rpeinl commited on
Commit
6ce98b3
·
verified ·
1 Parent(s): c5c95e3

Upload 7 files

Browse files

first version of the data

README.md CHANGED
@@ -1,19 +1,300 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- task_categories:
4
- - visual-question-answering
5
- language:
6
- - de
7
- - en
8
- tags:
9
- - factual-knowledge
10
- - multi-lingual
11
- - biology
12
- - celebrities
13
- - cars
14
- - supermarket
15
- - products
16
- - ocr
17
- size_categories:
18
- - 1K<n<10K
19
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ - config_name: animals
4
+ features:
5
+ - name: Filename
6
+ dtype: string
7
+ - name: full_species_name_DE
8
+ dtype: string
9
+ - name: full_species_name_EN
10
+ dtype: string
11
+ - name: family_name_DE
12
+ dtype: string
13
+ - name: family_name_EN
14
+ dtype: string
15
+ - name: acceptable_generalization
16
+ dtype: string
17
+ - name: Alias
18
+ dtype: string
19
+ - name: Remarks
20
+ dtype: string
21
+ - name: scientific_name
22
+ dtype: string
23
+ - name: scientific_family_name
24
+ dtype: string
25
+ - name: common_name_DE
26
+ dtype: string
27
+ - name: common_name_EN
28
+ dtype: string
29
+ - name: language
30
+ dtype: string
31
+ - name: category
32
+ dtype: string
33
+ - name: subcategory
34
+ dtype: string
35
+ - name: self_collected
36
+ dtype: string
37
+ - name: full_path
38
+ dtype: string
39
+ - name: image
40
+ dtype: image
41
+ splits:
42
+ - name: full
43
+ num_bytes: 33800694.0
44
+ num_examples: 347
45
+ download_size: 33755238
46
+ dataset_size: 33800694.0
47
+ - config_name: cars
48
+ features:
49
+ - name: Filename
50
+ dtype: string
51
+ - name: company
52
+ dtype: string
53
+ - name: model_name
54
+ dtype: string
55
+ - name: category_EN
56
+ dtype: string
57
+ - name: category_DE
58
+ dtype: string
59
+ - name: language
60
+ dtype: string
61
+ - name: category
62
+ dtype: string
63
+ - name: self_collected
64
+ dtype: string
65
+ - name: full_path
66
+ dtype: string
67
+ - name: image
68
+ dtype: image
69
+ splits:
70
+ - name: full
71
+ num_bytes: 31270976.0
72
+ num_examples: 345
73
+ download_size: 31240949
74
+ dataset_size: 31270976.0
75
+ - config_name: celebrity
76
+ features:
77
+ - name: Filename
78
+ dtype: string
79
+ - name: first_name
80
+ dtype: string
81
+ - name: last_name
82
+ dtype: string
83
+ - name: alternative_name
84
+ dtype: string
85
+ - name: name
86
+ dtype: string
87
+ - name: subcategory
88
+ dtype: string
89
+ - name: language
90
+ dtype: string
91
+ - name: category
92
+ dtype: string
93
+ - name: self_collected
94
+ dtype: string
95
+ - name: full_path
96
+ dtype: string
97
+ - name: full_name
98
+ dtype: string
99
+ - name: image
100
+ dtype: image
101
+ splits:
102
+ - name: full
103
+ num_bytes: 22656597.0
104
+ num_examples: 674
105
+ download_size: 22591665
106
+ dataset_size: 22656597.0
107
+ - config_name: plants
108
+ features:
109
+ - name: alternative_name_DE
110
+ dtype: string
111
+ - name: Alias
112
+ dtype: string
113
+ - name: scientific_name
114
+ dtype: string
115
+ - name: common_name_EN
116
+ dtype: string
117
+ - name: common_name_DE
118
+ dtype: string
119
+ - name: Filename
120
+ dtype: string
121
+ - name: language
122
+ dtype: string
123
+ - name: category
124
+ dtype: string
125
+ - name: self_collected
126
+ dtype: string
127
+ - name: full_path
128
+ dtype: string
129
+ - name: image
130
+ dtype: image
131
+ splits:
132
+ - name: full
133
+ num_bytes: 16315782.0
134
+ num_examples: 185
135
+ download_size: 16313529
136
+ dataset_size: 16315782.0
137
+ - config_name: products
138
+ features:
139
+ - name: Filename
140
+ dtype: string
141
+ - name: company_name
142
+ dtype: string
143
+ - name: product_name
144
+ dtype: string
145
+ - name: language
146
+ dtype: string
147
+ - name: category
148
+ dtype: string
149
+ - name: self_collected
150
+ dtype: string
151
+ - name: full_path
152
+ dtype: string
153
+ - name: image
154
+ dtype: image
155
+ splits:
156
+ - name: full
157
+ num_bytes: 12072018.0
158
+ num_examples: 194
159
+ download_size: 11900512
160
+ dataset_size: 12072018.0
161
+ - config_name: sights
162
+ features:
163
+ - name: Filename
164
+ dtype: string
165
+ - name: name_DE
166
+ dtype: string
167
+ - name: name_EN
168
+ dtype: string
169
+ - name: location_name_DE
170
+ dtype: string
171
+ - name: location_name_EN
172
+ dtype: string
173
+ - name: language
174
+ dtype: string
175
+ - name: category
176
+ dtype: string
177
+ - name: self_collected
178
+ dtype: string
179
+ - name: full_path
180
+ dtype: string
181
+ - name: image
182
+ dtype: image
183
+ splits:
184
+ - name: full
185
+ num_bytes: 12606317.0
186
+ num_examples: 92
187
+ download_size: 12606757
188
+ dataset_size: 12606317.0
189
+ configs:
190
+ - config_name: animals
191
+ data_files:
192
+ - split: full
193
+ path: animals/full-*
194
+ - config_name: cars
195
+ data_files:
196
+ - split: full
197
+ path: cars/full-*
198
+ - config_name: celebrity
199
+ data_files:
200
+ - split: full
201
+ path: celebrity/full-*
202
+ - config_name: plants
203
+ data_files:
204
+ - split: full
205
+ path: plants/full-*
206
+ - config_name: products
207
+ data_files:
208
+ - split: full
209
+ path: products/full-*
210
+ - config_name: sights
211
+ data_files:
212
+ - split: full
213
+ path: sights/full-*
214
+ task_categories:
215
