is_exist
bool
2 classes
url
stringlengths
28
74
created_at
stringlengths
20
20
description
stringlengths
5
348
pdf_text
stringlengths
98
67.1k
readme_text
stringlengths
0
81.3k
nlp_taxonomy_classifier_labels
listlengths
0
11
awesome_japanese_nlp_labels
listlengths
0
2
true
https://github.com/takapy0210/nlplot
2020-05-06T15:09:24Z
Visualization Module for Natural Language Processing
takapy0210 / nlplot Public Branches Tags Go to file Go to file Code .github/workflows docs nlplot tests .gitignore LICENSE MANIFEST.in README.md requirements-dev.txt requirements.txt setup.py nlplot: Analysis and visualization module for Natural Language Processing 📈 Facilitates the visualization of natural language processing and provides quicker analysis You can draw the following graph 1. N-gram bar chart 2. N-gram tree Map 3. Histogram of the word count 4. wordcloud 5. co-occurrence networks 6. sunburst chart (Tested in English and Japanese) python package About Visualization Module for Natural Language Processing # visualization # python # nlp # analytics # plotly # wordcloud Readme MIT license Activity 237 stars 4 watching 13 forks Report repository Releases 3 version 1.6.0 Release Latest on Sep 21, 2022 + 2 releases Packages No packages published Contributors 8 Languages Python 100.0% Code Issues 6 Pull requests Actions Projects Security Insights 📝 nlplot Description Requirement README MIT license I've posted on this blog about the specific use. (Japanese) And, The sample code is also available in the kernel of kaggle. (English) The column to be analyzed must be a space-delimited string text 0 Think rich look poor 1 When you come to a roadblock, take a detour 2 When it is dark enough, you can see the stars 3 Never let your memories be greater than your dreams 4 Victory is sweetest when you’ve known defeat Installation pip install nlplot Quick start - Data Preparation # sample data target_col = "text" texts = [ "Think rich look poor", "When you come to a roadblock, take a detour", "When it is dark enough, you can see the stars", "Never let your memories be greater than your dreams", "Victory is sweetest when you’ve known defeat" ] df = pd.DataFrame({target_col: texts}) df.head() Quick start - Python API import nlplot import pandas as pd import plotly from plotly.subplots import make_subplots from plotly.offline import iplot import matplotlib.pyplot as plt %matplotlib inline # target_col as a list type or a string separated by a space. npt = nlplot.NLPlot(df, target_col='text') # Stopword calculations can be performed. stopwords = npt.get_stopword(top_n=30, min_freq=0) # 1. N-gram bar chart fig_unigram = npt.bar_ngram( title='uni-gram', xaxis_label='word_count', yaxis_label='word', ngram=1, top_n=50, width=800, height=1100, color=None, horizon=True, stopwords=stopwords, verbose=False, save=False, ) fig_unigram.show() fig_bigram = npt.bar_ngram( title='bi-gram', xaxis_label='word_count', yaxis_label='word', ngram=2, top_n=50, width=800, height=1100, color=None, horizon=True, stopwords=stopwords, verbose=False, save=False, ) fig_bigram.show() # 2. N-gram tree Map fig_treemap = npt.treemap( title='Tree map', ngram=1, top_n=50, width=1300, height=600, stopwords=stopwords, verbose=False, save=False ) fig_treemap.show() # 3. Histogram of the word count fig_histgram = npt.word_distribution( title='word distribution', xaxis_label='count', yaxis_label='', width=1000, height=500, color=None, template='plotly', bins=None, save=False, ) fig_histgram.show() # 4. wordcloud fig_wc = npt.wordcloud( width=1000, height=600, max_words=100, max_font_size=100, colormap='tab20_r', stopwords=stopwords, mask_file=None, save=False ) plt.figure(figsize=(15, 25)) plt.imshow(fig_wc, interpolation="bilinear") plt.axis("off") plt.show() # 5. co-occurrence networks npt.build_graph(stopwords=stopwords, min_edge_frequency=10) # The number of nodes and edges to which this output is plotted. # If this number is too large, plotting will take a long time, so adjust the [min_edge_frequency] well. TBD Plotly is used to plot the figure https://plotly.com/python/ co-occurrence networks is used to calculate the co-occurrence network https://networkx.github.io/documentation/stable/tutorial.html wordcloud uses the following fonts # >> node_size:70, edge_size:166 fig_co_network = npt.co_network( title='Co-occurrence network', sizing=100, node_size='adjacency_frequency', color_palette='hls', width=1100, height=700, save=False ) iplot(fig_co_network) # 6. sunburst chart fig_sunburst = npt.sunburst( title='sunburst chart', colorscale=True, color_continuous_scale='Oryel', width=1000, height=800, save=False ) fig_sunburst.show() # other # The original data frame of the co-occurrence network can also be accessed display( npt.node_df.head(), npt.node_df.shape, npt.edge_df.head(), npt.edge_df.shape ) Document Test cd tests pytest Other
# Carp <img src="resources/logo/carp_logo_300_c.png" alt="Logo" align="right"/> [![Linux CI](https://github.com/carp-lang/Carp/workflows/Linux%20CI/badge.svg)](https://github.com/carp-lang/Carp/actions?query=workflow%3A%22Linux+CI%22) [![MacOS CI](https://github.com/carp-lang/Carp/workflows/MacOS%20CI/badge.svg)](https://github.com/carp-lang/Carp/actions?query=workflow%3A"MacOS+CI") [![Windows CI](https://github.com/carp-lang/Carp/workflows/Windows%20CI/badge.svg)](https://github.com/carp-lang/Carp/actions?query=workflow%3A"Windows+CI") <i>WARNING! This is a research project and a lot of information here might become outdated and misleading without any explanation. Don't use it for anything important just yet!</i> <i>[Version 0.5.5 of the language is out!](https://github.com/carp-lang/Carp/releases/)</i> ## About Carp is a programming language designed to work well for interactive and performance sensitive use cases like games, sound synthesis and visualizations. The key features of Carp are the following: * Automatic and deterministic memory management (no garbage collector or VM) * Inferred static types for great speed and reliability * Ownership tracking enables a functional programming style while still using mutation of cache-friendly data structures under the hood * No hidden performance penalties – allocation and copying are explicit * Straightforward integration with existing C code * Lisp macros, compile time scripting and a helpful REPL ## Learn more * [The Compiler Manual](docs/Manual.md) - how to install and use the compiler * [Carp Language Guide](docs/LanguageGuide.md) - syntax and semantics of the language * [Core Docs](http://carp-lang.github.io/carp-docs/core/core_index.html) - documentation for our standard library [![Join the chat at https://gitter.im/eriksvedang/Carp](https://badges.gitter.im/eriksvedang/Carp.svg)](https://gitter.im/eriksvedang/Carp?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) ## A Very Small Example ```clojure (load-and-use SDL) (defn tick [state] (+ state 10)) (defn draw [app rend state] (bg rend &(rgb (/ @state 2) (/ @state 3) (/ @state 4)))) (defn main [] (let [app (SDLApp.create "The Minimalistic Color Generator" 400 300) state 0] (SDLApp.run-with-callbacks &app SDLApp.quit-on-esc tick draw state))) ``` For instructions on how to run Carp code, see [this document](docs/HowToRunCode.md). For more examples, check out the [examples](examples) directory. ## Maintainers - [Erik Svedäng](https://github.com/eriksvedang) - [Veit Heller](https://github.com/hellerve) - [Jorge Acereda](https://github.com/jacereda) - [Scott Olsen](https://github.com/scolsen) - [Tim Dévé](https://github.com/TimDeve) ## Contributing Thanks to all the [awesome people](https://github.com/carp-lang/Carp/graphs/contributors) who have contributed to Carp over the years! We are always looking for more help &ndash; check out the [contributing guide](docs/Contributing.md) to get started. ## License Copyright 2016 - 2021 Erik Svedäng Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. The regular expression implementation as found in src/carp_regex.h are Copyright (C) 1994-2017 Lua.org, PUC-Rio under the terms of the MIT license. Details can be found in the License file LUA_LICENSE.
[ "Natural Language Interfaces", "Structured Data in NLP", "Syntactic Text Processing", "Visual Data in NLP" ]
[]
true
https://github.com/chezou/Mykytea-python
2011-07-15T08:34:12Z
Python wrapper for KyTea
chezou / Mykytea-python Public Branches Tags Go to file Go to file Code .github/workfl… lib .gitattribute .gitignore LICENSE MANIFEST.in Makefile README.md pyproject.toml setup.cfg setup.py Sponsor Sponsor Mykytea-python is a Python wrapper module for KyTea, a general text analysis toolkit. KyTea is developed by KyTea Development Team. Detailed information on KyTea can be found at: http://www.phontron.com/kytea You can install Mykytea-python via pip . You don't have to install KyTea anymore before installing Mykytea-python when you install it by using wheel on PyPI. About Python wrapper for KyTea chezo.uno/post/2011-07-15-kytea… Readme MIT license Activity 36 stars 4 watching 13 forks Report repository Releases 9 Build Apple Silicon whe… Latest on Jan 15 + 8 releases Packages No packages published Contributors 5 Languages C++ 99.0% Other 1.0% Code Issues 1 Pull requests Actions Projects Wiki Security Insights KyTea wrapper for Python Installation Install Mykytea-python via pip pip install kytea README MIT license You should have any KyTea model on your machine. If you want to build from source, you need to install KyTea. Then, run After make, you can install Mykytea-python by running If you fail to make, please try to install SWIG and run Or if you still fail on Max OS X, run with some variables If you compiled kytea with clang, you need ARCHFLAGS only. Or, you use macOS and Homebrew, you can use KYTEA_DIR to pass the directory of KyTea. Here is the example code to use Mykytea-python. Build Mykytea-python from source make make install swig -c++ -python -I/usr/local/include mykytea.i $ ARCHFLAGS="-arch x86_64" CC=gcc CXX=g++ make brew install kytea KYTEA_DIR=$(brew --prefix) make all How to use it? import Mykytea def showTags(t): for word in t: out = word.surface + "\t" for t1 in word.tag: for t2 in t1: for t3 in t2: out = out + "/" + str(t3) out += "\t" out += "\t" print(out) def list_tags(t): def convert(t2): return (t2[0], type(t2[1])) return [(word.surface, [[convert(t2) for t2 in t1] for t1 in word.tag]) for word in t] # Pass arguments for KyTea as the following: opt = "-model /usr/local/share/kytea/model.bin" mk = Mykytea.Mykytea(opt) MIT License s = "今日はいい天気です。" # Fetch segmented words for word in mk.getWS(s): print(word) # Show analysis results print(mk.getTagsToString(s)) # Fetch first best tag t = mk.getTags(s) showTags(t) # Show all tags tt = mk.getAllTags(s) showTags(tt) License
# KyTea wrapper for Python [![PyPI version](https://badge.fury.io/py/kytea.svg)](https://badge.fury.io/py/kytea) [![](https://img.shields.io/badge/-Sponsor-fafbfc?logo=GitHub%20Sponsors )](https://github.com/sponsors/chezou) Mykytea-python is a Python wrapper module for KyTea, a general text analysis toolkit. KyTea is developed by KyTea Development Team. Detailed information on KyTea can be found at: http://www.phontron.com/kytea ## Installation ### Install Mykytea-python via pip You can install Mykytea-python via `pip`. ```sn pip install kytea ``` You don't have to install KyTea anymore before installing Mykytea-python when you install it by using wheel on PyPI. You should have any KyTea model on your machine. ### Build Mykytea-python from source If you want to build from source, you need to install KyTea. Then, run ```sh make ``` After make, you can install Mykytea-python by running ```sh make install ``` If you fail to make, please try to install SWIG and run ```sh swig -c++ -python -I/usr/local/include mykytea.i ``` Or if you still fail on Max OS X, run with some variables ```sh $ ARCHFLAGS="-arch x86_64" CC=gcc CXX=g++ make ``` If you compiled kytea with clang, you need ARCHFLAGS only. Or, you use macOS and Homebrew, you can use `KYTEA_DIR` to pass the directory of KyTea. ```sh brew install kytea KYTEA_DIR=$(brew --prefix) make all ``` ## How to use it? Here is the example code to use Mykytea-python. ```python import Mykytea def showTags(t): for word in t: out = word.surface + "\t" for t1 in word.tag: for t2 in t1: for t3 in t2: out = out + "/" + str(t3) out += "\t" out += "\t" print(out) def list_tags(t): def convert(t2): return (t2[0], type(t2[1])) return [(word.surface, [[convert(t2) for t2 in t1] for t1 in word.tag]) for word in t] # Pass arguments for KyTea as the following: opt = "-model /usr/local/share/kytea/model.bin" mk = Mykytea.Mykytea(opt) s = "今日はいい天気です。" # Fetch segmented words for word in mk.getWS(s): print(word) # Show analysis results print(mk.getTagsToString(s)) # Fetch first best tag t = mk.getTags(s) showTags(t) # Show all tags tt = mk.getAllTags(s) showTags(tt) ``` ## License MIT License
[ "Morphology", "Robustness in NLP", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/nicolas-raoul/kakasi-java
2012-01-18T08:30:56Z
Kanji transliteration to hiragana/katakana/romaji, in Java
nicolas-raoul / kakasi-java Public Branches Tags Go to file Go to file Code dict docs src/co… .gitignore AUTH… COPYI… READ… build.xml UPDATE: I just created Jakaroma, its kanji transliteration is much more accurate than Kakasi-java so please use it instead, thanks! Also open source. Kakasi-java Convert Japanese kanji into romaji See also http://kakasi.namazu.org Originally written by Tomoyuki Kawao Forked from the last code found at http://blog.kenichimaehashi.com/? article=13048363750 If you know any more recent version, please let me know by email nicolas.raoul at gmail To build just run: ant Usage: About Kanji transliteration to hiragana/katakana/romaji, in Java # java # japanese # romaji # kana # kanji # java-library # japanese-language # kakasi Readme GPL-2.0 license Activity 54 stars 3 watching 19 forks Report repository Releases No releases published Packages No packages published Contributors 2 Languages Java 100.0% Code Issues 1 Pull requests Actions Projects Wiki Security Ins java -Dkakasi.home=. -jar lib/kakasi.jar [-JH | -JK | -Ja] [-HK | -Ha] [-KH | -Ka] README GPL-2.0 license Example: Original documentation (in Japanese): http://nicolas- raoul.github.com/kakasi-java [-i<input-encoding>] [- o<output-encoding>] [-p] [-f] [-c] [-s] [-b] [-r{hepburn|kunrei}] [-C | -U] [-w] [dictionary1 [dictionary2 [,,,]]] Character Set Conversions: -JH: kanji to hiragana -JK: kanji to katakana -Ja: kanji to romaji -HK: hiragana to katakana -Ha: hiragana to romaji -KH: katakana to hiragana -Ka: katakana to romaji Options: -i: input encoding -o: output encoding -p: list all readings (with -J option) -f: furigana mode (with -J option) -c: skip whitespace chars within jukugo -s: insert separate characters -b: output buffer is not flushed when a newline character is written -r: romaji conversion system -C: romaji Capitalize -U: romaji Uppercase -w: wakachigaki mode java -Dkakasi.home=. -jar lib/kakasi.jar -Ja 国際財務報告基準 kokusaizaimuhoukokukijun
UPDATE: I just created [Jakaroma](https://github.com/nicolas-raoul/jakaroma), its kanji transliteration is much more accurate than Kakasi-java so please use it instead, thanks! Also open source. Kakasi-java Convert Japanese kanji into romaji See also http://kakasi.namazu.org Originally written by Tomoyuki Kawao Forked from the last code found at http://blog.kenichimaehashi.com/?article=13048363750 If you know any more recent version, please let me know by email nicolas.raoul at gmail To build just run: `ant` Usage: java -Dkakasi.home=. -jar lib/kakasi.jar [-JH | -JK | -Ja] [-HK | -Ha] [-KH | -Ka] [-i<input-encoding>] [-o<output-encoding>] [-p] [-f] [-c] [-s] [-b] [-r{hepburn|kunrei}] [-C | -U] [-w] [dictionary1 [dictionary2 [,,,]]] Character Set Conversions: -JH: kanji to hiragana -JK: kanji to katakana -Ja: kanji to romaji -HK: hiragana to katakana -Ha: hiragana to romaji -KH: katakana to hiragana -Ka: katakana to romaji Options: -i: input encoding -o: output encoding -p: list all readings (with -J option) -f: furigana mode (with -J option) -c: skip whitespace chars within jukugo -s: insert separate characters -b: output buffer is not flushed when a newline character is written -r: romaji conversion system -C: romaji Capitalize -U: romaji Uppercase -w: wakachigaki mode Example: java -Dkakasi.home=. -jar lib/kakasi.jar -Ja 国際財務報告基準 kokusaizaimuhoukokukijun Original documentation (in Japanese): http://nicolas-raoul.github.com/kakasi-java
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/miurahr/pykakasi
2012-08-14T14:48:14Z
Lightweight converter from Japanese Kana-kanji sentences into Kana-Roman.
