--- annotations_creators: - no-annotation language_creators: - crowdsourced language: - en license: - cc-by-4.0 - gfdl multilinguality: - monolingual size_categories: - 100M<n<200M source_datasets: - https://github.com/shibing624/code-autocomplete - https://github.com/bharathgs/Awesome-pytorch-list - https://github.com/akullpp/awesome-java - https://github.com/fffaraz/awesome-cpp task_categories: - text-generation task_ids: - language-modeling --- # Dataset Card for "SourceCode" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [code-autocomplete](https://github.com/shibing624/code-autocomplete) - **Leaderboard:** [leaderboard](https://github.com/shibing624/code-autocomplete) (located on the homepage) - **Size of downloaded dataset files:** 105 MB - **Total amount of disk used:** 570 MB ### Dataset Summary Source code dataset is a collection of Github awesome repos, it contains Python, Java, C++, and other programming languages. This dataset can be used in different NLP tasks like language modeling and text generation tasks. data source: - PYTHON_CODE: https://github.com/bharathgs/Awesome-pytorch-list - JAVA_CODE: https://github.com/akullpp/awesome-java - CPP_CODE: https://github.com/fffaraz/awesome-cpp ### Supported Tasks and Leaderboards - language modeling - code generation tasks, **Leaderboard:** [code-autocomplete](https://github.com/shibing624/code-autocomplete) ### Languages - programming languages: Python, Java, C++ - natural language: English ## Dataset Structure ### Data Instances An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": """ import json import argparse def _parse_args(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument( '--model-file', required=True, help=( 'A pt file from ' 'https://github.com/pytorch/fairseq/tree/main/examples/hubert' ) ) return parser.parse_args() """ } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits #### python ```shell $ wc -l python/* 10000 python/test.txt 5215412 python/train.txt 10000 python/valid.txt 5235412 total ``` #### java ```shell $ wc -l java/* 950083 java/test.txt 2802880 java/train.txt 940803 java/valid.txt 4693766 total ``` #### cpp ```shell $ wc -l cpp/* 1060014 cpp/test.txt 3119241 cpp/train.txt 1099124 cpp/valid.txt 5278379 total ``` ## Dataset Creation ### Curation Rationale As code generation dataset, I upload it to huggingface datasets. ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? Citation: APA: ```latex Xu, M. code-autocomplete: Code AutoComplete with GPT2 model (Version 0.0.4) [Computer software]. https://github.com/shibing624/code-autocomplete ``` BibTeX: ```latex @software{Xu_code-autocomplete_Code_AutoComplete, author = {Xu, Ming}, title = {code-autocomplete: Code AutoComplete with GPT2 model}, url = {https://github.com/shibing624/code-autocomplete}, version = {0.0.4} } ``` ### Annotations #### Annotation process #### Who are the annotators? nobody ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset This dataset was developed as a benchmark for evaluating code generation model. ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators Github awesome programing code repos. ### Licensing Information GNU Free Documentation License v1.3 or later. For research use only. ### Contributions Thanks to [@shibing624](https://github.com/shibing624) add this dataset.