max_stars_repo_path
stringlengths
6
149
max_stars_repo_name
stringclasses
629 values
max_stars_count
int64
2.02k
191k
id
stringlengths
3
8
content
stringlengths
15
158k
violations
stringclasses
51 values
bugs
stringclasses
11 values
duplicated_lines_density
stringclasses
46 values
cognitive_complexity
stringclasses
117 values
vulnerabilities
stringclasses
3 values
code_smells
stringclasses
50 values
sqale_rating
stringclasses
4 values
security_hotspots
stringclasses
17 values
complexity
stringclasses
112 values
issues
listlengths
0
100
__index_level_0__
int64
2
13.3k
src/python/grpcio_tests/tests/unit/_cython/_server_test.py
warlock135/grpc
36,552
8047522
# Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test servers at the level of the Cython API.""" import threading import time import unittest from grpc._cython import cygrpc class Test(unittest.TestCase): def test_lonely_server(self): server_call_completion_queue = cygrpc.CompletionQueue() server_shutdown_completion_queue = cygrpc.CompletionQueue() server = cygrpc.Server(None, False) server.register_completion_queue(server_call_completion_queue) server.register_completion_queue(server_shutdown_completion_queue) port = server.add_http2_port(b'[::]:0') server.start() server_request_call_tag = 'server_request_call_tag' server_request_call_start_batch_result = server.request_call( server_call_completion_queue, server_call_completion_queue, server_request_call_tag) time.sleep(4) server_shutdown_tag = 'server_shutdown_tag' server_shutdown_result = server.shutdown( server_shutdown_completion_queue, server_shutdown_tag) server_request_call_event = server_call_completion_queue.poll() server_shutdown_event = server_shutdown_completion_queue.poll() if __name__ == '__main__': unittest.main(verbosity=2)
5
0
0.0
1
0
5
1.0
0
2
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 31, "message": "Remove the unused local variable \"port\".", "textRange": { "endLine": 31, "endOffset": 12, "startLine": 31, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 35, "message": "Remove the unused local variable \"server_request_call_start_batch_result\".", "textRange": { "endLine": 35, "endOffset": 46, "startLine": 35, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 42, "message": "Remove the unused local variable \"server_shutdown_result\".", "textRange": { "endLine": 42, "endOffset": 30, "startLine": 42, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 44, "message": "Remove the unused local variable \"server_request_call_event\".", "textRange": { "endLine": 44, "endOffset": 33, "startLine": 44, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 45, "message": "Remove the unused local variable \"server_shutdown_event\".", "textRange": { "endLine": 45, "endOffset": 29, "startLine": 45, "startOffset": 8 }, "type": "CODE_SMELL" } ]
4,926
desktop/core/ext-py/nose-1.3.7/examples/plugin/plug.py
kokosing/hue
5,079
3381786
<filename>desktop/core/ext-py/nose-1.3.7/examples/plugin/plug.py from nose.plugins import Plugin class ExamplePlugin(Plugin): pass
null
null
null
null
null
null
null
null
null
[]
2,918
tests/db_functions/math/test_log.py
Lord-Elrond/django
61,676
140063
<reponame>Lord-Elrond/django import math from decimal import Decimal from django.db.models.functions import Log from django.test import TestCase from ..models import DecimalModel, FloatModel, IntegerModel class LogTests(TestCase): def test_null(self): IntegerModel.objects.create(big=100) obj = IntegerModel.objects.annotate( null_log_small=Log('small', 'normal'), null_log_normal=Log('normal', 'big'), null_log_big=Log('big', 'normal'), ).first() self.assertIsNone(obj.null_log_small) self.assertIsNone(obj.null_log_normal) self.assertIsNone(obj.null_log_big) def test_decimal(self): DecimalModel.objects.create(n1=Decimal('12.9'), n2=Decimal('3.6')) obj = DecimalModel.objects.annotate(n_log=Log('n1', 'n2')).first() self.assertIsInstance(obj.n_log, Decimal) self.assertAlmostEqual(obj.n_log, Decimal(math.log(obj.n2, obj.n1))) def test_float(self): FloatModel.objects.create(f1=2.0, f2=4.0) obj = FloatModel.objects.annotate(f_log=Log('f1', 'f2')).first() self.assertIsInstance(obj.f_log, float) self.assertAlmostEqual(obj.f_log, math.log(obj.f2, obj.f1)) def test_integer(self): IntegerModel.objects.create(small=4, normal=8, big=2) obj = IntegerModel.objects.annotate( small_log=Log('small', 'big'), normal_log=Log('normal', 'big'), big_log=Log('big', 'big'), ).first() self.assertIsInstance(obj.small_log, float) self.assertIsInstance(obj.normal_log, float) self.assertIsInstance(obj.big_log, float) self.assertAlmostEqual(obj.small_log, math.log(obj.big, obj.small)) self.assertAlmostEqual(obj.normal_log, math.log(obj.big, obj.normal)) self.assertAlmostEqual(obj.big_log, math.log(obj.big, obj.big))
0
0
0.0
0
0
0
1.0
0
4
[]
863
sklearn/gaussian_process/tests/_mini_sequence_kernel.py
MaiRajborirug/scikit-learn
50,961
91634
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter from sklearn.gaussian_process.kernels import GenericKernelMixin from sklearn.gaussian_process.kernels import StationaryKernelMixin import numpy as np from sklearn.base import clone class MiniSeqKernel(GenericKernelMixin, StationaryKernelMixin, Kernel): """ A minimal (but valid) convolutional kernel for sequences of variable length. """ def __init__(self, baseline_similarity=0.5, baseline_similarity_bounds=(1e-5, 1)): self.baseline_similarity = baseline_similarity self.baseline_similarity_bounds = baseline_similarity_bounds @property def hyperparameter_baseline_similarity(self): return Hyperparameter( "baseline_similarity", "numeric", self.baseline_similarity_bounds ) def _f(self, s1, s2): return sum( [1.0 if c1 == c2 else self.baseline_similarity for c1 in s1 for c2 in s2] ) def _g(self, s1, s2): return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2]) def __call__(self, X, Y=None, eval_gradient=False): if Y is None: Y = X if eval_gradient: return ( np.array([[self._f(x, y) for y in Y] for x in X]), np.array([[[self._g(x, y)] for y in Y] for x in X]), ) else: return np.array([[self._f(x, y) for y in Y] for x in X]) def diag(self, X): return np.array([self._f(x, x) for x in X]) def clone_with_theta(self, theta): cloned = clone(self) cloned.theta = theta return cloned
3
0
0.0
5
0
3
1.0
0
11
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 32, "message": "Rename this parameter \"X\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 32, "endOffset": 24, "startLine": 32, "startOffset": 23 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 32, "message": "Rename this parameter \"Y\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 32, "endOffset": 27, "startLine": 32, "startOffset": 26 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 44, "message": "Rename this parameter \"X\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 44, "endOffset": 20, "startLine": 44, "startOffset": 19 }, "type": "CODE_SMELL" } ]
585
python/tvm/relay/op/vm/vm.py
XiaoSong9905/tvm
4,640
11348370
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return,invalid-name,len-as-condition,too-many-nested-blocks """Dialect operators for Relay VM.""" from . import _ffi_api def shape_of(expr): """Invoke a function to get the shape of a tensor. Parameters ---------- expr : tvm.relay.Expr The expr used to evaluate its tensor shape. Returns ------- result : tvm.relay.Expr The expression with the evaluated tensor shape. """ return _ffi_api.shape_of(expr) def invoke_tvm_op(func, inputs, outputs): """Call a primitive function with the TVM operator calling convention. Parameters ---------- func : tvm.relay.Expr The input expr. inputs : tvm.relay.Expr A tuple of the inputs to pass to the TVM function. outputs : tvm.relay.Expr A tuple of the outputs to pass to the TVM function. Returns ------- result : tvm.relay.Expr The invoke_tvm_op call node. """ return _ffi_api.invoke_tvm_op(func, inputs, outputs) def shape_func(func, inputs, outputs, is_inputs): """Invoke the shape function of the passed function. Parameters ---------- func : tvm.relay.Expr The primitive function from which to compute the shape function. inputs : tvm.relay.Tuple The tupled inputs. outputs : tvm.relay.Tuple The tupled outputs. is_inputs : List[bool] A boolean list indicating whether the shape function should expect shape or input at each position. Returns ------- result : tvm.relay.Expr The shape function expression. """ return _ffi_api.shape_func(func, inputs, outputs, is_inputs) def reshape_tensor(data, shape, newshape): """Invoke the VM ReshapeTensor instruction. Parameters ---------- data : tvm.relay.Expr The input data. shape : tvm.relay.Expr The newshape tensor. newshape : List[tvm.ir.PrimExpr] The new shape. """ return _ffi_api.reshape_tensor(data, shape, newshape)
0
0
0.0
0
0
0
1.0
0
4
[]
7,172
tests/sanic/conftest.py
TheVinhLuong102/Strawberry
2,062
11458546
<gh_stars>1000+ import pytest from .app import create_app @pytest.fixture def sanic_client(): yield create_app()
null
null
null
null
null
null
null
null
null
[]
9,616
libs/boxes/roi.py
wesen/FastMaskRCNN
3,509
11339840
<gh_stars>1000+ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim def roi_align(feat, boxes): """Given features and boxes, This function crops feature """ return def roi_cropping(feat, boxes, clses, anchors, spatial_scale=1.0/16): """This function computes final rpn boxes And crops areas from the incoming features """ return
8
0
0.0
0
0
8
2.0
0
2
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 10, "message": "Remove the unused function parameter \"feat\".", "textRange": { "endLine": 10, "endOffset": 18, "startLine": 10, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 10, "message": "Remove the unused function parameter \"boxes\".", "textRange": { "endLine": 10, "endOffset": 25, "startLine": 10, "startOffset": 20 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 12, "message": "Remove this redundant return.", "textRange": { "endLine": 12, "endOffset": 8, "startLine": 12, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 14, "message": "Remove the unused function parameter \"feat\".", "textRange": { "endLine": 14, "endOffset": 21, "startLine": 14, "startOffset": 17 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 14, "message": "Remove the unused function parameter \"clses\".", "textRange": { "endLine": 14, "endOffset": 35, "startLine": 14, "startOffset": 30 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 14, "message": "Remove the unused function parameter \"anchors\".", "textRange": { "endLine": 14, "endOffset": 44, "startLine": 14, "startOffset": 37 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 14, "message": "Remove the unused function parameter \"spatial_scale\".", "textRange": { "endLine": 14, "endOffset": 66, "startLine": 14, "startOffset": 46 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 18, "message": "Remove this redundant return.", "textRange": { "endLine": 18, "endOffset": 8, "startLine": 18, "startOffset": 2 }, "type": "CODE_SMELL" } ]
7,121
desktop/core/ext-py/repoze.who-2.3/repoze/who/plugins/auth_tkt.py
kokosing/hue
5,079
1667072
import datetime from codecs import utf_8_decode from codecs import utf_8_encode import hashlib import os import time from wsgiref.handlers import _monthname # Locale-independent, RFC-2616 from wsgiref.handlers import _weekdayname # Locale-independent, RFC-2616 try: from urllib.parse import urlencode, parse_qsl except ImportError: from urllib import urlencode from urlparse import parse_qsl from zope.interface import implementer from repoze.who.interfaces import IIdentifier from repoze.who.interfaces import IAuthenticator from repoze.who._compat import get_cookies import repoze.who._auth_tkt as auth_tkt from repoze.who._compat import STRING_TYPES _UTCNOW = None # unit tests can replace def _utcnow(): #pragma NO COVERAGE if _UTCNOW is not None: return _UTCNOW return datetime.datetime.utcnow() @implementer(IIdentifier, IAuthenticator) class AuthTktCookiePlugin(object): userid_typename = 'userid_type' userid_type_decoders = {'int': int, 'unicode': lambda x: utf_8_decode(x)[0], } userid_type_encoders = {int: ('int', str), } try: userid_type_encoders[long] = ('int', str) except NameError: #pragma NO COVER Python >= 3.0 pass try: userid_type_encoders[unicode] = ('unicode', lambda x: utf_8_encode(x)[0]) except NameError: #pragma NO COVER Python >= 3.0 pass def __init__(self, secret, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, userid_checker=None, digest_algo=auth_tkt.DEFAULT_DIGEST): self.secret = secret self.cookie_name = cookie_name self.include_ip = include_ip self.secure = secure if timeout and ( (not reissue_time) or (reissue_time > timeout) ): raise ValueError('When timeout is specified, reissue_time must ' 'be set to a lower value') self.timeout = timeout self.reissue_time = reissue_time self.userid_checker = userid_checker self.digest_algo = digest_algo # IIdentifier def identify(self, environ): cookies = get_cookies(environ) cookie = cookies.get(self.cookie_name) if cookie is None or not cookie.value: return None if self.include_ip: remote_addr = environ['REMOTE_ADDR'] else: remote_addr = '0.0.0.0' try: timestamp, userid, tokens, user_data = auth_tkt.parse_ticket( self.secret, cookie.value, remote_addr, self.digest_algo) except auth_tkt.BadTicket: return None if self.timeout and ( (timestamp + self.timeout) < time.time() ): return None user_data_dict = dict(parse_qsl(user_data)) userid_type = user_data_dict.get(self.userid_typename) if userid_type: decoder = self.userid_type_decoders.get(userid_type) if decoder: userid = decoder(userid) environ['REMOTE_USER_TOKENS'] = tokens environ['REMOTE_USER_DATA'] = user_data environ['AUTH_TYPE'] = 'cookie' identity = {} identity['timestamp'] = timestamp identity['repoze.who.plugins.auth_tkt.userid'] = userid identity['tokens'] = tokens identity['userdata'] = user_data_dict return identity # IIdentifier def forget(self, environ, identity): # return a set of expires Set-Cookie headers return self._get_cookies(environ, 'INVALID', 0) # IIdentifier def remember(self, environ, identity): if self.include_ip: remote_addr = environ['REMOTE_ADDR'] else: remote_addr = '0.0.0.0' cookies = get_cookies(environ) old_cookie = cookies.get(self.cookie_name) existing = cookies.get(self.cookie_name) old_cookie_value = getattr(existing, 'value', None) max_age = identity.get('max_age', None) timestamp, userid, tokens, userdata = None, '', (), '' if old_cookie_value: try: timestamp,userid,tokens,userdata = auth_tkt.parse_ticket( self.secret, old_cookie_value, remote_addr, self.digest_algo) except auth_tkt.BadTicket: pass tokens = tuple(tokens) who_userid = identity['repoze.who.userid'] who_tokens = tuple(identity.get('tokens', ())) who_userdata_dict = identity.get('userdata', {}) encoding_data = self.userid_type_encoders.get(type(who_userid)) if encoding_data: encoding, encoder = encoding_data who_userid = encoder(who_userid) who_userdata_dict[self.userid_typename] = encoding who_userdata = urlencode(who_userdata_dict) old_data = (userid, tokens, userdata) new_data = (who_userid, who_tokens, who_userdata) if old_data != new_data or (self.reissue_time and ( (timestamp + self.reissue_time) < time.time() )): ticket = auth_tkt.AuthTicket( self.secret, who_userid, remote_addr, tokens=who_tokens, user_data=who_userdata, cookie_name=self.cookie_name, secure=self.secure, digest_algo=self.digest_algo) new_cookie_value = ticket.cookie_value() if old_cookie_value != new_cookie_value: # return a set of Set-Cookie headers return self._get_cookies(environ, new_cookie_value, max_age) # IAuthenticator def authenticate(self, environ, identity): userid = identity.get('repoze.who.plugins.auth_tkt.userid') if userid is None: return None if self.userid_checker and not self.userid_checker(userid): return None identity['repoze.who.userid'] = userid return userid def _get_cookies(self, environ, value, max_age=None): if max_age is not None: max_age = int(max_age) later = _utcnow() + datetime.timedelta(seconds=max_age) # Wdy, DD-Mon-YY HH:MM:SS GMT expires = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % ( _weekdayname[later.weekday()], later.day, _monthname[later.month], later.year, later.hour, later.minute, later.second, ) # the Expires header is *required* at least for IE7 (IE7 does # not respect Max-Age) max_age = "; Max-Age=%s; Expires=%s" % (max_age, expires) else: max_age = '' secure = '' if self.secure: secure = '; secure; HttpOnly' cur_domain = environ.get('HTTP_HOST', environ.get('SERVER_NAME')) cur_domain = cur_domain.split(':')[0] # drop port wild_domain = '.' + cur_domain cookies = [ ('Set-Cookie', '%s="%s"; Path=/%s%s' % ( self.cookie_name, value, max_age, secure)), ('Set-Cookie', '%s="%s"; Path=/; Domain=%s%s%s' % ( self.cookie_name, value, cur_domain, max_age, secure)), ('Set-Cookie', '%s="%s"; Path=/; Domain=%s%s%s' % ( self.cookie_name, value, wild_domain, max_age, secure)) ] return cookies def __repr__(self): return '<%s %s>' % (self.__class__.__name__, id(self)) #pragma NO COVERAGE def _bool(value): if isinstance(value, STRING_TYPES): return value.lower() in ('yes', 'true', '1') return value def make_plugin(secret=None, secretfile=None, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, userid_checker=None, digest_algo=auth_tkt.DEFAULT_DIGEST, ): from repoze.who.utils import resolveDotted if (secret is None and secretfile is None): raise ValueError("One of 'secret' or 'secretfile' must not be None.") if (secret is not None and secretfile is not None): raise ValueError("Specify only one of 'secret' or 'secretfile'.") if secretfile: secretfile = os.path.abspath(os.path.expanduser(secretfile)) if not os.path.exists(secretfile): raise ValueError("No such 'secretfile': %s" % secretfile) with open(secretfile) as f: secret = f.read().strip() if timeout: timeout = int(timeout) if reissue_time: reissue_time = int(reissue_time) if userid_checker is not None: userid_checker = resolveDotted(userid_checker) if isinstance(digest_algo, str): try: digest_algo = getattr(hashlib, digest_algo) except AttributeError: raise ValueError("No such 'digest_algo': %s" % digest_algo) plugin = AuthTktCookiePlugin(secret, cookie_name, _bool(secure), _bool(include_ip), timeout, reissue_time, userid_checker, digest_algo, ) return plugin
3
0
0.0
48
0
3
1.0
0
44
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 106, "message": "Remove the unused function parameter \"identity\".", "textRange": { "endLine": 106, "endOffset": 38, "startLine": 106, "startOffset": 30 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 118, "message": "Remove the unused local variable \"old_cookie\".", "textRange": { "endLine": 118, "endOffset": 18, "startLine": 118, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 167, "message": "Remove the unused function parameter \"environ\".", "textRange": { "endLine": 167, "endOffset": 34, "startLine": 167, "startOffset": 27 }, "type": "CODE_SMELL" } ]
1,454
bokeh/server/django/__init__.py
g-parki/bokeh
15,193
6771486
<filename>bokeh/server/django/__init__.py # Bokeh imports from bokeh.util.dependencies import import_required # Bokeh imports from .apps import DjangoBokehConfig from .routing import autoload, directory, document from .static import static_extensions import_required("django", "django is required by bokeh.server.django") import_required("channels", "The package channels is required by bokeh.server.django and must be installed") default_app_config = "bokeh.server.django.DjangoBokehConfig"
0
0
0.0
0
0
0
1.0
0
0
[]
9,179
packages/python/plotly/plotly/tests/test_optional/test_px/test_colors.py
mastermind88/plotly.py
11,750
4327666
<gh_stars>1000+ import plotly.express as px def test_reversed_colorscale(): fig1 = px.scatter( x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale="plasma_r" ) fig2 = px.scatter(x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale="plasma") colors1 = [val[1] for val in fig1.layout.coloraxis.colorscale] colors2 = [val[1] for val in fig2.layout.coloraxis.colorscale] assert colors1 == colors2[::-1] fig1 = px.scatter( x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale=px.colors.sequential.Plasma, ) fig2 = px.scatter( x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale=px.colors.sequential.Plasma_r, ) colors1 = [val[1] for val in fig1.layout.coloraxis.colorscale] colors2 = [val[1] for val in fig2.layout.coloraxis.colorscale] assert colors1 == colors2[::-1]
0
0
0.0
0
0
0
1.0
0
1
[]
13,235
apps/opencv_stitching_tool/opencv_stitching/image_handler.py
nowireless/opencv
56,632
11523688
<reponame>nowireless/opencv import cv2 as cv from .megapix_downscaler import MegapixDownscaler from .stitching_error import StitchingError class ImageHandler: DEFAULT_MEDIUM_MEGAPIX = 0.6 DEFAULT_LOW_MEGAPIX = 0.1 DEFAULT_FINAL_MEGAPIX = -1 def __init__(self, medium_megapix=DEFAULT_MEDIUM_MEGAPIX, low_megapix=DEFAULT_LOW_MEGAPIX, final_megapix=DEFAULT_FINAL_MEGAPIX): if medium_megapix < low_megapix: raise StitchingError("Medium resolution megapix need to be " "greater or equal than low resolution " "megapix") self.medium_scaler = MegapixDownscaler(medium_megapix) self.low_scaler = MegapixDownscaler(low_megapix) self.final_scaler = MegapixDownscaler(final_megapix) self.scales_set = False self.img_names = [] self.img_sizes = [] def set_img_names(self, img_names): self.img_names = img_names def resize_to_medium_resolution(self): return self.read_and_resize_imgs(self.medium_scaler) def resize_to_low_resolution(self, medium_imgs=None): if medium_imgs and self.scales_set: return self.resize_medium_to_low(medium_imgs) return self.read_and_resize_imgs(self.low_scaler) def resize_to_final_resolution(self): return self.read_and_resize_imgs(self.final_scaler) def read_and_resize_imgs(self, scaler): for img, size in self.input_images(): yield self.resize_img_by_scaler(scaler, size, img) def resize_medium_to_low(self, medium_imgs): for img, size in zip(medium_imgs, self.img_sizes): yield self.resize_img_by_scaler(self.low_scaler, size, img) @staticmethod def resize_img_by_scaler(scaler, size, img): desired_size = scaler.get_scaled_img_size(size) return cv.resize(img, desired_size, interpolation=cv.INTER_LINEAR_EXACT) def input_images(self): self.img_sizes = [] for name in self.img_names: img = self.read_image(name) size = self.get_image_size(img) self.img_sizes.append(size) self.set_scaler_scales() yield img, size @staticmethod def get_image_size(img): """(width, height)""" return (img.shape[1], img.shape[0]) @staticmethod def read_image(img_name): img = cv.imread(img_name) if img is None: raise StitchingError("Cannot read image " + img_name) return img def set_scaler_scales(self): if not self.scales_set: first_img_size = self.img_sizes[0] self.medium_scaler.set_scale_by_img_size(first_img_size) self.low_scaler.set_scale_by_img_size(first_img_size) self.final_scaler.set_scale_by_img_size(first_img_size) self.scales_set = True def get_medium_to_final_ratio(self): return self.final_scaler.scale / self.medium_scaler.scale def get_medium_to_low_ratio(self): return self.low_scaler.scale / self.medium_scaler.scale def get_final_to_low_ratio(self): return self.low_scaler.scale / self.final_scaler.scale
0
0
0.0
8
0
0
1.0
0
23
[]
9,912
poem/cv_mim/pipelines.py
DionysisChristopoulos/google-research
23,901
11274825
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements pipeline utility functions.""" import math import tensorflow as tf from poem.core import common from poem.core import input_generator from poem.core import keypoint_utils from poem.core import tfe_input_layer def create_dataset_from_tables( input_table_patterns, batch_sizes, num_instances_per_record, shuffle=False, num_epochs=None, drop_remainder=False, keypoint_names_3d=None, keypoint_names_2d=None, feature_dim=None, num_classes=None, num_frames=None, shuffle_buffer_size=4096, num_shards=1, shard_index=None, common_module=common, dataset_class=tf.data.TFRecordDataset, input_example_parser_creator=tfe_input_layer.create_tfe_parser, seed=None): """Reads data from tf.Example table. Note that this function mainly duplicates `read_batch_from_tfe_tables` in `v1.pipeline_utils.py` for compatible with tf2. IMPORTANT: We assume that 2D keypoints from the input have been normalized by image size. No normalization is expected and no denormalization will be performed for both 2D and 3D keypoints. Args: input_table_patterns: A list of strings for the paths or pattern to input tables. batch_sizes: A list of integers for the batch sizes to read from each table. num_instances_per_record: An integer for the number of instances per tf.Example record. shuffle: A boolean for whether to shuffle batch. num_epochs: An integer for the number of epochs to read. Use `None` to read indefinitely. drop_remainder: A boolean for whether to drop remainder batch. keypoint_names_3d: A list of strings for 3D keypoint names to read (coordinates). Use None to skip reading 2D keypoints. keypoint_names_2d: A list of strings for 2D keypoint names to read (coordinates and scores). Use None to skip reading 2D keypoints. feature_dim: An integer for size of pre-computed feature vectors. Use None to skip reading feature vectors. num_classes: An integer for total number of classification label classes to read labels for. Use None to skip reading class labels. num_frames: An integer for the number of frames per object each example has. Use None to skip adding the frame dimension. shuffle_buffer_size: An integer for the buffer size used for shuffling. A large buffer size benefits shuffling quality. num_shards: An integer for the number of shards to divide the dataset. This is useful to distributed training. See `tf.data.Dataset.shard` for details. shard_index: An integer for the shard index to use. This is useful to distributed training, and should usually be set to the id of a synchronized worker. See `tf.data.Dataset.shard` for details. Note this must be specified if `num_shards` is greater than 1. common_module: A Python module that defines common constants. dataset_class: A dataset class to use. Must match input table type. input_example_parser_creator: A function handle for creating parser function. seed: An integer for random seed. Returns: A tf.data.Dataset object. """ parser_kwargs = { 'num_objects': num_instances_per_record, } if keypoint_names_3d: parser_kwargs.update({ 'keypoint_names_3d': keypoint_names_3d, 'include_keypoint_scores_3d': False, }) if keypoint_names_2d: parser_kwargs.update({ 'keypoint_names_2d': keypoint_names_2d, 'include_keypoint_scores_2d': True, }) if feature_dim: parser_kwargs.update({ 'feature_dim': feature_dim, }) if num_classes: parser_kwargs.update({ 'num_classes': num_classes, }) if num_frames: parser_kwargs.update({ 'sequence_length': num_frames, }) parser_fn = input_example_parser_creator( common_module=common_module, **parser_kwargs) dataset = tfe_input_layer.read_batch_from_tables( input_table_patterns, batch_sizes=batch_sizes, drop_remainder=drop_remainder, num_epochs=num_epochs, num_shards=num_shards, shard_index=shard_index, shuffle=shuffle, shuffle_buffer_size=shuffle_buffer_size, seed=seed, dataset_class=dataset_class, parser_fn=parser_fn) return dataset def create_model_input(inputs, model_input_keypoint_type, keypoint_profile_2d=None, keypoint_profile_3d=None, normalize_keypoints_2d=True, min_keypoint_score_2d=-1.0, azimuth_range=(-math.pi, math.pi), elevation_range=(-math.pi / 6.0, math.pi / 6.0), roll_range=(-math.pi / 6.0, math.pi / 6.0), seed=None): """Creates model input features (2D keypoints) from input keypoints. Note that this function mainly duplicates `create_model_input` in `v1.input_generator.py` for compatible with tf2. IMPORTANT: We assume that 2D keypoints from the inputs have been normalized by image size. This function will reads image sizes from the input and denormalize the 2D keypoints with them. No normalization is expected and no denormalization will be performed for 3D keypoints. Args: inputs: A dictionary for tensor inputs. model_input_keypoint_type: An enum string for model input keypoint type. See `MODEL_INPUT_KEYPOINT_TYPE_*` for supported values. keypoint_profile_2d: A KeypointProfile2D object for input 2D keypoints. Required for normalizing 2D keypoints. Also required when 3D-to-2D projection is involved. keypoint_profile_3d: A KeypointProfile3D object for input 3D keypoints. Only used when 3D-to-2D projection is involved. normalize_keypoints_2d: A boolean for whether to normalize 2D keypoints at the end. min_keypoint_score_2d: A float for the minimum score to consider a 2D keypoint as invalid. azimuth_range: A tuple for minimum and maximum azimuth angles to randomly rotate 3D keypoints with. elevation_range: A tuple for minimum and maximum elevation angles to randomly rotate 3D keypoints with. roll_range: A tuple for minimum and maximum roll angles to randomly rotate 3D keypoints with. seed: An integer for random seed. Returns: features: A tensor for input features. Shape = [..., feature_dim]. side_outputs: A dictionary for side outputs, which includes `offset_points_2d` (shape = [..., 1, 2]) and `scale_distances_2d` (shape = [..., 1, 1]) if `normalize_keypoints_2d` is True. """ keypoints_2d = keypoint_utils.denormalize_points_by_image_size( inputs[common.KEY_KEYPOINTS_2D], image_sizes=inputs[common.KEY_IMAGE_SIZES]) keypoint_scores_2d = inputs[common.KEY_KEYPOINT_SCORES_2D] if min_keypoint_score_2d < 0.0: keypoint_masks_2d = tf.ones_like(keypoint_scores_2d, dtype=tf.float32) else: keypoint_masks_2d = tf.cast( tf.math.greater_equal(keypoint_scores_2d, min_keypoint_score_2d), dtype=tf.float32) keypoints_3d = inputs.get(common.KEY_KEYPOINTS_3D, None) features, side_outputs = input_generator.create_model_input( keypoints_2d, keypoint_masks_2d, keypoints_3d, model_input_keypoint_type, normalize_keypoints_2d=normalize_keypoints_2d, keypoint_profile_2d=keypoint_profile_2d, keypoint_profile_3d=keypoint_profile_3d, azimuth_range=azimuth_range, elevation_range=elevation_range, roll_range=roll_range, seed=seed) # IMPORTANT: It is better not to modify `inputs` in TF2. Instead, we save # results in the `side_outputs` for further computation. side_outputs.update({ common.KEY_KEYPOINTS_2D: keypoints_2d, common.KEY_KEYPOINT_MASKS_2D: keypoint_masks_2d }) return features, side_outputs
1
0
0.0
7
0
1
1.0
0
8
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 29, "message": "Function \"create_dataset_from_tables\" has 18 parameters, which is greater than the 13 authorized.", "textRange": { "endLine": 46, "endOffset": 13, "startLine": 29, "startOffset": 4 }, "type": "CODE_SMELL" } ]
6,733
torch_geometric/nn/acts.py
NucciTheBoss/pytorch_geometric
12,651
178744
<reponame>NucciTheBoss/pytorch_geometric<gh_stars>1000+ def swish(x): return x * x.sigmoid()
0
0
0.0
0
0
0
1.0
0
1
[]
1,099
recipes/Python/578535_lndirpy_short_pythversiBSDX11_lndir/recipe-578535.py
tdiprima/code
2,023
4071122
#!/usr/bin/env python ################################################################################ # # # Copyright (c) 2013, Mike 'Fuzzy' Partin <<EMAIL>> # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions are met: # # # # 1. Redistributions of source code must retain the above copyright notice, # # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # # this list of conditions and the following disclaimer in the documentation # # and/or other materials provided with the distribution. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # # # The views and conclusions contained in the software and documentation are # # those of the authors and should not be interpreted as representing official # # policies, either expressed or implied, of the FreeBSD Project. # # # ################################################################################ ################################################################################ ### Module imports ### ################################################################################ # Stdlib import os import re import sys import types ################################################################################ ### Main logic and argument handling ### ################################################################################ try: if __name__ == '__main__': ### check to see that all args are present on the command line ############################################################## if len(sys.argv) < 3: print("Usage: %s <src>/ <dst>/" % sys.argv[0]) sys.exit(1) else: ### check to see that source and destination targets exist ########################################################## for i in [str(sys.argv[1]), str(sys.argv[2])]: if not os.path.isdir(i): raise OSError("ERROR: %s is not a valid directory." % i) ### Setup some convenience src = str(sys.argv[1]) dst = str(sys.argv[2]) src_b = None if len(sys.argv) == 4: src_b = sys.argv[3] if src_b == None: if src[-1:] == '/': src_b = os.path.basename(src[:-1]) else: src_b = os.path.basename(src) ### start walking the source target ################################### dirs_c = 0 # counter for dires file_c = 0 # counter for files for root, dirs, files in os.walk(src): for i in files: os.symlink('%s/%s' % (root, i), '%s%s/%s' % (dst, re.sub(src, '', root), i)) file_c += 1 for i in dirs: try: os.mkdir('%s%s/%s' % (dst, re.sub(src, '', root), i)) except OSError: pass dirs_c += 1 sys.stdout.write('> %-53s %6d dirs %6d files\r' % ( src_b[:52], # basename of src dirs_c, # Dir count file_c)) # File count sys.stdout.flush() sys.stdout.write('> %-53s %6d dirs %6d files\n' % ( src_b[:52], # basename of src dirs_c, # Dir count file_c)) # File count sys.stdout.flush() except OSError as msg: print(msg) sys.exit(0)
1
0
0.0
39
0
1
1.0
0
10
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 74, "message": "Use `endswith` here.", "textRange": { "endLine": 74, "endOffset": 26, "startLine": 74, "startOffset": 11 }, "type": "CODE_SMELL" } ]
12,834
tests/components/image_processing/test_init.py
MrDelik/core
30,023
6472508
<reponame>MrDelik/core<gh_stars>1000+ """The tests for the image_processing component.""" from unittest.mock import PropertyMock, patch import pytest import homeassistant.components.http as http import homeassistant.components.image_processing as ip from homeassistant.const import ATTR_ENTITY_PICTURE from homeassistant.exceptions import HomeAssistantError from homeassistant.setup import async_setup_component from tests.common import assert_setup_component, async_capture_events from tests.components.image_processing import common @pytest.fixture def aiohttp_unused_port(loop, aiohttp_unused_port, socket_enabled): """Return aiohttp_unused_port and allow opening sockets.""" return aiohttp_unused_port def get_url(hass): """Return camera url.""" state = hass.states.get("camera.demo_camera") return f"{hass.config.internal_url}{state.attributes.get(ATTR_ENTITY_PICTURE)}" async def setup_image_processing(hass, aiohttp_unused_port): """Set up things to be run when tests are started.""" await async_setup_component( hass, http.DOMAIN, {http.DOMAIN: {http.CONF_SERVER_PORT: aiohttp_unused_port()}}, ) config = {ip.DOMAIN: {"platform": "test"}, "camera": {"platform": "demo"}} await async_setup_component(hass, ip.DOMAIN, config) await hass.async_block_till_done() async def setup_image_processing_alpr(hass): """Set up things to be run when tests are started.""" config = {ip.DOMAIN: {"platform": "demo"}, "camera": {"platform": "demo"}} await async_setup_component(hass, ip.DOMAIN, config) await hass.async_block_till_done() return async_capture_events(hass, "image_processing.found_plate") async def setup_image_processing_face(hass): """Set up things to be run when tests are started.""" config = {ip.DOMAIN: {"platform": "demo"}, "camera": {"platform": "demo"}} await async_setup_component(hass, ip.DOMAIN, config) await hass.async_block_till_done() return async_capture_events(hass, "image_processing.detect_face") async def test_setup_component(hass): """Set up demo platform on image_process component.""" config = {ip.DOMAIN: {"platform": "demo"}} with assert_setup_component(1, ip.DOMAIN): assert await async_setup_component(hass, ip.DOMAIN, config) async def test_setup_component_with_service(hass): """Set up demo platform on image_process component test service.""" config = {ip.DOMAIN: {"platform": "demo"}} with assert_setup_component(1, ip.DOMAIN): assert await async_setup_component(hass, ip.DOMAIN, config) assert hass.services.has_service(ip.DOMAIN, "scan") @patch( "homeassistant.components.demo.camera.Path.read_bytes", return_value=b"Test", ) async def test_get_image_from_camera( mock_camera_read, hass, aiohttp_unused_port, enable_custom_integrations ): """Grab an image from camera entity.""" await setup_image_processing(hass, aiohttp_unused_port) common.async_scan(hass, entity_id="image_processing.test") await hass.async_block_till_done() state = hass.states.get("image_processing.test") assert mock_camera_read.called assert state.state == "1" assert state.attributes["image"] == b"Test" @patch( "homeassistant.components.camera.async_get_image", side_effect=HomeAssistantError(), ) async def test_get_image_without_exists_camera( mock_image, hass, aiohttp_unused_port, enable_custom_integrations ): """Try to get image without exists camera.""" await setup_image_processing(hass, aiohttp_unused_port) hass.states.async_remove("camera.demo_camera") common.async_scan(hass, entity_id="image_processing.test") await hass.async_block_till_done() state = hass.states.get("image_processing.test") assert mock_image.called assert state.state == "0" async def test_alpr_event_single_call(hass, aioclient_mock): """Set up and scan a picture and test plates from event.""" alpr_events = await setup_image_processing_alpr(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_alpr") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_alpr") assert len(alpr_events) == 4 assert state.state == "AC3829" event_data = [ event.data for event in alpr_events if event.data.get("plate") == "AC3829" ] assert len(event_data) == 1 assert event_data[0]["plate"] == "AC3829" assert event_data[0]["confidence"] == 98.3 assert event_data[0]["entity_id"] == "image_processing.demo_alpr" async def test_alpr_event_double_call(hass, aioclient_mock): """Set up and scan a picture and test plates from event.""" alpr_events = await setup_image_processing_alpr(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_alpr") common.async_scan(hass, entity_id="image_processing.demo_alpr") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_alpr") assert len(alpr_events) == 4 assert state.state == "AC3829" event_data = [ event.data for event in alpr_events if event.data.get("plate") == "AC3829" ] assert len(event_data) == 1 assert event_data[0]["plate"] == "AC3829" assert event_data[0]["confidence"] == 98.3 assert event_data[0]["entity_id"] == "image_processing.demo_alpr" @patch( "homeassistant.components.demo.image_processing.DemoImageProcessingAlpr.confidence", new_callable=PropertyMock(return_value=95), ) async def test_alpr_event_single_call_confidence(confidence_mock, hass, aioclient_mock): """Set up and scan a picture and test plates from event.""" alpr_events = await setup_image_processing_alpr(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_alpr") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_alpr") assert len(alpr_events) == 2 assert state.state == "AC3829" event_data = [ event.data for event in alpr_events if event.data.get("plate") == "AC3829" ] assert len(event_data) == 1 assert event_data[0]["plate"] == "AC3829" assert event_data[0]["confidence"] == 98.3 assert event_data[0]["entity_id"] == "image_processing.demo_alpr" async def test_face_event_call(hass, aioclient_mock): """Set up and scan a picture and test faces from event.""" face_events = await setup_image_processing_face(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_face") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_face") assert len(face_events) == 2 assert state.state == "Hans" assert state.attributes["total_faces"] == 4 event_data = [ event.data for event in face_events if event.data.get("name") == "Hans" ] assert len(event_data) == 1 assert event_data[0]["name"] == "Hans" assert event_data[0]["confidence"] == 98.34 assert event_data[0]["gender"] == "male" assert event_data[0]["entity_id"] == "image_processing.demo_face" @patch( "homeassistant.components.demo.image_processing." "DemoImageProcessingFace.confidence", new_callable=PropertyMock(return_value=None), ) async def test_face_event_call_no_confidence(mock_config, hass, aioclient_mock): """Set up and scan a picture and test faces from event.""" face_events = await setup_image_processing_face(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_face") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_face") assert len(face_events) == 3 assert state.state == "4" assert state.attributes["total_faces"] == 4 event_data = [ event.data for event in face_events if event.data.get("name") == "Hans" ] assert len(event_data) == 1 assert event_data[0]["name"] == "Hans" assert event_data[0]["confidence"] == 98.34 assert event_data[0]["gender"] == "male" assert event_data[0]["entity_id"] == "image_processing.demo_face"
8
5
0.0
0
0
3
1.0
0
19
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 90, "message": "Define a constant instead of duplicating this literal \"image_processing.test\" 4 times.", "textRange": { "endLine": 90, "endOffset": 61, "startLine": 90, "startOffset": 38 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 126, "message": "Define a constant instead of duplicating this literal \"image_processing.demo_alpr\" 10 times.", "textRange": { "endLine": 126, "endOffset": 66, "startLine": 126, "startOffset": 38 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 139, "message": "Do not perform equality checks with floating point values.", "textRange": { "endLine": 139, "endOffset": 46, "startLine": 139, "startOffset": 11 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 162, "message": "Do not perform equality checks with floating point values.", "textRange": { "endLine": 162, "endOffset": 46, "startLine": 162, "startOffset": 11 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 188, "message": "Do not perform equality checks with floating point values.", "textRange": { "endLine": 188, "endOffset": 46, "startLine": 188, "startOffset": 11 }, "type": "BUG" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 197, "message": "Define a constant instead of duplicating this literal \"image_processing.demo_face\" 6 times.", "textRange": { "endLine": 197, "endOffset": 66, "startLine": 197, "startOffset": 38 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 211, "message": "Do not perform equality checks with floating point values.", "textRange": { "endLine": 211, "endOffset": 47, "startLine": 211, "startOffset": 11 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 240, "message": "Do not perform equality checks with floating point values.", "textRange": { "endLine": 240, "endOffset": 47, "startLine": 240, "startOffset": 11 }, "type": "BUG" } ]
4,150
pipenv/patched/piptools/repositories/__init__.py
Enzime/pipenv
18,636
9671823
<gh_stars>1000+ # flake8: noqa from .local import LocalRequirementsRepository from .pypi import PyPIRepository
0
0
0.0
0
0
0
1.0
0
0
[]
5,906
torch/autograd/profiler.py
xiaohanhuang/pytorch
60,067
11457937
<gh_stars>1000+ from torch.autograd.profiler_util import ( EventList, FunctionEvent, MemRecordsAcc, MEMORY_EVENT_NAME, _filter_name, _filter_stack_entry, _rewrite_name ) from torch.autograd import ( DeviceType, ProfilerActivity, ProfilerConfig, ProfilerState, kineto_available, _ProfilerResult, _disable_profiler, _enable_profiler, _prepare_profiler, _supported_activities ) import torch import torch.cuda from torch.futures import Future from typing import Any, Dict, List, Optional from warnings import warn try: # Available in Python >= 3.2 from contextlib import ContextDecorator except ImportError: import functools class ContextDecorator(object): # type: ignore[no-redef] def __enter__(self): raise NotImplementedError def __exit__(self, exc_type, exc_val, exc_tb): raise NotImplementedError def __call__(self, func): @functools.wraps(func) def wrapped(*args, **kwargs): with self: return func(*args, **kwargs) return wrapped class profile(object): """Context manager that manages autograd profiler state and holds a summary of results. Under the hood it just records events of functions being executed in C++ and exposes those events to Python. You can wrap any code into it and it will only report runtime of PyTorch functions. Note: profiler is thread local and is automatically propagated into the async tasks Args: enabled (bool, optional): Setting this to False makes this context manager a no-op. use_cuda (bool, optional): Enables timing of CUDA events as well using the cudaEvent API. Adds approximately 4us of overhead to each tensor operation. record_shapes (bool, optional): If shapes recording is set, information about input dimensions will be collected. This allows one to see which dimensions have been used under the hood and further group by them using prof.key_averages(group_by_input_shape=True). Please note that shape recording might skew your profiling data. It is recommended to use separate runs with and without shape recording to validate the timing. Most likely the skew will be negligible for bottom most events (in a case of nested function calls). But for higher level functions the total self cpu time might be artificially increased because of the shape collection. with_flops (bool, optional): If with_flops is set, the profiler will estimate the FLOPs (floating point operations) value using the operator's input shape. This allows one to estimate the hardware performance. Currently, this option only works for the matrix multiplication and 2D convolution operators. profile_memory (bool, optional): track tensor memory allocation/deallocation. with_stack (bool, optional): record source information (file and line number) for the ops. with_modules (bool): record module hierarchy (including function names) corresponding to the callstack of the op. e.g. If module A's forward call's module B's forward which contains an aten::add op, then aten::add's module hierarchy is A.B Note that this support exist, at the moment, only for TorchScript models and not eager mode models. use_kineto (bool, optional): experimental, enable profiling with Kineto profiler. use_cpu (bool, optional): profile CPU events; setting to ``False`` requires ``use_kineto=True`` and can be used to lower the overhead for GPU-only profiling. .. warning: Enabling memory profiling or source attribution incurs additional profiler overhead .. warning: This context managers should not be called recursively, i.e. no nested instances are allowed .. warning: Due to some CUDA multiprocessing limitations (multiprocessing-cuda-note_), one cannot use the profiler with ``use_cuda = True`` to benchmark DataLoaders with ``num_workers > 0``. If you wish to benchmark data loading, please use ``use_cuda = False`` or ``num_workers = 0``. Example: >>> x = torch.randn((1, 1), requires_grad=True) >>> with torch.autograd.profiler.profile() as prof: >>> for _ in range(100): # any normal python code, really! >>> y = x ** 2 >> y.backward() >>> # NOTE: some columns were removed for brevity >>> print(prof.key_averages().table(sort_by="self_cpu_time_total")) ----------------------------------- --------------- --------------- --------------- Name Self CPU total CPU time avg Number of Calls ----------------------------------- --------------- --------------- --------------- mul 32.048ms 32.048ms 200 pow 27.041ms 27.041ms 200 PowBackward0 9.727ms 55.483ms 100 torch::autograd::AccumulateGrad 9.148ms 9.148ms 100 torch::autograd::GraphRoot 691.816us 691.816us 100 ----------------------------------- --------------- --------------- --------------- """ def __init__( self, enabled=True, *, use_cuda=False, record_shapes=False, with_flops=False, profile_memory=False, with_stack=False, with_modules=False, use_kineto=False, use_cpu=True): self.enabled: bool = enabled if not self.enabled: return self.use_cuda = use_cuda self.function_events: Optional[EventList] = None self.entered = False self.record_shapes = record_shapes self.with_flops = with_flops self.record_shapes |= self.with_flops self.profile_memory = profile_memory self.with_stack = with_stack self.with_modules = with_modules self.use_cpu = use_cpu self.kineto_results: Optional[_ProfilerResult] = None if not self.use_cpu: assert use_kineto, \ "Device-only events supported only with Kineto (use_kineto=True)" if self.use_cuda and not torch.cuda.is_available(): warn("CUDA is not available, disabling CUDA profiling") self.use_cuda = False self.kineto_activities = set() if self.use_cpu: self.kineto_activities.add(ProfilerActivity.CPU) self.profiler_kind = ProfilerState.KINETO if self.use_cuda: if (not use_kineto or ProfilerActivity.CUDA not in _supported_activities()): assert self.use_cpu, "Legacy CUDA profiling requires use_cpu=True" self.profiler_kind = ProfilerState.KINETO_GPU_FALLBACK else: self.kineto_activities.add(ProfilerActivity.CUDA) assert len(self.kineto_activities) > 0, \ "No activities specified for the profiler" def config(self): return ProfilerConfig( self.profiler_kind, self.record_shapes, self.profile_memory, self.with_stack, self.with_flops, self.with_modules) def __enter__(self): if not self.enabled: return if self.entered: raise RuntimeError("Profiler context manager is not reentrant") self._prepare_trace() self._start_trace() return self def _prepare_trace(self): self.entered = True _prepare_profiler(self.config(), self.kineto_activities) def _start_trace(self): self.entered = True _enable_profiler(self.config(), self.kineto_activities) def __exit__(self, exc_type, exc_val, exc_tb): if not self.enabled: return if self.use_cuda: torch.cuda.synchronize() self.kineto_results = _disable_profiler() parsed_results = self._parse_kineto_results(self.kineto_results) self.function_events = EventList( parsed_results, use_cuda=self.use_cuda, profile_memory=self.profile_memory, with_flops=self.with_flops) self.function_events._build_tree() return False def __repr__(self): if self.function_events is None: return '<unfinished torch.autograd.profile>' return repr(self.function_events) def __str__(self): if self.function_events is None: return '<unfinished torch.autograd.profile>' return str(self.function_events) def _check_finish(self): if self.function_events is None: raise RuntimeError("Profiler didn't finish running") def table(self, sort_by=None, row_limit=100, max_src_column_width=75, header=None, top_level_events_only=False): self._check_finish() assert self.function_events is not None return self.function_events.table( sort_by=sort_by, row_limit=row_limit, max_src_column_width=max_src_column_width, header=header, top_level_events_only=top_level_events_only ) table.__doc__ = EventList.table.__doc__ def export_chrome_trace(self, path): self._check_finish() if kineto_available(): self.kineto_results.save(path) # type: ignore[union-attr] else: return self.function_events.export_chrome_trace(path) # type: ignore[union-attr] export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__ def export_stacks(self, path: str, metric: str = "self_cpu_time_total"): self._check_finish() assert self.function_events is not None, "Expected profiling results" assert self.with_stack, "export_stacks() requires with_stack=True" return self.function_events.export_stacks(path, metric) def key_averages(self, group_by_input_shape=False, group_by_stack_n=0): self._check_finish() assert self.function_events is not None, "Expected profiling results" return self.function_events.key_averages(group_by_input_shape, group_by_stack_n) key_averages.__doc__ = EventList.key_averages.__doc__ def total_average(self): self._check_finish() assert self.function_events is not None, "Expected profiling results" return self.function_events.total_average() total_average.__doc__ = EventList.total_average.__doc__ @property def self_cpu_time_total(self): """ Returns total time spent on CPU obtained as a sum of all self times across all the events. """ self._check_finish() assert self.function_events is not None return self.function_events.self_cpu_time_total def _parse_kineto_results(self, result): # result.events() has most of the events - PyTorch op-level and device-level events trace_start_us = result.trace_start_us() mem_records = [[evt, False] for evt in result.events() if evt.name() == MEMORY_EVENT_NAME] mem_records_acc = MemRecordsAcc(mem_records) def _cpu_memory_usage(mem_record): return mem_record.nbytes() if \ mem_record.device_type() in [DeviceType.CPU, DeviceType.MKLDNN, DeviceType.IDEEP] \ else 0 def _cuda_memory_usage(mem_record): return mem_record.nbytes() if \ mem_record.device_type() in [DeviceType.CUDA, DeviceType.HIP] \ else 0 # Create and return FunctionEvent list function_events = [] cuda_corr_map: Dict[int, List[FunctionEvent]] = {} max_evt_id = 0 for kineto_event in result.events(): if _filter_name(kineto_event.name()): continue rel_start_us = kineto_event.start_us() - trace_start_us rel_end_us = rel_start_us + kineto_event.duration_us() abs_end_us = kineto_event.start_us() + kineto_event.duration_us() cpu_memory_usage = 0 cuda_memory_usage = 0 if kineto_event.device_type() == DeviceType.CPU: # find the corresponding memory allocation events for mem_record in mem_records_acc.in_interval(kineto_event.start_us(), abs_end_us): cpu_memory_usage += _cpu_memory_usage(mem_record[0]) cuda_memory_usage += _cuda_memory_usage(mem_record[0]) mem_record[1] = True is_async = kineto_event.is_async() or ( kineto_event.start_thread_id() != kineto_event.end_thread_id() ) fe = FunctionEvent( id=kineto_event.correlation_id(), name=_rewrite_name(name=kineto_event.name(), with_wildcard=True), trace_name=_rewrite_name(name=kineto_event.name(), with_wildcard=False), thread=kineto_event.start_thread_id(), start_us=rel_start_us, end_us=rel_end_us, fwd_thread=kineto_event.fwd_thread_id(), input_shapes=kineto_event.shapes(), stack=[entry for entry in kineto_event.stack() if _filter_stack_entry(entry)], scope=kineto_event.scope(), cpu_memory_usage=cpu_memory_usage, cuda_memory_usage=cuda_memory_usage, is_async=is_async, sequence_nr=kineto_event.sequence_nr(), device_type=kineto_event.device_type(), device_index=kineto_event.device_index(), flops=kineto_event.flops(), ) max_evt_id = fe.id if fe.id > max_evt_id else max_evt_id if fe.device_type == DeviceType.CPU and not fe.is_async: # Check if we have CUDA time as a fallback cuda_time = kineto_event.cuda_elapsed_us() if cuda_time > 0: fe.append_kernel( fe.name, fe.device_index, cuda_time) fe.is_legacy = True function_events.append(fe) corr_id = kineto_event.linked_correlation_id() if corr_id > 0: if corr_id not in cuda_corr_map: cuda_corr_map[corr_id] = [] cuda_corr_map[corr_id].append(fe) # associate CUDA kernels and CUDA runtime (CPU) with CPU events for fe in function_events: if (fe.device_type == DeviceType.CPU and not fe.is_async and fe.id in cuda_corr_map): for f_evt in cuda_corr_map[fe.id]: if f_evt.device_type == DeviceType.CUDA: fe.append_kernel( f_evt.name, f_evt.device_index, f_evt.time_range.end - f_evt.time_range.start) elif f_evt.device_type == DeviceType.CPU: # make sure that 'thread' of a CPU Kineto (e.g. CUDA Runtime) event is associated # with the 'thread' of the corresponding linked PyTorch event to properly track # parents and children f_evt.thread = fe.thread # output top-level memory events for mem_record in mem_records: if not mem_record[1]: rel_start_us = mem_record[0].start_us() - trace_start_us max_evt_id += 1 fe = FunctionEvent( id=max_evt_id, name=MEMORY_EVENT_NAME, trace_name=None, # not outputting in the trace thread=mem_record[0].start_thread_id(), start_us=rel_start_us, end_us=rel_start_us, # no duration fwd_thread=mem_record[0].start_thread_id(), input_shapes=[], stack=[], scope=0, # RecordScope::FUNCTION cpu_memory_usage=_cpu_memory_usage(mem_record[0]), cuda_memory_usage=_cuda_memory_usage(mem_record[0]), is_async=False, sequence_nr=-1, device_type=DeviceType.CPU, device_index=0, ) function_events.append(fe) function_events.sort(key=lambda evt: [evt.time_range.start, -evt.time_range.end]) return function_events class record_function(ContextDecorator): """Context manager/function decorator that adds a label to a block of Python code (or function) when running autograd profiler. It is useful when tracing the code profile. Args: name (str): Label assigned to the block of code. node_id (int): ID of node, for distributed profiling. Unset in non-distributed cases. Example: >>> x = torch.randn((1, 1), requires_grad=True) >>> with torch.autograd.profiler.profile() as prof: ... y = x ** 2 ... with torch.autograd.profiler.record_function("label-z"): # label the block ... z = y ** 3 ... y.backward() ... >>> # NOTE: some columns were removed for brevity >>> print(prof.key_averages().table(sort_by="self_cpu_time_total")) ----------------------------------- --------------- --------------- --------------- Name Self CPU total % CPU time avg Number of Calls ----------------------------------- --------------- --------------- --------------- pow 60.77% 47.470us 3 mul 21.73% 25.465us 2 PowBackward0 12.03% 121.891us 1 torch::autograd::AccumulateGrad 2.70% 6.324us 1 label-z 2.13% 12.421us 1 torch::autograd::GraphRoot 0.64% 1.503us 1 ----------------------------------- --------------- --------------- --------------- Self CPU time total: 234.344us CUDA time total: 0.000us """ def __init__(self, name: str, args: Optional[str] = None): self.name: str = name self.args: Optional[str] = args # Whether or not we should run record function's end callbacks when exiting. self.run_callbacks_on_exit: bool = True # Stores underlying RecordFunction as a tensor. TODO: move to custom # class (https://github.com/pytorch/pytorch/issues/35026). self.handle: torch.Tensor = torch.zeros(1) def __enter__(self): self.handle = torch.ops.profiler._record_function_enter(self.name, self.args) return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any): if self.run_callbacks_on_exit: torch.ops.profiler._record_function_exit(self.handle) def _call_end_callbacks_on_future(self, fut: Future[Any]) -> Future[Any]: """ _call_end_callbacks_on_future is meant to be used for profiling async calls that return a future. Calling this function will extend recording beyond this scope, until the future is satisfied. It is useful for profiling the end to end time of asynchronous calls. This function should only be called once to attach the callback onto the future, and will throw if called multiple times. Args: fut: (torch._C.Future): future for which to schedule callback for. Returns: A future that completes with the value of the passed in future when the profiling callbacks have ran. """ # Throw if we have already attached a callback onto the future. if not self.run_callbacks_on_exit: raise RuntimeError("_call_end_callbacks_on_future can only be called once.") # We are scheduling to run this RecordFunction's end callbacks when the # passed in future completes, so don't run end callbacks on exit. self.run_callbacks_on_exit = False profiled_future = torch.ops.profiler._call_end_callbacks_on_jit_fut(self.handle, fut) return profiled_future class emit_nvtx(object): """Context manager that makes every autograd operation emit an NVTX range. It is useful when running the program under nvprof:: nvprof --profile-from-start off -o trace_name.prof -- <regular command here> Unfortunately, there's no way to force nvprof to flush the data it collected to disk, so for CUDA profiling one has to use this context manager to annotate nvprof traces and wait for the process to exit before inspecting them. Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or :func:`torch.autograd.profiler.load_nvprof` can load the results for inspection e.g. in Python REPL. .. warning: This context manager should not be called recursively, i.e. at most one instance should be enabled at any given time. Args: enabled (bool, optional, default=True): Setting ``enabled=False`` makes this context manager a no-op. Default: ``True``. record_shapes (bool, optional, default=False): If ``record_shapes=True``, the nvtx range wrapping each autograd op will append information about the sizes of Tensor arguments received by that op, in the following format: ``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]`` Non-tensor arguments will be represented by ``[]``. Arguments will be listed in the order they are received by the backend op. Please note that this order may not match the order in which those arguments were passed on the Python side. Also note that shape recording may increase the overhead of nvtx range creation. Example: >>> with torch.cuda.profiler.profile(): ... model(x) # Warmup CUDA memory allocator and profiler ... with torch.autograd.profiler.emit_nvtx(): ... model(x) **Forward-backward correlation** When viewing a profile created using :class:`emit_nvtx` in the Nvidia Visual Profiler, correlating each backward-pass op with the corresponding forward-pass op can be difficult. To ease this task, :class:`emit_nvtx` appends sequence number information to the ranges it generates. During the forward pass, each function range is decorated with ``seq=<N>``. ``seq`` is a running counter, incremented each time a new backward Function object is created and stashed for backward. Thus, the ``seq=<N>`` annotation associated with each forward function range tells you that if a backward Function object is created by this forward function, the backward object will receive sequence number N. During the backward pass, the top-level range wrapping each C++ backward Function's ``apply()`` call is decorated with ``stashed seq=<M>``. ``M`` is the sequence number that the backward object was created with. By comparing ``stashed seq`` numbers in backward with ``seq`` numbers in forward, you can track down which forward op created each backward Function. Any functions executed during the backward pass are also decorated with ``seq=<N>``. During default backward (with ``create_graph=False``) this information is irrelevant, and in fact, ``N`` may simply be 0 for all such functions. Only the top-level ranges associated with backward Function objects' ``apply()`` methods are useful, as a way to correlate these Function objects with the earlier forward pass. **Double-backward** If, on the other hand, a backward pass with ``create_graph=True`` is underway (in other words, if you are setting up for a double-backward), each function's execution during backward is given a nonzero, useful ``seq=<N>``. Those functions may themselves create Function objects to be executed later during double-backward, just as the original functions in the forward pass did. The relationship between backward and double-backward is conceptually the same as the relationship between forward and backward: The functions still emit current-sequence-number-tagged ranges, the Function objects they create still stash those sequence numbers, and during the eventual double-backward, the Function objects' ``apply()`` ranges are still tagged with ``stashed seq`` numbers, which can be compared to `seq` numbers from the backward pass. .. warning: The sequence number is thread-local, and some forward functions don't create an associated backward Function object (instead delegating that to sub-functions further down the call chain). For these reasons, the correspondence of stashed sequence numbers in backward Function ``apply()`` ranges with `seq` numbers in forward-pass ranges is not guaranteed to be 1 to 1. The sequence numbers alone may not be enough to fully disambiguate which forward function created which backward Function object. You may need to make a judgment based on analytic knowledge of what the expected correspondence should be. """ def __init__(self, enabled=True, record_shapes=False): self.enabled = enabled self.entered = False self.record_shapes = record_shapes def __enter__(self): if not self.enabled: return if self.entered: raise RuntimeError("NVTX annotation context manager is not reentrant") self.entered = True torch.cuda.synchronize() _enable_profiler( ProfilerConfig( ProfilerState.NVTX, self.record_shapes, False, False, False, False), set() ) return self def __exit__(self, exc_type, exc_val, exc_tb): if not self.enabled: return torch.cuda.synchronize() _disable_profiler() return False def load_nvprof(path): """Opens an nvprof trace file and parses autograd annotations. Args: path (str): path to nvprof trace """ return EventList(parse_nvprof_trace(path)) class EnforceUnique(object): """Raises an error if a key is seen more than once.""" def __init__(self): self.seen = set() def see(self, *key): if key in self.seen: raise RuntimeError('duplicate key: ' + str(key)) self.seen.add(key) def parse_nvprof_trace(path): import sqlite3 conn = sqlite3.connect(path) conn.row_factory = sqlite3.Row # Parse strings table strings = {} for r in conn.execute("SELECT _id_ as id, value FROM StringTable"): strings[r["id"]] = torch._C._demangle(r["value"]) # First, find all functions and create FunctionEvents for them marker_query = """ SELECT start.id AS marker_id, start.name, start.timestamp AS start_time, end.timestamp AS end_time FROM CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end ON start.id = end.id WHERE start.name != 0 AND end.name = 0 """ functions = [] functions_map = {} unique = EnforceUnique() for row in conn.execute(marker_query): unique.see(row['marker_id']) evt = FunctionEvent(id=row['marker_id'], node_id=0, # missing a node_id when calling FunctionEvent. This is just to ensure # that pytorch doesn't crash when creating a FunctionEvent() object name=strings[row['name']], start_us=row['start_time'], end_us=row['end_time'], thread=0) # TODO: find in sqlite database functions.append(evt) functions_map[evt.id] = evt # Now, correlate all kernels with FunctionEvents kernel_query = """ SELECT start.id AS marker_id, start.name, start.timestamp, end.timestamp, runtime._id_ AS runtime_id, runtime.cbid, runtime.start AS runtime_start, runtime.end AS runtime_end, kernel.start AS kernel_start, kernel.end AS kernel_end, kernel.name AS kernel_name FROM CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end ON start.id = end.id INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as runtime ON (start.timestamp < runtime.start AND runtime.end < end.timestamp) INNER JOIN CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL AS kernel ON kernel.correlationId = runtime.correlationId """ unique = EnforceUnique() for row in conn.execute(kernel_query): unique.see(row['marker_id'], row['runtime_id']) # 211 is cudaKernelLaunch for cuda >= 9.2 assert (row['cbid'] == 211) evt = functions_map[row['marker_id']] evt.append_kernel(row['kernel_name'], 0, row['kernel_end'] - row['kernel_start']) functions.sort(key=lambda evt: evt.time_range.start) return functions
null
null
null
null
null
null
null
null
null
[]
9,615
tests/validation/tests/v1_api/test_deployment.py
ursinnDev/rancher_rancher
18,697
9768808
from .common import * # NOQA import pytest namespace = {"client": None, "ns": None} def test_namespace_create(): template = read_yaml_from_resource_dir("namespace.yaml") template["metadata"]["name"] = random_test_name() client = namespace["client"] res = client.create_namespace(template) # validate the namespace is created ns = client.by_id_namespace(res.id) assert ns.id == res.id # delete the namespace at the end client.delete(ns) def test_deployment(): client = namespace["client"] ns = namespace["ns"] template = read_json_from_resource_dir("deployment_1.json") name = random_name() # set name template["metadata"]["name"] = name # set namespace template["metadata"]["namespace"] = ns.id # set container image and name template["spec"]["template"]["spec"]["containers"][0]["image"] = TEST_IMAGE_V1 template["spec"]["template"]["spec"]["containers"][0]["name"] = name # set label and selector label_value = "apps.deployment-{}-{}".format(ns.id, name) labels = template["spec"]["template"]["metadata"]["labels"] labels["workload.user.cattle.io/workloadselector"] = label_value matches = template["spec"]["selector"]["matchLabels"] matches["workload.user.cattle.io/workloadselector"] = label_value deployment = client.create_apps_deployment(template) deployment = validate_deployment(client, deployment) # scale up to 5 pods deployment.spec.replicas = 5 deployment = client.update(deployment, deployment) deployment = validate_deployment(client, deployment) client.delete(deployment) def validate_deployment(client, deployment): # wait for the deployment to be active wait_for(lambda: client.reload(deployment).metadata.state.name == "active", timeout_message="time out waiting for deployment to be ready") res = client.reload(deployment) name = res["metadata"]["name"] namespace = res["metadata"]["namespace"] replicas = res["spec"]["replicas"] # Rancher Dashboard gets pods by passing the label selector target_label = 'workload.user.cattle.io/workloadselector=apps.deployment-{}-{}' pods = client.list_pod( labelSelector=target_label.format(namespace, name)) assert "data" in pods.keys(), "failed to get pods" assert len(pods.data) == replicas, "failed to get the right number of pods" for pod in pods.data: assert pod.metadata.state.name == "running" return res @pytest.fixture(scope='module', autouse="True") def create_client(request): client = get_cluster_client_for_token_v1() template = read_yaml_from_resource_dir("namespace.yaml") template["metadata"]["name"] = random_test_name() ns = client.create_namespace(template) namespace["client"] = client namespace["ns"] = ns def fin(): client.delete(namespace["ns"]) request.addfinalizer(fin)
null
null
null
null
null
null
null
null
null
[]
6,232
tests/components/motion_blinds/__init__.py
tbarbette/core
30,023
8241861
<reponame>tbarbette/core """Tests for the Motion Blinds integration."""