miurahr / pykakasi Public archive 6 Branches 52 Tags Go to file Go to file Code miurahr README: fix link 51fe14d · 2 years ago .github Actions: instal… 3 years ago bin Introduce dep… 3 years ago docs PEP8: black f… 3 years ago src Support latin1… 2 years ago tests Support latin1… 2 years ago utils Merge pull re… 3 years ago .gitignore Update .gitign… 4 years ago .readth… Add readthed… 4 years ago AUTH… Add unidic co… 3 years ago CHAN… Update chang… 2 years ago CHAN… Update chang… 3 years ago CONT… docs: update … 5 years ago COPYI… Update Manif… 6 years ago MANIF… Add unidic for… 3 years ago READ… README: fix … 2 years ago SECU… Bump to 2.3.x 3 years ago pyproj… Move covera… 4 years ago setup.cfg setup: Update… 3 years ago setup.py PEP8/black: r… 3 years ago tox.ini CI: drop py36… 3 years ago About Lightweight converter from Japanese Kana-kanji sentences into Kana-Roman. codeberg.org/miurahr/pykakasi # python # natural-language-processing # japanese # transliterator # transliterate-japanese Readme GPL-3.0 license Security policy Activity 421 stars 5 watching 54 forks Report repository Releases 37 Release v2.2.1 Latest on Jul 10, 2021 + 36 releases Sponsor this project liberapay.com/miurahr Contributors 12 This repository has been archived by the owner on Jul 22, 2022. It is now read-only. Code Issues 1 Pull requests Actions Projects Wiki Security Ins docs docs passing passing Run Tox tests Run Tox tests no status no status Azure Pipelines Azure Pipelines set up now set up now coverage coverage 92% 92% #StandWithUkraine #StandWithUkraine pykakasi is a Python Natural Language Processing (NLP) library to transliterate hiragana, katakana and kanji (Japanese text) into rōmaji (Latin/Roman alphabet). It can handle characters in NFC form. Its algorithms are based on the kakasi library, which is written in C. Install (from PyPI): pip install pykakasi Install (from conda-forge): conda install -c conda-forge pykakasi Documentation available on readthedocs This project has given up GitHub. (See Software Freedom Conservancy's Give Up GitHub site for details) You can now find this project at https://codeberg.org/miurahr/pykakasi instead. Any use of this project's code by GitHub Copilot, past or present, is done without our permission. We do not consent to GitHub's use of this project's code in Copilot. Join us; you can Give Up GitHub too! Languages Python 100.0% Pykakasi Overview Give Up GitHub README GPL-3.0 license
======== Pykakasi ======== Overview ======== .. image:: https://readthedocs.org/projects/pykakasi/badge/?version=latest :target: https://pykakasi.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://badge.fury.io/py/pykakasi.png :target: http://badge.fury.io/py/Pykakasi :alt: PyPI version .. image:: https://github.com/miurahr/pykakasi/workflows/Run%20Tox%20tests/badge.svg :target: https://github.com/miurahr/pykakasi/actions?query=workflow%3A%22Run+Tox+tests%22 :alt: Run Tox tests .. image:: https://dev.azure.com/miurahr/github/_apis/build/status/miurahr.pykakasi?branchName=master :target: https://dev.azure.com/miurahr/github/_build?definitionId=13&branchName=master :alt: Azure-Pipelines .. image:: https://coveralls.io/repos/miurahr/pykakasi/badge.svg?branch=master :target: https://coveralls.io/r/miurahr/pykakasi?branch=master :alt: Coverage status .. image:: https://raw.githubusercontent.com/vshymanskyy/StandWithUkraine/main/badges/StandWithUkraine.svg :target: https://github.com/vshymanskyy/StandWithUkraine/blob/main/docs/README.md ``pykakasi`` is a Python Natural Language Processing (NLP) library to transliterate *hiragana*, *katakana* and *kanji* (Japanese text) into *rōmaji* (Latin/Roman alphabet). It can handle characters in NFC form. Its algorithms are based on the `kakasi`_ library, which is written in C. * Install (from `PyPI`_): ``pip install pykakasi`` * Install (from `conda-forge`_): ``conda install -c conda-forge pykakasi`` * `Documentation available on readthedocs`_ .. _`PyPI`: https://pypi.org/project/pykakasi/ .. _`conda-forge`: https://github.com/conda-forge/pykakasi-feedstock .. _`kakasi`: http://kakasi.namazu.org/ .. _`Documentation available on readthedocs`: https://pykakasi.readthedocs.io/en/latest/index.html Give Up GitHub -------------- This project has given up GitHub. (See Software Freedom Conservancy's `Give Up GitHub`_ site for details) You can now find this project at https://codeberg.org/miurahr/pykakasi instead. Any use of this project's code by GitHub Copilot, past or present, is done without our permission. We do not consent to GitHub's use of this project's code in Copilot. Join us; you can `Give Up GitHub`_ too! .. _`Give Up GitHub`: https://GiveUpGitHub.org .. image:: https://sfconservancy.org/img/GiveUpGitHub.png :width: 400 :alt: Logo of the GiveUpGitHub campaign
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/yohokuno/jsc
2012-08-23T23:39:40Z
Joint source channel model for Japanese Kana Kanji conversion, Chinese pinyin input and CJE mixed input.
yohokuno / jsc Public Branches Tags Go to file Go to file Code data src tools README.md TODO waf wscript JSC is an implementation of joint source channel or joint n-gram model with monotonic decoder. It can be used for machine transliteration, Japanese kana-kanji conversion, Chinese pinyin input, English word segmentation or pronunciation inference. JSC requires Unix, gcc, python, and marisa-trie. If you want to use RPC server, you also need libevent. To install JSC, type these commands into your console. jsc-decode command convert source string into target string via joint source channel model. You can provide queries through standard input line by line. About Joint source channel model for Japanese Kana Kanji conversion, Chinese pinyin input and CJE mixed input. Readme Activity 14 stars 6 watching 2 forks Report repository Releases No releases published Packages No packages published Languages C++ 78.6% C 18.2% Python 3.2% Code Issues Pull requests Actions Projects Wiki Security Insights JSC: Joint Souce Channel Model and Decoder A Joint Source-Channel Model for Machine Transliteration, Li Haizhou, Zhang Min, Su Jian. http://acl.ldc.upenn.edu/acl2004/main/pdf/121_pdf_2-col.pdf Requirement marisa-trie 0.2.0 or later http://code.google.com/p/marisa-trie/ libevent 2.0 or later http://libevent.org/ Install $ ./waf configure [--prefix=INSTALL_DIRECTORY] $ ./waf build $ sudo ./waf install Usage jsc-decode README jsc-build command build model files in binary format from n-gram file in text format. jsc-server command provides RPC server via simple TCP protocol. You can provide queries through telnet command line by line. For Japanese Kana Kanji conversion, a model is provided at data/japanese directory. By default, both romaji and hiragana input are allowed. For Japanese pronunciation inference, a model is provided at data/japanese-reverse directory. For Chinese Pinyin input, a model is provided at data/chinese/ directory. For Chinese Hanzi-to-Pinyin Conversion, a model is provided at data/chinese-reverse/ directory. options: -d directory: specify data directory or prefix (default: ./) -f format: specify format (segment [default], plain, debug) -t table: specify table [romaji] mode (both [default], on, off) -l: turn off sentence-beginning/ending label jsc-build options: -d directory: specify data directory or prefix (default: ./) -m model: specify model file name (default: ngram) -t trie_num: specify trie number in marisa-trie (default: 3) -r: build reverse model jsc-server options: -d directory: specify data directory or prefix (default: ./) -f format: specify format (segment [default], plain, debug) -t table: specify table [romaji] mode (both [default], on, off) -p port: specify port number (default: 40714) -l: turn off sentence-beginning/ending label Sample Applications Japanese Kana Kanji Conversion $ ./build/jsc-decode -d data/japanese/ わたしのなまえはなかのです。 わたし の 名前 は 中野 です 。 arayurugenjitsuwosubetejibunnnohouhenejimagetanoda あらゆる 現実 を 全て 自分 の ほう へ ネジ 曲げ た の だ Japanese Pronunciation Inference $ ./build/jsc-decode -d data/japanese-reverse/ 魔理沙は大変なものを盗んでいきました ま りさ は たいへん な もの を ぬす ん で い き ま し た Chinese Pinyin Input $ ./build/jsc-decode -d data/chinese/ woaiziranyuyanchuli 我 爱 自然 语言 处理 zhejianshitagegehaibuzhidaone 这 件 事 她 哥哥 海部 知道 呢 Chinese Hanzi-to-Pinyin Conversion $ ./build/jsc-decode -d data/chinese-reverse/ 汉字拼音转换 hanzi pinyin zhuanhuan For English input, a model is provided at data/english/ directory. For English/Japanese/Chinese mixed input, a model is provided at data/mixed/ directory. The language is detected automatically. Top directory contains these files and directories: N-gram file should be SRILM format. Target string and source string should be coupled with character '/'; e.g. "私/わたし" Language F-score Size Japanese 0.937 10MB Chinese 0.895 9MB English not ready 9MB Mixed not ready 27MB Please refer this paper if you need. English word segmentation / automatic capitalization $ ./build/jsc-decode -d data/english/ alicewasbeginningtogetverytiredofsittingbyhersisteronthebank Alice was beginning to get very tired of sitting by her sister on the bank istandheretodayhumbledbythetaskbeforeusgratefulforthetrustyouhavebestowedmindfulofthesacrificesbornebyourancestors I Stand here today humbled by the task before us grateful for the trust you have bestowed mindful of the sacrifices borne by our ancestors Mixed Input $ ./build/jsc-decode -d data/mixed/ thisisapencil This is a pencil kyouhayoitenkidesune 今日 は 良い 天気 です ね woshizhongguoren 我 是 中国 人 thisistotemohaochi! This is とても 好吃 ! Data Structure Directories README.md this file build/ built by waf automatically data/ model files src/ source and header files for C++ tools/ command tools by C++ waf waf build script wscript waf settings File format http://www.speech.sri.com/projects/srilm/ Reference Accuracy Paper Yoh Okuno and Shinsuke Mori, An Ensemble Model of Word-based and Character-based Models for Japanese and Chinese Input Method, Workshop on Advances in Text Input Methods, 2012.
JSC: Joint Souce Channel Model and Decoder === **JSC** is an implementation of joint source channel or joint n-gram model with monotonic decoder. A Joint Source-Channel Model for Machine Transliteration, Li Haizhou, Zhang Min, Su Jian. http://acl.ldc.upenn.edu/acl2004/main/pdf/121_pdf_2-col.pdf It can be used for machine transliteration, Japanese kana-kanji conversion, Chinese pinyin input, English word segmentation or pronunciation inference. Requirement --- JSC requires Unix, gcc, python, and marisa-trie. If you want to use RPC server, you also need libevent. marisa-trie 0.2.0 or later http://code.google.com/p/marisa-trie/ libevent 2.0 or later http://libevent.org/ Install --- To install JSC, type these commands into your console. $ ./waf configure [--prefix=INSTALL_DIRECTORY] $ ./waf build $ sudo ./waf install Usage --- ### jsc-decode **jsc-decode** command convert source string into target string via joint source channel model. You can provide queries through standard input line by line. options: -d directory: specify data directory or prefix (default: ./) -f format: specify format (segment [default], plain, debug) -t table: specify table [romaji] mode (both [default], on, off) -l: turn off sentence-beginning/ending label ### jsc-build **jsc-build** command build model files in binary format from n-gram file in text format. options: -d directory: specify data directory or prefix (default: ./) -m model: specify model file name (default: ngram) -t trie_num: specify trie number in marisa-trie (default: 3) -r: build reverse model ### jsc-server **jsc-server** command provides RPC server via simple TCP protocol. You can provide queries through telnet command line by line. options: -d directory: specify data directory or prefix (default: ./) -f format: specify format (segment [default], plain, debug) -t table: specify table [romaji] mode (both [default], on, off) -p port: specify port number (default: 40714) -l: turn off sentence-beginning/ending label Sample Applications --- ### Japanese Kana Kanji Conversion For Japanese Kana Kanji conversion, a model is provided at data/japanese directory. By default, both romaji and hiragana input are allowed. $ ./build/jsc-decode -d data/japanese/ わたしのなまえはなかのです。 わたし の 名前 は 中野 です 。 arayurugenjitsuwosubetejibunnnohouhenejimagetanoda あらゆる 現実 を 全て 自分 の ほう へ ネジ 曲げ た の だ ### Japanese Pronunciation Inference For Japanese pronunciation inference, a model is provided at data/japanese-reverse directory. $ ./build/jsc-decode -d data/japanese-reverse/ 魔理沙は大変なものを盗んでいきました ま りさ は たいへん な もの を ぬす ん で い き ま し た ### Chinese Pinyin Input For Chinese Pinyin input, a model is provided at data/chinese/ directory. $ ./build/jsc-decode -d data/chinese/ woaiziranyuyanchuli 我 爱 自然 语言 处理 zhejianshitagegehaibuzhidaone 这 件 事 她 哥哥 海部 知道 呢 ### Chinese Hanzi-to-Pinyin Conversion For Chinese Hanzi-to-Pinyin Conversion, a model is provided at data/chinese-reverse/ directory. $ ./build/jsc-decode -d data/chinese-reverse/ 汉字拼音转换 hanzi pinyin zhuanhuan ### English word segmentation / automatic capitalization For English input, a model is provided at data/english/ directory. $ ./build/jsc-decode -d data/english/ alicewasbeginningtogetverytiredofsittingbyhersisteronthebank Alice was beginning to get very tired of sitting by her sister on the bank istandheretodayhumbledbythetaskbeforeusgratefulforthetrustyouhavebestowedmindfulofthesacrificesbornebyourancestors I Stand here today humbled by the task before us grateful for the trust you have bestowed mindful of the sacrifices borne by our ancestors ### Mixed Input For English/Japanese/Chinese mixed input, a model is provided at data/mixed/ directory. The language is detected automatically. $ ./build/jsc-decode -d data/mixed/ thisisapencil This is a pencil kyouhayoitenkidesune 今日 は 良い 天気 です ね woshizhongguoren 我 是 中国 人 thisistotemohaochi! This is とても 好吃 ! Data Structure --- ### Directories Top directory contains these files and directories: README.md this file build/ built by waf automatically data/ model files src/ source and header files for C++ tools/ command tools by C++ waf waf build script wscript waf settings ### File format N-gram file should be SRILM format. http://www.speech.sri.com/projects/srilm/ Target string and source string should be coupled with character '/'; e.g. "私/わたし" Reference --- ### Accuracy <table> <tr><th>Language</th><th>F-score</th><th>Size</th></tr> <tr><td>Japanese</td><td>0.937</td><td>10MB</td></tr> <tr><td>Chinese</td><td>0.895</td><td>9MB</td></tr> <tr><td>English</td><td>not ready</td><td>9MB</td></tr> <tr><td>Mixed</td><td>not ready</td><td>27MB</td></tr> </table> ### Paper Please refer this paper if you need. Yoh Okuno and Shinsuke Mori, An Ensemble Model of Word-based and Character-based Models for Japanese and Chinese Input Method, Workshop on Advances in Text Input Methods, 2012. http://yoh.okuno.name/pdf/wtim2012.pdf
[ "Language Models", "Multilinguality", "Syntactic Text Processing" ]
[]
true
https://github.com/lovell/hepburn
2013-06-28T10:06:51Z
Node.js module for converting Japanese Hiragana and Katakana script to, and from, Romaji using Hepburn romanisation
lovell / hepburn Public Branches Tags Go to file Go to file Code .github… lib tests .gitignore LICEN… READ… packag… Node.js module for converting Japanese Hiragana and Katakana script to, and from, Romaji using Hepburn romanisation. Based partly on Takaaki Komura's kana2hepburn. About Node.js module for converting Japanese Hiragana and Katakana script to, and from, Romaji using Hepburn romanisation # nodejs # javascript # katakana # hiragana # romaji # hepburn # hepburn-romanisation Readme Apache-2.0 license Activity 130 stars 4 watching 23 forks Report repository Releases 16 tags Packages No packages published Contributors 10 Languages JavaScript 100.0% Code Issues 4 Pull requests Actions Security Insights Hepburn Install npm install hepburn Usage var hepburn = require("hepburn"); fromKana(string) README Apache-2.0 license Converts a string containing Kana, either Hiragana or Katakana, to Romaji. In this example romaji1 will have the value HIRAGANA , romaji2 will have the value KATAKANA . Converts a string containing Romaji to Hiragana. In this example hiragana will have the value ひらがな. Converts a string containing Romaji to Katakana. In this example katakana will have the value カタカナ and tokyo will have the value トーキョー. Cleans up a romaji string, changing old romaji forms into the more-modern Hepburn form (for further processing). Generally matches the style used by Wapro romaji. A larger guide to modern romaji conventions was used in building this method. What this methods fixes: Incorrect usage of the letter M. For example "Shumman" should be written as "Shunman". Changing usage of NN into N', for example "Shunnei" becomes "Shun'ei". Converting the usage of OU and OH (to indicate a long vowel) into OO. var romaji1 = hepburn.fromKana("ひらがな"); var romaji2 = hepburn.fromKana("カタカナ"); toHiragana(string) var hiragana = hepburn.toHiragana("HIRAGANA"); toKatakana(string) var katakana = hepburn.toKatakana("KATAKANA"); var tokyo = hepburn.toKatakana("TŌKYŌ"); cleanRomaji(string) var cleaned = hepburn.cleanRomaji("SYUNNEI"); // cleaned === "SHUN'EI" Correct old usages Nihon-shiki romanization into Hepburn form. A full list of the conversions can be found in the hepburn.js file. For example "Eisyosai" becomes "Eishosai" and "Yoshihuji" becomes "Yoshifuji". Splits a string containing Katakana or Hiragana into a syllables array. In this example hiragana will have the value ["ひ", "ら", "が", "な"] and tokyo will have the value ["トー", "キョ ー"] . Splits a string containing Romaji into a syllables array. In this example tokyo will have the value ["TŌ", "KYŌ"] and pakkingu will have the value ["PAK", "KI", "N", "GU"] . Returns true if string contains Hiragana. Returns true if string contains Katakana. Returns true if string contains any Kana. Returns true if string contains any Kanji. Run the unit tests with: splitKana(string) var hiragana = hepburn.splitKana("ひらがな"); var tokyo = hepburn.splitKana("トーキョー"); splitRomaji(string) var tokyo = hepburn.splitRomaji("TŌKYŌ"); var pakkingu = hepburn.splitRomaji("PAKKINGU"); containsHiragana(string) containsKatakana(string) containsKana(string) containsKanji(string) Testing Build Status Copyright 2013, 2014, 2015, 2018, 2020 Lovell Fuller and contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under npm test Licence
# Hepburn Node.js module for converting Japanese Hiragana and Katakana script to, and from, Romaji using [Hepburn romanisation](http://en.wikipedia.org/wiki/Hepburn_romanization). Based partly on Takaaki Komura's [kana2hepburn](https://github.com/emon/kana2hepburn). ## Install npm install hepburn ## Usage ```javascript var hepburn = require("hepburn"); ``` ### fromKana(string) ```javascript var romaji1 = hepburn.fromKana("ひらがな"); var romaji2 = hepburn.fromKana("カタカナ"); ``` Converts a string containing Kana, either Hiragana or Katakana, to Romaji. In this example `romaji1` will have the value `HIRAGANA`, `romaji2` will have the value `KATAKANA`. ### toHiragana(string) ```javascript var hiragana = hepburn.toHiragana("HIRAGANA"); ``` Converts a string containing Romaji to Hiragana. In this example `hiragana` will have the value `ひらがな`. ### toKatakana(string) ```javascript var katakana = hepburn.toKatakana("KATAKANA"); var tokyo = hepburn.toKatakana("TŌKYŌ"); ``` Converts a string containing Romaji to Katakana. In this example `katakana` will have the value `カタカナ` and `tokyo` will have the value `トーキョー`. ### cleanRomaji(string) ```javascript var cleaned = hepburn.cleanRomaji("SYUNNEI"); // cleaned === "SHUN'EI" ``` Cleans up a romaji string, changing old romaji forms into the more-modern Hepburn form (for further processing). Generally matches the style used by [Wapro romaji](https://en.wikipedia.org/wiki/W%C4%81puro_r%C5%8Dmaji). A larger [guide to modern romaji conventions](https://www.nayuki.io/page/variations-on-japanese-romanization) was used in building this method. What this methods fixes: * Incorrect usage of the letter M. For example "Shumman" should be written as "Shunman". * Changing usage of NN into N', for example "Shunnei" becomes "Shun'ei". * Converting the usage of OU and OH (to indicate a long vowel) into OO. * Correct old usages [Nihon-shiki romanization](https://en.wikipedia.org/wiki/Nihon-shiki_romanization) into Hepburn form. A full list of the conversions can be found in the `hepburn.js` file. For example "Eisyosai" becomes "Eishosai" and "Yoshihuji" becomes "Yoshifuji". ### splitKana(string) ```javascript var hiragana = hepburn.splitKana("ひらがな"); var tokyo = hepburn.splitKana("トーキョー"); ``` Splits a string containing Katakana or Hiragana into a syllables array. In this example `hiragana` will have the value `["ひ", "ら", "が", "な"]` and `tokyo` will have the value `["トー", "キョー"]`. ### splitRomaji(string) ```javascript var tokyo = hepburn.splitRomaji("TŌKYŌ"); var pakkingu = hepburn.splitRomaji("PAKKINGU"); ``` Splits a string containing Romaji into a syllables array. In this example `tokyo` will have the value `["TŌ", "KYŌ"]` and `pakkingu` will have the value `["PAK", "KI", "N", "GU"]`. ### containsHiragana(string) Returns `true` if `string` contains Hiragana. ### containsKatakana(string) Returns `true` if `string` contains Katakana. ### containsKana(string) Returns `true` if `string` contains any Kana. ### containsKanji(string) Returns `true` if `string` contains any Kanji. ## Testing [![Build Status](https://travis-ci.org/lovell/hepburn.png?branch=master)](https://travis-ci.org/lovell/hepburn) Run the unit tests with: npm test ## Licence Copyright 2013, 2014, 2015, 2018, 2020 Lovell Fuller and contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at [http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0.html) Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
[ "Phonology", "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/jeresig/node-romaji-name
2013-08-24T17:50:11Z
Normalize and fix common issues with Romaji-based Japanese names.
