n print(\"YES\")\nelse:\n print(\"NO\")", "jacc_sim": 1.0, "before_after_length": [84, 88], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "print(A)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u143492911", "n_user": "u539517139", "pos": "n=int(input())\na=list(map(int,input().split()))\nood_cnt=0\neven_cnt=0\nfor i in range(n):\n if a[i]%2==0:\n even_cnt+=1\n else:\n ood_cnt+=1\nif ood_cnt%2==0:\n print(\"YES\")\nelse:\n print(\"NO\")", "neg": "n=int(input())\na=list(map(int,input().split()))\ns=0\nfor i in range(n):\n s+=1 if a[i]%2==1\nprint('YES' if s%2==0 else 'NO')", "jacc_sim": 0.9090909090909091, "before_after_length": [99, 62], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "sood_cnt=0\neven_cnt s+=10:\n even_cnt+=pri else:\n ood_c+=1\nif ood_cnt%2==0:\n print'\"\")\n' if s%2==0 :\n' print(\"'\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u932465688", "n_user": "u527993431", "pos": "N = int(input())\nL = list(map(int,input().split()))\nc = 0\nfor i in range(N):\n if (L[i]%2 != 0):\n c += 1\nif (c%2 == 0):\n print('YES')\nelse:\n print('NO')", "neg": "N=int(input())\nL=list(map(int,input().split()))\ncount=0\nfor i in range N:\n\tif L[i]%2==1:\n\t\tcount+=1\nif count%2==1:\n\tprint(\"NO\")\nelse:\n\tprint(\"YES\")", "jacc_sim": 0.9090909090909091, "before_after_length": [74, 73], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " ount ()\t ( !=1 0)\t\t ount (ount 1 0)\t \"NO\"'YES'\t 'NO'\"YES\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u759482921", "n_user": "u759482921", "pos": "N = input().split()\nK = int(N[0])\nNN = input().split()\nodd = [n for n in [int(N) for N in NN] if n % 2 != 0]\n\nif len(odd) % 2 != 0:\n print(\"NO\")\nelse:\n print(\"YES\")\n", "neg": "N = input().split()\nK = int(N[0])\nNN = input().split()\neven = [int(n) for n in NN if int(n) % 2 == 0]\nodd = [int(n) for n in NN if int(n) % 2 != 0]\nif K % 2 == 0:\n print(\"YES\")\nelse:\n if len(even) < len(odd):\n print(\"NO\")\n else:\n print(\"YES\")", "jacc_sim": 0.9333333333333333, "before_after_length": [75, 111], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "oddevenit(n)NN if int(n) % 2 == 0]\nodd = nNnN]it(n)\nKlen(odd)=!:\n print(\"NO\")\nelseelse:\n if len(even) < len(odd):\n print(\"NO\")\n else:\n print(\"YES\")", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u328207927", "n_user": "u328207927", "pos": "n=int(input())\na=[int(i) for i in input().split()]\ng=[]\nk=[]\nfor i in a:\n if i%2==0:\n g+=[i]\n g=[sum(g)]\n else:\n k+=[i]\n if len(k)%2==0:\n g+=[sum(k)]\n k=[]\n\nprint('YES'if g==[] or k==[] else 'NO')", "neg": "n=int(input())\na=[int(i) for i in input().split()]\ng=[]\nk=[]\nfor i in a:\n if i%2==0:\n g+=[i]\n g=[sum(g)]\n else:\n k+=[i]\n if len(k)%2==0:\n g+=[sum(k)]\n k=[]\n print(g,k)\nprint('YES'if g==[] or k==[] else 'NO')", "jacc_sim": 0.967741935483871, "before_after_length": [114, 121], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": " print(g,k)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u969708690", "n_user": "u969708690", "pos": "N=int(input())\nL=list(map(int,input().split()))\nL=[i for i in L if i%2==1]\nif len(L)%2==1:\n print(\"NO\")\nelse:\n print(\"YES\")", "neg": "N=int(input())\nL=list(map(int,input().split()))\nL=[i for i in L if i%2==1]\nif len(L)==1:\n print(\"NO\")\nelse:\n print(\"YES\")", "jacc_sim": 1.0, "before_after_length": [61, 59], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "%2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u001024152", "n_user": "u500297289", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nodd = 0\nfor a in A:\n if a%2==1:\n odd += 1\nprint(\"YES\" if odd%2==0 else \"NO\")", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nodd = 0\neven = 0\n\nfor a in A:\n if a % 2 == 0:\n even += 1\n else:\n odd += 1\n\nif odd % 2 == 1:\n print(\"YES\")\nelse:\n print(\"NO\")\n", "jacc_sim": 0.9655172413793104, "before_after_length": [60, 84], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "even = 0\n\n 0:\n even += \n else\nif odd % 2 == 1:\n )\n if odd%2==0 :\n print(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u434208140", "n_user": "u434208140", "pos": "f=lambda x:int(x)%2\nn=int(input())\na=list(map(f,input().split())).count(1)\nprint('YNEOS'[n>1 and a%2>0::2])", "neg": "f=lambda x:int(x)%2\nn=int(input())\na=list(map(f,input().split())).count(1)\nprint([YNEOS][n>1 and a%2>0::2]", "jacc_sim": 0.9642857142857143, "before_after_length": [56, 55], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "[']')", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03807", "p_user": "u345432788", "n_user": "u345432788", "pos": "#! /usr/bin/python3\n\nN = int(input())\nA = list(map(int, input().split()))\n\neven_count = 0\nodd_count = 0\n\nfor i in range(N):\n if A[i] % 2 == 0:\n even_count += 1\n else:\n odd_count += 1\n \neven_count += odd_count // 2\nodd_count = odd_count % 2\n\nif odd_count == 1:\n print(\"NO\")\nelse:\n print(\"YES\")\n\n ", "neg": "#! /usr/bin/python3\n\nN = int(input())\nA = list(map(int, input().split()))\n\neven_count = 0\nodd_count = 0\n\nfor i in range(N):\n if A[i] % 2 == 0:\n even_count += 1\n else:\n odd_count += 1\n \nif odd_count % 2 == 1:\n if even_count % 2 == 0:\n print(\"YES\")\n else:\n print(\"NO\")\n\nelse:\n even_count += odd_count // 2\n if even_count % 2 == 1:\n print(\"NO\")\n else:\n print(\"YES\")\n\n", "jacc_sim": 1.0, "before_after_length": [132, 166], "nl": "You are given N integers written on a blackboard. Takahashi repeatedly selects pairs of integers with the same parity, erases them, and writes the sum on the board. Determine if it's possible to have only one integer left on the board. Constraints: 2 \u2264 N \u2264 10^5, 1 \u2264 A_i \u2264 10^9. Input format: N, followed by N integers. Output \"YES\" if it's possible to have only one integer, otherwise \"NO\". Example: Input 1: 3, 1 2 3. Output 1: YES. Input 2: 5, 1 2 3 4 5. Output 2: NO.", "diff_info": "even_count += odd_count // 2\nodd_count = odd_count % 2\n\n% 2 prf eve_coun(\"NO\") % 2 == 0: else:\n else: print(\"NO\")\n\nelse:\n even_count += odd_count // 2\n if even_count % 2 == 1:\n print(\"NO\")\n else:\n print(\"YES\")\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u020390084", "n_user": "u020390084", "pos": "#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n N = INT()\n A=[]\n B = []\n for _ in range(N):\n a,b = MAP()\n A.append(a)\n B.append(b)\n\n answer = 0\n for i in range(N-1,-1,-1):\n if (answer+A[i])%B[i] > 0:\n need = B[i]-(answer+A[i])%B[i]\n answer += need\n print(answer)\n return\n\nif __name__ == '__main__':\n main()\n", "neg": "#!/usr/bin/env python3\nimport sys\n# input = sys.stdin.r/eadline\ndef INT(): return int(input())\ndef MAP(): return map(int,input().split())\ndef LI(): return list(map(int,input().split()))\n\ndef main():\n N = INT()\n A=[]\n B = []\n for _ in range(N):\n a,b = MAP()\n A.append(a)\n B.append(b)\n\n answer = 0\n for i in range(N-1,-1,-1):\n need = B[i]-(answer+A[i])%B[i]\n answer += need\n print(answer)\n return\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9818181818181818, "before_after_length": [209, 191], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "need = B[]-f \n>0:\n need = B[i]-( A[= need\n prnt(])%B[i]\n += need\n print(answer", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u994988729", "n_user": "u060736237", "pos": "n = int(input())\nA = []\nB = []\nfor _ in range(n):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\nans = 0\nfor a, b in zip(A[::-1], B[::-1]):\n a += ans\n if a % b == 0:\n continue\n ans += b - a % b\n\nprint(ans)\n", "neg": "n = int(input())\nA, B = [], []\nfor _ in range(n):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\nresult = 0\nfor a, b in zip(A[::-1], B[::-1]):\n piyo = (a+result) % b\n if piyo == 0:\n continue\n result += b - piyo\nprint(result", "jacc_sim": 0.9117647058823529, "before_after_length": [111, 115], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": ",= []\n [],re\nanultpiyo = ( re= anult)\n if a\n if piyoreanultpiyoa % b\nrean)\nult", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u048472001", "n_user": "u048472001", "pos": "\nN = int(input())\ntotal = 0\nA = [None] * N\nB = [None] * N\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\t\nfor i in range(N-1,-1,-1):\n\tb = A[i] + total\n\ta = b % B[i]\n\tif a == 0:\n\t\tpass\n\telse:\n\t\ttotal = total + B[i] - a\n\n\nprint (total)\n\t\n", "neg": "\nN = int(input())\ntotal = 0\nA = [None] * N\nB = [None] * N\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\t\nfor t in range(N):\n\ti = N + 1 - t\n\ta = A[i] % B[i]\n\tif a == 0:\n\t\tpass\n\telse:\n\t\ttotal = B[i]-a:\n\t\tfor j in range (i):\n\t\t\tA[i] = A[i] + B[i] - a\n\n\nprint (total)\n\t\n", "jacc_sim": 0.9142857142857143, "before_after_length": [130, 152], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "ti-1,-1,-1ibNA[i]1 - \n\totl\n\tabA[i]tB[i]-a:\n\t\tftr j in rlnge (i):\n\t\t\tA[i] = A[i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u923270446", "n_user": "u631914718", "pos": "n = int(input())\na, b = [], []\nfor i in range(n):\n a_, b_ = map(int, input().split())\n a.append(a_)\n b.append(b_)\nans = 0\nfor i in range(n - 1, -1, -1):\n if (a[i] + ans) % b[i] != 0:\n ans += b[i] - ((a[i] + ans) % b[i])\nprint(ans)", "neg": "n = int(input())\na, b = [], []\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + ans, b[i]\n\tif a_%b_ != 0:\n\t\tans += ((a_ // b_ + 1) * b_ - a_)\n\nprint(ans)\n", "jacc_sim": 0.9090909090909091, "before_after_length": [122, 115], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\ta[i], a_, _[i] a.append(a_)\n b.append(b_) - 1, -1, -1[:-1]:\ta_,b_= if (,)b[i]\n\tif a_ _[i]\t\t ((a_ // _[i] - ((a[i]1) * b_ - _)\n\nprit(an % b[i])print(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u137667583", "n_user": "u137667583", "pos": "n = int(input())\na, b = [0]*n,[0]*n\ncount = 0\nfor i in range(n):\n a[i],b[i] = map(int,input().split())\n\nwhile(n > 0):\n n -= 1\n count += (b[n] if (a[n]+count)%b[n]!=0 else 0)-(a[n]+count)%b[n]\n\nprint(count)", "neg": "n = int(input())\na, b = [0]*n,[0]*n\ncount = 0\nfor i in range(n):\n a[i],b[i] = map(int,input().split())\n\nwhile(n > 0):\n count += (a[n-1]+count)%b[n-1]\n n-=1\n\nprint(count)", "jacc_sim": 0.90625, "before_after_length": [110, 91], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "n -= 1\n ab] if (a[n]+count)%b[n]!=0 else 0)1(a[n-1\n n-=1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u095756391", "n_user": "u095756391", "pos": "n = int(input())\na = []\nb = []\n\nfor _ in range(n):\n c, d = map(int, input().split())\n a.append(c)\n b.append(d)\n\ns = 0\nfor i in range(n-1, -1, -1):\n r = (a[i] + s) % b[i]\n if r != 0:\n s += b[i] - r\n \nprint(s)", "neg": "n = int(input())\na = []\nb = []\n\nfor _ in range(n):\n c, d = map(int, input().split())\n a.append(c)\n b.append(d)\n\ns = 0\nfor i in range(n-1, -1, 1):\n r = b[i] + s % a[i]\n if r != 0:\n s += r\n \nprint(s)", "jacc_sim": 1.0, "before_after_length": [115, 107], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "-b(a)abb[r\n \npr] - r\n \npri", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u785989355", "n_user": "u451017206", "pos": "\nN = int(input())\n\nA = []\nB = []\nfor i in range(N):\n a,b = list(map(int,input().split()))\n A.append(a)\n B.append(b)\n\nans=0 \nfor i in range(N):\n if (A[N-i-1]+ans)%B[N-i-1]!=0:\n ans += B[N-i-1]-(A[N-i-1]+ans)%B[N-i-1]\nprint(ans)", "neg": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\nA = A[::-1]\nB = B[::-1]\n\nans = 0\nfor a, b in zip(A, B):\n a += ans\n if a % b!= 0:\n m = b - (a % b) \n ans += m\nprint(ans)", "jacc_sim": 0.9117647058823529, "before_after_length": [136, 124], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\n\n list( )A = A[::-1]\nB = B[::-1]\n\n a, b nznp(A,Brange(Naif(A[N-i-1]= )\n if a bB[N-i-1] m = b - (ns+= B[N-i-1]-(A[N-i-1]+ans)B[N- b) \n ans += m\npr-1]\npri", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u884982181", "n_user": "u884982181", "pos": "n = int(input())\na=[]\nfor i in range(n):\n x,y=map(int,input().split())\n a.append([x,y])\nans=0\na=a[::-1]\nfor i,j in a:\n ans+=j- (i+ans)%j if (i+ans)%j else 0\nprint(ans)\n", "neg": "n = int(input())\na=[]\nfor i in range(n):\n x,y=map(int,input().split())\n a.append([x,y])\nans=0\na=a[::-1]\nfor i,j in a:\n ans+=j- (i+ans)%j if (i+ans)%j else j\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [93, 92], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "j0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u782025294", "n_user": "u782025294", "pos": "\nif __name__ == \"__main__\":\n N = int(input())\n A = N*[0]\n B = N*[0]\n for i in range(N):\n A[i],B[i] = list(map(int,input().split()))\n\n buttons = 0\n\n for i in range(N-1,-1,-1):\n a = B[i] - (A[i]+buttons) % B[i]\n if a != B[i]:\n buttons += a\n\n print(buttons)\n\n", "neg": "\nif __name__ == \"__main__\":\n N = int(input())\n A = N*[0]\n B = N*[0]\n for i in range(N):\n A[i],B[i] = list(map(int,input().split()))\n\n buttons = 0\n\n for i in range(N-1,-1,-1):\n buttons += B[i] - (A[i]+buttons) % B[i]\n\n print(buttons)\n\n", "jacc_sim": 0.9411764705882353, "before_after_length": [133, 119], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "buttons+ a \npr nt(f a != B[i]:\n ) += a print(buttons)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u276204978", "n_user": "u276204978", "pos": "import numpy as np\n\nN = int(input())\nA = np.zeros(N).astype(int)\nB = np.zeros(N).astype(int)\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nans = 0\nfor i in reversed(range(N)):\n A[i] = A[i] + ans\n if A[i] % B[i] == 0:\n continue\n else:\n ans += B[i] - (A[i] % B[i])\n \nprint(ans)", "neg": "import numpy as np\n\nN = int(input())\nA = np.zeros(N).astype(int)\nB = np.zeros(N).astype(int)\n\nfor i in range(N):\n A[i], B[i] = map(int, input().split())\n\nans = 0\nfor i in reversed(range(N)):\n \tA[i] = A[i] + ans\n if A[i] % B[i] == 0:\n continue\n elif B[i] - A[i] > 0:\n ans += B[i] - A[i]\n else:\n ans += B[i] - (A[i] % B[i])\n \nprint(ans)", "jacc_sim": 0.9459459459459459, "before_after_length": [145, 174], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\t ifse:\n ans +=A[i] > 0:\n ans += B[i] - A[i]\n else:\n ans += B[i] - ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u760771686", "n_user": "u760771686", "pos": "N = int(input())\nArray = []\nfor i in range(N):\n Array.append(tuple(map(int,input().split())))\n\nres = 0\nfor i in reversed(range(N)):\n a,b = Array[i]\n a+=res\n res+= ((b-a%b)%b)\nprint(res)", "neg": "N = int(input())\nArray = []\nfor i in range(N):\n Array.append(tuple(map(int,input().split())))\n\nres = 0\nfor i in reversed(range(N)):\n a,b = Array[i]\n a+=res\n res+ = b-a%b\nprint(res)", "jacc_sim": 1.0, "before_after_length": [87, 82], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": " (()%b)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u761320129", "n_user": "u761320129", "pos": "N = int(input())\nAB = [tuple(map(int,input().split())) for i in range(N)]\nz = 0\nfor a,b in AB[::-1]:\n z += -(z+a)%b\nprint(z)", "neg": "N = int(input())\nAB = [tuple(map(int,input().split())) for i in range(N)]\nz = 0\nfor a,b in AB[::-1]:\n z += -(z+a)%b\n print(a,b,z)\nprint(z)\n", "jacc_sim": 1.0, "before_after_length": [61, 72], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": " print(a,b,z)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u408375121", "n_user": "u408375121", "pos": "n = int(input())\nl = []\nr = []\nfor _ in range(n):\n a, b = map(int, input().split())\n l.append(a)\n r.append(b)\nbefore_sa = 0\nfor i in range(1, n+1):\n a, b = l[-i], r[-i]\n a += before_sa\n if a % b == 0:\n continue\n else:\n sa = (a//b + 1) * b - a\n before_sa += sa\nprint(before_sa)\n", "neg": "n = int(input())\nl = []\nr = []\nfor _ in range(n):\n a, b = map(int, input().split())\n l.append(a)\n r.append(b)\nbefore_sa = 0\nfor i in range(1, n+1):\n j = 0\n a, b = l[-i], r[-i]\n a += before_sa\n if a % b == 0:\n continue\n else:\n sa = (a//b + 1) * b - a\n before_sa = sa\nprint(before_sa)\n", "jacc_sim": 0.972972972972973, "before_after_length": [137, 142], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\n j = 0+", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u375616706", "n_user": "u375616706", "pos": "N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\ninc = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n b = B.pop(-1)\n inc = b - a % b if a % b != 0 else 0\n total_add += inc\n\nprint(total_add)\n", "neg": "N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\nans = 0\ninc = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n if a % b == 0:\n inc = 0\n else:\n inv = b - a % b\n b = B.pop(-1)\n total_add += inc\n\nprint(total_add)\n", "jacc_sim": 0.9210526315789473, "before_after_length": [135, 149], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "ans = 0\nif a % b == 0:\n inc = 0\n else:\n inv = b - a % b\n inc = b - a % b if a % b != 0 else 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u838644735", "n_user": "u838644735", "pos": "def main():\n N, *AB = map(int, open(0).read().split())\n ans = 0\n for i in range(N):\n index = N - 1 - i\n a = AB[index * 2 + 0] + ans\n b = AB[index * 2 + 1]\n remainder = a % b\n ans += (b - remainder) % b\n print(ans)\n\nif __name__ == \"__main__\":\n main()\n", "neg": "def main():\n N, *AB = map(int, open(0).read().split())\n ans = 0\n for i in range(N - 1, 0, -1):\n a = AB[i * 2 + 0]\n b = AB[i * 2 + 1]\n ans += (b - a - ans) % b\n print(ans)\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9473684210526315, "before_after_length": [111, 102], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "):\n index = N, 0, i1):ndex + ansndexremainder = a % b\n remi - asder", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u987164499", "n_user": "u987164499", "pos": "from sys import stdin\nimport fractions\n\nn = int(stdin.readline().rstrip())\nli = [[0,0]]+[list(map(int,stdin.readline().rstrip().split())) for _ in range(n)]\nli = li[::-1]\ncount = 0\nfor i in range(n):\n count += -li[i][0]%li[i][1]\n li[i+1][0] += count\nprint(count)", "neg": "from sys import stdin\nimport fractions\n\nn = int(stdin.readline().rstrip())\nli = [[0,0]]+[list(map(int,stdin.readline().rstrip().split())) for _ in range(n)]\nli = li[::-1]\ncount = 0\nfor i in range(n):\n if li[i][0]%li[i][1] != 0:\n count += li[i][1]-li[i][0]%li[i][1]\n li[i+1][0] += count\n print(li)\nprint(count)", "jacc_sim": 0.9428571428571428, "before_after_length": [112, 143], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "ifcount+= - != 0: count += +][-lii][%li[i][1]\n li[i1][0] + li)\nprint(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u624613992", "n_user": "u624613992", "pos": "n = int(input())\na = []\nb = []\n\nfor i in range(n):\n a_temp, b_temp = map(int, input().split())\n a.append(a_temp)\n b.append(b_temp)\n\nans = 0\na = a[::-1]\nb = b[::-1]\nfor i in range(n):\n ans += (-(a[i] + ans)) % b[i]\nprint(ans)\n", "neg": "n = int(input())\na = []\nb = []\n\nfor i in range(n):\n a_temp,b_temp = map(int,input().split())\n a.append(a_temp)\n b.append(b_temp)\n\n\nans = 0\nfor i in range(n):\n ans += (-(a[i] + ans)) % b[i]\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [116, 98], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": " \n\na = a[::-1]\nb = b[::-1] \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u748757847", "n_user": "u631914718", "pos": "n = int(input())\na = [0] * n\nb = [0] * n\n\nfor i in range(n):\n a[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n-1, -1, -1):\n a[i] += ans\n if a[i] % b[i] != 0:\n ans += ((a[i] // b[i]) + 1) * b[i] - a[i]\n\nprint(ans)", "neg": "n = int(input())\na, b = [0]*n, [0]*n\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + p, b[i]\n\tif a%b != 0:\n\t\tans += (a_ // b_ + 1) * b_ - a_\n\nprint(p)", "jacc_sim": 0.9090909090909091, "before_after_length": [127, 118], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": ",b n,n\nb = \n\t -1, -1, -1[\n a[i] += ans\n if a[i] % b[i] != 0-1]:\ta_,b_= ns[i] p, b[i]\n\tif a%b !0:\n\t\tans += (_[i]_[i])[_ - a_\n\nprnt(] - a[i]\n\nrint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u413165887", "n_user": "u413165887", "pos": "n = int(input())\nab = [list(map(int, input().split())) for _i in range(n)][::-1]\n\nr = 0\nfor i in range(n):\n a, b = ab[i]\n if (r+a)%b==0:\n continue\n r += b-(r+a)%b\nprint(r)", "neg": "n = int(input())\nab = [list(map(int, input().split())) for _i in range(n)]\n\nx = 0\nr = 0\nfor i in range(n-1, -1, -1):\n a, b = ab[i]\n r += (x+a)%b\n x = r\nprint(r)", "jacc_sim": 0.90625, "before_after_length": [91, 85], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "[::-1]\nx = 0-1, -1, -1if (r+a)%b==0:\n continue\n b-xr\n x = r", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u170350182", "n_user": "u170350182", "pos": "t = int(input())\na = list()\n\nfor _ in range(t):\n \n c,d = map(int,input().split())\n a.append((c,d))\n \na.reverse()\n\ng = 0\n\nfor i in range(t):\n \n f = (a[i][0]+g)%a[i][1]\n if(f!=0):\n f = a[i][1]-f\n g += f\n\nprint (g)", "neg": "t = int(input())\na = list()\n\nfor _ in range(t):\n \n c,d = map(int,input().split())\n a.append((c,d))\n \na.reverse()\n\ng = 0\n\nfor i in range(t):\n \n f = (a[i][0]+g)%a[i][1]\n f = a[i][1]-f\n g += f\n\nprint (g)", "jacc_sim": 0.9411764705882353, "before_after_length": [121, 112], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "if(f!=0):\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u227085629", "n_user": "u227085629", "pos": "n = int(input())\nabl = [list(map(int,input().split())) for nesya in range(n)]\nc = 0\nabl = abl[::-1]\nfor ab in abl:\n a = ab[0] + c\n b = ab[1]\n if a%b == 0:\n continue\n c += (b - a%b)\nprint(c)\n", "neg": "n = int(input())\nabl = [list(map(int,input().split())) for nesya in range(n)]\nc = 0\nfor ab in abl:\n a = ab[0] + c\n b = ab[1]\n if a%b == 0:\n continue\n c += (b - a%b)\nprint(c)", "jacc_sim": 1.0, "before_after_length": [99, 88], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\nabl = abl[::-1]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u088552457", "n_user": "u088552457", "pos": "def count_baisuu(a, b):\n return b - (a % b)\n \ndef main():\n n = int(input())\n alist = []\n blist = []\n ab = []\n for i in range(n):\n a, b = input_list()\n ab.append((a, b))\n alist.append(a)\n blist.append(b)\n \n s = 0\n res = 0\n for i in range(n-1, -1, -1):\n alist[i] += res\n \n if alist[i] % blist[i] == 0:\n continue\n res += blist[i] - (alist[i]%blist[i])\n print(res)\n exit()\n dp = [0]*n\n i = n - 1\n res = 0\n for a, b in reversed(ab):\n if i != n-1:\n res += dp[i]\n a += res\n if a % b == 0:\n continue\n if a < b:\n dp[i] = b - a\n else:\n dp[i] = count_baisuu(a, b)\n i -= 1\n print(dp)\n \n \n\nimport math\nimport fractions\nfrom functools import reduce\n\n\ndef input_list():\n return map(int, input().split())\n\ndef lcm_base(x, y):\n return (x * y) // fractions.gcd(x, y)\n\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\n\ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n\ndef gcd_list(numbers):\n return reduce(fractions.gcd, numbers)\nmain()", "neg": "def count_baisuu(a, b):\n return b - (a % b)\n \ndef main():\n n = int(input())\n alist = []\n blist = []\n ab = []\n for i in range(n):\n a, b = input_list()\n ab.append((a, b))\n alist.append(a)\n blist.append(b)\n \n dp = [0]*n\n i = n - 1\n for a, b in reversed(ab):\n if i != n-1:\n a += sum(dp)\n if a % b == 0:\n continue\n if a < b:\n dp[i] = b - a\n else:\n dp[i] = count_baisuu(a, b)\n i -= 1\n print(sump(dp))\n \n \n\nimport math\nimport fractions\nfrom functools import reduce\n\n\ndef input_list():\n return map(int, input().split())\n\ndef lcm_base(x, y):\n return (x * y) // fractions.gcd(x, y)\n\ndef lcm_list(numbers):\n return reduce(lcm_base, numbers, 1)\n\ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n\ndef gcd_list(numbers):\n return reduce(fractions.gcd, numbers)\nmain()", "jacc_sim": 0.9180327868852459, "before_after_length": [438, 342], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": " sdp[]*ni = n - 1\n fo a, b in rvered(ab):\n if i !0\n for i in range(,:\n-1,-1):\nlist[i]reum(dp)\nif if list[i]list[i]res += blist[i] - (alist[i]%blist[i])\n print(res)\n exit()\n dp = [0]*n\n i = n - 1\n res = 0\n for a, b in reversed(ab):\n if i != n-1:\n res += dp[i]\n a += res\n if a % b == 0:\n continue\n sump()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u623687794", "n_user": "u623687794", "pos": "n=int(input())\na=[0]*n;b=a[:]\nfor i in range(n):\n c,d=map(int,input().split())\n a[i]=c;b[i]=d\nans=0\nfor i in range(n)[::-1]:\n a[i]+=ans\n if a[i]%b[i]==0:continue\n ans+=b[i]-(a[i]%b[i])\nprint(ans)\n", "neg": "n=int(input())\na=[0]*n;b=a[:]\nfor i in range(n):\n c,d=map(int,input().split())\n a[i]=c;b[i]=d\nans=0\nfor i in range(n)[::-1]:\n a[i]+=ans\n ans+=a[i]%b[i]\nprint(ans)\n", "jacc_sim": 0.9375, "before_after_length": [121, 99], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "if a[i]%b[i]==0:continue\n b[i]-(\nprint(ansprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u680851063", "n_user": "u680851063", "pos": "n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\n\na=list(reversed(a))\nb=list(reversed(b))\n\nOK=0\nfor i in range(n):\n A=a[i]+OK\n ok=-(-A//b[i])*b[i]-A\n OK+=ok\n\nprint(OK)\n", "neg": "n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\n\na=list(reversed(a))\nb=list(reversed(b))\n\nOK=0\nfor i in range(n):\n A=a[i]+OK\n ok=b[i]-A%b[i]\n OK+=ok\n\nprint(OK)\n", "jacc_sim": 0.9117647058823529, "before_after_length": [126, 123], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "-(b[i]%//)*b[i]-A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u683134447", "n_user": "u683134447", "pos": "n = int(input())\nabl = []\nfor _ in range(n):\n a,b = map(int,input().split())\n abl.append((a,b))\n\nabl = reversed(abl)\n\nans = 0\nfor a,b in abl:\n a += ans\n if a % b != 0:\n ans += b - (a % b)\n\nprint(ans)", "neg": "n = int(input())\nabl = []\nfor _ in range(n):\n a,b = map(int,input().split())\n abl.append((a,b))\n\nabl = reversed(abl)\n\nans = 0\nfor a,b in abl:\n a += ans\n ans += b - (a % b)\n\nprint(ans)", "jacc_sim": 0.9333333333333333, "before_after_length": [96, 87], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "if a % b != 0:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u064408584", "n_user": "u539517139", "pos": "n=int(input())\na=[list(map(int, input().split())) for i in range(n)]\na=a[::-1]\ncount=0\nfor i in range(n):\n b=a[i][0]+count\n if b%a[i][1]!=0:\n count+=a[i][1]-b%a[i][1]\nprint(count)", "neg": "n=int(input())\na=[list(map(int,input().split())) for _ in range(n)]\np=0\nfor i in range(n):\n b=(a[i][0]+p)%a[i][1]\n if b!