File size: 11,872 Bytes
ac0ad3d
 
11e0094
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ce209
 
 
6756c03
 
 
 
 
60a381f
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c2007
 
 
ef06246
 
 
 
 
e3f50aa
 
 
 
 
 
 
 
 
 
 
 
 
 
d34d576
 
 
ae91bac
 
 
 
 
0731c27
 
 
 
 
 
 
 
 
 
 
 
 
 
85ddae4
 
 
badd1ae
 
 
 
 
4f73739
 
 
 
 
 
 
 
 
 
 
 
 
 
d0a7437
 
 
37c89ae
 
 
 
 
dab0826
 
 
 
 
 
 
 
 
 
 
 
 
 
ddda733
 
 
2fc1a1c
 
 
 
 
408f9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
f033608
 
 
bb3251c
 
 
 
 
af904d7
 
 
 
 
 
 
 
 
 
 
 
 
 
19983ed
 
 
7ceca3a
 
 
 
 
4d7ac2c
 
 
 
 
 
 
 
 
 
 
 
 
 
682363b
 
 
e9f327f
 
 
 
 
b1b2b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
678b00f
 
 
3bcb8f0
 
 
 
 
5978237
ac0ad3d
 
 
 
 
 
 
 
 
 
 
 
 
d0b2735
 
 
8996fd3
 
 
 
 
0d7ae20
 
 
 
 
 
 
 
 
 
 
 
 
 
1f386cc
 
 
67a16c2
 
 
 
 
65234e3
 
 
 
 
 
 
 
 
 
 
 
 
 
71181da
 
 
01d9215
 
 
 
 
5978237
 
 
 
 
 
 
 
 
 
 
 
 
 
fce4c44
 
 
6c10ec8
 
 
 
 
3834504
 
 
 
 
 
 
 
 
 
 
 
 
 
463f359
 
 
738fe51
 
 
 
 
ca483be
 
 
 
 
 
 
 
 
 
 
 
 
 
bb95fe4
 
 
6220861
 
 
 
 
a75795f
 
 
 
 
 
 
 
 
 
 
 
 
 
8616af5
 
 
a19659e
 
 
 
 
25fbc80
 
 
 
 
 
 
 
 
 
 
 
 
 
92246e3
 
 
1b8dad1
 
 
 
 
ac0ad3d
11e0094
 
 
 
f4ce209
 
6756c03
 
60a381f
 
 
 
e3c2007
 
ef06246
 
e3f50aa
 
 
 
d34d576
 
ae91bac
 
0731c27
 
 
 
85ddae4
 
badd1ae
 
4f73739
 
 
 
d0a7437
 
37c89ae
 
dab0826
 
 
 
ddda733
 
2fc1a1c
 
408f9e4
 
 
 
f033608
 
bb3251c
 
af904d7
 
 
 
19983ed
 
7ceca3a
 
4d7ac2c
 
 
 
682363b
 
e9f327f
 
b1b2b8e
 
 
 
678b00f
 
3bcb8f0
 
ac0ad3d
 
 
 
d0b2735
 
8996fd3
 
0d7ae20
 
 
 
1f386cc
 
67a16c2
 
65234e3
 
 
 
71181da
 
01d9215
 
5978237
 
 
 
fce4c44
 
6c10ec8
 
3834504
 
 
 
463f359
 
738fe51
 
ca483be
 
 
 
bb95fe4
 
6220861
 
a75795f
 
 
 
8616af5
 
a19659e
 
25fbc80
 
 
 
