shivangibithel
commited on
Commit
·
d6a4b35
1
Parent(s):
bdf084c
Upload 6 files
Browse files- msato_cv_0.csv +0 -0
- msato_cv_1.csv +0 -0
- msato_cv_2.csv +0 -0
- msato_cv_3.csv +0 -0
- msato_cv_4.csv +0 -0
- sato.py +90 -0
msato_cv_0.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
msato_cv_1.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
msato_cv_2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
msato_cv_3.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
msato_cv_4.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
sato.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
class sato(datasets.GeneratorBasedBuilder):
|
6 |
+
"""The sato dataset"""
|
7 |
+
|
8 |
+
def _info(self):
|
9 |
+
features = datasets.Features(
|
10 |
+
{
|
11 |
+
"table_id": datasets.Value("string"),
|
12 |
+
"col_idx": datasets.Value("string"),
|
13 |
+
"label": datasets.Value("string"),
|
14 |
+
"label_id": datasets.Value("string"),
|
15 |
+
"data": datasets.Value("string"),
|
16 |
+
}
|
17 |
+
)
|
18 |
+
|
19 |
+
# datasets.value -- single value
|
20 |
+
# datasets.features.Sequence -- list
|
21 |
+
|
22 |
+
return datasets.DatasetInfo(
|
23 |
+
features=features
|
24 |
+
)
|
25 |
+
|
26 |
+
def _split_generators(self, dl_manager):
|
27 |
+
sato_data = "./sato/data"
|
28 |
+
|
29 |
+
train_file1 = "msato_cv_0.csv"
|
30 |
+
train_file2 = "msato_cv_1.csv"
|
31 |
+
train_file3 = "msato_cv_2.csv"
|
32 |
+
dev_file = "msato_cv_3.csv"
|
33 |
+
test_file = "msato_cv_4.csv"
|
34 |
+
|
35 |
+
return [
|
36 |
+
datasets.SplitGenerator(
|
37 |
+
name=datasets.Split.TRAIN,
|
38 |
+
# These kwargs will be passed to _generate_examples
|
39 |
+
gen_kwargs={"main_filepath": os.path.join(sato_data, train_file1)},
|
40 |
+
),
|
41 |
+
datasets.SplitGenerator(
|
42 |
+
name=datasets.Split.TEST,
|
43 |
+
# These kwargs will be passed to _generate_examples
|
44 |
+
gen_kwargs={"main_filepath": os.path.join(sato_data, test_file)},
|
45 |
+
),
|
46 |
+
datasets.SplitGenerator(
|
47 |
+
name=datasets.Split.VALIDATION,
|
48 |
+
# These kwargs will be passed to _generate_examples
|
49 |
+
gen_kwargs={"main_filepath": os.path.join(sato_data, dev_file)},
|
50 |
+
),
|
51 |
+
]
|
52 |
+
|
53 |
+
def _generate_examples(self, main_filepath):
|
54 |
+
df = pd.read_csv(main_filepath, encoding="utf8")
|
55 |
+
# df = df.astype({'table_id':'string','column_index':'string', 'label':'string'})
|
56 |
+
for ind in df.index:
|
57 |
+
if ind == 10:
|
58 |
+
break
|
59 |
+
# print(df.iloc[ind])
|
60 |
+
table_id = df['table_id'][ind]
|
61 |
+
col_idx = df['col_idx'][ind]
|
62 |
+
label = df['class'][ind]
|
63 |
+
label_id = df['class_id'][ind]
|
64 |
+
data = df['data'][ind]
|
65 |
+
yield ind, {
|
66 |
+
"table_id": table_id,
|
67 |
+
"col_idx":col_idx,
|
68 |
+
"label": label,
|
69 |
+
"label_id": label_id,
|
70 |
+
"data": data,
|
71 |
+
}
|
72 |
+
|
73 |
+
# with open(main_filepath, encoding="utf-8") as f:
|
74 |
+
# for idx, line in enumerate(f):
|
75 |
+
# # skip the header
|
76 |
+
# # table_id,col_idx,class,class_id,data
|
77 |
+
# if idx == 0:
|
78 |
+
# continue
|
79 |
+
# if idx == 100:
|
80 |
+
# break
|
81 |
+
# print(line)
|
82 |
+
# table_id, col_idx, label, label_id, data = line.strip("\n").split(",")
|
83 |
+
# print(table_id, col_idx, label, label_id, data)
|
84 |
+
# yield idx, {
|
85 |
+
# "table_id": table_id,
|
86 |
+
# "col_idx":col_idx,
|
87 |
+
# "label": label,
|
88 |
+
# "label_id": label_id,
|
89 |
+
# "data": data,
|
90 |
+
# }
|