--- dataset_info: features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: subset dtype: string splits: - name: train num_bytes: 1747136221 num_examples: 93581 download_size: 1009882538 dataset_size: 1747136221 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-sa-4.0 task_categories: - question-answering language: - en pretty_name: RLHN-100K size_categories: - 10K Note: RLHN datasets are not **new** training datasets, but rather existing BGE collection training datasets with hard negatives cleaned! ## Dataset Structure To access the data using HuggingFace `datasets`: ```python rlhn = datasets.load_dataset('rlhn/rlhn-100K') # training set: for data in freshstack['train']: query_id = data["query_id"] # md5 hash of the query_id query = data["query"] # query text subset = data["subset"] # training dataset, e.g., fiqa or msmarco_passage # positive passages for positive_passage in data["positive_passages"]: doc_id = positive_passage["docid"] title = positive_passage["title"] # title is usually empty, added in text text = positive_passage["text"] # contains both the title & text # hard negative passages for negative_passage in data["negative_passages"]: doc_id = negative_passage["docid"] title = negative_passage["title"] # title is usually empty, added in text text = negative_passage["text"] # contains both the title & text ``` ## Original Dataset Statistics The following table contains the number of training pairs for each training dataset included in RLHN. These numbers are for the default setting. | Dataset | 100K splits | 250K splits | 400K splits | 680K splits | |-------------------|-------------|-------------|-------------|------------- | | arguana | 4,065 | 4,065 | 4,065 | 4,065 | | fever | 28,755 | 28,755 | 28,755 | 28,755 | | fiqa | 5,500 | 5,500 | 5,500 | 5,500 | | hotpotqa | 10,250 | 30,000 | 84,516 | 84,516 | | msmarco_passage | 49,571 | 145,000 | 210,000 | 485,823 | | nq | 6,110 | 30,000 | 58,568 | 58,568 | | scidocsrr | 12,654 | 12,654 | 12,654 | 12,654 | | **total** | **96,167** | **255,974** | **404,058** | **679,881** | ## License The RLHN dataset is made available with the CC-BY-SA 4.0 license. ## Hashing & IDs We generate the md5 hash as the unique identifier (ID) for both the query \& documents, using the code below: ```python import hashlib def get_md5_hash(text): """Calculates the MD5 hash of a given string. Args: text: The string to hash. Returns: The MD5 hash of the string as a hexadecimal string. """ text_bytes = text.encode('utf-8') # Encode the string to bytes md5_hash = hashlib.md5(text_bytes).hexdigest() return md5_hash ``` ## Citation ``` @misc{thakur2025relabel, title={Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval}, author={Nandan Thakur and Crystina Zhang and Xueguang Ma and Jimmy Lin}, year={2025}, eprint={2505.16967}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2505.16967}, } ```