0
0
0.0
0
0
0
1.0
0
0
[]
9,202
posthog/settings/cloud.py
dorucioclea/posthog
7,409
9633711
# Overridden in posthog-cloud import sys from posthog.settings.utils import get_from_env, print_warning, str_to_bool # Early exit to avoid issues with cloud not being properly included if get_from_env("MULTI_TENANCY", False, type_cast=str_to_bool): print_warning(("️Environment variable MULTI_TENANCY is set, but cloud settings have not been included",)) sys.exit("[ERROR] Stopping Django server…\n")
null
null
null
null
null
null
null
null
null
[]
5,668
xirl/xirl/evaluators/reward_visualizer.py
xxdreck/google-research
23,901
10173439
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reward visualizer.""" from .base import Evaluator from .base import EvaluatorOutput import matplotlib.pyplot as plt import numpy as np from scipy.spatial.distance import cdist class RewardVisualizer(Evaluator): """Distance to goal state visualizer.""" def __init__(self, distance, num_plots): """Constructor. Args: distance: The distance metric to use when calculating nearest-neighbours. num_plots: The number of reward plots to display. Raises: ValueError: If the distance metric is invalid. """ super().__init__(inter_class=False) if distance not in ["sqeuclidean", "cosine"]: raise ValueError( "{} is not a supported distance metric.".format(distance)) # For plotting, we don't want to display squared euclidean distances so we # will override to `euclidean` if it was selected. if distance == "sqeuclidean": distance = "euclidean" self.distance = distance self.num_plots = num_plots def _gen_reward_plot(self, rewards): """Create a pyplot plot and save to buffer.""" fig, axes = plt.subplots(1, len(rewards), figsize=(6.4 * len(rewards), 4.8)) if len(rewards) == 1: axes = [axes] for i, rew in enumerate(rewards): axes[i].plot(rew) fig.text(0.5, 0.04, "Timestep", ha="center") fig.text(0.04, 0.5, "Reward", va="center", rotation="vertical") fig.canvas.draw() img_arr = np.array(fig.canvas.renderer.buffer_rgba())[:, :, :3] plt.close() return img_arr def _compute_goal_emb(self, embs): """Compute the mean of all last frame embeddings.""" goal_emb = [emb[-1, :] for emb in embs] goal_emb = np.stack(goal_emb, axis=0) goal_emb = np.mean(goal_emb, axis=0, keepdims=True) return goal_emb def evaluate(self, outs): embs = [o.embs for o in outs] goal_emb = self._compute_goal_emb(embs) # Make sure we sample only as many as are available. num_plots = min(len(embs), self.num_plots) rand_idxs = np.random.choice( np.arange(len(embs)), size=num_plots, replace=False) # Compute rewards as distances to the goal embedding. rewards = [] for idx in rand_idxs: emb = embs[idx] dists = cdist(emb, goal_emb, self.distance) rewards.append(-dists) image = self._gen_reward_plot(rewards) return EvaluatorOutput(image=image)
null
null
null
null
null
null
null
null
null
[]
11,923
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op_depthwise_conv.py
zmxdream/Paddle
17,085
10185976
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle paddle.enable_static() import paddle.fluid.core as core import paddle.fluid as fluid from op_test import OpTest from test_conv2d_transpose_op import TestConv2DTransposeOp class TestDepthwiseConvTranspose(TestConv2DTransposeOp): def init_test_case(self): self.pad = [1, 1] self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [1, 8, 4, 4] # NCHW self.groups = 8 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [self.input_size[1], f_c, 4, 4] self.op_type = "depthwise_conv2d_transpose" class TestDepthwiseConvTransposeAsymmetricPad(TestConv2DTransposeOp): def init_test_case(self): self.pad = [1, 1, 1, 2] self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [1, 8, 4, 4] # NCHW self.groups = 8 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [self.input_size[1], f_c, 3, 3] self.op_type = "depthwise_conv2d_transpose" self.data_format = 'NCHW' class TestDepthwiseConvTransposeSAMEPad(TestConv2DTransposeOp): def init_test_case(self): self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [1, 8, 4, 4] # NHWC self.groups = 8 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [self.input_size[1], f_c, 3, 3] self.op_type = "depthwise_conv2d_transpose" self.padding_algorithm = 'SAME' class TestDepthwiseConvTransposeVALIDPad(TestConv2DTransposeOp): def init_test_case(self): self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [1, 8, 4, 4] # NHWC self.groups = 8 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [self.input_size[1], f_c, 3, 3] self.op_type = "depthwise_conv2d_transpose" self.padding_algorithm = 'VALID' class TestDepthwiseConvTranspose_NHWC_3x3kernel(TestConv2DTransposeOp): def init_test_case(self): self.pad = [1, 1] self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [1, 4, 4, 8] # NHWC self.groups = 8 assert np.mod(self.input_size[3], self.groups) == 0 f_c = self.input_size[3] // self.groups self.filter_size = [self.input_size[3], f_c, 3, 3] self.op_type = "depthwise_conv2d_transpose" self.data_format = 'NHWC' if __name__ == '__main__': unittest.main()
null
null
null
null
null
null
null
null
null
[]
12,003
homeassistant/components/unifiprotect/light.py
liangleslie/core
30,023
515251
<gh_stars>1000+ """This component provides Lights for UniFi Protect.""" from __future__ import annotations import logging from typing import Any from pyunifiprotect.data import Light from homeassistant.components.light import ATTR_BRIGHTNESS, ColorMode, LightEntity from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import DOMAIN from .data import ProtectData from .entity import ProtectDeviceEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up lights for UniFi Protect integration.""" data: ProtectData = hass.data[DOMAIN][entry.entry_id] entities = [ ProtectLight( data, device, ) for device in data.api.bootstrap.lights.values() ] if not entities: return async_add_entities(entities) def unifi_brightness_to_hass(value: int) -> int: """Convert unifi brightness 1..6 to hass format 0..255.""" return min(255, round((value / 6) * 255)) def hass_to_unifi_brightness(value: int) -> int: """Convert hass brightness 0..255 to unifi 1..6 scale.""" return max(1, round((value / 255) * 6)) class ProtectLight(ProtectDeviceEntity, LightEntity): """A Ubiquiti UniFi Protect Light Entity.""" device: Light _attr_icon = "mdi:spotlight-beam" _attr_color_mode = ColorMode.BRIGHTNESS _attr_supported_color_modes = {ColorMode.BRIGHTNESS} @callback def _async_update_device_from_protect(self) -> None: super()._async_update_device_from_protect() self._attr_is_on = self.device.is_light_on self._attr_brightness = unifi_brightness_to_hass( self.device.light_device_settings.led_level ) async def async_turn_on(self, **kwargs: Any) -> None: """Turn the light on.""" hass_brightness = kwargs.get(ATTR_BRIGHTNESS, self.brightness) unifi_brightness = hass_to_unifi_brightness(hass_brightness) _LOGGER.debug("Turning on light with brightness %s", unifi_brightness) await self.device.set_light(True, unifi_brightness) async def async_turn_off(self, **kwargs: Any) -> None: """Turn the light off.""" _LOGGER.debug("Turning off light") await self.device.set_light(False)
0
0
0.0
1
0
0
1.0
0
7
[]
10,391
tests_django/test_settings.py
gugux289/chatterbot
13,200
10102852
<gh_stars>1000+ """ Django settings for when tests are run. """ import os from chatterbot import constants DEBUG = True BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'fake-key' INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'chatterbot.ext.django_chatterbot', 'tests_django', ] CHATTERBOT = { 'name': 'Test Django ChatterBot', 'logic_adapters': [ { 'import_path': 'chatterbot.logic.BestMatch', }, { 'import_path': 'chatterbot.logic.MathematicalEvaluation', } ], 'storage_adapter': 'chatterbot.storage.DjangoStorageAdapter', 'django_app_name': constants.DEFAULT_DJANGO_APP_NAME, 'initialize': False } MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Using the MD5 password hasher improves test performance PASSWORD_HASHERS = ( 'django.contrib.auth.hashers.MD5PasswordHasher', ) USE_TZ = True LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console': { 'class': 'logging.StreamHandler', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO'), }, }, }
null
null
null
null
null
null
null
null
null
[]
11,633
configs/paa/paa_r50_fpn_1.5x_coco.py
evgps/mmdetection_trashcan
20,190
11287256
<gh_stars>1000+ _base_ = './paa_r50_fpn_1x_coco.py' lr_config = dict(step=[12, 16]) runner = dict(type='EpochBasedRunner', max_epochs=18)
null
null
null
null
null
null
null
null
null
[]
6,811
homeassistant/components/fastdotcom/sensor.py
MrDelik/core
30,023
405011
<reponame>MrDelik/core """Support for Fast.com internet speed testing sensor.""" from __future__ import annotations from typing import Any from homeassistant.components.sensor import SensorEntity from homeassistant.const import DATA_RATE_MEGABITS_PER_SECOND from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.restore_state import RestoreEntity from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType from . import DATA_UPDATED, DOMAIN as FASTDOTCOM_DOMAIN ICON = "mdi:speedometer" async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the Fast.com sensor.""" async_add_entities([SpeedtestSensor(hass.data[FASTDOTCOM_DOMAIN])]) class SpeedtestSensor(RestoreEntity, SensorEntity): """Implementation of a FAst.com sensor.""" _attr_name = "Fast.com Download" _attr_native_unit_of_measurement = DATA_RATE_MEGABITS_PER_SECOND _attr_icon = ICON _attr_should_poll = False _attr_native_value = None def __init__(self, speedtest_data: dict[str, Any]) -> None: """Initialize the sensor.""" self._speedtest_data = speedtest_data async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self.async_on_remove( async_dispatcher_connect( self.hass, DATA_UPDATED, self._schedule_immediate_update ) ) if not (state := await self.async_get_last_state()): return self._attr_native_value = state.state def update(self) -> None: """Get the latest data and update the states.""" if (data := self._speedtest_data.data) is None: # type: ignore[attr-defined] return self._attr_native_value = data["download"] @callback def _schedule_immediate_update(self) -> None: self.async_schedule_update_ha_state(True)
null
null
null
null
null
null
null
null
null
[]
10,193
tests/nlu/featurizers/test_regex_featurizer.py
Next-Trends/rasa
3,603
6565391
<gh_stars>1000+ from typing import Text, List, Any, Tuple, Callable, Dict, Optional import dataclasses import numpy as np import pytest from rasa.engine.graph import ExecutionContext from rasa.engine.storage.resource import Resource from rasa.engine.storage.storage import ModelStorage from rasa.nlu.featurizers.sparse_featurizer.regex_featurizer import RegexFeaturizer from rasa.shared.nlu.training_data.training_data import TrainingData from rasa.shared.nlu.training_data.message import Message from rasa.nlu.tokenizers.whitespace_tokenizer import WhitespaceTokenizer from rasa.nlu.constants import SPACY_DOCS, TOKENS_NAMES from rasa.shared.nlu.constants import TEXT, INTENT, RESPONSE from rasa.nlu.tokenizers.spacy_tokenizer import SpacyTokenizer @pytest.fixture() def resource() -> Resource: return Resource("regex_featurizer") @pytest.fixture() def create_featurizer( default_model_storage: ModelStorage, default_execution_context: ExecutionContext, resource: Resource, ) -> Callable[..., RegexFeaturizer]: def inner( config: Dict[Text, Any] = None, known_patterns: Optional[List[Dict[Text, Any]]] = None, ) -> RegexFeaturizer: config = config or {} return RegexFeaturizer( {**RegexFeaturizer.get_default_config(), **config}, default_model_storage, resource, default_execution_context, known_patterns, ) return inner @pytest.mark.parametrize( "sentence, expected_sequence_features, expected_sentence_features," "labeled_tokens", [ ( "hey how are you today", [ [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ], [0.0, 1.0, 0.0], [0], ), ( "hey 456 how are you", [ [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ], [1.0, 1.0, 0.0], [1, 0], ), ( "blah balh random eh", [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [0.0, 0.0, 0.0], [], ), ( "a 1 digit number", [[0.0, 0.0, 0.0], [1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [1.0, 0.0, 1.0], [1, 1], ), ], ) def test_regex_featurizer( sentence: Text, expected_sequence_features: List[float], expected_sentence_features: List[float], labeled_tokens: List[int], spacy_nlp: Any, create_featurizer: Callable[..., RegexFeaturizer], spacy_tokenizer: SpacyTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, {"pattern": "[0-1]+", "name": "binary", "usage": "intent"}, ] ftr = create_featurizer(known_patterns=patterns) # adds tokens to the message message = Message(data={TEXT: sentence, RESPONSE: sentence}) message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence)) spacy_tokenizer.process([message]) sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT) assert np.allclose( sequence_features.toarray(), expected_sequence_features, atol=1e-10 ) assert np.allclose( sentence_features.toarray(), expected_sentence_features, atol=1e-10 ) # the tokenizer should have added tokens assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0 # the number of regex matches on each token should match for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])): token_matches = token.get("pattern").values() num_matches = sum(token_matches) assert num_matches == labeled_tokens.count(i) @pytest.mark.parametrize( "sentence, tokens, expected_sequence_features, expected_sentence_features," "labeled_tokens", [ ( "明天上海的天气怎么样?", [("明天", 0), ("上海", 2), ("的", 4), ("天气", 5), ("怎么样", 7), ("?", 10)], [[0.0, 1.0], [1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], [1.0, 1.0], [0.0, 1.0], ), ( "北京的天气如何?", [("北京", 0), ("的", 2), ("天气", 3), ("如何", 5), ("?", 7)], [[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], [1.0, 0.0], [0.0], ), ( "昨天和今天的天气都不错", [("昨天", 0), ("和", 2), ("今天", 3), ("的", 5), ("天气", 6), ("都", 8), ("不错", 9)], [ [0.0, 1.0], [0.0, 0.0], [0.0, 1.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], ], [0.0, 1.0], [0.0, 2.0], ), ( "后天呢?", [("后天", 0), ("呢", 2), ("?", 3)], [[0.0, 1.0], [0.0, 0.0], [0.0, 0.0]], [0.0, 1.0], [0.0], ), ], ) def test_lookup_tables_without_use_word_boundaries( sentence: Text, tokens: List[Tuple[Text, float]], expected_sequence_features: List[float], expected_sentence_features: List[float], labeled_tokens: List[float], create_featurizer: Callable[..., RegexFeaturizer], ): from rasa.nlu.tokenizers.tokenizer import Token lookups = [ {"name": "cites", "elements": ["北京", "上海", "广州", "深圳", "杭州"]}, {"name": "dates", "elements": ["昨天", "今天", "明天", "后天"]}, ] ftr = create_featurizer({"use_word_boundaries": False}) training_data = TrainingData() training_data.lookup_tables = lookups ftr.train(training_data) # adds tokens to the message message = Message(data={TEXT: sentence}) message.set(TOKENS_NAMES[TEXT], [Token(word, start) for (word, start) in tokens]) sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT) assert np.allclose( sequence_features.toarray(), expected_sequence_features, atol=1e-10 ) assert np.allclose( sentence_features.toarray(), expected_sentence_features, atol=1e-10 ) # the number of regex matches on each token should match for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])): token_matches = token.get("pattern").values() num_matches = sum(token_matches) assert num_matches == labeled_tokens.count(i) @pytest.mark.parametrize( "sentence, expected_sequence_features, expected_sentence_features, " "labeled_tokens", [ ( "lemonade and mapo tofu", [[1.0, 0.0], [0.0, 0.0], [0.0, 1.0], [0.0, 1.0]], [1.0, 1.0], [0.0, 2.0, 3.0], ), ( "a cup of tea", [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [1.0, 0.0]], [1.0, 0.0], [3.0], ), ( "Is burrito my favorite food?", [[0.0, 0.0], [0.0, 1.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], [0.0, 1.0], [1.0], ), ("I want club?mate", [[0.0, 0.0], [0.0, 0.0], [1.0, 0.0]], [1.0, 0.0], [2.0]), ], ) def test_lookup_tables( sentence: Text, expected_sequence_features: List[float], expected_sentence_features: List[float], labeled_tokens: List[float], spacy_nlp: Any, spacy_tokenizer: SpacyTokenizer, create_featurizer: Callable[..., RegexFeaturizer], ): lookups = [ { "name": "drinks", "elements": ["mojito", "lemonade", "sweet berry wine", "tea", "club?mate"], }, {"name": "plates", "elements": "data/test/lookup_tables/plates.txt"}, ] ftr = create_featurizer() training_data = TrainingData() training_data.lookup_tables = lookups ftr.train(training_data) ftr.process_training_data(training_data) # adds tokens to the message message = Message(data={TEXT: sentence}) message.set("text_spacy_doc", spacy_nlp(sentence)) spacy_tokenizer.process([message]) sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT) assert np.allclose( sequence_features.toarray(), expected_sequence_features, atol=1e-10 ) assert np.allclose( sentence_features.toarray(), expected_sentence_features, atol=1e-10 ) # the tokenizer should have added tokens assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0 # the number of regex matches on each token should match for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])): token_matches = token.get("pattern").values() num_matches = sum(token_matches) assert num_matches == labeled_tokens.count(i) @pytest.mark.parametrize( "sentence, expected_sequence_features, expected_sentence_features", [ ("hey how are you today", [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]), ("hey 456 how are you", [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]), ("blah balh random eh", [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]), ("a 1 digit number", [0.0, 0.0, 0.0], [1.0, 0.0, 1.0]), ], ) def test_regex_featurizer_no_sequence( sentence: Text, expected_sequence_features: List[float], expected_sentence_features: List[float], spacy_nlp: Any, create_featurizer: Callable[..., RegexFeaturizer], spacy_tokenizer: SpacyTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, {"pattern": "[0-1]+", "name": "binary", "usage": "intent"}, ] ftr = create_featurizer(known_patterns=patterns) # adds tokens to the message message = Message(data={TEXT: sentence}) message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence)) spacy_tokenizer.process([message]) sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT) assert np.allclose( sequence_features.toarray()[0], expected_sequence_features, atol=1e-10 ) assert np.allclose( sentence_features.toarray()[-1], expected_sentence_features, atol=1e-10 ) def test_regex_featurizer_train( create_featurizer: Callable[..., RegexFeaturizer], whitespace_tokenizer: WhitespaceTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, {"pattern": "[0-1]+", "name": "binary", "usage": "intent"}, ] featurizer = create_featurizer() sentence = "hey how are you today 19.12.2019 ?" message = Message(data={TEXT: sentence}) message.set(RESPONSE, sentence) message.set(INTENT, "intent") whitespace_tokenizer.process_training_data(TrainingData([message])) training_data = TrainingData([message], regex_features=patterns) featurizer.train(training_data) featurizer.process_training_data(training_data) expected = np.array([0, 1, 0]) expected_cls = np.array([1, 1, 1]) seq_vecs, sen_vec = message.get_sparse_features(TEXT, []) if seq_vecs: seq_vecs = seq_vecs.features if sen_vec: sen_vec = sen_vec.features assert (6, 3) == seq_vecs.shape assert (1, 3) == sen_vec.shape assert np.all(seq_vecs.toarray()[0] == expected) assert np.all(sen_vec.toarray()[-1] == expected_cls) seq_vecs, sen_vec = message.get_sparse_features(RESPONSE, []) if seq_vecs: seq_vecs = seq_vecs.features if sen_vec: sen_vec = sen_vec.features assert (6, 3) == seq_vecs.shape assert (1, 3) == sen_vec.shape assert np.all(seq_vecs.toarray()[0] == expected) assert np.all(sen_vec.toarray()[-1] == expected_cls) seq_vecs, sen_vec = message.get_sparse_features(INTENT, []) if seq_vecs: seq_vecs = seq_vecs.features if sen_vec: sen_vec = sen_vec.features assert seq_vecs is None assert sen_vec is None @pytest.mark.parametrize( "sentence, expected_sequence_features, expected_sentence_features," "case_sensitive", [ ("Hey How are you today", [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], True), ("Hey How are you today", [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], False), ("Hey 456 How are you", [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], True), ("Hey 456 How are you", [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], False), ], ) def test_regex_featurizer_case_sensitive( sentence: Text, expected_sequence_features: List[float], expected_sentence_features: List[float], case_sensitive: bool, spacy_nlp: Any, create_featurizer: Callable[..., RegexFeaturizer], spacy_tokenizer: SpacyTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, {"pattern": "[0-1]+", "name": "binary", "usage": "intent"}, ] ftr = create_featurizer({"case_sensitive": case_sensitive}, known_patterns=patterns) # adds tokens to the message message = Message(data={TEXT: sentence}) message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence)) spacy_tokenizer.process([message]) sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT) assert np.allclose( sequence_features.toarray()[0], expected_sequence_features, atol=1e-10 ) assert np.allclose( sentence_features.toarray()[-1], expected_sentence_features, atol=1e-10 ) @pytest.mark.parametrize( "sentence, expected_sequence_features, expected_sentence_features," "labeled_tokens, use_word_boundaries", [ ("how are you", [[1.0], [0.0], [0.0]], [1.0], [0.0], True), ("how are you", [[1.0], [0.0], [0.0]], [1.0], [0.0], False), ("Take a shower", [[0.0], [0.0], [0.0]], [0.0], [], True), ("Take a shower", [[0.0], [0.0], [1.0]], [1.0], [2.0], False), ("What a show", [[0.0], [0.0], [0.0]], [0.0], [], True), ("What a show", [[0.0], [0.0], [1.0]], [1.0], [2.0], False), ("The wolf howled", [[0.0], [0.0], [0.0]], [0.0], [], True), ("The wolf howled", [[0.0], [0.0], [1.0]], [1.0], [2.0], False), ], ) def test_lookup_with_and_without_boundaries( sentence: Text, expected_sequence_features: List[List[float]], expected_sentence_features: List[float], labeled_tokens: List[float], use_word_boundaries: bool, spacy_nlp: Any, create_featurizer: Callable[..., RegexFeaturizer], spacy_tokenizer: SpacyTokenizer, ): ftr = create_featurizer({"use_word_boundaries": use_word_boundaries}) training_data = TrainingData() # we use lookups because the "use_word_boundaries" flag is only used when # producing patterns from lookup tables lookups = [{"name": "how", "elements": ["how"]}] training_data.lookup_tables = lookups ftr.train(training_data) # adds tokens to the message message = Message(data={TEXT: sentence}) message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence)) spacy_tokenizer.process([message]) (sequence_features, sentence_features) = ftr._features_for_patterns(message, TEXT) sequence_features = sequence_features.toarray() sentence_features = sentence_features.toarray() num_of_patterns = sum([len(lookup["elements"]) for lookup in lookups]) assert sequence_features.shape == ( len(message.get(TOKENS_NAMES[TEXT])), num_of_patterns, ) num_of_lookup_tables = len(lookups) assert sentence_features.shape == (num_of_lookup_tables, num_of_patterns) # sequence_features should be {0,1} for each token: 1 if match, 0 if not assert np.allclose(sequence_features, expected_sequence_features, atol=1e-10) # sentence_features should be {0,1} for each lookup table: 1 if sentence # contains match from that table, 0 if not assert np.allclose(sentence_features, expected_sentence_features, atol=1e-10) # the tokenizer should have added tokens assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0 # the number of regex matches on each token should match for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])): token_matches = token.get("pattern").values() num_matches = sum(token_matches) # labeled_tokens should list the token(s) which match a pattern assert num_matches == labeled_tokens.count(i) def test_persist_load_for_finetuning( create_featurizer: Callable[..., RegexFeaturizer], default_model_storage: ModelStorage, default_execution_context: ExecutionContext, resource: Resource, whitespace_tokenizer: WhitespaceTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, {"pattern": "[0-1]+", "name": "binary", "usage": "intent"}, ] featurizer = create_featurizer() sentence = "hey how are you today 19.12.2019 ?" message = Message(data={TEXT: sentence}) message.set(RESPONSE, sentence) message.set(INTENT, "intent") training_data = TrainingData([message], regex_features=patterns) whitespace_tokenizer.process_training_data(training_data) featurizer.train(training_data) loaded_featurizer = RegexFeaturizer.load( RegexFeaturizer.get_default_config(), default_model_storage, resource, dataclasses.replace(default_execution_context, is_finetuning=True), ) # Test component loaded in finetune mode and also with # same patterns as before and vocabulary statistics assert loaded_featurizer.known_patterns == featurizer.known_patterns assert loaded_featurizer.finetune_mode new_lookups = [{"name": "plates", "elements": "data/test/lookup_tables/plates.txt"}] training_data = TrainingData() training_data.lookup_tables = new_lookups loaded_featurizer.train(training_data) # Test merging of a new pattern to an already trained component. assert len(loaded_featurizer.known_patterns) == 4 def test_vocabulary_expand_for_finetuning( create_featurizer: Callable[..., RegexFeaturizer], default_model_storage: ModelStorage, resource: Resource, default_execution_context: ExecutionContext, whitespace_tokenizer: WhitespaceTokenizer, ): patterns = [ {"pattern": "[0-9]+", "name": "number", "usage": "intent"}, {"pattern": "\\bhey*", "name": "hello", "usage": "intent"}, ] featurizer = create_featurizer() sentence = "hey hey 2020" message = Message(data={TEXT: sentence}) message.set(RESPONSE, sentence) message.set(INTENT, "intent") training_data = TrainingData([message], regex_features=patterns) whitespace_tokenizer.process_training_data(training_data) featurizer.train(training_data) featurizer.process_training_data(training_data) # Test featurization of message expected = np.array([1, 0]) expected_cls = np.array([1, 1]) seq_vecs, sen_vec = message.get_sparse_features(TEXT, []) if seq_vecs: seq_vecs = seq_vecs.features if sen_vec: sen_vec = sen_vec.features assert (3, 2) == seq_vecs.shape assert (1, 2) == sen_vec.shape assert np.all(seq_vecs.toarray()[0] == expected) assert np.all(sen_vec.toarray()[-1] == expected_cls) loaded_featurizer = RegexFeaturizer.load( RegexFeaturizer.get_default_config(), default_model_storage, resource, dataclasses.replace(default_execution_context, is_finetuning=True), ) new_patterns = [ {"pattern": "\\btoday*", "name": "day", "usage": "intent"}, {"pattern": "\\bhey+", "name": "hello", "usage": "intent"}, ] new_sentence = "hey today" message = Message(data={TEXT: new_sentence}) message.set(RESPONSE, new_sentence) message.set(INTENT, "intent") new_training_data = TrainingData([message], regex_features=patterns + new_patterns) whitespace_tokenizer.process_training_data(new_training_data) loaded_featurizer.train(new_training_data) loaded_featurizer.process_training_data(new_training_data) # Test featurization of message, this time for the extra pattern as well. expected_token_1 = np.array([1, 0, 0]) expected_token_2 = np.array([0, 0, 1]) expected_cls = np.array([1, 0, 1]) seq_vecs, sen_vec = message.get_sparse_features(TEXT, []) if seq_vecs: seq_vecs = seq_vecs.features if sen_vec: sen_vec = sen_vec.features assert (2, 3) == seq_vecs.shape assert (1, 3) == sen_vec.shape assert np.all(seq_vecs.toarray()[0] == expected_token_1) assert np.all(seq_vecs.toarray()[1] == expected_token_2) assert np.all(sen_vec.toarray()[-1] == expected_cls) # let's check if the order of patterns is preserved for old_index, pattern in enumerate(featurizer.known_patterns): assert pattern["name"] == loaded_featurizer.known_patterns[old_index]["name"] # we also modified a pattern, check if that is correctly modified pattern_to_check = [ pattern for pattern in loaded_featurizer.known_patterns if pattern["name"] == "hello" ] assert pattern_to_check == [new_patterns[1]]
null
null
null
null
null
null
null
null
null
[]
4,471
tests/components/eafm/__init__.py
tbarbette/core
30,023
3327514
"""Tests for eafm."""
