|
import cv2 |
|
import matplotlib.pyplot as plt |
|
from matplotlib.path import Path |
|
plt.rcParams['figure.dpi'] = 100 |
|
from PIL import ImageColor |
|
from pathlib import Path |
|
import glob |
|
import os |
|
import json |
|
|
|
def annotate_images_dataset(image_folder, label_folder, class_file_path, saving_folder, hex_class_colors=None, show=False): |
|
""" |
|
Allows to visualize a set of images and corresponding YOLO labels. |
|
Args: |
|
image_folder (str): path of the folder containing the images for object detection |
|
label_folder (str): path of the folder containing the labels corresponding to the images for object detection |
|
class_file_path (str): path of the json file containing the labels of the object classes |
|
saving_folder (str): path of the folder |
|
hex_class_colors (dict, optional): dictionary with HEX color for each label |
|
show (bool, optional): if True, a prompt with the labelled image opens |
|
""" |
|
class_dic = get_class_dic(class_file_path) |
|
Path(saving_folder).mkdir(parents=True, exist_ok=True) |
|
if not hex_class_colors: |
|
hex_class_colors = {class_name: (255, 0, 0) for class_name in class_dic.values()} |
|
color_map = {key: ImageColor.getcolor(hex_class_colors[class_dic[key]], 'RGB') for key in [*class_dic]} |
|
label_paths = sorted(glob.glob(os.path.join(label_folder, '*'))) |
|
n_labels = len(label_paths) |
|
for i, label_path in enumerate(label_paths): |
|
i += 1 |
|
if i % 100 == 0: |
|
progress = i / n_labels |
|
print(f'{progress: .0%} -> image {i} out of {n_labels}') |
|
file_name = str(label_path).split('/')[-1].split('.')[0] |
|
image_file = file_name + '.jpg' |
|
image_path = os.path.join(image_folder, image_file) |
|
if os.path.isfile(image_path): |
|
img = cv2.imread(image_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
dh, dw, _ = img.shape |
|
|
|
with open(label_path, 'r') as f: |
|
data = f.readlines() |
|
|
|
for yolo_box in data: |
|
yolo_box = yolo_box.strip() |
|
c, x, y, w, h = map(float, yolo_box.split(' ')) |
|
l = int((x - w / 2) * dw) |
|
r = int((x + w / 2) * dw) |
|
t = int((y - h / 2) * dh) |
|
b = int((y + h / 2) * dh) |
|
|
|
if l < 0: |
|
l = 0 |
|
if r > dw - 1: |
|
r = dw - 1 |
|
if t < 0: |
|
t = 0 |
|
if b > dh - 1: |
|
b = dh - 1 |
|
cv2.rectangle(img, (l, t), (r, b), color_map[c], 3) |
|
if show: |
|
plt.imshow(img) |
|
plt.show() |
|
plt.imsave(os.path.join(saving_folder, f'annotated_{image_file}'), img) |
|
else: |
|
print(f'WARNING: {image_path} does not exists') |
|
|
|
|
|
def get_class_dic(classe_file_path): |
|
""" |
|
Turns a label list txt file into a dict with numerical class as key and corresponding label as value |
|
Args: |
|
classe_file_path (str): path to the json file listing the labels |
|
|
|
Returns: |
|
dict: dictionary of numerical class as key and corresponding label as value |
|
""" |
|
class_dic = {} |
|
with open(classe_file_path) as f: |
|
class_dic = json.load(f) |
|
class_dic = {int(k):v for k,v in class_dic.items()} |
|
return class_dic |
|
|
|
|
|
if __name__ == '__main__': |
|
dataset_folder_names = ['train', 'val'] |
|
dataset_prefix_folder = '../data' |
|
saving_prefix_folder = '../_labelled_dataset_images' |
|
show = not True |
|
hex_class_colors = {'green_cherry': '#9CF09A', |
|
'yellow_cherry': '#F3C63D', |
|
'red_cherry': '#F44336', |
|
'dark_brown_cherry': '#C36105', |
|
'low_visibility_unsure': '#02D5FA'} |
|
for dataset_folder_name in dataset_folder_names: |
|
print(f'dataset: {dataset_folder_name}:\n') |
|
full_saving_folder = os.path.join(saving_prefix_folder, dataset_folder_name) |
|
full_dataset_folder = os.path.join(dataset_prefix_folder, dataset_folder_name) |
|
class_file_path = os.path.join('../', 'classes.json') |
|
image_folder = os.path.join(full_dataset_folder, 'images') |
|
label_folder = os.path.join(full_dataset_folder, 'labels') |
|
annotate_images_dataset( |
|
image_folder=image_folder, |
|
label_folder=label_folder, |
|
class_file_path=class_file_path, |
|
saving_folder=full_saving_folder, |
|
hex_class_colors=hex_class_colors, |
|
show=show, |
|
) |