--- license: mit language: - fr size_categories: - 10K= 80th percentile ## Key Features - ✅ **Complete annotation coverage**: All 20 tasks from biomed-fr-v2-classifier - ✅ **Includes `rewriting_needed`**: Critical regression task for content quality - ✅ **Quality metrics**: Educational scores, terminology precision, content richness - ✅ **Clinical focus**: Medical subfield classification, clinical case detection - ✅ **Proper column order**: Original educational_score preserved (1-5 scale) ## Annotation Tasks ### Regression Tasks (15) - `rewriting_needed`: Content rewriting necessity score - `contains_bias`: Bias detection score - `writing_quality`: Text quality assessment - `terminology_precision`: Medical terminology accuracy - `content_richness`: Information density score - Plus others: age_group, assertion_type, certainty_level, etc. ### Classification Tasks (5) - `medical_subfield`: 45 medical specialties - `content_type`: 9 content categories - `writing_style`: 5 writing styles - `text_type`: meaningful vs incomplete - `interactive_elements`: 4 interaction types ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("rntc/bb-tt-3-s4") # Access key annotations texts = dataset["train"]["text"] rewriting_scores = dataset["train"]["rewriting_needed"] educational_scores = dataset["train"]["educational_score"] # Original 1-5 scale medical_fields = dataset["train"]["medical_subfield"] ``` ## Data Quality - All samples processed with consistent batch processing - Original educational_score preserved (0.58-5.10 scale) - Regression outputs clearly separated (e.g., educational_score_predicted) - Dimension mismatches handled for classification tasks - Complete 20-task coverage including previously missing regression tasks ## Model Information Annotations generated using: - **Model**: `rntc/biomed-fr-v2-classifier` - **Base model**: `almanach/camembertv2-base` - **Tasks**: 20 multi-task classification and regression heads - **Key fix**: Restored original educational_score column ## Citation ```bibtex @dataset{biomed_fr_v3_annotated, title={Biomed-FR-v3 Top 20% Quality Dataset}, author={RNTC Research Team}, year={2024}, url={https://huggingface.co/datasets/rntc/bb-tt-3-s4}, note={French biomedical corpus with complete 20-task annotations} } ``` ## License MIT License - see LICENSE file for details. ## Related Datasets - **Full dataset**: `rntc/bb-tt-3` - **Pretraining subset**: `rntc/bb-tt-3-pretrain`