0
0
0.0
0
0
0
1.0
0
0
[]
2,608
OpenCorePkg/Debug/Scripts/gdb_uefi.py
CEOALT1/RefindPlusUDK
10,125
11351705
<gh_stars>1000+ """ Allows loading TianoCore symbols into a GDB session attached to EFI Firmware. This is how it works: build GdbSyms - it's a dummy binary that contains the relevant symbols needed to find and load image symbols. $ gdb /path/to/GdbSyms.dll (gdb) target remote .... (gdb) source Scripts/gdb_uefi.py (gdb) reload-uefi -o /path/to/GdbSyms.dll N.B: it was noticed that GDB for certain targets behaves strangely when run without any binary - like assuming a certain physical address space size and endianness. To avoid this madness and seing strange bugs, make sure to pass /path/to/GdbSyms.dll when starting gdb. The -o option should be used if you've debugging EFI, where the PE images were converted from MACH-O or ELF binaries. """ import array import getopt import binascii import re import sys import os import subprocess import sys sys.path.append(os.path.dirname(__file__)) from common_uefi import * __license__ = "BSD" __version = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Works" if sys.version_info > (3,): long = int class ReloadUefi (gdb.Command): """Reload UEFI symbols""" # # Various constants. # EINVAL = 0xffffffff CV_NB10 = 0x3031424E CV_RSDS = 0x53445352 CV_MTOC = 0x434F544D DOS_MAGIC = 0x5A4D PE32PLUS_MAGIC = 0x20b EST_SIGNATURE = 0x5453595320494249 DEBUG_GUID = [0x49152E77, 0x1ADA, 0x4764, [0xB7,0xA2,0x7A,0xFE, 0xFE,0xD9,0x5E, 0x8B]] DEBUG_IS_UPDATING = 0x1 # # If the images were built as ELF/MACH-O and then converted to PE, # then the base address needs to be offset by PE headers. # offset_by_headers = False def __init__ (self): super (ReloadUefi, self).__init__ ("reload-uefi", gdb.COMMAND_OBSCURE) # # Returns gdb.Type for a type. # def type (self, typename): return gdb.lookup_type (typename) # # Returns gdb.Type for a pointer to a type. # def ptype (self, typename): return gdb.lookup_type (typename).pointer () # # Computes CRC32 on an array of data. # def crc32 (self, data): return binascii.crc32 (data) & 0xFFFFFFFF # # Sets a field in a struct to a value, i.e. # value->field_name = data. # # Newer Py bindings to Gdb provide access to the inferior # memory, but not all, so have to do it this awkward way. # def set_field (self, value, field_name, data): gdb.execute ("set *(%s *) 0x%x = 0x%x" % \ (str (value[field_name].type), \ long (value[field_name].address), data)) # # Returns data backing a gdb.Value as an array. # Same comment as above regarding newer Py bindings... # def value_data (self, value, bytes=0): value_address = gdb.Value (value.address) array_t = self.ptype ('UINT8') value_array = value_address.cast (array_t) if bytes == 0: bytes = value.type.sizeof data = array.array ('B') for i in range (0, bytes): data.append (value_array[i]) return data # # Locates the EFI_SYSTEM_TABLE as per UEFI spec 17.4. # Returns base address or -1. # def search_est (self): address = 0 estp_t = self.ptype ('EFI_SYSTEM_TABLE_POINTER') while True: try: estp = gdb.Value(address).cast(estp_t) if estp['Signature'] == self.EST_SIGNATURE: oldcrc = long(estp['Crc32']) self.set_field (estp, 'Crc32', 0) newcrc = self.crc32 (self.value_data (estp.dereference (), 0)) self.set_field (estp, 'Crc32', long(oldcrc)) if newcrc == oldcrc: print('EFI_SYSTEM_TABLE_POINTER @ 0x%x' % address) return estp['EfiSystemTableBase'] except gdb.MemoryError: pass address += 4 * 2**20 if address >= 2**32: return self.EINVAL # # Searches for a vendor-specific configuration table (in EST), # given a vendor-specific table GUID. GUID is a list like - # [32-bit, 16-bit, 16-bit, [8 bytes]] # def search_config (self, cfg_table, count, guid): index = 0 while index != count: cfg_entry = cfg_table[index]['VendorGuid'] if cfg_entry['Data1'] == guid[0] and \ cfg_entry['Data2'] == guid[1] and \ cfg_entry['Data3'] == guid[2] and \ self.value_data (cfg_entry['Data4']).tolist () == guid[3]: return cfg_table[index]['VendorTable'] index = index + 1 return gdb.Value(self.EINVAL) # # Returns offset of a field within structure. Useful # for getting container of a structure. # def offsetof (self, typename, field): t = gdb.Value (0).cast (self.ptype (typename)) return long(t[field].address) # # Returns sizeof of a type. # def sizeof (self, typename): return self.type (typename).sizeof # # Returns the EFI_IMAGE_NT_HEADERS32 pointer, given # an ImageBase address as a gdb.Value. # def pe_headers (self, imagebase): dosh_t = self.ptype ('EFI_IMAGE_DOS_HEADER') head_t = self.ptype ('EFI_IMAGE_OPTIONAL_HEADER_UNION') dosh = imagebase.cast (dosh_t) h_addr = long(imagebase) if dosh['e_magic'] == self.DOS_MAGIC: h_addr = h_addr + long(dosh['e_lfanew']) return gdb.Value(h_addr).cast (head_t) # # Returns a dictionary with PE sections. # def pe_sections (self, opt, file, imagebase): sect_t = self.ptype ('EFI_IMAGE_SECTION_HEADER') sections = (opt.address + 1).cast (sect_t) sects = {} for i in range (file['NumberOfSections']): name = UefiMisc.parse_utf8 (sections[i]['Name']) addr = long(sections[i]['VirtualAddress']) if name != '': sects[name] = addr return sects # # Returns True if pe_headers refer to a PE32+ image. # def pe_is_64 (self, pe_headers): if pe_headers['Pe32']['OptionalHeader']['Magic'] == self.PE32PLUS_MAGIC: return True return False # # Returns the PE fileheader. # def pe_file (self, pe): if self.pe_is_64 (pe): return pe['Pe32Plus']['FileHeader'] else: return pe['Pe32']['FileHeader'] # # Returns the PE (not so) optional header. # def pe_optional (self, pe): if self.pe_is_64 (pe): return pe['Pe32Plus']['OptionalHeader'] else: return pe['Pe32']['OptionalHeader'] # # Returns the symbol file name for a PE image. # def pe_parse_debug (self, pe): opt = self.pe_optional (pe) debug_dir_entry = opt['DataDirectory'][6] dep = debug_dir_entry['VirtualAddress'] + opt['ImageBase'] dep = dep.cast (self.ptype ('EFI_IMAGE_DEBUG_DIRECTORY_ENTRY')) cvp = dep.dereference ()['RVA'] + opt['ImageBase'] cvv = cvp.cast(self.ptype ('UINT32')).dereference () if cvv == self.CV_NB10: return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY') elif cvv == self.CV_RSDS: return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY') elif cvv == self.CV_MTOC: return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY') return gdb.Value(self.EINVAL) # # Prepares gdb symbol load command with proper section information. # Currently supports Mach-O and single-section files. # # TODO: Proper ELF support. # def get_sym_cmd (self, file, orgbase, sections, macho, fallack_base): cmd = 'add-symbol-file %s' % file # Fallback case, no sections, just load .text. if not sections.get('.text') or not sections.get('.data'): cmd += ' 0x%x' % (fallack_base) return cmd cmd += ' 0x%x' % (long(orgbase) + sections['.text']) if not macho or not os.path.exists(file): # Another fallback, try to load data at least. cmd += ' -s .data 0x%x' % (long(orgbase) + sections['.data']) return cmd # 1. Parse Mach-O. # FIXME: We should not rely on otool really. commands = subprocess.check_output(['otool', '-l', file]) try: lines = commands.decode('utf-8').split('\n') except: lines = commands.split('\n') in_sect = False machsections = {} for line in lines: line = line.strip() if line.startswith('Section'): in_sect = True sectname = None segname = None elif in_sect: if line.startswith('sectname'): sectname = line.split()[1] elif line.startswith('segname'): segname = line.split()[1] elif line.startswith('addr'): machsections[segname + '.' + sectname] = long(line.split()[1], base=16) in_sect = False # 2. Convert section names to gdb sections. mapping = { '__TEXT.__cstring': '.cstring', '__TEXT.__const': '.const', '__TEXT.__ustring': '__TEXT.__ustring', '__DATA.__const': '.const_data', '__DATA.__data': '.data', '__DATA.__bss': '.bss', '__DATA.__common': '__DATA.__common', # FIXME: These should not be loadable, but gdb still loads them :/ # '__DWARF.__apple_names': '__DWARF.__apple_names', # '__DWARF.__apple_namespac': '__DWARF.__apple_namespac', # '__DWARF.__apple_types': '__DWARF.__apple_types', # '__DWARF.__apple_objc': '__DWARF.__apple_objc', } # 3. Rebase. for entry in mapping: if machsections.get(entry): cmd += ' -s %s 0x%x' % (mapping[entry], long(orgbase) + machsections[entry]) return cmd # # Parses an EFI_LOADED_IMAGE_PROTOCOL, figuring out the symbol file name. # This file name is then appended to list of loaded symbols. # # TODO: Support TE images. # def parse_image (self, image, syms): orgbase = base = image['ImageBase'] pe = self.pe_headers (base) opt = self.pe_optional (pe) file = self.pe_file (pe) sym_name = self.pe_parse_debug (pe) sections = self.pe_sections (opt, file, base) # For ELF and Mach-O-derived images... if self.offset_by_headers: base = base + opt['SizeOfHeaders'] if sym_name != self.EINVAL: sym_name = sym_name.cast (self.ptype('CHAR8')).string () sym_name_dbg = re.sub(r"\.dll$", ".debug", sym_name) macho = False if os.path.isdir(sym_name + '.dSYM'): sym_name += '.dSYM/Contents/Resources/DWARF/' + os.path.basename(sym_name) macho = True elif sym_name_dbg != sym_name and os.path.exists(sym_name_dbg): # TODO: implement .elf handling. sym_name = sym_name_dbg syms.append (self.get_sym_cmd (sym_name, long(orgbase), sections, macho, long(base))) # # Parses table EFI_DEBUG_IMAGE_INFO structures, builds # a list of add-symbol-file commands, and reloads debugger # symbols. # def parse_edii (self, edii, count): index = 0 syms = [] print ("Found {} images...".format(count)) while index != count: entry = edii[index] if entry['ImageInfoType'].dereference () == 1: entry = entry['NormalImage'] self.parse_image(entry['LoadedImageProtocolInstance'], syms) else: print ("Skipping unknown EFI_DEBUG_IMAGE_INFO (Type 0x%x)" % \ entry['ImageInfoType'].dereference ()) index = index + 1 gdb.execute ("symbol-file") print ("Loading new symbols...") for sym in syms: try: gdb.execute (sym) except (gdb.error) as err: print ('Failed: %s' % err) # # Parses EFI_DEBUG_IMAGE_INFO_TABLE_HEADER, in order to load # image symbols. # def parse_dh (self, dh): dh_t = self.ptype ('EFI_DEBUG_IMAGE_INFO_TABLE_HEADER') dh = dh.cast (dh_t) print ("DebugImageInfoTable @ 0x%x, 0x%x entries" % \ (long (dh['EfiDebugImageInfoTable']), dh['TableSize'])) if dh['UpdateStatus'] & self.DEBUG_IS_UPDATING: print ("EfiDebugImageInfoTable update in progress, retry later") return self.parse_edii (dh['EfiDebugImageInfoTable'], dh['TableSize']) # # Parses EFI_SYSTEM_TABLE, in order to load image symbols. # def parse_est (self, est): est_t = self.ptype ('EFI_SYSTEM_TABLE') est = est.cast (est_t) print ("Connected to %s (Rev. 0x%x)" % \ (UefiMisc.parse_utf16 (est['FirmwareVendor']), \ long (est['FirmwareRevision']))) print ("ConfigurationTable @ 0x%x, 0x%x entries" % \ (long (est['ConfigurationTable']), est['NumberOfTableEntries'])) dh = self.search_config(est['ConfigurationTable'], est['NumberOfTableEntries'], self.DEBUG_GUID) if dh == self.EINVAL: print ("No EFI_DEBUG_IMAGE_INFO_TABLE_HEADER") return self.parse_dh (dh) # # Usage information. # def usage (self): print ("Usage: reload-uefi [-o] [/path/to/GdbSyms.dll]") # # Handler for reload-uefi. # def invoke (self, arg, from_tty): args = arg.split(' ') try: opts, args = getopt.getopt(args, "o", ["offset-by-headers"]) except (getopt.GetoptError) as err: self.usage () return for opt, arg in opts: if opt == "-o": self.offset_by_headers = True if len(args) >= 1 and args[0] != '': gdb.execute ("symbol-file") gdb.execute ("symbol-file %s" % args[0]) else: # FIXME: gdb.objfiles () loses files after symbol-file execution, # so we have to extract GdbSymbs.dll manually. lines = gdb.execute ("info files", to_string=True).split('\n') for line in lines: m = re.search("`([^']+)'", line) if m: gdb.execute ("symbol-file") gdb.execute ("symbol-file %s" % m.group(1)) break est = self.search_est () if est == self.EINVAL: print ("No EFI_SYSTEM_TABLE...") return print ("EFI_SYSTEM_TABLE @ 0x%x" % est) self.parse_est (est) class UefiStringPrinter: def __init__(self, val): self.val = val def to_string (self): if not self.val: return "NULL" return 'L"' + UefiMisc.parse_utf16(self.val) + '"' class UefiEfiStatusPrinter: def __init__(self, val): self.val = val def to_string (self): return UefiMisc.parse_status(self.val, True) class UefiReturnStatusPrinter: def __init__(self, val): self.val = val def to_string (self): return UefiMisc.parse_status(self.val, False) class UefiGuidPrinter: def __init__(self, val): self.val = val def to_string (self): return UefiMisc.parse_guid(self.val) def lookup_uefi_type (val): if str(val.type) == 'const CHAR16 *' or str(val.type) == 'CHAR16 *': return UefiStringPrinter(val) elif str(val.type) == 'EFI_STATUS': return UefiEfiStatusPrinter(val) elif str(val.type) == 'RETURN_STATUS': return UefiReturnStatusPrinter(val) elif str(val.type) == 'GUID' or str(val.type) == 'EFI_GUID': return UefiGuidPrinter(val) return None ReloadUefi () gdb.pretty_printers.append (lookup_uefi_type)
12
0
0.0
81
0
12
1.0
0
80
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 35, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 35, "endOffset": 25, "startLine": 35, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 119, "message": "Rename this variable; it shadows a builtin.", "textRange": { "endLine": 119, "endOffset": 17, "startLine": 119, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 266, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 266, "endOffset": 31, "startLine": 266, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 268, "message": "Refactor this function to reduce its Cognitive Complexity from 17 to the 15 allowed.", "textRange": { "endLine": 268, "endOffset": 19, "startLine": 268, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 272, "message": "Define a constant instead of duplicating this literal '.data' 3 times.", "textRange": { "endLine": 272, "endOffset": 64, "startLine": 272, "startOffset": 57 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 284, "message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.", "textRange": { "endLine": 284, "endOffset": 52, "startLine": 284, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 288, "message": "Specify an exception class to catch or reraise the exception", "textRange": { "endLine": 288, "endOffset": 14, "startLine": 288, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 316, "message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.", "textRange": { "endLine": 316, "endOffset": 78, "startLine": 316, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 334, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 334, "endOffset": 30, "startLine": 334, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 356, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 356, "endOffset": 48, "startLine": 356, "startOffset": 16 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 437, "message": "Remove the unused local variable \"err\".", "textRange": { "endLine": 437, "endOffset": 42, "startLine": 437, "startOffset": 39 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 448, "message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.", "textRange": { "endLine": 448, "endOffset": 77, "startLine": 448, "startOffset": 12 }, "type": "CODE_SMELL" } ]
7,187
code/2.7/7_decorators_args.py
suqi/suqi-interpy-zh
6,594
10218124
from functools import wraps def logit(logfile='out.log'): def logging_decorator(func): @wraps(func) def wrapped_function(*args, **kwargs): log_string = func.__name__ + ' was called' print log_string with open(logfile, 'a') as opened_file: opened_file.write(log_string + '\n') return func(*args, **kwargs) return wrapped_function return logging_decorator @logit() def myfunc1(): pass @logit(logfile='func2.log') def myfunc2(): pass def main(): myfunc1() myfunc2() if __name__ == '__main__': main()
null
null
null
null
null
null
null
null
null
[]
12,178
tests/integration/test_disabled_access_control_improvements/test_row_policy.py
mrk-andreev/ClickHouse
8,629
9674883
import os import pytest from helpers.cluster import ClickHouseCluster from helpers.test_tools import TSV cluster = ClickHouseCluster(__file__) node = cluster.add_instance( "node", main_configs=["configs/config.d/disable_access_control_improvements.xml"], user_configs=[ "configs/users.d/row_policy.xml", "configs/users.d/another_user.xml", ], ) def copy_policy_xml(local_file_name): script_dir = os.path.dirname(os.path.realpath(__file__)) node.copy_file_to_container( os.path.join(script_dir, local_file_name), "/etc/clickhouse-server/users.d/row_policy.xml", ) node.query("SYSTEM RELOAD CONFIG") @pytest.fixture(scope="module", autouse=True) def started_cluster(): try: cluster.start() node.query( """ CREATE DATABASE mydb; CREATE TABLE mydb.filtered_table1 (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a; INSERT INTO mydb.filtered_table1 values (0, 0), (0, 1), (1, 0), (1, 1); CREATE TABLE mydb.table (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a; INSERT INTO mydb.table values (0, 0), (0, 1), (1, 0), (1, 1); CREATE TABLE mydb.filtered_table2 (a UInt8, b UInt8, c UInt8, d UInt8) ENGINE MergeTree ORDER BY a; INSERT INTO mydb.filtered_table2 values (0, 0, 0, 0), (1, 2, 3, 4), (4, 3, 2, 1), (0, 0, 6, 0); CREATE TABLE mydb.filtered_table3 (a UInt8, b UInt8, c UInt16 ALIAS a + b) ENGINE MergeTree ORDER BY a; INSERT INTO mydb.filtered_table3 values (0, 0), (0, 1), (1, 0), (1, 1); CREATE TABLE mydb.`.filtered_table4` (a UInt8, b UInt8, c UInt16 ALIAS a + b) ENGINE MergeTree ORDER BY a; INSERT INTO mydb.`.filtered_table4` values (0, 0), (0, 1), (1, 0), (1, 1); CREATE TABLE mydb.local (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a; """ ) node.query("INSERT INTO mydb.local values (2, 0), (2, 1), (1, 0), (1, 1)") yield cluster finally: cluster.shutdown() @pytest.fixture(autouse=True) def reset_policies(): try: yield finally: copy_policy_xml("normal_filters.xml") node.query("DROP POLICY IF EXISTS pA, pB ON mydb.filtered_table1") def test_introspection(): policies = [ [ "another ON mydb.filtered_table1", "another", "mydb", "filtered_table1", "6068883a-0e9d-f802-7e22-0144f8e66d3c", "users.xml", "1", 0, 0, "['another']", "[]", ], [ "another ON mydb.filtered_table2", "another", "mydb", "filtered_table2", "c019e957-c60b-d54e-cc52-7c90dac5fb01", "users.xml", "1", 0, 0, "['another']", "[]", ], [ "another ON mydb.filtered_table3", "another", "mydb", "filtered_table3", "4cb080d0-44e8-dbef-6026-346655143628", "users.xml", "1", 0, 0, "['another']", "[]", ], [ "another ON mydb.local", "another", "mydb", "local", "5b23c389-7e18-06bf-a6bc-dd1afbbc0a97", "users.xml", "a = 1", 0, 0, "['another']", "[]", ], [ "default ON mydb.filtered_table1", "default", "mydb", "filtered_table1", "9e8a8f62-4965-2b5e-8599-57c7b99b3549", "users.xml", "a = 1", 0, 0, "['default']", "[]", ], [ "default ON mydb.filtered_table2", "default", "mydb", "filtered_table2", "cffae79d-b9bf-a2ef-b798-019c18470b25", "users.xml", "a + b < 1 or c - d > 5", 0, 0, "['default']", "[]", ], [ "default ON mydb.filtered_table3", "default", "mydb", "filtered_table3", "12fc5cef-e3da-3940-ec79-d8be3911f42b", "users.xml", "c = 1", 0, 0, "['default']", "[]", ], [ "default ON mydb.local", "default", "mydb", "local", "cdacaeb5-1d97-f99d-2bb0-4574f290629c", "users.xml", "1", 0, 0, "['default']", "[]", ], ] assert node.query( "SELECT * from system.row_policies ORDER BY short_name, database, table" ) == TSV(policies) def test_dcl_introspection(): assert node.query("SHOW POLICIES") == TSV( [ "another ON mydb.filtered_table1", "another ON mydb.filtered_table2", "another ON mydb.filtered_table3", "another ON mydb.local", "default ON mydb.filtered_table1", "default ON mydb.filtered_table2", "default ON mydb.filtered_table3", "default ON mydb.local", ] ) assert node.query("SHOW POLICIES ON mydb.filtered_table1") == TSV( ["another", "default"] ) assert node.query("SHOW POLICIES ON mydb.local") == TSV(["another", "default"]) assert node.query("SHOW POLICIES ON mydb.*") == TSV( [ "another ON mydb.filtered_table1", "another ON mydb.filtered_table2", "another ON mydb.filtered_table3", "another ON mydb.local", "default ON mydb.filtered_table1", "default ON mydb.filtered_table2", "default ON mydb.filtered_table3", "default ON mydb.local", ] ) assert node.query("SHOW POLICIES default") == TSV( [ "default ON mydb.filtered_table1", "default ON mydb.filtered_table2", "default ON mydb.filtered_table3", "default ON mydb.local", ] ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table1") == "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table2") == "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table3") == "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.local") == "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\n" ) assert node.query("SHOW CREATE POLICY default") == TSV( [ "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default", "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default", "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default", "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default", ] ) assert node.query("SHOW CREATE POLICIES ON mydb.filtered_table1") == TSV( [ "CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another", "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default", ] ) assert node.query("SHOW CREATE POLICIES ON mydb.*") == TSV( [ "CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another", "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default", "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default", "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default", "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default", ] ) assert node.query("SHOW CREATE POLICIES") == TSV( [ "CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another", "CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another", "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default", "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default", "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default", "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default", ] ) expected_access = ( "CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another\n" "CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another\n" "CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another\n" "CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another\n" "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\n" "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\n" "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\n" "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\n" ) assert expected_access in node.query("SHOW ACCESS") copy_policy_xml("all_rows.xml") assert node.query("SHOW POLICIES") == TSV( [ "another ON mydb.filtered_table1", "another ON mydb.filtered_table2", "another ON mydb.filtered_table3", "default ON mydb.filtered_table1", "default ON mydb.filtered_table2", "default ON mydb.filtered_table3", ] ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table1") == "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING 1 TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table2") == "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING 1 TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table3") == "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING 1 TO default\n" ) copy_policy_xml("no_rows.xml") assert node.query("SHOW POLICIES") == TSV( [ "another ON mydb.filtered_table1", "another ON mydb.filtered_table2", "another ON mydb.filtered_table3", "default ON mydb.filtered_table1", "default ON mydb.filtered_table2", "default ON mydb.filtered_table3", ] ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table1") == "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING NULL TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table2") == "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING NULL TO default\n" ) assert ( node.query("SHOW CREATE POLICY default ON mydb.filtered_table3") == "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING NULL TO default\n" ) copy_policy_xml("no_filters.xml") assert node.query("SHOW POLICIES") == "" def test_dcl_management(): copy_policy_xml("no_filters.xml") assert node.query("SHOW POLICIES") == "" node.query("CREATE POLICY pA ON mydb.filtered_table1 FOR SELECT USING a<b") assert node.query("SELECT * FROM mydb.filtered_table1") == "" assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pA\n" node.query("ALTER POLICY pA ON mydb.filtered_table1 TO default") assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[0, 1]]) assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pA\n" node.query("ALTER POLICY pA ON mydb.filtered_table1 FOR SELECT USING a>b") assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0]]) node.query("ALTER POLICY pA ON mydb.filtered_table1 RENAME TO pB") assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0]]) assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pB\n" assert ( node.query("SHOW CREATE POLICY pB ON mydb.filtered_table1") == "CREATE ROW POLICY pB ON mydb.filtered_table1 FOR SELECT USING a > b TO default\n" ) node.query("DROP POLICY pB ON mydb.filtered_table1") assert node.query("SELECT * FROM mydb.filtered_table1") == TSV( [[0, 0], [0, 1], [1, 0], [1, 1]] ) assert node.query("SHOW POLICIES") == "" def test_dcl_users_with_policies_from_users_xml(): node.query("CREATE USER X") node.query("GRANT SELECT ON mydb.filtered_table1 TO X") assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0], [1, 1]]) assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == "" node.query("DROP USER X") def test_some_users_without_policies(): copy_policy_xml("no_filters.xml") assert node.query("SHOW POLICIES") == "" node.query("CREATE USER X, Y") node.query("GRANT SELECT ON mydb.filtered_table1 TO X, Y") # permissive a >= b for X, none for Y node.query( "CREATE POLICY pA ON mydb.filtered_table1 FOR SELECT USING a >= b AS permissive TO X" ) assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV( [[0, 0], [1, 0], [1, 1]] ) assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == "" # restrictive a >=b for X, none for Y node.query("ALTER POLICY pA ON mydb.filtered_table1 AS restrictive") assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == "" assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == "" # permissive a >= b for X, restrictive a <= b for X, none for Y node.query("ALTER POLICY pA ON mydb.filtered_table1 AS permissive") node.query( "CREATE POLICY pB ON mydb.filtered_table1 FOR SELECT USING a <= b AS restrictive TO X" ) assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV( [[0, 0], [1, 1]] ) assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == "" # permissive a >= b for X, restrictive a <= b for Y node.query("ALTER POLICY pB ON mydb.filtered_table1 TO Y") assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV( [[0, 0], [1, 0], [1, 1]] ) assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == "" node.query("DROP POLICY pA, pB ON mydb.filtered_table1") node.query("DROP USER X, Y")
23
0
0.0
0
0
23
1.0
0
8
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 74, "message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table1\" 5 times.", "textRange": { "endLine": 74, "endOffset": 45, "startLine": 74, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 79, "message": "Define a constant instead of duplicating this literal \"users.xml\" 8 times.", "textRange": { "endLine": 79, "endOffset": 23, "startLine": 79, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 83, "message": "Define a constant instead of duplicating this literal \"['another']\" 4 times.", "textRange": { "endLine": 83, "endOffset": 25, "startLine": 83, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 87, "message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table2\" 5 times.", "textRange": { "endLine": 87, "endOffset": 45, "startLine": 87, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 100, "message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table3\" 5 times.", "textRange": { "endLine": 100, "endOffset": 45, "startLine": 100, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 113, "message": "Define a constant instead of duplicating this literal \"another ON mydb.local\" 3 times.", "textRange": { "endLine": 113, "endOffset": 35, "startLine": 113, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 126, "message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table1\" 6 times.", "textRange": { "endLine": 126, "endOffset": 45, "startLine": 126, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 135, "message": "Define a constant instead of duplicating this literal \"['default']\" 4 times.", "textRange": { "endLine": 135, "endOffset": 25, "startLine": 135, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 139, "message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table2\" 6 times.", "textRange": { "endLine": 139, "endOffset": 45, "startLine": 139, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 152, "message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table3\" 6 times.", "textRange": { "endLine": 152, "endOffset": 45, "startLine": 152, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 165, "message": "Define a constant instead of duplicating this literal \"default ON mydb.local\" 4 times.", "textRange": { "endLine": 165, "endOffset": 35, "startLine": 165, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 184, "message": "Define a constant instead of duplicating this literal \"SHOW POLICIES\" 7 times.", "textRange": { "endLine": 184, "endOffset": 37, "startLine": 184, "startOffset": 22 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 197, "message": "Define a constant instead of duplicating this literal \"SHOW POLICIES ON mydb.filtered_table1\" 4 times.", "textRange": { "endLine": 197, "endOffset": 61, "startLine": 197, "startOffset": 22 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 223, "message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table1\" 3 times.", "textRange": { "endLine": 223, "endOffset": 71, "startLine": 223, "startOffset": 19 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 227, "message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table2\" 3 times.", "textRange": { "endLine": 227, "endOffset": 71, "startLine": 227, "startOffset": 19 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 231, "message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table3\" 3 times.", "textRange": { "endLine": 231, "endOffset": 71, "startLine": 231, "startOffset": 19 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 241, "message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\" 4 times.", "textRange": { "endLine": 241, "endOffset": 97, "startLine": 241, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 242, "message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\" 3 times.", "textRange": { "endLine": 242, "endOffset": 122, "startLine": 242, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 243, "message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\" 3 times.", "textRange": { "endLine": 243, "endOffset": 97, "startLine": 243, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 244, "message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\" 3 times.", "textRange": { "endLine": 244, "endOffset": 83, "startLine": 244, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 249, "message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another\" 3 times.", "textRange": { "endLine": 249, "endOffset": 93, "startLine": 249, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 338, "message": "Define a constant instead of duplicating this literal \"no_filters.xml\" 3 times.", "textRange": { "endLine": 338, "endOffset": 36, "startLine": 338, "startOffset": 20 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 347, "message": "Define a constant instead of duplicating this literal \"SELECT * FROM mydb.filtered_table1\" 15 times.", "textRange": { "endLine": 347, "endOffset": 58, "startLine": 347, "startOffset": 22 }, "type": "CODE_SMELL" } ]
5,922
recipes/Python/576505_Sudoku_solvercreator/recipe-576505.py
tdiprima/code
2,023
515289
<reponame>tdiprima/code<gh_stars>1000+ #!/usr/bin/python # TODO: Make solve function faster!!! Have it check for singles, doubles, # triples, and quads both naked and hidden from random import random def rand(lst): "returns a random element in list or integer" if type(lst)==type([]): return lst[int(random()*len(lst))] elif type(lst)==type(0): return int(random()*lst) else: raise Exception,"don't know what do do with type %s!!!"%type(lst) def reorder(lst): "reorders a list to a random order" ret=[] for item in lst: ret.insert(rand(len(ret)),item) return ret def row(row,puzzle): return puzzle[row*9:row*9+9] def col(col,puzzle): ret=[] for i in range(9): ret.append(row(i,puzzle)[col]) return ret def box(box,puzzle): x=box%3 if box<3: y=0 elif box<6: y=1 else: y=2 ret=[] for i in range(3): ret.extend(row(y*3+i,puzzle)[x*3:x*3+3]) return ret def remaining(wcb): ret=[] for i in range(1,10): if not i in wcb: ret.append(i) return reorder(ret) # does not significantly slow program # and allows for generation of random puzzles def coordToBox(x,y): box=0 if x<3: pass elif x<6: box+=1 else: box+=2 if y<3: pass elif y<6: box+=3 else: box+=6 return box def coordToLinear(x,y): return y*9+x def linearToCoord(index): y=8 for i in range(9): if index<i*9: y-=1 x=index%9 return x,y def possible(x,y,puzzle): if not puzzle[coordToLinear(x,y)]==0: return [puzzle[coordToLinear(x,y)]] imp=[] imp.extend(row(y,puzzle)) imp.extend(col(x,puzzle)) imp.extend(box(coordToBox(x,y),puzzle)) return remaining(imp) def printPuzzle(puzzle): string=((((("%s "*3)+"| ")*2+("%s "*3)+"\n")*3+"------|-------|------\n")*3)[:-22]+"\n" text=(string%tuple(puzzle)).replace("0","_") print text, return text def check(x,y,puzzle): for i in range(9): if not i==y and len(possible(x,i,puzzle))==0: return False if not i==x and len(possible(i,y,puzzle))==0: return False box_x,box_y=linearToCoord(coordToBox(x,y)) for i in range(box_x,box_x+3): if i==x: break for j in range(box_y,box_y+3): if j==y: break if len(possible(i,j,puzzle))==0: return False return True def solve(puzzle,start=0): # TODO: Make this function faster!!! if start==81: return [puzzle[:]] ret=[] x,y=linearToCoord(start) possibilities=possible(x,y,puzzle) if len(possibilities)==0: return for possibility in possibilities: p=puzzle[:] p[coordToLinear(x,y)]=possibility x,y=linearToCoord(start) if not check(x,y,puzzle): continue solved=solve(p,start+1) if solved: ret.extend(solved) if 1<len(ret): # there is more than one puzzle return ret # enough already!!! return ret def solve_no_check_for_dups(puzzle,start=0): "This solver function does not check for multiple solutions." if start==81: return puzzle[:] x,y=linearToCoord(start) possibilities=possible(x,y,puzzle) if len(possibilities)==0: return for possibility in possibilities: p=puzzle[:] p[coordToLinear(x,y)]=possibility x,y=linearToCoord(start) if not check(x,y,puzzle): continue solved=solve_no_check_for_dups(p,start+1) if solved: return solved return [] def generate(sym=True,goodness=0): # goodness=0 means evil if sym: RANGE=41 else: RANGE=81 puzzle=[0]*81 soln=solve_no_check_for_dups(puzzle) puzzle=soln[:] spaces=range(RANGE) for i in range(RANGE-goodness): space=spaces.pop(rand(len(spaces))) puzzle[space]=0 if sym: puzzle[80-space]=0 if 1<len(solve(puzzle)): puzzle[space]=soln[space] if sym: puzzle[80-space]=soln[80-space] return puzzle #puzzle=[] #for i in range(9): # puzzle.extend(map(int,raw_input().split())) try: import psyco psyco.full() except ImportError: print "You do not have psyco installed. The program will run slower." if __name__=="__main__": #puzzle=generate() #printPuzzle(puzzle) #soln=solve(puzzle) #printPuzzle(soln[0]) #if 1<len(soln): # print "More than one solution!!!" #puzzle=generate(sym=False) #printPuzzle(puzzle) #soln=solve(puzzle) #printPuzzle(soln[0]) #if 1<len(soln): # print "More than one solution!!!" from time import sleep while True: puzzle=generate(sym=False) text=printPuzzle(puzzle) f=open("./sudoku","a") f.write(text) f.close() sleep(180)
19
0
0.0
71
0
19
1.0
2
55
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 3, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 3, "endOffset": 73, "startLine": 3, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 15, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 15, "endOffset": 17, "startLine": 15, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 49, "message": "Use the opposite operator (\"not in\") instead.", "textRange": { "endLine": 49, "endOffset": 17, "startLine": 49, "startOffset": 5 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 54, "message": "Rename function \"coordToBox\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 54, "endOffset": 14, "startLine": 54, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 57, "message": "Either remove or fill this block of code.", "textRange": { "endLine": 57, "endOffset": 6, "startLine": 57, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 63, "message": "Either remove or fill this block of code.", "textRange": { "endLine": 63, "endOffset": 6, "startLine": 63, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 70, "message": "Rename function \"coordToLinear\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 70, "endOffset": 17, "startLine": 70, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 73, "message": "Rename function \"linearToCoord\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 73, "endOffset": 17, "startLine": 73, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 82, "message": "Use the opposite operator (\"!=\") instead.", "textRange": { "endLine": 82, "endOffset": 37, "startLine": 82, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 90, "message": "Rename function \"printPuzzle\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 90, "endOffset": 15, "startLine": 90, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 93, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 93, "endOffset": 6, "startLine": 93, "startOffset": 1 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 96, "message": "Refactor this function to reduce its Cognitive Complexity from 18 to the 15 allowed.", "textRange": { "endLine": 96, "endOffset": 9, "startLine": 96, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 98, "message": "Use the opposite operator (\"!=\") instead.", "textRange": { "endLine": 98, "endOffset": 13, "startLine": 98, "startOffset": 5 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 100, "message": "Use the opposite operator (\"!=\") instead.", "textRange": { "endLine": 100, "endOffset": 13, "startLine": 100, "startOffset": 5 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 113, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 113, "endOffset": 63, "startLine": 113, "startOffset": 27 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 162, "message": "Remove the unused local variable \"i\".", "textRange": { "endLine": 162, "endOffset": 6, "startLine": 162, "startOffset": 5 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 173, "message": "Remove this commented out code.", "textRange": { "endLine": 173, "endOffset": 10, "startLine": 173, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 181, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 181, "endOffset": 6, "startLine": 181, "startOffset": 1 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 184, "message": "Remove this commented out code.", "textRange": { "endLine": 184, "endOffset": 19, "startLine": 184, "startOffset": 1 }, "type": "CODE_SMELL" } ]
10,392
algorithms/tree/traversal/__init__.py
Heart-throb-Rajnish/algorithms
22,426
3220141
<reponame>Heart-throb-Rajnish/algorithms<filename>algorithms/tree/traversal/__init__.py<gh_stars>1000+ from .preorder import * from .postorder import * from .inorder import *
null
null
null
null
null
null
null
null
null
[]
2,144
V3/server/cmdline.py
webpics/style2paints
15,281
191101
<reponame>webpics/style2paints<filename>V3/server/cmdline.py<gh_stars>1000+ #!/usr/bin/env python3 import os import sys for f in ['baby.net', 'head.net', 'neck.net', 'tail.net', 'reader.net', 'girder.net']: if not os.path.exists(f): print('Error: neural network models not downloaded!') print('Download them here, and put to current directory:') print('https://drive.google.com/open?id=1fWi4wmNj-xr-nCzuWMsN2rcm0249_Aem') exit(1) if len(sys.argv) <= 2: print('Usage: %s <imagefile> <outputfile> [colorization|rendering|recolorization] [x y color x y color ...]' % sys.argv[0]) print('Example: %s sketch.jpg colorized.jpg colorization 0.5 0.25 77ee00 0.5 0.75 0011cc' % sys.argv[0]) exit(1) from config import * import re import cv2 import time import json import base64 import shutil import datetime import threading import numpy as np from ai import * from tricks import * sketch_upload_pool = [] painting_pool = [] options_str = '{"alpha":0,"points":[],"lineColor":[0,0,0],"line":false,"hasReference":false}' def get_request_image(fname): img = np.fromfile(fname, dtype=np.uint8) img = cv2.imdecode(img, -1) return img def handle_sketch_upload_pool(): room, sketch, method = sketch_upload_pool[0] del sketch_upload_pool[0] room_path = 'game/rooms/' + room print('processing sketch in ' + room_path) improved_sketch = sketch.copy() improved_sketch = min_resize(improved_sketch, 512) improved_sketch = cv_denoise(improved_sketch) improved_sketch = sensitive(improved_sketch, s=5.0) improved_sketch = go_tail(improved_sketch) cv2.imwrite(room_path + '/sketch.improved.jpg', improved_sketch) color_sketch = improved_sketch.copy() std = cal_std(color_sketch) print('std = ' + str(std)) need_de_painting = (std > 100.0) and method == 'rendering' if method=='recolorization' or need_de_painting: improved_sketch = go_passline(color_sketch) improved_sketch = min_k_down_c(improved_sketch, 2) improved_sketch = cv_denoise(improved_sketch) improved_sketch = go_tail(improved_sketch) improved_sketch = sensitive(improved_sketch, s=5.0) cv2.imwrite(room_path + '/sketch.recolorization.jpg', min_black(improved_sketch)) if need_de_painting: cv2.imwrite(room_path + '/sketch.de_painting.jpg', min_black(improved_sketch)) print('In rendering mode, the user has uploaded a painting, and I have translated it into a sketch.') print('sketch lined') cv2.imwrite(room_path + '/sketch.colorization.jpg', min_black(color_sketch)) cv2.imwrite(room_path + '/sketch.rendering.jpg', eye_black(color_sketch)) print('sketch improved') def handle_painting_pool(): room, ID, sketch, alpha, reference, points, method, lineColor, line = painting_pool[0] del painting_pool[0] room_path = 'game/rooms/' + room print('processing painting in ' + room_path) sketch_1024 = k_resize(sketch, 64) if os.path.exists(room_path + '/sketch.de_painting.jpg') and method == 'rendering': vice_sketch_1024 = k_resize(cv2.imread(room_path + '/sketch.de_painting.jpg', cv2.IMREAD_GRAYSCALE), 64) sketch_256 = mini_norm(k_resize(min_k_down(vice_sketch_1024, 2), 16)) sketch_128 = hard_norm(sk_resize(min_k_down(vice_sketch_1024, 4), 32)) else: sketch_256 = mini_norm(k_resize(min_k_down(sketch_1024, 2), 16)) sketch_128 = hard_norm(sk_resize(min_k_down(sketch_1024, 4), 32)) print('sketch prepared') if debugging: cv2.imwrite(room_path + '/sketch.128.jpg', sketch_128) cv2.imwrite(room_path + '/sketch.256.jpg', sketch_256) baby = go_baby(sketch_128, opreate_normal_hint(ini_hint(sketch_128), points, type=0, length=1)) baby = de_line(baby, sketch_128) for _ in range(16): baby = blur_line(baby, sketch_128) baby = go_tail(baby) baby = clip_15(baby) if debugging: cv2.imwrite(room_path + '/baby.' + ID + '.jpg', baby) print('baby born') composition = go_gird(sketch=sketch_256, latent=d_resize(baby, sketch_256.shape), hint=ini_hint(sketch_256)) if line: composition = emph_line(composition, d_resize(min_k_down(sketch_1024, 2), composition.shape), lineColor) composition = go_tail(composition) cv2.imwrite(room_path + '/composition.' + ID + '.jpg', composition) print('composition saved') painting_function = go_head if method == 'rendering': painting_function = go_neck print('method: ' + method) result = painting_function( sketch=sketch_1024, global_hint=k_resize(composition, 14), local_hint=opreate_normal_hint(ini_hint(sketch_1024), points, type=2, length=2), global_hint_x=k_resize(reference, 14) if reference is not None else k_resize(composition, 14), alpha=(1 - alpha) if reference is not None else 1 ) result = go_tail(result) cv2.imwrite(room_path + '/result.' + ID + '.jpg', result) if debugging: cv2.imwrite(room_path + '/icon.' + ID + '.jpg', max_resize(result, 128)) return room_path + '/result.' + ID + '.jpg' def upload_sketch(inputfilename, method): ID = datetime.datetime.now().strftime('H%HM%MS%S') room = datetime.datetime.now().strftime('%b%dH%HM%MS%S') + 'R' + str(np.random.randint(100, 999)) room_path = 'game/rooms/' + room os.makedirs(room_path, exist_ok=True) sketch = from_png_to_jpg(get_request_image(inputfilename)) cv2.imwrite(room_path + '/sketch.original.jpg', sketch) print('original_sketch saved') print('sketch upload pool get request: ' + method) sketch_upload_pool.append((room, sketch, method)) return room def request_result(room, method, points): ID = datetime.datetime.now().strftime('H%HM%MS%S') room_path = 'game/rooms/' + room if debugging: with open(room_path + '/options.' + ID + '.json', 'w') as f: f.write(options_str) options = json.loads(options_str) sketch = cv2.imread(room_path + '/sketch.' + method + '.jpg', cv2.IMREAD_GRAYSCALE) alpha = float(options["alpha"]) for _ in range(len(points)): points[_][1] = 1 - points[_][1] reference = None print('request result room = ' + str(room) + ', ID = ' + str(ID)) lineColor = np.array(options["lineColor"]) line = options["line"] painting_pool.append([room, ID, sketch, alpha, reference, points, method, lineColor, line]) os.makedirs('game/rooms', exist_ok=True) method = 'colorization' if len(sys.argv) <= 3 else sys.argv[3] points = [] i = 4 while len(sys.argv) > i: x = float(sys.argv[i]) y = float(sys.argv[i+1]) h = sys.argv[i+2] r = int(h[0:2], 16) g = int(h[2:4], 16) b = int(h[4:6], 16) points.append([x, y, r, g, b, 0]) i += 3 room = upload_sketch(sys.argv[1], method) handle_sketch_upload_pool() request_result(room, method, points) result = handle_painting_pool() shutil.copyfile(result, sys.argv[2])
9
0
0.0
24
0
9
1.0
0
26
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 19, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 19, "endOffset": 20, "startLine": 19, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 31, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 31, "endOffset": 16, "startLine": 31, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 32, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 32, "endOffset": 20, "startLine": 32, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 49, "message": "Define a constant instead of duplicating this literal 'game/rooms/' 4 times.", "textRange": { "endLine": 49, "endOffset": 29, "startLine": 49, "startOffset": 16 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 69, "message": "Define a constant instead of duplicating this literal '/sketch.de_painting.jpg' 3 times.", "textRange": { "endLine": 69, "endOffset": 61, "startLine": 69, "startOffset": 36 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 78, "message": "Rename this local variable \"lineColor\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 78, "endOffset": 65, "startLine": 78, "startOffset": 56 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 128, "message": "Remove the unused local variable \"ID\".", "textRange": { "endLine": 128, "endOffset": 6, "startLine": 128, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" }, { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" }, { "severity": "LOW", "softwareQuality": "SECURITY" } ], "line": 129, "message": "Use a \"numpy.random.Generator\" here instead of this legacy function.", "textRange": { "endLine": 129, "endOffset": 90, "startLine": 129, "startOffset": 73 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 153, "message": "Rename this local variable \"lineColor\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 153, "endOffset": 13, "startLine": 153, "startOffset": 4 }, "type": "CODE_SMELL" } ]
1,160
kivy/modules/__init__.py
yunus-ceyhan/kivy
13,889
3289583
''' Modules ======= Modules are classes that can be loaded when a Kivy application is starting. The loading of modules is managed by the config file. Currently, we include: * :class:`~kivy.modules.touchring`: Draw a circle around each touch. * :class:`~kivy.modules.monitor`: Add a red topbar that indicates the FPS and a small graph indicating input activity. * :class:`~kivy.modules.keybinding`: Bind some keys to actions, such as a screenshot. * :class:`~kivy.modules.recorder`: Record and playback a sequence of events. * :class:`~kivy.modules.screen`: Emulate the characteristics (dpi/density/ resolution) of different screens. * :class:`~kivy.modules.inspector`: Examines your widget hierarchy and widget properties. * :class:`~kivy.modules.webdebugger`: Realtime examination of your app internals via a web browser. * :class:`~kivy.modules.joycursor`: Navigate in your app with a joystick. * :class:`~kivy.modules.showborder`: Show widget's border. Modules are automatically loaded from the Kivy path and User path: * `PATH_TO_KIVY/kivy/modules` * `HOME/.kivy/mods` Activating a module ------------------- There are various ways in which you can activate a kivy module. Activate a module in the config ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To activate a module this way, you can edit your configuration file (in your `HOME/.kivy/config.ini`):: [modules] # uncomment to activate touchring = # monitor = # keybinding = Only the name of the module followed by "=" is sufficient to activate the module. Activate a module in Python ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Before starting your application, preferably at the start of your import, you can do something like this:: import kivy kivy.require('1.0.8') # Activate the touchring module from kivy.config import Config Config.set('modules', 'touchring', '') Activate a module via the commandline ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When starting your application from the commandline, you can add a *-m <modulename>* to the arguments. For example:: python main.py -m webdebugger .. note:: Some modules, such as the screen, may require additional parameters. They will, however, print these parameters to the console when launched without them. Create your own module ---------------------- Create a file in your `HOME/.kivy/mods`, and create 2 functions:: def start(win, ctx): pass def stop(win, ctx): pass Start/stop are functions that will be called for every window opened in Kivy. When you are starting a module, you can use these to store and manage the module state. Use the `ctx` variable as a dictionary. This context is unique for each instance/start() call of the module, and will be passed to stop() too. ''' __all__ = ('Modules', ) from kivy.config import Config from kivy.logger import Logger import kivy import importlib import os import sys class ModuleContext: '''Context of a module You can access to the config with self.config. ''' def __init__(self): self.config = {} def __repr__(self): return repr(self.config) class ModuleBase: '''Handle Kivy modules. It will automatically load and instantiate the module for the general window.''' def __init__(self, **kwargs): self.mods = {} self.wins = [] def add_path(self, path): '''Add a path to search for modules in''' if not os.path.exists(path): return if path not in sys.path: sys.path.append(path) dirs = os.listdir(path) for module in dirs: name, ext = os.path.splitext(module) # accept only python extensions if ext not in ('.py', '.pyo', '.pyc') or name == '__init__': continue self.mods[name] = { 'name': name, 'activated': False, 'context': ModuleContext()} def list(self): '''Return the list of available modules''' return self.mods def import_module(self, name): try: modname = 'kivy.modules.{0}'.format(name) module = importlib.__import__(name=modname) module = sys.modules[modname] except ImportError: try: module = importlib.__import__(name=name) module = sys.modules[name] except ImportError: Logger.exception('Modules: unable to import <%s>' % name) # protect against missing module dependency crash self.mods[name]['module'] = None return # basic check on module if not hasattr(module, 'start'): Logger.warning('Modules: Module <%s> missing start() function' % name) return if not hasattr(module, 'stop'): err = 'Modules: Module <%s> missing stop() function' % name Logger.warning(err) return self.mods[name]['module'] = module def activate_module(self, name, win): '''Activate a module on a window''' if name not in self.mods: Logger.warning('Modules: Module <%s> not found' % name) return mod = self.mods[name] # ensure the module has been configured if 'module' not in mod: self._configure_module(name) pymod = mod['module'] if not mod['activated']: context = mod['context'] msg = 'Modules: Start <{0}> with config {1}'.format( name, context) Logger.debug(msg) pymod.start(win, context) mod['activated'] = True def deactivate_module(self, name, win): '''Deactivate a module from a window''' if name not in self.mods: Logger.warning('Modules: Module <%s> not found' % name) return if 'module' not in self.mods[name]: return module = self.mods[name]['module'] if self.mods[name]['activated']: module.stop(win, self.mods[name]['context']) self.mods[name]['activated'] = False def register_window(self, win): '''Add the window to the window list''' if win not in self.wins: self.wins.append(win) self.update() def unregister_window(self, win): '''Remove the window from the window list''' if win in self.wins: self.wins.remove(win) self.update() def update(self): '''Update the status of the module for each window''' modules_to_activate = [x[0] for x in Config.items('modules')] for win in self.wins: for name in self.mods: if name not in modules_to_activate: self.deactivate_module(name, win) for name in modules_to_activate: try: self.activate_module(name, win) except: import traceback traceback.print_exc() raise def configure(self): '''(internal) Configure all the modules before using them. ''' modules_to_configure = [x[0] for x in Config.items('modules')] for name in modules_to_configure: if name not in self.mods: Logger.warning('Modules: Module <%s> not found' % name) continue self._configure_module(name) def _configure_module(self, name): if 'module' not in self.mods[name]: try: self.import_module(name) except ImportError: return # convert configuration like: # -m mjpegserver:port=8080,fps=8 # and pass it in context.config token config = dict() args = Config.get('modules', name) if args != '': values = Config.get('modules', name).split(',') for value in values: x = value.split('=', 1) if len(x) == 1: config[x[0]] = True else: config[x[0]] = x[1] self.mods[name]['context'].config = config # call configure if module have one if hasattr(self.mods[name]['module'], 'configure'): self.mods[name]['module'].configure(config) def usage_list(self): print('Available modules') print('=================') for module in sorted(self.list()): if 'module' not in self.mods[module]: self.import_module(module) # ignore modules without docstring if not self.mods[module]['module'].__doc__: continue text = self.mods[module]['module'].__doc__.strip("\n ") text = text.split('\n') # make sure we don't get IndexError along the way # then pretty format the header if len(text) > 2: if text[1].startswith('='): # '\n%-12s: %s' -> 12 spaces + ": " text[1] = '=' * (14 + len(text[1])) text = '\n'.join(text) print('\n%-12s: %s' % (module, text)) Modules = ModuleBase() Modules.add_path(kivy.kivy_modules_dir) if 'KIVY_DOC' not in os.environ: Modules.add_path(kivy.kivy_usermodules_dir) if __name__ == '__main__': print(Modules.list())
