{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d78b2b50-9c54-441e-a835-b28cb0f8e096",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-11-29 23:21:49.836344: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2024-11-29 23:21:49.836729: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-11-29 23:21:49.838569: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-11-29 23:21:49.843832: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
      "E0000 00:00:1732918909.852690   10769 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "E0000 00:00:1732918909.855335   10769 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "2024-11-29 23:21:49.864609: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
     ]
    }
   ],
   "source": [
    "import flair\n",
    "\n",
    "from flair.datasets import ClassificationCorpus\n",
    "\n",
    "from huggingface_hub import hf_hub_download\n",
    "\n",
    "from pathlib import Path\n",
    "from typing import Optional, Union"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "404f1a80-5dcd-44cf-a37c-731553bebafc",
   "metadata": {},
   "outputs": [],
   "source": [
    "class SENTI_ANNO(ClassificationCorpus):\n",
    "    def __init__(\n",
    "        self,\n",
    "        base_path: Optional[Union[str, Path]] = None,\n",
    "        in_memory: bool = True,\n",
    "        **corpusargs,\n",
    "    ) -> None:\n",
    "        base_path = flair.cache_root / \"datasets\" if not base_path else Path(base_path)\n",
    "        dataset_name = self.__class__.__name__.lower()\n",
    "        data_folder = base_path / dataset_name\n",
    "        data_path = flair.cache_root / \"datasets\" / dataset_name\n",
    "\n",
    "        for split in [\"train\", \"dev\", \"test\"]:\n",
    "            hf_hub_download(repo_id=\"stefan-it/senti-anno\", repo_type=\"dataset\",\n",
    "                            filename=f\"{split}.txt\", token=True, local_dir=data_folder)\n",
    "\n",
    "        super().__init__(\n",
    "            data_path,\n",
    "            **corpusargs,\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "146baf74-5208-4a46-bb1f-0b652bae92c0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cfb52f4fd9bd47d496df3c39a460aac3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "train.txt:   0%|          | 0.00/210k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ee09bd462f6f4837bd3d21ff21faa3c8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "dev.txt:   0%|          | 0.00/26.2k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "db9260082d304746875ef8fa6b7c6869",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "test.txt:   0%|          | 0.00/26.3k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-11-29 23:24:50,712 Reading data from /home/stefan/.flair/datasets/senti_anno\n",
      "2024-11-29 23:24:50,713 Train: /home/stefan/.flair/datasets/senti_anno/train.txt\n",
      "2024-11-29 23:24:50,713 Dev: /home/stefan/.flair/datasets/senti_anno/dev.txt\n",
      "2024-11-29 23:24:50,714 Test: /home/stefan/.flair/datasets/senti_anno/test.txt\n",
      "2024-11-29 23:24:50,725 Initialized corpus /home/stefan/.flair/datasets/senti_anno (label type name is 'class')\n"
     ]
    }
   ],
   "source": [
    "corpus = SENTI_ANNO()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0b4badbf-6e62-4a72-af41-cce3811007ae",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Corpus: 741 train + 93 dev + 95 test sentences\n"
     ]
    }
   ],
   "source": [
    "print(str(corpus))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}