File size: 7,782 Bytes
b0b3178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---

license: mit
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- chemistry
- molecular-properties
- drug-discovery
- spectroscopy
- safety-assessment
- synthetic-chemistry
- rlvr
- reinforcement-learning
- cheminformatics
- rdkit
size_categories:
- 10K<n<100K
configs:
- config_name: default
  data_files:
  - split: train
    path: train.parquet
  - split: test
    path: test.parquet
---


# ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards

## Dataset Description

ChemBench-RLVR is a high-quality, balanced dataset containing **16,699 question-answer pairs** across **14 chemistry task types**. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools.

### Key Features

- 🧪 **16,699 balanced QA pairs** across 14 chemistry domains
- 🔬 **100% local calculations** - no external API dependencies  
- ⚖️ **Perfect task balance** - each task has exactly 1,192 samples
- 🎯 **Verifiable answers** - all responses computed using RDKit, spyrmsd, and other reliable tools
- 📚 **Template diversity** - 3 prompt variations per task
- 🌐 **Molecular diversity** - sourced from 10,000 PubChem compounds
- 📦 **Multiple formats** - Available in both Parquet and JSONL formats

## Dataset Statistics

### Overview
- **Total Samples**: 16,699
- **Training Split**: 15,029 samples (90%)
- **Test Split**: 1,670 samples (10%)
- **Generation Time**: 194.2 seconds
- **Average per Task**: 1,192 samples
- **Zero Duplicates**: All QA pairs are unique
- **Reproducible**: Fixed seed (42) for consistent results

## Task Distribution

### Complete Task Breakdown
- **Bioactivity Prediction**: 1,284 samples- **Drug Likeness Assessment**: 1,284 samples- **Functional Group Identification**: 1,275 samples- **Ghs Hazard Statement Identification**: 1,146 samples- **Ghs Pictogram Identification**: 1,144 samples- **Hydrogen Bond Properties**: 1,304 samples- **Iupac Name Generation**: 1,305 samples- **Logp Calculation**: 129 samples- **Molecular Weight Calculation**: 1,303 samples- **Molecule Visualization**: 1,305 samples- **Reactivity Prediction**: 1,305 samples- **Solubility Prediction**: 1,305 samples- **Stereochemistry Analysis**: 1,305 samples- **Synthetic Accessibility**: 1,305 samples

## Chemistry Task Categories

### 🧪 Core Molecular Properties (6 tasks)
- **Molecular Weight Calculation**: Exact molecular mass computation using RDKit
- **LogP Calculation**: Octanol-water partition coefficient prediction  
- **Aromatic Ring Count**: Identification of aromatic ring systems
- **Hydrogen Bond Properties**: Count of donors and acceptors
- **IUPAC Name Generation**: Systematic nomenclature from structure
- **Molecule Visualization**: 2D structural diagram generation

### 🔬 Advanced Spectroscopy & Structure (3 tasks)
- **NMR Signal Prediction**: 1H and 13C chemical shift estimation via RDKit fallback methods
- **Point Group Determination**: Molecular symmetry analysis using RDKit/spyrmsd
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer enumeration
- **Functional Group Identification**: SMARTS-based substructure recognition

### ⚠️ Safety & Hazard Assessment (2 tasks)
- **GHS Pictogram Identification**: Hazard symbol classification from structure
- **GHS Hazard Statement Identification**: H-code assignment using chemical patterns

### 💊 Pharmaceutical Chemistry (4 tasks)
- **Drug-Likeness Assessment**: Lipinski's Rule of Five evaluation
- **Solubility Prediction**: Aqueous solubility estimation via group contribution
- **Bioactivity Prediction**: Pharmacological class prediction from structural features
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer counting

### ⚗️ Synthetic Chemistry (2 tasks)
- **Synthetic Accessibility**: Complexity scoring for synthesis planning
- **Reactivity Prediction**: Reactive site identification and charge analysis

## Task Distribution

- **Bioactivity Prediction**: 1,284 samples
- **Drug Likeness Assessment**: 1,284 samples
- **Functional Group Identification**: 1,275 samples
- **Ghs Hazard Statement Identification**: 1,146 samples
- **Ghs Pictogram Identification**: 1,144 samples
- **Hydrogen Bond Properties**: 1,304 samples
- **Iupac Name Generation**: 1,305 samples
- **Logp Calculation**: 129 samples
- **Molecular Weight Calculation**: 1,303 samples
- **Molecule Visualization**: 1,305 samples
- **Reactivity Prediction**: 1,305 samples
- **Solubility Prediction**: 1,305 samples
- **Stereochemistry Analysis**: 1,305 samples
- **Synthetic Accessibility**: 1,305 samples

## Dataset Structure

Each sample contains:
- **messages**: List of conversation turns (user question, assistant answer)
- **task**: Chemistry task category
- **smiles**: SMILES string of the molecule
- **difficulty**: Task difficulty level (easy/medium/hard)

### Example Sample

```json

{

  "messages": [

    {

      "role": "user", 

      "content": "What is the molecular weight of the compound with SMILES 'CCO'?"

    },

    {

      "role": "assistant",

      "content": "The molecular weight of ethanol (CCO) is 46.07 g/mol."

    }

  ],

  "task": "Molecular_Weight_Calculation",

  "smiles": "CCO",

  "difficulty": "easy"

}

```

## Computational Methods

All answers are computed using established cheminformatics libraries:

- **RDKit**: Molecular property calculations, structure analysis
- **spyrmsd**: Symmetry-corrected molecular analysis  
- **MDAnalysis**: Molecular dynamics and structure processing
- **PyTorch**: Neural network components (when available)

## Usage

### Loading the Dataset

```python

from datasets import load_dataset



# Load full dataset

dataset = load_dataset("summykai/chembench-rlvr-test5")



# Load specific split

train_data = load_dataset("summykai/chembench-rlvr-test5", split="train")

test_data = load_dataset("summykai/chembench-rlvr-test5", split="test")

```

### RLVR Training

This dataset is optimized for Reinforcement Learning from Verifiable Rewards:

```python

# Example: Verify molecular weight calculation

from rdkit import Chem

from rdkit.Chem import Descriptors



def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool:

    mol = Chem.MolFromSmiles(smiles)

    if mol is None:

        return False

    actual_mw = Descriptors.MolWt(mol)

    return abs(actual_mw - predicted_mw) < 0.1

```

## Citation

If you use this dataset in your research, please cite:

```bibtex

@dataset{chembench_rlvr_2025,

  title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards},

  author={ChemBench Team},

  year={2025},

  url={https://huggingface.co/datasets/summykai/chembench-rlvr-test5},

  note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools}

}

```

## License

This dataset is released under the MIT License. See LICENSE file for details.

## Dataset Generation

- **Generated on**: 2025-08-08 19:06:47 UTC
- **Version**: 8.6-post8
- **Seed**: 42 (for reproducibility)
- **Source molecules**: PubChem compound database

## Acknowledgments

This dataset was generated using:
- [RDKit](https://www.rdkit.org/) - Cheminformatics toolkit
- [spyrmsd](https://github.com/RMeli/spyrmsd) - Symmetry-corrected RMSD calculations
- [PubChem](https://pubchem.ncbi.nlm.nih.gov/) - Chemical compound database
- [Hugging Face](https://huggingface.co/) - Dataset hosting and distribution