--- dataset_info: - config_name: metadata features: - name: asin dtype: string - name: title dtype: string - name: description dtype: string - name: brand dtype: string - name: main_cat dtype: string - name: category sequence: 'null' - name: also_buy sequence: string - name: also_view sequence: string - name: imageURL sequence: string - name: imageURLHighRes sequence: string splits: - name: train num_bytes: 24898313 num_examples: 12299 download_size: 9490355 dataset_size: 24898313 - config_name: reviews features: - name: reviewerID dtype: string - name: reviewerName dtype: string - name: overall sequence: int64 - name: reviewTime sequence: timestamp[us] - name: asin sequence: string - name: reviewText sequence: string - name: summary sequence: string splits: - name: train num_bytes: 24663121 num_examples: 6107 download_size: 11955594 dataset_size: 24663121 configs: - config_name: metadata data_files: - split: train path: metadata/train-* - config_name: reviews data_files: - split: train path: reviews/train-* --- # Amazon Luxury Beauty Dataset ## Directory Structure - **metadata**: Contains product information. - **reviews**: Contains user reviews about the products. - **filtered**: - **e5-base-v2_embeddings.jsonl**: Contains "asin" and "embeddings" created with [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). - **metadata.jsonl**: Contains "asin" and "text", where text is created from the title, description, brand, main category, and category. - **reviews.jsonl**: Contains "reviewerID", "reviewTime", and "asin". Reviews are filtered to include only perfect 5-star ratings with a minimum of 5 ratings. ## Usage ### Download metadata ```python metadata = load_dataset(path="smartcat/Amazon_Luxury_Beauty_2018", name="metadata", split="train") ``` ### Download reviews ```python metadata = load_dataset(path="smartcat/Amazon_Luxury_Beauty_2018", name="reviews", split="train") ``` ### Download filtered files ``` filtered_reviews = load_dataset( path="smartcat/Amazon_Luxury_Beauty_2018", data_files="filtered/reviews.jsonl", split="train", ) ``` **📎 Note:** You can set any file or list of files from the "filtered" directory as the "data_files" argument.