--- license: mit language: en tags: - pathological-speech - speech-synthesis - tts - voice-conversion - healthy-control - torgo --- # Torgo Healthy Female Dataset (Updated) ## Overview This dataset contains healthy control speech samples from a female speaker (FC02) in the TORGO corpus, prepared for pathological speech synthesis research. **Speaker Information:** - **Speaker ID:** FC02 - **Corpus:** TORGO - **Gender:** Female - **Speech Status:** Healthy Control ## Dataset Statistics - **Total Samples:** 800 - **Total Duration:** 0.63 hours - **Sampling Rate:** 24,000 Hz - **Format:** Audio arrays with transcriptions ### Training Split - **Samples:** 700 - **Duration:** 0.55 hours - **Avg Duration:** 2.9s - **Duration Range:** 1.6s - 7.5s - **Avg Text Length:** 13 characters ### Test Split - **Samples:** 100 - **Duration:** 0.08 hours - **Avg Duration:** 2.9s - **Duration Range:** 1.9s - 6.3s - **Avg Text Length:** 14 characters ### Loading the Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("your-username/torgo_healthy_female") # Access train and test splits train_data = dataset['train'] test_data = dataset['test'] # Each sample contains: # - 'audio': {'array': numpy_array, 'sampling_rate': 24000} # - 'text': str (normalized transcription) # Example usage sample = train_data[0] audio_array = sample['audio']['array'] transcription = sample['text'] sampling_rate = sample['audio']['sampling_rate'] ``` ### Direct Training with Transformers ```python from transformers import Trainer from datasets import load_dataset # Load and use directly with Trainer (no preprocessing needed) dataset = load_dataset("your-username/torgo_healthy_female") trainer = Trainer( train_dataset=dataset['train'], eval_dataset=dataset['test'], # ... other trainer arguments ) ```