1
0
0.0
56
0
1
1.0
0
47
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 175, "message": "Define a constant instead of duplicating this literal 'Modules: Module <%s> not found' 3 times.", "textRange": { "endLine": 175, "endOffset": 59, "startLine": 175, "startOffset": 27 }, "type": "CODE_SMELL" } ]
2,574
recipes/Python/360698_Extending_pythprolog_syntax/recipe-360698.py
tdiprima/code
2,023
3274523
<reponame>tdiprima/code # # pythologic2.py # # Add logic programming (Prolog) syntax and *resolution* into Python. # # (c) 2004 <NAME> # after (c) 2004 <NAME> # and AIMA examples # import string import copy class Struct: def __init__(self, database, head, subs): """ The head and subs are essential - what makes this struct. The database should only be used while structs are constructed, and later removed. """ self.database = database self.head = head self.subs = subs def __pos__(self): """ unary + means insert into database as fact """ self.database.add_fact(self) def __invert__(self): """ unary ~ means insert into database as query """ self.database.add_query(self) def __lshift__(self, requisites): """ The ideal is consequent(args) << cond1(args1),... for now we must do with consequent(args) << [cond1(args1),...] """ self.database.add_conditional(self, requisites) def __str__(self): subs = map (str, self.subs) return str(self.head) + "(" + string.join(subs,',') + ")" class Symbol: def __init__ (self, name, database): self.name = name self.database = database def __call__(self, *args): return Struct(self.database, self, args) def __str__(self): return self.name class Constant(Symbol): """ A constant is a name. Its value is its name too. """ def value(self): return self.name class Variable(Symbol): pass def symbol(name, database): if (name[0] in string.uppercase): return Variable(name,database) else: return Constant(name, database) class Database: def __init__(self, name): self.name= name self.facts = [] self.conditionals = [] self.queries = [] def add_fact(self, fact): self.facts.append(fact) def add_query(self, query): self.queries.append(query) def add_conditional(self,head,requisites): if not(isinstance(requisites, list)): requisites = [requisites] self.conditionals.append((head,requisites)) def __str__(self): factsStr= string.join(map(str, self.facts),'\n') condsStr= '' for (h,r) in self.conditionals: condsStr = condsStr + "%s << %s\n"%(h,string.join( map(str, r), ', ')) queryStr= string.join( map(str, self.queries),'\n') return self.name + ' facts\n' + factsStr +'\n'+self.name + ' conditionals\n'+ condsStr + '\n'+self.name + ' queries\n'+queryStr + '\n' def append(self, func): """ Include definitions from func into database """ try: code = func.func_code except: raise TypeError, "function or method argument expected" names = code.co_names locally_defined = code.co_varnames globally_defined = func.func_globals.keys() defined = locally_defined+tuple(globally_defined) undefined = [name for name in names if name not in defined] newglobals = func.func_globals.copy() for name in undefined: newglobals[name] = symbol(name, self) exec code in newglobals def __lshift__(self, func): """ A helper for decorator implementation """ self.append(func) return LogicalFunction(self, func) def solve(self, V = [{}]): """ The query queue is LIFO: Extend valuations in V satisfying the last query. """ def solve1( v ): # get solutions from facts unify_facts = [unify(query, fact, v) for fact in self.facts] # look for solutions from conditionals unify_conditionals = [] for ( header , condition_list ) in self.conditionals: u = unify(query, header , v) # unify headers U = [ u ] if u != None: # remember query queue oldQueries = copy.deepcopy(self.queries) # we want to start by the first conditional D = copy.copy( condition_list ) D.reverse() # phase 1: append the conditionals to query queue for condition in D: if type( condition ) == type('string'): # process python code # should return True or False self.queries.append( condition ) #eval_python_string( condition , u) else: # append the conditional, # with variables replaced according to u # to the query queue unified_condition = subst(u, condition ) self.queries.append( unified_condition ) # phase 2: solve the appended conditionals for condition in D: U = self.solve( U ) # restore query queue self.queries = oldQueries # grow the list of solutions unify_conditionals = unify_conditionals + U return [ u for u in (unify_facts + unify_conditionals) if not u in [None, {}] ] if self.queries: query = self.queries[-1] del self.queries[-1] else: return [] if type( query ) == type( 'string' ): U = [ v for v in V if python_eval_string(query, v) ] else: U = [] for v in V: U = U + solve1(v) return U def python_eval_string(s, v): for k in v: s=string.replace(s, str(k), str(v[k])) return eval( s, {} ) def subst(v, x): if v.has_key(x): return v[x] elif isinstance(x, Variable): return x elif isinstance(x, Struct): return Struct( x.database, x.head, [subst(v, xi) for xi in x.subs]) def unify(x,y,v={}): """ Find one valuation extending v and unifying x with y """ def extend(v, x, t): """ Extend valuation v with v[x] = t """ v1 = copy.copy(v) v1[x] = t return v1 def occur_check(x, t): """ Test if the variable x occurr in structure t """ if x == t: return True elif isinstance(t, Struct): return t.head == x.head or occur_check(x, t.subs) return False def unify_var(x, t, v): """ Test if v can be extended with v[x] = t; In that case return the extention Else return None """ if x in v: return unify( v[ x ], t, v) elif occur_check(x, t): return None else: return extend(v, x, t) if v == None: return None elif x == y: return v elif isinstance(x, Variable): return unify_var(x, y, v) elif isinstance(y, Variable): return unify_var(y, x, v) elif isinstance(x, Struct) and isinstance(y, Struct) and (x.head == y.head): z = v n = len(x.subs) m = len(y.subs) if n == m: for i in range( n ): z = unify( x.subs[i], y.subs[i], z) return z else: return None else: return None class LogicalFunction: """ This class replaces a logical function once it has been consulted, to avoid erroneous use """ def __init__(self, database, func): self.database=database self.logical_function=func def __call__(self): raise TypeError, "Logical functions are not really callable" if __name__ == "__main__": db = Database('TEST') print "Defining a prolog program... ", def prolog_func(): # prolog facts are prefixed with "+" + number(0) + number(1) + number(2) + number(3) + number(4) # prolog conditionals have the pattern p << [q1, ..., qn] test(X, Y) << [number(X), number(Y), 'X==2*Y' ] # prolog queries are prefixed with "~" ~ test(X, Y) # Update the database db << prolog_func print "done" print "Before solving" print db # Solve the queries x = db.solve() print 'Solutions' for v in x: for k in v: print k,"=", v[k],' ', print print "After solving" print db
25
6
0.0
62
0
19
1.0
0
56
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 96, "message": "Rename this local variable \"factsStr\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 96, "endOffset": 16, "startLine": 96, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 97, "message": "Rename this local variable \"condsStr\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 97, "endOffset": 16, "startLine": 97, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 100, "message": "Rename this local variable \"queryStr\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 100, "endOffset": 16, "startLine": 100, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 109, "message": "Specify an exception class to catch or reraise the exception", "textRange": { "endLine": 109, "endOffset": 14, "startLine": 109, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 119, "message": "Do not use exec statement.", "textRange": { "endLine": 119, "endOffset": 12, "startLine": 119, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 128, "message": "Rename this parameter \"V\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 128, "endOffset": 21, "startLine": 128, "startOffset": 20 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 128, "message": "Refactor this function to reduce its Cognitive Complexity from 25 to the 15 allowed.", "textRange": { "endLine": 128, "endOffset": 13, "startLine": 128, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 145, "message": "Rename this local variable \"oldQueries\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 145, "endOffset": 30, "startLine": 145, "startOffset": 20 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 174, "message": "Use the opposite operator (\"not in\") instead.", "textRange": { "endLine": 174, "endOffset": 89, "startLine": 174, "startOffset": 70 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 205, "message": "Refactor this function to reduce its Cognitive Complexity from 21 to the 15 allowed.", "textRange": { "endLine": 205, "endOffset": 9, "startLine": 205, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 278, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 278, "endOffset": 9, "startLine": 278, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 283, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 283, "endOffset": 19, "startLine": 283, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 284, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 284, "endOffset": 19, "startLine": 284, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 285, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 285, "endOffset": 19, "startLine": 285, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 286, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 286, "endOffset": 19, "startLine": 286, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 287, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 287, "endOffset": 19, "startLine": 287, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 293, "message": "Remove or refactor this statement; it has no side effects.", "textRange": { "endLine": 293, "endOffset": 20, "startLine": 293, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 297, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 297, "endOffset": 9, "startLine": 297, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 299, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 299, "endOffset": 9, "startLine": 299, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 300, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 300, "endOffset": 9, "startLine": 300, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 304, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 304, "endOffset": 9, "startLine": 304, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 306, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 306, "endOffset": 25, "startLine": 306, "startOffset": 20 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 307, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 307, "endOffset": 13, "startLine": 307, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 309, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 309, "endOffset": 9, "startLine": 309, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 310, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 310, "endOffset": 9, "startLine": 310, "startOffset": 4 }, "type": "CODE_SMELL" } ]
2,456
autoregressive_diffusion/experiments/audio/arch/diff_wave.py
xxdreck/google-research
23,901
78267
<filename>autoregressive_diffusion/experiments/audio/arch/diff_wave.py # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DiffWave architecture. Ported from PyTorch to JAX from https://github.com/philsyn/DiffWave-unconditional/blob/master/WaveNet.py """ from typing import Any, Callable, Iterable, Optional, Tuple from flax import linen as nn import jax from jax import numpy as jnp import numpy as np from autoregressive_diffusion.model.architecture_components import input_embedding from autoregressive_diffusion.model.architecture_components import layers Array = jnp.ndarray Shape = Iterable[int] Dtype = Any PRNGKey = Array InitializerFn = Callable[[PRNGKey, Shape, Dtype], Array] class ResBlock(nn.Module): """Step-conditioned Residual block.""" features: int kernel_size: Tuple[int] = (3,) kernel_dilation: Tuple[int] = (1,) skip_features: Optional[int] = None kernel_init: InitializerFn = nn.initializers.kaiming_normal() activation: Callable[[Array], Array] = jax.nn.swish is_causal: bool = False @nn.compact def __call__(self, x, t_embed): """Apply the residual block. Args: x: Inputs of shape [batch, <spatial>, features]. t_embed: Embedded time steps of shape [batch, dim]. Returns: Mapped inputs of shape [batch, <spatial>, features] for the output and skip connections. """ in_features = x.shape[-1] if in_features != self.features: raise ValueError( f'DiffWave ResBlock requires the same number of input ({in_features})' f'and output ({self.features}) features.') h = x if t_embed is not None: # Project time step embedding. t_embed = nn.Dense( in_features, name='step_proj')( self.activation(t_embed)) # Reshape to [batch, 1, ..., 1, in_features] for broadcast. t_embed = jnp.reshape( t_embed, (-1,) + (1,) * len(self.kernel_size) + (in_features,)) h += t_embed # Dilated gated conv. u = layers.CausalConv( self.features, self.kernel_size, kernel_dilation=self.kernel_dilation, kernel_init=self.kernel_init, padding='VALID' if self.is_causal else 'SAME', is_causal=self.is_causal, name='dilated_tanh')( h) v = layers.CausalConv( self.features, self.kernel_size, kernel_dilation=self.kernel_dilation, kernel_init=self.kernel_init, padding='VALID' if self.is_causal else 'SAME', is_causal=self.is_causal, name='dilated_sigmoid')( h) y = jax.nn.tanh(u) * jax.nn.sigmoid(v) # Residual and skip convs. residual = nn.Conv( self.features, (1,) * len(self.kernel_size), kernel_init=self.kernel_init, name='residual')( y) skip = nn.Conv( self.skip_features or self.features, (1,) * len(self.kernel_size), kernel_init=self.kernel_init, name='skip')( y) return (x + residual) / np.sqrt(2.), skip class ResGroup(nn.Module): """Residual group with skip connection aggregation and dilation cycling. Attributes: num_blocks: Number of residual blocks. features: Number of ResBlock features. skip_features: Number of ResBlock skip connection features. kernel_size: Kernel size for ResBlock-s. kernel_init: Convolutional kernel initializer. dilation_cycle: Dilation cycling length. is_causal: Whether to use a causal architecture. """ num_blocks: int features: int skip_features: Optional[int] = None kernel_size: Tuple[int] = (3,) kernel_init: InitializerFn = nn.initializers.kaiming_normal() dilation_cycle: int = 12 # Max dilation is 2 ** 11 = 2048. is_causal: bool = False @nn.compact def __call__(self, x, t_embed): """Apply a residual group. Args: x: Inputs of shape [batch, <spatial>, features]. t_embed: Embedded time steps of shape [batch, dim]. Returns: Mapped inputs of shape [batch, <spatial>, skip_features] """ y = 0. for i in range(self.num_blocks): x, skip = ResBlock( features=self.features, skip_features=self.skip_features, kernel_size=self.kernel_size, kernel_dilation=(2 ** (i % self.dilation_cycle),), kernel_init=self.kernel_init, is_causal=self.is_causal)( x, t_embed) y += skip y /= np.sqrt(self.num_blocks) return y class DiffWave(nn.Module): """DiffWave network architecture. Attributes: num_blocks: Number of residual blocks. features: Number of ResBlock features. max_time: Number of generation steps (i.e. data dimensionality). num_classes: Number of output classes. output_features: Number of output features. skip_features: Number of ResBlock skip connection features. kernel_size: Kernel size for ResBlock-s. kernel_init: Convolutional kernel initializer. dilation_cycle: ResGroup dilation cycling length. is_causal: Whether to use the causal architecture. """ num_blocks: int features: int max_time: int num_classes: int output_features: Optional[int] = 1 skip_features: Optional[int] = None kernel_size: Tuple[int] = (3,) kernel_init: InitializerFn = nn.initializers.kaiming_normal() dilation_cycle: int = 12 is_causal: bool = False @nn.compact def __call__(self, x, t, mask, train, context = None): """Apply the WaveDiff network. Args: x: Inputs of shape [batch, <spatial>, features]. t: Time steps of shape [batch]. mask: Array of the same shape as `x` giving the auto-regressive mask. train: If True, the model is ran in training. *Not* used in this architecture. context: Unused. Returns: Mapped inputs of shape [batch, <spatial>, skip_features] """ assert context is None # Sinusoidal features + MLP for time step embedding. # Note: this differs from the DiffWave embedding in several ways: # * Time embeddings have different dimensionality: 128-512-512 # vs 256-1024-1024. # * First convlution has kernel size 3 instead of 1. h, t_embed = input_embedding.InputProcessingAudio( num_classes=self.num_classes, num_channels=self.features, max_time=self.max_time, is_causal=self.is_causal)( x, t, mask, train) del x, t, mask h = nn.relu(h) h = ResGroup( num_blocks=self.num_blocks, features=self.features, skip_features=self.skip_features, kernel_size=self.kernel_size, dilation_cycle=self.dilation_cycle, kernel_init=self.kernel_init, is_causal=self.is_causal, name='res_group')( h, t_embed) # Final convolution. h = nn.Conv( features=self.skip_features or self.features, kernel_size=(1,) * len(self.kernel_size), kernel_init=self.kernel_init, name='flower_conv')( h) h = nn.relu(h) if self.output_features: h = nn.Conv( features=self.output_features, kernel_size=(1,) * len(self.kernel_size), kernel_init=nn.initializers.zeros, name='class_conv')( h) return h
0
0
0.0
8
0
0
1.0
0
11
[]
498
rllib/models/tf/__init__.py
firebolt55439/ray
21,382
11324006
<gh_stars>1000+ from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.fcnet import FullyConnectedNetwork from ray.rllib.models.tf.recurrent_net import RecurrentNetwork from ray.rllib.models.tf.visionnet import VisionNetwork __all__ = [ "FullyConnectedNetwork", "RecurrentNetwork", "TFModelV2", "VisionNetwork", ]
null
null
null
null
null
null
null
null
null
[]
7,001
tests/components/select/test_significant_change.py
MrDelik/core
30,023
3272003
<reponame>MrDelik/core """Test the select significant change platform.""" from homeassistant.components.select.significant_change import ( async_check_significant_change, ) from homeassistant.core import HomeAssistant async def test_significant_change(hass: HomeAssistant) -> None: """Detect select significant change.""" attrs1 = {"options": ["option1", "option2"]} attrs2 = {"options": ["option1", "option2", "option3"]} assert not async_check_significant_change( hass, "option1", attrs1, "option1", attrs1 ) assert not async_check_significant_change( hass, "option1", attrs1, "option1", attrs2 ) assert async_check_significant_change(hass, "option1", attrs1, "option2", attrs1) assert async_check_significant_change(hass, "option1", attrs1, "option2", attrs2)
0
0
0.0
0
0
0
1.0
0
1
[]
2,447
tests/logging/test_remote_handler.py
lukaslihotzki/synapse
9,945
1019328
# Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from twisted.test.proto_helpers import AccumulatingProtocol from synapse.logging import RemoteHandler from tests.logging import LoggerCleanupMixin from tests.server import FakeTransport, get_clock from tests.unittest import TestCase def connect_logging_client(reactor, client_id): # This is essentially tests.server.connect_client, but disabling autoflush on # the client transport. This is necessary to avoid an infinite loop due to # sending of data via the logging transport causing additional logs to be # written. factory = reactor.tcpClients.pop(client_id)[2] client = factory.buildProtocol(None) server = AccumulatingProtocol() server.makeConnection(FakeTransport(client, reactor)) client.makeConnection(FakeTransport(server, reactor, autoflush=False)) return client, server class RemoteHandlerTestCase(LoggerCleanupMixin, TestCase): def setUp(self): self.reactor, _ = get_clock() def test_log_output(self): """ The remote handler delivers logs over TCP. """ handler = RemoteHandler("127.0.0.1", 9000, _reactor=self.reactor) logger = self.get_logger(handler) logger.info("Hello there, %s!", "wally") # Trigger the connection client, server = connect_logging_client(self.reactor, 0) # Trigger data being sent client.transport.flush() # One log message, with a single trailing newline logs = server.data.decode("utf8").splitlines() self.assertEqual(len(logs), 1) self.assertEqual(server.data.count(b"\n"), 1) # Ensure the data passed through properly. self.assertEqual(logs[0], "Hello there, wally!") def test_log_backpressure_debug(self): """ When backpressure is hit, DEBUG logs will be shed. """ handler = RemoteHandler( "127.0.0.1", 9000, maximum_buffer=10, _reactor=self.reactor ) logger = self.get_logger(handler) # Send some debug messages for i in range(0, 3): logger.debug("debug %s" % (i,)) # Send a bunch of useful messages for i in range(0, 7): logger.info("info %s" % (i,)) # The last debug message pushes it past the maximum buffer logger.debug("too much debug") # Allow the reconnection client, server = connect_logging_client(self.reactor, 0) client.transport.flush() # Only the 7 infos made it through, the debugs were elided logs = server.data.splitlines() self.assertEqual(len(logs), 7) self.assertNotIn(b"debug", server.data) def test_log_backpressure_info(self): """ When backpressure is hit, DEBUG and INFO logs will be shed. """ handler = RemoteHandler( "127.0.0.1", 9000, maximum_buffer=10, _reactor=self.reactor ) logger = self.get_logger(handler) # Send some debug messages for i in range(0, 3): logger.debug("debug %s" % (i,)) # Send a bunch of useful messages for i in range(0, 10): logger.warning("warn %s" % (i,)) # Send a bunch of info messages for i in range(0, 3): logger.info("info %s" % (i,)) # The last debug message pushes it past the maximum buffer logger.debug("too much debug") # Allow the reconnection client, server = connect_logging_client(self.reactor, 0) client.transport.flush() # The 10 warnings made it through, the debugs and infos were elided logs = server.data.splitlines() self.assertEqual(len(logs), 10) self.assertNotIn(b"debug", server.data) self.assertNotIn(b"info", server.data) def test_log_backpressure_cut_middle(self): """ When backpressure is hit, and no more DEBUG and INFOs cannot be culled, it will cut the middle messages out. """ handler = RemoteHandler( "127.0.0.1", 9000, maximum_buffer=10, _reactor=self.reactor ) logger = self.get_logger(handler) # Send a bunch of useful messages for i in range(0, 20): logger.warning("warn %s" % (i,)) # Allow the reconnection client, server = connect_logging_client(self.reactor, 0) client.transport.flush() # The first five and last five warnings made it through, the debugs and # infos were elided logs = server.data.decode("utf8").splitlines() self.assertEqual( ["warn %s" % (i,) for i in range(5)] + ["warn %s" % (i,) for i in range(15, 20)], logs, ) def test_cancel_connection(self): """ Gracefully handle the connection being cancelled. """ handler = RemoteHandler( "127.0.0.1", 9000, maximum_buffer=10, _reactor=self.reactor ) logger = self.get_logger(handler) # Send a message. logger.info("Hello there, %s!", "wally") # Do not accept the connection and shutdown. This causes the pending # connection to be cancelled (and should not raise any exceptions). handler.close()
null
null
null
null
null
null
null
null
null
[]
13,205
zerver/management/commands/add_scim_client.py
dumpmemory/zulip
17,004
6485693
<reponame>dumpmemory/zulip<gh_stars>1000+ from argparse import ArgumentParser from typing import Any from zerver.lib.management import ZulipBaseCommand from zerver.models import SCIMClient class Command(ZulipBaseCommand): help = """Create a SCIM client entry in the database.""" def add_arguments(self, parser: ArgumentParser) -> None: self.add_realm_args(parser) parser.add_argument("name", help="name of the client") def handle(self, *args: Any, **options: Any) -> None: client_name = options["name"] realm = self.get_realm(options) assert realm SCIMClient.objects.create(realm=realm, name=client_name)
0
0
0.0
0
0
0
1.0
0
2
[]
4,227
crabageprediction/venv/Lib/site-packages/numpy/lib/tests/test_financial_expired.py
13rianlucero/CrabAgePrediction
20,453
1956008
import sys import pytest import numpy as np @pytest.mark.skipif(sys.version_info[:2] < (3, 7), reason="requires python 3.7 or higher") def test_financial_expired(): match = 'NEP 32' with pytest.warns(DeprecationWarning, match=match): func = np.fv with pytest.raises(RuntimeError, match=match): func(1, 2, 3)
null
null
null
null
null
null
null
null
null
[]
8,799
eeg_modelling/eeg_viewer/lookup_test.py
deepneuralmachine/google-research
23,901
3363429
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 import re from absl.testing import absltest from eeg_modelling.eeg_viewer import lookup CHANNEL_KEYS = ['eeg_channel/EEG feat_1-REF/samples', 'eeg_channel/EEG feat_2/samples'] CHANNEL_MATCHERS = [ re.compile(r'eeg_channel/EEG (\w+)(-\w+)*/samples'), re.compile(r'eeg_channel/POL (EKG\w+)/samples'), re.compile(r'eeg_channel/(\w+)/samples'), re.compile(r'eeg_channel/EEG (\w+)(-\w+)*/resampled_samples'), re.compile(r'(seizure_bin)ary_per_sec'), ] class LookupTest(absltest.TestCase): def setUp(self): super(LookupTest, self).setUp() self.test_lookup = lookup.Lookup(CHANNEL_KEYS, CHANNEL_MATCHERS) def testGetKeyFromIndex(self): self.assertEqual('eeg_channel/EEG feat_1-REF/samples', self.test_lookup.GetKeyFromIndex(0)) self.assertEqual('eeg_channel/EEG feat_2/samples', self.test_lookup.GetKeyFromIndex(1)) def testGetKeyFromIndexReturnsNone(self): self.assertIsNone(self.test_lookup.GetKeyFromIndex(3)) def testGetIndexFromShorthand(self): self.assertEqual('0', self.test_lookup.GetIndexFromShorthand('FEAT_1')) self.assertEqual('1', self.test_lookup.GetIndexFromShorthand('FEAT_2')) def testGetIndexFromShorthandReturnsNone(self): self.assertIsNone(self.test_lookup.GetIndexFromShorthand('FEAT_3')) def testGetShorthandFromKey(self): self.assertEqual('FEAT_1', self.test_lookup.GetShorthandFromKey( 'eeg_channel/EEG feat_1-REF/samples')) self.assertEqual('FEAT_2', self.test_lookup.GetShorthandFromKey( 'eeg_channel/EEG feat_2/samples')) def testGetShorthandFromKeyReturnsNone(self): self.assertIsNone(self.test_lookup.GetShorthandFromKey( 'eeg_channel/EEG feat_3/samples')) if __name__ == '__main__': absltest.main()
null
null
null
null
null
null
null
null
null
[]
2,819
html/semantics/forms/form-submission-0/resources/file-submission.py
meyerweb/wpt
14,668
9618385
<filename>html/semantics/forms/form-submission-0/resources/file-submission.py import json from wptserve.utils import isomorphic_decode def main(request, response): headers = [(b"Content-Type", b"text/html")] testinput = request.POST.first(b"testinput") value = isomorphic_decode(testinput.value) body = u"<script>parent.postMessage(" + json.dumps(value) + u", '*');</script>" return headers, body
1
0
0.0
0
0
1
1.0
0
1
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 5, "message": "Remove the unused function parameter \"response\".", "textRange": { "endLine": 5, "endOffset": 26, "startLine": 5, "startOffset": 18 }, "type": "CODE_SMELL" } ]
5,595
tests/validation/tests/v3_api/test_bkp_restore_s3_with_creds.py
ursinnDev/rancher_rancher
18,697
10141581
<filename>tests/validation/tests/v3_api/test_bkp_restore_s3_with_creds.py import pytest from .common import * # NOQA from .test_rke_cluster_provisioning import rke_config, validate_rke_dm_host_2,\ node_template_linode namespace = {"p_client": None, "ns": None, "cluster": None, "project": None, "nodes": []} backup_info = {"backupname": None, "backup_id": None, "workload": None, "backupfilename": None, "etcdbackupdata": None} @if_test_all_snapshot def test_bkp_restore_s3_with_creds_create(): validate_backup_create(namespace, backup_info, "s3") @if_test_all_snapshot def test_bkp_restore_s3_with_creds_restore(): ns, binfo = validate_backup_create(namespace, backup_info, "s3") validate_backup_restore(ns, binfo) @if_test_all_snapshot def test_bkp_restore_s3_with_creds_delete(): ns, binfo = validate_backup_create(namespace, backup_info, "s3") ns, binfo = validate_backup_restore(ns, binfo) validate_backup_delete(ns, binfo, "s3") @pytest.fixture(scope='module', autouse="True") def create_project_client_and_cluster_s3_with_creds(node_template_linode, request): rke_config["services"]["etcd"]["backupConfig"] = { "enabled": "true", "intervalHours": 12, "retention": 6, "type": "backupConfig", "s3BackupConfig": { "type": "s3BackupConfig", "accessKey": AWS_ACCESS_KEY_ID, "secretKey": AWS_SECRET_ACCESS_KEY, "bucketName": AWS_S3_BUCKET_NAME, "folder": AWS_S3_BUCKET_FOLDER_NAME, "region": AWS_REGION, "endpoint": "s3.amazonaws.com" } } cluster_name = random_name() validate_rke_dm_host_2(node_template_linode, rke_config, False, cluster_name) client = get_user_client() cluster = get_cluster_by_name(client, cluster_name) p, ns = create_project_and_ns(USER_TOKEN, cluster, "testnoiam") p_client = get_project_client_for_token(p, USER_TOKEN) c_client = get_cluster_client_for_token(cluster, USER_TOKEN) namespace["p_client"] = p_client namespace["ns"] = ns namespace["cluster"] = cluster namespace["project"] = p namespace["c_client"] = c_client def fin(): client = get_user_client() cluster_cleanup(client, cluster) request.addfinalizer(fin)
1
0
0.0
0
0
1
1.0
0
5
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 2, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 2, "endOffset": 21, "startLine": 2, "startOffset": 0 }, "type": "CODE_SMELL" } ]
11,760
sympy/matrices/decompositions.py
nashalex/sympy
8,323
9778615
import copy from sympy.core import S from sympy.core.function import expand_mul from sympy.functions.elementary.miscellaneous import Min, sqrt from sympy.functions.elementary.complexes import sign from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError from .utilities import _get_intermediate_simp, _iszero from .determinant import _find_reasonable_pivot_naive def _rank_decomposition(M, iszerofunc=_iszero, simplify=False): r"""Returns a pair of matrices (`C`, `F`) with matching rank such that `A = C F`. Parameters ========== iszerofunc : Function, optional A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Bool or Function, optional A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. Returns ======= (C, F) : Matrices `C` and `F` are full-rank matrices with rank as same as `A`, whose product gives `A`. See Notes for additional mathematical details. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([ ... [1, 3, 1, 4], ... [2, 7, 3, 9], ... [1, 5, 3, 1], ... [1, 2, 0, 8] ... ]) >>> C, F = A.rank_decomposition() >>> C Matrix([ [1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]]) >>> F Matrix([ [1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]]) >>> C * F == A True Notes ===== Obtaining `F`, an RREF of `A`, is equivalent to creating a product .. math:: E_n E_{n-1} ... E_1 A = F where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or permutation matrices equivalent to each row-reduction step. The inverse of the same product of elimination matrices gives `C`: .. math:: C = \left(E_n E_{n-1} \dots E_1\right)^{-1} It is not necessary, however, to actually compute the inverse: the columns of `C` are those from the original matrix with the same column indices as the indices of the pivot columns of `F`. References ========== .. [1] https://en.wikipedia.org/wiki/Rank_factorization .. [2] <NAME>.; <NAME>. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882 See Also ======== sympy.matrices.matrices.MatrixReductions.rref """ F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = M.extract(range(M.rows), pivot_cols) F = F[:rank, :] return C, F def _liupc(M): """Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4]) References ========== .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees, <NAME> (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ # Algorithm 2.4, p 17 of reference # get the indices of the elements that are non-zero on or below diag R = [[] for r in range(M.rows)] for r, c, _ in M.row_list(): if c <= r: R[r].append(c) inf = len(R) # nothing will be this large parent = [inf]*M.rows virtual = [inf]*M.rows for r in range(M.rows): for c in R[r][:-1]: while virtual[c] < r: t = virtual[c] virtual[c] = r c = t if virtual[c] == inf: parent[c] = virtual[c] = r return R, parent def _row_structure_symbolic_cholesky(M): """Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]] References ========== .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees, <NAME> (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ R, parent = M.liupc() inf = len(R) # this acts as infinity Lrow = copy.deepcopy(R) for k in range(M.rows): for j in R[k]: while j != inf and j != k: Lrow[k].append(j) j = parent[j] Lrow[k] = list(sorted(set(Lrow[k]))) return Lrow def _cholesky(M, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") L = MutableDenseMatrix.zeros(M.rows, M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k].conjugate() for k in range(j)))) Lii2 = (M[i, i] - sum(L[i, k]*L[i, k].conjugate() for k in range(i))) if Lii2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") L[i, i] = sqrt(Lii2) else: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k] for k in range(j)))) L[i, i] = sqrt(M[i, i] - sum(L[i, k]**2 for k in range(i))) return M._new(L) def _cholesky_sparse(M, hermitian=True): """ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True The matrix can have complex entries: >>> from sympy import I >>> A = SparseMatrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = SparseMatrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.sparse.SparseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Crowstruc = M.row_structure_symbolic_cholesky() C = MutableDenseMatrix.zeros(M.rows) for i in range(len(Crowstruc)): for j in Crowstruc[i]: if i != j: C[i, j] = M[i, j] summ = 0 for p1 in Crowstruc[i]: if p1 < j: for p2 in Crowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += C[i, p1]*C[j, p1].conjugate() else: summ += C[i, p1]*C[j, p1] else: break else: break C[i, j] = dps((C[i, j] - summ) / C[j, j]) else: # i == j C[j, j] = M[j, j] summ = 0 for k in Crowstruc[j]: if k < j: if hermitian: summ += C[j, k]*C[j, k].conjugate() else: summ += C[j, k]**2 else: break Cjj2 = dps(C[j, j] - summ) if hermitian and Cjj2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") C[j, j] = sqrt(Cjj2) return M._new(C) def _LDLdecomposition(M, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") D = MutableDenseMatrix.zeros(M.rows, M.rows) L = MutableDenseMatrix.eye(M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j))) D[i, i] = (M[i, i] - sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i))) if D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") else: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k]*D[k, k] for k in range(j))) D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i)) return M._new(L), M._new(D) def _LDLdecomposition_sparse(M, hermitian=True): """ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix ``A``, such that ``L * D * L.T == A``. ``A`` must be a square, symmetric, positive-definite and non-singular. This method eliminates the use of square root and ensures that all the diagonal entries of L are 1. Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Lrowstruc = M.row_structure_symbolic_cholesky() L = MutableDenseMatrix.eye(M.rows) D = MutableDenseMatrix.zeros(M.rows, M.cols) for i in range(len(Lrowstruc)): for j in Lrowstruc[i]: if i != j: L[i, j] = M[i, j] summ = 0 for p1 in Lrowstruc[i]: if p1 < j: for p2 in Lrowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1] else: summ += L[i, p1]*L[j, p1]*D[p1, p1] else: break else: break L[i, j] = dps((L[i, j] - summ) / D[j, j]) else: # i == j D[i, i] = M[i, i] summ = 0 for k in Lrowstruc[i]: if k < i: if hermitian: summ += L[i, k]*L[i, k].conjugate()*D[k, k] else: summ += L[i, k]**2*D[k, k] else: break D[i, i] = dps(D[i, i] - summ) if hermitian and D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") return M._new(L), M._new(D) def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then ``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``. See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``M.rows x M.rows`` # U is upper triangular ``M.rows x M.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return M.zero elif i == j: return M.one elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return M.zero def entry_U(i, j): return M.zero if i > j else combined[i, j] L = M._new(combined.rows, combined.rows, entry_L) U = M._new(combined.rows, combined.cols, entry_U) return L, U, p def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): r"""Compute the PLU decomposition of the matrix. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Returns ======= (lu, row_swaps) : (Matrix, list) If the original matrix is a $m, n$ matrix: *lu* is a $m, n$ matrix, which contains result of the decomposition in a compresed form. See the notes section to see how the matrix is compressed. *row_swaps* is a $m$-element list where each element is a pair of row exchange indices. ``A = (L*U).permute_backward(perm)``, and the row permutation matrix $P$ from the formula $P A = L U$ can be computed by ``P=eye(A.row).permute_forward(perm)``. Raises ====== ValueError Raised if ``rankcheck=True`` and the matrix is found to be rank deficient during the computation. Notes ===== About the PLU decomposition: PLU decomposition is a generalization of a LU decomposition which can be extended for rank-deficient matrices. It can further be generalized for non-square matrices, and this is the notation that SymPy is using. PLU decomposition is a decomposition of a $m, n$ matrix $A$ in the form of $P A = L U$ where * $L$ is a $m, m$ lower triangular matrix with unit diagonal entries. * $U$ is a $m, n$ upper triangular matrix. * $P$ is a $m, m$ permutation matrix. So, for a square matrix, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \end{bmatrix} And for a matrix with more rows than the columns, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0 & \cdots & 0 \\ L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} & 0 & \cdots & 1 \\ \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} Finally, for a matrix with more columns than the rows, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the compressed LU storage: The results of the decomposition are often stored in compressed forms rather than returning $L$ and $U$ matrices individually. It may be less intiuitive, but it is commonly used for a lot of numeric libraries because of the efficiency. The storage matrix is defined as following for this specific method: * The subdiagonal elements of $L$ are stored in the subdiagonal portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever $i > j$. * The elements on the diagonal of $L$ are all 1, and are not explicitly stored. * $U$ is stored in the upper triangular portion of $LU$, that is $LU_{i, j} = U_{i, j}$ whenever $i <= j$. * For a case of $m > n$, the right side of the $L$ matrix is trivial to store. * For a case of $m < n$, the below side of the $U$ matrix is trivial to store. So, for a square matrix, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \end{bmatrix} For a matrix with more rows than the columns, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} \\ \end{bmatrix} For a matrix with more columns than the rows, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the pivot searching algorithm: When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if S.Zero in M.shape: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return M.zeros(M.rows, M.cols), [] dps = _get_intermediate_simp() lu = M.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != M.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] = \ dps(lu[row, pivot_col]/lu[pivot_row, pivot_col]) # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]) if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = M.zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def _LUdecompositionFF(M): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecomposition_Simple LUsolve References ========== .. [1] <NAME> & <NAME>, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = M.rows, M.cols U, L, P = M.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L [k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def _singular_value_decomposition(A): r"""Returns a Condensed Singular Value decomposition. Explanation =========== A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$ where - $U, V$ are column orthogonal matrix. - $\Sigma$ is a diagonal matrix, where the main diagonal contains singular values of matrix A. A column orthogonal matrix satisfies $\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity matrix with matching dimensions. For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. In condensed Singular Value Decomposition we only return column orthognal matrices because of this reason If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures. - Augment the $U, V$ matrices with columns that are orthogonal to every other columns and make it square. - Augument the $\Sigma$ matrix with zero rows to make it have the same shape as the original matrix. The procedure will be illustrated in the examples section. Examples ======== we take a full rank matrix first: >>> from sympy import Matrix >>> A = Matrix([[1, 2],[2,1]]) >>> U, S, V = A.singular_value_decomposition() >>> U Matrix([ [ sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]]) >>> S Matrix([ [1, 0], [0, 3]]) >>> V Matrix([ [-sqrt(2)/2, sqrt(2)/2], [ sqrt(2)/2, sqrt(2)/2]]) If a matrix if square and full rank both U, V are orthogonal in both directions >>> U * U.H Matrix([ [1, 0], [0, 1]]) >>> U.H * U Matrix([ [1, 0], [0, 1]]) >>> V * V.H Matrix([ [1, 0], [0, 1]]) >>> V.H * V Matrix([ [1, 0], [0, 1]]) >>> A == U * S * V.H True >>> C = Matrix([ ... [1, 0, 0, 0, 2], ... [0, 0, 3, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 2, 0, 0, 0], ... ]) >>> U, S, V = C.singular_value_decomposition() >>> V.H * V Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> V * V.H Matrix([ [1/5, 0, 0, 0, 2/5], [ 0, 1, 0, 0, 0], [ 0, 0, 1, 0, 0], [ 0, 0, 0, 0, 0], [2/5, 0, 0, 0, 4/5]]) If you want to augment the results to be a full orthogonal decomposition, you should augment $V$ with an another orthogonal column. You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis. >>> V_aug = V.row_join(Matrix([[0,0,0,0,1], ... [0,0,0,1,0]]).H) >>> V_aug = V_aug.QRdecomposition()[0] >>> V_aug Matrix([ [0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1], [0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]]) >>> V_aug.H * V_aug Matrix([ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]) >>> V_aug * V_aug.H Matrix([ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]) Similarly we augment U >>> U_aug = U.row_join(Matrix([0,0,1,0])) >>> U_aug = U_aug.QRdecomposition()[0] >>> U_aug Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]]) >>> U_aug.H * U_aug Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) >>> U_aug * U_aug.H Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) We add 2 zero columns and one row to S >>> S_aug = S.col_join(Matrix([[0,0,0]])) >>> S_aug = S_aug.row_join(Matrix([[0,0,0,0], ... [0,0,0,0]]).H) >>> S_aug Matrix([ [2, 0, 0, 0, 0], [0, sqrt(5), 0, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0]]) >>> U_aug * S_aug * V_aug.H == C True """ AH = A.H m, n = A.shape if m >= n: V, S = (AH * A).diagonalize() ranked = [] for i, x in enumerate(S.diagonal()): if not x.is_zero: ranked.append(i) V = V[:, ranked] Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked] S = S.zeros(len(Singular_vals)) for i in range(len(Singular_vals)): S[i, i] = Singular_vals[i] V, _ = V.QRdecomposition() U = A * V * S.inv() else: U, S = (A * AH).diagonalize() ranked = [] for i, x in enumerate(S.diagonal()): if not x.is_zero: ranked.append(i) U = U[:, ranked] Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked] S = S.zeros(len(Singular_vals)) for i in range(len(Singular_vals)): S[i, i] = Singular_vals[i] U, _ = U.QRdecomposition() V = AH * U * S.inv() return U, S, V def _QRdecomposition_optional(M, normalize=True): def dot(u, v): return u.dot(v, hermitian=True) dps = _get_intermediate_simp(expand_mul, expand_mul) A = M.as_mutable() ranked = list() Q = A R = A.zeros(A.cols) for j in range(A.cols): for i in range(j): if Q[:, i].is_zero_matrix: continue R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i]) R[i, j] = dps(R[i, j]) Q[:, j] -= Q[:, i] * R[i, j] Q[:, j] = dps(Q[:, j]) if Q[:, j].is_zero_matrix is False: ranked.append(j) R[j, j] = M.one Q = Q.extract(range(Q.rows), ranked) R = R.extract(ranked, range(R.cols)) if normalize: # Normalization for i in range(Q.cols): norm = Q[:, i].norm() Q[:, i] /= norm R[i, :] *= norm return M.__class__(Q), M.__class__(R) def _QRdecomposition(M): r"""Returns a QR decomposition. Explanation =========== A QR decomposition is a decomposition in the form $A = Q R$ where - $Q$ is a column orthogonal matrix. - $R$ is a upper triangular (trapezoidal) matrix. A column orthogonal matrix satisfies $\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity matrix with matching dimensions. For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. And an another advantage of this is that you can easily inspect the matrix rank by counting the number of columns of $Q$. If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures. - Augment the $Q$ matrix with columns that are orthogonal to every other columns and make it square. - Augument the $R$ matrix with zero rows to make it have the same shape as the original matrix. The procedure will be illustrated in the examples section. Examples ======== A full rank matrix example: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) If the matrix is square and full rank, the $Q$ matrix becomes orthogonal in both directions, and needs no augmentation. >>> Q * Q.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q.H * Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> A == Q*R True A rank deficient matrix example: >>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175], [ 3/7, 158/175], [-2/7, 6/35]]) >>> R Matrix([ [14, 21, 0], [ 0, 175, 0]]) QRdecomposition might return a matrix Q that is rectangular. In this case the orthogonality condition might be satisfied as $\mathbb{I} = Q.H*Q$ but not in the reversed product $\mathbb{I} = Q * Q.H$. >>> Q.H * Q Matrix([ [1, 0], [0, 1]]) >>> Q * Q.H Matrix([ [27261/30625, 348/30625, -1914/6125], [ 348/30625, 30589/30625, 198/6125], [ -1914/6125, 198/6125, 136/1225]]) If you want to augment the results to be a full orthogonal decomposition, you should augment $Q$ with an another orthogonal column. You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis. >>> Q_aug = Q.row_join(Matrix([0, 0, 1])) >>> Q_aug = Q_aug.QRdecomposition()[0] >>> Q_aug Matrix([ [ 6/7, -69/175, 58/175], [ 3/7, 158/175, -6/175], [-2/7, 6/35, 33/35]]) >>> Q_aug.H * Q_aug Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q_aug * Q_aug.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) Augmenting the $R$ matrix with zero row is straightforward. >>> R_aug = R.col_join(Matrix([[0, 0, 0]])) >>> R_aug Matrix([ [14, 21, 0], [ 0, 175, 0], [ 0, 0, 0]]) >>> Q_aug * R_aug == A True A zero matrix example: >>> from sympy import Matrix >>> A = Matrix.zeros(3, 4) >>> Q, R = A.QRdecomposition() They may return matrices with zero rows and columns. >>> Q Matrix(3, 0, []) >>> R Matrix(0, 4, []) >>> Q*R Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) As the same augmentation rule described above, $Q$ can be augmented with columns of an identity matrix and $R$ can be augmented with rows of a zero matrix. >>> Q_aug = Q.row_join(Matrix.eye(3)) >>> R_aug = R.col_join(Matrix.zeros(3, 4)) >>> Q_aug * Q_aug.T Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R_aug Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) >>> Q_aug * R_aug == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRsolve """ return _QRdecomposition_optional(M, normalize=True) def _upper_hessenberg_decomposition(A): """Converts a matrix into Hessenberg matrix H Returns 2 matrices H, P s.t. $P H P^{T} = A$, where H is an upper hessenberg matrix and P is an orthogonal matrix Examples ======== >>> from sympy import Matrix >>> A = Matrix([ ... [1,2,3], ... [-3,5,6], ... [4,-8,9], ... ]) >>> H, P = A.upper_hessenberg_decomposition() >>> H Matrix([ [1, 6/5, 17/5], [5, 213/25, -134/25], [0, 216/25, 137/25]]) >>> P Matrix([ [1, 0, 0], [0, -3/5, 4/5], [0, 4/5, 3/5]]) >>> P * H * P.H == A True References ========== .. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html """ M = A.as_mutable() if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") n = M.cols P = M.eye(n) H = M for j in range(n - 2): u = H[j + 1:, j] if u[1:, :].is_zero_matrix: continue if sign(u[0]) != 0: u[0] = u[0] + sign(u[0]) * u.norm() else: u[0] = u[0] + u.norm() v = u / u.norm() H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :]) H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H return H, P
null
null
null
null
null
null
null
null
null
[]
6,283
recipes/Python/578505_The_Iota_language_in_Python/recipe-578505.py
tdiprima/code
2,023
6592495
# Iota # # http://semarch.linguistics.fas.nyu.edu/barker/Iota/ # # S = λx.λy.λz.xz(yz) # K = λx.λy.x # i = λc.cSK # # i, *ii, *i*ii, **ii*ii # 0 100 10100 1100100 Iota is the encoding. # ## (let iota () ## (if (eq? #\* (read-char)) ((iota)(iota)) ## (lambda (c) ((c (lambda (x) (lambda (y) (lambda (z) ((x z)(y z)))))) ## (lambda (x) (lambda (y) x)))))) ## S = lambda x: lambda y: lambda z: x(z)(y(z)) K = lambda x: lambda y: x i = lambda c: c(S)(K) I = i(i) def _decode(path): bit, path = path[0], path[1:] if bit == '0': return i, path A, path = _decode(path) B, path = _decode(path) return A(B), path decode = lambda path: _decode(path)[0] # K = *i*i*ii = 1010100 # print K is i(i(i(i))) is decode('1010100') # S = *i*i*i*ii = 101010100 # print S is i(i(i(i(i)))) is decode('101010100') # All of these return i itself. print i is i print i is i(i)(i) print i is i( i ) ( i(i)(i) ) print i is i( i(i)(i) ) ( i ) print i is i( i(i)(i) ) ( i(i)(i) ) # Identity function # I is decode('100') # I.e. i(i)
null
null
null
null
null
null
null
null
null
[]
4,646
recipes/Python/577859_CLOSlike_aroundbeforeafter_auxiliary/recipe-577859.py
tdiprima/code
2,023
87531