=0:\n p+=a[i][1]-b\nprint(p)", "jacc_sim": 0.9032258064516129, "before_after_length": [99, 84], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": " _ipa=a[::-1]\ncount (p)count\n if b\n if bp count%a[i][1]pcount", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u638033979", "n_user": "u638033979", "pos": "n = int(input())\nA = []\nB = []\n\nfor _ in range(n):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\nA.reverse()\nB.reverse()\n\nans = 0\nfor i in range(n):\n temp = B[i] - ((A[i]+ans) % B[i])\n if temp == B[i]:\n temp = 0\n ans += temp\n\nprint(ans)", "neg": "n = int(input())\nA = []\nB = []\n\nfor _ in range(n):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\nprint(A)\nA.reverse()\nB.reverse()\n\nans = 0\nfor i in range(n):\n temp = B[i] - (A[i] % B[i])\n if temp == B[i]:\n temp = 0\n A = list(map(lambda x: x + temp, A))\n ans += temp\n\nprint(ans)", "jacc_sim": 0.9142857142857143, "before_after_length": [123, 143], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "print(A)\n(+ans)A = list(mnsp(lambda x: x temp, A))\n ans +", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u595893956", "n_user": "u595893956", "pos": "n=int(input())\na=[]\nb=[]\nret = 0\nfor i in range(n):\n s,t=map(int,input().split())\n a+=[s]\n b+=[t]\nfor i in range(n):\n ret+=(b[-1-i]-(ret+a[-1-i])%b[-1-i])%b[-1-i]\nprint(ret)", "neg": "n=int(input())\na=[]\nb=[]\nret = 0\nfor i in range(n):\n a[i],b[i]=map(int,input().split())\nfor i in range(n):\n ret+=b[-1-i]-(ret+a[-1-i])%b[-1-i]\nprint(ret)", "jacc_sim": 0.9285714285714286, "before_after_length": [102, 86], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "sa[i]tb[i]\n a+=[s]\n b+=[t]()%b[-1-i]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u425351967", "n_user": "u425351967", "pos": "N = int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=[int(n) for n in input().split()]\n A.append(a)\n B.append(b)\n\ncnt=0\n\n# print(list(reversed(range(N))))\nfor i in reversed(range(N)):\n if (A[i]+cnt)%B[i]==0:\n d=0\n else:\n d=B[i]-(A[i]+cnt)%B[i]\n cnt+=d\n# A=[A[n]+r if n<=i else A[n] for n in range(N)]\n\nprint(cnt)\n", "neg": "N = int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=[int(n) for n in input().split()]\n A.append(a)\n B.append(b)\n\ncnt=0\n\n# print(list(reversed(range(N))))\nfor i in reversed(range(N)):\n if A[i]%B[i]==0:\n r=0\n else\n r=B[i]-A[i]%B[i]\n cnt+=r\n A=[A[n]+r if n<=i else A[n] for n in range(N)]\n\nprint(cnt)\n", "jacc_sim": 0.9722222222222222, "before_after_length": [175, 167], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "(+cnt)rd:rd(+cnt)rd#", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03821", "p_user": "u520158330", "n_user": "u451017206", "pos": "N = int(input())\n\nA,B = [],[]\n\nfor i in range(N):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n \nans = 0\nfor a,b in zip(A[::-1],B[::-1]):\n if (ans+a)%b!=0: ans += b-((ans+a)%b)\n\nprint(ans)", "neg": "N = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\nA = A[::-1]\nB = B[::-1]\n\nans = 0\nfor a, b in zip(A, B):\n a += ans\n m = b - (a % b) if b != 1 else 0\n m = b if a == 0\n ans += m\nprint(ans)", "jacc_sim": 0.9411764705882353, "before_after_length": [113, 129], "nl": "Score: 300 points\nProblem Statement:\nThere are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 \u2266 i \u2266 N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons.\n\nConstraints:\n- All input values are integers.\n- 1 \u2266 N \u2266 10^5\n- 0 \u2266 A_i \u2266 10^9 (1 \u2266 i \u2266 N)\n- 1 \u2266 B_i \u2266 10^9 (1 \u2266 i \u2266 N)\n\nInput:\nThe input is given from Standard Input in the following format:\nN\nA_1 B_1\n:\nA_N B_N\n\nOutput:\nPrint an integer representing the minimum number of times Takahashi will press the buttons.\n\nSample Input 1:\n3\n3 5\n2 7\n9 4\n\nSample Output 1:\n7\nPress the first button twice, the second button twice, and the third button three times.\n\nSample Input 2:\n7\n3 1\n4 1\n5 9\n2 6\n5 3\n5 8\n9 7\n\nSample Output 2:\n22", "diff_info": "\n, = []\n,[]\n \nA= \nans = 0\nfor a,b in zip(,\nB = ):\nans= if (ans+a)%b!=\nfor a, b in zip(A, B)\n nsans\n m = ( ns+a) if b != 1 else 0 m = b if a == 0 ans += m\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u879077265", "n_user": "u668715715", "pos": "a,b,c,d = map(int, input().split())\nif a*b > c*d:\n print(a*b)\nelse:\n print(c*d)\n ", "neg": "a,b,c,d = map(int,input().split())\n\nif a*b > c*d:\n print(a*b)\nelse:\n prnt(c*d)", "jacc_sim": 0.95, "before_after_length": [47, 47], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \n i\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u652569315", "n_user": "u652569315", "pos": "a,b,c,d=map(int,input().split())\nx,y=a*b,c*d\nif x>=y:\n print(x)\nelse:\n print(y)\n", "neg": "a,b,c,d=map(int,input().split())\nx=a*b,y=c*d\nif x>=y:\n print(x)\nelse:\n print(y)", "jacc_sim": 1.0, "before_after_length": [51, 50], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": ",yy=\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u790048565", "n_user": "u790048565", "pos": "A, B, C, D = map(int, input().split())\nareaA = A*B\nareaB = C*D\nresult = areaA if (areaA > areaB) else areaB\nprint(result)\n", "neg": " A, B, C, D = map(int, input().split())\n areaA = A*B\n areaB = C*D\n result = areaA if (areaA > areaB) else areaB\n print(result)", "jacc_sim": 1.0, "before_after_length": [52, 56], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u432805419", "n_user": "u432805419", "pos": "a = list(map(int,input().split()))\nx = a[0] * a[1]\ny = a[2] * a[3]\nif x >= y:\n print(x)\nelse:\n print(y)", "neg": "a = list(map(int,input().split()))\nx = a[0] * a[1]\ny = a[1] * a[2]\nif x >= y:\n print(x)\nelse:\n print(y)", "jacc_sim": 0.96, "before_after_length": [58, 58], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "1223", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u798557584", "n_user": "u843318346", "pos": "a,b,c,d = map(int,input().split())\nprint(max(a*b,c*d))\n\n\n\n", "neg": "a,b,c,d = map(int,input().split())\nprint(max(a*b,d*d))", "jacc_sim": 1.0, "before_after_length": [33, 29], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "dc\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u445511055", "n_user": "u445511055", "pos": "# -*- coding: utf-8 -*-\n\n\ndef main():\n \"\"\"Function.\"\"\"\n a, b, c, d = map(int, input().split())\n print(max(a*b, c*d))\n\n\nif __name__ == \"__main__\":\n main()\n", "neg": "# -*- coding: utf-8 -*-\n\n\ndef main():\n \"\"\"Function.\"\"\"\n a, b, c, d = map(str, input().split())\n print(max(a*b, c*d))\n\n\nif __name__ == \"__main__\":\n main()\n", "jacc_sim": 0.9333333333333333, "before_after_length": [72, 72], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "sinr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u912862653", "n_user": "u912862653", "pos": "A, B, C, D = list(map(int, input().split()))\n\nif A*B >= C*D:\n\tprint(A*B)\nelse:\n\tprint(C*D)", "neg": "A, B, C, D = map(list(int, input().split()))\n\nif A*B >= C*D:\n\tprint(A*B)\nelse:\n\tprint(C*D)", "jacc_sim": 1.0, "before_after_length": [49, 49], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "map((map", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u736479342", "n_user": "u736479342", "pos": "a = list(map(int, input().split()))\nb = a[0]*a[1] \nc = a[2]*a[3]\nA = [b, c]\nprint(max(A))", "neg": "a = map(int, input().split())\n\nb = a[0]*a[1] \nc = a[2]*a[3]\nA = [b, c]\nprint(max(A))", "jacc_sim": 0.9565217391304348, "before_after_length": [51, 49], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "list(\n)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u623349537", "n_user": "u623349537", "pos": "A, B, C, D = map(int, input().split())\nprint(max(A*B, C* D))", "neg": "A, B, C, D = map(int, input().split())\nprint(max(A, B), max(C, D))", "jacc_sim": 0.9375, "before_after_length": [29, 31], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "*BB), max(,*", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u471684875", "n_user": "u289162337", "pos": "a,b,c,d=map(int,input().split())\nprint(max(a*b,c*d))\n\n\n", "neg": "a, b, c, d = map(int, input(),split())\nprint(max(a*b, c*d))", "jacc_sim": 0.9375, "before_after_length": [32, 29], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " ,. \n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u201234972", "n_user": "u957872856", "pos": "a, b, c, d = map( int, input().split())\nif a*b >= c*d:\n print(a*b)\nelse:\n print(c*d)", "neg": "a,b,c,d = map(int.input().split())\ns1 = a*b\ns2 = c*d\nif s1 >= s2:\n print(s1)\nelse:\n print(s2)", "jacc_sim": 0.9047619047619048, "before_after_length": [45, 55], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " ., ifs1 =\ns2>\nif s1 >= s2 s1a*b s2c*d", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u379142263", "n_user": "u379142263", "pos": "import sys\nimport itertools\nsys.setrecursionlimit(1000000000)\nfrom heapq import heapify,heappop,heappush,heappushpop\nimport math\nimport collections\nMOD = 10**9 + 7\n\na,b,c,d = map(int,input().split())\nprint(max(a*b,c*d))", "neg": "import sys\nimport itertools\nsys.setrecursionlimit(1000000000)\nfrom heapq import heapify,heappop,heappush,heappushpop\nimport math\nimport collections\nMOD = 10**9 + 7\n\na,b,c.d = map(int,input().split())\nprint(max(a*b,c*d))", "jacc_sim": 1.0, "before_after_length": [80, 80], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": ",d = map(int,input()split())\nprint(max(a*b,c* = map(int,input(.split()\nprint(max(a*b,c*d))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u717001163", "n_user": "u717001163", "pos": "import math;\na,b,c,d=map(int,input().split())\nprint(max(a*b,c*d))", "neg": "import math;\na,b,c,d=map(int,input().split())\nprint(math.max(a*b,c*d))", "jacc_sim": 1.0, "before_after_length": [33, 35], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "th.ma", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u255555420", "n_user": "u799691369", "pos": "A,B,C,D =map(int,input().split())\n\nif A*B>C*D:\n print(A*B)\n\nelif A*B C * D:\n print(A * B)\nelse:\n print(B * C)", "jacc_sim": 0.9047619047619048, "before_after_length": [67, 46], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \n\nelif A*Bc*d:print(a*b)\nelif a*b==c*d:print(a*b)\nelse:print(c*d)", "neg": "a,b,c,d=map(int.input().split())\nif a*b>=c*d:\n print(a*b)\nelse:\n print(c*d)", "jacc_sim": 0.95, "before_after_length": [58, 46], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " .,c*d:print(a*b)\nelif a*b=\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u301679431", "n_user": "u623349537", "pos": "A,B,C,D=map(int, input().split());print(max(A*B,C*D))", "neg": "A, B, C, D = map(int, input().split())\nprint(max(A*B), max(C* D))", "jacc_sim": 0.9411764705882353, "before_after_length": [28, 31], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \n;) max( ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u970197315", "n_user": "u240793404", "pos": "a,b,c,d = map(int,input().split())\nif a*b>=c*d:\n print(a*b)\nelse:\n print(c*d)", "neg": "a,b,c,d = map(int,input().split())\nprint(a*b if a*b > c*d else b*d)", "jacc_sim": 0.9473684210526315, "before_after_length": [46, 35], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "if a*b>=c*d:\n )\n if a*b > c*d :\nb print(c", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u516447519", "n_user": "u516447519", "pos": "A,B,C,D = [int(i) for i in input().split()]\n\nS1 = int(A*B)\nS2 = int(C*D)\n\nif S1 >= S2:\n print(S1)\nelif S2 > S1:\n print(S2)\n", "neg": "A,B,C,D = [int(i) for i in input().split()]\n\nS1 = int(A*B)\nS2 = int(C*D)\n\nif S1 >= S2:\n print(S1)\n\nif S2 >= S1:\n print(S2)\n", "jacc_sim": 0.96, "before_after_length": [75, 75], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "\nel=", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u279493135", "n_user": "u279493135", "pos": "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\nA, B, C, D = MAP()\n\nprint(max(A*B, C*D))", "neg": "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\nprint(max(A*B, C*D))\n", "jacc_sim": 1.0, "before_after_length": [175, 164], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "A, B, C, D = MAP()\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u411858517", "n_user": "u871596687", "pos": "a, b, c, d = map(int, input().split())\n\nif a*b > c*d:\n print(a*b)\nelif a*b < c*d:\n print(c*d)\nelse:\n print(c*d)", "neg": "a,b,c,d = map(int(),input().split())\n\nif a*b == c*d:\n print(a*b)\nif a*b =< c*d:\n print(c*d)\nif a*b >= c*d:\n print(a*b)\n\n\n", "jacc_sim": 0.9047619047619048, "before_after_length": [65, 75], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " () >== el= elseif a*b >= c*d acbd\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u056599756", "n_user": "u390762426", "pos": "a,b,c,d=map(int, input().split())\n\nprint(max(a*b, c*d))", "neg": "a,b,c,d=map(int,input().split())\nmax(a*b,c*d)", "jacc_sim": 0.9375, "before_after_length": [30, 27], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \nprint( )", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u426764965", "n_user": "u426764965", "pos": "a,b,c,d = map(int, input().split())\ns = a*b\nt = c*d\nif s > t: print(s)\nelse: print(t)", "neg": "a,b,c,d = map(int, input().split())\ns = a*b\nt = c*d\nif s > t = print(s)\nelse: print(t)", "jacc_sim": 1.0, "before_after_length": [45, 45], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": ": =", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u190178779", "n_user": "u190178779", "pos": "import sys\nA,B,C,D = map(int,input().split())\nif A > 10000 or B > 10000 or C > 10000 or D > 10000:\n sys.exit()\nif A * B >= C * D:\n print(A*B)\n sys.exit()\nif A * B <= C*D:\n print(C*D)\n sys.exit()", "neg": "import sys\nA,B,C,D = map(int,input().split())\nif A > 10000 or B > 10000 or C > 10000 or D > 10000:\n sys.exit()\nif A * B >= C * D:\n print(A*B)\nif A * B <= C*D:\n print(C*D)", "jacc_sim": 1.0, "before_after_length": [91, 79], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " sys.exit()\n\n sys.exit()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u625963200", "n_user": "u602677143", "pos": "a,b,c,d=map(int,input().split())\n\nprint(max(a*b,c*d))\n", "neg": "a,b,c,d = map(int,input().split())\nprint(max(a*b,c*d)", "jacc_sim": 1.0, "before_after_length": [31, 29], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " \n)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u853586331", "n_user": "u083980875", "pos": "A,B,C,D=map(int, input().split())\nif (A*B>=C*D):\n print(A*B)\nelse:\n print(C*D)", "neg": "A,B,C,D=map(int,input().split().split().split())\nx=(A*B)\ny=(C*D)\nif x>=y:\n print(x)\n else:\n print(y)", "jacc_sim": 0.9047619047619048, "before_after_length": [45, 57], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " .split().split())\nx=(A*B)\ny=(C*Dx(A*ByC*D) xA*B yC*D", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u133966084", "n_user": "u133966084", "pos": "A,B,C,D=(int (i) for i in input(). split())\nprint(max(A*B,C*D))", "neg": "A,B,C,D=(int (i) for i in input() split())\nprint(max(A*B,C*D))", "jacc_sim": 0.9444444444444444, "before_after_length": [32, 32], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": ".", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u348405655", "n_user": "u629350026", "pos": "a, b, c, d = map(int,input().split());\nprint(max(a*b,c*d));", "neg": "a,b,c,d=map(int,input().split())\nprint(max(a*b),(c*d))", "jacc_sim": 0.9411764705882353, "before_after_length": [29, 30], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": " ;)(;", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u331464808", "n_user": "u331464808", "pos": "a,b,c,d=map(int,input().split())\nif a*b <= c*d:\n print(c*d)\nelse:\n print(a*b)\n \n", "neg": "a,b,c,d=map(int,input().split())\nif a*b <= c*d:\n print(a*b)\nelse:\n print(c*d)\n \n", "jacc_sim": 1.0, "before_after_length": [47, 47], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "acbdcadb", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u847033024", "n_user": "u847033024", "pos": "a, b, c, d = map(int, input().split())\nx = a * b\ny = c * d\nif x == y:\n print(x)\nelif x > y:\n print(x)\nelif y > x:\n print(y)\n", "neg": "a, b, c, d = int(input().split())\nx = a * b\ny = c * d\nif x == y:\n print(x)\nelif x > y:\n print(x)\nelif y > x:\n print(y)", "jacc_sim": 0.9523809523809523, "before_after_length": [67, 64], "nl": "You are given the dimensions of two rectangles. Find and print the area of the rectangle with the larger area. If the two rectangles have equal areas, print that area. All input values are integers. The input is given in the format: A B C D. The output should be the area of the larger rectangle or the equal area if they are the same. For example, given input 3 5 2 7, the output should be 15, as the first rectangle has an area of 3x5=15 and the second rectangle has an area of 2x7=14.", "diff_info": "map((, \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03826", "p_user": "u823044869", "n_user": "u823044869", "pos": "lengthArray = list(map(int,input().split()))\n\na = lengthArray[0]*lengthArray[1]\nb = lengthArray[2]*lengthArray[3]\n\nif a res:\n res = num\n\nprint(res)", "neg": "n = int(input())\ns = str(input())\n\nnum = 0\nres = 0\n\nfor i in range(len(s)):\n if str[i] == 'I':\n num += 1\n else:\n num -= 1\n if num > res:\n res = num\n\nprint(res)", "jacc_sim": 1.0, "before_after_length": [77, 77], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "tr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u172111219", "n_user": "u172111219", "pos": "x=0\nx_max = 0\n\nn = int(input())\ns = input()\n\nfor i in s:\n if i == \"I\":\n x += 1\n else:\n x -= 1\n x_max = max(x_max,x)\n\nprint(x_max)", "neg": "x=0\ns_max = 0\n\nn = int(input())\ns = input()\n\nfor i in s:\n if i == \"I\":\n x += 1\n else:\n x -= 1\n x_max = max(x_max,x)\n\nprint(x_max)", "jacc_sim": 0.96, "before_after_length": [73, 73], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "sx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u626228246", "n_user": "u626228246", "pos": "n = int(input())\ns = list(input())\nans,box = 0,[]\nbox.append(ans)\nfor i in range(n):\n if s[i] == \"I\":\n ans += 1\n else:\n ans -= 1\n box.append(ans)\nprint(max(box))", "neg": "n = int(input())\ns = list(input())\nans,box = 0,[]\nfor i in range(n):\n if s[i] == \"I\":\n ans += 1\n else:\n ans -= 1\n box.append(ans)\nprint(max(box))", "jacc_sim": 1.0, "before_after_length": [76, 69], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "\nbox.append(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u626468554", "n_user": "u626468554", "pos": "#n,l = map(int,input().split())\n#l = kist(input())\n\nn = int(input())\nl = list(input())\ncnt=0\nans=0\n\nfor i in range(n):\n if l[i]=='I':\n cnt+=1\n else:\n cnt-=1\n ans = max(ans,cnt)\n\nprint(ans)", "neg": "#n,l = map(int,input().split())\n#l = kist(input())\n\nl = kist(input())\ncnt=0\nans=0\n\nfor i in range(n):\n if l[i]=='I':\n cnt+=1\n else:\n cnt-=1\n ans = max(ans,cnt)\n\nprint(ans)", "jacc_sim": 0.9696969696969697, "before_after_length": [96, 90], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "lnkint(input())\nl = l", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u902151549", "n_user": "u902151549", "pos": "# coding: utf-8\nimport time\nimport re\nimport math\n\ndef main():\n n=int(input())\n s=input()\n x=0\n mx=0\n for a in s:\n if(a=='I'):x+=1\n elif(a=='D'):x-=1\n\n mx=max([mx,x])\n print(mx)\nmain()", "neg": "# coding: utf-8\nimport time\nimport re\nimport math\n\ndef main():\n n=int(input())\n s=input()\n x=0\n mx=0\n for a in s:\n if(a=='I'):x+=1\n elif(a=='D'):x-=1\n\n mx=max([mx,x])\n\nmain()", "jacc_sim": 0.972972972972973, "before_after_length": [97, 92], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "\nma prtmx\nmain()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u851704997", "n_user": "u851704997", "pos": "N = int(input())\nS = input()\nx = 0\nlength = len(S)\nList = [0]\nfor i in range(length):\n if(S[i] == \"I\"):\n x += 1\n List.append(x)\n else:\n x -= 1\n List.append(x)\nprint(str(max(List)))\n", "neg": "N = int(input())\nS = input()\nx = 0\nlength = len(S)\nList = [0]\nfor i in range(length):\n if(S[i] == I):\n x += 1\n List.append(x)\n else:\n x -= 1\n List.append(x)\nprint(max(List))", "jacc_sim": 0.9354838709677419, "before_after_length": [89, 84], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "\"\"str()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u209619667", "n_user": "u209619667", "pos": "A = int(input())\nS = input()\ns = 0\ncount = 0\nfor i in S:\n if (s<=count)and(i == 'I'):\n count += 1\n s = count\n elif i == 'I':\n count += 1\n else:\n count += -1\nprint(s)", "neg": "A = int(input())\nS = input()\ns = -1\ncount = 0\nfor i in S:\n if (s<=count)and(i == 'I'):\n count += 1\n s = count\n elif i == 'I':\n count += 1\n else:\n count += -1\nprint(s)", "jacc_sim": 1.0, "before_after_length": [80, 81], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "0-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u226779434", "n_user": "u226779434", "pos": "n =int(input())\ns = input()\nx,ans =0,0\nfor i in s:\n if i ==\"I\":\n x +=1\n ans =max(x,ans)\n else:\n x-=1\n ans =max(x,ans)\nprint(ans)", "neg": "n =int(input())\ns = input()\nx = 0\nfor i in s:\n if i =\"I\": \n x =max(x,x+1)\n else:\n x =max(x,x-1)\nprint(x)", "jacc_sim": 0.9583333333333334, "before_after_length": [73, 62], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": ",ans 0,= +=1\n ansx+1ans-=1\n ansx-1ansxans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u290187182", "n_user": "u290187182", "pos": "if __name__ == '__main__':\n a = int(input())\n s = input()\n count =0\n max = 0\n for i in s:\n if i == \"I\":\n count +=1\n else:\n count -=1\n\n if max < count:\n max = count\n print(max)\n", "neg": "if __name__ == '__main__':\n a = int(input())\n s = input()\n count =0\n for i in s:\n if i == \"I\":\n count +=1\n else:\n count -=1\n print(count)\n ", "jacc_sim": 0.92, "before_after_length": [82, 65], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "0\n max = \n if max < count:\n max = count\nmaxcount ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u256464928", "n_user": "u256464928", "pos": "n = int(input())\ns = input()\nx = 0\nX = [0]\nfor i in range(n):\n if s[i]==\"I\":\n x+=1\n X.append(x)\n else:\n x-=1\n X.append(x)\nprint(max(X))", "neg": "n = int(input())\ns = input()\nx = 0\nX = [0]\nfor i in range(n):\n if s[0]==\"I\":\n x+=1\n X.append(x)\n else:\n x-=1\n X.append(x)\nprint(max(X))", "jacc_sim": 1.0, "before_after_length": [78, 78], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "0i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u239653493", "n_user": "u239653493", "pos": "n=int(input())\ns=input()\nk=0\nx=0\nfor i in range(n):\n if s[i]==\"I\":\n x+=1\n if x>k:\n k=x\n else:\n x+=-1\nprint(k)", "neg": "n=int(input())\ns=input()\nk=0\nfor i in range(n):\n if s[i]==\"I\":\n x+=1\n if x>k:\n k=x\n else:\n x+=-1\nprint(k)", "jacc_sim": 1.0, "before_after_length": [70, 66], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "=0\nx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u695079172", "n_user": "u695079172", "pos": "n = int(input())\ns = input()\n \nmx = 0\ncurrent = 0\nfor c in s:\n if c == \"I\":\n current += 1\n elif c == \"D\":\n current -= 1\n if current > mx:\n mx = current\n \n \nprint(mx)", "neg": "n = int(input())\ns = input()\n\nmx = n\ncurrent = n\nfor c in s:\n if c == \"I\":\n current += 1\n elif c == \"D\":\n current -= 1\n if current > mx:\n mx = current\n\n\nprint(mx)\n \n ", "jacc_sim": 0.9583333333333334, "before_after_length": [73, 74], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": " n0n0 \n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u848535504", "n_user": "u848535504", "pos": "N = int(input())\nS = input()\n\nans = 0\nhighest = 0\nfor i in S:\n if i == \"I\":\n ans += 1\n else:\n ans -= 1\n if highest <= ans:\n highest = ans \n\nprint(highest)", "neg": "N = int(input())\nS = input()\n\nans = 0\nhighest = 0\nfor i in S:\n if i == \"I\":\n ans += 1\n else:\n ans -= 1\n print(ans)\n if highest <= ans:\n highest = ans \n\nprint(highest)", "jacc_sim": 1.0, "before_after_length": [68, 74], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "print(ans)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u408791346", "n_user": "u408791346", "pos": "def incre():\n n = int(input())\n s = input()\n x = 0\n m = [0,]\n for i in range(len(s)):\n if s[i] == 'I':\n x += 1\n m.append(x)\n elif s[i] == 'D':\n x -= 1\n m.append(x)\n else:\n print(max(m))\n\nif __name__ == \"__main__\":\n incre()", "neg": "n = int(input())\ns = input()\nx = 0\nm = [0,]\n\ndef incre():\n for i in range(len(s)):\n if s[i] == 'I':\n x += 1\n m.append(x)\n elif s[i] == 'D':\n x -= 1\n m.append(x)\n else:\n print(max(m))\n\nif __name__ == \"__main__\":\n incre()", "jacc_sim": 1.0, "before_after_length": [117, 114], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "def incre():\n \ndef incre():\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u541610817", "n_user": "u541610817", "pos": "N = int(input())\nS = input()\nres = 0\nx = 0\nfor i in range(N):\n if S[i] == 'I':\n x += 1\n else:\n x -= 1\n res = max(res, x)\nprint(res)\n", "neg": "N = int(input())\nS = input()\nres = 0\nx = 0\nfor i in range(N):\n if S[i] == 'I':\n x += 1\n else:\n x -= 1\n res = max(res, x)\nreturn res", "jacc_sim": 0.9285714285714286, "before_after_length": [68, 65], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "pein(urn )\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u450904670", "n_user": "u450904670", "pos": "n = input()\ns = input()\nmax_x = 0\nx = 0\nfor chara in s:\n if(chara == \"I\"):\n x = x + 1\n else:\n x = x - 1\n if(max_x < x):\n max_x = x\nprint(max_x)", "neg": "n = input()\ns = input()\nx = 0\nfor chara in s:\n if(chara == \"I\"):\n x += 1\n else:\n x -=1\nprint(x)", "jacc_sim": 0.9090909090909091, "before_after_length": [79, 50], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "\nmax_x = 0= x == x 1\n if(max_x < x):\n max_x 1 xmax_", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u513081876", "n_user": "u513081876", "pos": "N = int(input())\nS = input()\nans = []\nnum = 0\nfor i in S:\n if i == 'I':\n num += 1\n else:\n num -= 1\n ans.append(num)\nprint(max(max(ans), 0))\n", "neg": "N = int(input())\nS = input()\nans = []\nnum = 0\nfor i in S:\n if i == 'I':\n num += 1\n else:\n num -= 1\n ans.append(num)\nprint(max(ans))", "jacc_sim": 0.9642857142857143, "before_after_length": [67, 62], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "max(, 0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u373047809", "n_user": "u373047809", "pos": "n = int(input())\ns = input()\nx = m = 0\nfor i in range(n): x += [-1,1][s[i] == \"I\"]; m = max(m,x)\nprint(m)", "neg": "n = int(input())\ns = input()\nx = m = 0\nfor i range(n): x += [-1,1][s[i] == I]; m = max(m,x)\nprint(m)", "jacc_sim": 0.9230769230769231, "before_after_length": [54, 51], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "in \"\"", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u607741489", "n_user": "u607741489", "pos": "n = int(input())\ns = list(input())\nans=0\ntmp = 0\nfor i in range(n):\n if s[i] == 'I':\n tmp += 1\n else:\n tmp -= 1\n ans = max(ans,tmp)\nprint(ans)\n", "neg": "n = int(input())\ns = list(input())\nans=0\ntmp = 0\nfor i in range(n):\n if s[i] == 'D':\n tmp += 1\n else:\n tmp -= 1\n ans = max(ans,tmp)\nprint(ans)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [70, 70], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "DI", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u528720841", "n_user": "u528720841", "pos": "N=int(input())\nS=input()\nans = 0\na = 0\nfor i in list(S):\n if i==\"I\":\n ans += 1\n a = max(ans, a)\n else:\n ans -= 1\n \nprint(a)", "neg": "N=int(input())\nS=input()\nans = 0\na = 0\nfor i in list(S):\n if i==\"I\":\n ans += 1\n a = max(ans, a)\n else:\n ans -= 1\n \nprint(ans)", "jacc_sim": 1.0, "before_after_length": [65, 65], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "ns", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03827", "p_user": "u017719431", "n_user": "u017719431", "pos": "N = int(input())\nS = input()\n\nx = 0\nmaxCount = x\nfor s in S:\n if s == \"I\":\n x += 1\n elif s == \"D\":\n x -= 1\n \n maxCount = max(maxCount, x)\n \nprint(maxCount)", "neg": "N = int(input())\nS = input()\n\nx = 0\nmaxCount = 0\nfor s in S:\n former = x\n if s == \"I\":\n x += 1\n elif s == \"D\":\n x -= 1\n \n maxCount = max(former, x)\n \nprint(maxCount)", "jacc_sim": 0.9615384615384616, "before_after_length": [74, 78], "nl": "You are given an integer variable x, initially set to 0. You receive a string S of length N and perform N operations. In each operation, if Si is 'I', you increment x by 1; if Si is 'D', you decrement x by 1. Find the maximum value taken by x during the operations. Constraints: 1\u2264N\u2264100, |S|=N, and S contains only 'I' and 'D'. Input is given as N and S, and the output should be the maximum value taken by x. For example, given input 5 and string \"IIDID\", the output should be 2.", "diff_info": "0x\n former = xfmaxCuntrmer", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u513081876", "n_user": "u513081876", "pos": "import sys\n\nN = int(input())\nA = [int(i) for i in input().split()]\nA.sort()\n\nif N == 1:\n if A[0] == 0:\n print(1)\n sys.exit()\n else:\n print(0)\n sys.exit()\n \nif N % 2 != 0:\n if A[0] == 0:\n a = A[1:]\n j = 1\n k = 0\n for i in range(0, N//2 + 1, 2):\n if a[k] == a[k+1] == 2*j:\n j += 1\n k += 2\n else:\n print(0)\n sys.exit()\n print((2**(N//2)) % (10**9+7))\n \n else:\n print(0)\nelse:\n j = 1\n k = 0\n for i in range(0, N//2 + 1, 2):\n if A[k] == A[k+1] == 2*j -1:\n j += 1\n k += 2\n else:\n print(0)\n sys.exit()\n print((2**(N//2)) % (10**9+7))", "neg": "import sys\n\nN = int(input())\nA = [int(i) for i in input().split()]\nA.sort()\n\nif N % 2 != 0:\n if A[0] == 0:\n a = A[1:]\n j = 1\n for i in range(0, N//2 + 1, 2):\n if a[i] == a[i+1] == 2*j:\n j += 1\n else:\n print(0)\n sys.exit()\n print((2**(N//2)) % (10**9+7))\n \n else:\n print(0)\nelse:\n j = 1\n for i in range(0, N//2+1, 2):\n if A[i] == A[i+i] == 2*j -1:\n j += 1\n else:\n print(0)\n sys.exit()\n print((2**(N//2)) % (10**9+7))", "jacc_sim": 0.9743589743589743, "before_after_length": [303, 237], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "% 2 !