Datasets:
Add comprehensive README
Browse files
README.md
CHANGED
|
@@ -1,97 +1,111 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- name: domain_scores
|
| 21 |
-
sequence: float64
|
| 22 |
-
- name: document_type_scores
|
| 23 |
-
sequence: float64
|
| 24 |
-
- name: text
|
| 25 |
-
dtype: string
|
| 26 |
-
- name: authors
|
| 27 |
-
sequence: string
|
| 28 |
-
- name: article_url
|
| 29 |
-
dtype: string
|
| 30 |
-
- name: license_type
|
| 31 |
-
dtype: string
|
| 32 |
-
- name: license_url
|
| 33 |
-
dtype: string
|
| 34 |
-
- name: language
|
| 35 |
-
dtype: string
|
| 36 |
-
- name: language_score
|
| 37 |
-
dtype: float64
|
| 38 |
-
- name: age_group
|
| 39 |
-
dtype: float64
|
| 40 |
-
- name: assertion_type
|
| 41 |
-
dtype: float64
|
| 42 |
-
- name: certainty_level
|
| 43 |
-
dtype: float64
|
| 44 |
-
- name: contains_abbreviations
|
| 45 |
-
dtype: float64
|
| 46 |
-
- name: contains_bias
|
| 47 |
-
dtype: float64
|
| 48 |
-
- name: contains_numbers
|
| 49 |
-
dtype: float64
|
| 50 |
-
- name: content_novelty
|
| 51 |
-
dtype: float64
|
| 52 |
-
- name: content_richness
|
| 53 |
-
dtype: float64
|
| 54 |
-
- name: list_format
|
| 55 |
-
dtype: float64
|
| 56 |
-
- name: pretraining_suitable
|
| 57 |
-
dtype: float64
|
| 58 |
-
- name: rewriting_needed
|
| 59 |
-
dtype: float64
|
| 60 |
-
- name: sex
|
| 61 |
-
dtype: float64
|
| 62 |
-
- name: terminology_precision
|
| 63 |
-
dtype: float64
|
| 64 |
-
- name: writing_quality
|
| 65 |
-
dtype: float64
|
| 66 |
-
- name: content_type
|
| 67 |
-
dtype: string
|
| 68 |
-
- name: content_type_confidence
|
| 69 |
-
dtype: float64
|
| 70 |
-
- name: interactive_elements
|
| 71 |
-
dtype: string
|
| 72 |
-
- name: interactive_elements_confidence
|
| 73 |
-
dtype: float64
|
| 74 |
-
- name: medical_subfield
|
| 75 |
-
dtype: int64
|
| 76 |
-
- name: medical_subfield_confidence
|
| 77 |
-
dtype: float64
|
| 78 |
-
- name: text_type
|
| 79 |
-
dtype: int64
|
| 80 |
-
- name: text_type_confidence
|
| 81 |
-
dtype: float64
|
| 82 |
-
- name: writing_style
|
| 83 |
-
dtype: int64
|
| 84 |
-
- name: writing_style_confidence
|
| 85 |
-
dtype: float64
|
| 86 |
-
splits:
|
| 87 |
-
- name: train
|
| 88 |
-
num_bytes: 18899951
|
| 89 |
-
num_examples: 6200
|
| 90 |
-
download_size: 9849934
|
| 91 |
-
dataset_size: 18899951
|
| 92 |
-
configs:
|
| 93 |
-
- config_name: default
|
| 94 |
-
data_files:
|
| 95 |
-
- split: train
|
| 96 |
-
path: data/train-*
|
| 97 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- fr
|
| 5 |
+
size_categories:
|
| 6 |
+
- 10K<n<100K
|
| 7 |
+
task_categories:
|
| 8 |
+
- text-classification
|
| 9 |
+
- text-regression
|
| 10 |
+
tags:
|
| 11 |
+
- medical
|
| 12 |
+
- french
|
| 13 |
+
- biomedical
|
| 14 |
+
- clinical
|
| 15 |
+
- annotations
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
- high-quality
|
| 19 |
+
pretty_name: Biomed-FR-v3 Top 30% Quality Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
---
|
| 21 |
+
|
| 22 |
+
# Biomed-FR-v3 Top 30% Quality Dataset
|
| 23 |
+
|
| 24 |
+
This dataset contains French biomedical text annotated with **20 different classification and regression tasks** using the `rntc/biomed-fr-v2-classifier` model.