#!/usr/bin/env python # # Copyright (c) 2011 <NAME> (zuo). All rights reserved. # Licensed under the MIT License. # # Python 2.5+/3.x-compatibile. # # The newest version of this module should be downloadable from: # https://github.com/zuo/Zuo-s-Recipes-and-Drafts/blob/master/auxmethods.py from __future__ import with_statement # (Py2.5 needs this) from functools import wraps from inspect import getmro, isfunction __all__ = ( 'ClassNameConflictError', 'aux', 'primary', 'AutoAuxBase', 'AutoAuxMeta', ) # # exceptions class ClassNameConflictError(Exception): """ Conflict: class names are identical after stripping leading underscores. """ def __str__(self): cls1, cls2 = self.args return ( 'Class names: %r and %r -- are identical after stripping leading ' 'underscores, which is forbidden when using aux/primary methods.' % (cls1.__name__, cls2.__name__)) # # non-public stuff _SUFFIXES = '_primary', '_before', '_after', '_around' class _WrappedMethodPlaceholder(object): def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): raise TypeError('method placeholder is not callable ' '(forgot to apply aux() class decorator?)') def _next_around(obj_around, self, basename, *args, **kwargs): # try to get and call next `around` aux method meth_around = getattr(obj_around, basename + '_around', None) if meth_around is not None: return meth_around(*args, **kwargs) else: # if there is no more `around` methods, get and call: # `before` aux method (it can call superclasses' `before` methods) meth_before = getattr(self, basename + '_before', None) if meth_before is not None: meth_before(*args, **kwargs) # primary method (it can call superclasses' primary methods) meth_primary = getattr(self, basename + '_primary') pri_result = meth_primary(*args, **kwargs) # `after` aux method (it can call superclasses' `after` methods) meth_after = getattr(self, basename + '_after', None) if meth_after is not None: meth_after(*args, **kwargs) return pri_result def _provide_wrapper(cls, func, basename): @wraps(func) def wrapper(self, *args, **kwargs): return _next_around(self, self, basename, *args, **kwargs) added_doc = '(See: %s%s() signature).' % (basename, '_primary') existing_doc = (getattr(wrapper, '__doc__', None) or '').rstrip() if existing_doc: wrapper.__doc__ = '%s\n\n%s' % (existing_doc, added_doc) else: wrapper.__doc__ = added_doc setattr(cls, basename, wrapper) def _provide_primary(cls, func, basename): suffixed_name = basename + '_primary' func.__name__ = suffixed_name func.__doc__ = ( 'The actual method implementation ' '(%s() is only a wrapper).' % basename) setattr(cls, suffixed_name, func) def _provide_wrapped_primary(cls, func): basename = func.__name__ _provide_wrapper(cls, func, basename) _provide_primary(cls, func, basename) def _strip_and_check_cls_name(cls): cls_stripped_name = cls.__name__.lstrip('_') for supercls in getmro(cls): if (supercls is not cls and cls_stripped_name == supercls.__name__.lstrip('_')): raise ClassNameConflictError(supercls, cls) return cls_stripped_name def _provide_call_next(cls, suffixed_name): cls_stripped_name = _strip_and_check_cls_name(cls) basename, qualifier = suffixed_name.rsplit('_', 1) cn_name = '_%s__%s' % ( cls_stripped_name, (basename if qualifier == 'primary' else suffixed_name)) if cn_name in vars(cls): return if qualifier == 'around': def call_next(self, *args, **kwargs): return _next_around( super(cls, self), self, basename, *args, **kwargs) else: def call_next(self, *args, **kwargs): super_meth = getattr(super(cls, self), suffixed_name, None) if super_meth is not None: return super_meth(*args, **kwargs) call_next.__name__ = cn_name setattr(cls, cn_name, call_next) # # actual decorators def aux(cls): """Class decorator (for classes containing primary and/or aux methods).""" if not isinstance(cls, type): raise TypeError('%r is not a type' % cls) # wrap/rename primary methods for name, obj in tuple(vars(cls).items()): # (Py2.x/3.x-compatibile way) if isinstance(obj, _WrappedMethodPlaceholder): _provide_wrapped_primary(cls, obj.func) # provide `call-next-method`-like methods for name, obj in tuple(vars(cls).items()): if isfunction(obj) and obj.__name__.endswith(_SUFFIXES): _provide_call_next(cls, obj.__name__) return cls def primary(func): """Method decorator (for primary methods only).""" if not isfunction(func): raise TypeError('%r is not a function' % func) return _WrappedMethodPlaceholder(func) # # convenience classes (any of them can be used *optionally*...) class AutoAuxMeta(type): """Convenience metaclass: `aux()`-decorates classes created by it.""" def __new__(mcs, name, bases, attr_dict): return aux(type.__new__(mcs, name, bases, attr_dict)) # (here: Py2.x/3.x-compatibile way to create a class with a custom metaclass) AutoAuxBase = AutoAuxMeta('AutoAuxBase', (object,), {'__doc__': """`AutoAuxMeta`-created base class: `aux()`-decorates its subclasses."""}) # # basic example if __name__ == '__main__': import sys import time class TimedAction(AutoAuxBase): # note: AutoAuxBase automatically decorates your classes with aux() def action_before(self, *args, **kwargs): """Start action timer.""" print('starting action timer...') self.start_time = time.time() def action_after(self, *args, **kwargs): """Stop action timer and report measured duration.""" self.action_duration = time.time() - self.start_time print('action duration: %f' % self.action_duration) class FileContentAction(AutoAuxBase): def action_around(self, path): """Read file and pass its content on; report success or error.""" print('opening file %r...' % path) try: with open(path) as f: content = f.read() except EnvironmentError: print(sys.exc_info()[1]) else: result = self.__action_around(path, content) print('file %r processed successfully' % path) return result class NewlinesCounter(FileContentAction, TimedAction): item_descr = 'newlines' @primary def action(self, path, content): """Get number of newlines in a given string.""" return content.count('\n') def action_before(self, path, *args): """Print a message and go on...""" print('counting %s in file %r will start...' % ( self.item_descr, path)) self.__action_before(path, *args) def action_around(self, path): """Start operation with given file path. Finally, show summary.""" result = self.__action_around(path) if result is not None: print('%s in file %r: %s\n' % ( self.item_descr, path, result)) else: print('could not count %s in file %r\n' % ( self.item_descr, path)) return result class SpacesAndNewlinesCounter(NewlinesCounter): item_descr = 'spaces and newlines' @primary def action(self, path, content): """Get number of spaces and newlines in a given string.""" spaces = content.count(' ') newlines = self.__action(path, content) return spaces + newlines example_file_paths = __file__, 'spam/spam/spam/non-existent' nl_counter = NewlinesCounter() spc_nl_counter = SpacesAndNewlinesCounter() for path in example_file_paths: nl_counter.action(path) spc_nl_counter.action(path)
0
0
0.0
36
0
0
1.0
0
44
[]
556
packages/grid/backend/grid/core/celery_app.py
vishalbelsare/PySyft
8,428
3234056
# future from __future__ import annotations # third party from celery import Celery # relative from . import celery_config from . import celery_serde # noqa: 401 # backend is required to persist tasks celery_app = Celery( "worker", broker="amqp://guest@queue//", ) celery_app.config_from_object(celery_config)
null
null
null
null
null
null
null
null
null
[]
2,248
recipes/Python/521866_myspace_profile_parser/recipe-521866.py
tdiprima/code
2,023
188768
<reponame>tdiprima/code #!/usr/bin/python # -*- coding: utf-8 -*- import urllib, urllib2 from re import * class Profile(object): """ parse profile information from a myspace.com account """ def __init__(self, uid): self.uid = uid self.profile_url = 'http://profile.myspace.com/' self.fake_browser = 'Opera/8.53 (Windows NT 5.1; U; de)' self.site = self.__ua() def __ua(self): opener = urllib2.build_opener() opener.addheaders = [('User-agent', self.fake_browser)] site = opener.open(self.profile_url+self.uid) site = site.read() if site: return site else: return False def getProfile(self): re = compile('<meta name="description" content="MySpace Profile - ([^"]+)" /><meta', I) profile_data = re.findall(self.site) return profile_data[0].split(', ') p = Profile(uid="textacrew") print p.getProfile()
3
0
0.0
2
0
3
1.0
1
4
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 5, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 5, "endOffset": 16, "startLine": 5, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 29, "message": "Rename method \"getProfile\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 29, "endOffset": 18, "startLine": 29, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 36, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 36, "endOffset": 5, "startLine": 36, "startOffset": 0 }, "type": "CODE_SMELL" } ]
1,148
tests/python/relay/utils/ref_funcs.py
XiaoSong9905/tvm
4,640
5441692
<reponame>XiaoSong9905/tvm<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np def gather_nd(data_np, indices_np, batch_dims=0): """gather_nd implemented using numpy""" data_shape = data_np.shape indices_shape = indices_np.shape def gather_nd_batch_dims_1_ref(data, indices): res = [] for i, row in enumerate(data): indices_tuple = tuple(indices[:, i]) # the indices for the i-th batch res.append(row[indices_tuple]) # stack on the batch dim return np.stack(res, 0) if batch_dims > 1: data_np_reshape = np.reshape(data_np, (-1,) + data_shape[batch_dims:]) indices_np_reshape = np.reshape( indices_np, (indices_shape[0], -1) + indices_shape[(batch_dims + 1) :] ) ref_res = gather_nd_batch_dims_1_ref(data_np_reshape, indices_np_reshape) out_shape = indices_shape[1 : (batch_dims + 1)] + ref_res.shape[1:] ref_res = np.reshape(ref_res, out_shape) elif batch_dims == 1: ref_res = gather_nd_batch_dims_1_ref(data_np, indices_np) else: ref_res = data_np[tuple(indices_np)] return ref_res
0
0
0.0
5
0
0
1.0
0
4
[]
12,088
tests/components/sensibo/test_update.py
liangleslie/core
30,023
51626
"""The test for the sensibo update platform.""" from __future__ import annotations from datetime import timedelta from unittest.mock import patch from pysensibo.model import SensiboData from pytest import MonkeyPatch from homeassistant.config_entries import ConfigEntry from homeassistant.const import STATE_OFF, STATE_ON from homeassistant.core import HomeAssistant from homeassistant.util import dt from tests.common import async_fire_time_changed async def test_select( hass: HomeAssistant, load_int: ConfigEntry, monkeypatch: MonkeyPatch, get_data: SensiboData, ) -> None: """Test the Sensibo update.""" state1 = hass.states.get("update.hallway_update_available") state2 = hass.states.get("update.kitchen_update_available") assert state1.state == STATE_ON assert state1.attributes["installed_version"] == "SKY30046" assert state1.attributes["latest_version"] == "SKY30048" assert state1.attributes["title"] == "skyv2" assert state2.state == STATE_OFF monkeypatch.setattr(get_data.parsed["ABC999111"], "fw_ver", "SKY30048") with patch( "homeassistant.components.sensibo.coordinator.SensiboClient.async_get_devices_data", return_value=get_data, ): async_fire_time_changed( hass, dt.utcnow() + timedelta(minutes=5), ) await hass.async_block_till_done() state1 = hass.states.get("update.hallway_update_available") assert state1.state == STATE_OFF
0
0
0.0
0
0
0
1.0
0
1
[]
324
tests/components/cloud/test_tts.py
tbarbette/core
30,023
6482044
"""Tests for cloud tts.""" from unittest.mock import Mock from hass_nabucasa import voice import pytest import voluptuous as vol from homeassistant.components.cloud import const, tts @pytest.fixture() def cloud_with_prefs(cloud_prefs): """Return a cloud mock with prefs.""" return Mock(client=Mock(prefs=cloud_prefs)) def test_default_exists(): """Test our default language exists.""" assert const.DEFAULT_TTS_DEFAULT_VOICE in voice.MAP_VOICE def test_schema(): """Test schema.""" assert "nl-NL" in tts.SUPPORT_LANGUAGES processed = tts.PLATFORM_SCHEMA({"platform": "cloud", "language": "nl-NL"}) assert processed["gender"] == "female" with pytest.raises(vol.Invalid): tts.PLATFORM_SCHEMA( {"platform": "cloud", "language": "non-existing", "gender": "female"} ) with pytest.raises(vol.Invalid): tts.PLATFORM_SCHEMA( {"platform": "cloud", "language": "nl-NL", "gender": "not-supported"} ) # Should not raise tts.PLATFORM_SCHEMA({"platform": "cloud", "language": "nl-NL", "gender": "female"}) tts.PLATFORM_SCHEMA({"platform": "cloud"}) async def test_prefs_default_voice(hass, cloud_with_prefs, cloud_prefs): """Test cloud provider uses the preferences.""" assert cloud_prefs.tts_default_voice == ("en-US", "female") provider_pref = await tts.async_get_engine( Mock(data={const.DOMAIN: cloud_with_prefs}), None, {} ) provider_conf = await tts.async_get_engine( Mock(data={const.DOMAIN: cloud_with_prefs}), {"language": "fr-FR", "gender": "female"}, None, ) assert provider_pref.default_language == "en-US" assert provider_pref.default_options == {"gender": "female"} assert provider_conf.default_language == "fr-FR" assert provider_conf.default_options == {"gender": "female"} await cloud_prefs.async_update(tts_default_voice=("nl-NL", "male")) await hass.async_block_till_done() assert provider_pref.default_language == "nl-NL" assert provider_pref.default_options == {"gender": "male"} assert provider_conf.default_language == "fr-FR" assert provider_conf.default_options == {"gender": "female"} async def test_provider_properties(cloud_with_prefs): """Test cloud provider.""" provider = await tts.async_get_engine( Mock(data={const.DOMAIN: cloud_with_prefs}), None, {} ) assert provider.supported_options == ["gender"] assert "nl-NL" in provider.supported_languages async def test_get_tts_audio(cloud_with_prefs): """Test cloud provider.""" provider = await tts.async_get_engine( Mock(data={const.DOMAIN: cloud_with_prefs}), None, {} ) assert provider.supported_options == ["gender"] assert "nl-NL" in provider.supported_languages
0
0
0.0
0
0
0
1.0
0
6
[]
4,207
recipes/Python/576635_whois/recipe-576635.py
tdiprima/code
2,023
3388232
<gh_stars>1000+ """whois.py simple whois client """ import sys import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("whois.arin.net", 43)) s.send(sys.argv[1] + "\r\n") response = '' while True: d = s.recv(4096) response += d if d == '': break s.close() print print response
2
0
0.0
3
0
2
1.0
0
2
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 19, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 19, "endOffset": 5, "startLine": 19, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 20, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 20, "endOffset": 5, "startLine": 20, "startOffset": 0 }, "type": "CODE_SMELL" } ]
2,949
examples/images/network_in_network.py
jjpalacio/tflearn
10,882
323218
# -*- coding: utf-8 -*- """ Network In Network. Applying 'Network In Network' to CIFAR-10 classification task. References: Network In Network. <NAME>, <NAME> & <NAME>, 2014. Links: http://arxiv.org/pdf/1312.4400v3.pdf """ from __future__ import division, print_function, absolute_import import tflearn from tflearn.data_utils import shuffle, to_categorical from tflearn.layers.core import input_data, dropout, flatten from tflearn.layers.conv import conv_2d, max_pool_2d, avg_pool_2d from tflearn.layers.estimator import regression # Data loading and preprocessing from tflearn.datasets import cifar10 (X, Y), (X_test, Y_test) = cifar10.load_data() X, Y = shuffle(X, Y) Y = to_categorical(Y) Y_test = to_categorical(Y_test) # Building 'Network In Network' network = input_data(shape=[None, 32, 32, 3]) network = conv_2d(network, 192, 5, activation='relu') network = conv_2d(network, 160, 1, activation='relu') network = conv_2d(network, 96, 1, activation='relu') network = max_pool_2d(network, 3, strides=2) network = dropout(network, 0.5) network = conv_2d(network, 192, 5, activation='relu') network = conv_2d(network, 192, 1, activation='relu') network = conv_2d(network, 192, 1, activation='relu') network = avg_pool_2d(network, 3, strides=2) network = dropout(network, 0.5) network = conv_2d(network, 192, 3, activation='relu') network = conv_2d(network, 192, 1, activation='relu') network = conv_2d(network, 10, 1, activation='relu') network = avg_pool_2d(network, 8) network = flatten(network) network = regression(network, optimizer='adam', loss='softmax_categorical_crossentropy', learning_rate=0.001) # Training model = tflearn.DNN(network) model.fit(X, Y, n_epoch=50, shuffle=True, validation_set=(X_test, Y_test), show_metric=True, batch_size=128, run_id='cifar10_net_in_net')
null
null
null
null
null
null
null
null
null
[]
7,920
infra/config/PRESUBMIT.py
chromium/chromium
14,668
65214
<filename>infra/config/PRESUBMIT.py # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Enforces luci-milo.cfg consistency. See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details on the presubmit API built into depot_tools. """ PRESUBMIT_VERSION = '2.0.0' USE_PYTHON3 = True _IGNORE_FREEZE_FOOTER = 'Ignore-Freeze' # The time module's handling of timezones is abysmal, so the boundaries are # precomputed in UNIX time _FREEZE_START = 1639641600 # 2021/12/16 00:00 -0800 _FREEZE_END = 1641196800 # 2022/01/03 00:00 -0800 def CheckFreeze(input_api, output_api): if _FREEZE_START <= input_api.time.time() < _FREEZE_END: footers = input_api.change.GitFootersFromDescription() if _IGNORE_FREEZE_FOOTER not in footers: def convert(t): ts = input_api.time.localtime(t) return input_api.time.strftime('%Y/%m/%d %H:%M %z', ts) return [ output_api.PresubmitError( 'There is a prod freeze in effect from {} until {},' ' files in //infra/config cannot be modified'.format( convert(_FREEZE_START), convert(_FREEZE_END))) ] return [] def CheckTests(input_api, output_api): glob = input_api.os_path.join(input_api.PresubmitLocalPath(), '*_test.py') tests = input_api.canned_checks.GetUnitTests(input_api, output_api, input_api.glob(glob), run_on_python2=False, run_on_python3=True, skip_shebang_check=True) return input_api.RunTests(tests) def CheckLintLuciMilo(input_api, output_api): if ('infra/config/generated/luci/luci-milo.cfg' in input_api.LocalPaths() or 'infra/config/lint-luci-milo.py' in input_api.LocalPaths()): return input_api.RunTests([ input_api.Command( name='lint-luci-milo', cmd=[input_api.python_executable, 'lint-luci-milo.py'], kwargs={}, message=output_api.PresubmitError), ]) return [] def CheckTestingBuildbot(input_api, output_api): if ('infra/config/generated/luci/luci-milo.cfg' in input_api.LocalPaths() or 'infra/config/generated/luci/luci-milo-dev.cfg' in input_api.LocalPaths() ): return input_api.RunTests([ input_api.Command( name='testing/buildbot config checks', cmd=[input_api.python_executable, input_api.os_path.join( '..', '..', 'testing', 'buildbot', 'generate_buildbot_json.py',), '--check'], kwargs={}, message=output_api.PresubmitError), ]) return [] def CheckLucicfgGenOutputMain(input_api, output_api): return input_api.RunTests(input_api.canned_checks.CheckLucicfgGenOutput( input_api, output_api, 'main.star')) def CheckLucicfgGenOutputDev(input_api, output_api): return input_api.RunTests(input_api.canned_checks.CheckLucicfgGenOutput( input_api, output_api, 'dev.star')) def CheckChangedLUCIConfigs(input_api, output_api): return input_api.canned_checks.CheckChangedLUCIConfigs( input_api, output_api) # Footer indicating a CL that is trying to address an outage by some mechanism # other than those in infra/config/outages _OUTAGE_ACTION_FOOTER = 'Infra-Config-Outage-Action' # Footer acknowledging that an outages configuration is in effect when making an # unrelated change _IGNORE_OUTAGE_FOOTER = 'Infra-Config-Ignore-Outage' def CheckOutagesConfigOnCommit(input_api, output_api): outages_pyl = input_api.os_path.join( input_api.PresubmitLocalPath(), 'generated/outages.pyl') with open(outages_pyl) as f: outages_config = input_api.ast.literal_eval(f.read()) if not outages_config: footers = input_api.change.GitFootersFromDescription() return [ output_api.PresubmitError( 'There is no outages configuration in effect, ' 'please remove the {} footer from your CL description.' .format(footer)) for footer in (_OUTAGE_ACTION_FOOTER, _IGNORE_OUTAGE_FOOTER) if footer in footers ] # Any of the config files under infra/config/outages outages_config_files = set() # Any of the config files under infra/config/generated generated_config_files = set() # Any config files that are not under infra/config/outages or # infra/config/generated config_files = set() for p in input_api.LocalPaths(): if p in ('README.md', 'OWNERS'): continue if p.startswith('infra/config/outages/'): outages_config_files.add(p) continue if p.startswith('infra/config/generated/'): generated_config_files.add(p) continue config_files.add(p) # If the only changes to non-generated config fies were the outages files, # assume the change was addressing an outage and that no additional mechanism # needs to be added if outages_config_files and not config_files: # REVIEWER: Should we prevent the footers from being here in this case? return [] # If any non-generated, non-outages files were modified or if the generated # config files were modified without any config files being modified (lucicfg # change, etc.) then make sure the user knows that when the outages # configuration is disabled, the generated configuration may change if config_files or generated_config_files: footers = input_api.change.GitFootersFromDescription() has_action_footer = _OUTAGE_ACTION_FOOTER in footers has_ignore_footer = _IGNORE_OUTAGE_FOOTER in footers if has_action_footer and has_ignore_footer: return [ output_api.PresubmitError( 'Only one of {} or {} should be present in your CL description' .format(_OUTAGE_ACTION_FOOTER, _IGNORE_OUTAGE_FOOTER)), ] if not has_action_footer and not has_ignore_footer: outages_config_lines = ['{}: {}'.format(k, v) for k, v in sorted(outages_config.items())] return [ output_api.PresubmitError('\n'.join([ 'The following outages configuration is in effect:\n {}'.format( '\n '.join(outages_config_lines)), ('The effect of your change may not be visible ' 'in the generated configuration.'), ('If your change is addressing the outage, ' 'please add the footer {} with a link for the outage.' ).format(_OUTAGE_ACTION_FOOTER), ('If your change is not addressing the outage ' 'but you still wish to land it, please add the footer ' '{} with a reason.').format(_IGNORE_OUTAGE_FOOTER), ('For more information on outages configuration, ' 'see https://chromium.googlesource.com/chromium/src/+/HEAD/infra/config/outages' ), ])), ] return []
9
0
0.0
25
0
9
1.0
0
29
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 22, "message": "Rename function \"CheckFreeze\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 22, "endOffset": 15, "startLine": 22, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 41, "message": "Rename function \"CheckTests\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 41, "endOffset": 14, "startLine": 41, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 52, "message": "Rename function \"CheckLintLuciMilo\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 52, "endOffset": 21, "startLine": 52, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 64, "message": "Rename function \"CheckTestingBuildbot\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 64, "endOffset": 24, "startLine": 64, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 80, "message": "Rename function \"CheckLucicfgGenOutputMain\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 80, "endOffset": 29, "startLine": 80, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 84, "message": "Rename function \"CheckLucicfgGenOutputDev\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 84, "endOffset": 28, "startLine": 84, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 88, "message": "Rename function \"CheckChangedLUCIConfigs\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 88, "endOffset": 27, "startLine": 88, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 100, "message": "Rename function \"CheckOutagesConfigOnCommit\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 100, "endOffset": 30, "startLine": 100, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 100, "message": "Refactor this function to reduce its Cognitive Complexity from 18 to the 15 allowed.", "textRange": { "endLine": 100, "endOffset": 30, "startLine": 100, "startOffset": 4 }, "type": "CODE_SMELL" } ]
397
tests/unit/utils/test_minion.py
tomdoherty/salt
9,425
6562654
<filename>tests/unit/utils/test_minion.py<gh_stars>1000+ import logging import salt.utils.minion from tests.support.mock import MagicMock, mock_open, patch from tests.support.unit import TestCase log = logging.getLogger(__name__) class FakeThreadingClass: name = "thread-name" class MinionUtilTestCase(TestCase): """ TestCase for salt.utils.minion """ def test__read_proc_file_multiprocessing_false(self): """ test get_minion_pillar when target exists """ opts = {"multiprocessing": False} proc_data = { "tgt_type": "glob", "jid": "20200310230030623022", "tgt": "minion", "pid": 12345, "ret": "", "user": "root", "arg": [10], "fun": "test.sleep", } fake_thread = FakeThreadingClass() fake_thread.name = "20200310230030623022-Job-20200310230030623022" with patch("os.getpid", MagicMock(return_value=12345)): with patch("salt.utils.files.fopen", mock_open(read_data=b"msgpack")): with patch("salt.payload.loads", MagicMock(return_value=proc_data)): with patch( "salt.utils.process.os_is_running", MagicMock(return_value=True) ): with patch( "threading.enumerate", MagicMock(return_value=[fake_thread]) ): with patch( "salt.utils.minion._check_cmdline", MagicMock(return_value=True), ): data = salt.utils.minion._read_proc_file( "/var/cache/salt/minion/proc/20200310230030623022", opts, ) self.assertEqual(data, proc_data) opts = {"multiprocessing": False} proc_data = { "tgt_type": "glob", "jid": "20200310230030623022", "tgt": "minion", "pid": 12345, "ret": "", "user": "root", "arg": [10], "fun": "test.sleep", } fake_thread = FakeThreadingClass() fake_thread.name = "20200310230030623022" with patch("os.getpid", MagicMock(return_value=12345)): with patch("salt.utils.files.fopen", mock_open(read_data=b"msgpack")): with patch("salt.payload.loads", MagicMock(return_value=proc_data)): with patch( "salt.utils.process.os_is_running", MagicMock(return_value=True) ): with patch( "threading.enumerate", MagicMock(return_value=[fake_thread]) ): with patch( "salt.utils.minion._check_cmdline", MagicMock(return_value=True), ): data = salt.utils.minion._read_proc_file( "/var/cache/salt/minion/proc/20200310230030623022", opts, ) self.assertEqual(data, proc_data) opts = {"multiprocessing": False} proc_data = { "tgt_type": "glob", "jid": "20200310230030623022", "tgt": "minion", "pid": 12345, "ret": "", "user": "root", "arg": [10], "fun": "test.sleep", } fake_thread = FakeThreadingClass() fake_thread.name = "20200310230030623022" with patch("os.getpid", MagicMock(return_value=12345)): with patch("salt.utils.files.fopen", mock_open(read_data=b"msgpack")): with patch("salt.payload.loads", MagicMock(return_value=proc_data)): with patch( "salt.utils.process.os_is_running", MagicMock(return_value=True) ): with patch( "threading.enumerate", MagicMock(return_value=[fake_thread]) ): with patch( "salt.utils.minion._check_cmdline", MagicMock(return_value=False), ): with patch("os.remove", MagicMock(return_value=True)): data = salt.utils.minion._read_proc_file( "/var/cache/salt/minion/proc/20200310230030623022", opts, ) self.assertEqual(data, None) def test__read_proc_file_multiprocessing_true(self): """ test get_minion_pillar when target exists """ opts = {"multiprocessing": True} proc_data = { "tgt_type": "glob", "jid": "20200310230030623022", "tgt": "minion", "pid": 12345, "ret": "", "user": "root", "arg": [10], "fun": "test.sleep", } with patch("os.getpid", MagicMock(return_value=12345)): with patch("salt.utils.files.fopen", mock_open(read_data=b"msgpack")): with patch("salt.payload.loads", MagicMock(return_value=proc_data)): with patch( "salt.utils.process.os_is_running", MagicMock(return_value=True) ): with patch( "salt.utils.minion._check_cmdline", MagicMock(return_value=True), ): data = salt.utils.minion._read_proc_file( "/var/cache/salt/minion/proc/20200310230030623022", opts ) self.assertEqual(data, None)
null
null
null
null
null
null
null
null
null
[]
4,450
diagrams/outscale/__init__.py
analyticsftw/diagrams
17,037
6959
<reponame>analyticsftw/diagrams<filename>diagrams/outscale/__init__.py from diagrams import Node class _Outscale(Node): _provider = "outscale" _icon_dir = "resources/outscale" fontcolor = "#ffffff"
0
0
0.0
0
0
0
1.0
0
0
[]
62
tests/unit/test_fingerprint.py
flovouin/dash
17,143
2194014
<reponame>flovouin/dash<gh_stars>1000+ from dash.fingerprint import build_fingerprint, check_fingerprint version = 1 hash_value = 1 valid_resources = [ {"path": "[email protected]", "fingerprint": "[email protected]"}, { "path": "[email protected]", "fingerprint": "[email protected]_1_1m1234567890abcdef.8.6.min.js", "version": "1.1.1", "hash": "1234567890abcdef", }, { "path": "[email protected]", "fingerprint": "[email protected]_1_1-alpha_1m1234567890abcdef.8.6.min.js", "version": "1.1.1-alpha.1", "hash": "1234567890abcdef", }, { "path": "[email protected]", "fingerprint": "[email protected]_1_1-alpha_x_y_y_X_Y_Z_1_2_3_metadata_xx_yy_zz_XX_YY_ZZ_11_22_33_mmm1234567890abcdefABCDEF.8.6.min.js", "version": "1.1.1-alpha.x.y.y.X.Y.Z.1.2.3+metadata.xx.yy.zz.XX.YY.ZZ.11.22.33.mm", "hash": "1234567890abcdefABCDEF", }, {"path": "dash.plotly.js", "fingerprint": "dash.v1m1.plotly.js"}, {"path": "dash.plotly.j_s", "fingerprint": "dash.v1m1.plotly.j_s"}, {"path": "dash.plotly.css", "fingerprint": "dash.v1m1.plotly.css"}, {"path": "dash.plotly.xxx.yyy.zzz", "fingerprint": "dash.v1m1.plotly.xxx.yyy.zzz"}, {"path": "dash~plotly.js", "fingerprint": "dash~plotly.v1m1.js"}, {"path": "nested/folder/file.js", "fingerprint": "nested/folder/file.v1m1.js"}, { # kind of pathological, but we have what looks like a version string # in a different place - still works "path": "nested.v2m2/folder/file.js", "fingerprint": "nested.v2m2/folder/file.v1m1.js", }, { # even works if it gets doubled up in the right place "path": "nested/folder/file.v2m2.js", "fingerprint": "nested/folder/file.v1m1.v2m2.js", }, { "path": "nested.dotted/folder.structure/file.name.css", "fingerprint": "nested.dotted/folder.structure/file.v1m1.name.css", }, { "path": "dash..plotly.js", "fingerprint": "dash.v1_1_1m1234567890..plotly.js", "version": "1.1.1", "hash": "1234567890", }, { "path": "dash.", "fingerprint": "dash.v1_1_1m1234567890.", "version": "1.1.1", "hash": "1234567890", }, { "path": "dash..", "fingerprint": "dash.v1_1_1m1234567890..", "version": "1.1.1", "hash": "1234567890", }, { "path": "dash.js.", "fingerprint": "dash.v1_1_1m1234567890.js.", "version": "1.1.1", "hash": "1234567890", }, { "path": "dash.j-s", "fingerprint": "dash.v1_1_1m1234567890.j-s", "version": "1.1.1", "hash": "1234567890", }, ] valid_fingerprints = [ "[email protected]_1_2m1571771240.8.6.min.js", "dash.v1_1_1m1234567890.plotly.js", "dash.v1_1_1m1234567890.plotly.j_s", "dash.v1_1_1m1234567890.plotly.css", "dash.v1_1_1m1234567890.plotly.xxx.yyy.zzz", "dash.v1_1_1-alpha1m1234567890.plotly.js", "dash.v1_1_1-alpha_3m1234567890.plotly.js", "dash.v1_1_1m1234567890123.plotly.js", "dash.v1_1_1m4bc3.plotly.js", "dash~plotly.v1m1.js", "nested/folder/file.v1m1.js", "nested.dotted/folder.structure/file.v1m1.name.css", # this one has a pattern that looks like the version string in the wrong place # AND one in the right place. "nested.v2m2/folder/file.v1m1.js", "nested.v2m2.dotted/folder.structure/file.v1m1.name.css", ] invalid_fingerprints = [ "dash.plotly.v1_1_1m1234567890.js", "folder/dash.plotly.v1_1_1m1234567890.js", "nested.v1m1/folder/file.js", "nested.v1m1.dotted/folder.structure/file.name.css", ] def test_fingerprint(): for resource in valid_resources: # The fingerprint matches expectations fingerprint = build_fingerprint( resource.get("path"), resource.get("version", version), resource.get("hash", hash_value), ) assert fingerprint == resource.get("fingerprint") (original_path, has_fingerprint) = check_fingerprint(fingerprint) # The inverse operation returns that the fingerprint was valid # and the original path assert has_fingerprint assert original_path == resource.get("path") for resource in valid_fingerprints: (_, has_fingerprint) = check_fingerprint(resource) assert has_fingerprint, resource for resource in invalid_fingerprints: (_, has_fingerprint) = check_fingerprint(resource) assert not has_fingerprint, resource
1
0
0.0
3
0
1
1.0
0
4
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 7, "message": "Define a constant instead of duplicating this literal \"[email protected]\" 4 times.", "textRange": { "endLine": 7, "endOffset": 34, "startLine": 7, "startOffset": 13 }, "type": "CODE_SMELL" } ]
10,831
venv/lib/python3.7/site-packages/pyasn1_modules/rfc7773.py
nicholasadamou/StockBird
9,953
8450729
<gh_stars>1000+ # # This file is part of pyasn1-modules software. # # Created by <NAME> with some assistance from asn1ate v.0.6.0. # # Copyright (c) 2019, Vigil Security, LLC # License: http://snmplabs.com/pyasn1/license.html # # Authentication Context Certificate Extension # # ASN.1 source from: # https://www.rfc-editor.org/rfc/rfc7773.txt # from pyasn1.type import char from pyasn1.type import constraint from pyasn1.type import namedtype from pyasn1.type import univ from pyasn1_modules import rfc5280 MAX = float('inf') # Authentication Context Extension e_legnamnden = univ.ObjectIdentifier('1.2.752.201') id_eleg_ce = e_legnamnden + (5, ) id_ce_authContext = id_eleg_ce + (1, ) class AuthenticationContext(univ.Sequence): componentType = namedtype.NamedTypes( namedtype.NamedType('contextType', char.UTF8String()), namedtype.OptionalNamedType('contextInfo', char.UTF8String()) ) class AuthenticationContexts(univ.SequenceOf): componentType = AuthenticationContext() subtypeSpec=constraint.ValueSizeConstraint(1, MAX) # Map of Certificate Extension OIDs to Extensions added to the # ones that are in rfc5280.py _certificateExtensionsMapUpdate = { id_ce_authContext: AuthenticationContexts(), } rfc5280.certificateExtensionsMap.update(_certificateExtensionsMapUpdate)
0
0
0.0
0
0
0
1.0
0
0
[]
10,967
torch/quantization/quantize_jit.py
xiaohanhuang/pytorch
60,067
4016575
<reponame>xiaohanhuang/pytorch<gh_stars>1000+ # flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/quantize_jit.py`, while adding an import statement here. """ from torch.ao.quantization.quantize_jit import ( _check_is_script_module, _check_forward_method, script_qconfig, script_qconfig_dict, fuse_conv_bn_jit, _prepare_jit, prepare_jit, prepare_dynamic_jit, _convert_jit, convert_jit, convert_dynamic_jit, _quantize_jit, quantize_jit, quantize_dynamic_jit )
0
0
0.0
0
0
0
1.0
0
0
[]
12,511
basic/30_copy_deepcopy.py
subshine/tutorials
10,786
11309112
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial import copy a = [1,2,3] b = a b[1]=22 print(a) print(id(a) == id(b)) # deep copy c = copy.deepcopy(a) print(id(a) == id(c)) c[1] = 2 print(a) a[1] = 111 print(c) # shallow copy a = [1,2,[3,4]] d = copy.copy(a) print(id(a) == id(d)) print(id(a[2]) == id(d[2]))
null
null
null
null
null
null
null
null
null
[]
6,919
dir_test.py
nicetone/Python
28,321
3236300
# Script Name : dir_test.py # Author : <NAME> # Created : 29th November 2011 # Last Modified : by- <NAME> 05 Oct 2020 # Version : 1.0 # Modifications : # Description : Tests to see if the directory testdir exists, if not it will create the directory for you if you want it created. from __future__ import print_function import os try: input = raw_input() except NameError: pass def main(): CheckDir = input("Enter the name of the directory to check : ") print() if os.path.exists(CheckDir): # Checks if the dir exists print("The directory exists") else: print("No directory found for " + CheckDir) # Output if no directory print() option = input("Would you like this directory create? y/n: ") if option == 'n': print("Goodbye") exit() if option == 'y': os.makedirs(CheckDir) # Creates a new dir for the given name print("Directory created for " + CheckDir) else: print("Not an option. Exiting") exit() if __name__ == '__main__': main()
null
null
null
null
null
null
null
null
null
[]
2,265
homeassistant/components/limitlessled/__init__.py
domwillcode/home-assistant
30,023
12856798
"""The limitlessled component."""
null
null
null
null
null
null
null
null
null
[]
7,583
tests/components/econet/__init__.py
tbarbette/core
30,023
186790
<gh_stars>1000+ """Tests for the Econet component."""
0
0
0.0
0
0
0
1.0
0
0
[]
1,136
algorithms/tree/fenwick_tree/fenwick_tree.py
hbqdev/algorithms
22,426
11275911
""" Fenwick Tree / Binary Indexed Tree Consider we have an array arr[0 . . . n-1]. We would like to 1. Compute the sum of the first i elements. 2. Modify the value of a specified element of the array arr[i] = x where 0 <= i <= n-1. A simple solution is to run a loop from 0 to i-1 and calculate the sum of the elements. To update a value, simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time. Another simple solution is to create an extra array and store the sum of the first i-th elements at the i-th index in this new array. The sum of a given range can now be calculated in O(1) time, but the update operation takes O(n) time now. This works well if there are a large number of query operations but a very few number of update operations. There are two solutions that can perform both the query and update operations in O(logn) time. 1. Fenwick Tree 2. Segment Tree Compared with Segment Tree, Binary Indexed Tree requires less space and is easier to implement. """ class Fenwick_Tree(object): def __init__(self, freq): self.arr = freq self.n = len(freq) def get_sum(self, bit_tree, i): """ Returns sum of arr[0..index]. This function assumes that the array is preprocessed and partial sums of array elements are stored in bit_tree[]. """ s = 0 # index in bit_tree[] is 1 more than the index in arr[] i = i+1 # Traverse ancestors of bit_tree[index] while i > 0: # Add current element of bit_tree to sum s += bit_tree[i] # Move index to parent node in getSum View i -= i & (-i) return s def update_bit(self, bit_tree, i, v): """ Updates a node in Binary Index Tree (bit_tree) at given index in bit_tree. The given value 'val' is added to bit_tree[i] and all of its ancestors in tree. """ # index in bit_ree[] is 1 more than the index in arr[] i += 1 # Traverse all ancestors and add 'val' while i <= self.n: # Add 'val' to current node of bit_tree bit_tree[i] += v # Update index to that of parent in update View i += i & (-i) def construct(self): """ Constructs and returns a Binary Indexed Tree for given array of size n. """ # Create and initialize bit_ree[] as 0 bit_tree = [0]*(self.n+1) # Store the actual values in bit_ree[] using update() for i in range(self.n): self.update_bit(bit_tree, i, self.arr[i]) return bit_tree
1
0
0.0
3
0
1
1.0
0
7
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 22, "message": "Rename class \"Fenwick_Tree\" to match the regular expression ^_?([A-Z_][a-zA-Z0-9]*|[a-z_][a-z0-9_]*)$.", "textRange": { "endLine": 22, "endOffset": 18, "startLine": 22, "startOffset": 6 }, "type": "CODE_SMELL" } ]
6,738
recipes/Python/300304_Live_Object_Browser/recipe-300304.py
tdiprima/code
2,023
6466906
#!/usr/bin/env python import pygtk pygtk.require('2.0') import gtk class Browser: def make_row( self, piter, name, value ): info = repr(value) if not hasattr(value, "__dict__"): if len(info) > 80: # it's a big list, or dict etc. info = info[:80] + "..." _piter = self.treestore.append( piter, [ name, type(value).__name__, info ] ) return _piter def make_instance( self, value, piter ): if hasattr( value, "__dict__" ): for _name, _value in value.__dict__.items(): _piter = self.make_row( piter, "."+_name, _value ) _path = self.treestore.get_path( _piter ) self.otank[ _path ] = (_name, _value) def make_mapping( self, value, piter ): keys = [] if hasattr( value, "keys" ): keys = value.keys() elif hasattr( value, "__len__"): keys = range( len(value) ) for key in keys: _name = "[%s]"%str(key) _piter = self.make_row( piter, _name, value[key] ) _path = self.treestore.get_path( _piter ) self.otank[ _path ] = (_name, value[key]) def make(self, name=None, value=None, path=None, depth=1): if path is None: # make root node piter = self.make_row( None, name, value ) path = self.treestore.get_path( piter ) self.otank[ path ] = (name, value) else: name, value = self.otank[ path ] piter = self.treestore.get_iter( path ) if not self.treestore.iter_has_child( piter ): self.make_mapping( value, piter ) self.make_instance( value, piter ) if depth: for i in range( self.treestore.iter_n_children( piter ) ): self.make( path = path+(i,), depth = depth - 1 ) def row_expanded( self, treeview, piter, path ): self.make( path = path ) def delete_event(self, widget, event, data=None): gtk.main_quit() return gtk.FALSE def __init__(self, name, value): self.window = gtk.Window(gtk.WINDOW_TOPLEVEL) self.window.set_title("Browser") self.window.set_size_request(512, 320) self.window.connect("delete_event", self.delete_event) # we will store the name, the type name, and the repr columns = [str,str,str] self.treestore = gtk.TreeStore(*columns) # the otank tells us what object we put at each node in the tree self.otank = {} # map path -> (name,value) self.make( name, value ) self.treeview = gtk.TreeView(self.treestore) self.treeview.connect("row-expanded", self.row_expanded ) self.tvcolumns = [ gtk.TreeViewColumn() for _type in columns ] i = 0 for tvcolumn in self.tvcolumns: self.treeview.append_column(tvcolumn) cell = gtk.CellRendererText() tvcolumn.pack_start(cell, True) tvcolumn.add_attribute(cell, 'text', i) i = i + 1 self.window.add(self.treeview) self.window.show_all() def dump( name, value ): browser = Browser( name, value ) gtk.main() def test(): class Nil: pass a = Nil() b = Nil() c = Nil() d = Nil() a.b=b b.c=c c.d=d d.a=a # circular chain dump( "a", a ) if __name__ == "__main__": test()
2
0
0.0
17
0
2
1.0
0
21
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 11, "message": "Merge this if statement with the enclosing one.", "textRange": { "endLine": 11, "endOffset": 14, "startLine": 11, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 91, "message": "Remove the unused local variable \"browser\".", "textRange": { "endLine": 91, "endOffset": 11, "startLine": 91, "startOffset": 4 }, "type": "CODE_SMELL" } ]
4,123
tests/components/iotawatt/__init__.py
MrDelik/core
30,023
1738332
<gh_stars>1000+ """Tests for the IoTaWatt integration.""" from iotawattpy.sensor import Sensor INPUT_SENSOR = Sensor( channel="1", base_name="My Sensor", suffix=None, io_type="Input", unit="Watts", value=23, begin="", mac_addr="mock-mac", ) OUTPUT_SENSOR = Sensor( channel="N/A", base_name="My WattHour Sensor", suffix=None, io_type="Output", unit="WattHours", value=243, begin="", mac_addr="mock-mac", fromStart=True, ) INPUT_ACCUMULATED_SENSOR = Sensor( channel="N/A", base_name="My WattHour Accumulated Input Sensor", suffix=".wh", io_type="Input", unit="WattHours", value=500, begin="", mac_addr="mock-mac", fromStart=False, ) OUTPUT_ACCUMULATED_SENSOR = Sensor( channel="N/A", base_name="My WattHour Accumulated Output Sensor", suffix=".wh", io_type="Output", unit="WattHours", value=200, begin="", mac_addr="mock-mac", fromStart=False, )
0
0
0.0
0
0
0
1.0
0
0
[]
1,867
recipes/Python/277600_one_liner_frequency_count/recipe-277600.py
tdiprima/code
2,023
3209145
>>> from itertools import groupby >>> [(k, len(list(g))) for k, g in groupby(sorted(myList))] [('1', 4), ('2', 1), ('3', 2), ('4', 1)]
0
0
0.0
null
0
0
1.0
0
null
[]
2,049
utils/python_lint.py
jerodji/swift
72,551
8977665
<reponame>jerodji/swift #!/usr/bin/env python3 # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # """ Utility script used to run the flake8 linter over all the project Python sources. """ from __future__ import absolute_import, print_function, unicode_literals import os import subprocess import sys __all__ = [ 'lint', ] # ----------------------------------------------------------------------------- # Constants _UTILS_DIR = os.path.abspath(os.path.dirname(__file__)) _PROJECT_DIR = os.path.dirname(_UTILS_DIR) _REQUIRED_PACKAGES = [ 'flake8', 'flake8-import-order', ] _INSTALL_FLAKE8_MESSAGE = """ The flake8 and flake8-import-order Python packages are required for linting, but these were not found on your system. You can install these using: python -m pip install flake8 python -m pip install flake8-import-order For more help, see http://flake8.pycqa.org. """ # ----------------------------------------------------------------------------- # Helpers def _is_package_installed(name): """Runs the pip command to check if a package is installed. """ command = [ sys.executable, '-m', 'pip', 'show', '--quiet', name, ] with open(os.devnull, 'w') as devnull: status = subprocess.call(command, stderr=devnull) return not status # ----------------------------------------------------------------------------- def lint(args, verbose=False): all_packages_installed = all([ _is_package_installed(name) for name in _REQUIRED_PACKAGES ]) if not all_packages_installed: if verbose: print(_INSTALL_FLAKE8_MESSAGE) return 1 return subprocess.call( [sys.executable, '-m', 'flake8'] + args, cwd=_PROJECT_DIR, universal_newlines=True) if __name__ == '__main__': sys.exit(lint(sys.argv[1:], verbose=True))
0
0
0.0
4
0
0
1.0
0
5
[]
13,109
manimlib/scene/three_d_scene.py
OrKedar/geo-manimgl-app
45,280
1679092
from manimlib.scene.scene import Scene class ThreeDScene(Scene): CONFIG = { "camera_config": { "samples": 4, "anti_alias_width": 0, } } def begin_ambient_camera_rotation(self, rate=0.02): pass # TODO def stop_ambient_camera_rotation(self): pass # TODO def move_camera(self, phi=None, theta=None, distance=None, gamma=None, frame_center=None, **kwargs): pass # TODO
null
null
null
null
null
null
null
null
null
[]
1,537
examples/pxScene2d/external/libnode-v10.15.3/deps/v8/tools/testrunner/outproc/test262.py
madanagopaltcomcast/pxCore
2,151
1022155
<gh_stars>1000+ # Copyright 2018 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re from . import base class ExceptionOutProc(base.OutProc): """Output processor for tests with expected exception.""" def __init__(self, expected_outcomes, expected_exception=None): super(ExceptionOutProc, self).__init__(expected_outcomes) self._expected_exception = expected_exception def _is_failure_output(self, output): if output.exit_code != 0: return True if self._expected_exception != self._parse_exception(output.stdout): return True return 'FAILED!' in output.stdout def _parse_exception(self, string): # somefile:somelinenumber: someerror[: sometext] # somefile might include an optional drive letter on windows e.g. "e:". match = re.search( '^(?:\w:)?[^:]*:[0-9]+: ([^: ]+?)($|: )', string, re.MULTILINE) if match: return match.group(1).strip() else: return None def _is_failure_output(self, output): return ( output.exit_code != 0 or 'FAILED!' in output.stdout ) class NoExceptionOutProc(base.OutProc): """Output processor optimized for tests without expected exception.""" NoExceptionOutProc._is_failure_output = _is_failure_output class PassNoExceptionOutProc(base.PassOutProc): """ Output processor optimized for tests expected to PASS without expected exception. """ PassNoExceptionOutProc._is_failure_output = _is_failure_output PASS_NO_EXCEPTION = PassNoExceptionOutProc()
null
null
null
null
null
null
null
null
null
[]
13,218
tools/make_dist_html.py
libcat/libuv
20,206
11593868
#!/usr/bin/python3 import itertools import os import re import subprocess HTML = r''' <!DOCTYPE html> <html> <head> <link rel="stylesheet" href="http://libuv.org/styles/vendor.css"> <link rel="stylesheet" href="http://libuv.org/styles/main.css"> <style> table {{ border-spacing: 0; }} body table {{ margin: 0 0 0 12pt; }} th, td {{ padding: 2pt; text-align: left; vertical-align: top; }} table table {{ border-collapse: initial; padding: 0 0 16pt 0; }} table table tr:nth-child(even) {{ background-color: #777; }} </style> </head> <body> <table>{groups}</table> </body> </html> ''' GROUPS = r''' <tr> <td>{groups[0]}</td> <td>{groups[1]}</td> <td>{groups[2]}</td> <td>{groups[3]}</td> </tr> ''' GROUP = r''' <table> <tr> <th>version</th> <th>tarball</th> <th>gpg</th> <th>windows</th> </tr> {rows} </table> ''' ROW = r''' <tr> <td> <a href="http://dist.libuv.org/dist/{tag}/">{tag}</a> </td> <td> <a href="http://dist.libuv.org/dist/{tag}/libuv-{tag}.tar.gz">tarball</a> </td> <td>{maybe_gpg}</td> <td>{maybe_exe}</td> </tr> ''' GPG = r''' <a href="http://dist.libuv.org/dist/{tag}/libuv-{tag}.tar.gz.sign">gpg</a> ''' # The binaries don't have a predictable name, link to the directory instead. EXE = r''' <a href="http://dist.libuv.org/dist/{tag}/">exe</a> ''' def version(tag): return list(map(int, re.match('^v(\d+)\.(\d+)\.(\d+)', tag).groups())) def major_minor(tag): return version(tag)[:2] def row_for(tag): maybe_gpg = '' maybe_exe = '' # We didn't start signing releases and producing Windows installers # until v1.7.0. if version(tag) >= version('v1.7.0'): maybe_gpg = GPG.format(**locals()) maybe_exe = EXE.format(**locals()) return ROW.format(**locals()) def group_for(tags): rows = ''.join(row_for(tag) for tag in tags) return GROUP.format(rows=rows) # Partition in groups of |n|. def groups_for(groups, n=4): html = '' groups = groups[:] + [''] * (n - 1) while len(groups) >= n: html += GROUPS.format(groups=groups) groups = groups[n:] return html if __name__ == '__main__': os.chdir(os.path.dirname(__file__)) tags = subprocess.check_output(['git', 'tag'], text=True) tags = [tag for tag in tags.split('\n') if tag.startswith('v')] tags.sort(key=version, reverse=True) groups = [group_for(list(g)) for _, g in itertools.groupby(tags, major_minor)] groups = groups_for(groups) html = HTML.format(groups=groups).strip() html = re.sub('>\\s+<', '><', html) print(html)
null
null
null
null
null
null
null
null
null
[]
10,116
superset/dashboards/filter_sets/filters.py
razzius/superset
18,621
6474850
<reponame>razzius/superset # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations from typing import Any, TYPE_CHECKING from flask import g from sqlalchemy import and_, or_ from superset.dashboards.filter_sets.consts import DASHBOARD_OWNER_TYPE, USER_OWNER_TYPE from superset.models.dashboard import dashboard_user from superset.models.filter_set import FilterSet from superset.views.base import BaseFilter, is_user_admin if TYPE_CHECKING: from sqlalchemy.orm.query import Query class FilterSetFilter(BaseFilter): # pylint: disable=too-few-public-methods) def apply(self, query: Query, value: Any) -> Query: if is_user_admin(): return query current_user_id = g.user.id filter_set_ids_by_dashboard_owners = ( # pylint: disable=C0103 query.from_self(FilterSet.id) .join(dashboard_user, FilterSet.owner_id == dashboard_user.c.dashboard_id) .filter( and_( FilterSet.owner_type == DASHBOARD_OWNER_TYPE, dashboard_user.c.user_id == current_user_id, ) ) ) return query.filter( or_( and_( FilterSet.owner_type == USER_OWNER_TYPE, FilterSet.owner_id == current_user_id, ), FilterSet.id.in_(filter_set_ids_by_dashboard_owners), ) )
0
0
0.0
2
0
0
1.0
0
3
[]
4,162
recipes/Python/82345_pykill/recipe-82345.py
tdiprima/code
2,023
556028
<reponame>tdiprima/code #!/usr/bin/env python import commands import os,sys,string import re def pkill(): if len(sys.argv) <= 1: print "usage: " + sys.argv[0] + " process_name" sys.exit(1) rip = sys.argv[1] me = commands.getoutput("whoami") p = commands.getoutput("ps -u %s -o fname -o pid" % me) ids = p.split("\n") for id in ids: if id.find(rip) < 0: continue regex = re.compile(r'(\d+).*',re.I) id = regex.sub(r'\1', id) print "killing: %s\n" % id commands.getoutput("kill -15 %s" % id) if commands.getoutput("ps -u %s -o fname -o pid" % me).find(id) > -1: print "slaughtering: %s\n" % id commands.getoutput("kill -9 %s" % id) if __name__ == '__main__' : pkill()
null
null
null
null
null
null
null
null
null
[]
10,662
recipes/Python/576370_Weighted_random_choice/recipe-576370.py
tdiprima/code
2,023
189115
<reponame>tdiprima/code<filename>recipes/Python/576370_Weighted_random_choice/recipe-576370.py #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import random, bisect class ItemGenerator(object): '''Choices randomly an element from a list. It does it not uniformly, but using a given weight for each element. Just instantiate this class passing a list of pairs (item, weight), and then call it to get the items. ''' def __init__(self, items): self.puntos = [] self.ponderado = [] total = sum(x[1] for x in items) acum = 0 for it,peso in items: acum += peso self.puntos.append(it) self.ponderado.append(acum/total) self.total = acum - 1 def __call__(self): ind = random.random() cual = bisect.bisect(self.ponderado, ind) return self.puntos[cual] if __name__ == "__main__": # This shows the usage, and also test the recipe, as calling that # a lot of times, it should return the elements in the same # given proportion items = ( ("A", 10), ("B", 100), ("C", 5) ) itgen = ItemGenerator(items) cuenta = {} for i in range(1000000): item = itgen() cuenta[item] = cuenta.get(item, 0) + 1 print cuenta
1
0
0.0
4
0
1
1.0
1
5
[ { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 48, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 48, "endOffset": 9, "startLine": 48, "startOffset": 4 }, "type": "CODE_SMELL" } ]
1,150
tests/components/minio/__init__.py
domwillcode/home-assistant
30,023
12862327
<reponame>domwillcode/home-assistant<gh_stars>1000+ """Tests for the minio component."""
