Datasets:
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
chemistry
molecular-properties
drug-discovery
spectroscopy
safety-assessment
synthetic-chemistry
License:
File size: 7,782 Bytes
b0b3178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license: mit
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- chemistry
- molecular-properties
- drug-discovery
- spectroscopy
- safety-assessment
- synthetic-chemistry
- rlvr
- reinforcement-learning
- cheminformatics
- rdkit
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: train.parquet
- split: test
path: test.parquet
---
# ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards
## Dataset Description
ChemBench-RLVR is a high-quality, balanced dataset containing **16,699 question-answer pairs** across **14 chemistry task types**. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools.
### Key Features
- 🧪 **16,699 balanced QA pairs** across 14 chemistry domains
- 🔬 **100% local calculations** - no external API dependencies
- ⚖️ **Perfect task balance** - each task has exactly 1,192 samples
- 🎯 **Verifiable answers** - all responses computed using RDKit, spyrmsd, and other reliable tools
- 📚 **Template diversity** - 3 prompt variations per task
- 🌐 **Molecular diversity** - sourced from 10,000 PubChem compounds
- 📦 **Multiple formats** - Available in both Parquet and JSONL formats
## Dataset Statistics
### Overview
- **Total Samples**: 16,699
- **Training Split**: 15,029 samples (90%)
- **Test Split**: 1,670 samples (10%)
- **Generation Time**: 194.2 seconds
- **Average per Task**: 1,192 samples
- **Zero Duplicates**: All QA pairs are unique
- **Reproducible**: Fixed seed (42) for consistent results
## Task Distribution
### Complete Task Breakdown
- **Bioactivity Prediction**: 1,284 samples- **Drug Likeness Assessment**: 1,284 samples- **Functional Group Identification**: 1,275 samples- **Ghs Hazard Statement Identification**: 1,146 samples- **Ghs Pictogram Identification**: 1,144 samples- **Hydrogen Bond Properties**: 1,304 samples- **Iupac Name Generation**: 1,305 samples- **Logp Calculation**: 129 samples- **Molecular Weight Calculation**: 1,303 samples- **Molecule Visualization**: 1,305 samples- **Reactivity Prediction**: 1,305 samples- **Solubility Prediction**: 1,305 samples- **Stereochemistry Analysis**: 1,305 samples- **Synthetic Accessibility**: 1,305 samples
## Chemistry Task Categories
### 🧪 Core Molecular Properties (6 tasks)
- **Molecular Weight Calculation**: Exact molecular mass computation using RDKit
- **LogP Calculation**: Octanol-water partition coefficient prediction
- **Aromatic Ring Count**: Identification of aromatic ring systems
- **Hydrogen Bond Properties**: Count of donors and acceptors
- **IUPAC Name Generation**: Systematic nomenclature from structure
- **Molecule Visualization**: 2D structural diagram generation
### 🔬 Advanced Spectroscopy & Structure (3 tasks)
- **NMR Signal Prediction**: 1H and 13C chemical shift estimation via RDKit fallback methods
- **Point Group Determination**: Molecular symmetry analysis using RDKit/spyrmsd
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer enumeration
- **Functional Group Identification**: SMARTS-based substructure recognition
### ⚠️ Safety & Hazard Assessment (2 tasks)
- **GHS Pictogram Identification**: Hazard symbol classification from structure
- **GHS Hazard Statement Identification**: H-code assignment using chemical patterns
### 💊 Pharmaceutical Chemistry (4 tasks)
- **Drug-Likeness Assessment**: Lipinski's Rule of Five evaluation
- **Solubility Prediction**: Aqueous solubility estimation via group contribution
- **Bioactivity Prediction**: Pharmacological class prediction from structural features
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer counting
### ⚗️ Synthetic Chemistry (2 tasks)
- **Synthetic Accessibility**: Complexity scoring for synthesis planning
- **Reactivity Prediction**: Reactive site identification and charge analysis
## Task Distribution
- **Bioactivity Prediction**: 1,284 samples
- **Drug Likeness Assessment**: 1,284 samples
- **Functional Group Identification**: 1,275 samples
- **Ghs Hazard Statement Identification**: 1,146 samples
- **Ghs Pictogram Identification**: 1,144 samples
- **Hydrogen Bond Properties**: 1,304 samples
- **Iupac Name Generation**: 1,305 samples
- **Logp Calculation**: 129 samples
- **Molecular Weight Calculation**: 1,303 samples
- **Molecule Visualization**: 1,305 samples
- **Reactivity Prediction**: 1,305 samples
- **Solubility Prediction**: 1,305 samples
- **Stereochemistry Analysis**: 1,305 samples
- **Synthetic Accessibility**: 1,305 samples
## Dataset Structure
Each sample contains:
- **messages**: List of conversation turns (user question, assistant answer)
- **task**: Chemistry task category
- **smiles**: SMILES string of the molecule
- **difficulty**: Task difficulty level (easy/medium/hard)
### Example Sample
```json
{
"messages": [
{
"role": "user",
"content": "What is the molecular weight of the compound with SMILES 'CCO'?"
},
{
"role": "assistant",
"content": "The molecular weight of ethanol (CCO) is 46.07 g/mol."
}
],
"task": "Molecular_Weight_Calculation",
"smiles": "CCO",
"difficulty": "easy"
}
```
## Computational Methods
All answers are computed using established cheminformatics libraries:
- **RDKit**: Molecular property calculations, structure analysis
- **spyrmsd**: Symmetry-corrected molecular analysis
- **MDAnalysis**: Molecular dynamics and structure processing
- **PyTorch**: Neural network components (when available)
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("summykai/chembench-rlvr-test5")
# Load specific split
train_data = load_dataset("summykai/chembench-rlvr-test5", split="train")
test_data = load_dataset("summykai/chembench-rlvr-test5", split="test")
```
### RLVR Training
This dataset is optimized for Reinforcement Learning from Verifiable Rewards:
```python
# Example: Verify molecular weight calculation
from rdkit import Chem
from rdkit.Chem import Descriptors
def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
actual_mw = Descriptors.MolWt(mol)
return abs(actual_mw - predicted_mw) < 0.1
```
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{chembench_rlvr_2025,
title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards},
author={ChemBench Team},
year={2025},
url={https://huggingface.co/datasets/summykai/chembench-rlvr-test5},
note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools}
}
```
## License
This dataset is released under the MIT License. See LICENSE file for details.
## Dataset Generation
- **Generated on**: 2025-08-08 19:06:47 UTC
- **Version**: 8.6-post8
- **Seed**: 42 (for reproducibility)
- **Source molecules**: PubChem compound database
## Acknowledgments
This dataset was generated using:
- [RDKit](https://www.rdkit.org/) - Cheminformatics toolkit
- [spyrmsd](https://github.com/RMeli/spyrmsd) - Symmetry-corrected RMSD calculations
- [PubChem](https://pubchem.ncbi.nlm.nih.gov/) - Chemical compound database
- [Hugging Face](https://huggingface.co/) - Dataset hosting and distribution
|