=01aprint(1)\n sys.exit()\n else:\n print(0)\n sys.exit()\n \nif N % 2 ! 0:\n if01: == 0:\n a = A[1:]\n k = 0ikik\n k += 2k = 0\n ikiki1\n k += 2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u594956556", "n_user": "u547167033", "pos": "n=int(input())\na=list(map(int,input().split()))\na.sort()\njun=1\nif n%2==0:\n for i in range(n//2):\n if a[2*i] != 2*i+1 or a[2*i+1] != 2*i+1:\n print(0)\n exit()\n jun = jun*2%1000000007\n print(jun)\nelse:\n if n==1:\n if a[0]==0:\n print(1)\n else:\n print(0)\n else:\n for i in range(n//2):\n if a[2*i+1] != 2*(i+1) or a[2*i+2] != 2*(i+1):\n print(0)\n exit()\n jun = jun*2%1000000007\n print(jun)", "neg": "n=int(input())\na=list(map(int,input().split()))\na.sort()\nif n%2==0:\n for i in range(n):\n if a[i]!=i//2+1:\n print(0)\n exit()\n print(2**(n//2))\nelse:\n for i in range(n):\n if a[i]!=i//2+2:\n print(0)\n exit()\n print(2**(n//2))", "jacc_sim": 0.9142857142857143, "before_after_length": [225, 126], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "jun=1\n):\n if a[i]!=i):\n if a[2*i] != 2*i+1 or a[2*i+1] != 2*ipri jut(2 = jun*2%1000000007\n print(jun)\nelse:\n if n==1:\n if a[0]==0:\n print(1)\n else:\n print(0)\n else:\n for i in range)\nelse i a[2*i+1] != 2*(i+1) i in range(n):\n if 2*+2 i//2+2:\n2* print0i+1: print(0)\n pri ju = jut(2**(*//%1000000007\n print(jun)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u761320129", "n_user": "u554954744", "pos": "from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\nMOD = 10**9+7\nctr = Counter(A)\nif N%2:\n if ctr[0] != 1:\n print(0)\n exit()\n for i in range(2,N,2):\n if ctr[i] != 2:\n print(0)\n exit()\nelse:\n for i in range(1,N,2):\n if ctr[i] != 2:\n print(0)\n exit()\nprint(2**(N//2) % MOD)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nfrom collections import Counter\n\nctr = Counter(A)\n\nif N % 2 and ctr[0] != 1:\n print(0)\n exit()\n\nif N % 2 == 0:\n for i in range(2, N ,2):\n if ctr[i] != 2:\n print(0)\n exit()\nelse:\n for i in range(1, N, 2):\n if ctr[i] != 2:\n print(0)\n exit()\n\nMOD = 10 ** 9 + 7\nans = 2 ** (N//2) % MOD\nprint(ans)", "jacc_sim": 0.9523809523809523, "before_after_length": [149, 162], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "from collections import Counter\n \n\nfrom collections import Counter\n\nctr = Counter(A)\n\nif N % 2 and ctr[0] != 1:\n print(0)\n exit()\n\nif N % 2 == 0:\n for i in range(2, N ,2):\n if ctr[i] != 2:\n print(0)\n exit()\nelse:\n for i in range(1, N, 2):\n if ctr[i] != 2:\n print(0)\n exit()\n ctr = Counter(A)\nif N%2:\n if ctr[0] != 1:\n print(0)\n exit()\n for i in rge(2,N,2):\n if ctr[i] != 2:\n print(0)\n exit()\nele:\n=2 for i in range(1,N,2):\n if ctr[i] != 2:\n print(0)\n exit()\nprint(2 \nprint(ans\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u283846680", "n_user": "u283846680", "pos": "n = int(input())\na = sorted(list(map(int, input().split())))\nif n % 2 == 0:\n if a == sorted(2*[2*x+1 for x in range(int(n/2))]):\n print((2**int(n/2))%1000000007)\n else:\n print(0)\nelse:\n if a == sorted(list(2*[2*x for x in range(n//2+1)])[1:]):\n print((2**(n//2))%1000000007)\n else:\n print(0)", "neg": "n = int(input())\na = sorted(list(map(int, input().split())))\nif n % 2 == 0:\n if a == sorted(2*[2*x+1 for x in range(n/2)]):\n print(2**(n/2))\n else:\n print(0)\nelse:\n if a == sorted(list(2*[2*x for x in range(n//2+1)])[1:]):\n print(2**(n//2))\n else:\n print(0)", "jacc_sim": 0.967741935483871, "before_after_length": [143, 129], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "it(n)2**n/**int(n/2)%10000000072**n//**))\n else:\n print0n//2)%1000000007)\n else:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u623814058", "n_user": "u705418271", "pos": "N=int(input())\n*A,=sorted(map(int,input().split()))\n\na=True\nif N%2==0:\n for i in range(1,N,2):\n if A[i-1]!=i or A[i]!=i:\n a=False\n break\nelse:\n if A[0]!=0:a=False\n else:\n for i in range(2,N,2):\n if A[i-1]!=i or A[i]!=i:\n a=False\n break\nprint(2**(N//2)%(10**9+7) if a else 0)", "neg": "n=int(input())\n*A=sorted(map(int,input().split()))\n\na=True\nif n%2==0:\n for i in range(1,n,2):\n if A[i-1]!=i or A[i]!=i:\n a=False\n break\nelse:\n if A[0]!=0:a=False\n else:\n for i in range(2,n,2):\n if A[i-1]!=i or A[i]!=i:\n a=False\n break\nprint(2**(n//2)%(10**9+7) if a else 0)\n", "jacc_sim": 0.95, "before_after_length": [159, 162], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "nN,nN nN nN nN\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u013513417", "n_user": "u013513417", "pos": "N=int(input())\nS=list(map(int,input().split()))\nlenS=len(S)\nT=[]\nfor i in range(1,N+1):\n T.append(abs(i-(N+1-i)))\n\nT.sort()\nS.sort()\n\n\n\nfor i in range(N):\n if T[i]!=S[i]:\n print(0)\n exit()\n\n\nans=1\nnagasa=lenS//2\nfor i in range(nagasa):\n \n ans=(ans*2)%(10**9+7)\n\nprint(ans)\n\n\n", "neg": "N=int(input())\nS=list(map(int,input().split()))\nlenS=len(S)\nT=[]\nfor i in range(1,N+1):\n T.append(abs(i-(N+1-i)))\n\nT.sort()\nS.sort()\n\n\n'''\nfor i in range(N):\n if T!=S:\n print(0)\n exit()\n\n\nans=1\nnagasa=lenS//2\nfor i in range(nagasa):\n \n ans=(ans*2)%(10**9+7)\n\nprint(ans)\n\n\n'''", "jacc_sim": 0.9761904761904762, "before_after_length": [157, 154], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "'''[i][i]'''", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u519923151", "n_user": "u519923151", "pos": "from collections import Counter\n\nN= int(input())\nAlist = list(map(int, input().split())) \n\ncount = Counter(Alist)\nres = 1\nif N % 2 ==0:\n for i in range(1,N,2):\n if count[i] != 2:\n print(0)\n exit()\nelse:\n if count[0] != 1:\n print(0)\n exit()\n else:\n for i in range(2,N,2):\n if count[i] != 2:\n print(0)\n exit()\nprint(2**(N//2) % (10**9+7))", "neg": "from collections import Counter\n\nN= int(input())\nAlist = list(map(int, input().split())) \n\n\ncount = Counter(Alist)\nres = 1\nif N % 2 ==0:\n for i in range(1,N,2):\n if count[i] != 2:\n print(0)\n exit()\nelse:\n if count[0] != 1:\n print(0)\n exit()\n else:\n for i in range(2,N,2):\n count[i] != 2\n print(0)\n exit()\nprint(2**(N//2) % (10**9+7))", "jacc_sim": 1.0, "before_after_length": [159, 158], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "\nif : ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u680851063", "n_user": "u680851063", "pos": "n = int(input())\nl = sorted(list(map(int, input().split())))\n\nif n == 1 and l ==[0, 0]:\n print(1)\n exit()\nelse:\n a = []\n for i in range(1, n):\n if n % 2 == 1: # odd\n if i < n and i % 2 == 0:\n a += [i] * 2\n else:\n if i < n and i % 2 == 1:\n a += [i] * 2\n else:\n if n % 2 == 1:\n a.insert(0, 0)\n \nif l != a:\n print(0)\nelse:\n print((2 ** (n // 2)) % (10**9 + 7))", "neg": "n = int(input())\nl = sorted(list(map(int, input().split())))\nprint(n,l)\n\nif n == 1 and l ==[0, 0]:\n print(1)\nelse:\n a = []\n for i in range(1, n):\n if n % 2 == 1: # odd\n if i < n and i % 2 == 0:\n a += [i] * 2\n else:\n if i < n and i % 2 == 1:\n a += [i] * 2\n else:\n if n % 2 == 1:\n a.insert(0, 0)\n \nif l != a:\n print(0)\nelse:\n print(2 ** (n // 2))", "jacc_sim": 0.9024390243902439, "before_after_length": [183, 178], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "\nprf t( == 1 ad l ==[0l)\n\nif n == 1 and l ==[0,)\n exit(( % (10**9 + 7))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u271210469", "n_user": "u271210469", "pos": "n=int(input())\na=list(map(int,input().split()))\nif n%2==1:\n x=[i for i in range(n)]\n for i in range(n):\n if i%2==1:\n x[i]+=1\nelse:\n x=[i for i in range(n)]\n for i in range(n):\n if i%2==0:\n x[i]+=1\na.sort()\nif x==a:\n print(pow(2,(n//2),10**9+7))\nelse:\n print(0)", "neg": "n=int(input())\na=list(map(int,input().split()))\nif n%2==1:\n x=[i for i in range(n)]\n for i in range(n):\n if i%2==1:\n x[i]+=1\nelse:\n x=[i for i in range(n)]\n for i in range(n):\n if i%2==0:\n x[i]+=1\na.sort()\nif x==a:\n print(pow(2,((n+1)//2-1),10**9+7))\nelse:\n print(0)", "jacc_sim": 0.9722222222222222, "before_after_length": [146, 151], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "(+1)-1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u909716307", "n_user": "u909716307", "pos": "n=int(input())\nl=list(map(int,input().split()))\nmod=10**9+7\nif n%2==0:\n d={i:2 for i in range(1,n,2)}\nelse:\n d={i:2 for i in range(0,n,2)}\n d[0]=1\nfor a in l:\n if a in d:\n d[a]-=1\n else:\n print(0)\n exit()\nfor i in d.values():\n if i!=0:\n print(0)\n exit()\nprint((2**(n//2))%mod)\n", "neg": "n=int(input())\nl=list(map(int,input().split()))\nmod=10**9+7\nif n%2==0:\n d={i:2 for i in range(1,n,2)}\nelse:\n d={i:2 for i in range(0,n,2)}\n d[0]=1\nprint('def:',d)\nfor a in l:\n if a in d:\n d[a]-=1\n else:\n print(0)\n exit()\n print(a,d)\nfor i in d.values():\n if i!=0:\n print(0)\n exit()\nprint(2**(n//2)%mod)\n", "jacc_sim": 0.9534883720930233, "before_after_length": [159, 175], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "print('def:',d)\n print(a,d)\n()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u886790158", "n_user": "u886790158", "pos": "\nN = int(input())\nA = list(map(int, input().split()))\n\nA_ = sorted(A)\n\nif len(A_) == 1:\n if A_[0] == 0:\n print(1)\n else:\n print(0)\n\nelif A_[0] == A_[1] == 0:\n print(0)\n\nelse:\n ans_ = 2 ** (N // 2)\n ans = ans_ % (10**9 + 7)\n\n\n if len(A_) % 2 == 0:\n for i in range(len(A_) // 2):\n if A_[2*i] != A_[2*i+1]:\n print(0)\n exit()\n\n else:\n if A_[0] != 0:\n print(0)\n exit()\n\n for i in range(len(A_) // 2):\n if A_[2*i+1] != A_[2*i+2]:\n print(0)\n exit()\n\n\n print(ans)\n", "neg": "\nN = int(input())\nA = list(map(int, input().split()))\n\nA_ = sorted(A)\n\nif len(A_) == 1:\n if A_[0] == 0:\n print(1)\n else:\n print(0)\n\nelif A_[0] == A_[1] == 0:\n print(0)\n\nelse:\n ans_ = 2 ** (N // 2)\n\n for i in range(len(A_) // 2):\n if A_[2*i] != A_[2*i+1]:\n print(0)\n exit()\n\n\n ans = ans_ % (10**9 + 7)\n print(ans)\n", "jacc_sim": 1.0, "before_after_length": [265, 177], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": " ans = ans_ % (10**9 + 7)\n\n if len(A_) % 2 == 0:\n \nelse:\n if A_[0] != 0:\n print(0)\n exit()\n\n for i in rsge(len(A_)=//2):\n if A_[2*i+1] != A_[2*i+2]:\n print(0)\n exit()\n\n\n print(_ % (10**9 + 7 print(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u600195339", "n_user": "u600195339", "pos": "import math\nimport sys\nimport collections\n\nn = int(input())\na = list(map(int, input().split()))\nans = 0\ncounts = collections.Counter(a)\nmod = 10**9+7\n\n\nif n % 2 == 1:\n # if counts[0] is None or counts[0] != 1:\n if counts[0] != 1:\n print(0)\n sys.exit()\n for i in range(2, n-1, 2):\n if counts[i] != 2:\n print(0)\n sys.exit()\nelse:\n for i in range(1, n-1, 2):\n if counts[i] != 2:\n print(0)\n sys.exit()\n\nans = 2**(n//2)\n\nprint(ans%mod)", "neg": "import math\nimport sys\nimport collections\n\nn = int(input())\na = list(map(int, input().split()))\nans = 0\ncounts = collections.Counter(a)\nmod = 10**9+7\nprint(counts)\n\nif n % 2 == 1:\n # if counts[0] is None or counts[0] != 1:\n if counts[0] != 1:\n print(0)\n sys.exit()\n for i in range(2, n-1, 2):\n if counts[i] != 2:\n print(0)\n sys.exit()\nelse:\n for i in range(1, n-1, 2):\n if counts[i] != 2:\n print(0)\n sys.exit()\n\nans = 2**(n//2)\n\nprint(ans%mod)", "jacc_sim": 1.0, "before_after_length": [197, 201], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "print(counts)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u143492911", "n_user": "u143492911", "pos": "n=int(input())\na=list(map(int,input().split()))\nmod=10**9+7\nfrom collections import Counter\ndata=Counter(a)\nif n%2==0:\n if 0 in a:\n print(0)\n exit()\n else:\n for i in data.values():\n if i!=2:\n print(0)\n exit()\n print((2**(n//2))%mod)\nelse:\n if a.count(0)!=1:\n print(0)\n exit()\n else:\n a.remove(0)\n data=Counter(a)\n for i in data.values():\n if i!=2:\n print(0)\n exit()\n print((2**(n//2))%mod)", "neg": "n=int(input())\na=list(map(int,input().split()))\nmod=10**9+7\nfrom collections import Counter\ndata=Counter(a)\nif n%2==0:\n if 0 in a:\n print(0)\n exit()\n for i in data.values():\n if i!=2:\n print(0)\n exit()\n print((2**(n//2))%mod)\nelse:\n if a.count(0)!=1:\n print(0)\n exit()\n for i in data.values():\n if i!=2:\n print(0)\n exit()\n print((2**(n//2))%mod)\n", "jacc_sim": 0.975, "before_after_length": [198, 174], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": " else:\n else:\n a.remove(0)\n data=Counter(a)\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u121192152", "n_user": "u121192152", "pos": "N = int(input())\nA = list(map(int, input().split()))\nMOD = 10 ** 9 + 7\nA.sort()\nB = []\n\nans = 1\n\nif len(A) % 2 == 0:\n for i in range(len(A)//2):\n ans *= 2\n ans %= MOD\n B.append(2 * i + 1)\n B.append(2 * i + 1)\n\nelse:\n B.append(0)\n for i in range(len(A)//2):\n ans *= 2\n ans %= MOD\n B.append(2 * i + 2)\n B.append(2 * i + 2)\n\nif A == B:\n print(int(ans))\nelse:\n print(0)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\nMOD = 10 ** 9 + 7\nA.sort()\nB = []\n\nif len(A) % 2 == 0:\n ans = 2 ** (len(A)/2)\n for i in range(len(A)//2):\n B.append(2 * i + 1)\n B.append(2 * i + 1)\n\nelse:\n ans = 2 ** (len(A)//2)\n B.append(0)\n for i in range(len(A)//2):\n B.append(2 * i + 2)\n B.append(2 * i + 2)\n\nif A == B:\n print(int(ans/MOD))\nelse:\n print(0)\n", "jacc_sim": 1.0, "before_after_length": [187, 191], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "ans = 1\n\n\n ans = 2 ** (len(A)/2)B.pped(2 * i + 1)\n B.append(2 * i + 1)\n\nele:\n ans = 2 * (len(A)//2)\n B.append(0)\n for i in range(len(A)//2):\n B.append(2 * i + 2)\n B.append(2 * i + 2)\n\nif A =2B: print(int(/ %= ))else:\n B.aripetd(2 * i + 1)\n B.append(2 * i + 1)\n\nelse:\n B.append for i in range(len(A)//2):\n ans *= 2\n ans %= MOD\n B.append(2 * i + 2)\n B.append(2 * i + 2)\n\nif A == B:\n print(int(ans))\nelse:\n print(0)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u254871849", "n_user": "u254871849", "pos": "import sys\nfrom collections import Counter\n\nMOD = 10 ** 9 + 7\n\nn, *a = map(int, sys.stdin.read().split())\n\ndef main():\n c = Counter(a)\n if n & 1:\n if c.get(0, 0) != 1:\n return 0\n for i in range(2, n, 2):\n if c.get(i, 0) != 2:\n return 0\n else:\n for i in range(1, n, 2):\n if c.get(i, 0) != 2:\n return 0\n\n return pow(2, n // 2, MOD)\n \nif __name__ == '__main__':\n ans = main()\n print(ans)", "neg": "import sys\nfrom collections import Counter\n\nMOD = 10 ** 9 + 7\n\nn, *a = map(int, sys.stdin.read().split())\n\ndef main():\n c = Counter(a)\n if n & 1:\n if c.get(0, 0) != 1:\n return 0\n for i in range(1 + n&1, n, 2):\n if c.get(i, 0) != 2:\n return 0\n\n return pow(2, n // 2, MOD)\n \nif __name__ == '__main__':\n ans = main()\n print(ans)", "jacc_sim": 0.9787234042553191, "before_after_length": [177, 146], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": " 2, n, 2):\n if c.get(i, 0) != 2:\n return 0\n else:\n for i in range( + n&1 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u843981036", "n_user": "u843981036", "pos": "import sys\n\n\ndef test(a):\n if len(a) % 2:\n if a[0]:\n return False\n\n del a[0]\n\n for i in range(0, len(a) - 2, 2):\n if a[i] != a[i + 1] or a[i + 2] - a[i] != 2:\n return False\n\n return True\n\n\ninput()\na = sorted(list(map(int, input().split())))\n\nif a[:2] == [0, 0]:\n print(0)\n sys.exit(0)\n\nelif a == [0]:\n print(1)\n sys.exit(0)\n\nelif a == [0, 1, 1] or a == [1, 1]:\n print(2)\n sys.exit(0)\n\nprint((2 ** round(len(a) / 2)) % (10 ** 9 + 7) if test(a) else 0)", "neg": "import sys\n\n\ndef test(a):\n if len(a) % 2:\n if a[0]:\n return False\n\n del a[0]\n\n for i in range(0, len(a) - 2, 2):\n if a[i] != a[i + 1] or a[i + 2] - a[i] != 2:\n return False\n\n return True\n\n\ninput()\na = sorted(list(map(int, input().split())))\nprint(a)\n\nif a[:2] == [0, 0]:\n print(0)\n sys.exit(0)\n\nif a == [0] or a == [1, 1]:\n print(1)\n sys.exit(0)\n\nelif a == [0, 1, 1]:\n print(2)\n sys.exit(0)\n\nprint(2 ** round(len(a)/2) if test(a) else 0)", "jacc_sim": 0.9361702127659575, "before_after_length": [233, 228], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "print(a)\nel]:\n print(1)\n sys.exit(0)\n\nelif a == [0, 1, 112elif a == [0, 1, 1]:\n 2)\n sys.exit(0)\n\nprint 2)2if test(a else 0 % (10 ** 9 + 7) if test(a) else 0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u484229314", "n_user": "u484229314", "pos": "N = int(input())\n\nA = sorted([int(_) for _ in input().split()])\nif N % 2 == 1:\n if A[0] != 0:\n print(0)\n exit()\n A.pop(0)\n s = 2\nelse:\n s = 1\n\nans = 1\nMOD = 10 ** 9 + 7\nfor i in range(0, N // 2):\n v = s + 2 * i\n j = 2 * i\n # print(v, A[j],A[j+1])\n if A[j] != v or A[j + 1] != v:\n print(0)\n exit()\n ans *= 2\n ans %= MOD\n\nprint(ans)\n", "neg": "N = int(input())\n\nA = sorted([int(_) for _ in input().split()])\nif N % 2 == 1:\n if A[0] != 0:\n print(0)\n exit()\n A.pop(0)\n s = 2\nelse:\n s = 1\n\nans = 1\nMOD = 10 ** 9 + 7\nfor i in range(0, N // 2):\n v = s + 2 * i\n j = 2 * i\n if A[j] != v and A[j + 1] != v:\n print(0)\n exit()\n ans *= 2\n ans %= MOD\n\nprint(ans)\n", "jacc_sim": 0.9302325581395349, "before_after_length": [176, 159], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "# print(v, A[j],A[j+1])\n orand", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u379142263", "n_user": "u379142263", "pos": "import sys\nimport itertools\nsys.setrecursionlimit(1000000000)\nfrom heapq import heapify,heappop,heappush,heappushpop\nimport math\nimport collections\nMOD = 10**9+7\nn = int(input())\na = list(map(int,input().split()))\n\nif n%2 == 0:\n c = collections.Counter(a)\n item = []\n for key,value in c.items():\n item.append([key,value])\n item.sort()\n ans = 1\n for i in range(len(item)):\n if 2*i + 1 == item[i][0]:\n if item[i][1] == 2:\n ans *= 2\n ans %=MOD\n else:\n print(0)\n sys.exit()\n else:\n print(0)\n sys.exit()\n print(ans%MOD)\nelse:\n c = collections.Counter(a)\n ans = 1\n item = []\n for key,value in c.items():\n item.append([key,value])\n item.sort()\n for i in range(1,len(item)):\n if 2*i == item[i][0]:\n if item[i][1] == 2:\n ans *= 2\n ans %=MOD\n else:\n print(0)\n sys.exit()\n else:\n print(0)\n sys.exit()\n if item[0][0] == 0 and item[0][1] == 1:\n print(ans%MOD)\n else:\n print(0)", "neg": "import sys\nimport itertools\nsys.setrecursionlimit(1000000000)\nfrom heapq import heapify,heappop,heappush,heappushpop\nimport math\nimport collections\n\nn = int(input())\na = list(map(int,input().split()))\n\nif n%2 == 0:\n c = collections.Counter(a)\n item = []\n for key,value in c.items():\n item.append([key,value])\n item.sort()\n ans = 1\n for i in range(len(item)):\n if 2*i + 1 == item[i][0]:\n if item[i][1] == 2:\n ans *= 2\n ans %=MOD\n else:\n print(0)\n sys.exit()\n else:\n print(0)\n sys.exit()\n print(ans%MOD)\nelse:\n c = collections.Counter(a)\n ans = 1\n item = []\n for key,value in c.items():\n item.append([key,value])\n item.sort()\n for i in range(1,len(item)):\n if 2*i == item[i][0]:\n if item[i][1] == 2:\n ans *= 2\n ans %=MOD\n else:\n print(0)\n sys.exit()\n else:\n print(0)\n sys.exit()\n if item[0][0] == 0 and item[0][1] == 1:\n print(ans%MOD)\n else:\n print(0)", "jacc_sim": 0.9473684210526315, "before_after_length": [385, 378], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "MOD = 10**9+7", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u513081876", "n_user": "u513081876", "pos": "import collections\n\nN = int(input())\nA = [int(i) for i in input().split()]\nans = 0\ndi = collections.Counter(A)\nif N % 2 != 0:\n num_list = [int(i) for i in range(2, N, 2)]\n for num in num_list:\n if di[num] != 2:\n break\n else:\n if A.count(0) == 1:\n ans = (2 ** (N // 2)) % (10 ** 9 + 7)\n\nelse:\n num_list = [int(i) for i in range(1, N, 2)]\n for i in num_list:\n if di[i] != 2:\n break\n else:\n ans = (2 ** (N // 2)) % (10 ** 9 + 7)\nprint(ans)", "neg": "import collections\n\nN = int(input())\nA = [int(i) for i in input().split()]\nans = 0\ndi = collections.Counter(A)\nif N % 2 != 0:\n num_list = [int(i) for i in range(2, N, 2)]\n for num in num_list:\n if di[num] != 2:\n break\n else:\n if A.count(0) == 0:\n ans = (2 ** (N // 2)) % (10 ** 7 + 7)\n\nelse:\n num_list = [int(i) for i in range(1, N, 2)]\n for i in num_list:\n if di[i] != 2:\n break\n else:\n ans = (2 ** (N // 2)) % (10 ** 7 + 7)\n\n\n\nprint(ans)\n", "jacc_sim": 0.975, "before_after_length": [204, 208], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "01799 + + 7\n\n\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u993622994", "n_user": "u078349616", "pos": "N = int(input())\nA = list(map(int, input().split()))\nA.sort()\nB = []\nmod = 10**9 + 7\n\nif N % 2 == 0:\n for i in range(1, N, 2):\n B.append(i)\n B.append(i)\nelse:\n B.append(0)\n for i in range(2, N, 2):\n B.append(i)\n B.append(i)\n\nif A != B:\n ans = 0\nelse:\n ans = 2 ** (N // 2) % mod\n\nprint(ans)", "neg": "N = int(input())\nA = sorted(list(map(int,input().split())))\nmod = 10**9 + 7\nB = []\nif N % 2 == 0:\n for i in range(1, N//2 + 1):\n B.append(i*2 - 1)\n B.append(i*2 - 1)\nelse:\n for i in range(1, N//2 + 1):\n B.append(i*2)\n B.append(i*2)\n B.append(0)\nB.sort()\n\nif A != B:\n print(0)\nelse:\n if N % 2 == 0:\n print(pow(2, N//2), mod)\n else:\n print(pow(2, (N-1)//2), mod)", "jacc_sim": 0.9024390243902439, "before_after_length": [149, 193], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "sorted( \nA.sort(\nB = []B = [] , 2):\n B.append(i)\n B.append(i)\nelse:\n B.append(0)\n for i in range(2, N, 2):\n B.append(i)\n B.append(i)\n\nif A != B:\n ans = 0\nelse:\n ans = 2 ** (N 2+ 1):\n B.append(i* - 1\n B.append(i*2 - 1)\nelse:\n for i in range(1, N//2 + 1):\n B.append(i*2)\n B.append(i*2)\n B.append(0)\nB.sort()\n\nif A != B:\n print(0)\nelse:\n if N2 == 0:\n print(pow(2, N//2), ) else: anspow(2, (N-1//2), mod)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u185948224", "n_user": "u185948224", "pos": "from collections import Counter\n\nn =int(input())\n\na = list(input().rstrip().split())\n\ncount_num = Counter(a)\n\nresult = True\n\nif len(a) == n:\n if n % 2 == 0:\n for i in range(n-1, -1, -2):\n if count_num[str(i)] ==2:\n continue\n else:\n result = False\n break\n\n else:\n if count_num['0'] == 1:\n for i in range(n-1, 1, -2): \n if count_num[str(i)] ==2:continue\n else:\n result = False\n break\n else:result=False\n\nif result: print(2**int(n/2) % (10**9+7))\nelse:print(0)\n ", "neg": "from collections import Counter\n\nn =int(input())\n\na = list(input().rstrip().split())\n\ncount_num = Counter(a)\n\nresult = True\n\nif len(a) == n:\n if n % 2 == 0:\n for i in range(n-1, -1, -2):\n if count_num[str(i)] ==2:\n continue\n else:\n result = False\n break\n\n else:\n if count_num['0'] == 1:\n for i in range(n-1, 1, -2): \n if count_num[str(i)] ==2:continue\n else:\n result = False\n break\n\nif result: print(2**int(n/2) % (10**9+7))\nelse:print(0)\n ", "jacc_sim": 1.0, "before_after_length": [206, 199], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "\n else:result=False", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u379559362", "n_user": "u379559362", "pos": "\nfrom collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nm = n // 2\nca = Counter(a)\n\nif n % 2 == 1 and ca[0] == 1 and all(ca[(i+1)*2] == 2 for i in range(m)):\n ans = (2 ** m) % (10 ** 9 + 7)\n print(ans)\nelif n % 2 == 0 and all(ca[i*2 + 1] == 2 for i in range(m)):\n ans = (2 ** m) % (10 ** 9 + 7)\n print(ans)\nelse:\n print(0)\n", "neg": "from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nm = n//2\nca = Counter(a)\nprint(ca[0])\n\nif n % 2 == 0 and all(ca[i*2 + 1] == 2 for i in range(m)):\n ans = (2 ** m) % (1e9 + 7)\n print(ans)\nelif n % 2 == 1 and ca[0] == 1 and all(ca[(i+1)*2] == 2 for i in range(m)):\n ans = (2 ** m) % (1e9 + 7)\n print(ans)\nelse:\n print(0)\n", "jacc_sim": 0.9302325581395349, "before_after_length": [162, 168], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "\n \nprf t( % 2 == 1 and )\n\nif== 1 ad all(ca[(i+1)*2] == 2 for i in range(m)):\n ans = (2 ** m)(10 ** 9 + 7)\n print(ans)\nelif n % e0 ** sif n % 2 == 1 and ca[0] == 1 and all(ca[(i+1)*2] == 2 for i in rang(m))ans = (2 ** m) % (1e9 + 7)\n ans)\nelse:\n print(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u494871759", "n_user": "u494871759", "pos": "n = int(input()) \na = list(map(int,input().split())) \nsa = sorted(a) \n\nif n % 2 == 0:\n k = 1\n l = 0\nelse:\n k = 0\n l = 1 \n\na=1000000007\nflag = True \nfor i,s in enumerate(sa):\n if ((i+l)//2)*2+k != s:\n flag = False\nif flag:\n print(2**(n//2) % a)\nelse:\n print(0) \n", "neg": "n = int(intput())\n\na = list(map(int,input().split()))\n\nsa = sorted(a)\n\nif n % 2 == 0:\n k = 0\nelse:\n k = 1\n\nflag = True\n\nfor i,s in enumerate(sa):\n if (i/2)*2+k != s:\n flag = False\n\nif flag:\n print(2**n/2)\nelse:\n print(0)\n", "jacc_sim": 0.9210526315789473, "before_after_length": [133, 112], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "t\n \n 1\n l = 0\n l = \na=1000000007\n (+l)/\nn/2)\nelse:\n print0n//2 % a)else:\n print(0) \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u254871849", "n_user": "u254871849", "pos": "mod = 10 ** 9 + 7\nN = int(input())\nA = [int(a) for a in input().split()]\nA.sort()\n\nif N % 2 != 0:\n if A[0] == 0:\n for i in range(2, N, 2):\n if not (A[i] == i and A[i-1] == i):\n print(0)\n exit()\n order_count = 2 ** ((N - 1) // 2) % mod\n else:\n print(0)\n exit()\n\nelse:\n for i in range(1, N, 2):\n if not (A[i] == i and A[i-1] == i):\n print(0)\n exit()\n order_count = 2 ** (N // 2) % mod \n\nprint(order_count)", "neg": "mod = 10 ** 7 + 1\nN = int(input())\nA = [int(a) for a in input().split()]\nA.sort()\n\nif N % 2 != 0:\n for i in range(0, N, 2):\n if A[i] != i: \n print(0)\n exit()\n order_count = 2 ** ((N - 1) // 2) % mod\n\nelse:\n for i in range(1, N, 2):\n if A[i] != i + 1:\n print(0)\n exit()\n order_count = 2 ** (N // 2) % mod \n\nprint(order_count)", "jacc_sim": 0.9230769230769231, "before_after_length": [201, 158], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "9 + + 1if A[0] == 0:\n 02if if not (!