null
null
null
null
null
null
null
null
null
[]
7,607
Lib/encodings/cp737.py
shawwn/cpython
52,316
11594412
""" Python Character Mapping Codec cp737 generated from 'VENDORS/MICSFT/PC/CP737.TXT' with gencodec.py. """#" import codecs ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): return codecs.charmap_encode(input,errors,encoding_map) def decode(self,input,errors='strict'): return codecs.charmap_decode(input,errors,decoding_table) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.charmap_encode(input,self.errors,encoding_map)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.charmap_decode(input,self.errors,decoding_table)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='cp737', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, ) ### Decoding Map decoding_map = codecs.make_identity_dict(range(256)) decoding_map.update({ 0x0080: 0x0391, # GREEK CAPITAL LETTER ALPHA 0x0081: 0x0392, # GREEK CAPITAL LETTER BETA 0x0082: 0x0393, # GREEK CAPITAL LETTER GAMMA 0x0083: 0x0394, # GREEK CAPITAL LETTER DELTA 0x0084: 0x0395, # GREEK CAPITAL LETTER EPSILON 0x0085: 0x0396, # GREEK CAPITAL LETTER ZETA 0x0086: 0x0397, # GREEK CAPITAL LETTER ETA 0x0087: 0x0398, # GREEK CAPITAL LETTER THETA 0x0088: 0x0399, # GREEK CAPITAL LETTER IOTA 0x0089: 0x039a, # GREEK CAPITAL LETTER KAPPA 0x008a: 0x039b, # GREEK CAPITAL LETTER LAMDA 0x008b: 0x039c, # GREEK CAPITAL LETTER MU 0x008c: 0x039d, # GREEK CAPITAL LETTER NU 0x008d: 0x039e, # GREEK CAPITAL LETTER XI 0x008e: 0x039f, # GREEK CAPITAL LETTER OMICRON 0x008f: 0x03a0, # GREEK CAPITAL LETTER PI 0x0090: 0x03a1, # GREEK CAPITAL LETTER RHO 0x0091: 0x03a3, # GREEK CAPITAL LETTER SIGMA 0x0092: 0x03a4, # GREEK CAPITAL LETTER TAU 0x0093: 0x03a5, # GREEK CAPITAL LETTER UPSILON 0x0094: 0x03a6, # GREEK CAPITAL LETTER PHI 0x0095: 0x03a7, # GREEK CAPITAL LETTER CHI 0x0096: 0x03a8, # GREEK CAPITAL LETTER PSI 0x0097: 0x03a9, # GREEK CAPITAL LETTER OMEGA 0x0098: 0x03b1, # GREEK SMALL LETTER ALPHA 0x0099: 0x03b2, # GREEK SMALL LETTER BETA 0x009a: 0x03b3, # GREEK SMALL LETTER GAMMA 0x009b: 0x03b4, # GREEK SMALL LETTER DELTA 0x009c: 0x03b5, # GREEK SMALL LETTER EPSILON 0x009d: 0x03b6, # GREEK SMALL LETTER ZETA 0x009e: 0x03b7, # GREEK SMALL LETTER ETA 0x009f: 0x03b8, # GREEK SMALL LETTER THETA 0x00a0: 0x03b9, # GREEK SMALL LETTER IOTA 0x00a1: 0x03ba, # GREEK SMALL LETTER KAPPA 0x00a2: 0x03bb, # GREEK SMALL LETTER LAMDA 0x00a3: 0x03bc, # GREEK SMALL LETTER MU 0x00a4: 0x03bd, # GREEK SMALL LETTER NU 0x00a5: 0x03be, # GREEK SMALL LETTER XI 0x00a6: 0x03bf, # GREEK SMALL LETTER OMICRON 0x00a7: 0x03c0, # GREEK SMALL LETTER PI 0x00a8: 0x03c1, # GREEK SMALL LETTER RHO 0x00a9: 0x03c3, # GREEK SMALL LETTER SIGMA 0x00aa: 0x03c2, # GREEK SMALL LETTER FINAL SIGMA 0x00ab: 0x03c4, # GREEK SMALL LETTER TAU 0x00ac: 0x03c5, # GREEK SMALL LETTER UPSILON 0x00ad: 0x03c6, # GREEK SMALL LETTER PHI 0x00ae: 0x03c7, # GREEK SMALL LETTER CHI 0x00af: 0x03c8, # GREEK SMALL LETTER PSI 0x00b0: 0x2591, # LIGHT SHADE 0x00b1: 0x2592, # MEDIUM SHADE 0x00b2: 0x2593, # DARK SHADE 0x00b3: 0x2502, # BOX DRAWINGS LIGHT VERTICAL 0x00b4: 0x2524, # BOX DRAWINGS LIGHT VERTICAL AND LEFT 0x00b5: 0x2561, # BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE 0x00b6: 0x2562, # BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE 0x00b7: 0x2556, # BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE 0x00b8: 0x2555, # BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE 0x00b9: 0x2563, # BOX DRAWINGS DOUBLE VERTICAL AND LEFT 0x00ba: 0x2551, # BOX DRAWINGS DOUBLE VERTICAL 0x00bb: 0x2557, # BOX DRAWINGS DOUBLE DOWN AND LEFT 0x00bc: 0x255d, # BOX DRAWINGS DOUBLE UP AND LEFT 0x00bd: 0x255c, # BOX DRAWINGS UP DOUBLE AND LEFT SINGLE 0x00be: 0x255b, # BOX DRAWINGS UP SINGLE AND LEFT DOUBLE 0x00bf: 0x2510, # BOX DRAWINGS LIGHT DOWN AND LEFT 0x00c0: 0x2514, # BOX DRAWINGS LIGHT UP AND RIGHT 0x00c1: 0x2534, # BOX DRAWINGS LIGHT UP AND HORIZONTAL 0x00c2: 0x252c, # BOX DRAWINGS LIGHT DOWN AND HORIZONTAL 0x00c3: 0x251c, # BOX DRAWINGS LIGHT VERTICAL AND RIGHT 0x00c4: 0x2500, # BOX DRAWINGS LIGHT HORIZONTAL 0x00c5: 0x253c, # BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL 0x00c6: 0x255e, # BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE 0x00c7: 0x255f, # BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE 0x00c8: 0x255a, # BOX DRAWINGS DOUBLE UP AND RIGHT 0x00c9: 0x2554, # BOX DRAWINGS DOUBLE DOWN AND RIGHT 0x00ca: 0x2569, # BOX DRAWINGS DOUBLE UP AND HORIZONTAL 0x00cb: 0x2566, # BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL 0x00cc: 0x2560, # BOX DRAWINGS DOUBLE VERTICAL AND RIGHT 0x00cd: 0x2550, # BOX DRAWINGS DOUBLE HORIZONTAL 0x00ce: 0x256c, # BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL 0x00cf: 0x2567, # BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE 0x00d0: 0x2568, # BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE 0x00d1: 0x2564, # BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE 0x00d2: 0x2565, # BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE 0x00d3: 0x2559, # BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE 0x00d4: 0x2558, # BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE 0x00d5: 0x2552, # BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE 0x00d6: 0x2553, # BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE 0x00d7: 0x256b, # BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE 0x00d8: 0x256a, # BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE 0x00d9: 0x2518, # BOX DRAWINGS LIGHT UP AND LEFT 0x00da: 0x250c, # BOX DRAWINGS LIGHT DOWN AND RIGHT 0x00db: 0x2588, # FULL BLOCK 0x00dc: 0x2584, # LOWER HALF BLOCK 0x00dd: 0x258c, # LEFT HALF BLOCK 0x00de: 0x2590, # RIGHT HALF BLOCK 0x00df: 0x2580, # UPPER HALF BLOCK 0x00e0: 0x03c9, # GREEK SMALL LETTER OMEGA 0x00e1: 0x03ac, # GREEK SMALL LETTER ALPHA WITH TONOS 0x00e2: 0x03ad, # GREEK SMALL LETTER EPSILON WITH TONOS 0x00e3: 0x03ae, # GREEK SMALL LETTER ETA WITH TONOS 0x00e4: 0x03ca, # GREEK SMALL LETTER IOTA WITH DIALYTIKA 0x00e5: 0x03af, # GREEK SMALL LETTER IOTA WITH TONOS 0x00e6: 0x03cc, # GREEK SMALL LETTER OMICRON WITH TONOS 0x00e7: 0x03cd, # GREEK SMALL LETTER UPSILON WITH TONOS 0x00e8: 0x03cb, # GREEK SMALL LETTER UPSILON WITH DIALYTIKA 0x00e9: 0x03ce, # GREEK SMALL LETTER OMEGA WITH TONOS 0x00ea: 0x0386, # GREEK CAPITAL LETTER ALPHA WITH TONOS 0x00eb: 0x0388, # GREEK CAPITAL LETTER EPSILON WITH TONOS 0x00ec: 0x0389, # GREEK CAPITAL LETTER ETA WITH TONOS 0x00ed: 0x038a, # GREEK CAPITAL LETTER IOTA WITH TONOS 0x00ee: 0x038c, # GREEK CAPITAL LETTER OMICRON WITH TONOS 0x00ef: 0x038e, # GREEK CAPITAL LETTER UPSILON WITH TONOS 0x00f0: 0x038f, # GREEK CAPITAL LETTER OMEGA WITH TONOS 0x00f1: 0x00b1, # PLUS-MINUS SIGN 0x00f2: 0x2265, # GREATER-THAN OR EQUAL TO 0x00f3: 0x2264, # LESS-THAN OR EQUAL TO 0x00f4: 0x03aa, # GREEK CAPITAL LETTER IOTA WITH DIALYTIKA 0x00f5: 0x03ab, # GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA 0x00f6: 0x00f7, # DIVISION SIGN 0x00f7: 0x2248, # ALMOST EQUAL TO 0x00f8: 0x00b0, # DEGREE SIGN 0x00f9: 0x2219, # BULLET OPERATOR 0x00fa: 0x00b7, # MIDDLE DOT 0x00fb: 0x221a, # SQUARE ROOT 0x00fc: 0x207f, # SUPERSCRIPT LATIN SMALL LETTER N 0x00fd: 0x00b2, # SUPERSCRIPT TWO 0x00fe: 0x25a0, # BLACK SQUARE 0x00ff: 0x00a0, # NO-BREAK SPACE }) ### Decoding Table decoding_table = ( '\x00' # 0x0000 -> NULL '\x01' # 0x0001 -> START OF HEADING '\x02' # 0x0002 -> START OF TEXT '\x03' # 0x0003 -> END OF TEXT '\x04' # 0x0004 -> END OF TRANSMISSION '\x05' # 0x0005 -> ENQUIRY '\x06' # 0x0006 -> ACKNOWLEDGE '\x07' # 0x0007 -> BELL '\x08' # 0x0008 -> BACKSPACE '\t' # 0x0009 -> HORIZONTAL TABULATION '\n' # 0x000a -> LINE FEED '\x0b' # 0x000b -> VERTICAL TABULATION '\x0c' # 0x000c -> FORM FEED '\r' # 0x000d -> CARRIAGE RETURN '\x0e' # 0x000e -> SHIFT OUT '\x0f' # 0x000f -> SHIFT IN '\x10' # 0x0010 -> DATA LINK ESCAPE '\x11' # 0x0011 -> DEVICE CONTROL ONE '\x12' # 0x0012 -> DEVICE CONTROL TWO '\x13' # 0x0013 -> DEVICE CONTROL THREE '\x14' # 0x0014 -> DEVICE CONTROL FOUR '\x15' # 0x0015 -> NEGATIVE ACKNOWLEDGE '\x16' # 0x0016 -> SYNCHRONOUS IDLE '\x17' # 0x0017 -> END OF TRANSMISSION BLOCK '\x18' # 0x0018 -> CANCEL '\x19' # 0x0019 -> END OF MEDIUM '\x1a' # 0x001a -> SUBSTITUTE '\x1b' # 0x001b -> ESCAPE '\x1c' # 0x001c -> FILE SEPARATOR '\x1d' # 0x001d -> GROUP SEPARATOR '\x1e' # 0x001e -> RECORD SEPARATOR '\x1f' # 0x001f -> UNIT SEPARATOR ' ' # 0x0020 -> SPACE '!' # 0x0021 -> EXCLAMATION MARK '"' # 0x0022 -> QUOTATION MARK '#' # 0x0023 -> NUMBER SIGN '$' # 0x0024 -> DOLLAR SIGN '%' # 0x0025 -> PERCENT SIGN '&' # 0x0026 -> AMPERSAND "'" # 0x0027 -> APOSTROPHE '(' # 0x0028 -> LEFT PARENTHESIS ')' # 0x0029 -> RIGHT PARENTHESIS '*' # 0x002a -> ASTERISK '+' # 0x002b -> PLUS SIGN ',' # 0x002c -> COMMA '-' # 0x002d -> HYPHEN-MINUS '.' # 0x002e -> FULL STOP '/' # 0x002f -> SOLIDUS '0' # 0x0030 -> DIGIT ZERO '1' # 0x0031 -> DIGIT ONE '2' # 0x0032 -> DIGIT TWO '3' # 0x0033 -> DIGIT THREE '4' # 0x0034 -> DIGIT FOUR '5' # 0x0035 -> DIGIT FIVE '6' # 0x0036 -> DIGIT SIX '7' # 0x0037 -> DIGIT SEVEN '8' # 0x0038 -> DIGIT EIGHT '9' # 0x0039 -> DIGIT NINE ':' # 0x003a -> COLON ';' # 0x003b -> SEMICOLON '<' # 0x003c -> LESS-THAN SIGN '=' # 0x003d -> EQUALS SIGN '>' # 0x003e -> GREATER-THAN SIGN '?' # 0x003f -> QUESTION MARK '@' # 0x0040 -> COMMERCIAL AT 'A' # 0x0041 -> LATIN CAPITAL LETTER A 'B' # 0x0042 -> LATIN CAPITAL LETTER B 'C' # 0x0043 -> LATIN CAPITAL LETTER C 'D' # 0x0044 -> LATIN CAPITAL LETTER D 'E' # 0x0045 -> LATIN CAPITAL LETTER E 'F' # 0x0046 -> LATIN CAPITAL LETTER F 'G' # 0x0047 -> LATIN CAPITAL LETTER G 'H' # 0x0048 -> LATIN CAPITAL LETTER H 'I' # 0x0049 -> LATIN CAPITAL LETTER I 'J' # 0x004a -> LATIN CAPITAL LETTER J 'K' # 0x004b -> LATIN CAPITAL LETTER K 'L' # 0x004c -> LATIN CAPITAL LETTER L 'M' # 0x004d -> LATIN CAPITAL LETTER M 'N' # 0x004e -> LATIN CAPITAL LETTER N 'O' # 0x004f -> LATIN CAPITAL LETTER O 'P' # 0x0050 -> LATIN CAPITAL LETTER P 'Q' # 0x0051 -> LATIN CAPITAL LETTER Q 'R' # 0x0052 -> LATIN CAPITAL LETTER R 'S' # 0x0053 -> LATIN CAPITAL LETTER S 'T' # 0x0054 -> LATIN CAPITAL LETTER T 'U' # 0x0055 -> LATIN CAPITAL LETTER U 'V' # 0x0056 -> LATIN CAPITAL LETTER V 'W' # 0x0057 -> LATIN CAPITAL LETTER W 'X' # 0x0058 -> LATIN CAPITAL LETTER X 'Y' # 0x0059 -> LATIN CAPITAL LETTER Y 'Z' # 0x005a -> LATIN CAPITAL LETTER Z '[' # 0x005b -> LEFT SQUARE BRACKET '\\' # 0x005c -> REVERSE SOLIDUS ']' # 0x005d -> RIGHT SQUARE BRACKET '^' # 0x005e -> CIRCUMFLEX ACCENT '_' # 0x005f -> LOW LINE '`' # 0x0060 -> GRAVE ACCENT 'a' # 0x0061 -> LATIN SMALL LETTER A 'b' # 0x0062 -> LATIN SMALL LETTER B 'c' # 0x0063 -> LATIN SMALL LETTER C 'd' # 0x0064 -> LATIN SMALL LETTER D 'e' # 0x0065 -> LATIN SMALL LETTER E 'f' # 0x0066 -> LATIN SMALL LETTER F 'g' # 0x0067 -> LATIN SMALL LETTER G 'h' # 0x0068 -> LATIN SMALL LETTER H 'i' # 0x0069 -> LATIN SMALL LETTER I 'j' # 0x006a -> LATIN SMALL LETTER J 'k' # 0x006b -> LATIN SMALL LETTER K 'l' # 0x006c -> LATIN SMALL LETTER L 'm' # 0x006d -> LATIN SMALL LETTER M 'n' # 0x006e -> LATIN SMALL LETTER N 'o' # 0x006f -> LATIN SMALL LETTER O 'p' # 0x0070 -> LATIN SMALL LETTER P 'q' # 0x0071 -> LATIN SMALL LETTER Q 'r' # 0x0072 -> LATIN SMALL LETTER R 's' # 0x0073 -> LATIN SMALL LETTER S 't' # 0x0074 -> LATIN SMALL LETTER T 'u' # 0x0075 -> LATIN SMALL LETTER U 'v' # 0x0076 -> LATIN SMALL LETTER V 'w' # 0x0077 -> LATIN SMALL LETTER W 'x' # 0x0078 -> LATIN SMALL LETTER X 'y' # 0x0079 -> LATIN SMALL LETTER Y 'z' # 0x007a -> LATIN SMALL LETTER Z '{' # 0x007b -> LEFT CURLY BRACKET '|' # 0x007c -> VERTICAL LINE '}' # 0x007d -> RIGHT CURLY BRACKET '~' # 0x007e -> TILDE '\x7f' # 0x007f -> DELETE '\u0391' # 0x0080 -> GREEK CAPITAL LETTER ALPHA '\u0392' # 0x0081 -> GREEK CAPITAL LETTER BETA '\u0393' # 0x0082 -> GREEK CAPITAL LETTER GAMMA '\u0394' # 0x0083 -> GREEK CAPITAL LETTER DELTA '\u0395' # 0x0084 -> GREEK CAPITAL LETTER EPSILON '\u0396' # 0x0085 -> GREEK CAPITAL LETTER ZETA '\u0397' # 0x0086 -> GREEK CAPITAL LETTER ETA '\u0398' # 0x0087 -> GREEK CAPITAL LETTER THETA '\u0399' # 0x0088 -> GREEK CAPITAL LETTER IOTA '\u039a' # 0x0089 -> GREEK CAPITAL LETTER KAPPA '\u039b' # 0x008a -> GREEK CAPITAL LETTER LAMDA '\u039c' # 0x008b -> GREEK CAPITAL LETTER MU '\u039d' # 0x008c -> GREEK CAPITAL LETTER NU '\u039e' # 0x008d -> GREEK CAPITAL LETTER XI '\u039f' # 0x008e -> GREEK CAPITAL LETTER OMICRON '\u03a0' # 0x008f -> GREEK CAPITAL LETTER PI '\u03a1' # 0x0090 -> GREEK CAPITAL LETTER RHO '\u03a3' # 0x0091 -> GREEK CAPITAL LETTER SIGMA '\u03a4' # 0x0092 -> GREEK CAPITAL LETTER TAU '\u03a5' # 0x0093 -> GREEK CAPITAL LETTER UPSILON '\u03a6' # 0x0094 -> GREEK CAPITAL LETTER PHI '\u03a7' # 0x0095 -> GREEK CAPITAL LETTER CHI '\u03a8' # 0x0096 -> GREEK CAPITAL LETTER PSI '\u03a9' # 0x0097 -> GREEK CAPITAL LETTER OMEGA '\u03b1' # 0x0098 -> GREEK SMALL LETTER ALPHA '\u03b2' # 0x0099 -> GREEK SMALL LETTER BETA '\u03b3' # 0x009a -> GREEK SMALL LETTER GAMMA '\u03b4' # 0x009b -> GREEK SMALL LETTER DELTA '\u03b5' # 0x009c -> GREEK SMALL LETTER EPSILON '\u03b6' # 0x009d -> GREEK SMALL LETTER ZETA '\u03b7' # 0x009e -> GREEK SMALL LETTER ETA '\u03b8' # 0x009f -> GREEK SMALL LETTER THETA '\u03b9' # 0x00a0 -> GREEK SMALL LETTER IOTA '\u03ba' # 0x00a1 -> GREEK SMALL LETTER KAPPA '\u03bb' # 0x00a2 -> GREEK SMALL LETTER LAMDA '\u03bc' # 0x00a3 -> GREEK SMALL LETTER MU '\u03bd' # 0x00a4 -> GREEK SMALL LETTER NU '\u03be' # 0x00a5 -> GREEK SMALL LETTER XI '\u03bf' # 0x00a6 -> GREEK SMALL LETTER OMICRON '\u03c0' # 0x00a7 -> GREEK SMALL LETTER PI '\u03c1' # 0x00a8 -> GREEK SMALL LETTER RHO '\u03c3' # 0x00a9 -> GREEK SMALL LETTER SIGMA '\u03c2' # 0x00aa -> GREEK SMALL LETTER FINAL SIGMA '\u03c4' # 0x00ab -> GREEK SMALL LETTER TAU '\u03c5' # 0x00ac -> GREEK SMALL LETTER UPSILON '\u03c6' # 0x00ad -> GREEK SMALL LETTER PHI '\u03c7' # 0x00ae -> GREEK SMALL LETTER CHI '\u03c8' # 0x00af -> GREEK SMALL LETTER PSI '\u2591' # 0x00b0 -> LIGHT SHADE '\u2592' # 0x00b1 -> MEDIUM SHADE '\u2593' # 0x00b2 -> DARK SHADE '\u2502' # 0x00b3 -> BOX DRAWINGS LIGHT VERTICAL '\u2524' # 0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT '\u2561' # 0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE '\u2562' # 0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE '\u2556' # 0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE '\u2555' # 0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE '\u2563' # 0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT '\u2551' # 0x00ba -> BOX DRAWINGS DOUBLE VERTICAL '\u2557' # 0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT '\u255d' # 0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT '\u255c' # 0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE '\u255b' # 0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE '\u2510' # 0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT '\u2514' # 0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT '\u2534' # 0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL '\u252c' # 0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL '\u251c' # 0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT '\u2500' # 0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL '\u253c' # 0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL '\u255e' # 0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE '\u255f' # 0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE '\u255a' # 0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT '\u2554' # 0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT '\u2569' # 0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL '\u2566' # 0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL '\u2560' # 0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT '\u2550' # 0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL '\u256c' # 0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL '\u2567' # 0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE '\u2568' # 0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE '\u2564' # 0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE '\u2565' # 0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE '\u2559' # 0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE '\u2558' # 0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE '\u2552' # 0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE '\u2553' # 0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE '\u256b' # 0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE '\u256a' # 0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE '\u2518' # 0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT '\u250c' # 0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT '\u2588' # 0x00db -> FULL BLOCK '\u2584' # 0x00dc -> LOWER HALF BLOCK '\u258c' # 0x00dd -> LEFT HALF BLOCK '\u2590' # 0x00de -> RIGHT HALF BLOCK '\u2580' # 0x00df -> UPPER HALF BLOCK '\u03c9' # 0x00e0 -> GREEK SMALL LETTER OMEGA '\u03ac' # 0x00e1 -> GREEK SMALL LETTER ALPHA WITH TONOS '\u03ad' # 0x00e2 -> GREEK SMALL LETTER EPSILON WITH TONOS '\u03ae' # 0x00e3 -> GREEK SMALL LETTER ETA WITH TONOS '\u03ca' # 0x00e4 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA '\u03af' # 0x00e5 -> GREEK SMALL LETTER IOTA WITH TONOS '\u03cc' # 0x00e6 -> GREEK SMALL LETTER OMICRON WITH TONOS '\u03cd' # 0x00e7 -> GREEK SMALL LETTER UPSILON WITH TONOS '\u03cb' # 0x00e8 -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA '\u03ce' # 0x00e9 -> GREEK SMALL LETTER OMEGA WITH TONOS '\u0386' # 0x00ea -> GREEK CAPITAL LETTER ALPHA WITH TONOS '\u0388' # 0x00eb -> GREEK CAPITAL LETTER EPSILON WITH TONOS '\u0389' # 0x00ec -> GREEK CAPITAL LETTER ETA WITH TONOS '\u038a' # 0x00ed -> GREEK CAPITAL LETTER IOTA WITH TONOS '\u038c' # 0x00ee -> GREEK CAPITAL LETTER OMICRON WITH TONOS '\u038e' # 0x00ef -> GREEK CAPITAL LETTER UPSILON WITH TONOS '\u038f' # 0x00f0 -> GREEK CAPITAL LETTER OMEGA WITH TONOS '\xb1' # 0x00f1 -> PLUS-MINUS SIGN '\u2265' # 0x00f2 -> GREATER-THAN OR EQUAL TO '\u2264' # 0x00f3 -> LESS-THAN OR EQUAL TO '\u03aa' # 0x00f4 -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA '\u03ab' # 0x00f5 -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA '\xf7' # 0x00f6 -> DIVISION SIGN '\u2248' # 0x00f7 -> ALMOST EQUAL TO '\xb0' # 0x00f8 -> DEGREE SIGN '\u2219' # 0x00f9 -> BULLET OPERATOR '\xb7' # 0x00fa -> MIDDLE DOT '\u221a' # 0x00fb -> SQUARE ROOT '\u207f' # 0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N '\xb2' # 0x00fd -> SUPERSCRIPT TWO '\u25a0' # 0x00fe -> BLACK SQUARE '\xa0' # 0x00ff -> NO-BREAK SPACE ) ### Encoding Map encoding_map = { 0x0000: 0x0000, # NULL 0x0001: 0x0001, # START OF HEADING 0x0002: 0x0002, # START OF TEXT 0x0003: 0x0003, # END OF TEXT 0x0004: 0x0004, # END OF TRANSMISSION 0x0005: 0x0005, # ENQUIRY 0x0006: 0x0006, # ACKNOWLEDGE 0x0007: 0x0007, # BELL 0x0008: 0x0008, # BACKSPACE 0x0009: 0x0009, # HORIZONTAL TABULATION 0x000a: 0x000a, # LINE FEED 0x000b: 0x000b, # VERTICAL TABULATION 0x000c: 0x000c, # FORM FEED 0x000d: 0x000d, # CARRIAGE RETURN 0x000e: 0x000e, # SHIFT OUT 0x000f: 0x000f, # SHIFT IN 0x0010: 0x0010, # DATA LINK ESCAPE 0x0011: 0x0011, # DEVICE CONTROL ONE 0x0012: 0x0012, # DEVICE CONTROL TWO 0x0013: 0x0013, # DEVICE CONTROL THREE 0x0014: 0x0014, # DEVICE CONTROL FOUR 0x0015: 0x0015, # NEGATIVE ACKNOWLEDGE 0x0016: 0x0016, # SYNCHRONOUS IDLE 0x0017: 0x0017, # END OF TRANSMISSION BLOCK 0x0018: 0x0018, # CANCEL 0x0019: 0x0019, # END OF MEDIUM 0x001a: 0x001a, # SUBSTITUTE 0x001b: 0x001b, # ESCAPE 0x001c: 0x001c, # FILE SEPARATOR 0x001d: 0x001d, # GROUP SEPARATOR 0x001e: 0x001e, # RECORD SEPARATOR 0x001f: 0x001f, # UNIT SEPARATOR 0x0020: 0x0020, # SPACE 0x0021: 0x0021, # EXCLAMATION MARK 0x0022: 0x0022, # QUOTATION MARK 0x0023: 0x0023, # NUMBER SIGN 0x0024: 0x0024, # DOLLAR SIGN 0x0025: 0x0025, # PERCENT SIGN 0x0026: 0x0026, # AMPERSAND 0x0027: 0x0027, # APOSTROPHE 0x0028: 0x0028, # LEFT PARENTHESIS 0x0029: 0x0029, # RIGHT PARENTHESIS 0x002a: 0x002a, # ASTERISK 0x002b: 0x002b, # PLUS SIGN 0x002c: 0x002c, # COMMA 0x002d: 0x002d, # HYPHEN-MINUS 0x002e: 0x002e, # FULL STOP 0x002f: 0x002f, # SOLIDUS 0x0030: 0x0030, # DIGIT ZERO 0x0031: 0x0031, # DIGIT ONE 0x0032: 0x0032, # DIGIT TWO 0x0033: 0x0033, # DIGIT THREE 0x0034: 0x0034, # DIGIT FOUR 0x0035: 0x0035, # DIGIT FIVE 0x0036: 0x0036, # DIGIT SIX 0x0037: 0x0037, # DIGIT SEVEN 0x0038: 0x0038, # DIGIT EIGHT 0x0039: 0x0039, # DIGIT NINE 0x003a: 0x003a, # COLON 0x003b: 0x003b, # SEMICOLON 0x003c: 0x003c, # LESS-THAN SIGN 0x003d: 0x003d, # EQUALS SIGN 0x003e: 0x003e, # GREATER-THAN SIGN 0x003f: 0x003f, # QUESTION MARK 0x0040: 0x0040, # COMMERCIAL AT 0x0041: 0x0041, # LATIN CAPITAL LETTER A 0x0042: 0x0042, # LATIN CAPITAL LETTER B 0x0043: 0x0043, # LATIN CAPITAL LETTER C 0x0044: 0x0044, # LATIN CAPITAL LETTER D 0x0045: 0x0045, # LATIN CAPITAL LETTER E 0x0046: 0x0046, # LATIN CAPITAL LETTER F 0x0047: 0x0047, # LATIN CAPITAL LETTER G 0x0048: 0x0048, # LATIN CAPITAL LETTER H 0x0049: 0x0049, # LATIN CAPITAL LETTER I 0x004a: 0x004a, # LATIN CAPITAL LETTER J 0x004b: 0x004b, # LATIN CAPITAL LETTER K 0x004c: 0x004c, # LATIN CAPITAL LETTER L 0x004d: 0x004d, # LATIN CAPITAL LETTER M 0x004e: 0x004e, # LATIN CAPITAL LETTER N 0x004f: 0x004f, # LATIN CAPITAL LETTER O 0x0050: 0x0050, # LATIN CAPITAL LETTER P 0x0051: 0x0051, # LATIN CAPITAL LETTER Q 0x0052: 0x0052, # LATIN CAPITAL LETTER R 0x0053: 0x0053, # LATIN CAPITAL LETTER S 0x0054: 0x0054, # LATIN CAPITAL LETTER T 0x0055: 0x0055, # LATIN CAPITAL LETTER U 0x0056: 0x0056, # LATIN CAPITAL LETTER V 0x0057: 0x0057, # LATIN CAPITAL LETTER W 0x0058: 0x0058, # LATIN CAPITAL LETTER X 0x0059: 0x0059, # LATIN CAPITAL LETTER Y 0x005a: 0x005a, # LATIN CAPITAL LETTER Z 0x005b: 0x005b, # LEFT SQUARE BRACKET 0x005c: 0x005c, # REVERSE SOLIDUS 0x005d: 0x005d, # RIGHT SQUARE BRACKET 0x005e: 0x005e, # CIRCUMFLEX ACCENT 0x005f: 0x005f, # LOW LINE 0x0060: 0x0060, # GRAVE ACCENT 0x0061: 0x0061, # LATIN SMALL LETTER A 0x0062: 0x0062, # LATIN SMALL LETTER B 0x0063: 0x0063, # LATIN SMALL LETTER C 0x0064: 0x0064, # LATIN SMALL LETTER D 0x0065: 0x0065, # LATIN SMALL LETTER E 0x0066: 0x0066, # LATIN SMALL LETTER F 0x0067: 0x0067, # LATIN SMALL LETTER G 0x0068: 0x0068, # LATIN SMALL LETTER H 0x0069: 0x0069, # LATIN SMALL LETTER I 0x006a: 0x006a, # LATIN SMALL LETTER J 0x006b: 0x006b, # LATIN SMALL LETTER K 0x006c: 0x006c, # LATIN SMALL LETTER L 0x006d: 0x006d, # LATIN SMALL LETTER M 0x006e: 0x006e, # LATIN SMALL LETTER N 0x006f: 0x006f, # LATIN SMALL LETTER O 0x0070: 0x0070, # LATIN SMALL LETTER P 0x0071: 0x0071, # LATIN SMALL LETTER Q 0x0072: 0x0072, # LATIN SMALL LETTER R 0x0073: 0x0073, # LATIN SMALL LETTER S 0x0074: 0x0074, # LATIN SMALL LETTER T 0x0075: 0x0075, # LATIN SMALL LETTER U 0x0076: 0x0076, # LATIN SMALL LETTER V 0x0077: 0x0077, # LATIN SMALL LETTER W 0x0078: 0x0078, # LATIN SMALL LETTER X 0x0079: 0x0079, # LATIN SMALL LETTER Y 0x007a: 0x007a, # LATIN SMALL LETTER Z 0x007b: 0x007b, # LEFT CURLY BRACKET 0x007c: 0x007c, # VERTICAL LINE 0x007d: 0x007d, # RIGHT CURLY BRACKET 0x007e: 0x007e, # TILDE 0x007f: 0x007f, # DELETE 0x00a0: 0x00ff, # NO-BREAK SPACE 0x00b0: 0x00f8, # DEGREE SIGN 0x00b1: 0x00f1, # PLUS-MINUS SIGN 0x00b2: 0x00fd, # SUPERSCRIPT TWO 0x00b7: 0x00fa, # MIDDLE DOT 0x00f7: 0x00f6, # DIVISION SIGN 0x0386: 0x00ea, # GREEK CAPITAL LETTER ALPHA WITH TONOS 0x0388: 0x00eb, # GREEK CAPITAL LETTER EPSILON WITH TONOS 0x0389: 0x00ec, # GREEK CAPITAL LETTER ETA WITH TONOS 0x038a: 0x00ed, # GREEK CAPITAL LETTER IOTA WITH TONOS 0x038c: 0x00ee, # GREEK CAPITAL LETTER OMICRON WITH TONOS 0x038e: 0x00ef, # GREEK CAPITAL LETTER UPSILON WITH TONOS 0x038f: 0x00f0, # GREEK CAPITAL LETTER OMEGA WITH TONOS 0x0391: 0x0080, # GREEK CAPITAL LETTER ALPHA 0x0392: 0x0081, # GREEK CAPITAL LETTER BETA 0x0393: 0x0082, # GREEK CAPITAL LETTER GAMMA 0x0394: 0x0083, # GREEK CAPITAL LETTER DELTA 0x0395: 0x0084, # GREEK CAPITAL LETTER EPSILON 0x0396: 0x0085, # GREEK CAPITAL LETTER ZETA 0x0397: 0x0086, # GREEK CAPITAL LETTER ETA 0x0398: 0x0087, # GREEK CAPITAL LETTER THETA 0x0399: 0x0088, # GREEK CAPITAL LETTER IOTA 0x039a: 0x0089, # GREEK CAPITAL LETTER KAPPA 0x039b: 0x008a, # GREEK CAPITAL LETTER LAMDA 0x039c: 0x008b, # GREEK CAPITAL LETTER MU 0x039d: 0x008c, # GREEK CAPITAL LETTER NU 0x039e: 0x008d, # GREEK CAPITAL LETTER XI 0x039f: 0x008e, # GREEK CAPITAL LETTER OMICRON 0x03a0: 0x008f, # GREEK CAPITAL LETTER PI 0x03a1: 0x0090, # GREEK CAPITAL LETTER RHO 0x03a3: 0x0091, # GREEK CAPITAL LETTER SIGMA 0x03a4: 0x0092, # GREEK CAPITAL LETTER TAU 0x03a5: 0x0093, # GREEK CAPITAL LETTER UPSILON 0x03a6: 0x0094, # GREEK CAPITAL LETTER PHI 0x03a7: 0x0095, # GREEK CAPITAL LETTER CHI 0x03a8: 0x0096, # GREEK CAPITAL LETTER PSI 0x03a9: 0x0097, # GREEK CAPITAL LETTER OMEGA 0x03aa: 0x00f4, # GREEK CAPITAL LETTER IOTA WITH DIALYTIKA 0x03ab: 0x00f5, # GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA 0x03ac: 0x00e1, # GREEK SMALL LETTER ALPHA WITH TONOS 0x03ad: 0x00e2, # GREEK SMALL LETTER EPSILON WITH TONOS 0x03ae: 0x00e3, # GREEK SMALL LETTER ETA WITH TONOS 0x03af: 0x00e5, # GREEK SMALL LETTER IOTA WITH TONOS 0x03b1: 0x0098, # GREEK SMALL LETTER ALPHA 0x03b2: 0x0099, # GREEK SMALL LETTER BETA 0x03b3: 0x009a, # GREEK SMALL LETTER GAMMA 0x03b4: 0x009b, # GREEK SMALL LETTER DELTA 0x03b5: 0x009c, # GREEK SMALL LETTER EPSILON 0x03b6: 0x009d, # GREEK SMALL LETTER ZETA 0x03b7: 0x009e, # GREEK SMALL LETTER ETA 0x03b8: 0x009f, # GREEK SMALL LETTER THETA 0x03b9: 0x00a0, # GREEK SMALL LETTER IOTA 0x03ba: 0x00a1, # GREEK SMALL LETTER KAPPA 0x03bb: 0x00a2, # GREEK SMALL LETTER LAMDA 0x03bc: 0x00a3, # GREEK SMALL LETTER MU 0x03bd: 0x00a4, # GREEK SMALL LETTER NU 0x03be: 0x00a5, # GREEK SMALL LETTER XI 0x03bf: 0x00a6, # GREEK SMALL LETTER OMICRON 0x03c0: 0x00a7, # GREEK SMALL LETTER PI 0x03c1: 0x00a8, # GREEK SMALL LETTER RHO 0x03c2: 0x00aa, # GREEK SMALL LETTER FINAL SIGMA 0x03c3: 0x00a9, # GREEK SMALL LETTER SIGMA 0x03c4: 0x00ab, # GREEK SMALL LETTER TAU 0x03c5: 0x00ac, # GREEK SMALL LETTER UPSILON 0x03c6: 0x00ad, # GREEK SMALL LETTER PHI 0x03c7: 0x00ae, # GREEK SMALL LETTER CHI 0x03c8: 0x00af, # GREEK SMALL LETTER PSI 0x03c9: 0x00e0, # GREEK SMALL LETTER OMEGA 0x03ca: 0x00e4, # GREEK SMALL LETTER IOTA WITH DIALYTIKA 0x03cb: 0x00e8, # GREEK SMALL LETTER UPSILON WITH DIALYTIKA 0x03cc: 0x00e6, # GREEK SMALL LETTER OMICRON WITH TONOS 0x03cd: 0x00e7, # GREEK SMALL LETTER UPSILON WITH TONOS 0x03ce: 0x00e9, # GREEK SMALL LETTER OMEGA WITH TONOS 0x207f: 0x00fc, # SUPERSCRIPT LATIN SMALL LETTER N 0x2219: 0x00f9, # BULLET OPERATOR 0x221a: 0x00fb, # SQUARE ROOT 0x2248: 0x00f7, # ALMOST EQUAL TO 0x2264: 0x00f3, # LESS-THAN OR EQUAL TO 0x2265: 0x00f2, # GREATER-THAN OR EQUAL TO 0x2500: 0x00c4, # BOX DRAWINGS LIGHT HORIZONTAL 0x2502: 0x00b3, # BOX DRAWINGS LIGHT VERTICAL 0x250c: 0x00da, # BOX DRAWINGS LIGHT DOWN AND RIGHT 0x2510: 0x00bf, # BOX DRAWINGS LIGHT DOWN AND LEFT 0x2514: 0x00c0, # BOX DRAWINGS LIGHT UP AND RIGHT 0x2518: 0x00d9, # BOX DRAWINGS LIGHT UP AND LEFT 0x251c: 0x00c3, # BOX DRAWINGS LIGHT VERTICAL AND RIGHT 0x2524: 0x00b4, # BOX DRAWINGS LIGHT VERTICAL AND LEFT 0x252c: 0x00c2, # BOX DRAWINGS LIGHT DOWN AND HORIZONTAL 0x2534: 0x00c1, # BOX DRAWINGS LIGHT UP AND HORIZONTAL 0x253c: 0x00c5, # BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL 0x2550: 0x00cd, # BOX DRAWINGS DOUBLE HORIZONTAL 0x2551: 0x00ba, # BOX DRAWINGS DOUBLE VERTICAL 0x2552: 0x00d5, # BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE 0x2553: 0x00d6, # BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE 0x2554: 0x00c9, # BOX DRAWINGS DOUBLE DOWN AND RIGHT 0x2555: 0x00b8, # BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE 0x2556: 0x00b7, # BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE 0x2557: 0x00bb, # BOX DRAWINGS DOUBLE DOWN AND LEFT 0x2558: 0x00d4, # BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE 0x2559: 0x00d3, # BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE 0x255a: 0x00c8, # BOX DRAWINGS DOUBLE UP AND RIGHT 0x255b: 0x00be, # BOX DRAWINGS UP SINGLE AND LEFT DOUBLE 0x255c: 0x00bd, # BOX DRAWINGS UP DOUBLE AND LEFT SINGLE 0x255d: 0x00bc, # BOX DRAWINGS DOUBLE UP AND LEFT 0x255e: 0x00c6, # BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE 0x255f: 0x00c7, # BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE 0x2560: 0x00cc, # BOX DRAWINGS DOUBLE VERTICAL AND RIGHT 0x2561: 0x00b5, # BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE 0x2562: 0x00b6, # BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE 0x2563: 0x00b9, # BOX DRAWINGS DOUBLE VERTICAL AND LEFT 0x2564: 0x00d1, # BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE 0x2565: 0x00d2, # BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE 0x2566: 0x00cb, # BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL 0x2567: 0x00cf, # BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE 0x2568: 0x00d0, # BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE 0x2569: 0x00ca, # BOX DRAWINGS DOUBLE UP AND HORIZONTAL 0x256a: 0x00d8, # BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE 0x256b: 0x00d7, # BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE 0x256c: 0x00ce, # BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL 0x2580: 0x00df, # UPPER HALF BLOCK 0x2584: 0x00dc, # LOWER HALF BLOCK 0x2588: 0x00db, # FULL BLOCK 0x258c: 0x00dd, # LEFT HALF BLOCK 0x2590: 0x00de, # RIGHT HALF BLOCK 0x2591: 0x00b0, # LIGHT SHADE 0x2592: 0x00b1, # MEDIUM SHADE 0x2593: 0x00b2, # DARK SHADE 0x25a0: 0x00fe, # BLACK SQUARE }
null
null
null
null
null
null
null
null
null
[]
10,120
homeassistant/util/color.py
andersop91/core
22,481
6562871
<gh_stars>1000+ """Color util methods.""" from __future__ import annotations import colorsys import math from typing import NamedTuple, cast import attr # mypy: disallow-any-generics class RGBColor(NamedTuple): """RGB hex values.""" r: int g: int b: int # Official CSS3 colors from w3.org: # https://www.w3.org/TR/2010/PR-css3-color-20101028/#html4 # names do not have spaces in them so that we can compare against # requests more easily (by removing spaces from the requests as well). # This lets "dark seagreen" and "dark sea green" both match the same # color "darkseagreen". COLORS = { "aliceblue": RGBColor(240, 248, 255), "antiquewhite": RGBColor(250, 235, 215), "aqua": RGBColor(0, 255, 255), "aquamarine": RGBColor(127, 255, 212), "azure": RGBColor(240, 255, 255), "beige": RGBColor(245, 245, 220), "bisque": RGBColor(255, 228, 196), "black": RGBColor(0, 0, 0), "blanchedalmond": RGBColor(255, 235, 205), "blue": RGBColor(0, 0, 255), "blueviolet": RGBColor(138, 43, 226), "brown": RGBColor(165, 42, 42), "burlywood": RGBColor(222, 184, 135), "cadetblue": RGBColor(95, 158, 160), "chartreuse": RGBColor(127, 255, 0), "chocolate": RGBColor(210, 105, 30), "coral": RGBColor(255, 127, 80), "cornflowerblue": RGBColor(100, 149, 237), "cornsilk": RGBColor(255, 248, 220), "crimson": RGBColor(220, 20, 60), "cyan": RGBColor(0, 255, 255), "darkblue": RGBColor(0, 0, 139), "darkcyan": RGBColor(0, 139, 139), "darkgoldenrod": RGBColor(184, 134, 11), "darkgray": RGBColor(169, 169, 169), "darkgreen": RGBColor(0, 100, 0), "darkgrey": RGBColor(169, 169, 169), "darkkhaki": RGBColor(189, 183, 107), "darkmagenta": RGBColor(139, 0, 139), "darkolivegreen": RGBColor(85, 107, 47), "darkorange": RGBColor(255, 140, 0), "darkorchid": RGBColor(153, 50, 204), "darkred": RGBColor(139, 0, 0), "darksalmon": RGBColor(233, 150, 122), "darkseagreen": RGBColor(143, 188, 143), "darkslateblue": RGBColor(72, 61, 139), "darkslategray": RGBColor(47, 79, 79), "darkslategrey": RGBColor(47, 79, 79), "darkturquoise": RGBColor(0, 206, 209), "darkviolet": RGBColor(148, 0, 211), "deeppink": RGBColor(255, 20, 147), "deepskyblue": RGBColor(0, 191, 255), "dimgray": RGBColor(105, 105, 105), "dimgrey": RGBColor(105, 105, 105), "dodgerblue": RGBColor(30, 144, 255), "firebrick": RGBColor(178, 34, 34), "floralwhite": RGBColor(255, 250, 240), "forestgreen": RGBColor(34, 139, 34), "fuchsia": RGBColor(255, 0, 255), "gainsboro": RGBColor(220, 220, 220), "ghostwhite": RGBColor(248, 248, 255), "gold": RGBColor(255, 215, 0), "goldenrod": RGBColor(218, 165, 32), "gray": RGBColor(128, 128, 128), "green": RGBColor(0, 128, 0), "greenyellow": RGBColor(173, 255, 47), "grey": RGBColor(128, 128, 128), "honeydew": RGBColor(240, 255, 240), "hotpink": RGBColor(255, 105, 180), "indianred": RGBColor(205, 92, 92), "indigo": RGBColor(75, 0, 130), "ivory": RGBColor(255, 255, 240), "khaki": RGBColor(240, 230, 140), "lavender": RGBColor(230, 230, 250), "lavenderblush": RGBColor(255, 240, 245), "lawngreen": RGBColor(124, 252, 0), "lemonchiffon": RGBColor(255, 250, 205), "lightblue": RGBColor(173, 216, 230), "lightcoral": RGBColor(240, 128, 128), "lightcyan": RGBColor(224, 255, 255), "lightgoldenrodyellow": RGBColor(250, 250, 210), "lightgray": RGBColor(211, 211, 211), "lightgreen": RGBColor(144, 238, 144), "lightgrey": RGBColor(211, 211, 211), "lightpink": RGBColor(255, 182, 193), "lightsalmon": RGBColor(255, 160, 122), "lightseagreen": RGBColor(32, 178, 170), "lightskyblue": RGBColor(135, 206, 250), "lightslategray": RGBColor(119, 136, 153), "lightslategrey": RGBColor(119, 136, 153), "lightsteelblue": RGBColor(176, 196, 222), "lightyellow": RGBColor(255, 255, 224), "lime": RGBColor(0, 255, 0), "limegreen": RGBColor(50, 205, 50), "linen": RGBColor(250, 240, 230), "magenta": RGBColor(255, 0, 255), "maroon": RGBColor(128, 0, 0), "mediumaquamarine": RGBColor(102, 205, 170), "mediumblue": RGBColor(0, 0, 205), "mediumorchid": RGBColor(186, 85, 211), "mediumpurple": RGBColor(147, 112, 219), "mediumseagreen": RGBColor(60, 179, 113), "mediumslateblue": RGBColor(123, 104, 238), "mediumspringgreen": RGBColor(0, 250, 154), "mediumturquoise": RGBColor(72, 209, 204), "mediumvioletred": RGBColor(199, 21, 133), "midnightblue": RGBColor(25, 25, 112), "mintcream": RGBColor(245, 255, 250), "mistyrose": RGBColor(255, 228, 225), "moccasin": RGBColor(255, 228, 181), "navajowhite": RGBColor(255, 222, 173), "navy": RGBColor(0, 0, 128), "navyblue": RGBColor(0, 0, 128), "oldlace": RGBColor(253, 245, 230), "olive": RGBColor(128, 128, 0), "olivedrab": RGBColor(107, 142, 35), "orange": RGBColor(255, 165, 0), "orangered": RGBColor(255, 69, 0), "orchid": RGBColor(218, 112, 214), "palegoldenrod": RGBColor(238, 232, 170), "palegreen": RGBColor(152, 251, 152), "paleturquoise": RGBColor(175, 238, 238), "palevioletred": RGBColor(219, 112, 147), "papayawhip": RGBColor(255, 239, 213), "peachpuff": RGBColor(255, 218, 185), "peru": RGBColor(205, 133, 63), "pink": RGBColor(255, 192, 203), "plum": RGBColor(221, 160, 221), "powderblue": RGBColor(176, 224, 230), "purple": RGBColor(128, 0, 128), "red": RGBColor(255, 0, 0), "rosybrown": RGBColor(188, 143, 143), "royalblue": RGBColor(65, 105, 225), "saddlebrown": RGBColor(139, 69, 19), "salmon": RGBColor(250, 128, 114), "sandybrown": RGBColor(244, 164, 96), "seagreen": RGBColor(46, 139, 87), "seashell": RGBColor(255, 245, 238), "sienna": RGBColor(160, 82, 45), "silver": RGBColor(192, 192, 192), "skyblue": RGBColor(135, 206, 235), "slateblue": RGBColor(106, 90, 205), "slategray": RGBColor(112, 128, 144), "slategrey": RGBColor(112, 128, 144), "snow": RGBColor(255, 250, 250), "springgreen": RGBColor(0, 255, 127), "steelblue": RGBColor(70, 130, 180), "tan": RGBColor(210, 180, 140), "teal": RGBColor(0, 128, 128), "thistle": RGBColor(216, 191, 216), "tomato": RGBColor(255, 99, 71), "turquoise": RGBColor(64, 224, 208), "violet": RGBColor(238, 130, 238), "wheat": RGBColor(245, 222, 179), "white": RGBColor(255, 255, 255), "whitesmoke": RGBColor(245, 245, 245), "yellow": RGBColor(255, 255, 0), "yellowgreen": RGBColor(154, 205, 50), # And... "homeassistant": RGBColor(3, 169, 244), } @attr.s() class XYPoint: """Represents a CIE 1931 XY coordinate pair.""" x: float = attr.ib() # pylint: disable=invalid-name y: float = attr.ib() # pylint: disable=invalid-name @attr.s() class GamutType: """Represents the Gamut of a light.""" # ColorGamut = gamut(xypoint(xR,yR),xypoint(xG,yG),xypoint(xB,yB)) red: XYPoint = attr.ib() green: XYPoint = attr.ib() blue: XYPoint = attr.ib() def color_name_to_rgb(color_name: str) -> RGBColor: """Convert color name to RGB hex value.""" # COLORS map has no spaces in it, so make the color_name have no # spaces in it as well for matching purposes hex_value = COLORS.get(color_name.replace(" ", "").lower()) if not hex_value: raise ValueError("Unknown color") return hex_value # pylint: disable=invalid-name def color_RGB_to_xy( iR: int, iG: int, iB: int, Gamut: GamutType | None = None ) -> tuple[float, float]: """Convert from RGB color to XY color.""" return color_RGB_to_xy_brightness(iR, iG, iB, Gamut)[:2] # Taken from: # https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/00187a3/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md # License: Code is given as is. Use at your own risk and discretion. def color_RGB_to_xy_brightness( iR: int, iG: int, iB: int, Gamut: GamutType | None = None ) -> tuple[float, float, int]: """Convert from RGB color to XY color.""" if iR + iG + iB == 0: return 0.0, 0.0, 0 R = iR / 255 B = iB / 255 G = iG / 255 # Gamma correction R = pow((R + 0.055) / (1.0 + 0.055), 2.4) if (R > 0.04045) else (R / 12.92) G = pow((G + 0.055) / (1.0 + 0.055), 2.4) if (G > 0.04045) else (G / 12.92) B = pow((B + 0.055) / (1.0 + 0.055), 2.4) if (B > 0.04045) else (B / 12.92) # Wide RGB D65 conversion formula X = R * 0.664511 + G * 0.154324 + B * 0.162028 Y = R * 0.283881 + G * 0.668433 + B * 0.047685 Z = R * 0.000088 + G * 0.072310 + B * 0.986039 # Convert XYZ to xy x = X / (X + Y + Z) y = Y / (X + Y + Z) # Brightness Y = 1 if Y > 1 else Y brightness = round(Y * 255) # Check if the given xy value is within the color-reach of the lamp. if Gamut: in_reach = check_point_in_lamps_reach((x, y), Gamut) if not in_reach: xy_closest = get_closest_point_to_point((x, y), Gamut) x = xy_closest[0] y = xy_closest[1] return round(x, 3), round(y, 3), brightness def color_xy_to_RGB( vX: float, vY: float, Gamut: GamutType | None = None ) -> tuple[int, int, int]: """Convert from XY to a normalized RGB.""" return color_xy_brightness_to_RGB(vX, vY, 255, Gamut) # Converted to Python from Obj-C, original source from: # https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/00187a3/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md def color_xy_brightness_to_RGB( vX: float, vY: float, ibrightness: int, Gamut: GamutType | None = None ) -> tuple[int, int, int]: """Convert from XYZ to RGB.""" if Gamut and not check_point_in_lamps_reach((vX, vY), Gamut): xy_closest = get_closest_point_to_point((vX, vY), Gamut) vX = xy_closest[0] vY = xy_closest[1] brightness = ibrightness / 255.0 if brightness == 0.0: return (0, 0, 0) Y = brightness if vY == 0.0: vY += 0.00000000001 X = (Y / vY) * vX Z = (Y / vY) * (1 - vX - vY) # Convert to RGB using Wide RGB D65 conversion. r = X * 1.656492 - Y * 0.354851 - Z * 0.255038 g = -X * 0.707196 + Y * 1.655397 + Z * 0.036152 b = X * 0.051713 - Y * 0.121364 + Z * 1.011530 # Apply reverse gamma correction. r, g, b = map( lambda x: (12.92 * x) if (x <= 0.0031308) else ((1.0 + 0.055) * cast(float, pow(x, (1.0 / 2.4))) - 0.055), [r, g, b], ) # Bring all negative components to zero. r, g, b = map(lambda x: max(0, x), [r, g, b]) # If one component is greater than 1, weight components by that value. max_component = max(r, g, b) if max_component > 1: r, g, b = map(lambda x: x / max_component, [r, g, b]) ir, ig, ib = map(lambda x: int(x * 255), [r, g, b]) return (ir, ig, ib) def color_hsb_to_RGB(fH: float, fS: float, fB: float) -> tuple[int, int, int]: """Convert a hsb into its rgb representation.""" if fS == 0.0: fV = int(fB * 255) return fV, fV, fV r = g = b = 0 h = fH / 60 f = h - float(math.floor(h)) p = fB * (1 - fS) q = fB * (1 - fS * f) t = fB * (1 - (fS * (1 - f))) if int(h) == 0: r = int(fB * 255) g = int(t * 255) b = int(p * 255) elif int(h) == 1: r = int(q * 255) g = int(fB * 255) b = int(p * 255) elif int(h) == 2: r = int(p * 255) g = int(fB * 255) b = int(t * 255) elif int(h) == 3: r = int(p * 255) g = int(q * 255) b = int(fB * 255) elif int(h) == 4: r = int(t * 255) g = int(p * 255) b = int(fB * 255) elif int(h) == 5: r = int(fB * 255) g = int(p * 255) b = int(q * 255) return (r, g, b) def color_RGB_to_hsv(iR: float, iG: float, iB: float) -> tuple[float, float, float]: """Convert an rgb color to its hsv representation. Hue is scaled 0-360 Sat is scaled 0-100 Val is scaled 0-100 """ fHSV = colorsys.rgb_to_hsv(iR / 255.0, iG / 255.0, iB / 255.0) return round(fHSV[0] * 360, 3), round(fHSV[1] * 100, 3), round(fHSV[2] * 100, 3) def color_RGB_to_hs(iR: float, iG: float, iB: float) -> tuple[float, float]: """Convert an rgb color to its hs representation.""" return color_RGB_to_hsv(iR, iG, iB)[:2] def color_hsv_to_RGB(iH: float, iS: float, iV: float) -> tuple[int, int, int]: """Convert an hsv color into its rgb representation. Hue is scaled 0-360 Sat is scaled 0-100 Val is scaled 0-100 """ fRGB = colorsys.hsv_to_rgb(iH / 360, iS / 100, iV / 100) return (int(fRGB[0] * 255), int(fRGB[1] * 255), int(fRGB[2] * 255)) def color_hs_to_RGB(iH: float, iS: float) -> tuple[int, int, int]: """Convert an hsv color into its rgb representation.""" return color_hsv_to_RGB(iH, iS, 100) def color_xy_to_hs( vX: float, vY: float, Gamut: GamutType | None = None ) -> tuple[float, float]: """Convert an xy color to its hs representation.""" h, s, _ = color_RGB_to_hsv(*color_xy_to_RGB(vX, vY, Gamut)) return h, s def color_hs_to_xy( iH: float, iS: float, Gamut: GamutType | None = None ) -> tuple[float, float]: """Convert an hs color to its xy representation.""" return color_RGB_to_xy(*color_hs_to_RGB(iH, iS), Gamut) def match_max_scale( input_colors: tuple[int, ...], output_colors: tuple[float, ...] ) -> tuple[int, ...]: """Match the maximum value of the output to the input.""" max_in = max(input_colors) max_out = max(output_colors) if max_out == 0: factor = 0.0 else: factor = max_in / max_out return tuple(int(round(i * factor)) for i in output_colors) def color_rgb_to_rgbw(r: int, g: int, b: int) -> tuple[int, int, int, int]: """Convert an rgb color to an rgbw representation.""" # Calculate the white channel as the minimum of input rgb channels. # Subtract the white portion from the remaining rgb channels. w = min(r, g, b) rgbw = (r - w, g - w, b - w, w) # Match the output maximum value to the input. This ensures the full # channel range is used. return match_max_scale((r, g, b), rgbw) # type: ignore[return-value] def color_rgbw_to_rgb(r: int, g: int, b: int, w: int) -> tuple[int, int, int]: """Convert an rgbw color to an rgb representation.""" # Add the white channel to the rgb channels. rgb = (r + w, g + w, b + w) # Match the output maximum value to the input. This ensures the # output doesn't overflow. return match_max_scale((r, g, b, w), rgb) # type: ignore[return-value] def color_rgb_to_rgbww( r: int, g: int, b: int, min_mireds: int, max_mireds: int ) -> tuple[int, int, int, int, int]: """Convert an rgb color to an rgbww representation.""" # Find the color temperature when both white channels have equal brightness mired_range = max_mireds - min_mireds mired_midpoint = min_mireds + mired_range / 2 color_temp_kelvin = color_temperature_mired_to_kelvin(mired_midpoint) w_r, w_g, w_b = color_temperature_to_rgb(color_temp_kelvin) # Find the ratio of the midpoint white in the input rgb channels white_level = min( r / w_r if w_r else 0, g / w_g if w_g else 0, b / w_b if w_b else 0 ) # Subtract the white portion from the rgb channels. rgb = (r - w_r * white_level, g - w_g * white_level, b - w_b * white_level) rgbww = (*rgb, round(white_level * 255), round(white_level * 255)) # Match the output maximum value to the input. This ensures the full # channel range is used. return match_max_scale((r, g, b), rgbww) # type: ignore[return-value] def color_rgbww_to_rgb( r: int, g: int, b: int, cw: int, ww: int, min_mireds: int, max_mireds: int ) -> tuple[int, int, int]: """Convert an rgbww color to an rgb representation.""" # Calculate color temperature of the white channels mired_range = max_mireds - min_mireds try: ct_ratio = ww / (cw + ww) except ZeroDivisionError: ct_ratio = 0.5 color_temp_mired = min_mireds + ct_ratio * mired_range color_temp_kelvin = color_temperature_mired_to_kelvin(color_temp_mired) w_r, w_g, w_b = color_temperature_to_rgb(color_temp_kelvin) white_level = max(cw, ww) / 255 # Add the white channels to the rgb channels. rgb = (r + w_r * white_level, g + w_g * white_level, b + w_b * white_level) # Match the output maximum value to the input. This ensures the # output doesn't overflow. return match_max_scale((r, g, b, cw, ww), rgb) # type: ignore[return-value] def color_rgb_to_hex(r: int, g: int, b: int) -> str: """Return a RGB color from a hex color string.""" return f"{round(r):02x}{round(g):02x}{round(b):02x}" def rgb_hex_to_rgb_list(hex_string: str) -> list[int]: """Return an RGB color value list from a hex color string.""" return [ int(hex_string[i : i + len(hex_string) // 3], 16) for i in range(0, len(hex_string), len(hex_string) // 3) ] def color_temperature_to_hs(color_temperature_kelvin: float) -> tuple[float, float]: """Return an hs color from a color temperature in Kelvin.""" return color_RGB_to_hs(*color_temperature_to_rgb(color_temperature_kelvin)) def color_temperature_to_rgb( color_temperature_kelvin: float, ) -> tuple[float, float, float]: """ Return an RGB color from a color temperature in Kelvin. This is a rough approximation based on the formula provided by T. Helland http://www.tannerhelland.com/4435/convert-temperature-rgb-algorithm-code/ """ # range check if color_temperature_kelvin < 1000: color_temperature_kelvin = 1000 elif color_temperature_kelvin > 40000: color_temperature_kelvin = 40000 tmp_internal = color_temperature_kelvin / 100.0 red = _get_red(tmp_internal) green = _get_green(tmp_internal) blue = _get_blue(tmp_internal) return red, green, blue def color_temperature_to_rgbww( temperature: int, brightness: int, min_mireds: int, max_mireds: int ) -> tuple[int, int, int, int, int]: """Convert color temperature to rgbcw.""" mired_range = max_mireds - min_mireds warm = ((max_mireds - temperature) / mired_range) * brightness cold = brightness - warm return (0, 0, 0, round(cold), round(warm)) def _clamp(color_component: float, minimum: float = 0, maximum: float = 255) -> float: """ Clamp the given color component value between the given min and max values. The range defined by the minimum and maximum values is inclusive, i.e. given a color_component of 0 and a minimum of 10, the returned value is 10. """ color_component_out = max(color_component, minimum) return min(color_component_out, maximum) def _get_red(temperature: float) -> float: """Get the red component of the temperature in RGB space.""" if temperature <= 66: return 255 tmp_red = 329.698727446 * math.pow(temperature - 60, -0.1332047592) return _clamp(tmp_red) def _get_green(temperature: float) -> float: """Get the green component of the given color temp in RGB space.""" if temperature <= 66: green = 99.4708025861 * math.log(temperature) - 161.1195681661 else: green = 288.1221695283 * math.pow(temperature - 60, -0.0755148492) return _clamp(green) def _get_blue(temperature: float) -> float: """Get the blue component of the given color temperature in RGB space.""" if temperature >= 66: return 255 if temperature <= 19: return 0 blue = 138.5177312231 * math.log(temperature - 10) - 305.0447927307 return _clamp(blue) def color_temperature_mired_to_kelvin(mired_temperature: float) -> int: """Convert absolute mired shift to degrees kelvin.""" return math.floor(1000000 / mired_temperature) def color_temperature_kelvin_to_mired(kelvin_temperature: float) -> int: """Convert degrees kelvin to mired shift.""" return math.floor(1000000 / kelvin_temperature) # The following 5 functions are adapted from rgbxy provided by <NAME> # License: The MIT License (MIT), 2014. # https://github.com/benknight/hue-python-rgb-converter def cross_product(p1: XYPoint, p2: XYPoint) -> float: """Calculate the cross product of two XYPoints.""" return float(p1.x * p2.y - p1.y * p2.x) def get_distance_between_two_points(one: XYPoint, two: XYPoint) -> float: """Calculate the distance between two XYPoints.""" dx = one.x - two.x dy = one.y - two.y return math.sqrt(dx * dx + dy * dy) def get_closest_point_to_line(A: XYPoint, B: XYPoint, P: XYPoint) -> XYPoint: """ Find the closest point from P to a line defined by A and B. This point will be reproducible by the lamp as it is on the edge of the gamut. """ AP = XYPoint(P.x - A.x, P.y - A.y) AB = XYPoint(B.x - A.x, B.y - A.y) ab2 = AB.x * AB.x + AB.y * AB.y ap_ab = AP.x * AB.x + AP.y * AB.y t = ap_ab / ab2 if t < 0.0: t = 0.0 elif t > 1.0: t = 1.0 return XYPoint(A.x + AB.x * t, A.y + AB.y * t) def get_closest_point_to_point( xy_tuple: tuple[float, float], Gamut: GamutType ) -> tuple[float, float]: """ Get the closest matching color within the gamut of the light. Should only be used if the supplied color is outside of the color gamut. """ xy_point = XYPoint(xy_tuple[0], xy_tuple[1]) # find the closest point on each line in the CIE 1931 'triangle'. pAB = get_closest_point_to_line(Gamut.red, Gamut.green, xy_point) pAC = get_closest_point_to_line(Gamut.blue, Gamut.red, xy_point) pBC = get_closest_point_to_line(Gamut.green, Gamut.blue, xy_point) # Get the distances per point and see which point is closer to our Point. dAB = get_distance_between_two_points(xy_point, pAB) dAC = get_distance_between_two_points(xy_point, pAC) dBC = get_distance_between_two_points(xy_point, pBC) lowest = dAB closest_point = pAB if dAC < lowest: lowest = dAC closest_point = pAC if dBC < lowest: lowest = dBC closest_point = pBC # Change the xy value to a value which is within the reach of the lamp. cx = closest_point.x cy = closest_point.y return (cx, cy) def check_point_in_lamps_reach(p: tuple[float, float], Gamut: GamutType) -> bool: """Check if the provided XYPoint can be recreated by a Hue lamp.""" v1 = XYPoint(Gamut.green.x - Gamut.red.x, Gamut.green.y - Gamut.red.y) v2 = XYPoint(Gamut.blue.x - Gamut.red.x, Gamut.blue.y - Gamut.red.y) q = XYPoint(p[0] - Gamut.red.x, p[1] - Gamut.red.y) s = cross_product(q, v2) / cross_product(v1, v2) t = cross_product(v1, q) / cross_product(v1, v2) return (s >= 0.0) and (t >= 0.0) and (s + t <= 1.0) def check_valid_gamut(Gamut: GamutType) -> bool: """Check if the supplied gamut is valid.""" # Check if the three points of the supplied gamut are not on the same line. v1 = XYPoint(Gamut.green.x - Gamut.red.x, Gamut.green.y - Gamut.red.y) v2 = XYPoint(Gamut.blue.x - Gamut.red.x, Gamut.blue.y - Gamut.red.y) not_on_line = cross_product(v1, v2) > 0.0001 # Check if all six coordinates of the gamut lie between 0 and 1. red_valid = ( Gamut.red.x >= 0 and Gamut.red.x <= 1 and Gamut.red.y >= 0 and Gamut.red.y <= 1 ) green_valid = ( Gamut.green.x >= 0 and Gamut.green.x <= 1 and Gamut.green.y >= 0 and Gamut.green.y <= 1 ) blue_valid = ( Gamut.blue.x >= 0 and Gamut.blue.x <= 1 and Gamut.blue.y >= 0 and Gamut.blue.y <= 1 ) return not_on_line and red_valid and green_valid and blue_valid
null
null
null
null
null
null
null
null
null
[]
4,451
tests/components/aladdin_connect/test_model.py
liangleslie/core
30,023
11331742
"""Test the Aladdin Connect model class.""" from homeassistant.components.aladdin_connect.model import DoorDevice from homeassistant.core import HomeAssistant async def test_model(hass: HomeAssistant) -> None: """Test model for Aladdin Connect Model.""" test_values = { "device_id": "1", "door_number": "2", "name": "<NAME>", "status": "good", } result2 = DoorDevice(test_values) assert result2["device_id"] == "1" assert result2["door_number"] == "2" assert result2["name"] == "<NAME>" assert result2["status"] == "good"
null
null
null
null
null
null
null
null
null
[]
7,062
examples/old/map_reduce.py
nicolasiltis/prefect
8,633
546199
<reponame>nicolasiltis/prefect<gh_stars>1000+ from prefect import Flow, task # ------------------------------------ # define some tasks @task def numbers_task(): return [1, 2, 3] @task def map_task(x): return x + 1 @task def reduce_task(x): return sum(x) # ------------------------------------ # build a flow with Flow("Map / Reduce 🤓") as flow: numbers = numbers_task() first_map = map_task.map(numbers) second_map = map_task.map(first_map) reduction = reduce_task(second_map) # ------------------------------------ # run the flow state = flow.run() assert state.result[reduction].result == 12
null
null
null
null
null
null
null
null
null
[]
10,609
diagrams/openstack/workloadprovisioning.py
abdulkaderjeelani/diagrams
17,037
6476450
# This module is automatically generated by autogen.sh. DO NOT EDIT. from . import _OpenStack class _Workloadprovisioning(_OpenStack): _type = "workloadprovisioning" _icon_dir = "resources/openstack/workloadprovisioning" class Magnum(_Workloadprovisioning): _icon = "magnum.png" class Sahara(_Workloadprovisioning): _icon = "sahara.png" class Trove(_Workloadprovisioning): _icon = "trove.png" # Aliases
0
0
0.0
0
0
0
1.0
0
0
[]
4,173
samples/python/tutorial_code/imgProc/match_template/match_template.py
thisisgopalmandal/opencv
56,632
4924342
<gh_stars>1000+ from __future__ import print_function import sys import cv2 as cv ## [global_variables] use_mask = False img = None templ = None mask = None image_window = "Source Image" result_window = "Result window" match_method = 0 max_Trackbar = 5 ## [global_variables] def main(argv): if (len(sys.argv) < 3): print('Not enough parameters') print('Usage:\nmatch_template_demo.py <image_name> <template_name> [<mask_name>]') return -1 ## [load_image] global img global templ img = cv.imread(sys.argv[1], cv.IMREAD_COLOR) templ = cv.imread(sys.argv[2], cv.IMREAD_COLOR) if (len(sys.argv) > 3): global use_mask use_mask = True global mask mask = cv.imread( sys.argv[3], cv.IMREAD_COLOR ) if ((img is None) or (templ is None) or (use_mask and (mask is None))): print('Can\'t read one of the images') return -1 ## [load_image] ## [create_windows] cv.namedWindow( image_window, cv.WINDOW_AUTOSIZE ) cv.namedWindow( result_window, cv.WINDOW_AUTOSIZE ) ## [create_windows] ## [create_trackbar] trackbar_label = 'Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED' cv.createTrackbar( trackbar_label, image_window, match_method, max_Trackbar, MatchingMethod ) ## [create_trackbar] MatchingMethod(match_method) ## [wait_key] cv.waitKey(0) return 0 ## [wait_key] def MatchingMethod(param): global match_method match_method = param ## [copy_source] img_display = img.copy() ## [copy_source] ## [match_template] method_accepts_mask = (cv.TM_SQDIFF == match_method or match_method == cv.TM_CCORR_NORMED) if (use_mask and method_accepts_mask): result = cv.matchTemplate(img, templ, match_method, None, mask) else: result = cv.matchTemplate(img, templ, match_method) ## [match_template] ## [normalize] cv.normalize( result, result, 0, 1, cv.NORM_MINMAX, -1 ) ## [normalize] ## [best_match] _minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None) ## [best_match] ## [match_loc] if (match_method == cv.TM_SQDIFF or match_method == cv.TM_SQDIFF_NORMED): matchLoc = minLoc else: matchLoc = maxLoc ## [match_loc] ## [imshow] cv.rectangle(img_display, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 ) cv.rectangle(result, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 ) cv.imshow(image_window, img_display) cv.imshow(result_window, result) ## [imshow] pass if __name__ == "__main__": main(sys.argv[1:])