92246e3
 
1b8dad1
 
ac0ad3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
---
dataset_info:
- config_name: 감염성질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 16712999
    num_examples: 54812
  - name: validation
    num_bytes: 5582505
    num_examples: 18270
  - name: test
    num_bytes: 5585872
    num_examples: 18270
  download_size: 4245453
  dataset_size: 27881376
- config_name: 귀코목질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 13653483
    num_examples: 44712
  - name: validation
    num_bytes: 4560906
    num_examples: 14904
  - name: test
    num_bytes: 4555265
    num_examples: 14903
  download_size: 3451722
  dataset_size: 22769654
- config_name: 근골격질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 19209138
    num_examples: 62429
  - name: validation
    num_bytes: 6408536
    num_examples: 20809
  - name: test
    num_bytes: 6410941
    num_examples: 20809
  download_size: 4858820
  dataset_size: 32028615
- config_name: 기타
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 6254994
    num_examples: 20907
  - name: validation
    num_bytes: 2085301
    num_examples: 6968
  - name: test
    num_bytes: 2088795
    num_examples: 6968
  download_size: 1533186
  dataset_size: 10429090
- config_name: 뇌신경정신질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 21111892
    num_examples: 67116
  - name: validation
    num_bytes: 7048267
    num_examples: 22372
  - name: test
    num_bytes: 7053197
    num_examples: 22372
  download_size: 5455492
  dataset_size: 35213356
- config_name: 성형미용  재건
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 3705722
    num_examples: 11876
  - name: validation
    num_bytes: 1235226
    num_examples: 3958
  - name: test
    num_bytes: 1235368
    num_examples: 3958
  download_size: 864074
  dataset_size: 6176316
- config_name: 소아청소년질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 8112764
    num_examples: 25025
  - name: validation
    num_bytes: 2708885
    num_examples: 8341
  - name: test
    num_bytes: 2711204
    num_examples: 8341
  download_size: 1868709
  dataset_size: 13532853
- config_name: 소화기질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 16097104
    num_examples: 52923
  - name: validation
    num_bytes: 5372140
    num_examples: 17640
  - name: test
    num_bytes: 5374863
    num_examples: 17640
  download_size: 4083250
  dataset_size: 26844107
- config_name: 순환기질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 13038440
    num_examples: 41997
  - name: validation
    num_bytes: 4350559
    num_examples: 13999
  - name: test
    num_bytes: 4350122
    num_examples: 13998
  download_size: 3200497
  dataset_size: 21739121
- config_name: 신장비뇨기질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 12037563
    num_examples: 38862
  - name: validation
    num_bytes: 4019001
    num_examples: 12954
  - name: test
    num_bytes: 4022739
    num_examples: 12954
  download_size: 2963446
  dataset_size: 20079303
- config_name: 여성질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 12859042
    num_examples: 41777
  - name: validation
    num_bytes: 4286748
    num_examples: 13925
  - name: test
    num_bytes: 4290343
    num_examples: 13925
  download_size: 3271504
  dataset_size: 21436133
- config_name: 유방내분비질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 11973226
    num_examples: 37485
  - name: validation
    num_bytes: 3998915
    num_examples: 12495
  - name: test
    num_bytes: 3998773
    num_examples: 12495
  download_size: 2878130
  dataset_size: 19970914
- config_name: 유전질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 3594185
    num_examples: 11607
  - name: validation
    num_bytes: 1196494
    num_examples: 3869
  - name: test
    num_bytes: 1200238
    num_examples: 3868
  download_size: 823151
  dataset_size: 5990917
- config_name: 응급질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 11448435
    num_examples: 37569
  - name: validation
    num_bytes: 3819557
    num_examples: 12522
  - name: test
    num_bytes: 3819639
    num_examples: 12522
  download_size: 2940784
  dataset_size: 19087631
- config_name: 종양혈액질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 17911612
    num_examples: 57999