+ - visual-question-answering
216
+ language:
217
+ - en
218
+ - de
219
+ tags:
220
+ - factual-knowledge
221
+ - multi-lingual
222
+ - biology
223
+ - celebrities
224
+ - sights
225
+ - cars
226
+ - supermarket
227
+ - products
228
+ - ocr
229
+ size_categories:
230
+ - n<1K
231
+ ---
232
+ # Dataset Card for Dataset Name
233
+
234
+ <!-- Provide a quick summary of the dataset. -->
235
+
236
+ This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
237
+
238
+ ## Dataset Details
239
+
240
+ ### Dataset Description
241
+
242
+ <!-- Provide a longer summary of what this dataset is. -->
243
+
244
+
245
+
246
+ - **Curated by:** Institute for Information Systems (iisys) of Hof University of Applied Sciences, Germany
247
+ - **Language(s) (NLP):** German (de), English (en)
248
+ - **License:** Images are owned by their creators, the collection of data is distributed under cc-by-nc 4.0 license. The data is provided as-is without any warranty or guarantee of fitness for a particular purpose. Please refer to the license file in the repository for more details.
249
+
250
+ ### Dataset Sources
251
+ - Images are collected from the Internet with a focus on images NOT featured on Wikipedia, because we expected those to be less likely to be part of existing training datasets.
252
+
253
+ - **Paper :** currently under review for a scientific AI conference. Will be published in first half of 2025.
254
+
255
+ ## Uses
256
+ Should be used to evaluate factual knowledge of Vision Language Models (VLMs) with a focus on image contents from Germany in contrast to internationally well-known image contents from English-speaking countries and others.
257
+
258
+ ### Out-of-Scope Use
259
+ Commercial use or any use that may lead to commercial gain is not permitted without explicit permission from the copyright holders.
260
+
261
+ <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
262
+
263
+
264
+ ## Dataset Structure
265
+
266
+ The dataset consists of six parquet files, one for each category of images, namely animals, plants, celebrities, sights, cars and products from the supermarket (mainly food). Each file contains images with strong association to Germany and semantically similar counterparts from other countries, especially English-speaking ones. The names of the objects that should be identified from the images are given in English and German language.
267
+
268
+
269
+ ## Dataset Creation and Curation Rationale
270
+ The German-related images are self-collected from various sources in the internet, excluding Wikipedia. Images with English- or international focus are partly self-collected, partly filtered and reused contents from existing datasets like Stanford Cars (https://huggingface.co/datasets/tanganke/stanford_cars), Oxford Flowers (https://huggingface.co/datasets/dpdl-benchmark/oxford_flowers102) and Celeb1k (https://huggingface.co/datasets/tonyassi/celebrity-1000). German names are added by iisys.
271
+
272
+ #### Annotation process
273
+
274
+ Annotation was done manually by using Wikipedia and other online resources for verification of the names and Google image search for visual confirmation of the image names in case of doubt. The focus was on asking for common names as used by everyday people, not specialists in the respective field (e.g., not asking for the scientific name of a plant). For animals and plants some common names are rather coarse and refer to the animal or plant family rather than the species, because we expect most people not to know the exact species name and therefore getting the exact right answer would be less helpful than a litte coarser one. However, we accepted the exact species name in latin as a correct answer if the VLM gave this as an answer, but noted it as a deficit in German language if it could not give the German (or English) common name in addition.
275
+
276
+ #### Who are the annotators?
277
+
278
+ René Peinl and Vincent Tischler, iisys, Hof University of Applied Sciences, Hof, Germany
279
+
280
+
281
+ ## Bias, Risks, and Limitations
282
+
283
+ The selection of images was biased towards the background knowledge of the annotators and there is no guarantee that it is objectively representative for the respective categories.
284
+
285
+
286
+ ## Citation
287
+
288
+ [coming soon]
289
+
290
+ **BibTeX:**
291
+
292
+ [coming soon]
293
+
294
+ ## Dataset Card Authors
295
+
296
+ René Peinl
297
+
298
+ ## Dataset Card Contact
299
+
300
+ René Peinl
animals/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8f2640ec10b7f9ece7e8e44f3f79db0cc77926e7ad8e501c37a85ea17083bb2
3
+ size 33755238
cars/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708a977c91016e1462df252c0083dfc31324f2edfa69df6725a59e7b09128c44
3
+ size 31240949
celebrity/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a710ae583175190eecd304f377841542b2a33cf63d0ea1896ae528b50142b49
3
+ size 22591665
plants/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52e89166daf13a69a20bb531b0cd535fc2c0bc043867d25ae856867f1d563ff8
3
+ size 16313529
products/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54b78c05b17acb7f585e54ee072d36bf3584785bf876aa956ff464f71dfb7510
3
+ size 11900512
sights/full-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b903e4f6c9a92db9b4b97e339bee14c84058a3b071a2ece2198fbf60d16da4d
3
+ size 12606757