from datasets import DatasetBuilder, DownloadManager, DatasetInfo, BuilderConfig, SplitGenerator, Split, Features, Value import pandas as pd # Define custom configurations for the dataset class CryptoDataConfig(BuilderConfig): def __init__(self, features, **kwargs): super().__init__(**kwargs) self.features = features class CryptoDataDataset(DatasetBuilder): # Define different dataset configurations here BUILDER_CONFIGS = [ CryptoDataConfig( name="candles", description="This configuration includes open, high, low, close, and volume.", features=Features({ "date": Value("string"), "open": Value("float"), "high": Value("float"), "low": Value("float"), "close": Value("float"), "volume": Value("float") }) ), CryptoDataConfig( name="indicators", description="This configuration extends basic CryptoDatas with RSI, SMA, and EMA indicators.", features=Features({ "date": Value("string"), "open": Value("float"), "high": Value("float"), "low": Value("float"), "close": Value("float"), "volume": Value("float"), "rsi": Value("float"), "sma": Value("float"), "ema": Value("float") }) ), ] def _info(self): return DatasetInfo( description=f"CryptoData dataset for {self.config.name}", features=self.config.features, supervised_keys=None, homepage="https://hub.huggingface.co/datasets/sebdg/crypto_data", citation="No citation for this dataset." ) def _split_generators(self, dl_manager: DownloadManager): # Here, you can define how to split your dataset (e.g., into training, validation, test) # This example assumes a single CSV file without predefined splits. # You can modify this method if you have different needs. return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={"filepath": "indicators.csv"}, ), ] def _generate_examples(self, filepath): # Here, we open the provided CSV file and yield each row as a single example. with open(filepath, encoding="utf-8") as csv_file: data = pd.read_csv(csv_file) for id, row in data.iterrows(): # Select features based on the dataset configuration features = {feature: row[feature] for feature in self.config.features if feature in row} yield id, features