  - name: validation
    num_bytes: 5975593
    num_examples: 19333
  - name: test
    num_bytes: 5980806
    num_examples: 19332
  download_size: 4536446
  dataset_size: 29868011
- config_name: 치과질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 4071206
    num_examples: 13287
  - name: validation
    num_bytes: 1358127
    num_examples: 4429
  - name: test
    num_bytes: 1359886
    num_examples: 4429
  download_size: 941926
  dataset_size: 6789219
- config_name: 피부질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 15402985
    num_examples: 52513
  - name: validation
    num_bytes: 5139534
    num_examples: 17504
  - name: test
    num_bytes: 5141708
    num_examples: 17504
  download_size: 4156491
  dataset_size: 25684227
- config_name: 호흡기질환
  features:
  - name: add_info
    dtype: string
  - name: intention
    dtype: string
  - name: disease_name
    dtype: string
  - name: question
    dtype: string
  splits:
  - name: train
    num_bytes: 9427763
    num_examples: 30290
  - name: validation
    num_bytes: 3145672
    num_examples: 10096
  - name: test
    num_bytes: 3143335
    num_examples: 10096
  download_size: 2267122
  dataset_size: 15716770
configs:
- config_name: 감염성질환
  data_files:
  - split: train
    path: 감염성질환/train-*
  - split: validation
    path: 감염성질환/validation-*
  - split: test
    path: 감염성질환/test-*
- config_name: 귀코목질환
  data_files:
  - split: train
    path: 귀코목질환/train-*
  - split: validation
    path: 귀코목질환/validation-*
  - split: test
    path: 귀코목질환/test-*
- config_name: 근골격질환
  data_files:
  - split: train
    path: 근골격질환/train-*
  - split: validation
    path: 근골격질환/validation-*
  - split: test
    path: 근골격질환/test-*
- config_name: 기타
  data_files:
  - split: train
    path: 기타/train-*
  - split: validation
    path: 기타/validation-*
  - split: test
    path: 기타/test-*
- config_name: 뇌신경정신질환
  data_files:
  - split: train
    path: 뇌신경정신질환/train-*
  - split: validation
    path: 뇌신경정신질환/validation-*
  - split: test
    path: 뇌신경정신질환/test-*
- config_name: 성형미용  재건
  data_files:
  - split: train
    path: 성형미용  재건/train-*
  - split: validation
    path: 성형미용  재건/validation-*
  - split: test
    path: 성형미용  재건/test-*
- config_name: 소아청소년질환
  data_files:
  - split: train
    path: 소아청소년질환/train-*
  - split: validation
    path: 소아청소년질환/validation-*
  - split: test
    path: 소아청소년질환/test-*
- config_name: 소화기질환
  data_files:
  - split: train
    path: 소화기질환/train-*
  - split: validation
    path: 소화기질환/validation-*
  - split: test
    path: 소화기질환/test-*
- config_name: 순환기질환
  data_files:
  - split: train
    path: 순환기질환/train-*
  - split: validation
    path: 순환기질환/validation-*
  - split: test
    path: 순환기질환/test-*
- config_name: 신장비뇨기질환
  data_files:
  - split: train
    path: 신장비뇨기질환/train-*
  - split: validation
    path: 신장비뇨기질환/validation-*
  - split: test
    path: 신장비뇨기질환/test-*
- config_name: 여성질환
  data_files:
  - split: train
    path: 여성질환/train-*
  - split: validation
    path: 여성질환/validation-*
  - split: test
    path: 여성질환/test-*
- config_name: 유방내분비질환
  data_files:
  - split: train
    path: 유방내분비질환/train-*
  - split: validation
    path: 유방내분비질환/validation-*
  - split: test
    path: 유방내분비질환/test-*
- config_name: 유전질환
  data_files:
  - split: train
    path: 유전질환/train-*
  - split: validation
    path: 유전질환/validation-*
  - split: test
    path: 유전질환/test-*
- config_name: 응급질환
  data_files:
  - split: train
    path: 응급질환/train-*
  - split: validation
    path: 응급질환/validation-*
  - split: test
    path: 응급질환/test-*
- config_name: 종양혈액질환
  data_files:
  - split: train
    path: 종양혈액질환/train-*
  - split: validation
    path: 종양혈액질환/validation-*
  - split: test
    path: 종양혈액질환/test-*
- config_name: 치과질환
  data_files:
  - split: train
    path: 치과질환/train-*
  - split: validation
    path: 치과질환/validation-*
  - split: test
    path: 치과질환/test-*
- config_name: 피부질환
  data_files:
  - split: train
    path: 피부질환/train-*
  - split: validation
    path: 피부질환/validation-*
  - split: test
    path: 피부질환/test-*
- config_name: 호흡기질환
  data_files:
  - split: train
    path: 호흡기질환/train-*
  - split: validation
    path: 호흡기질환/validation-*
  - split: test
    path: 호흡기질환/test-*
---