jeresig / node-romaji-name Public Branches Tags Go to file Go to file Code .gitignore LICEN… READ… packag… packag… romaji-… setting… test-pe… test.js This is a utility primarily designed for consuming, parsing, and correcting Japanese names written in rōmaji using proper Hepburn romanization form. Beyond fixing common problems with Japanese names written with rōmaji, it's also able to do a number of amazing things: 1. It's able to figure out which part of the name is the surname and which is the given name and correct the order, if need be (using the enamdict module). 2. It's able to fix names that are missing important punctuation or stress marks (such as missing long vowel marks, like ō, or ' for splitting confusing n-vowel usage). 3. It's able to detect non-Japanese names and leave them intact for future processing. About Normalize and fix common issues with Romaji-based Japanese names. www.npmjs.org/package/romaji-… Readme MIT license Activity 41 stars 2 watching 5 forks Report repository Releases No releases published Packages No packages published Languages JavaScript 100.0% Code Issues Pull requests Actions Projects Wiki Security Insights romaji-name README MIT license 4. It's able to provide the kana form of the Japanese name (using Hiragana and the hepburn module). 5. It's able to correctly split Japanese names, written with Kanji, into their proper given and surnames. 6. It can detect and properly handle the "generation" portion of the name, both in English and in Japanese (e.g. III, IV, etc.). This utility was created to help consume all of the (extremely-poorly-written) Japanese names found when collecting data for the Ukiyo-e Database and Search Engine. All code is written by John Resig and is released under an MIT license. If you like this module this you may also be interested in two other modules that this module depends upon: enamdict and hepburn. Which will log out objects that looks something like this: Example var romajiName = require("romaji-name"); // Wait for the module to completely load // (loads the ENAMDICT dictionary) romajiName.init(function() { console.log(romajiName.parseName("Kenichi Nakamura")); console.log(romajiName.parseName("Gakuryo Nakamura")); console.log(romajiName.parseName("Charles Bartlett")); }); // Note the correction of the order of the given/surname // Also note the correct kana generated and the injection // of the missing ' { original: 'Kenichi Nakamura', locale: 'ja', given: 'Ken\'ichi', given_kana: 'けんいち', surname: 'Nakamura', surname_kana: 'なかむら', name: 'Nakamura Ken\'ichi', ascii: 'Nakamura Ken\'ichi', plain: 'Nakamura Ken\'ichi', kana: 'なかむらけんいち' } // Note the correction of the order of the given/surname // Also note the correction of the missing ō { original: 'Gakuryo Nakamura', locale: 'ja', given: 'Gakuryō', This is available as a node module on npm. You can find it here: https://npmjs.org/package/romaji-name It can be installed by running the following: This library provides a large number of utility methods for working with names (especially Japanese names). That being said you'll probably only ever make use of just the few main methods: Loads the dependent modules (namely, loads the enamdict name database). If, for some reason, you don't need to do any surname/given name correction, or correction of stress marks, then you can skip this step (this would likely be a very abnormal usage of this library). Parses a single string name and returns an object representing that name. Optionally you can specify some settings to modify how the name is parsed, see below for a list of all the settings. The returned object will have some, or all, of the following properties: original : The original string that was passed in to parseName . given_kana: 'がくりょう', surname: 'Nakamura', surname_kana: 'なかむら', name: 'Nakamura Gakuryō', ascii: 'Nakamura Gakuryoo', plain: 'Nakamura Gakuryo', kana: 'なかむらがくりょう' } // Note that it detects that this is likely not a Japanese name // (and leaves the locale empty, accordingly) { original: 'Charles Bartlett', locale: '', given: 'Charles', surname: 'Bartlett', name: 'Charles Bartlett', ascii: 'Charles Bartlett', plain: 'Charles Bartlett' } Installation npm install romaji-name Documentation init(Function) parseName(String [, Object]) settings : An object holding the settings that were passed in to the parseName method. locale : A guess at the locale of the name. Only two values exist: "ja" and "" . Note that just because "ja" was returned it does not guarantee that the person is actually Japanese, just that the name looks to be Japanese-like (for example: Some Chinese names also return "ja" ). given : A string of the Romaji form of the given name. (Will only exist if a Romaji form was originally provided.) given_kana : A string of the Kana form of the given name. (Will only exist if a Romaji form was originally provided and if the locale is "ja" .) given_kanji : A string of the Kanji form of the given name. (Will only exist if a Kanji form was originally provided.) middle : surname : A string of the Romaji form of the surname. (Will only exist if a Romaji form was originally provided.) surname_kana : A string of the Kana form of the surname. (Will only exist if a Romaji form was originally provided and if the locale is "ja" .) surname_kanji : A string of the Kanji form of the surname. (Will only exist if a Kanji form was originally provided.) generation : A number representing the generation of the name. For example "John Smith II" would have a generation of 2 . name : The full name, in properly-stressed romaji, including the generation. For example: "Nakamura Gakuryō II" . ascii : The full name, in ascii text, including the generation. This is a proper ascii representation of the name (with long vowels converted from "ō" into "oo", for example). Example: "Nakamura Gakuryoo II" . plain : The full name, in plain text, including the generation. This is the same as the name property but with all stress formatting stripped from it. This could be useful to use in the generation of a URL slug, or some such. It should never be displayed to an end-user as it will almost always be incorrect. Example: "Nakamura Gakuryo II" . kana : The full name, in kana, without the generation. For example: "なかむら がくりょう". kanji : The full name, in kanji, including the generation. For example: "戯画堂 芦幸 2世" . unknown : If the name is a representation of an unknown individual (e.g. it's the string "Unknown", "Not known", or many of the other variations) then this property will exist and be true . attributed : If the name includes a prefix like "Attributed to" then this will be true . after : If the name includes some sort of "After" or "In the style of" or similar prefix then this will be true . school : If the name includes a prefix like "School of", "Pupil of", or similar then this will be true . Settings: The following are optional settings that change how the name parsing functions. flipNonJa : Names that don't have a "ja" locale should be flipped ("Smith John" becomes "John Smith"). stripParens : Removes anything that's wrapped in parentheses. Normally this is left intact and any extra information is parsed from it. givenFirst : Assumes that the first name is always the given name. Same as the normal parseName method but accepts an object that's in the same form as the object returned from parseName . This is useful as you can take parseName(Object)
romaji-name ================ This is a utility primarily designed for consuming, parsing, and correcting Japanese names written in [rōmaji](https://en.wikipedia.org/wiki/Romanization_of_Japanese) using proper [Hepburn romanization](https://en.wikipedia.org/wiki/Hepburn_romanization) form. Beyond fixing common problems with Japanese names written with rōmaji, it's also able to do a number of amazing things: 1. It's able to figure out which part of the name is the surname and which is the given name and correct the order, if need be (using the [enamdict](https://npmjs.org/package/enamdict) module). 2. It's able to fix names that are missing important punctuation or stress marks (such as missing long vowel marks, like **ō**, or `'` for splitting confusing n-vowel usage). 3. It's able to detect non-Japanese names and leave them intact for future processing. 4. It's able to provide the kana form of the Japanese name (using [Hiragana](https://en.wikipedia.org/wiki/Hiragana) and the [hepburn](https://npmjs.org/package/hepburn) module). 5. It's able to correctly split Japanese names, written with Kanji, into their proper given and surnames. 6. It can detect and properly handle the "generation" portion of the name, both in English and in Japanese (e.g. III, IV, etc.). This utility was created to help consume all of the (extremely-poorly-written) Japanese names found when collecting data for the [Ukiyo-e Database and Search Engine](http://ukiyo-e.org/). All code is written by [John Resig](http://ejohn.org/) and is released under an MIT license. If you like this module this you may also be interested in two other modules that this module depends upon: [enamdict](https://npmjs.org/package/enamdict) and [hepburn](https://npmjs.org/package/hepburn). Example ------- ```javascript var romajiName = require("romaji-name"); // Wait for the module to completely load // (loads the ENAMDICT dictionary) romajiName.init(function() { console.log(romajiName.parseName("Kenichi Nakamura")); console.log(romajiName.parseName("Gakuryo Nakamura")); console.log(romajiName.parseName("Charles Bartlett")); }); ``` Which will log out objects that looks something like this: ```javascript // Note the correction of the order of the given/surname // Also note the correct kana generated and the injection // of the missing ' { original: 'Kenichi Nakamura', locale: 'ja', given: 'Ken\'ichi', given_kana: 'けんいち', surname: 'Nakamura', surname_kana: 'なかむら', name: 'Nakamura Ken\'ichi', ascii: 'Nakamura Ken\'ichi', plain: 'Nakamura Ken\'ichi', kana: 'なかむらけんいち' } // Note the correction of the order of the given/surname // Also note the correction of the missing ō { original: 'Gakuryo Nakamura', locale: 'ja', given: 'Gakuryō', given_kana: 'がくりょう', surname: 'Nakamura', surname_kana: 'なかむら', name: 'Nakamura Gakuryō', ascii: 'Nakamura Gakuryoo', plain: 'Nakamura Gakuryo', kana: 'なかむらがくりょう' } // Note that it detects that this is likely not a Japanese name // (and leaves the locale empty, accordingly) { original: 'Charles Bartlett', locale: '', given: 'Charles', surname: 'Bartlett', name: 'Charles Bartlett', ascii: 'Charles Bartlett', plain: 'Charles Bartlett' } ``` Installation ------------ This is available as a node module on npm. You can find it here: https://npmjs.org/package/romaji-name It can be installed by running the following: npm install romaji-name Documentation ------------- This library provides a large number of utility methods for working with names (especially Japanese names). That being said you'll probably only ever make use of just the few main methods: ### `init(Function)` Loads the dependent modules (namely, loads the `enamdict` name database). If, for some reason, you don't need to do any surname/given name correction, or correction of stress marks, then you can skip this step (this would likely be a very abnormal usage of this library). ### `parseName(String [, Object])` Parses a single string name and returns an object representing that name. Optionally you can specify some settings to modify how the name is parsed, see below for a list of all the settings. The returned object will have some, or all, of the following properties: * `original`: The original string that was passed in to `parseName`. * `settings`: An object holding the settings that were passed in to the `parseName` method. * `locale`: A guess at the locale of the name. Only two values exist: `"ja"` and `""`. Note that just because `"ja"` was returned it does not guarantee that the person is actually Japanese, just that the name looks to be Japanese-like (for example: Some Chinese names also return `"ja"`). * `given`: A string of the Romaji form of the given name. (Will only exist if a Romaji form was originally provided.) * `given_kana`: A string of the Kana form of the given name. (Will only exist if a Romaji form was originally provided and if the locale is `"ja"`.) * `given_kanji`: A string of the Kanji form of the given name. (Will only exist if a Kanji form was originally provided.) * `middle`: * `surname`: A string of the Romaji form of the surname. (Will only exist if a Romaji form was originally provided.) * `surname_kana`: A string of the Kana form of the surname. (Will only exist if a Romaji form was originally provided and if the locale is `"ja"`.) * `surname_kanji`: A string of the Kanji form of the surname. (Will only exist if a Kanji form was originally provided.) * `generation`: A number representing the generation of the name. For example "John Smith II" would have a generation of `2`. * `name`: The full name, in properly-stressed romaji, including the generation. For example: `"Nakamura Gakuryō II"`. * `ascii`: The full name, in ascii text, including the generation. This is a proper ascii representation of the name (with long vowels converted from "ō" into "oo", for example). Example: `"Nakamura Gakuryoo II"`. * `plain`: The full name, in plain text, including the generation. This is the same as the `name` property but with all stress formatting stripped from it. This could be useful to use in the generation of a URL slug, or some such. It should never be displayed to an end-user as it will almost always be incorrect. Example: `"Nakamura Gakuryo II"`. * `kana`: The full name, in kana, without the generation. For example: "なかむらがくりょう". * `kanji`: The full name, in kanji, including the generation. For example: `"戯画堂芦幸 2世"`. * `unknown`: If the name is a representation of an unknown individual (e.g. it's the string "Unknown", "Not known", or many of the other variations) then this property will exist and be `true`. * `attributed`: If the name includes a prefix like "Attributed to" then this will be `true`. * `after`: If the name includes some sort of "After" or "In the style of" or similar prefix then this will be `true`. * `school`: If the name includes a prefix like "School of", "Pupil of", or similar then this will be `true`. **Settings:** The following are optional settings that change how the name parsing functions. * `flipNonJa`: Names that don't have a "ja" locale should be flipped ("Smith John" becomes "John Smith"). * `stripParens`: Removes anything that's wrapped in parentheses. Normally this is left intact and any extra information is parsed from it. * `givenFirst`: Assumes that the first name is always the given name. ### `parseName(Object)` Same as the normal `parseName` method but accepts an object that's in the same form as the object returned from `parseName`. This is useful as you can take existing `romaji-name`-generated name objects and re-parse them again (to easily upgrade them when new changes are made to the `romaji-name` module).
