import cv2 import matplotlib.pyplot as plt from matplotlib.path import Path plt.rcParams['figure.dpi'] = 100 from PIL import ImageColor from pathlib import Path import glob import os import json def annotate_images_dataset(image_folder, label_folder, class_file_path, saving_folder, hex_class_colors=None, show=False): """ Allows to visualize a set of images and corresponding YOLO labels. Args: image_folder (str): path of the folder containing the images for object detection label_folder (str): path of the folder containing the labels corresponding to the images for object detection class_file_path (str): path of the json file containing the labels of the object classes saving_folder (str): path of the folder hex_class_colors (dict, optional): dictionary with HEX color for each label show (bool, optional): if True, a prompt with the labelled image opens """ class_dic = get_class_dic(class_file_path) Path(saving_folder).mkdir(parents=True, exist_ok=True) if not hex_class_colors: hex_class_colors = {class_name: (255, 0, 0) for class_name in class_dic.values()} color_map = {key: ImageColor.getcolor(hex_class_colors[class_dic[key]], 'RGB') for key in [*class_dic]} label_paths = sorted(glob.glob(os.path.join(label_folder, '*'))) n_labels = len(label_paths) for i, label_path in enumerate(label_paths): i += 1 if i % 100 == 0: progress = i / n_labels print(f'{progress: .0%} -> image {i} out of {n_labels}') file_name = str(label_path).split('/')[-1].split('.')[0] image_file = file_name + '.jpg' image_path = os.path.join(image_folder, image_file) if os.path.isfile(image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dh, dw, _ = img.shape with open(label_path, 'r') as f: data = f.readlines() for yolo_box in data: yolo_box = yolo_box.strip() c, x, y, w, h = map(float, yolo_box.split(' ')) l = int((x - w / 2) * dw) r = int((x + w / 2) * dw) t = int((y - h / 2) * dh) b = int((y + h / 2) * dh) if l < 0: l = 0 if r > dw - 1: r = dw - 1 if t < 0: t = 0 if b > dh - 1: b = dh - 1 cv2.rectangle(img, (l, t), (r, b), color_map[c], 3) if show: plt.imshow(img) plt.show() plt.imsave(os.path.join(saving_folder, f'annotated_{image_file}'), img) else: print(f'WARNING: {image_path} does not exists') def get_class_dic(classe_file_path): """ Turns a label list txt file into a dict with numerical class as key and corresponding label as value Args: classe_file_path (str): path to the json file listing the labels Returns: dict: dictionary of numerical class as key and corresponding label as value """ class_dic = {} with open(classe_file_path) as f: class_dic = json.load(f) class_dic = {int(k):v for k,v in class_dic.items()} return class_dic if __name__ == '__main__': dataset_folder_names = ['train', 'val'] dataset_prefix_folder = '../data' saving_prefix_folder = '../_labelled_dataset_images' show = not True hex_class_colors = {'green_cherry': '#9CF09A', 'yellow_cherry': '#F3C63D', 'red_cherry': '#F44336', 'dark_brown_cherry': '#C36105', 'low_visibility_unsure': '#02D5FA'} for dataset_folder_name in dataset_folder_names: print(f'dataset: {dataset_folder_name}:\n') full_saving_folder = os.path.join(saving_prefix_folder, dataset_folder_name) full_dataset_folder = os.path.join(dataset_prefix_folder, dataset_folder_name) class_file_path = os.path.join('../', 'classes.json') image_folder = os.path.join(full_dataset_folder, 'images') label_folder = os.path.join(full_dataset_folder, 'labels') annotate_images_dataset( image_folder=image_folder, label_folder=label_folder, class_file_path=class_file_path, saving_folder=full_saving_folder, hex_class_colors=hex_class_colors, show=show, )