|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
from dataclasses import dataclass |
|
from typing import List |
|
|
|
import datasets as ds |
|
from datasets.utils.logging import get_logger |
|
|
|
logger = get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@inproceedings{JDocQA_2024, |
|
title = "JDocQA: Japanese Document Question Answering Dataset for Generative Language Models", |
|
author = "Onami, Eri and |
|
Kurita, Shuhei and |
|
Miyanishi, Taiki and |
|
Watanabe, Taro", |
|
booktitle = "The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation", |
|
month = may, |
|
year = "2024", |
|
address = "Trino, Italy", |
|
abstract = "Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/mizuumi/JDocQA" |
|
|
|
_LICENSE = "JDocQA dataset annotations are distributed under CC BY-SA 4.0. We are delighted to see many derivations from JDocQA! When you create any derivations, e.g., datasets, papers, etc, from JDocQA, please cite our paper accordingly. If your derivations are web-based projects, please cite our paper and include the link to this github page." |
|
|
|
_URLS = { |
|
"annotations": { |
|
"train": "https://raw.githubusercontent.com/mizuumi/JDocQA/main/dataset/annotation_files/jdocqa_train_all.json", |
|
"validation": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_validation_all.json", |
|
"test": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_test_all.json", |
|
}, |
|
"documents": "https://vlm-lab-fileshare.s3.ap-northeast-1.amazonaws.com/pdf_files.zip", |
|
} |
|
|
|
|
|
@dataclass |
|
class JDocQADatasetConfig(ds.BuilderConfig): |
|
rename_pdf_category: bool = False |
|
|
|
|
|
class JDocQADataset(ds.GeneratorBasedBuilder): |
|
"""A class for loading JDocQA dataset.""" |
|
|
|
VERSION = ds.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
JDocQADatasetConfig( |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = JDocQADatasetConfig |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
answer_type = ds.ClassLabel( |
|
num_classes=4, |
|
names=["yes/no", "factoid", "numerical", "open-ended"], |
|
) |
|
multiple_select_answer = ds.ClassLabel( |
|
num_classes=4, |
|
names=["A", "B", "C", "D"], |
|
) |
|
no_reason = ds.ClassLabel( |
|
num_classes=4, |
|
names=["0", "1", "2", "1,2"], |
|
) |
|
pdf_category = ds.ClassLabel( |
|
num_classes=4, |
|
names=["Report", "Pamphlet", "Slide", "Website"] |
|
if self.config.rename_pdf_category |
|
else ["Document", "Kouhou", "Slide", "Website"], |
|
) |
|
type_of_image = ds.ClassLabel( |
|
num_classes=10, |
|
names=[ |
|
"null", |
|
"Table", |
|
"Bar chart", |
|
"Line chart", |
|
"Pie chart", |
|
"Map", |
|
"Other figures", |
|
"Mixtured writing style from left to the right and from upside to the downside", |
|
"Drawings", |
|
"Others", |
|
], |
|
) |
|
features = ds.Features( |
|
{ |
|
"answer": ds.Value("string"), |
|
"answer_type": answer_type, |
|
"context": ds.Value("string"), |
|
"multiple_select_answer": multiple_select_answer, |
|
"multiple_select_question": ds.Sequence(ds.Value("string")), |
|
"no_reason": no_reason, |
|
"normalized_answer": ds.Value("string"), |
|
"original_answer": ds.Value("string"), |
|
"original_context": ds.Value("string"), |
|
"original_question": ds.Value("string"), |
|
"pdf_category": pdf_category, |
|
"pdf_name": ds.Value("string"), |
|
"question": ds.Value("string"), |
|
"question_number": ds.Sequence(ds.Value("uint64")), |
|
"question_page_number": ds.Value("string"), |
|
"reason_of_answer_bbox": ds.Sequence(ds.Value("string")), |
|
"text_from_ocr_pdf": ds.Value("string"), |
|
"text_from_pdf": ds.Value("string"), |
|
"type_of_image": ds.Sequence(type_of_image), |
|
|
|
|
|
"pdf_filepath": ds.Value("string"), |
|
} |
|
) |
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: ds.DownloadManager |
|
) -> List[ds.SplitGenerator]: |
|
files = dl_manager.download_and_extract(_URLS) |
|
|
|
tng_ann_filepath = files["annotations"]["train"] |
|
val_ann_filepath = files["annotations"]["validation"] |
|
tst_ann_filepath = files["annotations"]["test"] |
|
|
|