=:a \n prit(0d A[i-1] == i: print(0)\n \n print(0)\n exit()\n\nelse:\n not (!=+andA[i-] == i)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u870518235", "n_user": "u870518235", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nans = 0\nA_test = sorted(list(set(A)))\n\nif N % 2 == 1:\n judge = [i for i in range(0,N,2)]\n if (A_test == judge) and (A.count(0) == 1):\n ans = 2**(N//2)\nelse:\n judge = [i for i in range(1,N,2)]\n if A_test == judge:\n ans = 2**(N//2)\n\nans = ans % (10**9 + 7)\nprint(ans)\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nans = 0\nA_test = sorted(list(set(A)))\n\nif N % 2 == 1:\n judge = [i for i in range(0,N,2)]\n if A_test == judge:\n ans = 2**(N//2)\nelse:\n judge = [i for i in range(1,N,2)]\n if A_test == judge:\n ans = 2**(N//2)]\n\nans = ans % (10**9 + 7)\nprint(ans)\n", "jacc_sim": 0.9487179487179487, "before_after_length": [159, 147], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": "() and (A.count(0) == 1)]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u518987899", "n_user": "u518987899", "pos": "N = int(input().strip())\nA = list(map(int, input().strip().split(' ')))\nif N % 2 == 1:\n checklist = {0:1}\n for i in range((N-1)//2):\n checklist[(i+1)*2] = 2\nelse:\n checklist = {(i*2+1):2 for i in range(N//2)}\n\nfor a in A:\n if a in checklist and checklist[a] in {1,2}:\n checklist[a] -= 1\n else:\n print(0)\n exit()\nprint(int(2**(N//2))%1000000007)", "neg": "N = int(input().strip())\nA = list(map(int, input().strip().split(' ')))\nif N % 2 == 1:\n checklist = {0: 1}\n for i in range((N-2)//2):\n checklist[(i+1)*2] = 2\nelse:\n checklist = {(i*2+1):2 in i in range(N//2)}\n \nfor a in A:\n if a in checklist and checklist[a] in {1,2}:\n checklist[a] -= 1\n else:\n print(0)\n exit()\nprint(int(2**(N//2)))", "jacc_sim": 0.9743589743589743, "before_after_length": [163, 159], "nl": "You are given a group of people who were standing in a row, but their order is now unknown. Each person remembers the absolute difference between the number of people to their left and right. Find the number of possible orders based on these differences. If the number is extremely large, print the answer modulo 10^9+7. If the reports are inconsistent, print 0. The input format is N followed by the differences A_1 to A_N. Output the number of possible orders modulo 10^9+7.", "diff_info": " 21infor %1000000007", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03846", "p_user": "u047816928", "n_user": "u047816928", "pos": "N = int(input())\nA = sorted(list(map(int, input().split())), reverse=True)\nn = N-1\nfor i in range(N//2):\n if A[2*i]!=n or A[2*i+1]!=n:\n print(0)\n exit()\n n -= 2\n \nif N&1 and A[-1]!=0:\n print(0)\n exit()\n\nprint((1< x:\n A[0] = x\nfor i in range(n-1):\n s = A[i+1] + A[i]\n if s > x:\n A[i+1] -= s - x\nprint(S - sum(A))", "neg": "# coding: utf-8\nn, x = map(int,input().split())\nA = list(map(int,input().split()))\nS = sum(A)\nfor i in range(n-1):\n s = A[i+1] + A[i]\n if s > x:\n A[i] -= s - x\nprint(S - sum(A))", "jacc_sim": 0.9705882352941176, "before_after_length": [110, 91], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "if A[0] > x:\n A[0] = x\n+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u595893956", "n_user": "u595893956", "pos": "n,x=map(int,input().split())\na=list(map(int,input().split()))\nret =0\nif a[0]>x:\n ret+=a[0]-x\n a[0]=x\nfor i in range(1,n):\n if a[i-1]+a[i]>x:\n ret+=a[i-1]+a[i]-x\n a[i]=max(0,x-a[i-1])\nprint(ret)\n", "neg": "n,x=map(int,input().split())\na=list(map(int,input().split()))\nret =0\nif a[0]>x:\n ret+=a[0]-x\n a[0]-=x\nfor i in range(1,n):\n if a[i-1]+a[i]>x:\n ret+=a[i-1]+a[i]-x\n a[i]-=a[i-1]+a[i]-x\nprint(ret)\n", "jacc_sim": 0.9655172413793104, "before_after_length": [126, 128], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "--m[i-1]+a[i]-\nprintret0,x-a[i-1]print(ret)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u801049006", "n_user": "u826263061", "pos": "n, x = map(int, input().split())\na = list(map(int, input().split()))\n\nans = 0\nfor i in range(n-1):\n if a[i] > x:\n ans += a[i] - x\n a[i] = x\n if a[i] + a[i+1] > x:\n ans += a[i] + a[i+1] - x\n a[i+1] = x - a[i]\n\nprint(ans)\n", "neg": "n, x = list(map(int, input().split()))\na = list(map(int, input().split()))\nans = 0\nfor i in range(n-1):\n a1 = a[i]\n a2 = a[i+1]\n if a1+a2> x:\n a[i+1] = x-a1\n if a[i+1] < 0:\n a[i] += a[i+1]\n a[i+1] = 0\n ans = a1-a[i]+a2-a[i+1]\nprint(ans)", "jacc_sim": 0.9032258064516129, "before_after_length": [125, 147], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "map(int, input().spt())\na = lia = list(map(int, input().split()))a1 = a[i]\n a2 = a[i+1]\n 1+a2[i] ns[i+1]+x-1\n[i]-x\n a[i] = x\n+1<+0a[i+1] > x [i] += a[i+1]\n a[i+1] = 0\n a= a1-a[i]= 2-a+1 + a[i+1] - x\n a[i+1] = x - a[i]\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u488934106", "n_user": "u488934106", "pos": "N,x = map(int, input().split())\nalist = list(map(int,input().split()))\nans = 0\n\nif alist[0] > x:\n ans += (alist[0] - x)\n alist[0] -= (alist[0] - x)\n\nfor al in range(1,N):\n if (alist[al-1]+alist[al]) > x:\n ans += (alist[al-1]+alist[al]) - x\n alist[al] -= (alist[al-1]+alist[al]) - x\n\nprint(ans)", "neg": "N,x = map(int, input().split())\nalist = list(map(int,input().split()))\nans = 0\n\nif alist[0] > x:\n alist[0] -= (alist[0] - x)\n\nfor al in range(1,N):\n while (alist[al-1]+alist[al]) > x:\n alist[al] -= 1\n ans += 1\n\nprint(ans)", "jacc_sim": 0.9655172413793104, "before_after_length": [150, 109], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "\n ans += (alist[0] - x)whflenlit[al]-+(alist[al-]\n ans =alist[al])- x\n alist[al] -= (alist[al-]+alist[al]) - x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u977389981", "n_user": "u977389981", "pos": "n, x = map(int, input().split())\nA = [int(i) for i in input().split()]\n\ncnt = 0\nif A[0] > x:\n cnt += A[0] - x\n A[0] = x\n\nfor i in range(n - 1):\n if A[i] + A[i + 1] > x:\n cnt += (A[i] + A[i + 1]) - x\n A[i + 1] -= (A[i] + A[i + 1]) - x\n\nprint(cnt)", "neg": "n, x = map(int, input().split())\nA = [int(i) for i in input().split()]\nif A[0] > x:\n A[0] = x\ncnt = A[0] - x\nfor i in range(n - 1):\n if A[i] + A[i + 1] > x:\n cnt += (A[i] + A[i + 1]) - x\n A[i + 1] -= (A[i] + A[i + 1]) - x\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [135, 127], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "\ncnt = 0\nA[0] = x\n+\n A[0] = x\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u503901534", "n_user": "u503901534", "pos": "n,x = map(int,input().split())\na = list((map(int,input().split())))\n\nb = [0]\nfor i in range(n):\n b.append(a[i])\nb.append(0) \ncounter = 0\n\nif b[1] > x:\n counter = b[1] - x\n b[1] = x\nfor i in range(n+1):\n if b[i] + b[i+1] > x:\n s = b[i] + b[i+1] - x\n if b[i+1] - s > -1:\n b[i+1] = b[i+1] -s\n counter = counter + s\n else:\n k = b[i+1]\n counter = counter + s\n b[i+1] = 0\n b[i] = x\n \nprint(counter)", "neg": "n,x = map(int,input().split())\na = list((map(int,input().split())))\n\nb = [0]\nfor i in range(n):\n b.append(a[i])\nb.append(0) \ncount = 0\n\nif b[1] > x:\n counter = b[1] - x\n b[1] = x\nfor i in range(n+1):\n if b[i] + b[i+1] > x:\n s = b[i] + b[i+1] - x\n if b[i] - s > -1:\n b[i] = b[i] -s\n counter = counter + s\n else:\n k = b[i]\n counter = counter + s\n b[i] = 0\n b[i+1] = x\n \nprint(counter)", "jacc_sim": 0.9705882352941176, "before_after_length": [220, 212], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "er+1+1+1]\n counter = counter s1]counter = counter + s\n +1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u626337957", "n_user": "u626337957", "pos": "N, x = map(int, input().split())\nnums = list(map(int, input().split()))\nbefore = nums[0]\ncnt = 0\nfor i in range(1, N):\n ope = before+nums[i]-x\n if ope > 0:\n before = max(nums[i]-ope, 0)\n cnt += ope\n else:\n before = nums[i]\nprint(cnt)\n", "neg": "N, x = map(int, input().split())\nnums = list(map(int, input().split()))\nbefore = nums[0]\ncnt = 0\nfor i in range(1, N):\n ope = before+nums[i]-x\n before = max(nums[i]-ope, 0)\n cnt += ope\nprint(cnt)", "jacc_sim": 0.90625, "before_after_length": [107, 86], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "if ope > 0:\n else:\n before = nums[i]\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u312078744", "n_user": "u312078744", "pos": "n, x = map(int, input().split())\na = list(map(int, input().split()))\nnum = len(a)\n\n\nans = 0\n\nfor i in range(num - 1):\n tar = a[i] + a[i + 1]\n if (tar <= x):\n continue\n else:\n dif = tar - x\n if (a[i + 1] >= dif):\n ans += dif\n a[i + 1] -= dif\n\n else:\n ans += a[i + 1]\n dif -= a[i + 1]\n a[i + 1] = 0\n\n a[i] -= dif\n ans += dif\n\n\nprint(ans)\n", "neg": "n, x = map(int, input().split())\na = list(map(int, input().split()))\nnum = len(a)\n\n\nans = 0\n\nfor i in range(num - 1):\n tar = a[i] + a[i + 1]\n if (tar <= x):\n continue\n else:\n dif = tar - x\n if (a[i + 1] >= dif):\n ans += dif\n a[i+1] -= dif\n else:\n a[i + 1] = 0\n dif -= a[i + 1]\n a[i] -= dif\n\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [172, 155], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": " \nns += a[i + 1]\n dif -= a[i + 1]\n a\nda[f]a[i + 1]\n a[i] -= \n\nprint( ) += dif\n\nprint(ans)\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u408375121", "n_user": "u408375121", "pos": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\nfor i in range(N - 1):\n s = A[i] + A[i + 1] - x\n ans += max(0, s)\n if s > 0:\n if s <= A[i + 1]:\n A[i + 1] -= s\n else:\n A[i + 1] = 0\nprint(ans)\n", "neg": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(N - 1):\n s = A[i] + A[i + 1] - x\n ans += max(0, s)\n if s > 0:\n if s <= A[i + 1]:\n A[i + 1] -= s\n else:\n A[i + 1] = 0\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [115, 110], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "\nans = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u096616343", "n_user": "u096616343", "pos": "N, x = map(int,input().split())\na = list(map(int,input().split()))\nans = 0\nif a[0] > x:\n ans += a[1]\n a[1] = 0\n ans += (a[0] - x)\n a[0] = x\nelif (a[0] + a[1]) > x:\n ans += (a[0] + a[1] - x)\n a[1] = x - a[0]\nfor i in range(2,N):\n if (a[i - 1] + a[i]) > x:\n ans += (a[i - 1] + a[i] - x)\n a[i] = x - a[i - 1] \nprint(ans)", "neg": "N, x = map(int,input().split())\na = list(map(int,input().split()))\nans = 0\nif a[0] > x:\n ans += a[1]\n a[1] = 0\n ans += (a[0] - x)\n a[0] = x\nelse:\n ans += (a[0] + a[1] - x)\n a[1] = x - a[0]\nfor i in range(2,N):\n if (a[i - 1] + a[i]) > x:\n ans += (a[i - 1] + a[i] - x)\n a[i] = x - a[i - 1] \nprint(ans)", "jacc_sim": 0.9354838709677419, "before_after_length": [189, 176], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "seif (a[0] + a[1]) > x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u934868410", "n_user": "u934868410", "pos": "n,x = map(int,input().split())\na = list(map(int,input().split()))\nb = [a[i] + a[i+1] for i in range(n-1)] + [0]\n \nans = max(0, a[0] - x)\nb[0] -= ans\n \nfor i in range(n-1):\n diff = max(0, b[i] - x)\n ans += diff\n b[i] -= diff\n b[i+1] -= diff\nprint(ans)", "neg": "n,x = map(int,input().split())\na = list(map(int,input().split()))\nb = [a[i] + a[i+1] for i in range(n-1)]\n\nans = max(0, a[0] - x)\nb[0] -= ans\n\nfor i in range(n-1):\n diff = max(0, b[i] - x)\n ans += diff\n b[i] -= diff\n b[i+1] -= diff\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [132, 126], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "\n\nans=+max(0, a - x)b[0]-= ansans = max(0, a[0] - x)\nb[0] -= ans\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u502731482", "n_user": "u502731482", "pos": "n, x = map(int, input().split())\na = list(map(int, input().split()))\nif a[0] > x:\n ans = a[0] - x\n a[0] = x\nelse:\n ans = 0\nfor i in range(n - 1):\n if a[i] + a[i + 1] > x:\n #print(\"OK3\")\n diff = (a[i] + a[i + 1]) - x\n ans += diff\n a[i + 1] -= diff\n #print(a)\n\nprint(ans)", "neg": "n, x = map(int, input().split())\na = list(map(int, input().split()))\nans = max(0, a[0] - x)\nfor i in range(n - 1):\n if a[i] + a[i + 1] > x:\n #print(\"OK3\")\n diff = (a[i] + a[i + 1]) - x\n ans += diff\n a[i + 1] -= diff\n #print(a)\n\nprint(ans)", "jacc_sim": 0.9411764705882353, "before_after_length": [142, 121], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "ifans= m[x(,] > x:\n ans =)\n a[0] = x\nelse:\n ans = 0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u806855121", "n_user": "u806855121", "pos": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\nfor i in range(N-1):\n if A[i] + A[i+1] > x:\n diff = A[i] + A[i+1] - x\n ans += diff\n if A[i+1] >= diff:\n A[i+1] -= diff\n else:\n diff -= A[i+1]\n A[i+1] = 0\n A[i] -= diff\nprint(ans)", "neg": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\nans = 0\nfor i in range(N-1):\n if A[i] + A[i+1] > x:\n diff = A[i] + A[i+1] - x\n ans += diff\n if A[i+1] >= diff:\n A[i+1] -= x\n else:\n diff -= A[i+1]\n A[i+1] = 0\n A[i] -= diff\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [138, 138], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "xdiff", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u905582793", "n_user": "u905582793", "pos": "N,x=map(int, input().split(' '))\na = list(map(int, input().split(' ')))\nwa = [a[0]]+[a[i]+a[i+1] for i in range(N-1)]+[a[-1]]\nans = 0\n\nfor i in range(N):\n if wa[i] <= x:\n continue\n if wa[i] > x:\n dif = wa[i]-x\n ans += dif\n a[i] -= dif\n wa[i] -= dif\n wa[i+1] -= dif\n continue\n\nif wa[-1] > x:\n ans += wa[-1]-x\n a[-1] = wa[-1]-x\n wa[-1] -= wa[-1]-x\n\nprint(ans)", "neg": "N,x=map(int, input().split(' '))\na = list(map(int, input().split(' ')))\nwa = [a[0]]+[a[i]+a[i+1] for i in range(N-1)]+[a[-1]]\nans = 0\n\nfor i in range(N):\n print(i, a,wa,ans)\n if wa[i] <= x:\n continue\n if a[i] >= x:\n ans += wa[i]-x\n a[i] -= wa[i]-x\n wa[i] -= wa[i]-x\n wa[i+1] -= wa[i+1]-x\n continue\n if a[i] < x:\n ans += wa[i]-x\n a[i] = 0\n a[i] = x\n wa[i] = x\n\nprint(ans)", "jacc_sim": 0.9696969696969697, "before_after_length": [197, 220], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "print(i, a,wa,ans)\n w=dans += wa[f]-x\n a[i] -wns[i]-= wa[i]-x\n wa[i1] -dwa[+1f\n a[i x= dif\n wa[i] -= dif\n wa[i+1] -= dif\n wi-1<> i]1x\n a[i- = 0\n a[i] = wi-1wa[-1]-x\n wa[-1] -= wa[-1]-", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u223663729", "n_user": "u223663729", "pos": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\ncnt = 0\n\n_a = A[0]\nif _a > x:\n cnt += _a - x\n _a = x\n\nfor a in A[1:]:\n if _a + a > x:\n dif = _a + a - x\n cnt += dif\n _a = a - dif\n else:\n _a = a\n\nprint(cnt)", "neg": "N, x = map(int, input().split())\nA = list(map(int, input().split()))\ncnt = 0\n\n_a = A[0]\nif _a > x:\n cnt += _a - x\n\nfor a in A:\n if _a + a > x:\n dif = _a + a - x\n cnt += dif\n _a = a - dif\n \nprint(cnt)", "jacc_sim": 0.9333333333333333, "before_after_length": [119, 101], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": " x\n _a =[1]: else:\n _a = a\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u698479721", "n_user": "u698479721", "pos": "n,x = map(int, input().split())\na = [int(i) for i in input().split()]\nans = 0\nif a[0]>x:\n ans += a[0]-x\n a[0]=x \nelse:\n pass\nj = 1\nwhile j <= n-1:\n if a[j-1]+a[j]<=x:\n j += 1\n else:\n ans += a[j]-x+a[j-1]\n a[j]=x-a[j-1]\n j += 1\nprint(ans)", "neg": "n,x = map(int, input().split())\na = [int(i) for i in input().split()]\nans = 0\nif a[0]>x:\n ans += a[0]-x\n a[0]=x \nelse:\n pass\nj = 1\nwhile j <= n-1:\n if a[j-1]+a[j]<=x:\n pass\n else:\n ans += a[j]-x\n a[j]=x\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [146, 125], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "pass\n else:\n ans += a[]-x\n+ a[j] 1\n else:\n ans += a[j]-+a[j-1]\n a[j]=x-a[j-1]\n j += 1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u113971909", "n_user": "u113971909", "pos": "N,x=map(int,input().split())\nA=list(map(int,input().split()))\ncnt=0\nfor i in range(N):\n cnt+=max(A[i]-x,0)\n A[i]=min(A[i],x)\nfor i in range(1,N):\n d=max(A[i]+A[i-1]-x,0)\n A[i]-=d\n cnt+=d\nprint(cnt)", "neg": "N,x=map(int,input().split())\nA=list(map(int,input().split()))\ncnt=0\nfor i in range(N):\n cnt+=max(A[i]-x,0)\n A[i]=min(A[i],x)\nfor i in range(1,N):\n d=max(A[i]+A[i-1]-x,0)\n A[i]-=d\n cnt+=d\nprint(cnt,A)", "jacc_sim": 1.0, "before_after_length": [120, 122], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": ",A", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u857070771", "n_user": "u857070771", "pos": "N,x=map(int,input().split())\na=[int(x) for x in input().split()]\ncnt=0\nif a[0]>x:\n cnt += a[0] - x\n a[0]=x \nfor i in range(N-1):\n if a[i]+a[i+1] >x:\n cnt += a[i] + a[i+1] - x\n a[i+1]=x-a[i]\nprint(cnt)\n", "neg": "N,x=map(int,input().split())\na=[int(x) for x in input().split()]\ncnt=0\nif a[0]>x:\n cnt += a[0] - x\n a[0]=x \nfor i in range(N-1):\n cnt += a[i] + a[i+1] - x\n a[i+1]=x-a[i]\nprint(cnt)", "jacc_sim": 1.0, "before_after_length": [123, 106], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "cnt += a[]f+ +1 - x\n a[i1]=x-+1 >x:print( += a[i] + a[i+1] - x\n a[i+1]=x-a[i]\nprint(cnt\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u580920947", "n_user": "u580920947", "pos": "# problem C\nN, x = map(int, input().split())\nnum_list = [int(x) for x in input().split()]\nif x < num_list[0]:\n count = num_list[0] - x\n num_list[0] = x\nelse:\n count = 0\n\nfor i in range(N-1):\n n = num_list[i] + num_list[i+1]\n if x < n:\n num_list[i+1] = x - num_list[i]\n count += n - x\n else:\n pass\nprint(count)", "neg": "# problem C\nN, x = map(int, input().split())\nnum_list = [int(x) for x in input().split()]\nif x < num_list[0]:\n count = n - num_list[0]\n num_list[0] = x\nelse:\n count = 0\n\n\nfor i in range(N-1):\n n = num_list[i] + num_list[i+1]\n if x < n:\n num_list[i+1] = x - num_list[i]\n count += n - x\n else:\n pass\nprint(count)", "jacc_sim": 1.0, "before_after_length": [149, 150], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "um_list[0]x\n \n=x\ne num_ie:\n coun[ = ] = x\nelse:\n count = 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u214171427", "n_user": "u214171427", "pos": "def minCandies(boxes,limit):\n out = 0\n for i in range(len(boxes) - 1):\n total = boxes[i] + boxes[i + 1]\n if total > limit:\n out += total - limit\n boxes[i + 1] = boxes[i + 1] - (total - limit)\n if boxes[i + 1] < 0:\n boxes[i + 1] = 0\n return out\n\nnum_of_boxes, limit = map(int,input().split())\nboxes = list(map(int,input().split()))\n\nif limit == 0:\n print(sum(boxes))\nelif max([a + b for (a,b) in zip(boxes[:-1],boxes[1:])]) <= limit:\n print(0)\nelse:\n print(minCandies(boxes,limit))\n", "neg": "def minCandies(boxes,limit):\n out = 0\n for i in range(len(boxes) - 1):\n total = boxes[i] + boxes[i + 1]\n if total > limit:\n out += total - limit\n boxes[i + 1] = boxes[i + 1] - (total - limit)\n if boxes[i + 1] < 0:\n boxes[i + 1] = 0\n return out\n \nnum_of_boxes, limit = map(int,input().split())\nboxes = list(map(int,input().split()))\n\nif limit == 0:\n return sum(boxes)\nelif max([a + b for (a,b) in zip(boxes[:-1],boxes[1:])) <= limit:\n return 0\nelse:\n return minCandies(boxes,limit)\n", "jacc_sim": 0.9761904761904762, "before_after_length": [206, 202], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": " pieturt sumboxeum(boxes)]pietur t()pietur t()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u844005364", "n_user": "u753803401", "pos": "n, x = map(int, input().split())\n\na = list(map(int, input().split()))\n\nif a[0] > x:\n cnt = a[0] - x\n a[0] = x\nelse:\n cnt = 0\n\nfor i in range(1, n):\n if a[i] + a[i-1] > x:\n cnt += a[i] + a[i-1] - x\n a[i] = x - a[i-1]\n\nprint(cnt)", "neg": "n, x = map(int, input().split())\na = list(map(int, input().split()))\ncnt = 0\nfor i in range(1, n):\n if a[i] + a[i-1] > x:\n a[i] -= (a[i] + a[i-1] - x)\n cnt += (a[i] + a[i-1] - x)\n else:\n break\nprint(cnt)\n", "jacc_sim": 0.9666666666666667, "before_after_length": [129, 111], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "\ncnt\nif= a[] > x:\n cnt = a[0] - x\n a[0] = x\nelse:\n cnt = 0\ncnta[i] -= (a[i]=-1 - x)\n cnt=(] + a[i)else:\na[i]=x-ba[i-1]\n\npeak\npr\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u989306199", "n_user": "u989306199", "pos": "n,x = map(int, input().split())\na = list(map(int, input().split()))\n\nans = 0\n\nfor i in range(0, n-1):\n if a[i] + a[i+1] > x:\n ooi = a[i] + a[i+1] - x\n if ooi < a[i+1]:\n a[i+1] -= ooi\n else:\n a[i] -= (ooi-a[i+1])\n a[i+1] = 0\n ans += ooi\n\nprint(ans)", "neg": "n,x = map(int, input().split())\na = list(map(int, input().split()))\n\nans = 0\n\nfor i in range(0, n-1):\n if a[i] + a[i+1] > x:\n ooi = a[i] + a[i+1] - x\n if a[i] < a[i+1]:\n if ooi < a[i+1]:\n a[i+1] -= ooi\n else:\n a[i] -= (ooi-a[i+1])\n a[i+1] = 0\n else:\n if ooi < a[i]:\n a[i] -= ooi\n else:\n a[i+1] -= (ooi - a[i])\n a[i] = 0\n ans += ooi\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [145, 211], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "a[oo]if ooi < :\n a[i+1] else:\n if ooi < a[i]:\n a[i] -= ooi\n else:\n a[i+1] -= (ooi - a[i])\n a[i] = 0\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u309289733", "n_user": "u309289733", "pos": "n, x = map(int, input().split())\na = list(map(int, input().split()))\ncounter = 0\npointer = 1\nif a[0] > x:\n counter += a[0] - x\n a[0] = x\nwhile pointer <= n - 1:\n if a[pointer - 1] + a[pointer] > x:\n eat = a[pointer - 1] + a[pointer] - x\n counter += eat\n a[pointer] -= eat\n pointer += 1\nprint(counter)\n", "neg": "n, x = map(int, input().split())\na = list(map(int, input().split()))\ncounter = 0\npointer = 1\nif a[0] > x:\n counter += x - a[0]\n a[0] = x\nwhile pointer <= n - 1:\n if a[pointer - 1] + a[pointer] > x:\n eat = a[pointer - 1] + a[pointer] - x\n counter += eat\n a[pointer] -= eat\n pointer += 1\nprint(counter)\n", "jacc_sim": 1.0, "before_after_length": [127, 127], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "x - - x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u655834330", "n_user": "u655834330", "pos": "\n\ndef read_input():\n n, x = map(int, input().split())\n alist = list(map(int, input().split()))\n\n return n, x, alist\n\ndef submit():\n n, x, alist = read_input()\n\n edit = 0\n\n if alist[0] > x:\n edit += alist[0] - x\n alist[0] = x\n\n for i in range(n - 1):\n if alist[i] + alist[i + 1] > x:\n diff = alist[i] + alist[i + 1] - x\n edit += diff\n alist[i + 1] = alist[i + 1] - diff\n\n print(edit)\n\n\nif __name__ == '__main__':\n submit()\n\n ", "neg": "\n\ndef read_input():\n n, x = map(int, input().split())\n alist = list(map(int, input().split()))\n\n return n, x, alist\n\ndef submit():\n n, x, alist = read_input()\n\n edit = 0\n\n if alist[0] > x:\n edit += x - alist[0]\n alist[0] = x\n\n for i in range(n - 1):\n if alist[i] + alist[i + 1] > x:\n diff = alist[i] + alist[i + 1] - x\n edit += diff\n alist[i + 1] = alist[i + 1] - diff\n\n print(edit)\n\n\nif __name__ == '__main__':\n submit()\n\n ", "jacc_sim": 1.0, "before_after_length": [203, 203], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "xalist[0]xalist[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u923659712", "n_user": "u923659712", "pos": "n,x=map(int,input().split())\n\na=list(map(int,input().split()))\n\nc=0\nif a[0] > x:\n c= a[0] - x\n a[0] = x\n\n \nfor i in range(0,n-1):\n if a[i]+a[i+1]>x:\n c+=(a[i]+a[i+1]-x)\n a[i+1]-=(a[i]+a[i+1]-x)\nprint(c)", "neg": "n,x=map(int,input().split())\n\na=list(map(int,input().split()))\n\nc=0\n\nfor i in range(n-1):\n if a[i]+a[i+1]>x:\n c+=(a[i]+a[i+1]-x)\n \nprint(c)", "jacc_sim": 1.0, "before_after_length": [136, 84], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "if a[0] > x:\n c= a[0] - x\n a[0] = x\n\n 0,a[i+1]-=(a[i]+a[i+1]-x)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u010090035", "n_user": "u010090035", "pos": "n,x=map(int,input().split())\na=list(map(int,input().split()))\nans=0\nfor i in range(1,n):\n if(a[i-1]+a[i]>x):\n if(a[i-1] > x):\n eat = (a[i-1] - x) + a[i]\n a[i] -= a[i]\n a[i-1] -= a[i-1] - x\n ans += eat\n else:\n eat = (a[i-1] + a[i]) - x\n a[i] -= eat\n ans += eat\nprint(ans)", "neg": "n,x=map(int,input().split())\na=list(map(int,input().split()))\nans=0\nfor i in range(1,n):\n if(a[i-1]+a[i]>x):\n if(a[i-1] > x):\n eat = (x - a[i-1]) + a[i]\n a[i] -= a[i]\n a[i-1] -= x - a[i-1]\n ans += eat\n else:\n eat = (a[i-1] + a[i]) - x\n a[i] -= eat\n ans += eat\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [162, 161], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "x - )+ a[i]\n a[i] =a[i]\n a[i-1] -= )-+-1\n a[i] -= a[i]\n a[i-1] -= a[i-1] - x", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u111365362", "n_user": "u111365362", "pos": "n,x = map(int,input().split())\na = list(map(int,input().split()))\nd = []\nfor i in range(n-1):\n d.append(a[i] + a[i+1])\nd.append(a[n-1])\nans = 0\nfor i in range(n-1):\n now = d[i] - x\n if now > 0:\n ans += now\n if a[i+1] >= now:\n d[i] -= now\n d[i+1] -= now\n else:\n d[i] -= now\n d[i+1] -= a[i+1]\nprint(ans)", "neg": "n,x = map(int,input().split())\na = list(map(int,input().split()))\nd = []\nfor i in range(n-1):\n d.append(a[i] + a[i+1])\nans = 0\nfor i in range(n-1):\n now = d[i] - x\n if now > 0:\n ans += now\n d[i] -= now\n d[i-1] -= now\nprint(ans)", "jacc_sim": 0.96875, "before_after_length": [166, 116], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "d.append(a[n-1])\nd[]f-= now\n d[i-1] -= now\nprint([i+1] >= ow:\n d[i] -= now\n d[i+1] -= now\n ele:\n d[i] -= now\n d[i+1] -= a[i+1]\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u027253287", "n_user": "u649760109", "pos": "n, x = map(int, input().split())\na = [0] + list(map(int, input().split()))\ncnt = 0\nfor i in range(n) :\n if(a[i] + a[i+1] > x) :\n cnt += (a[i] + a[i+1]) - x\n a[i+1] -= (a[i] + a[i+1]) - x\nprint(cnt)", "neg": "N,x = map(int,input().split())\na = list(map(int, input().split()))\ncnt = 0\n\nif a[0] > x:\n a[0] = x\n cnt = a[0]-x\n\nfor i in range(1,N):\n if a[i-1] + a[i] > x:\n cnt += (a[i] - (x - a[i-1]))\n a[i] = x - a[i-1]\n \nprint(cnt)", "jacc_sim": 0.9310344827586207, "before_after_length": [108, 127], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "Nn [0] + \n\nif a[0] > x:\n a[0] = x\n cnt = a[0]-x\nn1,N (] + a[i+1] > x) :\n cnt += (a[i] + a[i+1]) 1]+ a[i] > :a[i+1]-=(a[i]+a[i+1]) - x\nprint( += (a[i] - (x - a[i-1])\n a[i] = x - a[i-1]\n \nprint(cnt)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u518042385", "n_user": "u518042385", "pos": "n,m=map(int,input().split())\nl=list(map(int,input().split()))\ncount=0\nif l[0]>m:\n count+=-m+l[0]\n l[0]=m\nfor i in range(1,n):\n if l[i-1]+l[i]>m:\n count+=l[i]+l[i-1]-m\n l[i]=m-l[i-1] \nprint(count)\n", "neg": "n,m=map(int,input().split())\nl=list(map(int,input().split()))\ncount=0\nif l[i]>m:\n count+=m-l[i]\n l[i]=m\nfor i in range(1,n):\n if l[i-1]+l[i]>m:\n count+=l[i]+l[i-1]-m\n l[i]=m-l[i-1] \nprint(count)", "jacc_sim": 1.0, "before_after_length": [123, 122], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "i0mm+i0i0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03862", "p_user": "u785470389", "n_user": "u785470389", "pos": "n, x = map(int, input().split())\na = input().split()\n\noriginal_number, min_number = 0, 0\n\nfor i in range(n):\n original_number += int(a[i])\n \nif int(a[0]) > x:\n a[0] = x\nfor i in range(n - 1):\n if int(a[i]) + int(a[i + 1]) > x:\n a[i + 1] = x - int(a[i])\n\nfor i in range(n):\n min_number += int(a[i])\n \nans = original_number - min_number\nprint(ans)", "neg": "n, x = map(int, input().split())\na = input().split()\n\noriginal_number, min_number = 0, 0\n\nfor i in range(n):\n original_number += int(a[i])\n \na[0] = x\nfor i in range(n - 1):\n if int(a[i]) + int(a[i + 1]) > x:\n while True:\n a[i + 1] = int(a[i + 1]) - 1\n if int(a[i]) + int(a[i + 1]) == x:\n break\n\nfor i in range(n):\n min_number += int(a[i])\n \nans = original_number - min_number\nprint(ans)", "jacc_sim": 0.90625, "before_after_length": [160, 179], "nl": "You have N boxes arranged in a row, each initially containing a certain number of candies. You can eat one candy from any box at a time. Your goal is to ensure that no two neighboring boxes contain more than x candies in total. Find the minimum number of operations needed to achieve this goal. The constraints are 2 \u2264 N \u2264 10^5, 0 \u2264 a_i \u2264 10^9, and 0 \u2264 x \u2264 10^9. The input is given in the format: N x a_1 a_2 ... a_N. Output the minimum number of operations required. For example, given 3 3 and candies in boxes as 2 2 2, the output is 1. In another example, for 6 1 and candies in boxes as 1 6 1 2 0 4, the output is 11.", "diff_info": "if int() > x:\n a[0]while True:\n xint(a[i + 1])1\n f i + int(a[i + 1]) == x:\n break", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u595716769", "n_user": "u595716769", "pos": "w, h, n = map(int, input().split())\nL = []\nfor i in range(n):\n L.append([int(i) for i in input().split()])\nZ = [[1]*w for i in range(h)]\n\nfor i in range(n):\n if L[i][2] == 1:\n for j in range(h):\n for k in range(w):\n if k < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 2:\n for j in range(h):\n for k in range(w):\n if k >= L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 3:\n for j in range(h):\n for k in range(w):\n if j < L[i][1]:\n Z[j][k] = 0\n elif L[i][2] == 4:\n for j in range(h):\n for k in range(w):\n if j >= L[i][1]:\n Z[j][k] = 0\n \nout = 0\nfor i in range(h):\n for j in range(w):\n out += Z[i][j]\nprint(out)", "neg": "w, h, n = map(int, input().split())\nL = []\nfor i in range(n):\n L.append([int(i) for i in input().split()])\nZ = [[1]*w for i in range(h)]\n\nprint(Z)\n\nfor i in range(n):\n if L[i][2] == 1:\n for j in range(h):\n for k in range(w):\n if k < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 2:\n for j in range(h):\n for k in range(w):\n if k >= L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 3:\n for j in range(h):\n for k in range(w):\n if j < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 4:\n for j in range(h):\n for k in range(w):\n if j >= L[i][0]:\n Z[j][k] = 0\nprint(Z)\n \nout = 0\nfor i in range(h):\n for j in range(w):\n out += Z[i][j]\nprint(out)", "jacc_sim": 1.0, "before_after_length": [309, 320], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "for i in range(n):\n if L[i][2] == 1:\n for j in range(h):\n for k in range(w):\n if k < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 2:\n for j in range(h):\n for k in range(w):\n if k >= L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 3:\n for j in range(h):\n for k in range(w):\n if j < L[i][1]:\n Z[j][k] = 0\n elif L[i][2] == 4:\n for j in range(h):\n for k in range(w):\n if j >= L[i][1]:\n Z[j][k] = 0\n \nout = 0\nfor i in range(h):\n for j in range(w):\n out += Z[i][j]\nZ)\n\nfor i in range(n):\n if L[i][2] == 1:\n for j in range(h):\n for k in range(w):\n if k < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 2:\n for j in range(h):\n for k in range(w):\n if k >= L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 3:\n for j in range(h):\n for k in range(w):\n if j < L[i][0]:\n Z[j][k] = 0\n elif L[i][2] == 4:\n for j in range(h):\n for k in range(w):\n if j >= L[i][0]:\n Z[j][k] = 0\nprint(Z)\n \n = 0\nfor i in range(h:\n for j in range(w):\n out += Z[i][j]\nprint(out)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u604412462", "n_user": "u604412462", "pos": "whn = list (map(int, input().split()))\nx = 0\ny = 0\nflag = 0\n\nfor i in range(whn[2]):\n xya = list(map(int,input().split()))\n if xya[2] == 1:\n x = max(x, xya[0])\n elif xya[2] == 2:\n whn[0] = min(whn[0], xya[0])\n elif xya[2] == 3:\n y = max(y, xya[1])\n else:\n whn[1] = min(whn[1], xya[1])\n if x >= whn[0] or y >= whn[1]:\n print(0)\n flag += 1\n break\n \nif flag == 0:\n print((whn[0]-x)*(whn[1]-y))\n", "neg": "whn = list (map(int, input().split()))\nx = 0\ny = 0\n\nfor i in range(whn[2]):\n if x >= whn[0] or y >= whn[1]:\n print(0)\n break\n xya = list(map(int,input().split()))\n if xya[2] == 1:\n x = max(x, xya[0])\n elif xya[2] == 2:\n whn[0] = min(whn[0], xya[0])\n elif xya[2] == 3:\n y = max(y, xya[0])\n else:\n whn[1] = min(whn[1], xya[1])\n\nprint((whn[0]-x)*(whn[1]-y))\n", "jacc_sim": 0.9473684210526315, "before_after_length": [220, 203], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "flag = 0\n\n if x >= whn[0] or y >= whn[1]:\n print(0)\n break01 if x >= whn[0] or y >= whn[1]: print(0)\n flag += 1\n break\n \nif flag == 0:\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u409542115", "n_user": "u409542115", "pos": "W, H, N = map(int, input().split())\n\nx = [0] * N\ny = [0] * N\na = [0] * N\n\nfor i in range(N):\n x[i], y[i], a[i] = map(int, input().split())\n\nX1 = 0\nX2 = 0\nY1 = 0\nY2 = 0\n\nx1, x2, y1, y2 = 0, 0, 0, 0\n\nX = 0\nY = 0\n\nentire = W * H\n\nfor i in range(N):\n if a[i]==1 and X1= W or (Y1 + Y2) >= H:\n print('0')\nelse:\n entire = entire - (x1 + x2 + y1 + y2) + ((X1+X2) * (Y1+Y2))\n\n#if entire<=0:\n# print('0')\n#else:\n print(entire)\n", "neg": "W, H, N = map(int, input().split())\n\nx = [0] * N\ny = [0] * N\na = [0] * N\n\nfor i in range(N):\n x[i], y[i], a[i] = map(int, input().split())\n\nX1 = 0\nX2 = 0\nY1 = 0\nY2 = 0\n\nx1, x2, y1, y2 = 0, 0, 0, 0\n\nX = 0\nY = 0\n\nentire = W * H\n\nfor i in range(N):\n if a[i]==1 and X1= X2 or Y1 >= Y2:\n print('0')\nelse:\n entire = entire - (x1 + x2 + y1 + y2) + ((X1+X2) * (Y1+Y2))\n print(entire)", "jacc_sim": 1.0, "before_after_length": [400, 442], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "+++= H - y[i]\n\nif (X1 X2) >= W or (Y1 + Y2) > - y[i]\n\n#if \n#entire = entire - (x1 + x2 + y1 + y2) + ((X1+X2) * (Y1+Y2))#\n#\n#if entire<=0## entire = entire - (x1 + x2 + y1 + y2) + ((X1+X2) * (Y1+Y2))\n\n print(entire)\n\nentiX1 >= X2 oe< Y1 >0 Y2##entire = entire - (x1 + x2 + y1 + y2) + ((X1+X2) * (Y1+Y2))\n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u466478199", "n_user": "u466478199", "pos": "w,h,n=map(int,input().split())\nxa=[0]\nxb=[w]\nya=[0]\nyb=[h]\nfor i in range(n):\n x1,y1,a1=map(int,input().split())\n if a1==1:\n xa.append(x1)\n elif a1==2:\n xb.append(x1)\n elif a1==3:\n ya.append(y1)\n elif a1==4:\n yb.append(y1)\n\nif min(xb)<=max(xa) or min(yb)<=max(ya):\n print(0)\nelse:\n print((min(xb)-max(xa))*(min(yb)-max(ya)))", "neg": "w,h,n=map(int,input().split())\nxa=[]\nxb=[]\nya=[]\nyb=[]\nfor i in range(n):\n x1,y1,a1=map(int,input().split())\n if a1==1:\n xa.append(x1)\n elif a1==2:\n xb.append(x1)\n elif a1==3:\n ya.append(y1)\n elif a1==4:\n yb.append(y1)\n\nif max(xb)<=max(xa) or max(yb)<=max(ya):\n print(0)\nelse:\n print((max(xb)-max(xa))*(max(yb)-max(ya)))", "jacc_sim": 0.9761904761904762, "before_after_length": [190, 186], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "0w0haxinaxinaxinaxin", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u066253157", "n_user": "u066253157", "pos": "W, H, N = map(int, input().split())\nlst = [list(map(int, input().split())) for _ in range(N)]\n\nW_ = [0, W] \nH_ = [0, H]\n\nfor l in lst:\n if l[2] == 1 and W_[0] < l[0]:\n W_[0] = l[0]\n elif l[2] == 2 and l[0] < W_[1]:\n W_[1] = l[0]\n elif l[2] == 3 and H_[0] < l[1]:\n H_[0] = l[1]\n elif l[2] == 4 and l[1] < H_[1]:\n H_[1] = l[1]\n \nwidth = W_[1] - W_[0] if W_[1] - W_[0] > 0 else 0\nheight = H_[1] - H_[0] if H_[1] - H_[0] > 0 else 0\n\nprint(width * height)", "neg": "W, H, N = map(int, input().split())\nlst = [list(map(int, input().split())) for _ in range(N)]\n\nX = [0, W]\nY = [0, H]\n\nfor l in lst:\n if l[2] == 1 and X[0] < l[0]:\n X[0] = l[0]\n elif l[2] == 2 and l[0] < X[1]:\n X[1] = l[0]\n elif l[2] == 3 and Y[0] < l[1]:\n Y[0] = l[1]\n elif lst[2] == 4 and l[1] < Y[1]:\n Y[1] = l[1]\n\nwidth = X[1] - X[0]\nheight = Y[1] - Y[0]\n\nif width >= 0 and height >= 0:\n print(width * height)\nelse:\n print(0)", "jacc_sim": 0.9047619047619048, "before_after_length": [261, 233], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "X = [0, _ = [0, W YH_XW_XW_XW_XW_YH_YH_stYH_YH_ XW_XW_ if W_[1] - W_[0] > 0 else 0YH_YH_\n\nifif H_[1] - H_[0] > 0 else 0\n\nprint(*>= 0 and >= 0:\n print(width * height\nelse:\n print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u884323674", "n_user": "u884323674", "pos": "W, H, N = map(int, input().split())\n\nwhite = [0, W, 0, H]\n\npoints = [[int(i) for i in input().split()] for j in range(N)]\n\nfor point in points:\n if point[2] == 1:\n if point[0] > white[0]:\n white[0] = point[0]\n if point[2] == 2:\n if point[0] < white[1]:\n white[1] = point[0]\n if point[2] == 3:\n if point[1] > white[2]:\n white[2] = point[1]\n if point[2] == 4:\n if point[1] < white[3]:\n white[3] = point[1]\n\nw = white[1] - white[0]\nh = white[3] - white[2]\n\nif w > 0 and h > 0:\n print(w * h)\nelse:\n print(0)", "neg": "W, H, N = map(int, input().split())\n\nwhite = [0, W, 0, H]\n\npoints = [[int(i) for i in input().split()] for j in range(N)]\n\nfor point in points:\n if point[2] == 1:\n if point[0] > white[0]:\n white[0] = point[0]\n if point[2] == 2:\n if point[0] < white[1]:\n white[1] = point[0]\n if point[2] == 3:\n if point[1] > white[2]:\n white[2] = point[1]\n if point[2] == 4:\n if point[1] < white[3]:\n white[3] = point[1]\n\nw = white[1] - white[0]\nh = white[3] - white[2]\n\nif w > 0 and h > 0:\n print(result)\nelse:\n print(0)", "jacc_sim": 0.9487179487179487, "before_after_length": [243, 241], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "w * hresult", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u535659144", "n_user": "u535659144", "pos": "inp = list(map(int,input().split()))\nleft_max=0\nright_min=inp[0]\nupper_min=inp[1]\nlower_max=0\n\nfor i in range(inp[2]):\n inin = list(map(int,input().split()))\n if inin[2] == 1 and inin[0]>left_max:\n left_max=inin[0]\n if inin[2] == 2 and inin[0]lower_max:\n lower_max=inin[1]\nleft_max=min(left_max,right_min)\nupper_min=max(upper_min,lower_max)\nprint((right_min-left_max)*(upper_min-lower_max))\n", "neg": "inp = list(map(int,input().split()))\nleft_max=0\nright_min=inp[0]\nupper_min=inp[1]\nlower_max=0\n\nfor i in range(inp[2]):\n inin = list(map(int,input().split()))\n if inin[2] == 1 and inin[0]>left_max:\n left_max=inin[0]\n if inin[2] == 2 and inin[0]lower_max:\n lower_max=inin[1]\n\nprint((right_min-left_max)*(upper_min-lower_max))\n ", "jacc_sim": 0.9459459459459459, "before_after_length": [250, 222], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "lef\nprin_max=min(left_max,-left_max\n*(-=max(upper_min,) print((right_min-left_max)*(upper_min-lower_max))\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u063052907", "n_user": "u063052907", "pos": "# coding: utf-8\nW, H, N = map(int, input().split())\nmin_x, max_x = 0, W\nmin_y, max_y = 0, H\n\nfor i in range(N):\n x, y, a = map(int, input().split())\n if a == 1:\n if max_x <= x:\n min_x, max_x = 0, 0\n elif min_x <= x:\n min_x = x\n elif a == 2:\n if min_x >= x:\n min_x, max_x = 0, 0\n elif x <= max_x:\n max_x = x\n elif a == 3:\n if max_y <= y:\n min_y, max_y = 0, 0\n elif min_y <= y:\n min_y = y\n else:\n if y <= min_y:\n min_y, max_y = 0, 0\n elif y <= max_y:\n max_y = y\ndiff_x = max_x - min_x\ndiff_y = max_y - min_y\nprint(diff_x * diff_y)\n", "neg": "# coding: utf-8\nW, H, N = map(int, input().split())\nmax_x, max_y = W, H\nmin_x, min_y = 0, 0\n\nfor i in range(N):\n x, y, a = map(int, input().split())\n if a == 1:\n if min_x <= x:\n min_x = x\n elif max_x <= x:\n max_x = 0\n elif a == 2:\n if max_x >= x:\n max_x = x\n elif a == 3:\n if min_y <= y:\n min_y = y\n elif max_y >= y:\n max_y = 0\n else:\n if max_y >= y:\n max_y = y\ndiff_x = max_x - min_x\ndiff_y = max_y - min_y\nprint(diff_x * diff_y)", "jacc_sim": 1.0, "before_after_length": [283, 226], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "axinyx 0,\nmin_y, max_y = 0\nmin_x, min_y = 0, 0inax,= x\n elif _x = 0, 0\n elif minaxin0xaxinin_x, max_x = 0, 0\n elif x <= max_x:\n minax,= y\n elif >y:\n max_y = , 0\n elif min_y <= y:\n min_y = ymax_>x else c[0]\n elif a==3:\n o[1]=y if o[1]y else c[1]\nif o[0]x\n elif a==3:\n o[1]=y if o[1]y\nif o[0]0 and (foumin-thrmax) >0:\n print((twomin-onemax)*(foumin-thrmax))\nelse:print(0)", "neg": "W,H,N=list(map(int,input().split()))\nten=[list(map(int,input().split())) for _ in range(N)]\nbase=[[0,0,1],[0,0,3],[W,H,2],[W,H,4]]\nten.extend(base)\nonemax=max(i[0] for i in ten if i[2]==1)\ntwomin=min(i[0] for i in ten if i[2]==2)\nthrmax=max(i[1] for i in ten if i[2]==3)\nfoumin=min(i[1] for i in ten if i[2]==4)\nprint((twomin-onemax)*(foumin-thrmax))", "jacc_sim": 0.9047619047619048, "before_after_length": [219, 186], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "prf nt(>0 and (foumin-thrmax) >0:\n print((twomin-onemax)\nelse:print(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u177040005", "n_user": "u177040005", "pos": "import numpy as np\n\nW,H,N = map(int,input().split())\n\nxl = 0\nxr = W\nyu = H\nyd = 0\n\nfor i in range(N):\n x,y,a = map(int, input().split())\n\n if a == 1:\n xl = max(xl,x)\n elif a == 2:\n xr = min(xr,x)\n elif a == 3:\n yd = max(yd,y)\n else:\n yu = min(yu,y)\n\nans = max(0,xr - xl) * max(0,yu - yd)\n\nprint(ans)\n", "neg": "import numpy as np\n\nW,H,N = map(int,input().split())\n\nxl = 0\nxr = W\nyu = H\nyd = 0\n\nfor i in range(N):\n x,y,a = map(int, input().split())\n\n print(x,y,a)\n if a == 1:\n xl = max(xl,x)\n elif a == 2:\n xr = min(xr,x)\n elif a == 3:\n yd = max(yd,y)\n else:\n yu = min(yu,y)\n\nans = max(0,xr - xl) * max(0,yu - yd)\n\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [167, 177], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "print(x,y,a)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u782654209", "n_user": "u782654209", "pos": "W,H,N=map(int,input().split(' '))\ninfo = [[0],[W],[0],[H]] #min_x,max_x,min_y,max_y\nfor i in range(N):\n x,y,a=map(int,input().split(' '))\n info[a-1].append([x,y][(a-1)//2])\nprint(max(min(info[1])-max(info[0]),0)*max(min(info[3])-max(info[2]),0))", "neg": "W,H,N=map(int,input().split(' '))\ninfo = [[],[],[],[]] #min_x,max_x,min_y,max_y\nfor i in range(N):\n x,y,a=map(int,input().split(' '))\n info[a-1].append((x,y)[(a-1)//2])\nprint(max(min(info[1])-max(info[0]),0)*max(min(info[3])-max(info[2]),0))", "jacc_sim": 1.0, "before_after_length": [134, 130], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "0W0H([)]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u853900545", "n_user": "u853900545", "pos": "w,h,n = map(int,input().split())\nx,y = 0,0\nX,Y = w,h\nfor i in range(n):\n a,b,c = map(int,input().split())\n if c == 1 and x < a:\n x = a\n elif c == 2 and a < X:\n X = a\n elif c == 3 and y < b:\n y = b\n elif c == 4 and b < Y:\n Y = b\nprint(max(X-x,0)*max(Y-y,0))", "neg": "w,h,n = map(int,input().split())\nx,y = 0,0\nX,Y = w,h\nfor i in range(n):\n a,b,c = map(int,input().split())\n if c == 1 and x < a:\n x = a\n elif c == 2 and a < X:\n X = a\n elif c == 3 and y < b:\n y = b\n elif c == 4 and b < Y:\n Y = b\nprint((X-x)*(Y-y))", "jacc_sim": 0.972972972972973, "before_after_length": [137, 130], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "max,0max,0", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u084324798", "n_user": "u084324798", "pos": "width, high, num = map(int, input().split())\narr = [list(map(int, input().split())) for i in range(num)]\n\ndef rec(xl, yl, xh, yh, arr):\n if xl>xh or yl>yh:\n return 0\n if len(arr) == 0:\n return (xh-xl)*(yh-yl)\n if arr[0][2] == 1:\n xl = max(arr[0][0], xl)\n elif arr[0][2] == 2:\n xh = min(arr[0][0], xh)\n elif arr[0][2] == 3:\n yl = max(arr[0][1], yl)\n elif arr[0][2] == 4:\n yh = min(arr[0][1], yh)\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n\nprint(rec(0, 0, width, high, arr))", "neg": "width, high, num = map(int, input().split())\narr = [list(map(int, input().split())) for i in range(num)]\n\ndef rec(xl, yl, xh, yh, arr):\n if len(arr) == 0:\n if xl>xh or yl>yh:\n return 0\n else:\n return xh*yh\n if arr[0][2] == 1:\n xl = arr[0][0]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n elif arr[0][2] == 2:\n xh = arr[0][0]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n elif arr[0][2] == 3:\n yl = arr[0][1]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n elif arr[0][2] == 4:\n yh = arr[0][1]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n\nprint(rec(0, 0, width, high, arr))", "jacc_sim": 0.9090909090909091, "before_after_length": [254, 321], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "len(arr) == 0:\n if if es:\n retur(arr)== 0:\n return (-xl)(-yl)mx(rr[0][0]\n [0][0],=xl)\n elif [0][2] == 2:\n xh = min(arr[0][0], xh)\n elif arr[0][2] == 3:\n yl = max(arr[0]:len(arr)\n,yl)\n elif arr[0][2] == 4:\n yh = min(arr[0][1], yh)\n arr = arr[1:len(arr)]\n elif arr[0][2] == 2:p xh = air[0][0]\n arr = arr[1:le(arr)]\n re(urn xl, yl, xh, yh, arr)\n elif arr[0][2] == 3:\n yl = arr[0][1]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n elif arr[0][2] == 4:\n yh = arr[0][1]\n arr = arr[1:len(arr)]\n return rec(xl, yl, xh, yh, arr)\n\nprint(rec(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u039360403", "n_user": "u039360403", "pos": "w,h,n=map(int,input().split())\nl=list(list(map(int,input().split()))for _ in range(n))\nxl=0\nxh=w\nyl=0\nyh=h\nfor i in range(n):\n if l[i][2]==1:xl=max(xl,l[i][0])\n if l[i][2]==2:xh=min(xh,l[i][0])\n if l[i][2]==3:yl=max(yl,l[i][1])\n if l[i][2]==4:yh=min(yh,l[i][1])\nprint(max((xh-xl),0)*max((yh-yl),0))", "neg": "w,h,n=map(int,input().split())\nl=list(list(map(int,input().split()))for _ in range(n))\nxl=0\nxh=w\nyl=0\nyh=h\nfor i in range(n):\n if l[i][2]==1:xl=max(xl,l[i][0])\n if l[i][2]==2:xh=min(xh,l[i][0])\n if l[i][2]==3:yl=max(yl,l[i][1])\n if l[i][2]==4:yh=min(yh,l[i][1])\nprint((xh-xl)*(yh-yl))", "jacc_sim": 1.0, "before_after_length": [188, 181], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "max(,0)max(,0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u905582793", "n_user": "u905582793", "pos": "w,h,n=map(int,input().split())\npnt=[list(map(int,input().split())) for i in range(n)]\nx1,x2,y1,y2=0,w,0,h\nfor i in range(n):\n if pnt[i][2]==1:\n x1=max(x1,pnt[i][0])\n if pnt[i][2]==2:\n x2=min(x2,pnt[i][0])\n if pnt[i][2]==3:\n y1=max(y1,pnt[i][1])\n if pnt[i][2]==4:\n y2=min(y2,pnt[i][1])\nprint(max(x2-x1,0)*max(y2-y1,0))", "neg": "w,h,n=map(int,input().split())\npnt=[list(map(int,input().split())) for i in range(n)]\nx1,x2,y1,y2=0,w,0,h\nfor i in range(n):\n if pnt[i][2]==1:\n x1=max(x1,pnt[i][0])\n if pnt[i][2]==2:\n x2=min(x2,pnt[i][1])\n if pnt[i][2]==3:\n y1=max(y1,pnt[i][0])\n if pnt[i][2]==4:\n y2=min(y2,pnt[i][1])\nprint(max(x2-x1,0)*max(y2-y1,0))", "jacc_sim": 1.0, "before_after_length": [207, 207], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "1001", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u537782349", "n_user": "u537782349", "pos": "maxX, maxY, a = map(int, input().split())\nminX = 0\nminY = 0\nfor i in range(a):\n x, y, b = map(int, input().split())\n if b == 1:\n minX = max(x, minX)\n elif b == 2:\n maxX = min(x, maxX)\n elif b == 3:\n minY = max(y, minY)\n elif b == 4:\n maxY = min(y, maxY)\nif maxX > minX and maxY > minY:\n print((maxX - minX)*(maxY - minY))\nelse:\n print(0)\n", "neg": "maxX, maxY, a = map(int, input().split())\nminX = minY = 0\nfor i in range(a):\n x, y, b = map(int, input().split())\n if b == 1:\n minX = max(x, minX)\n elif b == 2:\n maxX = min(x, maxX)\n elif b == 3:\n minY = max(y, minY)\n elif b == 4:\n maxY = min(y, minY)\nif maxX > minX and maxY > minY:\n print(((maxX - minX)*(maxY - minY)))\nelse:\n print(0)\n", "jacc_sim": 1.0, "before_after_length": [152, 150], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "0\ninax()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u039623862", "n_user": "u039623862", "pos": "w, h, n = map(int, input().split())\n\nx_min = 0\nx_max = w\ny_min = 0\ny_max = h\n\nfor i in range(n):\n x, y, a = map(int, input().split())\n if a == 1:\n x_min = max(x, x_min)\n elif a == 2:\n x_max = min(x, x_max)\n elif a == 3:\n y_min = max(y, y_min)\n else:\n y_max = min(y, y_max)\nprint(max(y_max - y_min, 0) * max(x_max - x_min, 0))\n", "neg": "w,h,n = map(int, input().split())\n\nx_min = 0\nx_max = w\ny_min = 0\ny_max = h\n\nfor i in range(n):\n x,y,a = map(int, input().split())\n if a == 1:\n x_max = x\n elif a == 2:\n x_min = x\n elif a == 3:\n y_max = y\n else:\n y_min = y\n\nprint((y_max-y_min) * (x_max-x_min))", "jacc_sim": 0.9444444444444444, "before_after_length": [174, 139], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": " axinma(x, x_min)ain = = min(x, x_max)axinmax(, y_min)inaxmin(\n, y_max)(y_(y_max , 0(x_(x_max , 0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u589969467", "n_user": "u589969467", "pos": "w,h,n = map(int,input().split())\n#x_list = [int(1) for i in range(w+1)]\n#y_list = [int(1) for i in range(h+1)]\n#print(x_list)\n#print(y_list)\nmin_x = 0\nmax_x = w\nmin_y = 0\nmax_y = h\nfor i in range(n):\n x,y,a = map(int,input().split())\n if a==1:\n min_x = max(min_x,x)\n elif a==2:\n max_x = min(max_x,x)\n elif a==3:\n min_y = max(min_y,y)\n else:\n max_y = min(max_y,y)\nif min_x > max_x or min_y > max_y:\n print(0)\nelse:\n print((max_x-min_x)*(max_y-min_y))", "neg": "w,h,n = map(int,input().split())\n#x_list = [int(1) for i in range(w+1)]\n#y_list = [int(1) for i in range(h+1)]\n#print(x_list)\n#print(y_list)\nmin_x = 0\nmax_x = w\nmin_y = 0\nmax_y = h\nfor i in range(n):\n x,y,a = map(int,input().split())\n if a==1:\n min_x = x\n elif a==2:\n max_x = x\n elif a==3:\n min_y = y\n else:\n max_y = y\nif min_x > max_x or min_y > max_y:\n print(0)\nelse:\n print((max_x-min_y)*(max_y-min_y))", "jacc_sim": 0.9545454545454546, "before_after_length": [247, 219], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "ma(min_x,x)min(ma_x,x)y\n else:\n (min, = )\n else:\n max_y = min(max_y,y)yx", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u451748673", "n_user": "u451748673", "pos": "w,h,n=[int(i) for i in input().split(' ')]\nx1,x2,y1,y2=0,w,0,h\nfor i in range(n):\n x,y,a=[int(i) for i in input().split(' ')]\n if a==1:\n x1=max(x1,x)\n if a==2:\n x2=min(x2,x)\n if a==3:\n y1=max(y1,y)\n if a==4:\n y2=min(y2,y)\n \nif y2<=y1 or x2 <= x1:\n print(0)\nelse:\n print(max(0,(y2-y1)*(x2-x1)))", "neg": "w,h,n=[int(i) for i in input().split(' ')]\nx1,x2,y1,y2=0,w,0,h\nfor i in range(n):\n x,y,a=[int(i) for i in input().split(' ')]\n if a==1:\n x1=max(x1,x)\n if a==2:\n x2=min(x2,x)\n if a==3:\n y1=max(y1,y)\n if a==4:\n y2=min(y2,y)\nprint(max(0,(y2-y1)*(x2-x1))", "jacc_sim": 0.925, "before_after_length": [192, 165], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "pr \nnt(maf y2<=y1 or 2 <= x1:\n print)\nelse:\n print(max(0)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u469700628", "n_user": "u469700628", "pos": "W,H,N = list(map(int,input().split()))\n\npoints = [list(map(int, input().split())) for _ in range(N)]\nres = 0\n\nx1,y1 = [0,0]\nx2,y2 = [W,H]\n\nfor x,y,a in points:\n if a == 1:\n x1 = max(x1, x)\n if a == 2:\n x2 = min(x2, x)\n if a == 3:\n y1 = max(y1, y)\n if a == 4:\n y2 = min(y2, y)\n\nif x2-x1 <= 0 or y2-y1 <=0:\n print(\"0\")\nelse:\n print((x2-x1)*(y2-y1))", "neg": "W,H,N = list(map(int,input().split()))\n\npoints = [list(map(int, input().split())) for _ in range(N)]\nres = 0\n\nx1,y1 = [0,0]\nx2,y2 = [W,H]\n\nfor x,y,a in points:\n if a == 1:\n x1 = max(x1, x)\n if a == 2:\n x2 = min(x2, x)\n if a == 3:\n y1 = max(y1, y)\n if a == 4:\n y2 = min(y2, y)\n\nif x2-x1 <= 0 or y-y1 <=0:\n print(\"0\")\nelse:\n res = (x2-x1) * (y2 - y1)\n print(res)", "jacc_sim": 1.0, "before_after_length": [201, 208], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "2pint(es = \n