[ "Syntactic Text Processing", "Text Error Correction", "Text Normalization" ]
[]
true
https://github.com/WaniKani/WanaKana
2013-08-27T19:57:41Z
Javascript library for detecting and transliterating Hiragana <--> Katakana <--> Romaji
WaniKani / WanaKana Public Branches Tags Go to file Go to file Code .github cypress gh-pages scripts src test .browserslis… .editorconfig .eslintrc .gitignore .prettierrc .travis.yml CHANGEL… CONTRIBU… LICENSE README.md VERSION babel.confi… cypress.json jsdoc.json package.json rollup.confi… tsconfig.json yarn.lock About Javascript library for detecting and transforming between Hiragana, Katakana, and Romaji wanakana.com Readme MIT license Activity Custom properties 765 stars 14 watching 76 forks Report repository Releases 24 5.3.1 Latest on Nov 20, 2023 + 23 releases Packages No packages published Used by 1k + 1,002 Contributors 17 + 3 contributors Languages JavaScript 78.7% HTML 8.7% CSS 5.2% SCSS 4.3% Code Issues 14 Pull requests 5 Actions Projects Wiki Security Insights npm npm v5.3.1 v5.3.1 Build Status coverage coverage 99% 99% cypress cypress dashboard dashboard Visit the website to see WanaKana in action. https://unpkg.com/wanakana TypeScript 3.1% ワナカナ <--> WanaKana <--> わなかな Javascript utility library for detecting and transliterating Hiragana, Katakana, and Romaji Demo Usage In the browser without a build step, use the minified (UMD) bundle (with browser polyfills) <head> <meta charset="UTF-8"> <script src="https://unpkg.com/wanakana"></script> </head> <body> <input type="text" id="wanakana-input" /> <script> var textInput = document.getElementById('wanakana-input'); wanakana.bind(textInput, /* options */); // uses IMEMode with toKana() as default // to remove event listeners: wanakana.unbind(textInput); </script> </body> ES Modules or Node Install npm install wanakana ES Modules import * as wanakana from 'wanakana'; // or import { toKana, isRomaji } from 'wanakana'; Node (>=12 supported) const wanakana = require('wanakana'); README MIT license Extended API reference Documentation Quick Reference /*** DOM HELPERS ***/ // Automatically converts text using an eventListener on input // Sets option: { IMEMode: true } with toKana() as converter by default wanakana.bind(domElement [, options]); // Removes event listener wanakana.unbind(domElement); /*** TEXT CHECKING UTILITIES ***/ wanakana.isJapanese('泣き虫。!〜2¥zenkaku') // => true wanakana.isKana('あーア') // => true wanakana.isHiragana('すげー') // => true wanakana.isKatakana('ゲーム') // => true wanakana.isKanji('切腹') // => true wanakana.isKanji('勢い') // => false wanakana.isRomaji('Tōkyō and Ōsaka') // => true wanakana.toKana('ONAJI buttsuuji') // => 'オナジ ぶっつうじ' wanakana.toKana('座禅‘zazen’スタイル') // => '座禅「ざぜん」スタイル' wanakana.toKana('batsuge-mu') // => 'ばつげーむ' wanakana.toKana('wanakana', { customKanaMapping: { na: 'に', ka: 'bana' }) }); // => 'わにbanaに' wanakana.toHiragana('toukyou, オオサカ') // => 'とうきょう、 おおさか' wanakana.toHiragana('only カナ', { passRomaji: true }) // => 'only かな' wanakana.toHiragana('wi', { useObsoleteKana: true }) // => 'ゐ' wanakana.toKatakana('toukyou, おおさか') // => 'トウキョウ、 オオサカ' wanakana.toKatakana('only かな', { passRomaji: true }) // => 'only カナ' wanakana.toKatakana('wi', { useObsoleteKana: true }) // => 'ヰ' wanakana.toRomaji('ひらがな カタカナ') // => 'hiragana katakana' Only the browser build via unpkg or the root wanakana.min.js includes polyfills for older browsers. Please see CONTRIBUTING.md Mims H. Wright – Author Duncan Bay – Author Geggles – Contributor James McNamee – Contributor Project sponsored by Tofugu & WaniKani The following ports have been created by the community: Python (Starwort/wanakana-py) on PyPI as wanakana-python Java (MasterKale/WanaKanaJava) Rust (PSeitz/wana_kana_rust) Swift (profburke/WanaKanaSwift) Kotlin (esnaultdev/wanakana-kt) wanakana.toRomaji('ひらがな カタカナ', { upcaseKatakana: true }) // => 'hiragana KATAKANA' wanakana.toRomaji('つじぎり', { customRomajiMapping: { じ: 'zi', つ: 'tu', り: 'li' }) }; // => 'tuzigili' /*** EXTRA UTILITIES ***/ wanakana.stripOkurigana('お祝い') // => 'お祝' wanakana.stripOkurigana('踏み込む') // => '踏み込' wanakana.stripOkurigana('お腹', { leading: true }); // => '腹' wanakana.stripOkurigana('ふみこむ', { matchKanji: '踏み込む' }); // => 'ふみこ' wanakana.stripOkurigana('おみまい', { matchKanji: 'お祝い', leading: true }); // => 'みまい' wanakana.tokenize('ふふフフ') // => ['ふふ', 'フフ'] wanakana.tokenize('hello 田中さん') // => ['hello', ' ', '田中', 'さん'] wanakana.tokenize('I said 私はすごく悲しい', { compact: true }) // => [ 'I said ', '私はすごく悲しい'] Important Contributing Contributors Credits Ports C# (kmoroz/WanaKanaShaapu) Go (deelawn/wanakana)
<div align="center"> <!-- Npm Version --> <a href="https://www.npmjs.com/package/wanakana"> <img src="https://img.shields.io/npm/v/wanakana.svg" alt="NPM package" /> </a> <!-- Build Status --> <a href="https://travis-ci.org/WaniKani/WanaKana"> <img src="https://img.shields.io/travis/WaniKani/WanaKana.svg" alt="Build Status" /> </a> <!-- Test Coverage --> <a href="https://coveralls.io/github/WaniKani/WanaKana"> <img src="https://img.shields.io/coveralls/WaniKani/WanaKana.svg" alt="Test Coverage" /> </a> <a href="https://dashboard.cypress.io/#/projects/tmdhov/runs"> <img src="https://img.shields.io/badge/cypress-dashboard-brightgreen.svg" alt="Cypress Dashboard" /> </a> </div> <div align="center"> <h1>ワナカナ &lt;--&gt; WanaKana &lt;--&gt; わなかな</h1> <h4>Javascript utility library for detecting and transliterating Hiragana, Katakana, and Romaji</h4> </div> ## Demo Visit the [website](http://www.wanakana.com) to see WanaKana in action. ## Usage ### In the browser without a build step, use the minified (UMD) bundle (with browser polyfills) [https://unpkg.com/wanakana](https://unpkg.com/wanakana) ```html <head> <meta charset="UTF-8"> <script src="https://unpkg.com/wanakana"></script> </head> <body> <input type="text" id="wanakana-input" /> <script> var textInput = document.getElementById('wanakana-input'); wanakana.bind(textInput, /* options */); // uses IMEMode with toKana() as default // to remove event listeners: wanakana.unbind(textInput); </script> </body> ``` ### ES Modules or Node #### Install ```shell npm install wanakana ``` #### ES Modules ```javascript import * as wanakana from 'wanakana'; // or import { toKana, isRomaji } from 'wanakana'; ``` #### Node (>=12 supported) ```javascript const wanakana = require('wanakana'); ``` ## Documentation [Extended API reference](http://www.wanakana.com/docs/global.html) ## Quick Reference ```javascript /*** DOM HELPERS ***/ // Automatically converts text using an eventListener on input // Sets option: { IMEMode: true } with toKana() as converter by default wanakana.bind(domElement [, options]); // Removes event listener wanakana.unbind(domElement); /*** TEXT CHECKING UTILITIES ***/ wanakana.isJapanese('泣き虫。!〜2¥zenkaku') // => true wanakana.isKana('あーア') // => true wanakana.isHiragana('すげー') // => true wanakana.isKatakana('ゲーム') // => true wanakana.isKanji('切腹') // => true wanakana.isKanji('勢い') // => false wanakana.isRomaji('Tōkyō and Ōsaka') // => true wanakana.toKana('ONAJI buttsuuji') // => 'オナジ ぶっつうじ' wanakana.toKana('座禅‘zazen’スタイル') // => '座禅「ざぜん」スタイル' wanakana.toKana('batsuge-mu') // => 'ばつげーむ' wanakana.toKana('wanakana', { customKanaMapping: { na: 'に', ka: 'bana' }) }); // => 'わにbanaに' wanakana.toHiragana('toukyou, オオサカ') // => 'とうきょう、 おおさか' wanakana.toHiragana('only カナ', { passRomaji: true }) // => 'only かな' wanakana.toHiragana('wi', { useObsoleteKana: true }) // => 'ゐ' wanakana.toKatakana('toukyou, おおさか') // => 'トウキョウ、 オオサカ' wanakana.toKatakana('only かな', { passRomaji: true }) // => 'only カナ' wanakana.toKatakana('wi', { useObsoleteKana: true }) // => 'ヰ' wanakana.toRomaji('ひらがな カタカナ') // => 'hiragana katakana' wanakana.toRomaji('ひらがな カタカナ', { upcaseKatakana: true }) // => 'hiragana KATAKANA' wanakana.toRomaji('つじぎり', { customRomajiMapping: { じ: 'zi', つ: 'tu', り: 'li' }) }; // => 'tuzigili' /*** EXTRA UTILITIES ***/ wanakana.stripOkurigana('お祝い') // => 'お祝' wanakana.stripOkurigana('踏み込む') // => '踏み込' wanakana.stripOkurigana('お腹', { leading: true }); // => '腹' wanakana.stripOkurigana('ふみこむ', { matchKanji: '踏み込む' }); // => 'ふみこ' wanakana.stripOkurigana('おみまい', { matchKanji: 'お祝い', leading: true }); // => 'みまい' wanakana.tokenize('ふふフフ') // => ['ふふ', 'フフ'] wanakana.tokenize('hello 田中さん') // => ['hello', ' ', '田中', 'さん'] wanakana.tokenize('I said 私はすごく悲しい', { compact: true }) // => [ 'I said ', '私はすごく悲しい'] ``` ## Important Only the browser build via unpkg or the root `wanakana.min.js` includes polyfills for older browsers. ## Contributing Please see [CONTRIBUTING.md](CONTRIBUTING.md) ## Contributors * [Mims H. Wright](https://github.com/mimshwright) – Author * [Duncan Bay](https://github.com/DJTB) – Author * [Geggles](https://github.com/geggles) – Contributor * [James McNamee](https://github.com/dotfold) – Contributor ## Credits Project sponsored by [Tofugu](http://www.tofugu.com) & [WaniKani](http://www.wanikani.com) ## Ports The following ports have been created by the community: * Python ([Starwort/wanakana-py](https://github.com/Starwort/wanakana-py)) on PyPI as `wanakana-python` * Java ([MasterKale/WanaKanaJava](https://github.com/MasterKale/WanaKanaJava)) * Rust ([PSeitz/wana_kana_rust](https://github.com/PSeitz/wana_kana_rust)) * Swift ([profburke/WanaKanaSwift](https://github.com/profburke/WanaKanaSwift)) * Kotlin ([esnaultdev/wanakana-kt](https://github.com/esnaultdev/wanakana-kt)) * C# ([kmoroz/WanaKanaShaapu](https://github.com/kmoroz/WanaKanaShaapu)) * Go ([deelawn/wanakana](https://github.com/deelawn/wanakana))
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/gojp/nihongo
2013-09-02T15:17:52Z
Japanese Dictionary
gojp / nihongo Public Branches Tags Go to file Go to file Code .github… data edict2 lib static templa… .gitignore LICEN… READ… go.mod go.sum main.go go report go report A+ A+ Open source Japanese Dictionary written in Go: https://nihongo.io 1. git clone https://github.com/gojp/nihongo.git About Japanese Dictionary # go # golang # dictionary # japanese # nihongo Readme MIT license Activity Custom properties 78 stars 6 watching 5 forks Report repository Contributors 2 Languages Go 51.1% HTML 25.2% Python 18.6% CSS 4.6% Shell 0.5% Code Issues 7 Pull requests Actions Security Insights nihongo.io How to run: README MIT license 2. Run the app: go run main.go
nihongo.io ========= [![Go Report Card](https://goreportcard.com/badge/github.com/gojp/nihongo)](https://goreportcard.com/report/github.com/gojp/nihongo) Open source Japanese Dictionary written in Go: [https://nihongo.io](https://nihongo.io) ### How to run: 1. `git clone https://github.com/gojp/nihongo.git` 2. Run the app: `go run main.go`
[]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/studio-ousia/mojimoji
2013-11-02T16:23:06Z
A fast converter between Japanese hankaku and zenkaku characters
studio-ousia / mojimoji Public Branches Tags Go to file Go to file Code .github… mojimoji CONT… LICEN… MANIF… READ… mojimo… pyproj… require… setup.cfg setup.py test_m… Test Test passing passing pypi pypi v0.0.13 v0.0.13 pip downloads pip downloads 7M 7M A Cython-based fast converter between Japanese hankaku and zenkaku characters. About A fast converter between Japanese hankaku and zenkaku characters Readme View license Activity Custom properties 144 stars 8 watching 21 forks Report repository Releases 3 0.0.13 Latest on Jan 12 + 2 releases Packages No packages published Contributors 6 Languages Cython 81.3% Python 18.7% Code Issues 1 Pull requests Actions Projects Wiki Security Ins mojimoji Installation $ pip install mojimoji README License mojimoji: 0.0.1 zenhan: 0.4 unicodedata: Bundled with Python 2.7.3 Examples Zenkaku to Hankaku >>> import mojimoji >>> print(mojimoji.zen_to_han('アイウabc012')) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', kana=False)) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', digit=False)) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', ascii=False)) アイウabc012 Hankaku to Zenkaku >>> import mojimoji >>> print(mojimoji.han_to_zen('アイウabc012')) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', kana=False)) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', digit=False)) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', ascii=False)) アイウabc012 Benchmarks Library versions Results In [19]: s = 'ABCDEFG012345' * 10 In [20]: %time for n in range(1000000): mojimoji.zen_to_han(s) CPU times: user 2.86 s, sys: 0.10 s, total: 2.97 s Wall time: 2.88 s In [21]: %time for n in range(1000000): unicodedata.normalize('NFKC', s) CPU times: user 5.43 s, sys: 0.12 s, total: 5.55 s Wall time: 5.44 s In [22]: %time for n in range(1000000): zenhan.z2h(s) mojimoji-rs: The Rust implementation of mojimoji CPU times: user 69.18 s, sys: 0.11 s, total: 69.29 s Wall time: 69.48 s Links
mojimoji ======== .. image:: https://github.com/studio-ousia/mojimoji/actions/workflows/test.yml/badge.svg :target: https://github.com/studio-ousia/mojimoji/actions/workflows/test.yml .. image:: https://img.shields.io/pypi/v/mojimoji.svg :target: https://pypi.org/project/mojimoji/ .. image:: https://static.pepy.tech/personalized-badge/mojimoji?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads :target: https://pypi.org/project/mojimoji/ A Cython-based fast converter between Japanese hankaku and zenkaku characters. Installation ------------ .. code-block:: bash $ pip install mojimoji Examples -------- Zenkaku to Hankaku ^^^^^^^^^^^^^^^^^^ .. code-block:: python >>> import mojimoji >>> print(mojimoji.zen_to_han('アイウabc012')) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', kana=False)) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', digit=False)) アイウabc012 >>> print(mojimoji.zen_to_han('アイウabc012', ascii=False)) アイウabc012 Hankaku to Zenkaku ^^^^^^^^^^^^^^^^^^ .. code-block:: python >>> import mojimoji >>> print(mojimoji.han_to_zen('アイウabc012')) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', kana=False)) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', digit=False)) アイウabc012 >>> print(mojimoji.han_to_zen('アイウabc012', ascii=False)) アイウabc012 Benchmarks ---------- Library versions ^^^^^^^^^^^^^^^^ - mojimoji: 0.0.1 - `zenhan <https://pypi.python.org/pypi/zenhan>`_: 0.4 - `unicodedata <http://docs.python.org/2/library/unicodedata.html>`_: Bundled with Python 2.7.3 Results ^^^^^^^ .. code-block:: python In [19]: s = 'ABCDEFG012345' * 10 In [20]: %time for n in range(1000000): mojimoji.zen_to_han(s) CPU times: user 2.86 s, sys: 0.10 s, total: 2.97 s Wall time: 2.88 s In [21]: %time for n in range(1000000): unicodedata.normalize('NFKC', s) CPU times: user 5.43 s, sys: 0.12 s, total: 5.55 s Wall time: 5.44 s In [22]: %time for n in range(1000000): zenhan.z2h(s) CPU times: user 69.18 s, sys: 0.11 s, total: 69.29 s Wall time: 69.48 s Links ----- - `mojimoji-rs <https://github.com/europeanplaice/mojimoji-rs>`_: The Rust implementation of mojimoji - `gomojimoji <https://github.com/rusq/gomojimoji>`_: The Go implementation of mojimoji