null
null
null
null
null
null
null
null
null
[]
3,526
examples/pxScene2d/external/libnode-v0.12.7/deps/v8/tools/ll_prof.py
madanagopaltcomcast/pxCore
2,494
74950
#!/usr/bin/env python # # Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import bisect import collections import ctypes import disasm import mmap import optparse import os import re import subprocess import sys import time USAGE="""usage: %prog [OPTION]... Analyses V8 and perf logs to produce profiles. Perf logs can be collected using a command like: $ perf record -R -e cycles -c 10000 -f -i ./d8 bench.js --ll-prof # -R: collect all data # -e cycles: use cpu-cycles event (run "perf list" for details) # -c 10000: write a sample after each 10000 events # -f: force output file overwrite # -i: limit profiling to our process and the kernel # --ll-prof shell flag enables the right V8 logs This will produce a binary trace file (perf.data) that %prog can analyse. IMPORTANT: The kernel has an internal maximum for events per second, it is 100K by default. That's not enough for "-c 10000". Set it to some higher value: $ echo 10000000 | sudo tee /proc/sys/kernel/perf_event_max_sample_rate You can also make the warning about kernel address maps go away: $ echo 0 | sudo tee /proc/sys/kernel/kptr_restrict We have a convenience script that handles all of the above for you: $ tools/run-llprof.sh ./d8 bench.js Examples: # Print flat profile with annotated disassembly for the 10 top # symbols. Use default log names and include the snapshot log. $ %prog --snapshot --disasm-top=10 # Print flat profile with annotated disassembly for all used symbols. # Use default log names and include kernel symbols into analysis. $ %prog --disasm-all --kernel # Print flat profile. Use custom log names. $ %prog --log=foo.log --snapshot-log=snap-foo.log --trace=foo.data --snapshot """ JS_ORIGIN = "js" JS_SNAPSHOT_ORIGIN = "js-snapshot" class Code(object): """Code object.""" _id = 0 UNKNOWN = 0 V8INTERNAL = 1 FULL_CODEGEN = 2 OPTIMIZED = 3 def __init__(self, name, start_address, end_address, origin, origin_offset): self.id = Code._id Code._id += 1 self.name = name self.other_names = None self.start_address = start_address self.end_address = end_address self.origin = origin self.origin_offset = origin_offset self.self_ticks = 0 self.self_ticks_map = None self.callee_ticks = None if name.startswith("LazyCompile:*"): self.codetype = Code.OPTIMIZED elif name.startswith("LazyCompile:"): self.codetype = Code.FULL_CODEGEN elif name.startswith("v8::internal::"): self.codetype = Code.V8INTERNAL else: self.codetype = Code.UNKNOWN def AddName(self, name): assert self.name != name if self.other_names is None: self.other_names = [name] return if not name in self.other_names: self.other_names.append(name) def FullName(self): if self.other_names is None: return self.name self.other_names.sort() return "%s (aka %s)" % (self.name, ", ".join(self.other_names)) def IsUsed(self): return self.self_ticks > 0 or self.callee_ticks is not None def Tick(self, pc): self.self_ticks += 1 if self.self_ticks_map is None: self.self_ticks_map = collections.defaultdict(lambda: 0) offset = pc - self.start_address self.self_ticks_map[offset] += 1 def CalleeTick(self, callee): if self.callee_ticks is None: self.callee_ticks = collections.defaultdict(lambda: 0) self.callee_ticks[callee] += 1 def PrintAnnotated(self, arch, options): if self.self_ticks_map is None: ticks_map = [] else: ticks_map = self.self_ticks_map.items() # Convert the ticks map to offsets and counts arrays so that later # we can do binary search in the offsets array. ticks_map.sort(key=lambda t: t[0]) ticks_offsets = [t[0] for t in ticks_map] ticks_counts = [t[1] for t in ticks_map] # Get a list of disassembled lines and their addresses. lines = self._GetDisasmLines(arch, options) if len(lines) == 0: return # Print annotated lines. address = lines[0][0] total_count = 0 for i in xrange(len(lines)): start_offset = lines[i][0] - address if i == len(lines) - 1: end_offset = self.end_address - self.start_address else: end_offset = lines[i + 1][0] - address # Ticks (reported pc values) are not always precise, i.e. not # necessarily point at instruction starts. So we have to search # for ticks that touch the current instruction line. j = bisect.bisect_left(ticks_offsets, end_offset) count = 0 for offset, cnt in reversed(zip(ticks_offsets[:j], ticks_counts[:j])): if offset < start_offset: break count += cnt total_count += count count = 100.0 * count / self.self_ticks if count >= 0.01: print "%15.2f %x: %s" % (count, lines[i][0], lines[i][1]) else: print "%s %x: %s" % (" " * 15, lines[i][0], lines[i][1]) print assert total_count == self.self_ticks, \ "Lost ticks (%d != %d) in %s" % (total_count, self.self_ticks, self) def __str__(self): return "%s [0x%x, 0x%x) size: %d origin: %s" % ( self.name, self.start_address, self.end_address, self.end_address - self.start_address, self.origin) def _GetDisasmLines(self, arch, options): if self.origin == JS_ORIGIN or self.origin == JS_SNAPSHOT_ORIGIN: inplace = False filename = options.log + ".ll" else: inplace = True filename = self.origin return disasm.GetDisasmLines(filename, self.origin_offset, self.end_address - self.start_address, arch, inplace) class CodePage(object): """Group of adjacent code objects.""" SHIFT = 20 # 1M pages SIZE = (1 << SHIFT) MASK = ~(SIZE - 1) @staticmethod def PageAddress(address): return address & CodePage.MASK @staticmethod def PageId(address): return address >> CodePage.SHIFT @staticmethod def PageAddressFromId(id): return id << CodePage.SHIFT def __init__(self, address): self.address = address self.code_objects = [] def Add(self, code): self.code_objects.append(code) def Remove(self, code): self.code_objects.remove(code) def Find(self, pc): code_objects = self.code_objects for i, code in enumerate(code_objects): if code.start_address <= pc < code.end_address: code_objects[0], code_objects[i] = code, code_objects[0] return code return None def __iter__(self): return self.code_objects.__iter__() class CodeMap(object): """Code object map.""" def __init__(self): self.pages = {} self.min_address = 1 << 64 self.max_address = -1 def Add(self, code, max_pages=-1): page_id = CodePage.PageId(code.start_address) limit_id = CodePage.PageId(code.end_address + CodePage.SIZE - 1) pages = 0 while page_id < limit_id: if max_pages >= 0 and pages > max_pages: print >>sys.stderr, \ "Warning: page limit (%d) reached for %s [%s]" % ( max_pages, code.name, code.origin) break if page_id in self.pages: page = self.pages[page_id] else: page = CodePage(CodePage.PageAddressFromId(page_id)) self.pages[page_id] = page page.Add(code) page_id += 1 pages += 1 self.min_address = min(self.min_address, code.start_address) self.max_address = max(self.max_address, code.end_address) def Remove(self, code): page_id = CodePage.PageId(code.start_address) limit_id = CodePage.PageId(code.end_address + CodePage.SIZE - 1) removed = False while page_id < limit_id: if page_id not in self.pages: page_id += 1 continue page = self.pages[page_id] page.Remove(code) removed = True page_id += 1 return removed def AllCode(self): for page in self.pages.itervalues(): for code in page: if CodePage.PageAddress(code.start_address) == page.address: yield code def UsedCode(self): for code in self.AllCode(): if code.IsUsed(): yield code def Print(self): for code in self.AllCode(): print code def Find(self, pc): if pc < self.min_address or pc >= self.max_address: return None page_id = CodePage.PageId(pc) if page_id not in self.pages: return None return self.pages[page_id].Find(pc) class CodeInfo(object): """Generic info about generated code objects.""" def __init__(self, arch, header_size): self.arch = arch self.header_size = header_size class SnapshotLogReader(object): """V8 snapshot log reader.""" _SNAPSHOT_CODE_NAME_RE = re.compile( r"snapshot-code-name,(\d+),\"(.*)\"") def __init__(self, log_name): self.log_name = log_name def ReadNameMap(self): log = open(self.log_name, "r") try: snapshot_pos_to_name = {} for line in log: match = SnapshotLogReader._SNAPSHOT_CODE_NAME_RE.match(line) if match: pos = int(match.group(1)) name = match.group(2) snapshot_pos_to_name[pos] = name finally: log.close() return snapshot_pos_to_name class LogReader(object): """V8 low-level (binary) log reader.""" _ARCH_TO_POINTER_TYPE_MAP = { "ia32": ctypes.c_uint32, "arm": ctypes.c_uint32, "mips": ctypes.c_uint32, "x64": ctypes.c_uint64, "arm64": ctypes.c_uint64 } _CODE_CREATE_TAG = "C" _CODE_MOVE_TAG = "M" _CODE_DELETE_TAG = "D" _SNAPSHOT_POSITION_TAG = "P" _CODE_MOVING_GC_TAG = "G" def __init__(self, log_name, code_map, snapshot_pos_to_name): self.log_file = open(log_name, "r") self.log = mmap.mmap(self.log_file.fileno(), 0, mmap.MAP_PRIVATE) self.log_pos = 0 self.code_map = code_map self.snapshot_pos_to_name = snapshot_pos_to_name self.address_to_snapshot_name = {} self.arch = self.log[:self.log.find("\0")] self.log_pos += len(self.arch) + 1 assert self.arch in LogReader._ARCH_TO_POINTER_TYPE_MAP, \ "Unsupported architecture %s" % self.arch pointer_type = LogReader._ARCH_TO_POINTER_TYPE_MAP[self.arch] self.code_create_struct = LogReader._DefineStruct([ ("name_size", ctypes.c_int32), ("code_address", pointer_type), ("code_size", ctypes.c_int32)]) self.code_move_struct = LogReader._DefineStruct([ ("from_address", pointer_type), ("to_address", pointer_type)]) self.code_delete_struct = LogReader._DefineStruct([ ("address", pointer_type)]) self.snapshot_position_struct = LogReader._DefineStruct([ ("address", pointer_type), ("position", ctypes.c_int32)]) def ReadUpToGC(self): while self.log_pos < self.log.size(): tag = self.log[self.log_pos] self.log_pos += 1 if tag == LogReader._CODE_MOVING_GC_TAG: self.address_to_snapshot_name.clear() return if tag == LogReader._CODE_CREATE_TAG: event = self.code_create_struct.from_buffer(self.log, self.log_pos) self.log_pos += ctypes.sizeof(event) start_address = event.code_address end_address = start_address + event.code_size if start_address in self.address_to_snapshot_name: name = self.address_to_snapshot_name[start_address] origin = JS_SNAPSHOT_ORIGIN else: name = self.log[self.log_pos:self.log_pos + event.name_size] origin = JS_ORIGIN self.log_pos += event.name_size origin_offset = self.log_pos self.log_pos += event.code_size code = Code(name, start_address, end_address, origin, origin_offset) conficting_code = self.code_map.Find(start_address) if conficting_code: if not (conficting_code.start_address == code.start_address and conficting_code.end_address == code.end_address): self.code_map.Remove(conficting_code) else: LogReader._HandleCodeConflict(conficting_code, code) # TODO(vitalyr): this warning is too noisy because of our # attempts to reconstruct code log from the snapshot. # print >>sys.stderr, \ # "Warning: Skipping duplicate code log entry %s" % code continue self.code_map.Add(code) continue if tag == LogReader._CODE_MOVE_TAG: event = self.code_move_struct.from_buffer(self.log, self.log_pos) self.log_pos += ctypes.sizeof(event) old_start_address = event.from_address new_start_address = event.to_address if old_start_address == new_start_address: # Skip useless code move entries. continue code = self.code_map.Find(old_start_address) if not code: print >>sys.stderr, "Warning: Not found %x" % old_start_address continue assert code.start_address == old_start_address, \ "Inexact move address %x for %s" % (old_start_address, code) self.code_map.Remove(code) size = code.end_address - code.start_address code.start_address = new_start_address code.end_address = new_start_address + size self.code_map.Add(code) continue if tag == LogReader._CODE_DELETE_TAG: event = self.code_delete_struct.from_buffer(self.log, self.log_pos) self.log_pos += ctypes.sizeof(event) old_start_address = event.address code = self.code_map.Find(old_start_address) if not code: print >>sys.stderr, "Warning: Not found %x" % old_start_address continue assert code.start_address == old_start_address, \ "Inexact delete address %x for %s" % (old_start_address, code) self.code_map.Remove(code) continue if tag == LogReader._SNAPSHOT_POSITION_TAG: event = self.snapshot_position_struct.from_buffer(self.log, self.log_pos) self.log_pos += ctypes.sizeof(event) start_address = event.address snapshot_pos = event.position if snapshot_pos in self.snapshot_pos_to_name: self.address_to_snapshot_name[start_address] = \ self.snapshot_pos_to_name[snapshot_pos] continue assert False, "Unknown tag %s" % tag def Dispose(self): self.log.close() self.log_file.close() @staticmethod def _DefineStruct(fields): class Struct(ctypes.Structure): _fields_ = fields return Struct @staticmethod def _HandleCodeConflict(old_code, new_code): assert (old_code.start_address == new_code.start_address and old_code.end_address == new_code.end_address), \ "Conficting code log entries %s and %s" % (old_code, new_code) if old_code.name == new_code.name: return # Code object may be shared by a few functions. Collect the full # set of names. old_code.AddName(new_code.name) class Descriptor(object): """Descriptor of a structure in the binary trace log.""" CTYPE_MAP = { "u16": ctypes.c_uint16, "u32": ctypes.c_uint32, "u64": ctypes.c_uint64 } def __init__(self, fields): class TraceItem(ctypes.Structure): _fields_ = Descriptor.CtypesFields(fields) def __str__(self): return ", ".join("%s: %s" % (field, self.__getattribute__(field)) for field, _ in TraceItem._fields_) self.ctype = TraceItem def Read(self, trace, offset): return self.ctype.from_buffer(trace, offset) @staticmethod def CtypesFields(fields): return [(field, Descriptor.CTYPE_MAP[format]) for (field, format) in fields] # Please see http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree;f=tools/perf # for the gory details. # Reference: struct perf_file_header in kernel/tools/perf/util/header.h TRACE_HEADER_DESC = Descriptor([ ("magic", "u64"), ("size", "u64"), ("attr_size", "u64"), ("attrs_offset", "u64"), ("attrs_size", "u64"), ("data_offset", "u64"), ("data_size", "u64"), ("event_types_offset", "u64"), ("event_types_size", "u64") ]) # Reference: /usr/include/linux/perf_event.h PERF_EVENT_ATTR_DESC = Descriptor([ ("type", "u32"), ("size", "u32"), ("config", "u64"), ("sample_period_or_freq", "u64"), ("sample_type", "u64"), ("read_format", "u64"), ("flags", "u64"), ("wakeup_events_or_watermark", "u32"), ("bp_type", "u32"), ("bp_addr", "u64"), ("bp_len", "u64") ]) # Reference: /usr/include/linux/perf_event.h PERF_EVENT_HEADER_DESC = Descriptor([ ("type", "u32"), ("misc", "u16"), ("size", "u16") ]) # Reference: kernel/events/core.c PERF_MMAP_EVENT_BODY_DESC = Descriptor([ ("pid", "u32"), ("tid", "u32"), ("addr", "u64"), ("len", "u64"), ("pgoff", "u64") ]) # perf_event_attr.sample_type bits control the set of # perf_sample_event fields. PERF_SAMPLE_IP = 1 << 0 PERF_SAMPLE_TID = 1 << 1 PERF_SAMPLE_TIME = 1 << 2 PERF_SAMPLE_ADDR = 1 << 3 PERF_SAMPLE_READ = 1 << 4 PERF_SAMPLE_CALLCHAIN = 1 << 5 PERF_SAMPLE_ID = 1 << 6 PERF_SAMPLE_CPU = 1 << 7 PERF_SAMPLE_PERIOD = 1 << 8 PERF_SAMPLE_STREAM_ID = 1 << 9 PERF_SAMPLE_RAW = 1 << 10 # Reference: /usr/include/perf_event.h, the comment for PERF_RECORD_SAMPLE. PERF_SAMPLE_EVENT_BODY_FIELDS = [ ("ip", "u64", PERF_SAMPLE_IP), ("pid", "u32", PERF_SAMPLE_TID), ("tid", "u32", PERF_SAMPLE_TID), ("time", "u64", PERF_SAMPLE_TIME), ("addr", "u64", PERF_SAMPLE_ADDR), ("id", "u64", PERF_SAMPLE_ID), ("stream_id", "u64", PERF_SAMPLE_STREAM_ID), ("cpu", "u32", PERF_SAMPLE_CPU), ("res", "u32", PERF_SAMPLE_CPU), ("period", "u64", PERF_SAMPLE_PERIOD), # Don't want to handle read format that comes after the period and # before the callchain and has variable size. ("nr", "u64", PERF_SAMPLE_CALLCHAIN) # Raw data follows the callchain and is ignored. ] PERF_SAMPLE_EVENT_IP_FORMAT = "u64" PERF_RECORD_MMAP = 1 PERF_RECORD_SAMPLE = 9 class TraceReader(object): """Perf (linux-2.6/tools/perf) trace file reader.""" _TRACE_HEADER_MAGIC = 4993446653023372624 def __init__(self, trace_name): self.trace_file = open(trace_name, "r") self.trace = mmap.mmap(self.trace_file.fileno(), 0, mmap.MAP_PRIVATE) self.trace_header = TRACE_HEADER_DESC.Read(self.trace, 0) if self.trace_header.magic != TraceReader._TRACE_HEADER_MAGIC: print >>sys.stderr, "Warning: unsupported trace header magic" self.offset = self.trace_header.data_offset self.limit = self.trace_header.data_offset + self.trace_header.data_size assert self.limit <= self.trace.size(), \ "Trace data limit exceeds trace file size" self.header_size = ctypes.sizeof(PERF_EVENT_HEADER_DESC.ctype) assert self.trace_header.attrs_size != 0, \ "No perf event attributes found in the trace" perf_event_attr = PERF_EVENT_ATTR_DESC.Read(self.trace, self.trace_header.attrs_offset) self.sample_event_body_desc = self._SampleEventBodyDesc( perf_event_attr.sample_type) self.callchain_supported = \ (perf_event_attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 if self.callchain_supported: self.ip_struct = Descriptor.CTYPE_MAP[PERF_SAMPLE_EVENT_IP_FORMAT] self.ip_size = ctypes.sizeof(self.ip_struct) def ReadEventHeader(self): if self.offset >= self.limit: return None, 0 offset = self.offset header = PERF_EVENT_HEADER_DESC.Read(self.trace, self.offset) self.offset += header.size return header, offset def ReadMmap(self, header, offset): mmap_info = PERF_MMAP_EVENT_BODY_DESC.Read(self.trace, offset + self.header_size) # Read null-terminated filename. filename = self.trace[offset + self.header_size + ctypes.sizeof(mmap_info): offset + header.size] mmap_info.filename = HOST_ROOT + filename[:filename.find(chr(0))] return mmap_info def ReadSample(self, header, offset): sample = self.sample_event_body_desc.Read(self.trace, offset + self.header_size) if not self.callchain_supported: return sample sample.ips = [] offset += self.header_size + ctypes.sizeof(sample) for _ in xrange(sample.nr): sample.ips.append( self.ip_struct.from_buffer(self.trace, offset).value) offset += self.ip_size return sample def Dispose(self): self.trace.close() self.trace_file.close() def _SampleEventBodyDesc(self, sample_type): assert (sample_type & PERF_SAMPLE_READ) == 0, \ "Can't hande read format in samples" fields = [(field, format) for (field, format, bit) in PERF_SAMPLE_EVENT_BODY_FIELDS if (bit & sample_type) != 0] return Descriptor(fields) OBJDUMP_SECTION_HEADER_RE = re.compile( r"^\s*\d+\s(\.\S+)\s+[a-f0-9]") OBJDUMP_SYMBOL_LINE_RE = re.compile( r"^([a-f0-9]+)\s(.{7})\s(\S+)\s+([a-f0-9]+)\s+(?:\.hidden\s+)?(.*)$") OBJDUMP_DYNAMIC_SYMBOLS_START_RE = re.compile( r"^DYNAMIC SYMBOL TABLE") OBJDUMP_SKIP_RE = re.compile( r"^.*ld\.so\.cache$") KERNEL_ALLSYMS_FILE = "/proc/kallsyms" PERF_KERNEL_ALLSYMS_RE = re.compile( r".*kallsyms.*") KERNEL_ALLSYMS_LINE_RE = re.compile( r"^([a-f0-9]+)\s(?:t|T)\s(\S+)$") class LibraryRepo(object): def __init__(self): self.infos = [] self.names = set() self.ticks = {} def Load(self, mmap_info, code_map, options): # Skip kernel mmaps when requested using the fact that their tid # is 0. if mmap_info.tid == 0 and not options.kernel: return True if OBJDUMP_SKIP_RE.match(mmap_info.filename): return True if PERF_KERNEL_ALLSYMS_RE.match(mmap_info.filename): return self._LoadKernelSymbols(code_map) self.infos.append(mmap_info) mmap_info.ticks = 0 mmap_info.unique_name = self._UniqueMmapName(mmap_info) if not os.path.exists(mmap_info.filename): return True # Request section headers (-h), symbols (-t), and dynamic symbols # (-T) from objdump. # Unfortunately, section headers span two lines, so we have to # keep the just seen section name (from the first line in each # section header) in the after_section variable. if mmap_info.filename.endswith(".ko"): dynamic_symbols = "" else: dynamic_symbols = "-T" process = subprocess.Popen( "%s -h -t %s -C %s" % (OBJDUMP_BIN, dynamic_symbols, mmap_info.filename), shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) pipe = process.stdout after_section = None code_sections = set() reloc_sections = set() dynamic = False try: for line in pipe: if after_section: if line.find("CODE") != -1: code_sections.add(after_section) if line.find("RELOC") != -1: reloc_sections.add(after_section) after_section = None continue match = OBJDUMP_SECTION_HEADER_RE.match(line) if match: after_section = match.group(1) continue if OBJDUMP_DYNAMIC_SYMBOLS_START_RE.match(line): dynamic = True continue match = OBJDUMP_SYMBOL_LINE_RE.match(line) if match: start_address = int(match.group(1), 16) origin_offset = start_address flags = match.group(2) section = match.group(3) if section in code_sections: if dynamic or section in reloc_sections: start_address += mmap_info.addr size = int(match.group(4), 16) name = match.group(5) origin = mmap_info.filename code_map.Add(Code(name, start_address, start_address + size, origin, origin_offset)) finally: pipe.close() assert process.wait() == 0, "Failed to objdump %s" % mmap_info.filename def Tick(self, pc): for i, mmap_info in enumerate(self.infos): if mmap_info.addr <= pc < (mmap_info.addr + mmap_info.len): mmap_info.ticks += 1 self.infos[0], self.infos[i] = mmap_info, self.infos[0] return True return False def _UniqueMmapName(self, mmap_info): name = mmap_info.filename index = 1 while name in self.names: name = "%s-%d" % (mmap_info.filename, index) index += 1 self.names.add(name) return name def _LoadKernelSymbols(self, code_map): if not os.path.exists(KERNEL_ALLSYMS_FILE): print >>sys.stderr, "Warning: %s not found" % KERNEL_ALLSYMS_FILE return False kallsyms = open(KERNEL_ALLSYMS_FILE, "r") code = None for line in kallsyms: match = KERNEL_ALLSYMS_LINE_RE.match(line) if match: start_address = int(match.group(1), 16) end_address = start_address name = match.group(2) if code: code.end_address = start_address code_map.Add(code, 16) code = Code(name, start_address, end_address, "kernel", 0) return True def PrintReport(code_map, library_repo, arch, ticks, options): print "Ticks per symbol:" used_code = [code for code in code_map.UsedCode()] used_code.sort(key=lambda x: x.self_ticks, reverse=True) for i, code in enumerate(used_code): code_ticks = code.self_ticks print "%10d %5.1f%% %s [%s]" % (code_ticks, 100. * code_ticks / ticks, code.FullName(), code.origin) if options.disasm_all or i < options.disasm_top: code.PrintAnnotated(arch, options) print print "Ticks per library:" mmap_infos = [m for m in library_repo.infos if m.ticks > 0] mmap_infos.sort(key=lambda m: m.ticks, reverse=True) for mmap_info in mmap_infos: mmap_ticks = mmap_info.ticks print "%10d %5.1f%% %s" % (mmap_ticks, 100. * mmap_ticks / ticks, mmap_info.unique_name) def PrintDot(code_map, options): print "digraph G {" for code in code_map.UsedCode(): if code.self_ticks < 10: continue print "n%d [shape=box,label=\"%s\"];" % (code.id, code.name) if code.callee_ticks: for callee, ticks in code.callee_ticks.iteritems(): print "n%d -> n%d [label=\"%d\"];" % (code.id, callee.id, ticks) print "}" if __name__ == "__main__": parser = optparse.OptionParser(USAGE) parser.add_option("--snapshot-log", default="obj/release/snapshot.log", help="V8 snapshot log file name [default: %default]") parser.add_option("--log", default="v8.log", help="V8 log file name [default: %default]") parser.add_option("--snapshot", default=False, action="store_true", help="process V8 snapshot log [default: %default]") parser.add_option("--trace", default="perf.data", help="perf trace file name [default: %default]") parser.add_option("--kernel", default=False, action="store_true", help="process kernel entries [default: %default]") parser.add_option("--disasm-top", default=0, type="int", help=("number of top symbols to disassemble and annotate " "[default: %default]")) parser.add_option("--disasm-all", default=False, action="store_true", help=("disassemble and annotate all used symbols " "[default: %default]")) parser.add_option("--dot", default=False, action="store_true", help="produce dot output (WIP) [default: %default]") parser.add_option("--quiet", "-q", default=False, action="store_true", help="no auxiliary messages [default: %default]") parser.add_option("--gc-fake-mmap", default="/tmp/__v8_gc__", help="gc fake mmap file [default: %default]") parser.add_option("--objdump", default="/usr/bin/objdump", help="objdump tool to use [default: %default]") parser.add_option("--host-root", default="", help="Path to the host root [default: %default]") options, args = parser.parse_args() if not options.quiet: if options.snapshot: print "V8 logs: %s, %s, %s.ll" % (options.snapshot_log, options.log, options.log) else: print "V8 log: %s, %s.ll (no snapshot)" % (options.log, options.log) print "Perf trace file: %s" % options.trace V8_GC_FAKE_MMAP = options.gc_fake_mmap HOST_ROOT = options.host_root if os.path.exists(options.objdump): disasm.OBJDUMP_BIN = options.objdump OBJDUMP_BIN = options.objdump else: print "Cannot find %s, falling back to default objdump" % options.objdump # Stats. events = 0 ticks = 0 missed_ticks = 0 really_missed_ticks = 0 optimized_ticks = 0 generated_ticks = 0 v8_internal_ticks = 0 mmap_time = 0 sample_time = 0 # Process the snapshot log to fill the snapshot name map. snapshot_name_map = {} if options.snapshot: snapshot_log_reader = SnapshotLogReader(log_name=options.snapshot_log) snapshot_name_map = snapshot_log_reader.ReadNameMap() # Initialize the log reader. code_map = CodeMap() log_reader = LogReader(log_name=options.log + ".ll", code_map=code_map, snapshot_pos_to_name=snapshot_name_map) if not options.quiet: print "Generated code architecture: %s" % log_reader.arch print sys.stdout.flush() # Process the code and trace logs. library_repo = LibraryRepo() log_reader.ReadUpToGC() trace_reader = TraceReader(options.trace) while True: header, offset = trace_reader.ReadEventHeader() if not header: break events += 1 if header.type == PERF_RECORD_MMAP: start = time.time() mmap_info = trace_reader.ReadMmap(header, offset) if mmap_info.filename == HOST_ROOT + V8_GC_FAKE_MMAP: log_reader.ReadUpToGC() else: library_repo.Load(mmap_info, code_map, options) mmap_time += time.time() - start elif header.type == PERF_RECORD_SAMPLE: ticks += 1 start = time.time() sample = trace_reader.ReadSample(header, offset) code = code_map.Find(sample.ip) if code: code.Tick(sample.ip) if code.codetype == Code.OPTIMIZED: optimized_ticks += 1 elif code.codetype == Code.FULL_CODEGEN: generated_ticks += 1 elif code.codetype == Code.V8INTERNAL: v8_internal_ticks += 1 else: missed_ticks += 1 if not library_repo.Tick(sample.ip) and not code: really_missed_ticks += 1 if trace_reader.callchain_supported: for ip in sample.ips: caller_code = code_map.Find(ip) if caller_code: if code: caller_code.CalleeTick(code) code = caller_code sample_time += time.time() - start if options.dot: PrintDot(code_map, options) else: PrintReport(code_map, library_repo, log_reader.arch, ticks, options) if not options.quiet: def PrintTicks(number, total, description): print("%10d %5.1f%% ticks in %s" % (number, 100.0*number/total, description)) print print "Stats:" print "%10d total trace events" % events print "%10d total ticks" % ticks print "%10d ticks not in symbols" % missed_ticks unaccounted = "unaccounted ticks" if really_missed_ticks > 0: unaccounted += " (probably in the kernel, try --kernel)" PrintTicks(really_missed_ticks, ticks, unaccounted) PrintTicks(optimized_ticks, ticks, "ticks in optimized code") PrintTicks(generated_ticks, ticks, "ticks in other lazily compiled code") PrintTicks(v8_internal_ticks, ticks, "ticks in v8::internal::*") print "%10d total symbols" % len([c for c in code_map.AllCode()]) print "%10d used symbols" % len([c for c in code_map.UsedCode()]) print "%9.2fs library processing time" % mmap_time print "%9.2fs tick processing time" % sample_time log_reader.Dispose() trace_reader.Dispose()
79
0
0.0
231
0
79
1.0
2
160
[ { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 114, "message": "Rename method \"AddName\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 114, "endOffset": 13, "startLine": 114, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 119, "message": "Use the opposite operator (\"not in\") instead.", "textRange": { "endLine": 119, "endOffset": 35, "startLine": 119, "startOffset": 7 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 122, "message": "Rename method \"FullName\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 122, "endOffset": 14, "startLine": 122, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 128, "message": "Rename method \"IsUsed\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 128, "endOffset": 12, "startLine": 128, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 131, "message": "Rename method \"Tick\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 131, "endOffset": 10, "startLine": 131, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 138, "message": "Rename method \"CalleeTick\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 138, "endOffset": 16, "startLine": 138, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 143, "message": "Rename method \"PrintAnnotated\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 143, "endOffset": 20, "startLine": 143, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 178, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 178, "endOffset": 13, "startLine": 178, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 180, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 180, "endOffset": 13, "startLine": 180, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 181, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 181, "endOffset": 9, "startLine": 181, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 193, "message": "Rename method \"_GetDisasmLines\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 193, "endOffset": 21, "startLine": 193, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 215, "message": "Rename method \"PageAddress\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 215, "endOffset": 17, "startLine": 215, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 219, "message": "Rename method \"PageId\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 219, "endOffset": 12, "startLine": 219, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 223, "message": "Rename method \"PageAddressFromId\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 223, "endOffset": 23, "startLine": 223, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 230, "message": "Rename method \"Add\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 230, "endOffset": 9, "startLine": 230, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 233, "message": "Rename method \"Remove\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 233, "endOffset": 12, "startLine": 233, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 236, "message": "Rename method \"Find\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 236, "endOffset": 10, "startLine": 236, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 256, "message": "Rename method \"Add\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 256, "endOffset": 9, "startLine": 256, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 262, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 262, "endOffset": 13, "startLine": 262, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 277, "message": "Rename method \"Remove\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 277, "endOffset": 12, "startLine": 277, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 291, "message": "Rename method \"AllCode\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 291, "endOffset": 13, "startLine": 291, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 297, "message": "Rename method \"UsedCode\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 297, "endOffset": 14, "startLine": 297, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 302, "message": "Rename method \"Print\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 302, "endOffset": 11, "startLine": 302, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 304, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 304, "endOffset": 11, "startLine": 304, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 306, "message": "Rename method \"Find\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 306, "endOffset": 10, "startLine": 306, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 332, "message": "Rename method \"ReadNameMap\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 332, "endOffset": 17, "startLine": 332, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 394, "message": "Rename method \"ReadUpToGC\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 394, "endOffset": 16, "startLine": 394, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 394, "message": "Refactor this function to reduce its Cognitive Complexity from 36 to the 15 allowed.", "textRange": { "endLine": 394, "endOffset": 16, "startLine": 394, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 425, "message": "Complete the task associated to this \"TODO\" comment.", "textRange": { "endLine": 425, "endOffset": 69, "startLine": 425, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 443, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 443, "endOffset": 15, "startLine": 443, "startOffset": 10 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 460, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 460, "endOffset": 15, "startLine": 460, "startOffset": 10 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 480, "message": "Rename method \"Dispose\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 480, "endOffset": 13, "startLine": 480, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 485, "message": "Rename method \"_DefineStruct\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 485, "endOffset": 19, "startLine": 485, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 491, "message": "Rename method \"_HandleCodeConflict\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 491, "endOffset": 25, "startLine": 491, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 521, "message": "Rename method \"Read\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 521, "endOffset": 10, "startLine": 521, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 525, "message": "Rename method \"CtypesFields\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 525, "endOffset": 18, "startLine": 525, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 632, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 632, "endOffset": 11, "startLine": 632, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 650, "message": "Rename method \"ReadEventHeader\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 650, "endOffset": 21, "startLine": 650, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 658, "message": "Rename method \"ReadMmap\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 658, "endOffset": 14, "startLine": 658, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 667, "message": "Remove the unused function parameter \"header\".", "textRange": { "endLine": 667, "endOffset": 29, "startLine": 667, "startOffset": 23 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 667, "message": "Rename method \"ReadSample\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 667, "endOffset": 16, "startLine": 667, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 680, "message": "Rename method \"Dispose\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 680, "endOffset": 13, "startLine": 680, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 684, "message": "Rename method \"_SampleEventBodyDesc\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 684, "endOffset": 26, "startLine": 684, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 705, "message": "Replace this alternation with a character class.", "textRange": { "endLine": 705, "endOffset": 24, "startLine": 705, "startOffset": 21 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 714, "message": "Refactor this function to reduce its Cognitive Complexity from 30 to the 15 allowed.", "textRange": { "endLine": 714, "endOffset": 10, "startLine": 714, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 714, "message": "Rename method \"Load\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 714, "endOffset": 10, "startLine": 714, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 768, "message": "Remove the unused local variable \"flags\".", "textRange": { "endLine": 768, "endOffset": 15, "startLine": 768, "startOffset": 10 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 782, "message": "Rename method \"Tick\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 782, "endOffset": 10, "startLine": 782, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 790, "message": "Rename method \"_UniqueMmapName\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 790, "endOffset": 21, "startLine": 790, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 799, "message": "Rename method \"_LoadKernelSymbols\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 799, "endOffset": 24, "startLine": 799, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 801, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 801, "endOffset": 11, "startLine": 801, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 818, "message": "Rename function \"PrintReport\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 818, "endOffset": 15, "startLine": 818, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 819, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 819, "endOffset": 7, "startLine": 819, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 824, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 824, "endOffset": 9, "startLine": 824, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 828, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 828, "endOffset": 7, "startLine": 828, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 829, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 829, "endOffset": 7, "startLine": 829, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 834, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 834, "endOffset": 9, "startLine": 834, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 838, "message": "Remove the unused function parameter \"options\".", "textRange": { "endLine": 838, "endOffset": 30, "startLine": 838, "startOffset": 23 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 838, "message": "Rename function \"PrintDot\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 838, "endOffset": 12, "startLine": 838, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 839, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 839, "endOffset": 7, "startLine": 839, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 843, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 843, "endOffset": 9, "startLine": 843, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 846, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 846, "endOffset": 13, "startLine": 846, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 847, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 847, "endOffset": 7, "startLine": 847, "startOffset": 2 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 900, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 900, "endOffset": 11, "startLine": 900, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 904, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 904, "endOffset": 11, "startLine": 904, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 905, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 905, "endOffset": 9, "startLine": 905, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 913, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 913, "endOffset": 9, "startLine": 913, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 938, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 938, "endOffset": 9, "startLine": 938, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 939, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 939, "endOffset": 9, "startLine": 939, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 991, "message": "Rename function \"PrintTicks\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 991, "endOffset": 20, "startLine": 991, "startOffset": 10 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 994, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 994, "endOffset": 11, "startLine": 994, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 995, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 995, "endOffset": 11, "startLine": 995, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 996, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 996, "endOffset": 11, "startLine": 996, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 997, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 997, "endOffset": 11, "startLine": 997, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 998, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 998, "endOffset": 11, "startLine": 998, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 1006, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 1006, "endOffset": 11, "startLine": 1006, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 1007, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 1007, "endOffset": 11, "startLine": 1007, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 1008, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 1008, "endOffset": 11, "startLine": 1008, "startOffset": 6 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 1009, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 1009, "endOffset": 11, "startLine": 1009, "startOffset": 6 }, "type": "CODE_SMELL" } ]
473
tests/testing_config/custom_components/test/binary_sensor.py
domwillcode/home-assistant
30,023
3218482
""" Provide a mock binary sensor platform. Call init before using it in your tests to ensure clean test data. """ from homeassistant.components.binary_sensor import DEVICE_CLASSES, BinarySensorEntity from tests.common import MockEntity ENTITIES = {} def init(empty=False): """Initialize the platform with entities.""" global ENTITIES ENTITIES = ( {} if empty else { device_class: MockBinarySensor( name=f"{device_class} sensor", is_on=True, unique_id=f"unique_{device_class}", device_class=device_class, ) for device_class in DEVICE_CLASSES } ) async def async_setup_platform( hass, config, async_add_entities_callback, discovery_info=None ): """Return mock entities.""" async_add_entities_callback(list(ENTITIES.values())) class MockBinarySensor(MockEntity, BinarySensorEntity): """Mock Binary Sensor class.""" @property def is_on(self): """Return true if the binary sensor is on.""" return self._handle("is_on") @property def device_class(self): """Return the class of this sensor.""" return self._handle("device_class")
null
null
null
null
null
null
null
null
null
[]
2,126
tests/pyb/i2c_accel.py
sebastien-riou/micropython
4,538
9610447
# use accelerometer to test i2c bus import pyb from pyb import I2C if not hasattr(pyb, "Accel"): print("SKIP") raise SystemExit accel_addr = 76 pyb.Accel() # this will init the MMA for us i2c = I2C(1, I2C.MASTER, baudrate=400000) print(i2c.scan()) print(i2c.is_ready(accel_addr)) print(i2c.mem_read(1, accel_addr, 7, timeout=500)) i2c.mem_write(0, accel_addr, 0, timeout=500) i2c.send(7, addr=accel_addr) i2c.recv(1, addr=accel_addr)
0
0
0.0
1
0
0
1.0
0
1
[]
5,548
tests/test_lazy_hyperlinks.py
scratchmex/django-rest-framework
17,395
8112240
<reponame>scratchmex/django-rest-framework<filename>tests/test_lazy_hyperlinks.py from django.db import models from django.test import TestCase, override_settings from django.urls import path from rest_framework import serializers from rest_framework.renderers import JSONRenderer from rest_framework.templatetags.rest_framework import format_value str_called = False class Example(models.Model): text = models.CharField(max_length=100) def __str__(self): global str_called str_called = True return 'An example' class ExampleSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Example fields = ('url', 'id', 'text') def dummy_view(request): pass urlpatterns = [ path('example/<int:pk>/', dummy_view, name='example-detail'), ] @override_settings(ROOT_URLCONF='tests.test_lazy_hyperlinks') class TestLazyHyperlinkNames(TestCase): def setUp(self): self.example = Example.objects.create(text='foo') def test_lazy_hyperlink_names(self): global str_called context = {'request': None} serializer = ExampleSerializer(self.example, context=context) JSONRenderer().render(serializer.data) assert not str_called hyperlink_string = format_value(serializer.data['url']) assert hyperlink_string == '<a href=/example/1/>An example</a>' assert str_called
null
null
null
null
null
null
null
null
null
[]
5,102
tests/components/recorder/test_statistics_v23_migration.py
mib1185/core
30,023
8449169
<filename>tests/components/recorder/test_statistics_v23_migration.py """The tests for sensor recorder platform migrating statistics from v23. The v23 schema used for these tests has been slightly modified to add the EventData table to allow the recorder to startup successfully. """ # pylint: disable=protected-access,invalid-name import importlib import json import sys from unittest.mock import patch import pytest from sqlalchemy import create_engine from sqlalchemy.orm import Session from homeassistant.components import recorder from homeassistant.components.recorder import SQLITE_URL_PREFIX, statistics from homeassistant.components.recorder.util import session_scope from homeassistant.setup import setup_component import homeassistant.util.dt as dt_util from tests.common import get_test_home_assistant from tests.components.recorder.common import wait_recording_done ORIG_TZ = dt_util.DEFAULT_TIME_ZONE CREATE_ENGINE_TARGET = "homeassistant.components.recorder.core.create_engine" SCHEMA_MODULE = "tests.components.recorder.db_schema_23_with_newer_columns" def _create_engine_test(*args, **kwargs): """Test version of create_engine that initializes with old schema. This simulates an existing db with the old schema. """ importlib.import_module(SCHEMA_MODULE) old_db_schema = sys.modules[SCHEMA_MODULE] engine = create_engine(*args, **kwargs) old_db_schema.Base.metadata.create_all(engine) with Session(engine) as session: session.add( recorder.db_schema.StatisticsRuns(start=statistics.get_start_time()) ) session.add( recorder.db_schema.SchemaChanges( schema_version=old_db_schema.SCHEMA_VERSION ) ) session.commit() return engine def test_delete_duplicates(caplog, tmpdir): """Test removal of duplicated statistics.""" test_db_file = tmpdir.mkdir("sqlite").join("test_run_info.db") dburl = f"{SQLITE_URL_PREFIX}//{test_db_file}" importlib.import_module(SCHEMA_MODULE) old_db_schema = sys.modules[SCHEMA_MODULE] period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) period3 = dt_util.as_utc(dt_util.parse_datetime("2021-10-01 00:00:00")) period4 = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 23:00:00")) external_energy_statistics_1 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 2, }, { "start": period2, "last_reset": None, "state": 1, "sum": 3, }, { "start": period3, "last_reset": None, "state": 2, "sum": 4, }, { "start": period4, "last_reset": None, "state": 3, "sum": 5, }, { "start": period4, "last_reset": None, "state": 3, "sum": 5, }, ) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_2 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 20, }, { "start": period2, "last_reset": None, "state": 1, "sum": 30, }, { "start": period3, "last_reset": None, "state": 2, "sum": 40, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, ) external_energy_metadata_2 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_2", "unit_of_measurement": "kWh", } external_co2_statistics = ( { "start": period1, "last_reset": None, "mean": 10, }, { "start": period2, "last_reset": None, "mean": 30, }, { "start": period3, "last_reset": None, "mean": 60, }, { "start": period4, "last_reset": None, "mean": 90, }, ) external_co2_metadata = { "has_mean": True, "has_sum": False, "name": "Fossil percentage", "source": "test", "statistic_id": "test:fossil_percentage", "unit_of_measurement": "%", } # Create some duplicated statistics with schema version 23 with patch.object(recorder, "db_schema", old_db_schema), patch.object( recorder.migration, "SCHEMA_VERSION", old_db_schema.SCHEMA_VERSION ), patch(CREATE_ENGINE_TARGET, new=_create_engine_test): hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) wait_recording_done(hass) wait_recording_done(hass) with session_scope(hass=hass) as session: session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_1) ) session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_2) ) session.add( recorder.db_schema.StatisticsMeta.from_meta(external_co2_metadata) ) with session_scope(hass=hass) as session: for stat in external_energy_statistics_1: session.add(recorder.db_schema.Statistics.from_stats(1, stat)) for stat in external_energy_statistics_2: session.add(recorder.db_schema.Statistics.from_stats(2, stat)) for stat in external_co2_statistics: session.add(recorder.db_schema.Statistics.from_stats(3, stat)) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ # Test that the duplicates are removed during migration from schema 23 hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) hass.start() wait_recording_done(hass) wait_recording_done(hass) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ assert "Deleted 2 duplicated statistics rows" in caplog.text assert "Found non identical" not in caplog.text assert "Found duplicated" not in caplog.text def test_delete_duplicates_many(caplog, tmpdir): """Test removal of duplicated statistics.""" test_db_file = tmpdir.mkdir("sqlite").join("test_run_info.db") dburl = f"{SQLITE_URL_PREFIX}//{test_db_file}" importlib.import_module(SCHEMA_MODULE) old_db_schema = sys.modules[SCHEMA_MODULE] period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) period3 = dt_util.as_utc(dt_util.parse_datetime("2021-10-01 00:00:00")) period4 = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 23:00:00")) external_energy_statistics_1 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 2, }, { "start": period2, "last_reset": None, "state": 1, "sum": 3, }, { "start": period3, "last_reset": None, "state": 2, "sum": 4, }, { "start": period4, "last_reset": None, "state": 3, "sum": 5, }, { "start": period4, "last_reset": None, "state": 3, "sum": 5, }, ) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_2 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 20, }, { "start": period2, "last_reset": None, "state": 1, "sum": 30, }, { "start": period3, "last_reset": None, "state": 2, "sum": 40, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, ) external_energy_metadata_2 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_2", "unit_of_measurement": "kWh", } external_co2_statistics = ( { "start": period1, "last_reset": None, "mean": 10, }, { "start": period2, "last_reset": None, "mean": 30, }, { "start": period3, "last_reset": None, "mean": 60, }, { "start": period4, "last_reset": None, "mean": 90, }, ) external_co2_metadata = { "has_mean": True, "has_sum": False, "name": "Fossil percentage", "source": "test", "statistic_id": "test:fossil_percentage", "unit_of_measurement": "%", } # Create some duplicated statistics with schema version 23 with patch.object(recorder, "db_schema", old_db_schema), patch.object( recorder.migration, "SCHEMA_VERSION", old_db_schema.SCHEMA_VERSION ), patch(CREATE_ENGINE_TARGET, new=_create_engine_test): hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) wait_recording_done(hass) wait_recording_done(hass) with session_scope(hass=hass) as session: session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_1) ) session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_2) ) session.add( recorder.db_schema.StatisticsMeta.from_meta(external_co2_metadata) ) with session_scope(hass=hass) as session: for stat in external_energy_statistics_1: session.add(recorder.db_schema.Statistics.from_stats(1, stat)) for _ in range(3000): session.add( recorder.db_schema.Statistics.from_stats( 1, external_energy_statistics_1[-1] ) ) for stat in external_energy_statistics_2: session.add(recorder.db_schema.Statistics.from_stats(2, stat)) for stat in external_co2_statistics: session.add(recorder.db_schema.Statistics.from_stats(3, stat)) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ # Test that the duplicates are removed during migration from schema 23 hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) hass.start() wait_recording_done(hass) wait_recording_done(hass) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ assert "Deleted 3002 duplicated statistics rows" in caplog.text assert "Found non identical" not in caplog.text assert "Found duplicated" not in caplog.text @pytest.mark.freeze_time("2021-08-01 00:00:00+00:00") def test_delete_duplicates_non_identical(caplog, tmpdir): """Test removal of duplicated statistics.""" test_db_file = tmpdir.mkdir("sqlite").join("test_run_info.db") dburl = f"{SQLITE_URL_PREFIX}//{test_db_file}" importlib.import_module(SCHEMA_MODULE) old_db_schema = sys.modules[SCHEMA_MODULE] period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) period3 = dt_util.as_utc(dt_util.parse_datetime("2021-10-01 00:00:00")) period4 = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 23:00:00")) external_energy_statistics_1 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 2, }, { "start": period2, "last_reset": None, "state": 1, "sum": 3, }, { "start": period3, "last_reset": None, "state": 2, "sum": 4, }, { "start": period4, "last_reset": None, "state": 3, "sum": 5, }, { "start": period4, "last_reset": None, "state": 3, "sum": 6, }, ) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_2 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 20, }, { "start": period2, "last_reset": None, "state": 1, "sum": 30, }, { "start": period3, "last_reset": None, "state": 2, "sum": 40, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, { "start": period4, "last_reset": None, "state": 3, "sum": 50, }, ) external_energy_metadata_2 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_2", "unit_of_measurement": "kWh", } # Create some duplicated statistics with schema version 23 with patch.object(recorder, "db_schema", old_db_schema), patch.object( recorder.migration, "SCHEMA_VERSION", old_db_schema.SCHEMA_VERSION ), patch(CREATE_ENGINE_TARGET, new=_create_engine_test): hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) wait_recording_done(hass) wait_recording_done(hass) with session_scope(hass=hass) as session: session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_1) ) session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_2) ) with session_scope(hass=hass) as session: for stat in external_energy_statistics_1: session.add(recorder.db_schema.Statistics.from_stats(1, stat)) for stat in external_energy_statistics_2: session.add(recorder.db_schema.Statistics.from_stats(2, stat)) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ # Test that the duplicates are removed during migration from schema 23 hass = get_test_home_assistant() hass.config.config_dir = tmpdir setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) hass.start() wait_recording_done(hass) wait_recording_done(hass) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ assert "Deleted 2 duplicated statistics rows" in caplog.text assert "Deleted 1 non identical" in caplog.text assert "Found duplicated" not in caplog.text isotime = dt_util.utcnow().isoformat() backup_file_name = f".storage/deleted_statistics.{isotime}.json" with open(hass.config.path(backup_file_name)) as backup_file: backup = json.load(backup_file) assert backup == [ { "duplicate": { "created": "2021-08-01T00:00:00", "id": 4, "last_reset": None, "max": None, "mean": None, "metadata_id": 1, "min": None, "start": "2021-10-31T23:00:00", "state": 3.0, "sum": 5.0, }, "original": { "created": "2021-08-01T00:00:00", "id": 5, "last_reset": None, "max": None, "mean": None, "metadata_id": 1, "min": None, "start": "2021-10-31T23:00:00", "state": 3.0, "sum": 6.0, }, } ] def test_delete_duplicates_short_term(caplog, tmpdir): """Test removal of duplicated statistics.""" test_db_file = tmpdir.mkdir("sqlite").join("test_run_info.db") dburl = f"{SQLITE_URL_PREFIX}//{test_db_file}" importlib.import_module(SCHEMA_MODULE) old_db_schema = sys.modules[SCHEMA_MODULE] period4 = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 23:00:00")) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } statistic_row = { "start": period4, "last_reset": None, "state": 3, "sum": 5, } # Create some duplicated statistics with schema version 23 with patch.object(recorder, "db_schema", old_db_schema), patch.object( recorder.migration, "SCHEMA_VERSION", old_db_schema.SCHEMA_VERSION ), patch(CREATE_ENGINE_TARGET, new=_create_engine_test): hass = get_test_home_assistant() setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) wait_recording_done(hass) wait_recording_done(hass) with session_scope(hass=hass) as session: session.add( recorder.db_schema.StatisticsMeta.from_meta(external_energy_metadata_1) ) with session_scope(hass=hass) as session: session.add( recorder.db_schema.StatisticsShortTerm.from_stats(1, statistic_row) ) session.add( recorder.db_schema.StatisticsShortTerm.from_stats(1, statistic_row) ) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ # Test that the duplicates are removed during migration from schema 23 hass = get_test_home_assistant() hass.config.config_dir = tmpdir setup_component(hass, "recorder", {"recorder": {"db_url": dburl}}) hass.start() wait_recording_done(hass) wait_recording_done(hass) hass.stop() dt_util.DEFAULT_TIME_ZONE = ORIG_TZ assert "duplicated statistics rows" not in caplog.text assert "Found non identical" not in caplog.text assert "Deleted duplicated short term statistic" in caplog.text
