Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
File size: 4,551 Bytes
c86a0eb 0227f47 c86a0eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
datasets:
- sentiment-analysis-dataset
language:
- en
task_categories:
- text-classification
task_ids:
- sentiment-classification
tags:
- sentiment-analysis
- text-classification
- balanced-dataset
- oversampling
- csv
pretty_name: Sentiment Analysis Dataset (Imbalanced)
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_examples: 83989
- name: validation
num_examples: 10499
- name: test
num_examples: 10499
format: csv
---
# Sentiment Analysis Dataset
## Overview
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
- **0**: Negative
- **1**: Neutral
- **2**: Positive
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.
---
## Dataset Details
### Key Features
- **Type**: CSV
- **Language**: English
- **Labels**:
- `0`: Negative
- `1`: Neutral
- `2`: Positive
- **Pre-processing**:
- Duplicates removed
- Null values removed
- Cleaned for consistency
### Dataset Split
| Split | Rows |
|--------------|--------|
| **Train** | 83,989 |
| **Validation** | 10,499 |
| **Test** | 10,499 |
### Format
Each row in the dataset consists of the following columns:
- `text`: The input text data (e.g., sentences, comments, or tweets).
- `label`: The corresponding sentiment label (`0`, `1`, or `2`).
---
## Usage
### Installation
Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location.
### Loading the Dataset
#### Using Pandas
```python
import pandas as pd
# Load the train dataset
train_df = pd.read_csv("path_to_train.csv")
print(train_df.head())
# Columns: text, label
```
#### Using Hugging Face's `datasets` Library
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-dataset-path")
# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
# Example: Printing a sample
print(train_data[0])
```
---
## Example Usage
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("your-dataset-path")
# Load model and tokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Prepare training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=True,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
)
# Train model
trainer.train()
```
---
## Applications
This dataset can be used for:
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets.
2. **Customer Feedback Analysis**: Evaluate reviews or feedback.
3. **Product Sentiment Trends**: Monitor public sentiment about products or services.
---
## License
This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects.
---
## Citation
If you use this dataset, please cite it as follows:
```
@dataset{your_name_2024,
title = {Sentiment Analysis Dataset},
author = {Syed Khalid Hussain},
year = {2024},
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
}
```
---
## Acknowledgments
This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.
---
**Author**: Syed Khalid Hussain |