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/cihai/cihai
2013-12-03T17:42:52Z
Python library for CJK (Chinese, Japanese, and Korean) language dictionary
Access to this site has been restricted. If you believe this is an error, please contact Support. GitHub Status — @githubstatus
# cihai &middot; [![Python Package](https://img.shields.io/pypi/v/cihai.svg)](https://pypi.org/project/cihai/) [![License](https://img.shields.io/github/license/cihai/cihai.svg)](https://github.com/cihai/cihai/blob/master/LICENSE) [![Code Coverage](https://codecov.io/gh/cihai/cihai/branch/master/graph/badge.svg)](https://codecov.io/gh/cihai/cihai) Python library for [CJK](https://cihai.git-pull.com/glossary.html#term-cjk) (chinese, japanese, korean) data. This project is under active development. Follow our progress and check back for updates! ## Quickstart ### API / Library (this repository) ```console $ pip install --user cihai ``` ```python from cihai.core import Cihai c = Cihai() if not c.unihan.is_bootstrapped: # download and install Unihan to db c.unihan.bootstrap() query = c.unihan.lookup_char('好') glyph = query.first() print("lookup for 好: %s" % glyph.kDefinition) # lookup for 好: good, excellent, fine; well query = c.unihan.reverse_char('good') print('matches for "good": %s ' % ', '.join([glph.char for glph in query])) # matches for "good": 㑘, 㑤, 㓛, 㘬, 㙉, 㚃, 㚒, 㚥, 㛦, 㜴, 㜺, 㝖, 㤛, 㦝, ... ``` See [API](https://cihai.git-pull.com/api.html) documentation and [/examples](https://github.com/cihai/cihai/tree/master/examples). ### CLI ([cihai-cli](https://cihai-cli.git-pull.com)) ```console $ pip install --user cihai-cli ``` Character lookup: ```console $ cihai info 好 ``` ```yaml char: 好 kCantonese: hou2 hou3 kDefinition: good, excellent, fine; well kHangul: 호 kJapaneseOn: KOU kKorean: HO kMandarin: hǎo kTang: "*xɑ̀u *xɑ̌u" kTotalStrokes: "6" kVietnamese: háo ucn: U+597D ``` Reverse lookup: ```console $ cihai reverse library ``` ```yaml char: 圕 kCangjie: WLGA kCantonese: syu1 kCihaiT: '308.302' kDefinition: library kMandarin: tú kTotalStrokes: '13' ucn: U+5715 -------- ``` ### UNIHAN data All datasets that cihai uses have stand-alone tools to export their data. No library required. - [unihan-etl](https://unihan-etl.git-pull.com) - [UNIHAN](http://unicode.org/charts/unihan.html) data exports for csv, yaml and json. ## Developing ```console $ git clone https://github.com/cihai/cihai.git` ``` ```console $ cd cihai/ ``` [Bootstrap your environment and learn more about contributing](https://cihai.git-pull.com/contributing/). We use the same conventions / tools across all cihai projects: `pytest`, `sphinx`, `mypy`, `ruff`, `tmuxp`, and file watcher helpers (e.g. `entr(1)`). ## Python versions - 0.19.0: Last Python 3.7 release ## Quick links - [Quickstart](https://cihai.git-pull.com/quickstart.html) - [Datasets](https://cihai.git-pull.com/datasets.html) a full list of current and future data sets - Python [API](https://cihai.git-pull.com/api.html) - [Roadmap](https://cihai.git-pull.com/design-and-planning/) - Python support: >= 3.8, pypy - Source: <https://github.com/cihai/cihai> - Docs: <https://cihai.git-pull.com> - Changelog: <https://cihai.git-pull.com/history.html> - API: <https://cihai.git-pull.com/api.html> - Issues: <https://github.com/cihai/cihai/issues> - Test coverage: <https://codecov.io/gh/cihai/cihai> - pypi: <https://pypi.python.org/pypi/cihai> - OpenHub: <https://www.openhub.net/p/cihai> - License: MIT [![Docs](https://github.com/cihai/cihai/workflows/docs/badge.svg)](https://cihai.git-pull.com/) [![Build Status](https://github.com/cihai/cihai/workflows/tests/badge.svg)](https://github.com/cihai/cihai/actions?query=workflow%3A%22tests%22)
[ "Multilinguality", "Syntactic Text Processing" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/SamuraiT/mecab-python3
2014-05-31T08:47:04Z
mecab-python. mecab-python. you can find original version here:http://taku910.github.io/mecab/
SamuraiT / mecab-python3 Public Branches Tags Go to file Go to file Code .github debian src/Me… test .gitattri… .gitignore AUTH… BSD COPYI… Docker… GPL LGPL MANIF… READ… setup.py tox.ini test-manylinux test-manylinux passing passing downloads downloads 745k/month 745k/month platforms platforms linux macosx windows linux macosx windows About 🐍 mecab-python. you can find original version here:http://taku910.github.io/mecab/ pypi.python.org/pypi/mecab-pyt… Readme View license Activity 539 stars 11 watching 51 forks Report repository Releases 10 v1.0.7: Extra Debugging… Latest on Sep 14, 2023 + 9 releases Packages No packages published Used by 4.1k + 4,068 Contributors 11 Code Issues 1 Pull requests Actions Projects Wiki Security Ins mecab-python3 README License This is a Python wrapper for the MeCab morphological analyzer for Japanese text. It currently works with Python 3.8 and greater. Note: If using MacOS Big Sur, you'll need to upgrade pip to version 20.3 or higher to use wheels due to a pip issue. issueを英語で書く必要はありません。 Note that Windows wheels require a Microsoft Visual C++ Redistributable, so be sure to install that. The API for mecab-python3 closely follows the API for MeCab itself, even when this makes it not very “Pythonic.” Please consult the official MeCab documentation for more information. Binary wheels are available for MacOS X, Linux, and Windows (64bit) are installed by default when you use pip : These wheels include a copy of the MeCab library, but not a dictionary. In order to use MeCab you'll need to install a dictionary. unidic-lite is a good one to start with: To build from source using pip, Languages C++ 93.2% Python 5.4% SWIG 1.3% Dockerfile 0.1% Basic usage >>> import MeCab >>> wakati = MeCab.Tagger("-Owakati") >>> wakati.parse("pythonが大好きです").split() ['python', 'が', '大好き', 'です'] >>> tagger = MeCab.Tagger() >>> print(tagger.parse("pythonが大好きです")) python python python python 名詞-普通名詞-一般 が ガ ガ が 助詞-格助詞 大好き ダイスキ ダイスキ 大好き 形状詞-一般 です デス デス です 助動詞 助動詞-デス 終止形-一般 EOS Installation pip install mecab-python3 pip install unidic-lite pip install --no-binary :all: mecab-python3 In order to use MeCab, you must install a dictionary. There are many different dictionaries available for MeCab. These UniDic packages, which include slight modifications for ease of use, are recommended: unidic: The latest full UniDic. unidic-lite: A slightly modified UniDic 2.1.2, chosen for its small size. The dictionaries below are not recommended due to being unmaintained for many years, but they are available for use with legacy applications. ipadic jumandic For more details on the differences between dictionaries see here. If you get a RuntimeError when you try to run MeCab, here are some things to check: You have to install this to use this package on Windows. Run pip install unidic-lite and confirm that works. If that fixes your problem, you either don't have a dictionary installed, or you need to specify your dictionary path like this: Note: on Windows, use nul instead of /dev/null . Alternately, if you have a mecabrc you can use the path after -r . If you get this error: Dictionaries Common Issues Windows Redistributable Installing a Dictionary tagger = MeCab.Tagger('-r /dev/null -d /usr/local/lib/mecab/dic/mydic') Specifying a mecabrc error message: [ifs] no such file or directory: You need to specify a mecabrc file. It's OK to specify an empty file, it just has to exist. You can specify a mecabrc with -r . This may be necessary on Debian or Ubuntu, where the mecabrc is in /etc/mecabrc . You can specify an empty mecabrc like this: Chasen output is not a built-in feature of MeCab, you must specify it in your dicrc or mecabrc . Notably, Unidic does not include Chasen output format. Please see the MeCab documentation. fugashi is a Cython wrapper for MeCab with a Pythonic interface, by the current maintainer of this library SudachiPy is a modern tokenizer with an actively maintained dictionary pymecab-ko is a wrapper of the Korean MeCab fork mecab-ko based on mecab-python3 KoNLPy is a library for Korean NLP that includes a MeCab wrapper Like MeCab itself, mecab-python3 is copyrighted free software by Taku Kudo [email protected] and Nippon Telegraph and Telephone Corporation, and is distributed under a 3-clause BSD license (see the file BSD ). Alternatively, it may be redistributed under the terms of the GNU General Public License, version 2 (see the file GPL ) or the GNU Lesser General Public License, version 2.1 (see the file LGPL ). /usr/local/etc/mecabrc tagger = MeCab.Tagger('-r/dev/null -d/home/hoge/mydic') Using Unsupported Output Modes like -Ochasen Alternatives Licensing
[![Current PyPI packages](https://badge.fury.io/py/mecab-python3.svg)](https://pypi.org/project/mecab-python3/) ![Test Status](https://github.com/SamuraiT/mecab-python3/workflows/test-manylinux/badge.svg) [![PyPI - Downloads](https://img.shields.io/pypi/dm/mecab-python3)](https://pypi.org/project/mecab-python3/) ![Supported Platforms](https://img.shields.io/badge/platforms-linux%20macosx%20windows-blue) # mecab-python3 This is a Python wrapper for the [MeCab][] morphological analyzer for Japanese text. It currently works with Python 3.8 and greater. **Note:** If using MacOS Big Sur, you'll need to upgrade pip to version 20.3 or higher to use wheels due to a pip issue. **issueを英語で書く必要はありません。** [MeCab]: https://taku910.github.io/mecab/ Note that Windows wheels require a [Microsoft Visual C++ Redistributable][msvc], so be sure to install that. [msvc]: https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads # Basic usage ```py >>> import MeCab >>> wakati = MeCab.Tagger("-Owakati") >>> wakati.parse("pythonが大好きです").split() ['python', 'が', '大好き', 'です'] >>> tagger = MeCab.Tagger() >>> print(tagger.parse("pythonが大好きです")) python python python python 名詞-普通名詞-一般 が ガ ガ が 助詞-格助詞 大好き ダイスキ ダイスキ 大好き 形状詞-一般 です デス デス です 助動詞 助動詞-デス 終止形-一般 EOS ``` The API for `mecab-python3` closely follows the API for MeCab itself, even when this makes it not very “Pythonic.” Please consult the [official MeCab documentation][mecab-docs] for more information. [mecab-docs]: https://taku910.github.io/mecab/ # Installation Binary wheels are available for MacOS X, Linux, and Windows (64bit) are installed by default when you use `pip`: ```sh pip install mecab-python3 ``` These wheels include a copy of the MeCab library, but not a dictionary. In order to use MeCab you'll need to install a dictionary. `unidic-lite` is a good one to start with: ```sh pip install unidic-lite ``` To build from source using pip, ```sh pip install --no-binary :all: mecab-python3 ``` ## Dictionaries In order to use MeCab, you must install a dictionary. There are many different dictionaries available for MeCab. These UniDic packages, which include slight modifications for ease of use, are recommended: - [unidic](https://github.com/polm/unidic-py): The latest full UniDic. - [unidic-lite](https://github.com/polm/unidic-lite): A slightly modified UniDic 2.1.2, chosen for its small size. The dictionaries below are not recommended due to being unmaintained for many years, but they are available for use with legacy applications. - [ipadic](https://github.com/polm/ipadic-py) - [jumandic](https://github.com/polm/jumandic-py) For more details on the differences between dictionaries see [here](https://www.dampfkraft.com/nlp/japanese-tokenizer-dictionaries.html). # Common Issues If you get a `RuntimeError` when you try to run MeCab, here are some things to check: ## Windows Redistributable You have to install [this][msvc] to use this package on Windows. ## Installing a Dictionary Run `pip install unidic-lite` and confirm that works. If that fixes your problem, you either don't have a dictionary installed, or you need to specify your dictionary path like this: tagger = MeCab.Tagger('-r /dev/null -d /usr/local/lib/mecab/dic/mydic') Note: on Windows, use `nul` instead of `/dev/null`. Alternately, if you have a `mecabrc` you can use the path after `-r`. ## Specifying a mecabrc If you get this error: error message: [ifs] no such file or directory: /usr/local/etc/mecabrc You need to specify a `mecabrc` file. It's OK to specify an empty file, it just has to exist. You can specify a `mecabrc` with `-r`. This may be necessary on Debian or Ubuntu, where the `mecabrc` is in `/etc/mecabrc`. You can specify an empty `mecabrc` like this: tagger = MeCab.Tagger('-r/dev/null -d/home/hoge/mydic') ## Using Unsupported Output Modes like `-Ochasen` Chasen output is not a built-in feature of MeCab, you must specify it in your `dicrc` or `mecabrc`. Notably, Unidic does not include Chasen output format. Please see [the MeCab documentation](https://taku910.github.io/mecab/#format). # Alternatives - [fugashi](https://github.com/polm/fugashi) is a Cython wrapper for MeCab with a Pythonic interface, by the current maintainer of this library - [SudachiPy](https://github.com/WorksApplications/sudachi.rs) is a modern tokenizer with an actively maintained dictionary - [pymecab-ko](https://github.com/NoUnique/pymecab-ko) is a wrapper of the Korean MeCab fork [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/) based on mecab-python3 - [KoNLPy](https://konlpy.org/en/latest/) is a library for Korean NLP that includes a MeCab wrapper # Licensing Like MeCab itself, `mecab-python3` is copyrighted free software by Taku Kudo <[email protected]> and Nippon Telegraph and Telephone Corporation, and is distributed under a 3-clause BSD license (see the file `BSD`). Alternatively, it may be redistributed under the terms of the GNU General Public License, version 2 (see the file `GPL`) or the GNU Lesser General Public License, version 2.1 (see the file `LGPL`).
