File size: 4,551 Bytes
c86a0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0227f47
c86a0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
datasets:
  - sentiment-analysis-dataset
language:
  - en
task_categories:
  - text-classification
task_ids:
  - sentiment-classification
tags:
  - sentiment-analysis
  - text-classification
  - balanced-dataset
  - oversampling
  - csv
pretty_name: Sentiment Analysis Dataset (Imbalanced)
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int64
  splits:
    - name: train
      num_examples: 83989
    - name: validation
      num_examples: 10499
    - name: test
      num_examples: 10499
  format: csv
---


# Sentiment Analysis Dataset

## Overview

This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
- **0**: Negative
- **1**: Neutral
- **2**: Positive

It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.

---

## Dataset Details

### Key Features

- **Type**: CSV
- **Language**: English
- **Labels**: 
  - `0`: Negative 
  - `1`: Neutral 
  - `2`: Positive
- **Pre-processing**:
  - Duplicates removed
  - Null values removed
  - Cleaned for consistency

### Dataset Split

| Split        | Rows   |
|--------------|--------|
| **Train**    | 83,989 |
| **Validation** | 10,499 |
| **Test**     | 10,499 |

### Format

Each row in the dataset consists of the following columns:
- `text`: The input text data (e.g., sentences, comments, or tweets).
- `label`: The corresponding sentiment label (`0`, `1`, or `2`).

---

## Usage

### Installation

Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location.

### Loading the Dataset

#### Using Pandas

```python
import pandas as pd

# Load the train dataset
train_df = pd.read_csv("path_to_train.csv")
print(train_df.head())

# Columns: text, label
```

#### Using Hugging Face's `datasets` Library

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("your-dataset-path")

# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]

# Example: Printing a sample
print(train_data[0])
```

---

## Example Usage

Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library:

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset

# Load dataset
dataset = load_dataset("your-dataset-path")

# Load model and tokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)

# Tokenize dataset
def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Prepare training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    load_best_model_at_end=True,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
)

# Train model
trainer.train()
```

---

## Applications

This dataset can be used for:
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets.
2. **Customer Feedback Analysis**: Evaluate reviews or feedback.
3. **Product Sentiment Trends**: Monitor public sentiment about products or services.

---

## License

This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects.

---

## Citation

If you use this dataset, please cite it as follows:

```
@dataset{your_name_2024,
  title        = {Sentiment Analysis Dataset},
  author       = {Syed Khalid Hussain},
  year         = {2024},
  url          = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
}
```

---

## Acknowledgments

This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.

---

**Author**: Syed Khalid Hussain