File size: 3,800 Bytes
5dd3d54 a6495a5 5dd3d54 e362995 51f0796 a4a348a ec94ffd 5dd3d54 a4a348a 5dd3d54 e362995 a4a348a ec94ffd 5dd3d54 a6495a5 de1ae8d a6495a5 de1ae8d dca2bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
pretty_name: MS MARCO corpus
dataset_info:
- config_name: passage
features:
- name: pid
dtype: int64
- name: text
dtype: string
splits:
- name: train
num_bytes: 3089201649
num_examples: 8841823
download_size: 1688656108
dataset_size: 3089201649
- config_name: query
features:
- name: qid
dtype: int64
- name: text
dtype: string
splits:
- name: train
num_bytes: 48033044
num_examples: 1010916
download_size: 34858846
dataset_size: 48033044
configs:
- config_name: passage
data_files:
- split: train
path: passage/train-*
- config_name: query
data_files:
- split: train
path: queries/train-*
---
# MS MARCO Corpus
This dataset allows for a convenient mapping from MS MARCO query/passage ID to the query/passage text. This passage corpus was downloaded from https://msmarco.z22.web.core.windows.net/msmarcoranking/collection.tar.gz, and the queries from https://msmarco.blob.core.windows.net/msmarcoranking/queries.tar.gz (via Wayback Machine).
## Usage
This dataset was designed to allow you to perform the following:
```python
from datasets import load_dataset
query_dataset = load_dataset("sentence-transformers/msmarco-corpus", "query", split="train")
qid_to_query = dict(zip(query_dataset["qid"], query_dataset["text"]))
print(qid_to_query[571018])
# => "what are the liberal arts?"
passage_dataset = load_dataset("sentence-transformers/msmarco-corpus", "passage", split="train")
pid_to_passage = dict(zip(passage_dataset["pid"], passage_dataset["text"]))
print(pid_to_passage[7349777])
# => "liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects."
```
## Related Datasets
This dataset is used for the query and passage texts in the following datasets containing MS MARCO with mined hard negatives.
* [msmarco-bm25](https://huggingface.co/datasets/sentence-transformers/msmarco-bm25)
* [msmarco-msmarco-distilbert-base-tas-b](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b)
* [msmarco-msmarco-distilbert-base-v3](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
* [msmarco-msmarco-MiniLM-L-6-v3](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-MiniLM-L-6-v3)
* [msmarco-distilbert-margin-mse-cls-dot-v2](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-cls-dot-v2)
* [msmarco-distilbert-margin-mse-cls-dot-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-cls-dot-v1)
* [msmarco-distilbert-margin-mse-mean-dot-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-mean-dot-v1)
* [msmarco-mpnet-margin-mse-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-mpnet-margin-mse-mean-v1)
* [msmarco-co-condenser-margin-mse-cls-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-cls-v1)
* [msmarco-distilbert-margin-mse-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-mnrl-mean-v1)
* [msmarco-distilbert-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-sym-mnrl-mean-v1)
* [msmarco-distilbert-margin-mse-sym-mnrl-mean-v2](https://huggingface.co/datasets/sentence-transformers/msmarco-distilbert-margin-mse-sym-mnrl-mean-v2)
* [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) |