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/hakatashi/kyujitai.js
2014-09-06T08:05:01Z
Utility collections for making Japanese text old-fashioned
hakatashi / kyujitai.js Public 7 Branches 8 Tags Go to file Go to file Code hakatashi 1.3.0 8b627c7 · 4 years ago calibrate Remove BO… 10 years ago data Add a charact… 4 years ago dist Update dist 10 years ago lib Change pack… 9 years ago test Change test t… 10 years ago .gitattri… Add .gitattribu… 4 years ago .gitignore Distribute pac… 10 years ago .npmig… Disignore dat… 10 years ago .travis.… Update travis … 4 years ago Gruntfil… Change moch… 9 years ago READ… Modernize re… 4 years ago packag… 1.3.0 4 years ago packag… 1.3.0 4 years ago build build passing passing Greenkeeper Greenkeeper Move to Snyk Move to Snyk Utility collections for making Japanese text old-fashioned. About Utility collections for making Japanese text old-fashioned hakatashi.github.io/kyujitai.js/ # javascript # japanese # text-processing Readme Activity 20 stars 4 watching 3 forks Report repository Releases 4 v0.2.1 Latest on Sep 22, 2014 + 3 releases Packages No packages published Contributors 4 hakatashi Koki Takahashi greenkeeperio-bot Greenkeeper greenkeeper[bot] cmplstofB B̅ Languages JavaScript 100.0% Code Issues Pull requests Actions Projects Wiki Security Insights kyujitai.js README Constructor. options : [Object] callback : [Function(error)] Called when construction completed. error : [Error] Supplied if construction failed. Encode string from shinjitai to kyujitai. string : [String] Input string options : [Object] options.IVD : [Boolean] true if you want to allow IVS for the encoded string. Default is false. Returns: [String] Output string Decode string from kyujitai to shinjitai. string : [String] Input string install npm install kyujitai Use const Kyujitai = require('kyujitai'); const kyujitai = new Kyujitai((error) => { kyujitai.encode('旧字体'); //=> '舊字體' }); Usage new Kyujitai([options], [callback]) kyujitai.encode(string, [options]) kyujitai.encode('旧字体'); //=> '舊字體' kyujitai.encode('画期的図画'); //=> '劃期的圖畫' kyujitai.encode('弁明'); //=> '辯明' kyujitai.encode('弁償'); //=> '辨償' kyujitai.encode('花弁'); //=> '花瓣' kyujitai.encode('弁髪'); //=> '辮髮' kyujitai.decode(string, [options])
# kyujitai.js [![Build Status](https://travis-ci.org/hakatashi/kyujitai.js.svg)](https://travis-ci.org/hakatashi/kyujitai.js) [![Greenkeeper badge](https://badges.greenkeeper.io/hakatashi/kyujitai.js.svg)](https://greenkeeper.io/) Utility collections for making Japanese text old-fashioned. ## install npm install kyujitai ## Use ```javascript const Kyujitai = require('kyujitai'); const kyujitai = new Kyujitai((error) => { kyujitai.encode('旧字体'); //=> '舊字體' }); ``` ## Usage ### new Kyujitai([options], [callback]) Constructor. * `options`: [Object] * `callback`: [Function(error)] Called when construction completed. - `error`: [Error] Supplied if construction failed. ### kyujitai.encode(string, [options]) Encode string from shinjitai to kyujitai. * `string`: [String] Input string * `options`: [Object] - `options.IVD`: [Boolean] `true` if you want to allow IVS for the encoded string. Default is false. * Returns: [String] Output string ```javascript kyujitai.encode('旧字体'); //=> '舊字體' kyujitai.encode('画期的図画'); //=> '劃期的圖畫' kyujitai.encode('弁明'); //=> '辯明' kyujitai.encode('弁償'); //=> '辨償' kyujitai.encode('花弁'); //=> '花瓣' kyujitai.encode('弁髪'); //=> '辮髮' ``` ### kyujitai.decode(string, [options]) Decode string from kyujitai to shinjitai. * `string`: [String] Input string * `options`: [Object] * Returns: [String] Output string
[ "Low-Resource NLP", "Syntactic Text Processing" ]
[]
true
https://github.com/ikegami-yukino/rakutenma-python
2015-01-01T21:40:43Z
Rakuten MA (Python version)
ikegami-yukino / rakutenma-python Public Branches Tags Go to file Go to file Code bin rakutenma tests .gitignore .travis.yml CHANGES.rst LICENSE.txt MANIFEST.in README.rst setup.py travis-ci.org python python 2.6 | 2.7 | 3.3 | 3.4 | 3.5 | 3.6 2.6 | 2.7 | 3.3 | 3.4 | 3.5 | 3.6 pypi pypi v0.3.3 v0.3.3 Code Health license license Apache Software License Apache Software License Rakuten MA Python (morphological analyzer) is a Python version of Rakuten MA (word segmentor + PoS Tagger) for Chinese and Japanese. For details about Rakuten MA, See https://github.com/rakuten-nlp/rakutenma See also http://qiita.com/yukinoi/items/925bc238185aa2fad8a7 (In Japanese) Contributions are welcome! pip install rakutenma About Rakuten MA (Python version) # python # nlp # chinese # japanese-language # word-segmentation # pos-tagging # part-of-speech-tagger Readme Apache-2.0 license Activity 22 stars 5 watching 1 fork Report repository Releases 1 v0.1.1 Latest on Jan 10, 2015 Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Wiki Security Insights Rakuten MA Python Installation Example from rakutenma import RakutenMA # Initialize a RakutenMA instance with an empty model # the default ja feature set is set already rma = RakutenMA() README Apache-2.0 license As compared to original RakutenMA, following methods are added: RakutenMA::load(model_path) - Load model from JSON file RakutenMA::save(model_path) - Save model to path As initial setting, following values are set: rma.featset = CTYPE_JA_PATTERNS # RakutenMA.default_featset_ja rma.hash_func = rma.create_hash_func(15) rma.tag_scheme = "SBIEO" # if using Chinese, set "IOB2" Apache License version 2.0 # Let's analyze a sample sentence (from http://tatoeba.org/jpn/sentences/show/103809) # With a disastrous result, since the model is empty! print(rma.tokenize("彼は新しい仕事できっと成功するだろう。")) # Feed the model with ten sample sentences from tatoeba.com # "tatoeba.json" is available at https://github.com/rakuten-nlp/rakutenma import json tatoeba = json.load(open("tatoeba.json")) for i in tatoeba: rma.train_one(i) # Now what does the result look like? print(rma.tokenize("彼は新しい仕事できっと成功するだろう。")) # Initialize a RakutenMA instance with a pre-trained model rma = RakutenMA(phi=1024, c=0.007812) # Specify hyperparameter for SCW (for demonstration purpose) rma.load("model_ja.json") # Set the feature hash function (15bit) rma.hash_func = rma.create_hash_func(15) # Tokenize one sample sentence print(rma.tokenize("うらにわにはにわにわとりがいる")); # Re-train the model feeding the right answer (pairs of [token, PoS tag]) res = rma.train_one( [["うらにわ","N-nc"], ["に","P-k"], ["は","P-rj"], ["にわ","N-n"], ["にわとり","N-nc"], ["が","P-k"], ["いる","V-c"]]) # The result of train_one contains: # sys: the system output (using the current model) # ans: answer fed by the user # update: whether the model was updated print(res) # Now what does the result look like? print(rma.tokenize("うらにわにはにわにわとりがいる")) NOTE Added API misc LICENSE Rakuten MA Python (c) 2015- Yukino Ikegami. All Rights Reserved. Rakuten MA (original) (c) 2014 Rakuten NLP Project. All Rights Reserved. Copyright
Rakuten MA Python =================== |travis| |coveralls| |pyversion| |version| |landscape| |license| Rakuten MA Python (morphological analyzer) is a Python version of Rakuten MA (word segmentor + PoS Tagger) for Chinese and Japanese. For details about Rakuten MA, See https://github.com/rakuten-nlp/rakutenma See also http://qiita.com/yukinoi/items/925bc238185aa2fad8a7 (In Japanese) Contributions are welcome! Installation ============== :: pip install rakutenma Example =========== .. code:: python from rakutenma import RakutenMA # Initialize a RakutenMA instance with an empty model # the default ja feature set is set already rma = RakutenMA() # Let's analyze a sample sentence (from http://tatoeba.org/jpn/sentences/show/103809) # With a disastrous result, since the model is empty! print(rma.tokenize("彼は新しい仕事できっと成功するだろう。")) # Feed the model with ten sample sentences from tatoeba.com # "tatoeba.json" is available at https://github.com/rakuten-nlp/rakutenma import json tatoeba = json.load(open("tatoeba.json")) for i in tatoeba: rma.train_one(i) # Now what does the result look like? print(rma.tokenize("彼は新しい仕事できっと成功するだろう。")) # Initialize a RakutenMA instance with a pre-trained model rma = RakutenMA(phi=1024, c=0.007812) # Specify hyperparameter for SCW (for demonstration purpose) rma.load("model_ja.json") # Set the feature hash function (15bit) rma.hash_func = rma.create_hash_func(15) # Tokenize one sample sentence print(rma.tokenize("うらにわにはにわにわとりがいる")); # Re-train the model feeding the right answer (pairs of [token, PoS tag]) res = rma.train_one( [["うらにわ","N-nc"], ["に","P-k"], ["は","P-rj"], ["にわ","N-n"], ["にわとり","N-nc"], ["が","P-k"], ["いる","V-c"]]) # The result of train_one contains: # sys: the system output (using the current model) # ans: answer fed by the user # update: whether the model was updated print(res) # Now what does the result look like? print(rma.tokenize("うらにわにはにわにわとりがいる")) NOTE =========== Added API -------------- As compared to original RakutenMA, following methods are added: - RakutenMA::load(model_path) - Load model from JSON file - RakutenMA::save(model_path) - Save model to path misc -------------- As initial setting, following values are set: - rma.featset = CTYPE_JA_PATTERNS # RakutenMA.default_featset_ja - rma.hash_func = rma.create_hash_func(15) - rma.tag_scheme = "SBIEO" # if using Chinese, set "IOB2" LICENSE ========= Apache License version 2.0 Copyright ============= Rakuten MA Python (c) 2015- Yukino Ikegami. All Rights Reserved. Rakuten MA (original) (c) 2014 Rakuten NLP Project. All Rights Reserved. .. |travis| image:: https://travis-ci.org/ikegami-yukino/rakutenma-python.svg?branch=master :target: https://travis-ci.org/ikegami-yukino/rakutenma-python :alt: travis-ci.org .. |coveralls| image:: https://coveralls.io/repos/ikegami-yukino/rakutenma-python/badge.png :target: https://coveralls.io/r/ikegami-yukino/rakutenma-python :alt: coveralls.io .. |pyversion| image:: https://img.shields.io/pypi/pyversions/rakutenma.svg .. |version| image:: https://img.shields.io/pypi/v/rakutenma.svg :target: http://pypi.python.org/pypi/rakutenma/ :alt: latest version .. |landscape| image:: https://landscape.io/github/ikegami-yukino/rakutenma-python/master/landscape.svg?style=flat :target: https://landscape.io/github/ikegami-yukino/rakutenma-python/master :alt: Code Health .. |license| image:: https://img.shields.io/pypi/l/rakutenma.svg :target: http://pypi.python.org/pypi/rakutenma/ :alt: license
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/google/budoux
2015-03-18T18:22:31Z
Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool.
google / budoux Public Branches Tags Go to file Go to file Code .github budoux data/finetuning/ja demo java javascript scripts tests .gitignore .markdownlint.yaml CONTRIBUTING.md LICENSE MANIFEST.in README.md bump_version.py example.png pyproject.toml setup.cfg setup.py pypi pypi v0.6.3 v0.6.3 npm npm v0.6.3 v0.6.3 maven-central maven-central v0.6.4 v0.6.4 Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. About google.github.io/budoux/ # javascript # python # nlp # machine-learning Readme Apache-2.0 license Code of conduct Security policy Activity Custom properties 1.4k stars 9 watching 32 forks Report repository Releases 19 v0.6.3 Latest 2 weeks ago + 18 releases Packages No packages published Used by 217 + 209 Contributors 13 Languages Python 53.9% TypeScript 32.3% Java 10.4% JavaScript 3.4% Code Issues 9 Pull requests Actions Projects Security Insights BudouX README Code of conduct Apache-2.0 license Security It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training script. Last but not least, BudouX supports HTML inputs. https://google.github.io/budoux Japanese Simplified Chinese Traditional Chinese Thai Korean uses spaces between words, so you can generally prevent words from being split across lines by applying the CSS property word-break: keep-all to the paragraph, which should be much more performant than installing BudouX. That said, we're happy to explore dedicated Korean language support if the above solution proves insufficient. Python JavaScript Java You can get a list of phrases by feeding a sentence to the parser. The easiest way is to get a parser is loading the default parser for each language. Japanese: Demo Natural languages supported by pretrained models Korean support? Supported Programming languages Python module Install $ pip install budoux Usage Library import budoux parser = budoux.load_default_japanese_parser() Simplified Chinese: Traditional Chinese: Thai: You can also translate an HTML string to wrap phrases with non-breaking markup. The default parser uses zero-width space (U+200B) to separate phrases. Please note that separators are denoted as \u200b in the example above for illustrative purposes, but the actual output is an invisible string as it's a zero-width space. If you have a custom model, you can use it as follows. A model file for BudouX is a JSON file that contains pairs of a feature and its score extracted by machine learning training. Each score represents the significance of the feature in determining whether to break the sentence at a specific point. For more details of the JavaScript model, please refer to JavaScript module README. You can also format inputs on your terminal with budoux command. print(parser.parse('今日は天気です。')) # ['今日は', '天気です。'] import budoux parser = budoux.load_default_simplified_chinese_parser() print(parser.parse('今天是晴天。')) # ['今天', '是', '晴天。'] import budoux parser = budoux.load_default_traditional_chinese_parser() print(parser.parse('今天是晴天。')) # ['今天', '是', '晴天。'] import budoux parser = budoux.load_default_thai_parser() print(parser.parse('วันนี้อากาศดี')) # ['วัน', 'นี้', 'อากาศ', 'ดี'] print(parser.translate_html_string('今日は<b>とても天気</b>です。')) # <span style="word-break: keep-all; overflow-wrap: anywhere;">今日は<b>\u200bとても\u200b天気</b>です。</span> with open('/path/to/your/model.json') as f: model = json.load(f) parser = budoux.Parser(model) CLI $ budoux 本日は晴天です。 # default: japanese 本日は 晴天です。 $ budoux -l ja 本日は晴天です。 本日は 晴天です。 $ budoux -l zh-hans 今天天气晴朗。 今天 天气 晴朗。 $ budoux -l zh-hant 今天天氣晴朗。 今天 天氣 晴朗。 Please note that separators are denoted as \u200b in the example above for illustrative purposes, but the actual output is an invisible string as it's a zero-width space. If you want to see help, run budoux -h . BudouX supports HTML inputs and outputs HTML strings with markup that wraps phrases, but it's not meant to be used as an HTML sanitizer. BudouX doesn't sanitize any inputs. Malicious HTML inputs yield malicious HTML outputs. Please use it with an appropriate sanitizer library if you don't trust the input. English text has many clues, like spacing and hyphenation, that enable beautiful and readable line breaks. However, some CJK languages lack these clues, and so are notoriously more difficult to process. Line breaks can occur randomly and usually in the middle of a word or a phrase without a more careful approach. This is a long-standing issue in typography on the Web, which results in a degradation of readability. Budou was proposed as a solution to this problem in 2016. It automatically translates CJK sentences into HTML with lexical phrases wrapped in non-breaking markup, so as to semantically control line breaks. Budou has solved this problem to some extent, but it still has some problems integrating with modern web production workflow. $ budoux -l th วันนี้อากาศดี วัน นี้ อากาศ ดี $ echo $'本日は晴天です。\n明日は曇りでしょう。' | budoux 本日は 晴天です。 --- 明日は 曇りでしょう。 $ budoux 本日は晴天です。 -H <span style="word-break: keep-all; overflow-wrap: anywhere;">本日は\u200b晴天です。</span> $ budoux -h usage: budoux [-h] [-H] [-m JSON | -l LANG] [-d STR] [-V] [TXT] BudouX is the successor to Budou, the machine learning powered line break organizer tool. positional arguments: TXT text (default: None) optional arguments: -h, --help show this help message and exit -H, --html HTML mode (default: False) -m JSON, --model JSON custom model file path (default: /path/to/budoux/models/ja.json) -l LANG, --lang LANG language of custom model (default: None) -d STR, --delim STR output delimiter in TEXT mode (default: ---) -V, --version show program's version number and exit supported languages of `-l`, `--lang`: - ja - zh-hans - zh-hant - th Caveat Background The biggest barrier in applying Budou to a website is that it has dependency on third-party word segmenters. Usually a word segmenter is a large program that is infeasible to download for every web page request. It would also be an undesirable option making a request to a cloud-based word segmentation service for every sentence, considering the speed and cost. That’s why we need a standalone line break organizer tool equipped with its own segmentation engine small enough to be bundled in a client-side JavaScript code. BudouX is the successor to Budou, designed to be integrated with your website with no hassle. BudouX uses the AdaBoost algorithm to segment a sentence into phrases by considering the task as a binary classification problem to predict whether to break or not between all characters. It uses features such as the characters around the break point, their Unicode blocks, and combinations of them to make a prediction. The output machine learning model, which is encoded as a JSON file, stores pairs of the feature and its significance score. The BudouX parser takes a model file to construct a segmenter and translates input sentences into a list of phrases. You can build your own custom model for any language by preparing training data in the target language. A training dataset is a large text file that consists of sentences separated by phrases with the separator symbol "▁" (U+2581) like below. Assuming the text file is saved as mysource.txt , you can build your own custom model by running the following commands. Please note that train.py takes time to complete depending on your computer resources. Good news is that the training algorithm is an anytime algorithm, so you can get a weights file even if you interrupt the execution. You can build a valid model file by passing that weights file to build_model.py even in such a case. The default model for Japanese ( budoux/models/ja.json ) is built using the KNBC corpus. You can create a training dataset, which we name source_knbc.txt below for example, from the corpus by running the following commands: How it works Building a custom model 私は▁遅刻魔で、▁待ち合わせに▁いつも▁遅刻してしまいます。 メールで▁待ち合わせ▁相手に▁一言、▁「ごめんね」と▁謝れば▁どうにか▁なると▁思っていました。 海外では▁ケータイを▁持っていない。 $ pip install .[dev] $ python scripts/encode_data.py mysource.txt -o encoded_data.txt $ python scripts/train.py encoded_data.txt -o weights.txt $ python scripts/build_model.py weights.txt -o mymodel.json Constructing a training dataset from the KNBC corpus for Japanese $ curl -o knbc.tar.bz2 https://nlp.ist.i.kyoto-u.ac.jp/kuntt/KNBC_v1.0_090925_utf8.tar.bz2