|
| 25 |
+
|
| 26 |
+
## Dataset Summary
|
| 27 |
+
|
| 28 |
+
- **Total samples**: 6,200
|
| 29 |
+
- **Total columns**: 41
|
| 30 |
+
- **Annotation tasks**: 25
|
| 31 |
+
- **Language**: French
|
| 32 |
+
- **Domain**: Biomedical/Clinical
|
| 33 |
+
- **Filter criteria**: Top 30% quality: educational_score, writing_quality, content_richness, terminology_precision all >= 70th percentile
|
| 34 |
+
|
| 35 |
+
## Key Features
|
| 36 |
+
|
| 37 |
+
- ✅ **Complete annotation coverage**: All 20 tasks from biomed-fr-v2-classifier
|
| 38 |
+
- ✅ **Includes `rewriting_needed`**: Critical regression task for content quality
|
| 39 |
+
- ✅ **Quality metrics**: Educational scores, terminology precision, content richness
|
| 40 |
+
- ✅ **Clinical focus**: Medical subfield classification, clinical case detection
|
| 41 |
+
- ✅ **Proper column order**: Original educational_score preserved (1-5 scale)
|
| 42 |
+
|
| 43 |
+
## Annotation Tasks
|
| 44 |
+
|
| 45 |
+
### Regression Tasks (15)
|
| 46 |
+
- `rewriting_needed`: Content rewriting necessity score
|
| 47 |
+
- `contains_bias`: Bias detection score
|
| 48 |
+
- `writing_quality`: Text quality assessment
|
| 49 |
+
- `terminology_precision`: Medical terminology accuracy
|
| 50 |
+
- `content_richness`: Information density score
|
| 51 |
+
- Plus others: age_group, assertion_type, certainty_level, etc.
|
| 52 |
+
|
| 53 |
+
### Classification Tasks (5)
|
| 54 |
+
- `medical_subfield`: 45 medical specialties
|
| 55 |
+
- `content_type`: 9 content categories
|
| 56 |
+
- `writing_style`: 5 writing styles
|
| 57 |
+
- `text_type`: meaningful vs incomplete
|
| 58 |
+
- `interactive_elements`: 4 interaction types
|
| 59 |
+
|
| 60 |
+
## Usage
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
from datasets import load_dataset
|
| 64 |
+
|
| 65 |
+
# Load the dataset
|
| 66 |
+
dataset = load_dataset("rntc/bb-tt-3-s3")
|
| 67 |
+
|
| 68 |
+
# Access key annotations
|
| 69 |
+
texts = dataset["train"]["text"]
|
| 70 |
+
rewriting_scores = dataset["train"]["rewriting_needed"]
|
| 71 |
+
educational_scores = dataset["train"]["educational_score"] # Original 1-5 scale
|
| 72 |
+
medical_fields = dataset["train"]["medical_subfield"]
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## Data Quality
|
| 76 |
+
|
| 77 |
+
- All samples processed with consistent batch processing
|
| 78 |
+
- Original educational_score preserved (0.58-5.10 scale)
|
| 79 |
+
- Regression outputs clearly separated (e.g., educational_score_predicted)
|
| 80 |
+
- Dimension mismatches handled for classification tasks
|
| 81 |
+
- Complete 20-task coverage including previously missing regression tasks
|
| 82 |
+
|
| 83 |
+
## Model Information
|
| 84 |
+
|
| 85 |
+
Annotations generated using:
|
| 86 |
+
- **Model**: `rntc/biomed-fr-v2-classifier`
|
| 87 |
+
- **Base model**: `almanach/camembertv2-base`
|
| 88 |
+
- **Tasks**: 20 multi-task classification and regression heads
|
| 89 |
+
- **Key fix**: Restored original educational_score column
|
| 90 |
+
|
| 91 |
+
## Citation
|
| 92 |
+
|
| 93 |
+
```bibtex
|
| 94 |
+
@dataset{biomed_fr_v3_annotated,
|
| 95 |
+
title={Biomed-FR-v3 Top 30% Quality Dataset},
|
| 96 |
+
author={RNTC Research Team},
|
| 97 |
+
year={2024},
|
| 98 |
+
url={https://huggingface.co/datasets/rntc/bb-tt-3-s3},
|
| 99 |
+
note={French biomedical corpus with complete 20-task annotations}
|
| 100 |
+
}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## License
|
| 104 |
+
|
| 105 |
+
MIT License - see LICENSE file for details.
|
| 106 |
+
|
| 107 |
+
## Related Datasets
|
| 108 |
+
|
| 109 |
+
- **Full dataset**: `rntc/bb-tt-3`
|
| 110 |
+
- **Pretraining subset**: `rntc/bb-tt-3-pretrain`
|
| 111 |
+
|