documents_dirpath = os.path.join(files["documents"], "pdf_files") |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_path": tng_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotation_path": val_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_path": tst_ann_filepath, |
|
"documents_dir": documents_dirpath, |
|
}, |
|
), |
|
] |
|
|
|
def _convert_answer_type(self, answer_type: str) -> str: |
|
if answer_type == "1": |
|
return "yes/no" |
|
elif answer_type == "2": |
|
return "factoid" |
|
elif answer_type == "3": |
|
return "numerical" |
|
elif answer_type == "4": |
|
return "open-ended" |
|
else: |
|
raise ValueError(f"Unknown answer type: {answer_type}") |
|
|
|
def _convert_multiple_select_question( |
|
self, multiple_select_question: str |
|
) -> List[str]: |
|
_, qs = multiple_select_question.split("(A)") |
|
|
|
questions = [] |
|
for sep in ("(B)", "(C)", "(D)"): |
|
q, qs = qs.split(sep) |
|
questions.append(q) |
|
questions.append(qs) |
|
|
|
assert ( |
|
len(questions) == 4 |
|
), f"Before: {multiple_select_question}, After: {questions}" |
|
|
|
questions = [question.rstrip("、") for question in questions] |
|
return questions |
|
|
|
def _convert_question_number(self, question_number: str) -> List[int]: |
|
return [int(qn) for qn in question_number.split("-")] |
|
|
|
def _convert_reason_of_answer_bbox(self, reason_of_answer_bbox: str) -> List[str]: |
|
reason_of_answer_bboxes = [ |
|
r for r in re.split(r"[.,、、]", reason_of_answer_bbox) |
|
] |
|
check = [r.isdigit() if r != "" else r == "" for r in reason_of_answer_bboxes] |
|
assert all(check), reason_of_answer_bboxes |
|
return reason_of_answer_bboxes |
|
|
|
def _convert_type_of_image(self, type_of_image: str) -> List[str]: |
|
types_of_image = type_of_image.split(",") |
|
|
|
def convert_to_type_of_image(type_of_image: str) -> str: |
|
if type_of_image == "": |
|
return "null" |
|
elif type_of_image == "1": |
|
return "Table" |
|
elif type_of_image == "2": |
|
return "Bar chart" |
|
elif type_of_image == "3": |
|
return "Line chart" |
|
elif type_of_image == "4": |
|
return "Pie chart" |
|
elif type_of_image == "5": |
|
return "Map" |
|
elif type_of_image == "6": |
|
return "Other figures" |
|
elif type_of_image == "7": |
|
return "Mixtured writing style from left to the right and from upside to the downside" |
|
elif type_of_image == "8": |
|
return "Drawings" |
|
elif type_of_image == "9": |
|
return "Others" |
|
else: |
|
raise ValueError(f"Unknown type of image: {type_of_image}") |
|
|
|
return [convert_to_type_of_image(t) for t in types_of_image] |
|
|
|
def _convert_pdf_category(self, pdf_category: str) -> str: |
|
if not self.config.rename_pdf_category: |
|
return pdf_category |
|
|
|
if pdf_category == "Document": |
|
return "Report" |
|
elif pdf_category == "Kouhou": |
|
return "Pamphlet" |
|
else: |
|
assert pdf_category in ( |
|
"Slide", |
|
"Website", |
|
), f"Unknown pdf_category: {pdf_category}" |
|
return pdf_category |
|
|
|
def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str: |
|
pdf_filepath = os.path.join(documents_dir, pdf_name) |
|
assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}" |
|
return pdf_filepath |
|
|
|
|
|
def _generate_examples(self, annotation_path: str, documents_dir: str): |
|
with open(annotation_path) as rf: |
|
for i, line in enumerate(rf): |
|
data = json.loads(line) |
|
|
|
data["answer_type"] = self._convert_answer_type( |
|
answer_type=data["answer_type"] |
|
) |
|
data["multiple_select_question"] = ( |
|
self._convert_multiple_select_question( |
|
multiple_select_question=data["multiple_select_question"] |
|
) |
|
) |
|
data["pdf_category"] = self._convert_pdf_category( |
|
pdf_category=data["pdf_category"] |
|
) |
|
data["question_number"] = self._convert_question_number( |
|
data["question_number"] |
|
) |
|
data["reason_of_answer_bbox"] = self._convert_reason_of_answer_bbox( |
|
data["reason_of_answer_bbox"] |
|
) |
|
data["type_of_image"] = self._convert_type_of_image( |
|
type_of_image=data["type_of_image"] |
|
) |
|
data["pdf_filepath"] = self._get_pdf_fielpath( |
|
pdf_name=data["pdf_name"], |
|
documents_dir=documents_dir, |
|
) |
|
|
|
yield i, data |
|
|