--- dataset_info: features: - name: id dtype: string - name: correct_text dtype: string - name: correct_audio dtype: audio - name: negative_text dtype: string - name: negative_audio dtype: audio splits: - name: train num_bytes: 2660941782.232 num_examples: 1871 download_size: 2439350149 dataset_size: 2660941782.232 configs: - config_name: default data_files: - split: tsc_bm path: tSC/bm/train-* - split: tsc_am path: tSC/am/train-* - split: tsc_bf path: tSC/bf/train-* - split: tsc_af path: tSC/af/train-* - split: ssc_bm path: sSC/bm/train-* - split: ssc_am path: sSC/am/train-* - split: ssc_bf path: sSC/bf/train-* - split: ssc_af path: sSC/af/train-* license: mit language: - en --- # Multi Speaker StoryCloze A multispeaker spoken version of [StoryCloze](https://paperswithcode.com/dataset/storycloze) Synthesized with [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M). The dataset was synthesized to evaluate the performance of speech language models as detailed in the paper ["Scaling Analysis of Interleaved Speech-Text Language Models"](https://arxiv.org/abs/2504.02398). We refer you to the _SlamKit_ [codebase](https://github.com/slp-rl/slamkit) to see how you can evaluate your SpeechLM with this dataset. ## sSC and tSC We split the generation for spoken-stroycloze and topic-storycloze as detailed in [Twist](https://arxiv.org/abs/2305.13009). ## Usage ```python from datasets import load_dataset dataset = load_dataset("slprl/multispeaker-storycloze") ``` ## Data Fields The data has several fields: - `id`: the file id as in the original [StoryCloze]() dataset. - `correct_text`: the text of the correct sample. - `correct_audio`: the synthesized audio of the correct sample. - `incorrect_text`: the text of the incorrect sample. - `incorrect_audio`: the synthesized audio of the incorrect sample. ## Citation If you use this version of the dataset please cite our work: ``` @misc{maimon2025scaling, title={Scaling Analysis of Interleaved Speech-Text Language Models}, author={Gallil Maimon and Michael Hassid and Amit Roth and Yossi Adi}, year={2025}, eprint={2504.02398}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.02398}, } ```