<!-- markdownlint-disable MD014 --> # BudouX [![PyPI](https://img.shields.io/pypi/v/budoux?color=blue)](https://pypi.org/project/budoux/) [![npm](https://img.shields.io/npm/v/budoux?color=yellow)](https://www.npmjs.com/package/budoux) [![Maven Central](https://img.shields.io/maven-central/v/com.google.budoux/budoux)](https://mvnrepository.com/artifact/com.google.budoux/budoux) Standalone. Small. Language-neutral. BudouX is the successor to [Budou](https://github.com/google/budou), the machine learning powered line break organizer tool. ![Example](https://raw.githubusercontent.com/google/budoux/main/example.png) It is **standalone**. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is **small**. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is **language-neutral**. You can train a model for any language by feeding a dataset to BudouX’s training script. Last but not least, BudouX supports HTML inputs. ## Demo <https://google.github.io/budoux> ## Natural languages supported by pretrained models - Japanese - Simplified Chinese - Traditional Chinese - Thai ### Korean support? Korean uses spaces between words, so you can generally prevent words from being split across lines by applying the CSS property `word-break: keep-all` to the paragraph, which should be much more performant than installing BudouX. That said, we're happy to explore dedicated Korean language support if the above solution proves insufficient. ## Supported Programming languages - Python - [JavaScript](https://github.com/google/budoux/tree/main/javascript/) - [Java](https://github.com/google/budoux/tree/main/java/) ## Python module ### Install ```shellsession $ pip install budoux ``` ### Usage #### Library You can get a list of phrases by feeding a sentence to the parser. The easiest way is to get a parser is loading the default parser for each language. **Japanese:** ```python import budoux parser = budoux.load_default_japanese_parser() print(parser.parse('今日は天気です。')) # ['今日は', '天気です。'] ``` **Simplified Chinese:** ```python import budoux parser = budoux.load_default_simplified_chinese_parser() print(parser.parse('今天是晴天。')) # ['今天', '是', '晴天。'] ``` **Traditional Chinese:** ```python import budoux parser = budoux.load_default_traditional_chinese_parser() print(parser.parse('今天是晴天。')) # ['今天', '是', '晴天。'] ``` **Thai:** ```python import budoux parser = budoux.load_default_thai_parser() print(parser.parse('วันนี้อากาศดี')) # ['วัน', 'นี้', 'อากาศ', 'ดี'] ``` You can also translate an HTML string to wrap phrases with non-breaking markup. The default parser uses zero-width space (U+200B) to separate phrases. ```python print(parser.translate_html_string('今日は<b>とても天気</b>です。')) # <span style="word-break: keep-all; overflow-wrap: anywhere;">今日は<b>\u200bとても\u200b天気</b>です。</span> ``` Please note that separators are denoted as `\u200b` in the example above for illustrative purposes, but the actual output is an invisible string as it's a zero-width space. If you have a custom model, you can use it as follows. ```python with open('/path/to/your/model.json') as f: model = json.load(f) parser = budoux.Parser(model) ``` A model file for BudouX is a JSON file that contains pairs of a feature and its score extracted by machine learning training. Each score represents the significance of the feature in determining whether to break the sentence at a specific point. For more details of the JavaScript model, please refer to [JavaScript module README](https://github.com/google/budoux/tree/main/javascript/README.md). #### CLI You can also format inputs on your terminal with `budoux` command. ```shellsession $ budoux 本日は晴天です。 # default: japanese 本日は 晴天です。 $ budoux -l ja 本日は晴天です。 本日は 晴天です。 $ budoux -l zh-hans 今天天气晴朗。 今天 天气 晴朗。 $ budoux -l zh-hant 今天天氣晴朗。 今天 天氣 晴朗。 $ budoux -l th วันนี้อากาศดี วัน นี้ อากาศ ดี ``` ```shellsession $ echo $'本日は晴天です。\n明日は曇りでしょう。' | budoux 本日は 晴天です。 --- 明日は 曇りでしょう。 ``` ```shellsession $ budoux 本日は晴天です。 -H <span style="word-break: keep-all; overflow-wrap: anywhere;">本日は\u200b晴天です。</span> ``` Please note that separators are denoted as `\u200b` in the example above for illustrative purposes, but the actual output is an invisible string as it's a zero-width space. If you want to see help, run `budoux -h`. ```shellsession $ budoux -h usage: budoux [-h] [-H] [-m JSON | -l LANG] [-d STR] [-V] [TXT] BudouX is the successor to Budou, the machine learning powered line break organizer tool. positional arguments: TXT text (default: None) optional arguments: -h, --help show this help message and exit -H, --html HTML mode (default: False) -m JSON, --model JSON custom model file path (default: /path/to/budoux/models/ja.json) -l LANG, --lang LANG language of custom model (default: None) -d STR, --delim STR output delimiter in TEXT mode (default: ---) -V, --version show program's version number and exit supported languages of `-l`, `--lang`: - ja - zh-hans - zh-hant - th ``` ## Caveat BudouX supports HTML inputs and outputs HTML strings with markup that wraps phrases, but it's not meant to be used as an HTML sanitizer. **BudouX doesn't sanitize any inputs.** Malicious HTML inputs yield malicious HTML outputs. Please use it with an appropriate sanitizer library if you don't trust the input. ## Background English text has many clues, like spacing and hyphenation, that enable beautiful and readable line breaks. However, some CJK languages lack these clues, and so are notoriously more difficult to process. Line breaks can occur randomly and usually in the middle of a word or a phrase without a more careful approach. This is a long-standing issue in typography on the Web, which results in a degradation of readability. Budou was proposed as a solution to this problem in 2016. It automatically translates CJK sentences into HTML with lexical phrases wrapped in non-breaking markup, so as to semantically control line breaks. Budou has solved this problem to some extent, but it still has some problems integrating with modern web production workflow. The biggest barrier in applying Budou to a website is that it has dependency on third-party word segmenters. Usually a word segmenter is a large program that is infeasible to download for every web page request. It would also be an undesirable option making a request to a cloud-based word segmentation service for every sentence, considering the speed and cost. That’s why we need a standalone line break organizer tool equipped with its own segmentation engine small enough to be bundled in a client-side JavaScript code. Budou*X* is the successor to Budou, designed to be integrated with your website with no hassle. ## How it works BudouX uses the [AdaBoost algorithm](https://en.wikipedia.org/wiki/AdaBoost) to segment a sentence into phrases by considering the task as a binary classification problem to predict whether to break or not between all characters. It uses features such as the characters around the break point, their Unicode blocks, and combinations of them to make a prediction. The output machine learning model, which is encoded as a JSON file, stores pairs of the feature and its significance score. The BudouX parser takes a model file to construct a segmenter and translates input sentences into a list of phrases. ## Building a custom model You can build your own custom model for any language by preparing training data in the target language. A training dataset is a large text file that consists of sentences separated by phrases with the separator symbol "▁" (U+2581) like below. ```text 私は▁遅刻魔で、▁待ち合わせに▁いつも▁遅刻してしまいます。 メールで▁待ち合わせ▁相手に▁一言、▁「ごめんね」と▁謝れば▁どうにか▁なると▁思っていました。 海外では▁ケータイを▁持っていない。 ``` Assuming the text file is saved as `mysource.txt`, you can build your own custom model by running the following commands. ```shellsession $ pip install .[dev] $ python scripts/encode_data.py mysource.txt -o encoded_data.txt $ python scripts/train.py encoded_data.txt -o weights.txt $ python scripts/build_model.py weights.txt -o mymodel.json ``` Please note that `train.py` takes time to complete depending on your computer resources. Good news is that the training algorithm is an [anytime algorithm](https://en.wikipedia.org/wiki/Anytime_algorithm), so you can get a weights file even if you interrupt the execution. You can build a valid model file by passing that weights file to `build_model.py` even in such a case. ## Constructing a training dataset from the KNBC corpus for Japanese The default model for Japanese (`budoux/models/ja.json`) is built using the [KNBC corpus](https://nlp.ist.i.kyoto-u.ac.jp/kuntt/). You can create a training dataset, which we name `source_knbc.txt` below for example, from the corpus by running the following commands: ```shellsession $ curl -o knbc.tar.bz2 https://nlp.ist.i.kyoto-u.ac.jp/kuntt/KNBC_v1.0_090925_utf8.tar.bz2 $ tar -xf knbc.tar.bz2 # outputs KNBC_v1.0_090925_utf8 directory $ python scripts/prepare_knbc.py KNBC_v1.0_090925_utf8 -o source_knbc.txt ``` ## Author [Shuhei Iitsuka](https://tushuhei.com) ## Disclaimer This is not an officially supported Google product.
[ "Chunking", "Syntactic Text Processing", "Text Segmentation" ]
[]
true
https://github.com/scriptin/topokanji
2015-05-28T17:52:28Z
Topologically ordered lists of kanji for effective learning
scriptin / topokanji Public Branches Tags Go to file Go to file Code data depen… lib lists .gitignore .jshintrc READ… build.js packag… 30 seconds explanation for people who want to learn kanji: It is best to learn kanji starting from simple characters and then learning complex ones as compositions of "parts", which are called "radicals" or "components". For example: 一 → 二 → 三 丨 → 凵 → 山 → 出 言 → 五 → 口 → 語 It is also smart to learn more common kanji first. About Topologically ordered lists of kanji for effective learning # language # data # japanese # language-learning # cjk # kanji # japanese-language # frequency-lists # radical # memorization # cjk-characters # kanji-frequency # kanjivg Readme Activity 180 stars 10 watching 21 forks Report repository Releases 1 tags Packages No packages published Languages JavaScript 100.0% Code Issues Pull requests Actions Projects Wiki Security Insights TopoKanji README This project is based on those two ideas and provides properly ordered lists of kanji to make your learning process as fast, simple, and effective as possible. Motivation for this project initially came from reading this article: The 5 Biggest Mistakes People Make When Learning Kanji. First 100 kanji from lists/aozora.txt (formatted for convenience): These lists can be found in lists directory. They only differ in order of kanji. Each file contains a list of kanji, ordered as described in following sections. There are few options (see Used data for details): aozora.(json|txt) - ordered by kanji frequency in Japanese fiction and non-fiction books; I recommend this list if you're starting to learn kanji news.(json|txt) - ordered by kanji frequency in online news twitter.(json|txt) - ordered by kanji frequency in Twitter messages wikipedia.(json|txt) - ordered by kanji frequency in Wikipedia articles all.(json|txt) - combined "average" version of all previous; this one is experimental, I don't recommend using it You can use these lists to build an Anki deck or just as a guidance. If you're looking for "names" or meanings of kanji, you might want to check my kanji-keys project. 人一丨口日目儿見凵山 出十八木未丶来大亅了 子心土冂田思二丁彳行 寸寺時卜上丿刀分厶禾 私中彐尹事可亻何自乂 又皮彼亠方生月門間扌 手言女本乙气気干年三 耂者刂前勹勿豕冖宀家 今下白勺的云牛物立小 文矢知入乍作聿書学合 If you look at a kanji like 語, you can see it consists of at least three distinct parts: 言, 五, 口. Those are kanji by themselves too. The idea behind this project is to find the order of about 2000-2500 common kanji, in which no kanji appears before its' parts, so you only learn a new kanji when you already know its' components. 1. No kanji appear before it's parts (components). In fact, in you treat kanji as nodes in a graph structure, and connect them with directed edges, where each edge means "kanji A includes kanji B as a component", it all forms a directed acyclic graph (DAG). For any DAG, it is possible to build a topological order, which is basically what "no kanji appear before it's parts" means. 2. More common kanji come first. That way you learn useful characters as soon as possible. Topological sorting is done by using a modified version of Kahn (1962) algorithm with intermediate sorting step which deals with the second property above. This intermediate sorting uses the "weight" of each character: common kanji (lighter) tend appear before rare kanji (heavier). See source code for details. Initial unsorted list contains only kanji which are present in KanjiVG project, so for each character there is a data of its' shape and stroke order. Characters are split into components using CJK Decompositions Data project, along with "fixes" to simplify final lists and avoid characters which are not present in initial list. Statistical data of kanji usage frequencies was collected by processing raw textual data from various sources. See kanji-frequency repository for details. What is a properly ordered list of kanji? Properties of properly ordered lists Algorithm Used data Kanji list covers about 95-99% of kanji found in various Japanese texts. Generally, the goal is provide something similar to Jōyō kanji, but based on actual data. Radicals are also included, but only those which are parts of some kanji in the list. Kanji/radical must NOT appear in this list if it is: not included in KanjiVG character set primarily used in names (people, places, etc.) or in some specific terms (religion, mythology, etc.) mostly used because of its' shape, e.g. a part of text emoticons/kaomoji like ( ^ω^)个 a part of currently popular meme, manga/anime/dorama/movie title, #hashtag, etc., and otherwise is not commonly used Files in lists directory are final lists. *.txt files contain lists as plain text, one character per line; those files can be interpreted as CSV/TSV files with a single column *.json files contain lists as JSON arrays All files are encoded in UTF-8, without byte order mark (BOM), and have unix-style line endings, LF . Files in dependencies directory are "flat" equivalents of CJK-decompositions (see below). "Dependency" here roughly means "a component of the visual decomposition" for kanji. 1-to-1.txt has a format compatible with tsort command line utility; first character in each line is "target" kanji, second character is target's dependency or 0 1-to-1.json contains a JSON array with the same data as in 1-to-1.txt Which kanji are (not) included? Files and formats lists directory dependencies directory 1-to-N.txt is similar, but lists all "dependecies" at once 1-to-N.json contains a JSON object with the same data as in 1-to-N.txt All files are encoded in UTF-8, without byte order mark (BOM), and have unix-style line endings, LF . kanji.json - data for kanji included in final ordered lists, including radicals kanjivg.txt - list of kanji from KanjiVG cjk-decomp-{VERSION}.txt - data from CJK Decompositions Data, without any modifications cjk-decomp-override.txt - data to override some CJK's decompositions kanji-frequency/*.json - kanji frequency tables All files are encoded in UTF-8, without byte order mark (BOM). All files, except for cjk-decomp-{VERSION}.txt , have unix-style line endings, LF . Contains table with data for kanji, including radicals. Columns are: 1. Character itself 2. Stroke count 3. Frequency flag: true if it is a common kanji false if it is primarily used as a radical/component and unlikely to be seen within top 3000 in kanji usage frequency tables. In this case character is only listed because it's useful for decomposition, not as a standalone kanji Resrictions: No duplicates Each character must be listed in kanjivg.txt Each character must be listed on the left hand side in exactly one line in cjk-decomp-{VERSION}.txt Each character may be listed on the left hand side in exactly one line in cjk-decomp-override.txt data directory data/kanji.json Simple list of characters which are present in KanjiVG project. Those are from the list of *.svg files in KanjiVG's Github repository. Data file from CJK Decompositions Data project, see description of its' format. Same format as cjk-decomp-{VERSION}.txt , except: comments starting with # allowed purpose of each record in this file is to override the one from cjk-decomp-{VERSION}.txt type of decomposition is always fix , which just means "fix a record for the same character from original file" Special character 0 is used to distinguish invalid decompositions (which lead to characters with no graphical representation) from those which just can't be decomposed further into something meaningful. For example, 一:fix(0) means that this kanji can't be further decomposed, since it's just a single stroke. NOTE: Strictly speaking, records in this file are not always "visual decompositions" (but most of them are). Instead, it's just an attempt to provide meaningful recommendations of kanji learning order. See kanji-frequency repository for details. You must have Node.js and Git installed 1. git clone https://github.com/THIS/REPO.git 2. npm install 3. node build.js + commands and arguments described below data/kanjivg.txt data/cjk-decomp-{VERSION}.txt data/cjk-decomp-override.txt data/kanji-frequency/*.json Usage Command-line commands and arguments show - only display sorted list without writing into files (optional) --per-line=NUM - explicitly tell how many characters per line to display. 50 by default. Applicable only to (no arguments) (optional) --freq-table=TABLE_NAME - use only one frequency table. Table names are file names from data/kanji-frequency directory, without .json extension, e.g. all ("combined" list), aozora , etc. When omitted, all frequency tables are used coverage - show tables coverage, i.e. which fraction of characters from each frequency table is included into kanji list suggest-add - suggest kanji to add in a list, based on coverage within kanji usage frequency tables (required) --num=NUM - how many (optional) --mean-type=MEAN_TYPE - same as previous, sort by given mean type: arithmetic (most "extreme"), geometric , harmonic (default, most "conservative"). See Pythagorean means for details suggest-remove - suggest kanji to remove from a list, reverse of suggest-add (required) --num=NUM - see above (optional) --mean-type=MEAN_TYPE - see above save - update files with final lists This is a multi-license project. Choose any license from this list: Apache-2.0 or any later version License