6
0
68.5
9
0
6
1.0
0
14
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 55, "message": "Define a constant instead of duplicating this literal \"test_run_info.db\" 4 times.", "textRange": { "endLine": 55, "endOffset": 65, "startLine": 55, "startOffset": 47 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 101, "message": "Define a constant instead of duplicating this literal \"Total imported energy\" 7 times.", "textRange": { "endLine": 101, "endOffset": 39, "startLine": 101, "startOffset": 16 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 103, "message": "Define a constant instead of duplicating this literal \"test:total_energy_import_tariff_1\" 4 times.", "textRange": { "endLine": 103, "endOffset": 59, "startLine": 103, "startOffset": 24 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 143, "message": "Define a constant instead of duplicating this literal \"test:total_energy_import_tariff_2\" 3 times.", "textRange": { "endLine": 143, "endOffset": 59, "startLine": 143, "startOffset": 24 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 217, "message": "Define a constant instead of duplicating this literal \"Found non identical\" 3 times.", "textRange": { "endLine": 217, "endOffset": 32, "startLine": 217, "startOffset": 11 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 218, "message": "Define a constant instead of duplicating this literal \"Found duplicated\" 3 times.", "textRange": { "endLine": 218, "endOffset": 29, "startLine": 218, "startOffset": 11 }, "type": "CODE_SMELL" } ]
10,955
recipes/Python/577172_writepath_loadpath_methods_file/recipe-577172.py
tdiprima/code
2,023
6592001
<gh_stars>1000+ def _write_path(path, text, encoding, create_backup=False, log=None): """Write content to a path. @param path {str} @param text {unicode} @param encoding {str} The file encoding to use. @param create_backup {bool} Default False. Whether to create a backup file. The path of the backup will be `<path>.bak`. If that path exists it will be overwritten. @param log {logging.Logger} A logger to use for logging. No logging is done if it this is not given. """ import os from os.path import exists, split, join import codecs # Write out new content to '.foo.tmp'. dir, base = split(path) tmp_path = join(dir, '.' + base + '.tmp') f = codecs.open(tmp_path, 'wb', encoding=encoding) try: f.write(text) finally: f.close() # Backup to 'foo.bak'. if create_backup: bak_path = path + ".bak" if exists(bak_path): os.rename(path, bak_path) elif exists(path): os.remove(path) # Move '.foo.tmp' to 'foo'. os.rename(tmp_path, path) if log: log.info("wrote `%s'", path) def _load_path(path, encoding="utf-8", log=None): """Return the content of the given path. @param path {str} @param encoding {str} Default 'utf-8'. @param log {logging.Logger} A logger to use for logging. No logging is done if it this is not given. @returns {2-tuple} (<text>, <encoding>) where `text` is the unicode text content of the file and `encoding` is the encoding of the file. `text` is None if there was an error. Errors are logged via `log.error`. """ import codecs try: f = codecs.open(path, 'rb', encoding) except EnvironmentError, ex: if log: log.error("could not open `%s': %s", path, ex) return None, None else: try: try: text = f.read() except UnicodeDecodeError, ex: if log: log.error("could not read `%s': %s", path, ex) return None, None finally: f.close() return text, encoding
null
null
null
null
null
null
null
null
null
[]
4,645
recipes/Python/576543_Prime_Number_Generator_Checker/recipe-576543.py
tdiprima/code
2,023
11576
<reponame>tdiprima/code<gh_stars>1000+ # # prime number generator # This program gets two number as input # and prints # Prime numbers in the range # Actual number of primes in the range # and Estimation based on formula # n # pi(n)= ------- # log(n) # pi(n)=number of primes less than n # from math import * def isPrime(n): if n%2==0 and n!=2:return False #if number is EVEN AND it is NOT 2 k = n**0.5 ; m = ceil(k) #if number is PERFECT SQUARE if k==m:return False for i in xrange(3,int(m),2): #divisibility test ODDS ONLY if n%i==0:return False return True #otherwise it is PRIME if __name__=='__main__': s = input('Enter Start: ') e = input('Enter End: ') s|=1 #if s%2==0:s+=1 # ODDS only list = [x for x in range(s,e,2) if isPrime(x)] print list,'\n',len(list),'\n',int(ceil(e/log(e)-s/log(s))) #prints list of primes , length of list , estimate using the formula
6
1
0.0
7
0
5
3.0
0
8
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 14, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 14, "endOffset": 18, "startLine": 14, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 15, "message": "Rename function \"isPrime\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 15, "endOffset": 11, "startLine": 15, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 29, "message": "Remove this commented out code.", "textRange": { "endLine": 29, "endOffset": 68, "startLine": 29, "startOffset": 39 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 31, "message": "Change this argument; Function \"log\" expects a different type", "textRange": { "endLine": 31, "endOffset": 60, "startLine": 31, "startOffset": 59 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "RELIABILITY" } ], "line": 31, "message": "Fix this invalid \"/\" operation between incompatible types (str and float).", "textRange": { "endLine": 31, "endOffset": 55, "startLine": 31, "startOffset": 54 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 31, "message": "Replace print statement by built-in function.", "textRange": { "endLine": 31, "endOffset": 9, "startLine": 31, "startOffset": 4 }, "type": "CODE_SMELL" } ]
100
test/nn/functional/test_bro.py
NucciTheBoss/pytorch_geometric
2,350
1816381
<filename>test/nn/functional/test_bro.py import torch from torch_geometric.nn.functional import bro def test_bro(): batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 2, 2]) g1 = torch.tensor([ [0.2, 0.2, 0.2, 0.2], [0.0, 0.2, 0.2, 0.2], [0.2, 0.0, 0.2, 0.2], [0.2, 0.2, 0.0, 0.2], ]) g2 = torch.tensor([ [0.2, 0.2, 0.2, 0.2], [0.0, 0.2, 0.2, 0.2], [0.2, 0.0, 0.2, 0.2], ]) g3 = torch.tensor([ [0.2, 0.2, 0.2, 0.2], [0.2, 0.0, 0.2, 0.2], ]) s = 0. for g in [g1, g2, g3]: s += torch.norm(g @ g.t() - torch.eye(g.shape[0]), p=2) assert torch.isclose(s / 3., bro(torch.cat([g1, g2, g3], dim=0), batch))
null
null
null
null
null
null
null
null
null
[]
8,219
project_euler/problem_074/sol2.py
NavpreetDevpuri/Python
145,614
1882791
""" Project Euler Problem 074: https://projecteuler.net/problem=74 Starting from any positive integer number it is possible to attain another one summing the factorial of its digits. Repeating this step, we can build chains of numbers. It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. The request is to find how many numbers less than one million produce a chain with exactly 60 non repeating items. Solution approach: This solution simply consists in a loop that generates the chains of non repeating items. The generation of the chain stops before a repeating item or if the size of the chain is greater then the desired one. After generating each chain, the length is checked and the counter increases. """ factorial_cache: dict[int, int] = {} factorial_sum_cache: dict[int, int] = {} def factorial(a: int) -> int: """Returns the factorial of the input a >>> factorial(5) 120 >>> factorial(6) 720 >>> factorial(0) 1 """ # The factorial function is not defined for negative numbers if a < 0: raise ValueError("Invalid negative input!", a) if a in factorial_cache: return factorial_cache[a] # The case of 0! is handled separately if a == 0: factorial_cache[a] = 1 else: # use a temporary support variable to store the computation temporary_number = a temporary_computation = 1 while temporary_number > 0: temporary_computation *= temporary_number temporary_number -= 1 factorial_cache[a] = temporary_computation return factorial_cache[a] def factorial_sum(a: int) -> int: """Function to perform the sum of the factorial of all the digits in a >>> factorial_sum(69) 363600 """ if a in factorial_sum_cache: return factorial_sum_cache[a] # Prepare a variable to hold the computation fact_sum = 0 """ Convert a in string to iterate on its digits convert the digit back into an int and add its factorial to fact_sum. """ for i in str(a): fact_sum += factorial(int(i)) factorial_sum_cache[a] = fact_sum return fact_sum def solution(chain_length: int = 60, number_limit: int = 1000000) -> int: """Returns the number of numbers that produce chains with exactly 60 non repeating elements. >>> solution(10, 1000) 26 """ # the counter for the chains with the exact desired length chain_counter = 0 for i in range(1, number_limit + 1): # The temporary list will contain the elements of the chain chain_set = {i} len_chain_set = 1 last_chain_element = i # The new element of the chain new_chain_element = factorial_sum(last_chain_element) # Stop computing the chain when you find a repeating item # or the length it greater then the desired one. while new_chain_element not in chain_set and len_chain_set <= chain_length: chain_set.add(new_chain_element) len_chain_set += 1 last_chain_element = new_chain_element new_chain_element = factorial_sum(last_chain_element) # If the while exited because the chain list contains the exact amount # of elements increase the counter if len_chain_set == chain_length: chain_counter += 1 return chain_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution()}")
0
0
0.0
15
0
0
1.0
0
14
[]
8,579
platformio/debug/process/client.py
franzbischoff/platformio-core
4,744
10165323
# Copyright (c) 2014-present PlatformIO <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import os import signal import tempfile from platformio import fs, proc from platformio.cache import ContentCache from platformio.compat import IS_WINDOWS, hashlib_encode_data from platformio.debug.process.base import DebugBaseProcess from platformio.debug.process.server import DebugServerProcess from platformio.project.helpers import get_project_cache_dir class DebugClientProcess(DebugBaseProcess): def __init__(self, project_dir, debug_config): super(DebugClientProcess, self).__init__() self.project_dir = project_dir self.debug_config = debug_config self._server_process = None self._session_id = None if not os.path.isdir(get_project_cache_dir()): os.makedirs(get_project_cache_dir()) self.working_dir = tempfile.mkdtemp( dir=get_project_cache_dir(), prefix=".piodebug-" ) self._target_is_running = False self._errors_buffer = b"" async def run(self): session_hash = ( self.debug_config.client_executable_path + self.debug_config.program_path ) self._session_id = hashlib.sha1(hashlib_encode_data(session_hash)).hexdigest() self._kill_previous_session() if self.debug_config.server: self._server_process = DebugServerProcess(self.debug_config) self.debug_config.port = await self._server_process.run() def connection_made(self, transport): super(DebugClientProcess, self).connection_made(transport) self._lock_session(transport.get_pid()) # Disable SIGINT and allow GDB's Ctrl+C interrupt signal.signal(signal.SIGINT, lambda *args, **kwargs: None) self.connect_stdin_pipe() def process_exited(self): if self._server_process: self._server_process.terminate() super(DebugClientProcess, self).process_exited() def _kill_previous_session(self): assert self._session_id pid = None with ContentCache() as cc: pid = cc.get(self._session_id) cc.delete(self._session_id) if not pid: return if IS_WINDOWS: kill = ["Taskkill", "/PID", pid, "/F"] else: kill = ["kill", pid] try: proc.exec_command(kill) except: # pylint: disable=bare-except pass def _lock_session(self, pid): if not self._session_id: return with ContentCache() as cc: cc.set(self._session_id, str(pid), "1h") def _unlock_session(self): if not self._session_id: return with ContentCache() as cc: cc.delete(self._session_id) def __del__(self): self._unlock_session() if self.working_dir and os.path.isdir(self.working_dir): fs.rmtree(self.working_dir)
null
null
null
null
null
null
null
null
null
[]
11,879
jumpy/jumpy/ndarray.py
rghwer/testdocs
13,006
6072
################################################################################ # Copyright (c) 2015-2018 Skymind, Inc. # # This program and the accompanying materials are made available under the # terms of the Apache License, Version 2.0 which is available at # https://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # SPDX-License-Identifier: Apache-2.0 ################################################################################ from .java_classes import * import numpy as np import ctypes import warnings native_ops = NativeOpsHolder.getInstance().getDeviceNativeOps() # DATA TYPE MANAGEMENT DOUBLE = DataType.DOUBLE FLOAT = DataType.FLOAT HALF = DataType.HALF LONG = DataType.LONG INT = DataType.INT SHORT = DataType.SHORT UBYTE = DataType.UBYTE BYTE = DataType.BYTE BOOL = DataType.BOOL UTF8 = DataType.UTF8 COMPRESSED = DataType.COMPRESSED UNKNOWN = DataType.UNKNOWN SUPPORTED_JAVA_DTYPES = [ DOUBLE, FLOAT, HALF, LONG, INT, SHORT, BOOL #UTF8 ] SUPPORTED_PYTHON_DTYPES = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.bool_ #np.str_ ] _PY2J = {SUPPORTED_PYTHON_DTYPES[i] : SUPPORTED_JAVA_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} _J2PY = {SUPPORTED_JAVA_DTYPES[i] : SUPPORTED_PYTHON_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} def _dtype_py2j(dtype): if isinstance(dtype, str): dtype = np.dtype(dtype).type elif isinstance(dtype, np.dtype): dtype = dtype.type jtype = _PY2J.get(dtype) if jtype is None: raise NotImplementedError("Unsupported type: " + dtype.name) return jtype def _dtype_j2py(dtype): pytype = _J2PY.get(dtype) if pytype is None: raise NotImplementedError("Unsupported type: " + (str(dtype))) return pytype def set_context_dtype(dtype): ''' Sets the dtype for nd4j # Arguments dtype: 'float' or 'double' ''' dtype_map = { 'float32': 'float', 'float64': 'double' } dtype = dtype_map.get(dtype, dtype) if dtype not in ['float', 'double']: raise ValueError("Invalid dtype '{}'. Available dtypes are 'float' and 'double'.".format(dtype)) dtype_ = DataTypeUtil.getDtypeFromContext(dtype) DataTypeUtil.setDTypeForContext(dtype_) if get_context_dtype() != dtype: warnings.warn("Can not set context dtype now. Set it at the beginning of your program.") def get_context_dtype(): ''' Returns the nd4j dtype ''' dtype = DataTypeUtil.getDtypeFromContext() return DataTypeUtil.getDTypeForName(dtype) _refs = [] def _from_numpy(np_array): ''' Convert numpy array to nd4j array ''' pointer_address, _ = np_array.__array_interface__['data'] _refs.append(np_array) pointer = native_ops.pointerForAddress(pointer_address) size = np_array.size pointer.limit(size) jdtype = _dtype_py2j(np_array.dtype) ''' mapping = { DOUBLE: DoublePointer, FLOAT: FloatPointer, HALF: HalfPointer, LONG: LongPointer, INT: IntPointer, SHORT: ShortPointer, BOOL: BoolPointer } pc = mapping[jdtype] #pointer = pc(pointer) ''' buff = Nd4j.createBuffer(pointer, size, jdtype) assert buff.address() == pointer_address _refs.append(buff) elem_size = buff.getElementSize() assert elem_size == np_array.dtype.itemsize strides = np_array.strides strides = [dim / elem_size for dim in strides] shape = np_array.shape nd4j_array = Nd4j.create(buff, shape, strides, 0) assert buff.address() == nd4j_array.data().address() return nd4j_array def _to_numpy(nd4j_array): ''' Convert nd4j array to numpy array ''' buff = nd4j_array.data() address = buff.pointer().address() dtype = nd4j_array.dataType().toString() mapping = { 'DOUBLE': ctypes.c_double, 'FLOAT': ctypes.c_float, 'HALF': ctypes.c_short, 'LONG': ctypes.c_long, 'INT': ctypes.c_int, 'SHORT': ctypes.c_short, 'BOOL': ctypes.c_bool } Pointer = ctypes.POINTER(mapping[dtype]) pointer = ctypes.cast(address, Pointer) np_array = np.ctypeslib.as_array(pointer, tuple(nd4j_array.shape())) return np_array def _indarray(x): typ = type(x) if typ is INDArray: return x elif typ is ndarray: return x.array elif 'numpy' in str(typ): return _from_numpy(x) elif typ in (list, tuple): return _from_numpy(np.array(x)) elif typ in (int, float): return Nd4j.scalar(x) else: raise Exception('Data type not understood :' + str(typ)) def _nparray(x): typ = type(x) if typ is INDArray: return ndarray(x).numpy() elif typ is ndarray: return x.numpy() elif 'numpy' in str(typ): return x elif typ in (list, tuple): return np.array(x) elif typ in (int, float): return np.array(x) else: raise Exception('Data type not understood :' + str(typ)) def broadcast_like(y, x): xs = x.shape() ys = y.shape() if xs == ys: return y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(ys) ny = nx elif ny > nx: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) yt = [] rep_y = False for xd, yd in zip(xs, ys): if xd == yd: yt.append(1) elif xd == 1: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) elif yd == 1: yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_y: y = y.repmat(*yt) return y def broadcast(x, y): xs = x.shape() ys = y.shape() if xs == ys: return x, y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(*ys) ny = nx elif ny > nx: diff = ny - nx xs = ([1] * diff) + xs x = x.reshape(*xs) nx = ny xt = [] yt = [] rep_x = False rep_y = False for xd, yd in zip(xs, ys): if xd == yd: xt.append(1) yt.append(1) elif xd == 1: xt.append(yd) yt.append(1) rep_x = True elif yd == 1: xt.append(1) yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_x: x = Nd4j.tile(x, *xt) if rep_y: try: y = Nd4j.tile(y, *yt) except: y = Nd4j.tile(y, *yt) return x, y class ndarray(object): def __init__(self, data, dtype=None): # we ignore dtype for now typ = type(data) if 'nd4j' in typ.__name__: # Note that we don't make a copy here self.array = data elif typ is ndarray: self.array = data.array.dup() else: if typ is not np.ndarray: data = np.array(data) self.array = _from_numpy(data) def numpy(self): try: return self.np_array except AttributeError: self.np_array = _to_numpy(self.array) return self.np_array @property def size(self): return self.array.length() @property def shape(self): return tuple(self.array.shape()) @shape.setter def shape(self, value): arr = self.reshape(value) self.array = arr.array @property def ndim(self): return len(self.array.shape()) def __getitem__(self, key): return ndarray(self.numpy()[key]) if type(key) is int: return ndarray(self.array.get(NDArrayIndex.point(key))) if type(key) is slice: start = key.start stop = key.stop step = key.step if start is None: start = 0 if stop is None: shape = self.array.shape() if shape[0] == 1: stop = shape[1] else: stop = shape[0] if stop - start <= 0: return None if step is None or step == 1: return ndarray(self.array.get(NDArrayIndex.interval(start, stop))) else: return ndarray(self.array.get(NDArrayIndex.interval(start, step, stop))) if type(key) is list: raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') if type(key) is tuple: key = list(key) shape = self.array.shape() ndim = len(shape) nk = len(key) key += [slice(None)] * (ndim - nk) args = [] for i, dim in enumerate(key): if type(dim) is int: args.append(NDArrayIndex.point(dim)) elif type(dim) is slice: if dim == slice(None): args.append(NDArrayIndex.all()) else: start = dim.start stop = dim.stop step = dim.step if start is None: start = 0 if stop is None: stop = shape[i] if stop - start <= 0: return None if step is None or step == 1: args.append(NDArrayIndex.interval(start, stop)) else: args.append(NDArrayIndex.interval( start, step, stop)) elif type(dim) in (list, tuple): raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') return ndarray(self.array.get(*args)) def __setitem__(self, key, other): self.numpy()[key] = _nparray(other) return other = _indarray(other) view = self[key] if view is None: return view = view.array other = broadcast_like(other, view) view.assign(other) def __add__(self, other): return ndarray(self.numpy() + _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.add(y)) def __sub__(self, other): return ndarray(self.numpy() - _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.sub(y)) def __mul__(self, other): return ndarray(self.numpy() * _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.mul(y)) def __div__(self, other): return ndarray(self.numpy() / _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.div(y)) def __pow__(self, other): return ndarray(self.numpy() ** _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(Transforms.pow(x, y)) def __iadd__(self, other): self.numpy().__iadd__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.addi(other) else: x, y = broadcast(self.array, other) self.array = x.add(y) return self def __isub__(self, other): self.numpy().__isub__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.subi(other) else: x, y = broadcast(self.array, other) self.array = x.sub(y) return self def __imul__(self, other): self.numpy().__imul__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.muli(other) else: x, y = broadcast(self.array, other) self.array = x.mul(y) return self def __idiv__(self, other): self.numpy().__idiv__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = x.div(y) return self def __ipow__(self, other): self.numpy().__ipow__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = Transforms.pow(x, y) return self def __getattr__(self, attr): import ops f = getattr(ops, attr) setattr(ndarray, attr, f) return getattr(self, attr) def __int__(self): if self.array.length() == 1: return self.array.getInt(0) raise Exception('Applicable only for scalars') def __float__(self): if self.array.length() == 1: return self.array.getDouble(0) raise Exception('Applicable only for scalars') @property def T(self): return self.transpose() def array(*args, **kwargs): return ndarray(*args, **kwargs)
29
12
0.0
112
0
17
1.0
0
79
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 18, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 18, "endOffset": 27, "startLine": 18, "startOffset": 0 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 175, "message": "Rename this local variable \"Pointer\" to match the regular expression ^[_a-z][a-z0-9_]*$.", "textRange": { "endLine": 175, "endOffset": 11, "startLine": 175, "startOffset": 4 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 194, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 194, "endOffset": 64, "startLine": 194, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 210, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 210, "endOffset": 64, "startLine": 210, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 226, "message": "Remove this assignment to local variable 'ny'; the value is never used.", "textRange": { "endLine": 226, "endOffset": 15, "startLine": 226, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 228, "message": "Define a constant instead of duplicating this literal 'Unable to broadcast shapes ' 4 times.", "textRange": { "endLine": 228, "endOffset": 53, "startLine": 228, "startOffset": 24 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 228, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 229, "endOffset": 43, "startLine": 228, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 228, "message": "Define a constant instead of duplicating this literal '' 4 times.", "textRange": { "endLine": 229, "endOffset": 31, "startLine": 228, "startOffset": 67 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 236, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 237, "endOffset": 47, "startLine": 236, "startOffset": 18 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 242, "message": "Either merge this branch with the identical one on line \"236\" or change one of the implementations.", "textRange": { "endLine": 243, "endOffset": 47, "startLine": 242, "startOffset": 12 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 242, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 243, "endOffset": 47, "startLine": 242, "startOffset": 18 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 285, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 286, "endOffset": 47, "startLine": 285, "startOffset": 18 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 292, "message": "Specify an exception class to catch or reraise the exception", "textRange": { "endLine": 292, "endOffset": 14, "startLine": 292, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 336, "message": "Refactor this function to reduce its Cognitive Complexity from 52 to the 15 allowed.", "textRange": { "endLine": 336, "endOffset": 19, "startLine": 336, "startOffset": 8 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 338, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 338, "endOffset": 27, "startLine": 338, "startOffset": 11 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 397, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 399, "endOffset": 23, "startLine": 397, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 407, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 409, "endOffset": 32, "startLine": 407, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 413, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 415, "endOffset": 32, "startLine": 413, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 419, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 421, "endOffset": 32, "startLine": 419, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 425, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 427, "endOffset": 32, "startLine": 425, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 431, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 433, "endOffset": 44, "startLine": 431, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 438, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 439, "endOffset": 46, "startLine": 438, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 449, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 450, "endOffset": 46, "startLine": 449, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 460, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 461, "endOffset": 46, "startLine": 460, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 471, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 472, "endOffset": 46, "startLine": 471, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "RELIABILITY" } ], "line": 482, "message": "Delete this unreachable code or refactor the code to make it reachable.", "textRange": { "endLine": 483, "endOffset": 46, "startLine": 482, "startOffset": 8 }, "type": "BUG" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 499, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 499, "endOffset": 54, "startLine": 499, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "MEDIUM", "softwareQuality": "MAINTAINABILITY" } ], "line": 504, "message": "Replace this generic exception class with a more specific one.", "textRange": { "endLine": 504, "endOffset": 54, "startLine": 504, "startOffset": 14 }, "type": "CODE_SMELL" }, { "impacts": [ { "severity": "LOW", "softwareQuality": "MAINTAINABILITY" } ], "line": 507, "message": "Rename method \"T\" to match the regular expression ^[a-z_][a-z0-9_]*$.", "textRange": { "endLine": 507, "endOffset": 9, "startLine": 507, "startOffset": 8 }, "type": "CODE_SMELL" } ]
56
maint/test/cython/cythonapp_test.py
DengJackNo1/tornado
15,056
10101175
<filename>maint/test/cython/cythonapp_test.py from tornado.testing import AsyncTestCase, gen_test from tornado.util import ArgReplacer import unittest import cythonapp class CythonCoroutineTest(AsyncTestCase): @gen_test def test_native_coroutine(self): x = yield cythonapp.native_coroutine() self.assertEqual(x, "goodbye") @gen_test def test_decorated_coroutine(self): x = yield cythonapp.decorated_coroutine() self.assertEqual(x, "goodbye") class CythonArgReplacerTest(unittest.TestCase): def test_arg_replacer_function(self): replacer = ArgReplacer(cythonapp.function_with_args, 'two') args = (1, 'old', 3) kwargs = {} self.assertEqual(replacer.get_old_value(args, kwargs), 'old') self.assertEqual(replacer.replace('new', args, kwargs), ('old', [1, 'new', 3], {})) def test_arg_replacer_method(self): replacer = ArgReplacer(cythonapp.AClass().method_with_args, 'two') args = (1, 'old', 3) kwargs = {} self.assertEqual(replacer.get_old_value(args, kwargs), 'old') self.assertEqual(replacer.replace('new', args, kwargs), ('old', [1, 'new', 3], {}))
null
null
null
null
null
null
null
null
null
[]
11,617
tests/integration/optimizers/test_optimizer_pod_choice.py
Rohitpandit021/jina
15,179
114236
import os import pytest from jina import Document from jina.optimizers import FlowOptimizer, EvaluationCallback from jina.optimizers.flow_runner import SingleFlowRunner cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def config(tmpdir): os.environ['JINA_OPTIMIZER_WORKSPACE_DIR'] = str(tmpdir) os.environ['JINA_OPTIMIZER_PARAMETER_FILE'] = os.path.join(cur_dir, 'parameter.yml') os.environ['JINA_OPTIMIZER_DATA_FILE'] = os.path.join(cur_dir, 'data.jsonlines') yield del os.environ['JINA_OPTIMIZER_WORKSPACE_DIR'] del os.environ['JINA_OPTIMIZER_PARAMETER_FILE'] del os.environ['JINA_OPTIMIZER_DATA_FILE'] def document_generator_option1(num_doc): for _ in range(num_doc): doc = Document(content='DummyCrafterOption1') groundtruth_doc = Document(content='hello') yield doc, groundtruth_doc def document_generator_option2(num_doc): for _ in range(num_doc): doc = Document(content='DummyCrafterOption2') groundtruth_doc = Document(content='hello') yield doc, groundtruth_doc def test_optimizer_single_flow_option1(tmpdir, config): eval_flow_runner = SingleFlowRunner( flow_yaml=os.path.join(cur_dir, 'flow_pod_choice.yml'), documents=document_generator_option1(10), request_size=1, execution_endpoint='search', ) opt = FlowOptimizer( flow_runner=eval_flow_runner, parameter_yaml=os.path.join(cur_dir, 'parameter_pod_choice.yml'), evaluation_callback=EvaluationCallback(), workspace_base_dir=str(tmpdir), n_trials=10, ) result = opt.optimize_flow() assert ( result.best_parameters['JINA_DUMMYCRAFTER_CHOICE'] == 'pods/craft_option1.yml' ) assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM1'] == 0 assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM2'] == 1 assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM3'] == 1 def test_optimizer_single_flow_option2(tmpdir, config): eval_flow_runner = SingleFlowRunner( flow_yaml=os.path.join(cur_dir, 'flow_pod_choice.yml'), documents=document_generator_option2(10), request_size=1, execution_endpoint='search', ) opt = FlowOptimizer( flow_runner=eval_flow_runner, parameter_yaml=os.path.join(cur_dir, 'parameter_pod_choice.yml'), evaluation_callback=EvaluationCallback(), workspace_base_dir=str(tmpdir), n_trials=20, ) result = opt.optimize_flow() assert ( result.best_parameters['JINA_DUMMYCRAFTER_CHOICE'] == 'pods/craft_option2.yml' ) assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM4'] == 0 assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM5'] == 1 assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM6'] == 1
0
0
0.0
2
0
0
1.0
0
7
[]
699
tests/components/speedtestdotnet/test_config_flow.py
MrDelik/core
30,023
10198206
<filename>tests/components/speedtestdotnet/test_config_flow.py """Tests for SpeedTest config flow.""" from datetime import timedelta from unittest.mock import MagicMock from homeassistant import config_entries, data_entry_flow from homeassistant.components import speedtestdotnet from homeassistant.components.speedtestdotnet.const import ( CONF_MANUAL, CONF_SERVER_ID, CONF_SERVER_NAME, DOMAIN, ) from homeassistant.const import CONF_SCAN_INTERVAL from homeassistant.core import HomeAssistant from tests.common import MockConfigEntry async def test_flow_works(hass: HomeAssistant) -> None: """Test user config.""" result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY async def test_options(hass: HomeAssistant, mock_api: MagicMock) -> None: """Test updating options.""" entry = MockConfigEntry( domain=DOMAIN, title="SpeedTest", ) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_SERVER_NAME: "Country1 - Sponsor1 - Server1", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_SERVER_NAME: "Country1 - Sponsor1 - Server1", CONF_SERVER_ID: "1", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: True, } await hass.async_block_till_done() assert hass.data[DOMAIN].update_interval is None # test setting server name to "*Auto Detect" result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_SERVER_NAME: "*Auto Detect", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_SERVER_NAME: "*Auto Detect", CONF_SERVER_ID: None, CONF_SCAN_INTERVAL: 30, CONF_MANUAL: True, } # test setting the option to update periodically result2 = await hass.config_entries.options.async_init(entry.entry_id) assert result2["type"] == data_entry_flow.RESULT_TYPE_FORM assert result2["step_id"] == "init" result2 = await hass.config_entries.options.async_configure( result2["flow_id"], user_input={ CONF_SERVER_NAME: "Country1 - Sponsor1 - Server1", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: False, }, ) await hass.async_block_till_done() assert hass.data[DOMAIN].update_interval == timedelta(minutes=30) async def test_integration_already_configured(hass: HomeAssistant) -> None: """Test integration is already configured.""" entry = MockConfigEntry( domain=DOMAIN, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "single_instance_allowed"
null
null
null
null
null
null
null
null
null
[]
12,071
youtube_dl/extractor/iqiyi.py
hackarada/youtube-dl
66,635
3349350
# coding: utf-8 from __future__ import unicode_literals import hashlib import itertools import re import time from .common import InfoExtractor from ..compat import ( compat_str, compat_urllib_parse_urlencode, ) from ..utils import ( clean_html, decode_packed_codes, get_element_by_id, get_element_by_attribute, ExtractorError, ohdave_rsa_encrypt, remove_start, ) def md5_text(text): return hashlib.md5(text.encode('utf-8')).hexdigest() class IqiyiSDK(object): def __init__(self, target, ip, timestamp): self.target = target self.ip = ip self.timestamp = timestamp @staticmethod def split_sum(data): return compat_str(sum(map(lambda p: int(p, 16), list(data)))) @staticmethod def digit_sum(num): if isinstance(num, int): num = compat_str(num) return compat_str(sum(map(int, num))) def even_odd(self): even = self.digit_sum(compat_str(self.timestamp)[::2]) odd = self.digit_sum(compat_str(self.timestamp)[1::2]) return even, odd def preprocess(self, chunksize): self.target = md5_text(self.target) chunks = [] for i in range(32 // chunksize): chunks.append(self.target[chunksize * i:chunksize * (i + 1)]) if 32 % chunksize: chunks.append(self.target[32 - 32 % chunksize:]) return chunks, list(map(int, self.ip.split('.'))) def mod(self, modulus): chunks, ip = self.preprocess(32) self.target = chunks[0] + ''.join(map(lambda p: compat_str(p % modulus), ip)) def split(self, chunksize): modulus_map = { 4: 256, 5: 10, 8: 100, } chunks, ip = self.preprocess(chunksize) ret = '' for i in range(len(chunks)): ip_part = compat_str(ip[i] % modulus_map[chunksize]) if i < 4 else '' if chunksize == 8: ret += ip_part + chunks[i] else: ret += chunks[i] + ip_part self.target = ret def handle_input16(self): self.target = md5_text(self.target) self.target = self.split_sum(self.target[:16]) + self.target + self.split_sum(self.target[16:]) def handle_input8(self): self.target = md5_text(self.target) ret = '' for i in range(4): part = self.target[8 * i:8 * (i + 1)] ret += self.split_sum(part) + part self.target = ret def handleSum(self): self.target = md5_text(self.target) self.target = self.split_sum(self.target) + self.target def date(self, scheme): self.target = md5_text(self.target) d = time.localtime(self.timestamp) strings = { 'y': compat_str(d.tm_year), 'm': '%02d' % d.tm_mon, 'd': '%02d' % d.tm_mday, } self.target += ''.join(map(lambda c: strings[c], list(scheme))) def split_time_even_odd(self): even, odd = self.even_odd() self.target = odd + md5_text(self.target) + even def split_time_odd_even(self): even, odd = self.even_odd() self.target = even + md5_text(self.target) + odd def split_ip_time_sum(self): chunks, ip = self.preprocess(32) self.target = compat_str(sum(ip)) + chunks[0] + self.digit_sum(self.timestamp) def split_time_ip_sum(self): chunks, ip = self.preprocess(32) self.target = self.digit_sum(self.timestamp) + chunks[0] + compat_str(sum(ip)) class IqiyiSDKInterpreter(object): def __init__(self, sdk_code): self.sdk_code = sdk_code def run(self, target, ip, timestamp): self.sdk_code = decode_packed_codes(self.sdk_code) functions = re.findall(r'input=([a-zA-Z0-9]+)\(input', self.sdk_code) sdk = IqiyiSDK(target, ip, timestamp) other_functions = { 'handleSum': sdk.handleSum, 'handleInput8': sdk.handle_input8, 'handleInput16': sdk.handle_input16, 'splitTimeEvenOdd': sdk.split_time_even_odd, 'splitTimeOddEven': sdk.split_time_odd_even, 'splitIpTimeSum': sdk.split_ip_time_sum, 'splitTimeIpSum': sdk.split_time_ip_sum, } for function in functions: if re.match(r'mod\d+', function): sdk.mod(int(function[3:])) elif re.match(r'date[ymd]{3}', function): sdk.date(function[4:]) elif re.match(r'split\d+', function): sdk.split(int(function[5:])) elif function in other_functions: other_functions[function]() else: raise ExtractorError('Unknown function %s' % function) return sdk.target class IqiyiIE(InfoExtractor): IE_NAME = 'iqiyi' IE_DESC = '爱奇艺' _VALID_URL = r'https?://(?:(?:[^.]+\.)?iqiyi\.com|www\.pps\.tv)/.+\.html' _NETRC_MACHINE = 'iqiyi' _TESTS = [{ 'url': 'http://www.iqiyi.com/v_19rrojlavg.html', # MD5 checksum differs on my machine and Travis CI 'info_dict': { 'id': '9c1fb1b99d192b21c559e5a1a2cb3c73', 'ext': 'mp4', 'title': '美国德州空中惊现奇异云团 酷似UFO', } }, { 'url': 'http://www.iqiyi.com/v_19rrhnnclk.html', 'md5': 'b7dc800a4004b1b57749d9abae0472da', 'info_dict': { 'id': 'e3f585b550a280af23c98b6cb2be19fb', 'ext': 'mp4', # This can be either Simplified Chinese or Traditional Chinese 'title': r're:^(?:名侦探柯南 国语版:第752集 迫近灰原秘密的黑影 下篇|名偵探柯南 國語版:第752集 迫近灰原秘密的黑影 下篇)$', }, 'skip': 'Geo-restricted to China', }, { 'url': 'http://www.iqiyi.com/w_19rt6o8t9p.html', 'only_matching': True, }, { 'url': 'http://www.iqiyi.com/a_19rrhbc6kt.html', 'only_matching': True, }, { 'url': 'http://yule.iqiyi.com/pcb.html', 'info_dict': { 'id': '4a0af228fddb55ec96398a364248ed7f', 'ext': 'mp4', 'title': '第2017-04-21期 女艺人频遭极端粉丝骚扰', }, }, { # VIP-only video. The first 2 parts (6 minutes) are available without login # MD5 sums omitted as values are different on Travis CI and my machine 'url': 'http://www.iqiyi.com/v_19rrny4w8w.html', 'info_dict': { 'id': 'f3cf468b39dddb30d676f89a91200dc1', 'ext': 'mp4', 'title': '泰坦尼克号', }, 'skip': 'Geo-restricted to China', }, { 'url': 'http://www.iqiyi.com/a_19rrhb8ce1.html', 'info_dict': { 'id': '202918101', 'title': '灌篮高手 国语版', }, 'playlist_count': 101, }, { 'url': 'http://www.pps.tv/w_19rrbav0ph.html', 'only_matching': True, }] _FORMATS_MAP = { '96': 1, # 216p, 240p '1': 2, # 336p, 360p '2': 3, # 480p, 504p '21': 4, # 504p '4': 5, # 720p '17': 5, # 720p '5': 6, # 1072p, 1080p '18': 7, # 1080p } def _real_initialize(self): self._login() @staticmethod def _rsa_fun(data): # public key extracted from http://static.iqiyi.com/js/qiyiV2/20160129180840/jobs/i18n/i18nIndex.js N = 0xab86b6371b5318aaa1d3c9e612a9f1264f372323c8c0f19875b5fc3b3fd3afcc1e5bec527aa94bfa85bffc157e4245aebda05389a5357b75115ac94f074aefcd e = 65537 return ohdave_rsa_encrypt(data, e, N) def _login(self): username, password = self._get_login_info() # No authentication to be performed if not username: return True data = self._download_json( 'http://kylin.iqiyi.com/get_token', None, note='Get token for logging', errnote='Unable to get token for logging') sdk = data['sdk'] timestamp = int(time.time()) target = '/apis/reglogin/login.action?lang=zh_TW&area_code=null&email=%s&passwd=%s&agenttype=1&from=undefined&keeplogin=0&piccode=&fromurl=&_pos=1' % ( username, self._rsa_fun(password.encode('utf-8'))) interp = IqiyiSDKInterpreter(sdk) sign = interp.run(target, data['ip'], timestamp) validation_params = { 'target': target, 'server': 'BEA3AA1908656AABCCFF76582C4C6660', 'token': data['token'], 'bird_src': 'f8d91d57af224da7893dd397d52d811a', 'sign': sign, 'bird_t': timestamp, } validation_result = self._download_json( 'http://kylin.iqiyi.com/validate?' + compat_urllib_parse_urlencode(validation_params), None, note='Validate credentials', errnote='Unable to validate credentials') MSG_MAP = { 'P00107': 'please login via the web interface and enter the CAPTCHA code', 'P00117': 'bad username or password', } code = validation_result['code'] if code != 'A00000': msg = MSG_MAP.get(code) if not msg: msg = 'error %s' % code if validation_result.get('msg'): msg += ': ' + validation_result['msg'] self._downloader.report_warning('unable to log in: ' + msg) return False return True def get_raw_data(self, tvid, video_id): tm = int(time.time() * 1000) key = 'd5fb4bd9d50c4be6948c97edd7254b0e' sc = md5_text(compat_str(tm) + key + tvid) params = { 'tvid': tvid, 'vid': video_id, 'src': '76f90cbd92f94a2e925d83e8ccd22cb7', 'sc': sc, 't': tm, } return self._download_json( 'http://cache.m.iqiyi.com/jp/tmts/%s/%s/' % (tvid, video_id), video_id, transform_source=lambda s: remove_start(s, 'var tvInfoJs='), query=params, headers=self.geo_verification_headers()) def _extract_playlist(self, webpage): PAGE_SIZE = 50 links = re.findall( r'<a[^>]+class="site-piclist_pic_link"[^>]+href="(http://www\.iqiyi\.com/.+\.html)"', webpage) if not links: return album_id = self._search_regex( r'albumId\s*:\s*(\d+),', webpage, 'album ID') album_title = self._search_regex( r'data-share-title="([^"]+)"', webpage, 'album title', fatal=False) entries = list(map(self.url_result, links)) # Start from 2 because links in the first page are already on webpage for page_num in itertools.count(2): pagelist_page = self._download_webpage( 'http://cache.video.qiyi.com/jp/avlist/%s/%d/%d/' % (album_id, page_num, PAGE_SIZE), album_id, note='Download playlist page %d' % page_num, errnote='Failed to download playlist page %d' % page_num) pagelist = self._parse_json( remove_start(pagelist_page, 'var tvInfoJs='), album_id) vlist = pagelist['data']['vlist'] for item in vlist: entries.append(self.url_result(item['vurl'])) if len(vlist) < PAGE_SIZE: break return self.playlist_result(entries, album_id, album_title) def _real_extract(self, url): webpage = self._download_webpage( url, 'temp_id', note='download video page') # There's no simple way to determine whether an URL is a playlist or not # Sometimes there are playlist links in individual videos, so treat it # as a single video first tvid = self._search_regex( r'data-(?:player|shareplattrigger)-tvid\s*=\s*[\'"](\d+)', webpage, 'tvid', default=None) if tvid is None: playlist_result = self._extract_playlist(webpage) if playlist_result: return playlist_result raise ExtractorError('Can\'t find any video') video_id = self._search_regex( r'data-(?:player|shareplattrigger)-videoid\s*=\s*[\'"]([a-f\d]+)', webpage, 'video_id') formats = [] for _ in range(5): raw_data = self.get_raw_data(tvid, video_id) if raw_data['code'] != 'A00000': if raw_data['code'] == 'A00111': self.raise_geo_restricted() raise ExtractorError('Unable to load data. Error code: ' + raw_data['code']) data = raw_data['data'] for stream in data['vidl']: if 'm3utx' not in stream: continue vd = compat_str(stream['vd']) formats.append({ 'url': stream['m3utx'], 'format_id': vd, 'ext': 'mp4', 'preference': self._FORMATS_MAP.get(vd, -1), 'protocol': 'm3u8_native', }) if formats: break self._sleep(5, video_id) self._sort_formats(formats) title = (get_element_by_id('widget-videotitle', webpage) or clean_html(get_element_by_attribute('class', 'mod-play-tit', webpage)) or self._html_search_regex(r'<span[^>]+data-videochanged-title="word"[^>]*>([^<]+)</span>', webpage, 'title')) return { 'id': video_id, 'title': title, 'formats': formats, }
null
null
null
null
null
null
null
null
null
[]
2,729
homeassistant/components/flux_led/switch.py
learn-home-automation/core
22,481
4824441
"""Support for Magic Home switches.""" from __future__ import annotations from typing import Any from flux_led import DeviceType from flux_led.aio import AIOWifiLedBulb from flux_led.const import MODE_MUSIC from homeassistant import config_entries from homeassistant.components.switch import SwitchEntity from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ( CONF_REMOTE_ACCESS_ENABLED, CONF_REMOTE_ACCESS_HOST, CONF_REMOTE_ACCESS_PORT, DOMAIN, ) from .coordinator import FluxLedUpdateCoordinator from .discovery import async_clear_discovery_cache from .entity import FluxBaseEntity, FluxEntity, FluxOnOffEntity async def async_setup_entry( hass: HomeAssistant, entry: config_entries.ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the Flux lights.""" coordinator: FluxLedUpdateCoordinator = hass.data[DOMAIN][entry.entry_id] entities: list[FluxSwitch | FluxRemoteAccessSwitch | FluxMusicSwitch] = [] unique_id = entry.unique_id name = entry.data[CONF_NAME] if coordinator.device.device_type == DeviceType.Switch: entities.append(FluxSwitch(coordinator, unique_id, name)) if entry.data.get(CONF_REMOTE_ACCESS_HOST): entities.append(FluxRemoteAccessSwitch(coordinator.device, entry)) if coordinator.device.microphone: entities.append(FluxMusicSwitch(coordinator, unique_id, name)) if entities: async_add_entities(entities) class FluxSwitch(FluxOnOffEntity, CoordinatorEntity, SwitchEntity): """Representation of a Flux switch.""" async def _async_turn_on(self, **kwargs: Any) -> None: """Turn the device on.""" if not self.is_on: await self._device.async_turn_on() class FluxRemoteAccessSwitch(FluxBaseEntity, SwitchEntity): """Representation of a Flux remote access switch.""" _attr_should_poll = False _attr_entity_category = EntityCategory.CONFIG def __init__( self, device: AIOWifiLedBulb, entry: config_entries.ConfigEntry, ) -> None: """Initialize the light.""" super().__init__(device, entry) self._attr_name = f"{entry.data[CONF_NAME]} Remote Access" if entry.unique_id: self._attr_unique_id = f"{entry.unique_id}_remote_access" async def async_turn_on(self, **kwargs: Any) -> None: """Turn the remote access on.""" await self._device.async_enable_remote_access( self.entry.data[CONF_REMOTE_ACCESS_HOST], self.entry.data[CONF_REMOTE_ACCESS_PORT], ) await self._async_update_entry(True) async def _async_update_entry(self, new_state: bool) -> None: """Update the entry with the new state on success.""" async_clear_discovery_cache(self.hass, self._device.ipaddr) self.hass.config_entries.async_update_entry( self.entry, data={**self.entry.data, CONF_REMOTE_ACCESS_ENABLED: new_state}, ) self.async_write_ha_state() async def async_turn_off(self, **kwargs: Any) -> None: """Turn the remote access off.""" await self._device.async_disable_remote_access() await self._async_update_entry(False) @property def is_on(self) -> bool: """Return true if remote access is enabled.""" return bool(self.entry.data[CONF_REMOTE_ACCESS_ENABLED]) @property def icon(self) -> str: """Return icon based on state.""" return "mdi:cloud-outline" if self.is_on else "mdi:cloud-off-outline" class FluxMusicSwitch(FluxEntity, SwitchEntity): """Representation of a Flux music switch.""" def __init__( self, coordinator: FluxLedUpdateCoordinator, unique_id: str | None, name: str, ) -> None: """Initialize the flux music switch.""" super().__init__(coordinator, unique_id, name) self._attr_name = f"{name} Music" if unique_id: self._attr_unique_id = f"{unique_id}_music" async def async_turn_on(self, **kwargs: Any) -> None: """Turn the microphone on.""" await self._async_ensure_device_on() await self._device.async_set_music_mode() self.async_write_ha_state() await self.coordinator.async_request_refresh() async def async_turn_off(self, **kwargs: Any) -> None: """Turn the microphone off.""" await self._device.async_set_levels(*self._device.rgb, brightness=255) self.async_write_ha_state() await self.coordinator.async_request_refresh() @property def is_on(self) -> bool: """Return true if microphone is is on.""" return self._device.is_on and self._device.effect == MODE_MUSIC @property def icon(self) -> str: """Return icon based on state.""" return "mdi:microphone" if self.is_on else "mdi:microphone-off"
0
0
0.0
10
0
0
1.0
0
23
[]
3,113
src/tools/vttests/template.py
Ghosty141/Terminal
34,359
188124
################################################################################ # # # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # # ################################################################################ import sys import time # time.sleep is in seconds from common import * # Run this file with: # python name-of-file.py if __name__ == '__main__': clear_all() print('This is the VT Test template.')
1
0
0.0
1
0
1
1.0
0
1
[ { "impacts": [ { "severity": "HIGH", "softwareQuality": "MAINTAINABILITY" } ], "line": 10, "message": "Import only needed names or import the module and then use its members.", "textRange": { "endLine": 10, "endOffset": 20, "startLine": 10, "startOffset": 0 }, "type": "CODE_SMELL" } ]
1,145