print(res", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u846150137", "n_user": "u846150137", "pos": "w,h,n=map(int,input().split())\ny=[0,w]\nt=[0,h]\ndef ct(w0,h0,a0):\n if a0==1:\n v=max(w0,y[0])\n y[0]=v\n if a0==2:\n v=min(w0,y[1])\n y[1]=v\n if a0==3:\n v=max(h0,t[0])\n t[0]=v\n if a0==4:\n v=min(h0,t[1])\n t[1]=v\nfor i in range(n):\n w1,h1,a1=map(int,input().split())\n ct(w1,h1,a1)\n\nprint(max(0,y[1]-y[0])*max(0,t[1]-t[0]))\n ", "neg": "w,h,n=map(int,input().split())\ny=[0,w]\nt=[0,h]\ndef ct(w0,h0,a0):\n if a0==1:\n v=max(w0,y[0])\n y[0]=v\n if a0==2:\n v=min(w0,y[1])\n y[1]=v\n if a0==3:\n v=max(h0,t[0])\n t[0]=v\n if a0==4:\n v=min(h0,t[1])\n t[1]=v\nfor i in range(n):\n w1,h1,a1=map(int,input().split())\n ct(w1,h1,a1)\n\nprint((max(y)-min(y))*(max(t)-min(t)))\n ", "jacc_sim": 1.0, "before_after_length": [230, 220], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "(0,)[1]min()[0](0,)[1]min([0])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u102960641", "n_user": "u102960641", "pos": "w,h,n = map(int, input().split())\nxya = [list(map(int, input().split())) for i in range(n)]\nlx = 0\nrx = w\nly = 0\nry = h\nfor x,y,a in xya:\n if a == 1:\n lx = max(lx,x)\n elif a == 2:\n rx = min(rx,x)\n elif a == 3:\n ly = max(ly,y)\n else:\n ry = min(ry,y)\nans = max(0,rx-lx) * max(0,ry-ly)\nprint(ans)", "neg": "w,h,n = map(int, input().split())\nxya = [list(map(int, input().split())) for i in range(n)]\nlx = 0\nrx = w\nly = 0\nry = h\nfor x,y,a in xya:\n if a == 1:\n lx = x\n elif a == 2:\n rx = x\n elif a == 3:\n ly = y\n else:\n ry = y\nans = w * h - max(0,rx-lx) * max(0,ry-ly)\nprint(ans)", "jacc_sim": 0.975609756097561, "before_after_length": [157, 140], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "ma(lx,x)min(r,x)my\n else:\n ry = y\nnsx(ly,y)\n=welse:\n ry = min(ry,y)\nans = max(0,rx-lx)h max(0,ry max(0,rx-x) * max(0,r-ly", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u460245024", "n_user": "u460245024", "pos": "W, H, N = map(int, input().split())\nleft_under = (0, 0)\nright_top = (W, H)\nfor _ in range(N):\n\tx, y, a = map(int, input().split())\n\tif a == 1:\n\t\tleft_under = (max([x, left_under[0]]), left_under[1])\n\telif a == 2:\n\t\tright_top = (min([x,right_top[0]]), right_top[1])\n\telif a == 3:\n\t\tleft_under = (left_under[0], max([y,left_under[1]]))\n\telif a == 4:\n\t\tright_top = (right_top[0], min([y,right_top[1]]))\n \nif right_top[0] - left_under[0] <= 0 or right_top[1] - left_under[1] <= 0:\n\tprint(0)\nelse:\n\tprint((right_top[0] - left_under[0])*(right_top[1] - left_under[1]))", "neg": "W, H, N = map(int, input().split())\nleft_under = (0, 0)\nright_top = (W, H)\nfor _ in range(N):\n\tx, y, a = map(int, input().split())\n\tif a == 1:\n\t\tleft_under = (x, left_under[1])\n\telif a == 2:\n\t\tright_top = (x, right_top[1])\n\telif a == 3:\n\t\tleft_under = (left_under[0], y)\n\telif a == 4:\n\t\tright_top = (right_top[1], y)\n\nif right_top[0] - left_under[0] <= 0 or right_top[1] - left_under[1] <= 0:\n\tprint(0)\nelse:\n\tprint((right_top[0] - left_under[0])*(right_top[1] - left_under[1]))", "jacc_sim": 0.9487179487179487, "before_after_length": [265, 228], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "ma([x, left_under[0]])min([right_top[0]]),max([,left_under[1]])10min([,right_top[1]]) ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u620157187", "n_user": "u620157187", "pos": "W, H, N = map(int, input().split())\nx = [0] * N\ny = [0] * N\na = [0] * N\nfor i in range(N):\n x[i], y[i], a[i] = map(int, input().split())\n\nx_min = 0\nx_max = W\ny_min = 0\ny_max = H\nfor i in range(len(a)):\n if a[i] == 1:\n if x_min < x[i]:\n x_min = x[i]\n elif a[i] == 2:\n if x_max > x[i]:\n x_max = x[i]\n elif a[i] == 3:\n if y_min < y[i]:\n y_min = y[i]\n else:\n if y_max > y[i]:\n y_max = y[i]\n \nx_len = x_max-x_min\ny_len = y_max-y_min\nresult = x_len*y_len\nif (x_len<0)|(y_len<0):\n result = 0\n\nprint(result)", "neg": "W, H, N = map(int, input().split())\nx = [0] * N\ny = [0] * N\na = [0] * N\nfor i in range(N):\n x[i], y[i], a[i] = map(int, input().split())\n \ntotal = W*H\n\nx_min = 0\nx_max = W\ny_min = 0\ny_max = H\nfor i in range(len(a)):\n if a[i] == 1:\n if x_min < x[i]:\n x_min = x[i]\n elif a[i] == 2:\n if x_max > x[i]:\n x_max = x[i]\n elif a[i] == 3:\n if y_min < y[i]:\n y_min = y[i]\n else:\n if y_max > y[i]:\n y_max = y[i]\n \nx_len = x_max-x_min\ny_len = y_max-y_min\n\nprint(x_len*y_len)", "jacc_sim": 0.9318181818181818, "before_after_length": [286, 269], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": " tx_min = 0\nx_max = W\ny_min = 0\ny_max = H\nfrtal=iWin range(len(a)):\n if a[i] == 1:\n if x_min < x[i]:\n x_min = x[i]\n elif a[i] == 2:\n if x_max > x[i]:\n x_max = x[i]\n elif a[i] == 3:\n if y_min < y[i]:\n y_min = y[i]\n else:\n if y_max > y[i]:\n y_max = y[i]\n \nx_len = x_max-x_min\ny_len = y_max-y_min\nresult = x_lenH\n\nx_min = 0\nx_max = W\nmin = 0\ny_max = H\nfor i in range((a)): (a[i] == 1:\n if mile 0)|( x[i]:\n x_min = x[i]\n elif a[i] == 2:\n if x_max > x[i]:\n x_max = x[i]\n elif a[i] == 3:\n if mile 0) y[i]r y_min = y[i]\n lue:\n if y_max > y[i]:\n y_max = y[i]\n \nx_en = x_max-x_min\ny_len = y_max-y_min\n\nprin(x_le = 0\n\nprit(r*y_lnsult", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03944", "p_user": "u300637346", "n_user": "u300637346", "pos": "w,h,n=map(int,input().split())\nrecord=[]\nxmin=[]\nxmax=[]\nymin=[]\nymax=[]\n\nfor i in range(n):\n x,y,a=list(map(int,input().split()))\n record.append([x,y,a])\n \nfor i in range(n):\n if record[i][2] == 1:\n xmin.append(record[i][0])\n elif record[i][2] == 2:\n xmax.append(record[i][0])\n elif record[i][2] == 3:\n ymin.append(record[i][1])\n else:\n ymax.append(record[i][1])\n\nif xmax==[] and xmin==[]:\n X=w\nelif xmax==[]:\n X=w-max(xmin)\nelif xmin==[]:\n X=min(xmax)-0\nelse:\n X=min(xmax)-max(xmin)\n\nif ymax==[] and ymin==[]:\n Y=h\nelif ymax==[]:\n Y=h-max(ymin)\nelif ymin==[]:\n Y=min(ymax)-0\nelse:\n Y=min(ymax)-max(ymin)\n \nprint(X*Y) if (X > 0 and Y > 0) else print(0) \n", "neg": "w,h,n=map(int,input().split())\nrecord=[]\nxmin=[]\nxmax=[]\nymin=[]\nymax=[]\nfor i in range(n):\n x,y,a=list(map(int,input().split()))\n record.append([x,y,a])\nfor i in range(n):\n if record[i][2] == 1:\n xmin.append(record[i][0])\n elif record[i][2] == 2:\n xmax.append(record[i][0])\n elif record[i][2] == 3:\n ymin.append(record[i][1])\n else:\n ymax.append(record[i][1])\nX=min(xmax)-max(xmin)\nY=min(ymax)-max(ymin)\nprint(X*Y) if (X > 0 and Y > 0) else print(0) \n", "jacc_sim": 1.0, "before_after_length": [337, 222], "nl": "You are given a rectangle in the xy-plane with its lower left corner at (0, 0) and upper right corner at (W, H). Initially, the entire region within the rectangle is white. Snuke plots N points within the rectangle and creates an integer sequence a of length N. For each point, he paints a region within the rectangle based on the value of a. The problem is to find the area of the white region within the rectangle after he finishes painting. Constraints: 1 \u2264 W, H \u2264 100, 1 \u2264 N \u2264 100, 0 \u2264 xi \u2264 W, 0 \u2264 yi \u2264 H, W, H, xi, yi are integers, and ai (1 \u2264 i \u2264 N) is 1, 2, 3, or 4. The input is given in the format W H N, followed by N lines containing xi, yi, and ai. Output the area of the white region within the rectangle after Snuke finishes painting.", "diff_info": "\n \n\nif xmax==[] and xmin==[]:\n mw\neln(f )==[]:\n X=welif xmin==[]:\n X=min(xmax)-0\nelse:\n X=min(xmax)-max(xmin)\n\nif ymax==[] and ymin==[]:\n mh\neln(f )==[]:\n Y=h\nelif ymin==[]:\n Y=min(ymax)-0\nelse:\n Y=min(ymax)-max(ymin)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u842303434", "n_user": "u039623862", "pos": "n = int(input())\nl = list(map(int, input().split()))\ncnt = 0\nfor i in range(n):\n if i == l[l[i] - 1] - 1:\n cnt+=1\ncnt //= 2\nprint(cnt)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\ncnt = 0\nfor i in range(a):\n if a[a[i]] -1 == i:\n cnt +=1\nprint(cnt // 2)", "jacc_sim": 0.9310344827586207, "before_after_length": [66, 58], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "alana[a[]] -1l[l[] - 1] - 1 \ncnt //= 2 // 2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u170324846", "n_user": "u170324846", "pos": "N = int(input())\na = [int(i) for i in input().split()]\nS = 0\nfor i in range(N):\n if a[a[i]-1] == i+1:\n S += 1\nprint(S//2)", "neg": "N = int(input())\na = [int(i) for i in input().split()]\nS = 0\nfor i in range(N):\n if a[a[i]] == i:\n S += 1\nprint(S//2)", "jacc_sim": 0.96, "before_after_length": [63, 58], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "-1+1", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u065683101", "n_user": "u982653403", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nr = 0\nfor i in range(n):\n if i+1 == a[a[i]-1]:\n r += 1\nprint(r // 2)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\nprint(a)\ntotal = 0\nfor i in range(n):\n if a[a[i] - 1] == i + 1:\n total += 1\nprint(total // 2)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [62, 67], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "p\nint(a)\ntotali+1 == == i + 1rtotalrtotal", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u343675824", "n_user": "u393971002", "pos": "N = int(input())\na = list(map(int,input().split()))\nans = 0\nfor i in range(N):\n if (i+1) == a[a[i]-1]:\n ans += 1\n\nprint(ans//2)\n", "neg": "N = int(input())\na = list(map(int, input().split()))\na = [i - 1 for i in a]\n\ncount = 0\nfor i in range(N):\n print(a[i])\n if i == a[a[i]]:\n count += 1\nprint(count // 2)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [64, 78], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " = [i - 1 for i is a]\n\ncountprint(a[i])\n (+1)-1acouts\nacoust ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u782930273", "n_user": "u782930273", "pos": "N = int(input())\nA = [int(a) - 1 for a in input().split()]\ncount = 0\nfor i in range(N):\n if i == A[A[i]]:\n count += 1\n\nprint(count // 2)\n", "neg": "N = int(input())\nA = [int(a) - 1 for a in input().split()]\ncount = 0\nfor i in range(N):\n if i == A[A[i]]:\n count += 1\n\nprint(count)", "jacc_sim": 0.9230769230769231, "before_after_length": [62, 59], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " // 2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u766407523", "n_user": "u802963389", "pos": "N = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n if a[i] == 0:\n continue\n if a[a[i]-1]-1 == i:\n ans += 1\n a[a[i]-1], a[i] = 0, 0\n \nprint(ans)", "neg": "N = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in a:\n if a[i - 1] == i + 1:\n ans += 1\nprint(ans)\n ", "jacc_sim": 0.9259259259259259, "before_after_length": [93, 56], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "rnge(N) ]== 0:\n continue\n if a[a[i] -1:\n ans 1:\n ans +\n a[a[i]-1], a[i] = 0, 0\n \n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u970449052", "n_user": "u127499732", "pos": "n=int(input())\na=list(map(int,input().split()))\na=[0]+a\nans=0\nfor i in range(1,n+1):\n if ii and a[a[i-1]-1]==i:\n ans+=1\nprint(ans)", "neg": "n=int(input())\na=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if a[a[i]-1]=i+1:ans+=1\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [73, 58], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "1,+1 i-1]>i and a[-1=+1\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u625549378", "n_user": "u625549378", "pos": "N = int(input())\nrabit = [ int(v) for v in input().split(\" \") ]\nskip = set()\nnum = 0\n \nfor i in range(N):\n n = rabit[i]\n if i in skip:\n continue\n if rabit[n-1] == i+1:\n skip.add(n-1)\n num += 1\n \nprint(num)", "neg": "N = int(input())\nrabit = [ int(v) for v in input().split(\" \") ]\nskip = set()\nnum = 0\n \nfor i in range(N):\n n = rabit[i]\n if i in skip:\n continue\n if rabit[n-1] == i+1:\n skip.append(n-1)\n num += 1\n \nprint(num)", "jacc_sim": 0.9354838709677419, "before_after_length": [99, 99], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "ppend", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u785220618", "n_user": "u652656291", "pos": "n = int(input())\nA = list(map(int, input().split()))\nans = 0\nfor i in range(len(A)):\n if A[A[i]-1]-1 == i:\n ans += 1\nprint(ans // 2)\n", "neg": "n = int(input())\nA = list(map(int,input().split()))\nans = 0\nfor i in range(n):\n if i == A[i]:\n ans += 1\nprint(ans//2)\n ", "jacc_sim": 0.9310344827586207, "before_after_length": [65, 55], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " le(A) A[A[]-1]-1A[] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u089121621", "n_user": "u089121621", "pos": "n = int(input())\nl = list(map(int, input().split())) \ncnt = 0\nfor i in range(n): \n if l[i]-1 > i:\n if( l[l[i]-1]-1 == i):\n cnt+=1\nprint(cnt)", "neg": "n = int(input())\nl = [list(map(int, input().split())) for _ in range(n)]\nl = l[0]\ncnt = 0\nfor i in range(n): \n if l[i]-1 > i:\n if( l[l[i]-1]-1 == i):\n cnt+=1\nprint(cnt)", "jacc_sim": 0.9642857142857143, "before_after_length": [75, 89], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "[for _ in range(n)]\nl = l[0]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u940102677", "n_user": "u227085629", "pos": "n = int(input())\na = [0] + list(map(int,input().split()))\nc = 0\nfor i in range(1,n+1):\n if a[a[i]] == i:\n c += 1\nprint(c//2) ", "neg": "n = int(input())\na = list(map(int,input().split()))\nc = 0\nfor i in range(n):\n if i == a[a[i]]:\n c += 1\nprint(c//2)", "jacc_sim": 1.0, "before_after_length": [65, 56], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " [0] +1,+1i == == i ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u620084012", "n_user": "u193927973", "pos": "N = int(input())\nA = list(map(int, input().split()))\nans = 0\n\nfor k in range(N):\n if A[A[k]-1] == k+1:\n ans += 1\n\nprint(ans//2)", "neg": "N=int(input())\nA=list(map(int, input().split()))\nans=0\nfor i in range(N):\n if A[A[i-1]-1]==i+1:\n ans+=1\nprint(ans//2)\n", "jacc_sim": 0.9310344827586207, "before_after_length": [63, 65], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " \nik ki-1 i k \n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u501451051", "n_user": "u667024514", "pos": "n = int(input())\nlis =[0] + list(map(int, input().split()))\n\ncnt = 0\nfor i in range(1, n+1):\n if lis[lis[i]] == i:\n cnt += 1\n\nprint(cnt//2)", "neg": "n = int(input())\nlis = list(map(int,input().split()))\nans = 0\nfor i in range(n):\n if lis[lis[i]] == i+1:\n ans += 1\nprint(ans//2)", "jacc_sim": 0.9285714285714286, "before_after_length": [69, 61], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "[0] + a\ncst1, +1 +1a cst\nacst", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u828766688", "n_user": "u536017058", "pos": "\nN = int(input())\n\na = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(N):\n\n a[i] -= 1\n\nfor i in range(N):\n\n if a[i] > i and a[a[i]] == i:\n ans += 1\n\nprint (ans)\n", "neg": "N = int(input())\na = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n if a[a[i]-1] == i+1:\n ans += 1\nprint(ans)", "jacc_sim": 0.9285714285714286, "before_after_length": [86, 59], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "\n\n \n\n\n a[i] -= 1\n\nfor i in range(N):\n\n i] > i and a[-1+1 \n \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u633355062", "n_user": "u633355062", "pos": "import sys\n\nreadline = sys.stdin.readline\nreadlines = sys.stdin.readlines\nns = lambda: readline().rstrip() # input string\nni = lambda: int(readline().rstrip()) # input int\nnm = lambda: map(int, readline().split()) # input multiple int \nnl = lambda: list(map(int, readline().split())) # input multiple int to list\n\nn = ni()\nl = nl()\nans = 0\n\nfor i, usa in enumerate(l):\n if l[usa - 1] == i + 1:\n ans += 1\nprint(ans // 2)", "neg": "import sys\n\nreadline = sys.stdin.readline\nreadlines = sys.stdin.readlines\nns = lambda: readline().rstrip() # input string\nni = lambda: int(readline().rstrip()) # input int\nnm = lambda: map(int, readline().split()) # input multiple int \nnl = lambda: list(map(int, readline().split())) # input multiple int to list\n\nn = ni()\nl = nl()\nans = 0\n\nfor i, usa in enumerate(l):\n if l[usa] - 1 == i:\n ans += 1\nprint(ans // 2)", "jacc_sim": 1.0, "before_after_length": [146, 144], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " - 1-== i + == i", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u227082700", "n_user": "u227082700", "pos": "n=int(input());a=list(map(int,input().split()));ans=0\nfor i in range(n):\n if i+1==a[a[i]-1]:ans+=1\nprint(ans//2)", "neg": "n=int(input());a=list(map(int,input().split()));ans=0\nfor i in range(n):\n if i+1=a[a[i]-1]:ans+=1\nprint(ans)", "jacc_sim": 0.9310344827586207, "before_after_length": [57, 55], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "=//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u664481257", "n_user": "u664481257", "pos": "# -*- coding: utf-8 -*-\n# !/usr/bin/env python\n# vim: set fileencoding=utf-8 :\n\n\"\"\"\n#\n# Author: Noname\n# URL: https://github.com/pettan0818\n# License: MIT License\n# Created: 2016-09-28\n#\n\n# Usage\n#\n\"\"\"\nimport sys\n\ndef input_single_line():\n \"\"\"Receive Inputs.\"\"\"\n return input()\n\ndef input_two_line():\n \"\"\"Receive Two Lined Inputs.\n Like this.\n\n N\n 1 2 3 4 5\n \"\"\"\n sys.stdin.readline()\n target = sys.stdin.readline()\n target = target.rstrip(\"\\n\")\n target = target.split(\" \")\n\n return target\n\n\ndef search_lovers(target_list: list) -> None:\n \"\"\"Search Simple.\n >>> target_list = [2, 3, 1]\n >>> search_lovers(target_list)\n 0\n >>> target_list = [2, 1, 4, 3]\n >>> search_lovers(target_list)\n 2\n >>> target_list = [5, 5, 5, 5, 1]\n >>> search_lovers(target_list)\n 1\n \"\"\"\n target_list = [int(i) - 1 for i in target_list]\n lovers = []\n ans = 0\n for i, n in enumerate(target_list):\n if target_list[n] == i:\n ans = ans + 1\n\n print(int(ans/2))\n\n\nif __name__ == \"__main__\":\n import doctest\n doctest.testmod()\n\n target = input_two_line()\n\n search_lovers(target)\n\n", "neg": "# -*- coding: utf-8 -*-\n# !/usr/bin/env python\n# vim: set fileencoding=utf-8 :\n\n\"\"\"\n#\n# Author: Noname\n# URL: https://github.com/pettan0818\n# License: MIT License\n# Created: 2016-09-28\n#\n\n# Usage\n#\n\"\"\"\nimport sys\n\ndef input_single_line():\n \"\"\"Receive Inputs.\"\"\"\n return input()\n\ndef input_two_line():\n \"\"\"Receive Two Lined Inputs.\n Like this.\n\n N\n 1 2 3 4 5\n \"\"\"\n sys.stdin.readline()\n target = sys.stdin.readline()\n target = target.rstrip(\"\\n\")\n target = target.split(\" \")\n\n return target\n\n\ndef search_lovers(target_list: list) -> None:\n \"\"\"Search Simple.\"\"\"\n lovers = []\n for i in target_list:\n if target_list[i-1] == i-1:\n lovers.append(i-1)\n\n print(len(lovers))\n\n\nif __name__ == \"__main__\":\n import doctest\n doctest.testmod()\n\n target = input_two_line()\n\n", "jacc_sim": 0.9090909090909091, "before_after_length": [437, 309], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "\n >>> target_list = [2, 3, 1]\n >>> search_lovers(target_list)\n 0\n >>> target_list = [2, 1, 4, 3]\n >>> search_lovers(target_list)\n 2\n >>> target_list = [5, 5, 5, 5, 1]\n >>> search_lovers(target_list)\n 1\n \n target_list = [int(i) - 1 for i in target_list]ans = 0\n ,itarget_lsn enumerae(target_list)n] == -:\n ans = ans + ] == i-1:\nprint(int(ans/2))\n\n\nif__name__==\"__main__\":\nimportdoctest\n doctest.testmod()\n\n target = input_two_line()\n\n search_.appendi-1)\n\n prin(len(lovers))\n\n\nif __nme__ == \"__main__\":\n impot doctest\n doctest.testmod()\n\n tar = input_two_line(", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u668453858", "n_user": "u936985471", "pos": "n=int(input())\na=list(map(lambda x: int(x) - 1, input().split()))\nans = 0\nfor i in range(n):\n if a[a[i]] == i:\n ans += 1\nprint(ans//2)\n", "neg": "n=input()\na=list(map(int,input().split()))\nans=0\nfor i in range(n):\n if a[a[i]-1]-1==i:\n ans+=1\nprint(ans//2)", "jacc_sim": 0.9333333333333333, "before_after_length": [65, 60], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "int()lambda x: (x) - 1 -1 -1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u511379665", "n_user": "u193927973", "pos": "N=int(input())\na=list(map(int,input().split()))\n\nans=0\n\nfor i in range(len(a)):\n if a[a[i]-1]==i+1:\n ans+=1\n\nprint(ans//2)", "neg": "N=int(input())\nA=list(map(int, input().split()))\nans=0\nfor i in range(N):\n if A[a[i-1]-1]==i+1:\n ans+=1\nprint(ans//2)", "jacc_sim": 0.9333333333333333, "before_after_length": [68, 64], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "Aa \n\nNlen(a) Aa-1 \n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u409064224", "n_user": "u409064224", "pos": "n = int(input())\na = list(map(int,input().split()))\nres = 0\n\nfor i in range(n):\n sel = a[i] -1\n if a[sel] == i+1:\n res += 1\nelse:\n print(int(res/2))\n", "neg": "n = int(input())\na = list(map(int,input().split()))\nres = 0\n\nfor i in range(n):\n sel = a[i]\n if a[sel] = i:\n res += 1\nelse:\n print(res/2)", "jacc_sim": 0.9666666666666667, "before_after_length": [74, 67], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " -1=+1int()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u368796742", "n_user": "u953110527", "pos": "n = int(input())\nl = list(map(int,input().split()))\ncount = 0\nfor i in range(n):\n if i+1 == l[l[i]-1]:\n count += 1\nprint(count//2)", "neg": "n = int(input())\na = list(map(int,input().split()))\ncount = 0\nfor i in range(n):\n if i+1 == a[i-1]:\n count+=1\nprint(count//2)", "jacc_sim": 0.9310344827586207, "before_after_length": [60, 58], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "alal[l] ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u343128979", "n_user": "u343128979", "pos": "N = int(input())\nusa = list(map(int, input().split()))\nflag = [0 for x in range(N)]\ncount = 0\nfor i, ai in enumerate(usa):\n if(flag[i]):\n continue\n if(usa[ai-1]-1 == i):\n count+=1\n flag[ai - 1] = 1\n\nprint (count)\n", "neg": "N = int(input())\nusa = list(map(int, input().split()))\nflag = [0 for x in range(N)]\ncount = 0\nfor i, j in enumerate(usa):\n if(flag[i]):\n continue\n if(usa[j-1]-1 == i):\n count+=1\n flag[usa[j - 1]] = 1\n\nprint (count)\n", "jacc_sim": 0.9375, "before_after_length": [99, 102], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "jaijaiusi[j]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u282228874", "n_user": "u689562091", "pos": "N = int(input())\nA = list(map(int,input().split()))\nres = 0\nfor i in range(N):\n if A[A[i]-1] == i+1:\n res += 1 \nprint(res//2)", "neg": "N = int(input())\nA = list(map(int, input().split()))\nres = 0\nfor i in range(N):\n if i + 1 == A[A[A[i]-1]]:\n res += 1 \nprint(res)", "jacc_sim": 0.9285714285714286, "before_after_length": [62, 62], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " i + 1 == A[] == i+1//2", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u552816314", "n_user": "u557143627", "pos": "size = int(input())\nrabbits = list(map(int, input().split()))\ncount = 0\nfor i in range(size):\n if (rabbits[i] - 1) > i and (rabbits[rabbits[i]-1] - 1) == i:\n count += 1\nprint(count)", "neg": "size = int(input())\nrabbits = list(map(int, input().split()))\ncount = 0\nfor i in range(size):\n if (rabbit[i] - 1) > i and (rabbits[rabbits[i]-1] -1) == i:\n count += 1\nprint(count)", "jacc_sim": 0.9655172413793104, "before_after_length": [76, 76], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "s ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u867848444", "n_user": "u527261492", "pos": "n=int(input())\na=list(map(int,input().split()))\n\ncnt=0\nfor i in range(n):\n if a[i] >= 0 and a[a[i] - 1] == i + 1:\n cnt+=1\n a[a[i] - 1] = -1\nprint(cnt)", "neg": "n=int(input())\na=list(map(int,input().split()))\ncnt=0\nfor i in range(n):\n for j in range(n):\n if a[i]==j+1 and a[j]==i+1:\n cnt+=1\n else:\n cnt=cnt\nif cnt>n:\n print(cnt-n)\nelse:\n print(0)\n ", "jacc_sim": 0.9333333333333333, "before_after_length": [82, 102], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "\nfor j in range(n):\n > 0=j+1ja[i - 1] else:\na[a[i]-cnt1] cnt -1if cnt>n:\n -n\nelse:\n print(0)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u792670114", "n_user": "u767664985", "pos": "N = int(input())\nAs = list(map(int, input().split()))\nAs = [a-1 for a in As]\nr = 0\nfor i in range(N):\n j = As[i]\n if i < j and i == As[j]:\n r += 1\nprint(r)\n", "neg": "N = map(int, input().split())\na = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n j = a[i] - 1\n if i < j and a[j] - 1 == i:\n ans += 1\nprint(ans)\n", "jacc_sim": 0.9032258064516129, "before_after_length": [76, 73], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": "map((, .split()aAsAs = [-1 for a i A]\nr aAs - 1 ia[j] - 1iAs[j]r ansrans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p03993", "p_user": "u543954314", "n_user": "u957722693", "pos": "n = int(input())\nl = [0] + list(map(int, input().split()))\ncnt = 0\nfor i in range(1, n+1):\n if l[l[i]] == i:\n cnt += 1\nprint(cnt//2)", "neg": "n=int(input())\nl=list(map(int,input().split()))\nsum=0\nfor i in range(n):\n if l[l[i]]==i:\n sum+=1\nprint(int(sum/2))", "jacc_sim": 0.9285714285714286, "before_after_length": [64, 59], "nl": "You have N rabbits numbered from 1 to N. Each rabbit likes another rabbit, and no rabbit likes itself. A friendly pair is formed when two rabbits like each other. Find the number of friendly pairs. Constraints: 2\u2264N\u226410^5, 1\u2264a_i\u2264N, a_i\u2260i. Input format: N followed by a list of a_i values. Output the number of friendly pairs. Example: Input: 4, 2 1 4 3. Output: 2 (friendly pairs: (1, 2) and (3, 4)).", "diff_info": " [0] + sumcnt 1, +1 sumcnt ic/(sum)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u367794409", "n_user": "u367794409", "pos": "def COMinit():\n fac[0] = fac[1] = 1\n finv[0] = finv[1] = 1\n inv[1] = 1\n for i in range(2,max):\n fac[i] = fac[i-1]*i%mod\n inv[i] = mod - inv[mod%i]*(mod//i)%mod\n finv[i] = finv[i-1]*inv[i]%mod\n\ndef COM(n,k):\n if n < k:\n return 0\n if n < 0 or k < 0:\n return 0\n return fac[n] * (finv[k]*finv[n-k]%mod)%mod\n\nmod = 10**9+7\n\nK = int(input())\nS = input()\nN = len(S)\nmax = N+K\nfac = [0] * max\nfinv = [0] * max\ninv = [0] * max\nCOMinit()\n\nans = 0\nfor i in range(K+1):\n x = COM(N+K-i-1,N-1)\n y = pow(26,i,mod)\n z = pow(25,K-i,mod)\n xyz = ((x*y%mod)*z)%mod\n ans = (ans+xyz)%mod\nprint(ans)\n", "neg": "def COMinit():\n fac[0] = fac[1] = 1\n finv[0] = finv[1] = 1\n inv[1] = 1\n for i in range(2,max):\n fac[i] = fac[i-1]*i%mod\n inv[i] = mod - inv[mod%i]*(mod//i)%mod\n finv[i] = finv[i-1]*inv[i]%mod\n\ndef COM(n,k):\n if n < k:\n return 0\n if n < 0 or k < 0:\n return 0\n return fac[n] * (finv[k]*finv[n-k]%mod)%mod\n\nmod = 10**9+7\n\nK = int(input())\nS = input()\nN = len(S)\nmax = N+K\nfac = [0] * max\nfinv = [0] * max\ninv = [0] * max\nCOMinit()\n\nans = 0\nfor i in range(K+1):\n x = COM(N+K-i-1,N-1)\n y = mod(26,i,mod)\n z = mod(25,K-i,mod)\n xyz = ((x*y%mod)*z)%mod\n ans = (ans+xyz)%mod\nprint(ans)\n", "jacc_sim": 0.9803921568627451, "before_after_length": [326, 326], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "mpdwmpdw", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u151341340", "n_user": "u151341340", "pos": "from sys import stdin\ninput = stdin.readline\ndef nCr(n,r):\n return fact[n]*(inv[n-r]%M)*(inv[r]%M)\nM = 1000000007\nk = int(input())\ns = len(input().strip())\nt = k+s\nfact = [1]\np25 = [1]\nfor i in range(1,t+1):\n fact += [(fact[-1] * i)%M]\n if i<=k:\n p25 += [(p25[-1] * 25) % M]\n\ninv = [1]*(t+1)\ninv[t] = pow(fact[t], M-2, M)\nfor i in range(t-1, -1, -1):\n inv[i] = inv[i+1] * (i+1) % M\n\n\nres = 0\nfor i in range(k+1):\n res+=nCr(t,t-i)*p25[i]\n res%=M\nprint(res)", "neg": "from sys import stdin\ninput = stdin.readline\ndef nCr(n,r):\n return fact[n]*(inv[n-r]%M)*(inv[r]%M)\nM = 1000000007\nk = int(input())\ns = len(input())\nt = k+s\nfact = [1]\np25 = [1]\nfor i in range(1,t+1):\n fact += [(fact[-1] * i)%M]\n if i<=k:\n p25 += [(p25[-1] * 25) % M]\n\ninv = [1]*(t+1)\ninv[t] = pow(fact[t], M-2, M)\nfor i in range(t-1, -1, -1):\n inv[i] = inv[i+1] * (i+1) % M\n\n\nres = 0\nfor i in range(k+1):\n res+=nCr(t,t-i)*p25[i]\n res%=M\nprint(res)", "jacc_sim": 0.9787234042553191, "before_after_length": [254, 252], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": ".strip()", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u800396927", "n_user": "u800396927", "pos": "k = int(input())\ns = input()\n\nmod = 10**9+7\nn = len(s) + k\n\nfrac = [1]*(n+1)\nfinv = [1]*(n+1)\nfor i in range(n):\n frac[i+1] = (i+1)*frac[i]%mod\nfinv[-1] = pow(frac[-1],mod-2,mod)\nfor i in range(1,n+1):\n finv[n-i] = finv[n-i+1]*(n-i+1)%mod\ndef nCr(n,r,m):\n if n<0 or r<0 or nm:ans%=mod\n c*=(n+k-i)*pow(i+1,mod-2,mod)\n if c>m:c%=mod\n t*=25\n if t>m:t%=mod\nprint(ans%mod)\n", "neg": "mod=10**9+7\nk=int(input())\ns=input()\nn=len(s)\nc=1\nt=1\nans=0\nm=10**20\nfor i in range(k+1):\n ans+=c*t\n if ans>m:ans%=mod\n c*=(n+k-i)*pow(i+1,mod-2,mod)\n if c>m:c%=mod\n t*=25\n if t>m:t%=mod\nprint(ans)\n", "jacc_sim": 1.0, "before_after_length": [132, 130], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "%mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u779728630", "n_user": "u779728630", "pos": "K = int(input())\nS = input()\ns = len(S)\nbase = 10 ** 9 + 7\n\nL26 = [ 1 for i in range(K+1)] # 26^i mod base \nfor i in range(K):\n L26[i+1] = (L26[i] * 26) % base\n\nT1 = 1\nT2 = 1\nans = 0\nfor i in range( s, s+K+1):\n T3 = L26[K + s - i]\n #T4 = pow(26, K + s - i, base)\n #print(T3, T4)\n p = (T1 * T2) % base\n p = (p * T3) % base\n ans += p\n ans %= base\n #print(ans, T1, T2, T3)\n T1 *= 25\n T1 %= base\n# T2 = (T2 * i ) // (i+1-s) # T2 = (i, s-1) = (i-1, s-1) * i // (i+1-s)\n T2 *= i\n T2 %= base\n T2 *= pow(i+1-s, base-2, base)\n T2 %= base\n \nprint(ans % base)", "neg": "K = int(input())\nS = input()\nbase = 10 ** 9 + 7\n\nL26 = [ 1 for i in range(K+1)] # 26^i mod base \n\n\ns = len(S)\nT1 = 1\nT2 = 1\nT3 = K + s\nans = 0\nfor i in range( s, s+K+1):\n T3 = pow(26, K + s - i, base)\n ans += T1 * T2 * T3\n ans %= base\n #print(ans, T1, T2, T3)\n T1 *= 25\n T1 %= base\n T2 = (T2 * i ) // (i+1-s) # T2 = (i, s-1) = (i-1, s-1) * i // (i+1-s)\n T2 %= base\n \nprint(ans % base)", "jacc_sim": 0.9302325581395349, "before_after_length": [310, 212], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": ")\ns = len(S\n\ns = len(S)\nT1 = 1\nT2 = 1\nT3 = K + s\nans = 0\n s, s++1L26[i+1] = (L26[i] * 26) % base\n\nT1 = 1\nT2 = 1\nans = 0\nfor i in range( s, s+K+1):\n = L26[K + s - i]\n #T4a#prit(s += T1 * T2 * , T4)\n p = (T1 * T2) % base\n p = (p * T3) % base\n ans += p#*= i\n T2 %= base\n T2 *= pow(i+1-s, base-2, base)\n T2 ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u227082700", "n_user": "u227082700", "pos": "mod=10**9+7\nk=int(input())\ns=input()\nn=len(s)\nc=1\nt=1\nans=0\nfor i in range(k+1):\n ans+=c*t\n ans%=mod\n c*=(n+k-i)*pow(i+1,mod-2,mod)\n c%=mod\n t*=25\n t%=mod\nprint(ans)\n", "neg": "k=int(input())\ns=input()\nn=len(s)\nc=1\nt=1\nans=0\nfor i in range(k+1):\n ans+=c*t\n ans%=mod\n c*=(n+k-i)*pow(i+1,mod-2,mod)\n c%=mod\n t*=25\n t%=mod\nprint(ans)\n", "jacc_sim": 0.90625, "before_after_length": [109, 101], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "mod=10**9+7\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u997641430", "n_user": "u997641430", "pos": "k = int(input())\nn = len(input())\np = 10**9 + 7\na = 1\nfct = [a]\nfor i in range(1, n + k + 1):\n a = (a * i) % p\n fct.append(a)\nb = pow(fct[-1], p - 2, p)\ninv = [b]\nfor i in range(1, n + k + 1)[::-1]:\n b = (b * i) % p\n inv.append(b)\ninv.reverse()\nans = 0\npow25, pow26 = [1], [1]\nfor i in range(1, k + 1):\n pow25.append((pow25[-1] * 25) % p)\n pow26.append((pow26[-1] * 26) % p)\nfor i in range(k + 1):\n c = fct[i + n - 1] * inv[i] * inv[n - 1]\n ans += pow25[i] * pow26[k - i] * c\n ans %= p\nprint(ans)\n", "neg": "k = int(input())\nn = len(input())\nk, n = 10**6, 10**6\np = 10**9 + 7\na = 1\nfct = [a]\nfor i in range(1, n + k + 1):\n a = (a * i) % p\n fct.append(a)\nb = pow(fct[-1], p - 2, p)\ninv = [b]\nfor i in range(1, n + k + 1)[::-1]:\n b = (b * i) % p\n inv.append(b)\ninv.reverse()\nans = 0\npow25, pow26 = [1], [1]\nfor i in range(1, k + 1):\n pow25.append((pow25[-1] * 25) % p)\n pow26.append((pow26[-1] * 26) % p)\nfor i in range(k + 1):\n c = fct[i + n - 1] * inv[i] * inv[n - 1]\n ans += pow25[i] * pow26[k - i] * c\n ans %= p\nprint(ans)\n", "jacc_sim": 0.9767441860465116, "before_after_length": [258, 270], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "\nk, n = 10**6, 10**6", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u927220534", "n_user": "u542376457", "pos": "MOD = 10 ** 9 + 7\nK = int(input())\nM = len(input())\nN = M + K\n\npow25 = [1] * (N + 1)\nfac = [1] * (N + 1)\ninv = [1] * (N + 1)\nfor x in range(1, N + 1):\n fac[x] = fac[x - 1] * x % MOD\n pow25[x] = pow25[x - 1] * 25 % MOD\ninv[N] = pow(fac[N], MOD-2, MOD)\nfor x in range(N - 1, -1, -1):\n inv[x] = inv[x + 1] * (x + 1) % MOD\n\ndef binom(n, k):\n return fac[n] * inv[n - k] % MOD * inv[k] % MOD\n\nans = 0\nfor k in range(M, N + 1):\n ans += binom(N, k) * pow25[N - k] % MOD\n ans %= MOD\nprint(ans)\n", "neg": "MOD = 10 ** 9 + 7\nK = int(input())\nM = len(input())\nN = M + K\nfac = [1] * (N + 1)\ninv = [1] * (N + 1)\nfor x in range(1, N + 1):\n fac[x] = fac[x - 1] * x % MOD\ninv[N] = pow(fac[N], MOD-2, MOD)\nfor x in range(N - 1, -1, -1):\n inv[x] = inv[x + 1] * (x + 1) % MOD\ndef binom(n, k):\n return fac[n] * inv[n - k] % MOD * inv[k] % MOD\npwr = pow(25, M, MOD)\nans = 0\nfor k in range(M, N + 1):\n ans += binom(N, k) * pwr\n ans %= MOD\n pwr = (pwr * 25) % MOD\nprint(ans)\n\n", "jacc_sim": 0.9512195121951219, "before_after_length": [250, 234], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "\npow25 = [1] * (N + 1)\n pow25[x] = pow25[x - 1] * 25 % MOD\n\n\nans = 0\nfor k in range(M, N + 1):\n ans += binom(N, k) * or = pow(,[N-M,k] % ) %0\nfor k in range(OD, N + 1): print( += binom(N, k * pwr ans %= MOD\n pwr = (pwr * 25) % MOD\nprint(ans)\n\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u368796742", "n_user": "u368796742", "pos": "k = int(input())\ns = list(input())\n\nmod = 10**9+7 \nfact = [1,1]\nfinv = [1,1]\ninv = [0,1]\n \nfor i in range(2,k+len(s)+5):\n fact.append((fact[-1]*i)%mod)\n inv.append((inv[mod%i]*(mod-mod//i))%mod)\n finv.append((finv[-1]*inv[-1])%mod)\n \ndef nCr(n,r,mod):\n if r > n:\n return 0\n else: \n return fact[n]*finv[r]*finv[n-r]%mod\nt = len(s)\nans = 0\ndp = [0]*(k+1)\ndp[0] = 1\nans += pow(26,k)\nfor i in range(1,k+1):\n x = (nCr(t+i-1,t-1,mod)*pow(25,i,mod))%mod*pow(26,k-i,mod)%mod\n ans += x\n ans %= mod\n\nprint(ans%mod)\n", "neg": "k = int(input())\ns = list(input())\n\nmod = 10**9+7 \nfact = [1,1]\nfinv = [1,1]\ninv = [0,1]\n \nfor i in range(2,k+len(s)+5):\n fact.append((fact[-1]*i)%mod)\n inv.append((inv[mod%i]*(mod-mod//i))%mod)\n finv.append((finv[-1]*inv[-1])%mod)\n \ndef nCr(n,r,mod):\n if r > n:\n return 0\n else: \n return fact[n]*finv[r]*finv[n-r]%mod\nt = len(s)\nans = 0\ndp = [0]*(k+1)\ndp[0] = 1\nans += pow(26,k)\nfor i in range(1,k+1):\n x = nCr(t+i,t,mod)*pow(26,i,mod)\n x %= mod\n x -= dp[i-1]*26\n dp[i] = x\n ans += x*pow(26,k-i,mod)\n ans %= mod\n\nprint(ans%mod)\n", "jacc_sim": 0.9803921568627451, "before_after_length": [283, 298], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "(-1-1*pow(25,i,mod))%modk-%mod ans += %= modx -= dp[i-1]*26\n dp[i] = x\n += x*pow(26,k-i,mod)\n ans ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u144913062", "n_user": "u144913062", "pos": "import sys\ninput = sys.stdin.readline\n\nmod = 10**9 + 7\nK = int(input())\nS = input().rstrip()\n\nN = K + len(S)\nfact = [1] * (N+1)\nfact_inv = [1] * (N+1)\nfor i in range(1, N+1):\n fact[i] = i * fact[i-1] % mod\nfact_inv[N] = pow(fact[N], mod-2, mod)\nfor i in range(1, N+1)[::-1]:\n fact_inv[i-1] = i * fact_inv[i] % mod\ncomb = lambda n, k: fact[n] * fact_inv[k] * fact_inv[n-k] % mod\n\nans = 0\nfor i in range(K+1):\n ans = (ans + comb(K - i + len(S) - 1, len(S) - 1) * pow(25, K - i, mod) * pow(26, i, mod)) % mod\nprint(ans)", "neg": "import sys\ninput = sys.stdin.readline\n\nmod = 10**9 + 7\nK = int(input())\nS = input().rstrip()\n\nN = K + len(S)\nfact = [1] * (N+1)\nfact_inv = [1] * (N+1)\nfor i in range(1, N+1):\n fact[i] = i * fact[i-1] % mod\nfact_inv[N] = pow(fact[N], mod-2, mod)\nfor i in range(1, N+1)[::-1]:\n fact_inv[i-1] = i * fact_inv[i] % mod\ncomb = lambda n, k: fact[n] * fact_inv[k] * fact_inv[n-k] % mod\n\nans = 0\nfor i in range(K+1):\n ans = (ans + comb((K - i) + len(S) - 1, len(S) - 1) * pow(25, K - i) * pow(26, i)) % mod\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [256, 253], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "(), mod, mod", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02632", "p_user": "u733011130", "n_user": "u733011130", "pos": "import sys\nreadline = sys.stdin.readline\n\nP = 10 ** 9 + 7\ndef mod_prod(a,b):\n return (a % P) * (b % P) % P\n\ndef mod_fact(a):\n ret = 1\n for i in range(a):\n ret = ret * (i + 1) % P\n return ret\n\ndef mod_pow(a, n):\n ret = 1\n while n > 0:\n if n % 2 == 1:\n ret = ret * a % P\n a = a * a % P\n n = n >> 1\n return ret\n\ndef mod_div(a, b):\n b_inv = mod_pow(b, P - 2)\n return a * b_inv % P\n\ndef mod_comb(a,b):\n ret = 1\n b = min(b, a - b)\n for i in range(b):\n ret *= a - i\n ret %= P\n ret = mod_div(ret, mod_fact(b))\n return ret\n\ndef solve():\n K = int(readline())\n S = readline().rstrip()\n\n N = len(S)\n\n ans = 0\n cb = 1\n for i in range(K + 1):\n ans += mod_pow(25, i) * cb * mod_pow(26, K-i)\n cb = cb * mod_div(i + N - 1 + 1, i + 1) % P\n # mod_comb(i+N-1, i)\n ans %= P\n print(ans)\n\nsolve()", "neg": "import sys\nreadline = sys.stdin.readline\n\nP = 10 ** 9 + 7\ndef mod_prod(a,b):\n return (a % P) * (b % P) % P\n\ndef mod_fact(a):\n ret = 1\n for i in range(a):\n ret = ret * (i + 1) % P\n return ret\n\ndef mod_pow(a, n):\n ret = 1\n while n > 0:\n if n % 2 == 1:\n ret = ret * a % P\n a = a * a % P\n n = n >> 1\n return ret\n\ndef mod_div(a, b):\n b_inv = mod_pow(b, P - 2)\n return a * b_inv % P\n\ndef mod_comb(a,b):\n ret = 1\n b = min(b, a - b)\n for i in range(b):\n ret *= a - i\n ret %= P\n ret = mod_div(ret, mod_fact(b))\n return ret\n\ndef solve():\n K = int(readline())\n S = readline().rstrip()\n\n N = len(S)\n\n ans = 0\n for i in range(K + 1):\n ans += mod_pow(25, i) * mod_comb(i+N-1, i) * mod_pow(26, K-i)\n print(ans)\n\nsolve()", "jacc_sim": 0.9629629629629629, "before_after_length": [387, 349], "nl": "You are given a string S and an integer K. The task is to find the number of strings that can be obtained by inserting a lowercase English letter into the string S exactly K times. The answer should be printed modulo (10^9+7). Constraints: K is an integer between 1 and 10^6 (inclusive), and S is a string of length between 1 and 10^6 (inclusive) consisting of lowercase English letters. The input is given in the format: K, S. Output the number of strings satisfying the condition, modulo (10^9+7).", "diff_info": "cb = 1\n cb * mod_pow(26, K-i)\n cb = cb * mod_div(i + N - 1 + 1, i + 1) % P\n #\n*mod_pow(26,K-i) ans %= P", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u836311327", "n_user": "u836311327", "pos": "import sys\nimport numpy as np\ndef input(): return sys.stdin.readline().rstrip()\n\ndef odd(A):\n oddi=np.array(A[::2],dtype=np.int64)\n eveni=np.array(A[1::2],dtype=np.int64)\n left=np.cumsum(oddi[:-1]-eveni)\n left=np.insert(left,0,0)\n left=np.append(left,0)\n right=np.cumsum(oddi[:0:-1]-eveni[::-1])[::-1]\n right=np.insert(right,0,0)\n right=np.append(right,0)\n tmp=np.max(np.maximum.accumulate(left)+right)\n return tmp+np.sum(eveni)\n\ndef even(A):\n left=np.array([0]+A[::2],dtype=np.int64)\n right=np.array(A[1::2]+[0],dtype=np.int64)[::-1]\n return np.max(left.cumsum()+right.cumsum()[::-1])\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n if n%2==1:\n print(odd(A))\n else:\n print(even(A))\n\n\nif __name__ == '__main__':\n main()", "neg": "import sys\nimport numpy as np\ndef input(): return sys.stdin.readline().rstrip()\n\ndef odd(A):\n oddi=np.array(A[::2],dtype=np.int64)\n eveni=np.array(A[1::2],dtype=np.int64)\n left=np.cumsum(oddi[:-1]-eveni)\n left=np.insert(left,0,0)\n left=np.append(left,0)\n right=np.cumsum(oddi[:0:-1]-eveni[::-1])[::-1]\n right=np.insert(right,0,0)\n right=np.append(right,0)\n tmp=np.max(np.maximum.accumulate(left)+right)\n return tmp+np.sum(eveni)\n\ndef even(A):\n left=np.array([0]+A[::2],dtype=np.int64)\n right=np.array(A[1::2]+[0],dtype=np.int64)\n return np.max(left.cumsum()+right.cumsum())\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n if n%2==1:\n print(odd(A))\n else:\n print(even(A))\n\n\nif __name__ == '__main__':\n main()", "jacc_sim": 1.0, "before_after_length": [357, 348], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "[::-1][::-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u788260274", "n_user": "u788260274", "pos": "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter,defaultdict\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\nN = int(input())\na = [0] + list(map(int, input().split()))\n\no = [a[2*i+1] for i in range(N//2)]\no = list(itertools.accumulate(o))\n\ndp = [0 for i in range(N+1)]\n\ndp[0] = dp[1] = 0\ndp[2] = max(a[1], a[2])\nif N > 2: dp[3] = max([a[1], a[2], a[3]])\n\nif N > 3:\n for i in range(4, N+1):\n if i % 2 == 0:\n dp[i] = max(dp[i-2] + a[i], o[(i-3)//2] + a[i-1])\n else:\n dp[i] = max([dp[i-2] + a[i], dp[i-3] + a[i-1], o[(i-2)//2] ])\n\nprint(dp[N])\n\n\n", "neg": "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter,defaultdict\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\nN = int(input())\na = [0] + list(map(int, input().split()))\n\no = [a[2*i+1] for i in range(N//2)]\no = list(itertools.accumulate(o))\nprint(o)\ndp = [0 for i in range(N+1)]\n\ndp[0] = dp[1] = 0\ndp[2] = max(a[1], a[2])\nif N > 2: dp[3] = max([a[1], a[2], a[3]])\n\nif N > 3:\n for i in range(4, N+1):\n if i % 2 == 0:\n dp[i] = max(dp[i-2] + a[i], o[(i-3)//2] + a[i-1])\n else:\n dp[i] = max([dp[i-2] + a[i], dp[i-3] + a[i-1], o[(i-2)//2] ])\n\nprint(dp[N])\n\n\n", "jacc_sim": 1.0, "before_after_length": [345, 349], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "print(o)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u609061751", "n_user": "u609061751", "pos": "import sys\ninput = lambda: sys.stdin.readline().rstrip(\"\\r\\n\")\n\ndef solve():\n n = int(input())\n a = [int(x) for x in input().split()]\n\n from collections import defaultdict\n\n dp = defaultdict(lambda : -float('inf'))\n dp[(0, 0, 0)] = 0\n\n for i in range(1, n + 1):\n max_j = i//2 if i % 2 == 0 else i//2 + 1\n min_j = n//2 - (n - i)//2 if (n - i) % 2 == 0 else n//2 - ((n - i)//2 + 1)\n for j in range(min_j, max_j + 1):\n dp[(i, j, 0)] = max(dp[(i - 1, j, 0)], dp[(i - 1, j, 1)])\n dp[(i, j, 1)] = dp[(i - 1, j - 1, 0)] + a[i - 1]\n print(max(dp[(n, n//2, 0)], dp[(n, n//2, 1)]))\nsolve()\n\n\n", "neg": "import sys\ninput = lambda: sys.stdin.readline().rstrip(\"\\r\\n\")\n\nn = int(input())\na = [int(x) for x in input().split()]\n\nfrom collections import defaultdict\n\ndp = defaultdict(int)\n\nfor i in range(1, n + 1):\n max_j = i//2 if i % 2 == 0 else i//2 + 1\n min_j = n//2 - (n - i)//2 if (n - i) % 2 == 0 else n//2 - ((n - i)//2 + 1)\n for j in range(min_j, max_j + 1):\n dp[(i, j, 0)] = max(dp[(i - 1, j, 0)], dp[(i - 1, j, 1)])\n dp[(i, j, 1)] = dp[(i - 1, j - 1, 0)] + a[i - 1]\n \nprint(dp)\n\n\n", "jacc_sim": 0.9183673469387755, "before_after_length": [285, 232], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "def solve():\n inlambda : -floa('inf') dp[(0, 0, 0)] = 0\n \nmax([(n, n//2, 0], dp[(n, n//2, 1)]))solve()\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u707124227", "n_user": "u707124227", "pos": "n=int(input())\na=list(map(int,input().split()))\nimport numpy as np\ndp=np.full((3,n+1),-pow(10,15))\ndp[:,0]=0\ndp[1,1]=a[0]\nfor i in range(2,n+1):\n #l,r=max(1,n//2-(n-i+1)//2),(i+1)//2+1\n l,r=max(1,i//2-1),(i+1)//2+1\n if i%3==2:\n now,pre,prepre=2,1,0\n elif i%3==0:\n now,pre,prepre=0,2,1\n elif i%3==1:\n now,pre,prepre=1,0,2\n dp[now,l:r]=np.maximum(dp[pre,l:r],dp[prepre,l-1:r-1]+a[i-1])\nprint(dp[now,n//2])", "neg": "n=int(input())\na=list(map(int,input().split()))\nimport numpy as np\ndp=np.full((3,n+1),-pow(10,15))\ndp[1,1]=a[0]\nfor i in range(2,n+1):\n #l,r=max(1,n//2-(n-i+1)//2),(i+1)//2+1\n l,r=max(1,i//2-1),(i+1)//2+1\n if i%3==2:\n now,pre,prepre=2,1,0\n elif i%3==0:\n now,pre,prepre=0,2,1\n elif i%3==1:\n now,pre,prepre=1,0,2\n dp[now,l:r]=np.maximum(dp[pre,l:r],dp[prepre,l-1:r-1]+a[i-1])\nprint(dp[now,n//2])", "jacc_sim": 1.0, "before_after_length": [258, 250], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": ":,0]=0\ndp[", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u807840714", "n_user": "u807840714", "pos": "import math\nn=int(input())\na=list(map(int, input().split()))\ndp=[0]*n\ndp[0]=0\ndp[1]=max(a[0],a[1])\ncurr=a[0]\nfor i in range(2,n):\n if i&1==1:\n curr+=a[i-1]\n dp[i]=max(curr,dp[i-2]+a[i])\n else: dp[i]=max(dp[i-2]+a[i],dp[i-1])\nprint(dp[n-1])\n", "neg": "import math\nn=int(input())\na=list(map(int, input().split()))\ndp=[0]*n\ndp[0]=0\ndp[1]=math.max(a[0],a[1])\ncurr=a[0]\nfor i in range(2,n):\n if i&1==1:\n curr+=a[i-1]\n dp[i]=math.max(curr,dp[i-2]+a[i])\n else dp[i]=math.max(dp[i-2]+a[i],dp[i-1])\nprint(dp[n-1])\n", "jacc_sim": 1.0, "before_after_length": [147, 152], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "th.mamath.:math.", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u712284046", "n_user": "u712284046", "pos": "N = int(input())\nA = list(map(int, input().split()))\n\nDP_odd = [0, 0, A[0]]\nDP_even = [0, max(A[0], A[1])]\n\nif N >= 3:\n DP_odd = [DP_even[0], max(DP_odd[1] + A[2], DP_even[1]), DP_odd[2] + A[2]]\n\nfor i in range(3, N):\n if (i + 1) % 2 == 1: \n DP_odd = [max(DP_odd[0] + A[i], DP_even[0]), max(DP_odd[1] + A[i], DP_even[1]), DP_odd[2] + A[i]]\n else:\n DP_even = [max(DP_even[0] + A[i], DP_odd[1]), max(DP_even[1] + A[i], DP_odd[2])]\n\nif N % 2 == 1:\n ans = DP_odd[1]\nelse:\n ans = DP_even[1]\n\nprint(ans)", "neg": "N = int(input())\nA = list(map(int, input().split()))\n\nDP_odd = [0, 0, A[0]]\nDP_even = [0, max(A[0], A[1])]\n\nif N >= 3:\n DP_odd = [DP_even[0], max(DP_odd[1] + A[i], DP_even[1]), DP_odd[2] + A[2]]\n\nfor i in range(3, N):\n if (i + 1) % 2 == 1: \n DP_odd = [max(DP_odd[0] + A[i], DP_even[0]), max(DP_odd[1] + A[i], DP_even[1]), DP_odd[2] + A[i]]\n print(DP_odd)\n else:\n DP_even = [max(DP_even[0] + A[i], DP_odd[1]), max(DP_even[1] + A[i], DP_odd[2])]\n print(DP_even)\n\nif N % 2 == 1:\n ans = DP_odd[1]\nelse:\n ans = DP_even[1]\n\nprint(ans)", "jacc_sim": 1.0, "before_after_length": [289, 305], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "i2else:\n DP_even = [max(DP_even[0] + A[i], DP_odd[1]), max(DP_even[1] + A[i], DP_odd[2])]\n\nif N % 2 == 1:\n ans = DP_odd[1]\nelse:\n ans = DP_even[1]\n\nDP_odd)\n else:\n DP_even = [mx(DP_eve[0] + A[i], DP_odd[1]), max(DP_even[1] + A[i], DP_odd[2])]\n print(DP_even)\n\nif N % 2 == 1:\n an = DP_odd[1]\nelse:\n ans = DP_even[1]\n\nprint(ans", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u572142121", "n_user": "u572142121", "pos": "N=int(input())\nA=list(map(int, input().split()))\nif N==2:\n print(max(A))\n exit() \n \ndp=[[0,0,0] for i in range(N)]\ndp[0][0]=A[0]\ndp[1][1]=A[1]\ndp[2][2]=A[2]\nfor i in range(N):\n if i>1:\n dp[i][0]=dp[i-2][0]+A[i]\n if i>2:\n dp[i][1]=max(dp[i-3][0],dp[i-2][1])+A[i]\n if i>3 :\n dp[i][2]=max(dp[i-4][0],dp[i-3][1],dp[i-2][2])+A[i]\nif N%2==1:\n ans=max(dp[-1][2],dp[-2][1],dp[-3][0])\nelse:\n ans=max(dp[-1][1],dp[-2][0])\nprint(ans)", "neg": "N=int(input())\nA=list(map(int, input().split()))\nif N==2 or N==3:\n print(max(A))\n exit() \n \ndp=[[0,0,0] for i in range(N)]\ndp[0][0]=A[0]\ndp[1][1]=A[1]\ndp[2][2]=A[2]\nfor i in range(N):\n if i>1:\n dp[i][0]=dp[i-2][0]+A[i]\n if i>2:\n dp[i][1]=max(dp[i-3][0],dp[i-2][1])+A[i]\n if i>3 :\n dp[i][2]=max(dp[i-4][0],dp[i-3][1],dp[i-2][2])+A[i]\nif N%2==1:\n ans=max(dp[-1][2],dp[-2][1],dp[-3][0])\nelse:\n ans=max(dp[-1][2],dp[-2][1])\nprint(ans)", "jacc_sim": 0.9722222222222222, "before_after_length": [273, 277], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": " or N==32],dp[-2][)\n,d[-2][0]rint(ans\nprint(ans)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u191874006", "n_user": "u191874006", "pos": "#!/usr/bin/env python3\n\nimport sys\nimport math\nfrom bisect import bisect_right as br\nfrom bisect import bisect_left as bl\nsys.setrecursionlimit(2147483647)\nfrom heapq import heappush, heappop,heappushpop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9+7\ninf = float('inf')\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\n\nn = I()\na = LI()\nif n == 3:\n print(max(a))\n quit()\ndp1 = [-inf]*(n+1) \ndp2 = [-inf]*(n+1)\ndp3 = [-inf]*(n+1)\ndp1[0] = 0\ndp2[0] = 0\ndp3[0] = 0\ndp1[1] = a[0]\ndp2[2] = a[1]\nfor i in range(3,n+1):\n dp1[i] = dp1[i-2] + a[i-1]\n dp2[i] = max(dp2[i-2],dp1[i-3]) + a[i-1]\n dp3[i] = max(dp3[i-2],dp2[i-3],dp1[i-4]) + a[i-1]\nif n % 2:\n print(max(dp1[n-2], dp2[n], dp3[n]))\nelse:\n print(max(dp1[n-1],dp2[n]))\n\n", "neg": "#!/usr/bin/env python3\n\nimport sys\nimport math\nfrom bisect import bisect_right as br\nfrom bisect import bisect_left as bl\nsys.setrecursionlimit(2147483647)\nfrom heapq import heappush, heappop,heappushpop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9+7\ninf = float('inf')\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\n\nn = I()\na = LI()\nif n == 3:\n print(max(a))\n quit()\ndp1 = [-inf]*(n+1) \ndp2 = [-inf]*(n+1)\ndp3 = [-inf]*(n+1)\ndp1[0] = 0\ndp2[0] = 0\ndp3[0] = 0\ndp1[1] = a[0]\ndp2[2] = a[1]\nfor i in range(3,n+1):\n dp1[i] = dp1[i-2] + a[i-1]\n dp2[i] = max(dp2[i-2],dp1[i-3]) + a[i-1]\n dp3[i] = max(dp3[i-2],dp2[i-3],dp1[i-4]) + a[i-1]\nif n % 2:\n print(max(dp1[n-2], dp2[n]))\nelse:\n print(max(dp1[n-1],dp2[n]))\n\n", "jacc_sim": 1.0, "before_after_length": [411, 406], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": ", dp3[n]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u203843959", "n_user": "u203843959", "pos": "N=int(input())\nalist=list(map(int,input().split()))\n\nif N%2==0:\n dp=[]\n for i in range(2):\n array=[0]*N\n dp.append(array)\n \n #init\n dp[0][0]=alist[0]\n dp[1][1]=alist[1]\n for i in range(2,N):\n dp[0][i]=dp[0][i-2]+alist[i]\n dp[1][i]=max(dp[1][i-2]+alist[i],dp[0][i-3]+alist[i])\n \n print(max(dp[0][-2],dp[1][-1]))\nelse:\n dp=[]\n for i in range(3):\n array=[0]*N\n dp.append(array)\n\n #init\n dp[0][0]=alist[0]\n dp[0][2]=alist[0]+alist[2]\n dp[1][1]=alist[1]\n dp[2][2]=alist[2]\n for i in range(3,N):\n dp[0][i]=dp[0][i-2]+alist[i]\n dp[1][i]=max(dp[1][i-2]+alist[i],dp[0][i-3]+alist[i])\n dp[2][i]=max(dp[2][i-2]+alist[i],dp[1][i-3]+alist[i],dp[0][i-4]+alist[i])\n\n #dp[0][-1] is NG\n print(max(dp[0][-3],dp[1][-2],dp[2][-1]))", "neg": "N=int(input())\nalist=list(map(int,input().split()))\n\nif N%2==0:\n dp=[]\n for i in range(2):\n array=[0]*N\n dp.append(array)\n \n #init\n dp[0][0]=alist[0]\n dp[0][1]=alist[0]\n dp[1][1]=alist[1]\n for i in range(2,N):\n dp[0][i]=dp[0][i-2]+alist[i]\n dp[1][i]=max(dp[1][i-2]+alist[i],dp[0][i-3])\n \n print(max(dp[0][-1],dp[1][-1]))\nelse:\n dp=[]\n for i in range(3):\n array=[0]*N\n dp.append(array)\n\n #init\n dp[0][0]=alist[0]\n dp[0][1]=alist[0]\n dp[0][2]=alist[0]+alist[2]\n dp[1][1]=alist[1]\n dp[1][2]=alist[1]\n dp[2][2]=alist[2]\n for i in range(3,N):\n dp[0][i]=dp[0][i-2]+alist[i]\n dp[1][i]=max(dp[1][i-2]+alist[i],dp[0][i-3])\n dp[2][i]=max(dp[2][i-2]+alist[i],dp[1][i-3],dp[0][i-4])\n \n print(max(dp[0][-1],dp[1][-1],dp[2][-1]))", "jacc_sim": 0.9487179487179487, "before_after_length": [444, 454], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "0][1]=alist[0]\n dp[+alist[i]121]=alist[0]\n dp[0][]=alist[1]\n dp[1][2+alist[i]+alist[i]+alist[i]\n#dp[0][-1]isNG131],dp[,dp2-1[-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u392319141", "n_user": "u392319141", "pos": "N = int(input())\nA = list(map(int, input().split()))\nINF = 10**18\n\ndp0 = [-INF] * (N + 2)\ndp1 = [-INF] * (N + 2)\ndp2 = [-INF] * (N + 2)\ndp0[0] = 0\ndp0[1] = 0\ndp1[0] = 0\ndp1[1] = 0\n\nfor i, a in enumerate(A, start=2):\n dp0[i] = dp0[i - 2] + a\n dp1[i] = max(dp1[i - 2] + a, dp0[i - 1])\n dp2[i] = max(dp2[i - 2] + a, dp1[i - 1], dp0[i - 2])\n\nif N % 2 == 1:\n print(dp2[-1])\nelse:\n print(max(dp1[-1], dp0[-1]))\n", "neg": "N = int(input())\nA = list(map(int, input().split()))\nINF = 10**18\n\ndp0 = [-INF] * (N + 2)\ndp1 = [-INF] * (N + 2)\ndp2 = [-INF] * (N + 2)\ndp0[0] = 0\ndp0[1] = 0\n\nfor i, a in enumerate(A, start=2):\n dp0[i] = dp0[i - 2] + a\n dp1[i] = max(dp1[i - 2] + a, dp0[i - 1])\n dp2[i] = max(dp2[i - 2] + a, dp1[i - 1], dp0[i - 2])\n\nif N % 2 == 1:\n print(dp2[-1])\nelse:\n print(max(dp1[-1], dp0[-2]))\n", "jacc_sim": 1.0, "before_after_length": [229, 213], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "[1] = 0\ndp1[0] = 0\ndp121", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u294375415", "n_user": "u294375415", "pos": "\n\nn = 0\na = []\n\ndef format_input(filename = None):\n\tglobal n\n\tglobal a\n\tif filename == None:\n\t\tn = int(input())\n\t\ta = list(map(int, input().split()))\n\n\telif filename == '__random__':\n\t\tfrom random import randint as rng\n\t\tn = rng(2, 2 * 10**5)\n\t\ta = [rng(-1 * 10**9, 10**9) for i in range(n)]\n\t\tprint(n)\n\t\tprint(' '.join(list(map(str, a))))\n\ndef get_answer():\n\todd = [0]\n\teven = [0]\n\tfor i in range(n // 2):\n\t\todd.append(odd[-1] + a[2*i])\n\t\teven.append(even[-1] + a[2*i+1])\n\tif n % 2 == 1:\n\t\todd.append(odd[-1] + a[-1])\n\n\tanswer = -1 * 10**9 * n\n\tif n % 2 == 0:\n\t\tfor i in range(n // 2 + 1):\n\t\t\tanswer = max(answer, odd[i] - even[i] + even[-1])\n\telse:\n\t\teven_range = [even[0] - odd[1]]\n\t\tfor i in range(n // 2):\n\t\t\tadd = a[2*i+1] - a[2*i+2]\n\t\t\tmin = - a[2*i] + add\n\t\t\teven_range.append(max(even_range[-1] + add, min))\n\t\tanswer = odd[-1] + max(even_range)\n\treturn answer\n\nif __name__ == '__main__':\n\tformat_input()\n\n\tans = get_answer()\n\tprint(ans)\n", "neg": "\n\nn = 0\na = []\n\ndef format_input(filename = None):\n\tglobal n\n\tglobal a\n\tif filename == None:\n\t\tn = int(input())\n\t\ta = list(map(int, input().split()))\n\n\telif filename == '__random__':\n\t\tfrom random import randint as rng\n\t\tn = rng(2, 2 * 10**5)\n\t\ta = [rng(-1 * 10**9, 10**9) for i in range(n)]\n\t\tprint(n)\n\t\tprint(' '.join(list(map(str, a))))\n\ndef get_answer():\n\todd = [0]\n\teven = [0]\n\tfor i in range(n // 2):\n\t\todd.append(odd[-1] + a[2*i])\n\t\teven.append(even[-1] + a[2*i+1])\n\tif n % 2 == 1:\n\t\todd.append(odd[-1] + a[-1])\n\n\tprint(odd)\n\tprint(even)\n\tanswer = -1 * 10**9 * n\n\tif n % 2 == 0:\n\t\tfor i in range(n // 2 + 1):\n\t\t\tanswer = max(answer, odd[i] - even[i] + even[-1])\n\telse:\n\t\tfor i in range(n // 2 + 2):\n\t\t\tif i < n // 2 + 1:\n\t\t\t\tfor j in range(i+1):\n\t\t\t\t\tanswer = max(answer, odd[j] - even[j] + even[i] - odd[i+1] + odd[-1])\n\t\t\telse:\n\t\t\t\tfor j in range(i):\n\t\t\t\t\tanswer = max(answer, odd[j] - even[j] + even[-1])\n\treturn answer\n\nif __name__ == '__main__':\n\tformat_input()\n\n\tans = get_answer()\n\tprint(ans)\n", "jacc_sim": 0.921875, "before_after_length": [443, 463], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "print(odd)\n\tprint(even)\n\teven_range = [even[0] - odd[1]]\n\t\t + 2if i < n // 2 + 1:\n\t\t\t\tfor j in rnge(dd = a[2*):] - a[2*i+2]min = - a[2*i] + add\n\t\t\teven_range.append(max(even_range[-1] + add, min))\nodd[-1] + even_range)\n\treturn , odd[j] - even[j] + even[i] - odd[i+1] + odd[-1])\t\t\telse:\t\t\t\tfor j nfra__gam(__ == '__ma)n__'format_input()\n\n\t\t\tans = get_ = maxanswer, odd[j] - even[j] + even[-1]return answer\n\nif __name__ == '__main__':\n\tformat_inut()\n\n\tans = get_answe()\n\tpr", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u440566786", "n_user": "u440566786", "pos": "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n\n if n & 1 == 0:\n res = -INF\n score = sum(A[::2])\n res = max(res, score)\n for i in range(n-1,-1,-1):\n if i & 1:\n score += A[i]\n else:\n score -= A[i]\n res = max(res, score)\n print(res)\n return\n\n front_dp = [None] * n\n choose = -INF\n not_choose = 0\n for i in range(1, n, 2):\n choose, not_choose = max(choose, not_choose) + A[i], not_choose + A[i-1]\n front_dp[i] = max(choose, not_choose)\n\n back_dp = [None] * n\n choose = -INF\n not_choose = 0\n for i in range(n-2, -1, -2):\n choose, not_choose = max(choose, not_choose) + A[i], not_choose + A[i+1]\n back_dp[i] = max(choose, not_choose)\n\n res = -INF\n for i in range(1, n, 2):\n if i + 2 < n:\n res = max(res, front_dp[i] + back_dp[i+2])\n\n res = max(res, front_dp[-2])\n res = max(res, back_dp[1])\n\n print(res)\nresolve()", "neg": "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n\n if n & 1 == 0:\n res = -INF\n score = sum(A[::2])\n for i in range(n-1,-1,-1):\n if i & 1:\n score += A[i]\n else:\n score -= A[i]\n res = max(res, score)\n print(res)\n return\n\n front_dp = [None] * n\n choose = -INF\n not_choose = 0\n for i in range(1, n, 2):\n choose, not_choose = max(choose+A[i],not_choose+A[i]), not_choose + A[i-1]\n front_dp[i] = max(choose, not_choose)\n\n back_dp = [None] * n\n choose = -INF\n not_choose = 0\n for i in range(n-2, -1, -2):\n choose, not_choose = max(choose+A[i],not_choose+A[i]), not_choose + A[i+1]\n back_dp[i] = max(choose, not_choose)\n\n res = -INF\n for i in range(1, n, 2):\n if i + 2 < n:\n res = max(res, front_dp[i] + back_dp[i])\n\n res = max(res, front_dp[-2])\n res = max(res, back_dp[1])\n print(res)\nresolve()", "jacc_sim": 1.0, "before_after_length": [445, 440], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "res = max(res, score)\n , not_choose) ,not_choose+A[i]), not_choose) ,not_choose+A[i])+2\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u571969099", "n_user": "u571969099", "pos": "n = int(input())\na = [int(i) for i in input().split()]\n\nif n // 2 == 1:\n print(max(a))\n exit()\nif n < 20:\n d = a.copy()\n \n for i in range(1, n // 2):\n b = [0] * n\n c = -10 ** 24\n ans = -10 ** 24\n for j in range(i * 2, n):\n c = max(c, a[j - 2])\n b[j] = c + d[j]\n ans = max(ans, c + d[j])\n\n a = b.copy()\n print(ans)\n exit()\n\nb = a[:10]\ne = [True]*10\n\nfor i in range(1, n // 2):\n c = [0] * 10\n f = [False]*10\n d = -10**24\n for j in range(10):\n if 2 * i + j >= n:\n continue\n if not e[j]:\n continue\n d = max(d, b[j])\n c[j] = d + a[2 * i + j]\n f[j] = True\n e = f.copy()\n b = c.copy()\nans = -10 ** 24\nfor i in range(10):\n if e[i]:\n ans = max(ans, b[i])\nprint(ans)\n", "neg": "n = int(input())\na = [int(i) for i in input().split()]\n\n \nb = a[:4]\ne = [True]*4\n\nfor i in range(1, n // 2):\n c = [0] * 4\n f = [False]*4\n d = -10**24\n for j in range(4):\n if 2 * i + j >= n:\n continue\n if not e[j]:\n continue\n d = max(d, b[j])\n c[j] = d + a[2 * i + j]\n f[j] = True\n e = f.copy()\n b = c.copy()\nans = -10 ** 24\nfor i in range(4):\n if e[i]:\n ans = max(ans, b[i])\nprint(e)\nprint(ans)", "jacc_sim": 0.9130434782608695, "before_after_length": [350, 208], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": " \nb = a[:4]\ne = [True]*4\n\nfor f in range(1,):\n c =[0]1:\n* print(max(a))\n exit()\nif n < 20:\n d = a.copy()\n \n for i in range(1, n // 2):\n b = [0] * n\n c = -10 ** 2 ans = -10 ** 24\n for j in range(i * 2, n):\n c = max(c, a[j - 2])\n b[j] = c + d[j]\n ans = max(ans, c + d[j])\n\n a = b.copy()\n print(ans)\n exit()\n\nb = a[:10]\ne = [True]*10\n\nfor i in range(1, n // 2):\n c = [0] * 10\n 10\n d = -10**2d = -10**24\n 410410e)\nprint(\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u868628468", "n_user": "u868628468", "pos": "n = int(input())\nnums = list(map(int,input().split()))\nif n == 2:\n print(max(nums[0],nums[1]))\nelse:\n temp =[0]\n for i in range(n):\n if i%2 == 0:\n temp += [temp[-1]+nums[i]]\n dp = [[0,0,0] for _ in range(n)]\n dp[0][0] = nums[0]\n dp[1][0],dp[1][1],dp[1][2] = nums[1],nums[0],-float(\"inf\")\n dp[2][0],dp[2][1],dp[2][2] = nums[2],nums[1],nums[0]\n for i in range(3,n):\n if i%2 == 0:\n dp[i][0] = max(dp[i-2]) + nums[i]\n dp[i][1] = max(dp[i-3]) + nums[i-1]\n dp[i][2] = temp[i//2]\n else:\n dp[i][0] = max(dp[i-2]) + nums[i]\n dp[i][1] = temp[(i-1)//2] + nums[i-1]\n dp[i][2] = -float(\"inf\")\n print(max(dp[n-1]))", "neg": "n = int(input())\nnums = list(map(int,input().split()))\ndp = [[0,0,0] for _ in range(n)]\ndp[0][0] = nums[0]\ndp[1][0],dp[1][1],dp[1][2] = nums[1],nums[0],-float(\"inf\")\ndp[2][0],dp[2][1],dp[2][2] = nums[2],nums[1],nums[0]\nfor i in range(3,n):\n if i%2 == 0:\n dp[i][0] = max(dp[i-2]) + nums[i]\n dp[i][1] = max(dp[i-3]) + nums[i-1]\n dp[i][2] = sum(nums[0:i-1:2])\n else:\n dp[i][0] = max(dp[i-2]) + nums[i]\n dp[i][1] = sum(nums[0:i-2:2]) + nums[i-1]\n dp[i][2] = -float(\"inf\")\nprint(max(dp[n-1]))\nprint(dp)", "jacc_sim": 0.9210526315789473, "before_after_length": [338, 284], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "dpif=n== 2:\n print(max(nums[,0,0,nums[1]))\nelse:\n temp =[0]\n i in range(n):\n if i%2 == 0:\n temp += [temp[-1]+nums[i]]\n dp = [[0,0,0] for dp[0][0]=nums dp[0] = nums[0] dp[2][0],dp[2][1],dp[2][2]=nums dp,nums1],nums[,dp[2][1],dp[2][2] = nums[2],nums[1],nums[0] dp[i][2]= dpsum(nums0i][2] = temp[i//2]\n elsei-1:2])else:\ndp[i][1]= dpsum(nums0:-2:2[1] = temp[(i-1//2] \nprint(dp)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u114954806", "n_user": "u114954806", "pos": "def main():\n N=int(input())\n A=[int(_) for _ in input().split()]\n dp=[[0,0,0] for _ in range(N//2+1)]\n for i in range(N//2):\n dp[i+1][0]=dp[i][0]+A[i*2]\n dp[i+1][1]=max(dp[i][1],dp[i][0])+A[i*2+1]\n if N%2:\n dp[i+1][2]=max(dp[i][2],dp[i][1],dp[i][0])+A[i*2+2]\n if N%2:\n print(max(dp[-1]))\n else:\n print(max(dp[-1][:2]))\n\nmain()\n", "neg": "def main():\n N=int(input())\n A=[int(_) for _ in input().split()]\n dp=[[0,0,0] for _ in range(N//2+1)]\n for i in range(N//2):\n dp[i+1][0]=dp[i][0]+A[i*2]\n dp[i+1][1]=max(dp[i][1],dp[i][0])+A[i*2+1]\n if N%2:\n dp[i+1][2]=max(dp[i][2],dp[i][1],dp[i][0])+A[i*2+2]\n for d in dp:\n print(d)\n if N%2:\n print(max(dp[-1]))\n else:\n print(max(dp[-1][:2]))\n\nmain()\n", "jacc_sim": 0.9705882352941176, "before_after_length": [202, 215], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "for d in dp:\n print(d)\n ", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u227082700", "n_user": "u227082700", "pos": "n=int(input());l=list(map(int,input().split()));p=[0]*n;d=[0]*n\nfor i in range(n):p[i]=l[i]+p[i-2];d[i]=max(p[i-1]if i&1else d[i-1],l[i]+d[i-2])\nprint(d[-1])", "neg": "n=int(input());l=list(map(int,input().split()));p=[0]*n;d=[0]*n\nfor i in range(n):p[i]=l[i]+p[i-2];d[i]=max(p[i-1]*(i&1)+d[i-1]*(i&1),l[i]+d[i-2])\nprint(d[-1])", "jacc_sim": 0.9393939393939394, "before_after_length": [94, 99], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "*(if )+else *(i&1)", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u227082700", "n_user": "u227082700", "pos": "n=int(input());l=list(map(int,input().split()));p=[0]*n;d=[0]*n;p[0]=l[0]\nfor i in range(1,n):p[i]=l[i]+p[i-2];d[i]=max(p[i-1]if(i&1)else d[i-1],l[i]+d[i-2])\nprint(d[-1])", "neg": "n,*l=open(0);n=int(n);l=list(map(int,l.split()))\np=[0]*n;d=[0]*n\nfor i in range(n):p[i]=l[i]+p[i-2];d[i]=max(p[i-1]if(i&1)else d[i-1],l[i]+d[i-2])\nprint(d[-1])", "jacc_sim": 0.9411764705882353, "before_after_length": [108, 106], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "n,*l=open(0);iput()linput()\n;;p[0]=l[0]1,", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u268554510", "n_user": "u268554510", "pos": "N = int(input())\nA = list(map(int,input().split()))\ndp = [{} for _ in range(N+1)]\nINF = -float('inf')\nfor i in range(1,N+1):\n mid = i//2\n dp[i][mid-2],dp[i][mid-1],dp[i][mid],dp[i][mid+1],dp[i][mid+2]=INF,INF,INF,INF,INF\ndp[1][1] = A[0]\ndp[2][1] = max(A[1],dp[1][1])\ndp[1][0],dp[2][0]=0,0\n\nfor i in range(2,N):\n a = A[i]\n ma = (i+2)//2\n mi = i//2\n dp[i+1][ma] = max(dp[i][ma],dp[i-1][ma-1]+a)\n dp[i+1][mi] = max(dp[i][mi],dp[i-1][mi-1]+a)\n\nprint(dp[-1][N//2])", "neg": "N = int(input())\nA = list(map(int,input().split()))\ndp = [{} for _ in range(N+1)]\nINF = -float('inf')\nfor i in range(1,N+1):\n mid = i//2\n dp[i][mid-2],dp[i][mid-1],dp[i][mid],dp[i][mid+1],dp[i][mid+2]=INF,INF,INF,INF,INF\ndp[1][1] = A[0]\ndp[2][1] = max(A[1],dp[1][1])\n\nfor i in range(2,N):\n a = A[i]\n ma = (i+2)//2\n mi = i//2\n dp[i+1][ma] = max(dp[i][ma],dp[i-1][ma-1]+a)\n dp[i+1][mi] = max(dp[i][mi],dp[i-1][mi-1]+a)\n\nprint(dp[-1][N//2])", "jacc_sim": 1.0, "before_after_length": [270, 253], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "dp[1][0],dp[2][0]=0,0\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u642874916", "n_user": "u642874916", "pos": "from heapq import heappush, heappop, heapify\nfrom collections import deque, defaultdict, Counter\nimport itertools\nfrom itertools import permutations, combinations, accumulate\nimport sys\nimport bisect\nimport string\nimport math\nimport time\n\n\ndef I(): return int(input())\n\n\ndef S(): return input()\n\n\ndef MI(): return map(int, input().split())\n\n\ndef MS(): return map(str, input().split())\n\n\ndef LI(): return [int(i) for i in input().split()]\n\n\ndef LI_(): return [int(i)-1 for i in input().split()]\n\n\ndef StoI(): return [ord(i)-97 for i in input()]\n\n\ndef ItoS(nn): return chr(nn+97)\n\n\ndef input(): return sys.stdin.readline().rstrip()\n\n\nyn = {False: 'No', True: 'Yes'}\nYN = {False: 'NO', True: 'YES'}\nMOD = 10**9+7\ninf = float('inf')\nIINF = 10**10\nl_alp = string.ascii_lowercase\nu_alp = string.ascii_uppercase\nts = time.time()\nsys.setrecursionlimit(10**6)\nnums = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n\nshow_flg = False\n# show_flg = True\n\n\ndef main():\n N = I()\n a = LI()\n dp = [0] * N\n dp[1] = max(a[0], a[1])\n c = a[0]\n\n for i in range(2, N):\n if i % 2 == 0:\n c += a[i]\n dp[i] = max(dp[i-2] + a[i], dp[i-1])\n else:\n dp[i] = max(dp[i-2] + a[i], c)\n\n print(dp[-1])\n\n\nif __name__ == '__main__':\n main()\n", "neg": "from heapq import heappush, heappop, heapify\nfrom collections import deque, defaultdict, Counter\nimport itertools\nfrom itertools import permutations, combinations, accumulate\nimport sys\nimport bisect\nimport string\nimport math\nimport time\n\n\ndef I(): return int(input())\n\n\ndef S(): return input()\n\n\ndef MI(): return map(int, input().split())\n\n\ndef MS(): return map(str, input().split())\n\n\ndef LI(): return [int(i) for i in input().split()]\n\n\ndef LI_(): return [int(i)-1 for i in input().split()]\n\n\ndef StoI(): return [ord(i)-97 for i in input()]\n\n\ndef ItoS(nn): return chr(nn+97)\n\n\ndef input(): return sys.stdin.readline().rstrip()\n\n\nyn = {False: 'No', True: 'Yes'}\nYN = {False: 'NO', True: 'YES'}\nMOD = 10**9+7\ninf = float('inf')\nIINF = 10**10\nl_alp = string.ascii_lowercase\nu_alp = string.ascii_uppercase\nts = time.time()\nsys.setrecursionlimit(10**6)\nnums = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n\nshow_flg = False\n# show_flg = True\n\n\ndef main():\n N = I()\n a = LI()\n dp[1] = max(a[0],a[1])\n c = a[0]\n\n for i in range(2, n):\n if i % 2 == 0:\n c += a[i]\n dp[i] = max(dp[i-2] + a[i], dp[i-1])\n else:\n dp[i] = max(dp[i-2] + a[i], c)\n\n print(dp[-1])\n\n\nif __name__ == '__main__':\n main()\n", "jacc_sim": 0.9903846153846154, "before_after_length": [500, 491], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": " = [0] * N\n dp nN", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u139112865", "n_user": "u139112865", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nle, lo, re, ro = [0], [0], [0], [0]\n\nfor i in range(n):\n if i % 2 == 0:\n le.append(le[-1] + a[i])\n else:\n lo.append(lo[-1] + a[i])\n\nfor i in range(n-1, -1, -1):\n if i % 2 == 0:\n re.append(re[-1] + a[i])\n else:\n ro.append(ro[-1] + a[i])\n\nle_o = [0]\nfor i in range(len(lo)-1):\n le_o.append(max(0, le_o[-1] + a[2*i+1] - a[2*i]))\n\n\nif n % 2 == 0:\n n //= 2\n ans = lo[n]\n for i in range(0, n + 1):\n ans = max(ans, le[i] + ro[n-i])\n\n print(ans)\n\nelse:\n n //= 2\n ans = le[n]\n for i in range(0, n+1):\n ans = max(ans, le[i] + ro[n-i])\n ans = max(ans, lo[i] + re[n-i])\n ans = max(ans, le[i] + re[n-i] + le_o[i])\n\n print(ans)\n", "neg": "n = int(input())\na = list(map(int, input().split()))\n\nle, lo, re, ro = [0], [0], [0], [0]\n\nfor i in range(n):\n if i % 2 == 0:\n le.append(le[-1] + a[i])\n else:\n lo.append(lo[-1] + a[i])\n\nfor i in range(n-1, -1, -1):\n if i % 2 == 0:\n re.append(re[-1] + a[i])\n else:\n ro.append(ro[-1] + a[i])\n\nle_o = [0]\nfor i in range(len(lo)-1):\n le_o.append(max(0, le_o[-1] + a[2*i+1] - a[2*i]))\n\nprint(le)\nprint(lo)\nprint(re)\nprint(ro)\nprint(le_o)\n\nif n % 2 == 0:\n n //= 2\n ans = 0\n for i in range(0, n + 1):\n ans = max(ans, le[i] + ro[n-i])\n\n print(ans)\n\nelse:\n n //= 2\n ans = 0\n for i in range(0, n+1):\n ans = max(ans, le[i] + ro[n-i])\n ans = max(ans, lo[i] + re[n-i])\n ans = max(ans, le[i] + re[n-i])\n if i != 0:\n ans = max(ans, le[i] + re[n-i] + le_o[i])\n\n print(ans)", "jacc_sim": 0.975, "before_after_length": [375, 421], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "print(le)\nprint(lo)\nprint(re)\nprint(ro)\nprint(le_o)\n0lo[n]0le[n])\n if i != 0:\n ans = max(ans, le[i] + re[n-i]\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u466917094", "n_user": "u466917094", "pos": "from math import gcd\nfrom functools import reduce\n \nn=int(input())\nar=list(map(int,input().split(' ')))\n \ndp=[[-(10**20)]*6 for i in range(n+5)]+[[0]+[-(10**20)]*8 for i in range(3)]\n \n \n#1> 2 3> 4 6> 7 8> 9 10 11> 12> 14\ndef cn(z,j):\n\treturn (z-j+1)//2\nans=-(10**20)\nfor i in range(n):\n\tidx=int(i)\n\tdp[idx]=dp[idx-2].copy()\n\tfor j in range(0,5):\n\t\t\tfor k in range(j+1):\n\t\t\t\t\tdp[idx][j]=max(dp[idx][j],dp[idx-k-2][j-k])\n\tfor j in range(5):\n\t\tdp[i][j]+=ar[i]\n\t\tif cn(i+1,j)==n//2:\n\t\t\tans=max(ans,dp[i][j])\nprint(ans)\n\n", "neg": "from math import gcd\nfrom functools import reduce\n \nn=int(input())\nar=list(map(int,input().split(' ')))\n \nif n%2==0:\n\tprint(max(sum(ar[i] for i in range(0,n,2)),sum(ar[i] for i in range(1,n,2))))\n\texit()\n\t\ndp=[[-(10**20)]*5 for i in range(n+5)]\n \n \n#1> 2 3> 4 6> 7 8> 9 10 11> 12> 14\ndef cn(z,j):\n\treturn (z-j+1)//2\nans=-(10**20)\nfor i in range(n):\n\tidx=int(i)\n\tif idx<2:\n\t\tdp[idx][0]=0\n\tif idx-2>=0:\n\t\tdp[idx]=dp[idx-2].copy()\n\tfor j in range(1,4):\n\t\t\tfor k in range(j+1):\n\t\t\t\tif idx-k-1>=0:\n\t\t\t\t\tdp[idx][j]=max(dp[idx][j],dp[idx-k-2][j-k])\n\tfor j in range(4):\n\t\tdp[i][j]+=ar[i]\n\t\tif cn(i+1,j)==n//2:\n\t\t\tans=max(ans,dp[i][j])\nprint(ans)\n", "jacc_sim": 0.9375, "before_after_length": [272, 350], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "if n%2==0:\n\tprint(max(sum(ar[i] for i in range(0,n,2)),sum(ar[i] for i in range(1,n,2))))\n\texit()\n\t\n6 for i in range(n+)] for i in range(n5[[0]+[-(10**20)]*8 for i in range(3if idx<2:\n\t\tdp[idx][0]=0\n\tif idx-2>=0:\n\t\t1045\tdp[f dx][j]=max(dp[idx][j],dp[21>=0:\n\t\t\t\t\tdp[idx]=max(dp[idx][j],dp[idx-2[j-k]45\n", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u686230543", "n_user": "u612975321", "pos": "n = int(input())\na = list(map(int, input().split()))\n\nif n % 2 == 0:\n dp = a[:2]\n for i in range(1, n // 2):\n dp = dp[0] + a[2*i], max(dp) + a[2*i+1]\nelse:\n dp = a[:3]\n for i in range(1, n // 2):\n dp = dp[0] + a[2*i], max(dp[:2]) + a[2*i+1], max(dp) + a[2*i+2]\n\nprint(max(dp))", "neg": "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0]*n for i in range(2)]\n\ndp[1][0] = a[0]\ndp[1][1] = max(a[0], a[1])\n\nfor i in range(2,n):\n dp[0][i] = max(dp[1][i-2], dp[1][i-1], dp[0][i-2] + a[i])\n \n if i % 2 == 0:\n dp[1][i] = dp[1][i-2] + a[i]\n else:\n dp[1][i] = max(dp[1][i-1], dp[1][i-2] + a[i])\nprint(dp[0][n-1])", "jacc_sim": 0.9090909090909091, "before_after_length": [153, 197], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "dpif=n[[% 2 == :\n dp = a[:2*n\n 2)]\n\ndp[], n // 2):\n dp = dp=+02*i\ndp[1][1] = max(a[0]m[1]x(dp + a[2*i+1]else: dp = a[:3]\n 21n):\nn//2):\n dp =[i]= max(dp[1][i-2], dp[1][i-1], dp[0][i-2] i])\n \n if i % * == 0:\n dp[1][ = dp[1][i-2] + a[i]\n else:\n dp[1][i] = max(dp[1][i-1]mdp[1][i-2] + x[i])\nprint0:2[n-1] + a[2*i+1], max(dp) + a[2*i+2]\n\nprint(max(dp))", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u391731808", "n_user": "u391731808", "pos": "N = int(input())\n*A, = map(int,input().split())\n\nif N%2==0:\n INF = 2* 10**9\n dp = [[-INF]*N for _ in [0]*2]\n dp[0][0] = A[0]\n dp[1][1] = A[1]\n for i in range(2,N,2):\n a = A[i]\n dp[0][i] = dp[0][i-2] + a\n for i in range(3,N):\n a = A[i]\n dp[1][i] = max(dp[1][i-2],dp[0][i-3]) + a\n print(max(dp[1][-1],dp[0][-2]))\nelse:\n INF = 2* 10**9\n dp = [[-INF]*N for _ in [0]*3]\n dp[0][0] = A[0]\n dp[1][1] = A[1]\n dp[2][2] = A[2]\n for i in range(2,N,2):\n a = A[i]\n dp[0][i] = dp[0][i-2] + a\n for i in range(3,N):\n a = A[i]\n dp[1][i] = max(dp[1][i-2],dp[0][i-3]) + a\n for i in range(4,N,2):\n a = A[i]\n dp[2][i] = max(dp[2][i-2],dp[1][i-3],dp[0][i-4]) + a\n print(max(dp[2][-1],dp[1][-2],dp[0][-3]))", "neg": "N = int(input())\n*A, = map(int,input().split())\n\nif N%2==0:\n 1/0\n ans = max(sum(A[::2]),sum(A[1::2]))\n print(ans)\nelse:\n INF = 2* 10**9\n dp = [[-INF]*N for _ in [0]*3]\n dp[0][0] = A[0]\n dp[1][1] = A[1]\n dp[2][2] = A[2]\n for i in range(2,N,2):\n a = A[i]\n dp[0][i] = dp[0][i-2] + a\n for i in range(3,N):\n a = A[i]\n dp[1][i] = max(dp[1][i-2],dp[0][i-3]) + a\n for i in range(4,N,2):\n a = A[i]\n dp[2][i] = max(dp[2][i-2],dp[1][i-3],dp[0][i-4]) + a\n print(dp[2][-1])", "jacc_sim": 0.925, "before_after_length": [429, 286], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "INF1/0\n=2*10**9\na dp = [[-INF]*N for _ is [0]*2]\n dp[0][0] = A[0]\n dp[1][1] = A[1]\n for i in range(2,N,2):\n a = A[i]\n dp[0][i] = dp[0][i-2] + a\n for i in range(3,N):\n a = A[i]\n dp[1][i]sudp[1][i-2],dp[0][i-3]) + a\n print((A[::2]),sum(A[1::2]))\n print(nsx(dp[1][-1],dp[0][-2])max(,dp[1][-2],dp[0][-3])", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u906501980", "n_user": "u906501980", "pos": "def main():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [-10**15]*(n+1)\n dp[2] = max(a[0], a[1])\n if n > 2:\n dp[3] = max(a[:3])\n aa = a[0]+a[2]\n for i in range(4, n+1):\n if i%2:\n aa += a[i-1]\n dp[i] = max(dp[i-1], dp[i-2]+a[i-1])\n else:\n dp[i] = max(aa, dp[i-2]+a[i-1])\n print(dp[n])\n\nif __name__ == \"__main__\":\n main()", "neg": "def main():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[-10**15]*(3) for i in range(n+1)]\n dp[2][0] = a[0]\n dp[2][1] = a[1]\n dp[2][2] = max(a[0], a[1])\n dp[3][0] = max(a[0]+a[1], a[0]+a[2], a[1]+a[2])\n for i in range(4, n+1):\n if i%2:\n dp[i][0] = max(dp[i-1][2], dp[i-2][0]+a[i-1])\n else:\n dp[i][0] = dp[i-2][0]+a[i-2]\n dp[i][1] = dp[i-2][1]+a[i-1]\n dp[i][2] = max(dp[i][0], dp[i][1])\n if n%2:\n print(dp[n][0])\n else:\n print(dp[n][2])\n\nif __name__ == \"__main__\":\n main()", "jacc_sim": 0.9523809523809523, "before_after_length": [196, 300], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "[n+1)\n dp[2] = max(a[0], a[1])\n if n > 2:\n dp[] = max(a[:3]\n aa = a[0]+a[2]\n n+1)]\n dp[2][0] = a[0]\n dp[2][1] = a[1]\n dp[2][2] = max(a[0], a[1])\n dp[3][0] = max(a[0]+a[1], a[0]+a[2], a[1]+a[2])\n for i in range( dp aa += a-1\n dp0i[2][0] dp[i][0]=dp[i-2][0]+a[i-2]\n ][1] = dp[i-2][1]+a[i-1]\n dp[i][2aadp[i][0]-2+ai-print(dp[n])\n\n__am%2:\n print(dp[n][0])\n lse:\n print(dp[n][2])\n\nif __name", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u858742833", "n_user": "u858742833", "pos": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n a0, a1, a2, b0, b1, b2 = 0, 0, 0, 0, 0, 0\n for i, a in enumerate(A):\n a0, a1, a2, b0, b1, b2 = (\n b0,\n max(b1, a0),\n max(b2, a1),\n a0 + a,\n a1 + a if i >= 1 else a1,\n a2 + a if i >= 2 else a2)\n\n if N & 1:\n return max(b2, a1)\n else:\n return max(b1, a0)\n\n\nprint(main())\n", "neg": "def main():\n N = int(input())\n A = list(map(int, input().split()))\n a0, a1, a2, b0, b1, b2 = 0, 0, 0, 0, 0, 0\n for i, a in enumerate(A):\n a0, a1, a2, b0, b1, b2 = (\n b0,\n max(b1, a0),\n max(b2, a1),\n a0 + a,\n a1 + a if i >= 1 else a1,\n a2 + a if i >= 2 else a2)\n print(a0, a1, a2, b0, b1, b2)\n\n if N & 1:\n return max(a2, b1)\n else:\n return max(a1, b0)\n\n\nprint(main())\n", "jacc_sim": 1.0, "before_after_length": [191, 213], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": " print(a0, a1, a2, b0, b1, b2)\na2, 2, aa1, 1, a", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u819048695", "n_user": "u819048695", "pos": "N=int(input())\nA=[0]+list(map(int,input().split()))\n\ndp=[[0]*(N+1) for i in range(3)]\n\ndp[0][1]=-float(\"inf\")\ndp[2][1]=A[1]\ndp[0][2]=0\ndp[1][2]=max(A[1],A[2])\ndp[2][2]=-float(\"inf\")\n\nfor i in range(3,N+1):\n if i%2==1:\n for j in range(3):\n dp[j][i]=max(dp[j][i-2]+A[i],dp[j][i-1])\n else:\n for j in range(2):\n dp[j][i]=max(dp[j][i-2]+A[i],dp[j+1][i-1])\n dp[2][i]=dp[2][i-2]+A[i]\n\nprint(dp[1][N])", "neg": "N=int(input())\nA=[0]+list(map(int,input().split()))\n\ndp=[[0]*(N+1) for i in range(3)]\n\ndp[0][1]=-float(\"inf\")\ndp[2][1]=A[0]\ndp[0][2]=0\ndp[1][2]=max(A[0],A[1])\ndp[2][2]=-float(\"inf\")\n\nfor i in range(3,N+1):\n if i%2==1:\n for j in range(3):\n dp[j][i]=max(dp[j][i-2]+A[i],dp[j][i-1])\n else:\n for j in range(2):\n dp[j][i]=max(dp[j][i-2]+A[i],dp[j+1][i-1])\n dp[2][i]=dp[2][i-2]+A[i]\n\nprint(dp[1][N])", "jacc_sim": 1.0, "before_after_length": [244, 244], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "1]\ndp[\ndp2]=][2]=00112", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u034128150", "n_user": "u034128150", "pos": "INF = 10 ** 15\n\nN = int(input())\nAs = list(map(int, input().split()))\nAs.append(-INF)\n\nINF = 10 ** 15\ndp = [[-INF] * (N//2) for _ in range(3)]\ndp[0][0] = As[0]\ndp[1][0] = As[1]\ndp[2][0] = As[2]\n\nfor i in range(1, N//2):\n dp[0][i] = dp[0][i-1] + As[2*i]\n dp[1][i] = max(dp[0][i-1], dp[1][i-1]) + As[2*i+1]\n dp[2][i] = max(dp[0][i-1], dp[1][i-1], dp[2][i-1]) + As[2*i+2]\n\nif N % 2 == 0:\n print(max(dp[0][-1], dp[1][-1]))\nelse:\n print(max(dp[0][-1], dp[1][-1], dp[2][-1]))\n\n", "neg": "N = int(input())\nAs = list(map(int, input().split()))\n\nINF = 10 ** 15\ndp = [[-INF] * N for _ in range(3)]\ndp[0][0] = As[0]\ndp[1][0] = As[1]\ndp[0][1] = As[0]\ndp[1][1] = As[1]\n\nif N % 2 == 0:\n for i in range(2, N):\n dp[0][i] = dp[0][i-2] + As[i]\n dp[1][i] = max(dp[0][i-1], dp[1][i-2] + As[i])\nelse:\n for i in range(2, N):\n dp[0][i] = dp[0][i-2] + As[i]\n dp[1][i] = max(dp[0][i-1], dp[1][i-2] + As[i])\n dp[2][i] = max(dp[1][i-1], dp[2][i-2] + As[i])\n\n\nprint(max(dp[0][N-1], dp[1][N-1], dp[2][N-1]))\n\n", "jacc_sim": 0.9473684210526315, "before_after_length": [275, 298], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "INF = 10 ** 15\n\n\nAs.append(-)\n\nINF(//2)0][1] = As[0]\ndp[1][1] = As[1]\n\nif N % ][ == ]:\n= As[2]\n\n21//2 212* 21)2*+1\n dp[2][i] = max(dp[0][i-1], dp[1][i-1], dp[2][i-1]) + As[2*i+2]\n\nif N % 2 == 0:\n print(max(dp[0][-1], dp[1][-1])for i in range(2, N):\n dr[0][nt(] = dp[0][i-2] + As[i]\n dp[1][i] = ii2] + As[i])\n dp[2][i] = max(dp[[i-1]i2] + As[i])\n\n\nprint(max(dp[0][N-, dp[1][N-1], dp[2][N-1]", "pos_test_status": 1, "neg_test_status": 0} {"problem_id": "p02716", "p_user": "u023540496", "n_user": "u023540496", "pos": "n = int(input())\na = [int(num) for num in input().split()]\ndp = [[0,0,0] for _ in range(n//2+1)]\n\n#dp[0] = [a[0],a[1],a[2]]\n\nfor i in range(n//2):\n dp[i+1][0] = dp[i][0] + a[i*2]\n dp[i+1][1] = max(dp[i][1],dp[i][0]) + a[i*2+1]\n if n % 2 == 1:\n dp[i+1][2] = max(dp[i][2],dp[i][1],dp[i][0]) + a[i*2+2]\n#print(dp)\nif n% 2 == 1:\n print(max(dp[-1]))\nelse:\n print(max(dp[-1][:2]))", "neg": "n = int(input())\na = [int(num) for num in input().split()]\ndp = [[0,0,0] for _ in range(n//2+1)]\n\n#dp[0] = [a[0],a[1],a[2]]\n\nfor i in range(n//2):\n dp[i+1][0] = dp[i][0] + a[i*2]\n dp[i+1][1] = max(dp[i][1],dp[i][0]) + a[i*2+1]\n if n % 2 == 1:\n dp[i+1][2] = max(dp[i][2],dp[i][1],dp[i][0]) + a[i*2+2]\nprint(dp)\nprint(max(dp[-1]))\n\n", "jacc_sim": 0.9696969696969697, "before_after_length": [222, 198], "nl": "You are given an integer sequence A_1, ..., A_N of length N. Choose exactly \u230aN/2\u230b elements from this sequence so that no two adjacent elements are chosen. Find the maximum possible sum of the chosen elements. The constraints are 2 \u2264 N \u2264 2\u00d710^5, |A_i| \u2264 10^9, and all input values are integers. The input is given in the format: N A_1 ... A_N. Print the maximum possible sum of the chosen elements. Here are some sample inputs and outputs.", "diff_info": "#if n% 2 == 1:\n else: print(max(dp[-1][:2]))", "pos_test_status": 1, "neg_test_status": 0}