File size: 4,395 Bytes
46e0d18
b7e771d
 
 
 
 
 
 
46e0d18
4a4b750
 
 
 
 
 
 
 
 
 
 
 
2505731
 
5f5d626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2505731
 
 
 
 
 
 
 
5f5d626
 
2505731
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5d626
2505731
5f5d626
 
 
 
 
2505731
 
 
f9cd081
 
 
 
b7e771d
 
846cebb
 
b7e771d
 
 
 
 
 
 
 
 
 
846cebb
b7e771d
846cebb
 
4c63fcf
 
 
 
 
 
 
 
 
 
 
 
4a4b750
46e0d18
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4b750
 
 
 
2505731
 
 
 
b7e771d
 
 
 
4c63fcf
 
 
 
46e0d18
 
 
 
8495ca3
 
 
 
46e0d18
1f96f00
46e0d18
1f96f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: mit
size_categories:
- 10M<n<100M
task_categories:
- question-answering
- token-classification
pretty_name: Chess Evaluations
dataset_info:
- config_name: evals_large
  features:
  - name: FEN
    dtype: string
  - name: Evaluation
    dtype: string
  splits:
  - name: train
    num_bytes: 872492457
    num_examples: 12954834
  download_size: 334299450
  dataset_size: 872492457
- config_name: mcts
  features:
  - name: fen
    dtype: string
  - name: node_data
    list:
    - name: move
      dtype: string
    - name: N
      dtype: int64
    - name: Q
      dtype: float64
    - name: D
      dtype: float64
    - name: P
      dtype: float64
  - name: edges
    sequence:
      sequence: int64
  - name: graph_nodes
    dtype: int64
  - name: depth
    dtype: int64
  - name: seldepth
    dtype: int64
  - name: time
    dtype: float64
  - name: nodes
    dtype: int64
  - name: score
    dtype: string
  - name: nps
    dtype: int64
  - name: tbhits
    dtype: int64
  - name: pv
    sequence: string
  - name: move
    dtype: string
  - name: ponder
    dtype: string
  - name: draw_offered
    dtype: bool
  - name: resigned
    dtype: bool
  - name: limit
    struct:
    - name: time
      dtype: int64
    - name: depth
      dtype: int64
    - name: nodes
      dtype: int64
  splits:
  - name: train
    num_bytes: 48076633242
    num_examples: 99907
  download_size: 15234074915
  dataset_size: 48076633242
- config_name: pretrain_conv
  features:
  - name: id
    dtype: string
  - name: state
    dtype: string
  - name: conversations
    list:
    - name: from
      dtype: string
    - name: value
      dtype: string
  splits:
  - name: train
    num_bytes: 3850440686
    num_examples: 10000000
  download_size: 636942361
  dataset_size: 3850440686
- config_name: randoms
  features:
  - name: FEN
    dtype: string
  - name: Evaluation
    dtype: string
  splits:
  - name: train
    num_bytes: 71226739
    num_examples: 1000273
  download_size: 18919700
  dataset_size: 71226739
- config_name: tactics
  features:
  - name: FEN
    dtype: string
  - name: Evaluation
    dtype: string
  - name: Move
    dtype: string
  splits:
  - name: train
    num_bytes: 192267899
    num_examples: 2628219
  download_size: 92596702
  dataset_size: 192267899
configs:
- config_name: evals_large
  data_files:
  - split: train
    path: evals_large/train-*
- config_name: mcts
  data_files:
  - split: train
    path: mcts/train-*
- config_name: pretrain_conv
  data_files:
  - split: train
    path: pretrain_conv/train-*
- config_name: randoms
  data_files:
  - split: train
    path: randoms/train-*
- config_name: tactics
  data_files:
  - split: train
    path: tactics/train-*
tags:
- rl
- chess
- reinforcement learning
---
# Chess Evaluations Dataset

This dataset contains chess positions represented in FEN (Forsyth-Edwards Notation) along with their evaluations and next moves for tactical evals. The dataset is divided into three configurations:

1. **tactics**: Includes chess positions, their evaluations, and the best move in the position.
2. **randoms**: Contains random chess positions and their evaluations.
3. **chess_data**: General chess positions with evaluations.

This is an in progress dataset which contains millions of positions with stockfish 11 (depth 22) evaluations. Please help contribute evaluations of the positions to the repo, the original owner of the dataset is [r2dev2](https://github.com/r2dev2/ChessData). 
> ❗❗❗  Updates to the original dataset will be on the [version hosted on kaggle](https://www.kaggle.com/ronakbadhe/chess-evaluations).

## Dataset Structure

Each configuration can be loaded separately:

- **tactics**: Columns - `FEN`, `Evaluation`, `Move`
- **randoms**: Columns - `FEN`, `Evaluation`
- **chess_data**: Columns - `FEN`, `Evaluation`

## Usage

You can load each configuration using the `datasets` library:

```python
from datasets import load_dataset

# Load the tactics dataset
tactics_dataset = load_dataset("someshsingh22/chess-evaluations", "tactics")

# Load the randoms dataset
randoms_dataset = load_dataset("someshsingh22/chess-evaluations", "randoms")
```

## Contributing
To get started download a pre-built executable from the releases of [chess contributor](https://github.com/r2dev2bb8/ChessDataContributor/releases) and run it.

The evaluation should go in eval folder under same name