# TopoKanji > **30 seconds explanation for people who want to learn kanji:** > > It is best to learn kanji starting from simple characters and then learning complex ones as compositions of "parts", which are called "radicals" or "components". For example: > > - 一 → 二 → 三 > - 丨 → 凵 → 山 → 出 > - 言 → 五 → 口 → 語 > > It is also smart to learn more common kanji first. > > This project is based on those two ideas and provides properly ordered lists of kanji to make your learning process as fast, simple, and effective as possible. Motivation for this project initially came from reading this article: [The 5 Biggest Mistakes People Make When Learning Kanji][mistakes]. First 100 kanji from [lists/aozora.txt](lists/aozora.txt) (formatted for convenience): 人一丨口日目儿見凵山 出十八木未丶来大亅了 子心土冂田思二丁彳行 寸寺時卜上丿刀分厶禾 私中彐尹事可亻何自乂 又皮彼亠方生月門間扌 手言女本乙气気干年三 耂者刂前勹勿豕冖宀家 今下白勺的云牛物立小 文矢知入乍作聿書学合 These lists can be found in [`lists` directory](lists). They only differ in order of kanji. Each file contains a list of kanji, ordered as described in following sections. There are few options (see [Used data](#used-data) for details): - `aozora.(json|txt)` - ordered by kanji frequency in Japanese fiction and non-fiction books; I recommend this list if you're starting to learn kanji - `news.(json|txt)` - ordered by kanji frequency in online news - `twitter.(json|txt)` - ordered by kanji frequency in Twitter messages - `wikipedia.(json|txt)` - ordered by kanji frequency in Wikipedia articles - `all.(json|txt)` - combined "average" version of all previous; this one is experimental, I don't recommend using it You can use these lists to build an [Anki][] deck or just as a guidance. If you're looking for "names" or meanings of kanji, you might want to check my [kanji-keys](https://github.com/scriptin/kanji-keys) project. ## What is a properly ordered list of kanji? If you look at a kanji like 語, you can see it consists of at least three distinct parts: 言, 五, 口. Those are kanji by themselves too. The idea behind this project is to find the order of about 2000-2500 common kanji, in which no kanji appears before its' parts, so you only learn a new kanji when you already know its' components. ### Properties of properly ordered lists 1. **No kanji appear before it's parts (components).** In fact, in you treat kanji as nodes in a [graph][] structure, and connect them with directed edges, where each edge means "kanji A includes kanji B as a component", it all forms a [directed acyclic graph (DAG)][dag]. For any DAG, it is possible to build a [topological order][topsort], which is basically what "no kanji appear before it's parts" means. 2. **More common kanji come first.** That way you learn useful characters as soon as possible. ### Algorithm [Topological sorting][topsort] is done by using a modified version of [Kahn (1962) algorithm][kahn] with intermediate sorting step which deals with the second property above. This intermediate sorting uses the "weight" of each character: common kanji (lighter) tend appear before rare kanji (heavier). See source code for details. ## Used data Initial unsorted list contains only kanji which are present in [KanjiVG][] project, so for each character there is a data of its' shape and stroke order. Characters are split into components using [CJK Decompositions Data][cjk] project, along with "fixes" to simplify final lists and avoid characters which are not present in initial list. Statistical data of kanji usage frequencies was collected by processing raw textual data from various sources. See [kanji-frequency][] repository for details. ## Which kanji are (not) included? Kanji list covers about 95-99% of kanji found in various Japanese texts. Generally, the goal is provide something similar to [Jōyō kanji][jouyou], but based on actual data. Radicals are also included, but only those which are parts of some kanji in the list. Kanji/radical must **NOT** appear in this list if it is: - not included in KanjiVG character set - primarily used in names (people, places, etc.) or in some specific terms (religion, mythology, etc.) - mostly used because of its' shape, e.g. a part of text emoticons/kaomoji like `( ^ω^)个` - a part of currently popular meme, manga/anime/dorama/movie title, #hashtag, etc., and otherwise is not commonly used ## Files and formats ### `lists` directory Files in `lists` directory are final lists. - `*.txt` files contain lists as plain text, one character per line; those files can be interpreted as CSV/TSV files with a single column - `*.json` files contain lists as [JSON][] arrays All files are encoded in UTF-8, without [byte order mark (BOM)][bom], and have unix-style [line endings][eol], `LF`. ### `dependencies` directory Files in `dependencies` directory are "flat" equivalents of CJK-decompositions (see below). "Dependency" here roughly means "a component of the visual decomposition" for kanji. - `1-to-1.txt` has a format compatible with [tsort][] command line utility; first character in each line is "target" kanji, second character is target's dependency or `0` - `1-to-1.json` contains a JSON array with the same data as in `1-to-1.txt` - `1-to-N.txt` is similar, but lists all "dependecies" at once - `1-to-N.json` contains a JSON object with the same data as in `1-to-N.txt` All files are encoded in UTF-8, without [byte order mark (BOM)][bom], and have unix-style [line endings][eol], `LF`. ### `data` directory - `kanji.json` - data for kanji included in final ordered lists, including [radicals][kangxi] - `kanjivg.txt` - list of kanji from [KanjiVG][] - `cjk-decomp-{VERSION}.txt` - data from [CJK Decompositions Data][cjk], without any modifications - `cjk-decomp-override.txt` - data to override some CJK's decompositions - `kanji-frequency/*.json` - kanji frequency tables All files are encoded in UTF-8, without [byte order mark (BOM)][bom]. All files, except for `cjk-decomp-{VERSION}.txt`, have unix-style [line endings][eol], `LF`. #### `data/kanji.json` Contains table with data for kanji, including radicals. Columns are: 1. Character itself 2. Stroke count 3. Frequency flag: - `true` if it is a common kanji - `false` if it is primarily used as a radical/component and unlikely to be seen within top 3000 in kanji usage frequency tables. In this case character is only listed because it's useful for decomposition, not as a standalone kanji Resrictions: - No duplicates - Each character must be listed in `kanjivg.txt` - Each character must be listed on the left hand side in exactly one line in `cjk-decomp-{VERSION}.txt` - Each character *may* be listed on the left hand side in exactly one line in `cjk-decomp-override.txt` #### `data/kanjivg.txt` Simple list of characters which are present in KanjiVG project. Those are from the list of `*.svg` files in [KanjiVG's Github repository][kanjivg-github]. #### `data/cjk-decomp-{VERSION}.txt` Data file from [CJK Decompositions Data][cjk] project, see [description of its' format][cjk-format]. #### `data/cjk-decomp-override.txt` Same format as `cjk-decomp-{VERSION}.txt`, except: - comments starting with `#` allowed - purpose of each record in this file is to override the one from `cjk-decomp-{VERSION}.txt` - type of decomposition is always `fix`, which just means "fix a record for the same character from original file" Special character `0` is used to distinguish invalid decompositions (which lead to characters with no graphical representation) from those which just can't be decomposed further into something meaningful. For example, `一:fix(0)` means that this kanji can't be further decomposed, since it's just a single stroke. NOTE: Strictly speaking, records in this file are not always "visual decompositions" (but most of them are). Instead, it's just an attempt to provide meaningful recommendations of kanji learning order. #### `data/kanji-frequency/*.json` See [kanji-frequency][] repository for details. ## Usage You must have Node.js and Git installed 1. `git clone https://github.com/THIS/REPO.git` 2. `npm install` 3. `node build.js` + commands and arguments described below ### Command-line commands and arguments - `show` - only display sorted list without writing into files - (optional) `--per-line=NUM` - explicitly tell how many characters per line to display. `50` by default. Applicable only to (no arguments) - (optional) `--freq-table=TABLE_NAME` - use only one frequency table. Table names are file names from `data/kanji-frequency` directory, without `.json` extension, e.g. `all` ("combined" list), `aozora`, etc. When omitted, all frequency tables are used - `coverage` - show tables coverage, i.e. which fraction of characters from each frequency table is included into kanji list - `suggest-add` - suggest kanji to add in a list, based on coverage within kanji usage frequency tables - (required) `--num=NUM` - how many - (optional) `--mean-type=MEAN_TYPE` - same as previous, sort by given mean type: `arithmetic` (most "extreme"), `geometric`, `harmonic` (default, most "conservative"). See [Pythagorean means][mean-type] for details - `suggest-remove` - suggest kanji to remove from a list, reverse of `suggest-add` - (required) `--num=NUM` - see above - (optional) `--mean-type=MEAN_TYPE` - see above - `save` - update files with final lists ## License This is a multi-license project. Choose any license from this list: - [Apache-2.0](http://www.apache.org/licenses/LICENSE-2.0) or any later version - [CC-BY-4.0](http://creativecommons.org/licenses/by/4.0/) or any later version - [EPL-1.0](https://www.eclipse.org/legal/epl-v10.html) or any later version - [LGPL-3.0](http://www.gnu.org/licenses/lgpl-3.0.html) or any later version - [MIT](http://opensource.org/licenses/MIT) [mistakes]: http://www.tofugu.com/2010/03/25/the-5-biggest-mistakes-people-make-when-learning-kanji/ [anki]: http://ankisrs.net/ [graph]: https://en.wikipedia.org/wiki/Graph_(mathematics) [dag]: https://en.wikipedia.org/wiki/Directed_acyclic_graph [topsort]: https://en.wikipedia.org/wiki/Topological_sorting [tsort]: https://en.wikipedia.org/wiki/Tsort [kahn]: http://dl.acm.org/citation.cfm?doid=368996.369025 [wiki-dumps]: https://dumps.wikimedia.org/ [jawiki]: https://dumps.wikimedia.org/jawiki/ [aozora]: http://www.aozora.gr.jp/ [twitter-stream]: https://dev.twitter.com/streaming/overview [twitter-bot]: https://github.com/scriptin/twitter-kanji-frequency [jouyou]: https://en.wikipedia.org/wiki/J%C5%8Dy%C5%8D_kanji [kangxi]: https://en.wikipedia.org/wiki/Kangxi_radical [kanjivg]: http://kanjivg.tagaini.net/ [kanjivg-github]: https://github.com/KanjiVG/kanjivg [cjk]: https://cjkdecomp.codeplex.com/ [cjk-format]: https://cjkdecomp.codeplex.com/wikipage?title=cjk-decomp [json]: http://json.org/ [bom]: https://en.wikipedia.org/wiki/Byte_order_mark [eol]: https://en.wikipedia.org/wiki/Newline [mean-type]: https://en.wikipedia.org/wiki/Pythagorean_means [kanji-frequency]: https://github.com/scriptin/kanji-frequency
[]
[ "Annotation and Dataset Development" ]
true
https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers
2015-09-01T10:24:45Z
A set of metrics for feature selection from text data
Kensuke-Mitsuzawa / JapaneseTokenizers Public Branches Tags Go to file Go to file Code Japan… exampl… test .gitignore .travis.… LICEN… MANIF… Makefile READ… install_… setup.py travis-… license license MIT MIT Build Status This is simple python-wrapper for Japanese Tokenizers(A.K.A Tokenizer) This project aims to call tokenizers and split a sentence into tokens as easy as possible. And, this project supports various Tokenization tools common interface. Thus, it's easy to compare output from various tokenizers. This project is available also in Github. About aim to use JapaneseTokenizer as easy as possible # nlp # tokenizer # japanese-language # mecab # juman # kytea # mecab-neologd-dictionary # dictionary-extension # jumanpp Readme MIT license Activity 138 stars 4 watching 20 forks Report repository Releases 20 Possible to call jumandi… Latest on Mar 26, 2019 + 19 releases Packages No packages published Contributors 3 Languages Code Issues 8 Pull requests Actions Projects Wiki Security Ins What's this? README MIT license If you find any bugs, please report them to github issues. Or any pull requests are welcomed! Python 2.7 Python 3.x checked in 3.5, 3.6, 3.7 simple/common interface among various tokenizers simple/common interface for filtering with stopwords or Part-of-Speech condition simple interface to add user-dictionary(mecab only) Mecab is open source tokenizer system for various language(if you have dictionary for it) See english documentation for detail Juman is a tokenizer system developed by Kurohashi laboratory, Kyoto University, Japan. Juman is strong for ambiguous writing style in Japanese, and is strong for new-comming words thanks to Web based huge dictionary. And, Juman tells you semantic meaning of words. Juman++ is a tokenizer system developed by Kurohashi laboratory, Kyoto University, Japan. Juman++ is succeeding system of Juman. It adopts RNN model for tokenization. Juman++ is strong for ambigious writing style in Japanese, and is strong for new-comming words thanks to Web based huge dictionary. And, Juman tells you semantic meaning of words. Note: New Juman++ dev-version(later than 2.x) is available at Github Kytea is tokenizer tool developped by Graham Neubig. Python 92.5% Dockerfile 3.6% Shell 3.6% Makefile 0.3% Requirements Features Supported Tokenizers Mecab Juman Juman++ Kytea Kytea has a different algorithm from one of Mecab or Juman. See here to install MeCab system. Mecab-neologd dictionary is a dictionary-extension based on ipadic-dictionary, which is basic dictionary of Mecab. With, Mecab-neologd dictionary, you're able to parse new-coming words make one token. Here, new-coming words is such like, movie actor name or company name..... See here and install mecab-neologd dictionary. GCC version must be >= 5 Setting up Tokenizers auto-install make install mecab-neologd dictionary auto-install make install_neologd Tokenizers manual-install MeCab Mecab Neologd dictionary Juman wget -O juman7.0.1.tar.bz2 "http://nlp.ist.i.kyoto- u.ac.jp/DLcounter/lime.cgi?down=http://nlp.ist.i.kyoto-u.ac.jp/nl- resource/juman/juman-7.01.tar.bz2&name=juman-7.01.tar.bz2" bzip2 -dc juman7.0.1.tar.bz2 | tar xvf - cd juman-7.01 ./configure make [sudo] make install Juman++ Install Kytea system Kytea has python wrapper thanks to michiaki ariga. Install Kytea-python wrapper During install, you see warning message when it fails to install pyknp or kytea . if you see these messages, try to re-install these packages manually. Tokenization Example(For python3.x. To see exmaple code for Python2.x, plaese see here) wget http://lotus.kuee.kyoto-u.ac.jp/nl-resource/jumanpp/jumanpp- 1.02.tar.xz tar xJvf jumanpp-1.02.tar.xz cd jumanpp-1.02/ ./configure make [sudo] make install Kytea wget http://www.phontron.com/kytea/download/kytea-0.4.7.tar.gz tar -xvf kytea-0.4.7.tar cd kytea-0.4.7 ./configure make make install pip install kytea install [sudo] python setup.py install Note Usage import JapaneseTokenizer input_sentence = '10日放送の「中居正広のミになる図書館」(テレビ朝日系)で、SMAPの中 居正広が、篠原信一の過去の勘違いを明かす一幕があった。' # ipadic is well-maintained dictionary # mecab_wrapper = JapaneseTokenizer.MecabWrapper(dictType='ipadic') print(mecab_wrapper.tokenize(input_sentence).convert_list_object()) # neologd is automatically-generated dictionary from huge web-corpus # Mecab, Juman, Kytea have different system of Part-of-Speech(POS). You can check tables of Part-of-Speech(POS) here natto-py is sophisticated package for tokenization. It supports following features easy interface for tokenization importing additional dictionary partial parsing mode MIT license You could build an environment which has dependencies to test this package. Simply, you build docker image and run docker container. Develop environment is defined with test/docker-compose-dev.yml . With the docker-compose.yml file, you could call python2.7 or python3.7 mecab_neologd_wrapper = JapaneseTokenizer.MecabWrapper(dictType='neologd') print(mecab_neologd_wrapper.tokenize(input_sentence).convert_list_object()) Filtering example import JapaneseTokenizer # with word filtering by stopword & part-of-speech condition # print(mecab_wrapper.tokenize(input_sentence).filter(stopwords=['テレビ朝 日'], pos_condition=[('名詞', '固有名詞')]).convert_list_object()) Part-of-speech structure Similar Package natto-py LICENSE For developers Dev environment If you're using Pycharm Professional edition, you could set docker-compose.yml as remote interpreter. To call python2.7, set /opt/conda/envs/p27/bin/python2.7 To call python3.7, set /opt/conda/envs/p37/bin/python3.7 These commands checks from procedures of package install until test of package. Test environment $ docker-compose build
[![MIT License](http://img.shields.io/badge/license-MIT-blue.svg?style=flat)](LICENSE)[![Build Status](https://travis-ci.org/Kensuke-Mitsuzawa/JapaneseTokenizers.svg?branch=master)](https://travis-ci.org/Kensuke-Mitsuzawa/JapaneseTokenizers) # What's this? This is simple python-wrapper for Japanese Tokenizers(A.K.A Tokenizer) This project aims to call tokenizers and split a sentence into tokens as easy as possible. And, this project supports various Tokenization tools common interface. Thus, it's easy to compare output from various tokenizers. This project is available also in [Github](https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers). If you find any bugs, please report them to github issues. Or any pull requests are welcomed! # Requirements - Python 2.7 - Python 3.x - checked in 3.5, 3.6, 3.7 # Features * simple/common interface among various tokenizers * simple/common interface for filtering with stopwords or Part-of-Speech condition * simple interface to add user-dictionary(mecab only) ## Supported Tokenizers ### Mecab [Mecab](http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html?sess=3f6a4f9896295ef2480fa2482de521f6) is open source tokenizer system for various language(if you have dictionary for it) See [english documentation](https://github.com/jordwest/mecab-docs-en) for detail ### Juman [Juman](http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN) is a tokenizer system developed by Kurohashi laboratory, Kyoto University, Japan. Juman is strong for ambiguous writing style in Japanese, and is strong for new-comming words thanks to Web based huge dictionary. And, Juman tells you semantic meaning of words. ### Juman++ [Juman++](http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN++) is a tokenizer system developed by Kurohashi laboratory, Kyoto University, Japan. Juman++ is succeeding system of Juman. It adopts RNN model for tokenization. Juman++ is strong for ambigious writing style in Japanese, and is strong for new-comming words thanks to Web based huge dictionary. And, Juman tells you semantic meaning of words. Note: New Juman++ dev-version(later than 2.x) is available at [Github](https://github.com/ku-nlp/jumanpp) ### Kytea [Kytea](http://www.phontron.com/kytea/) is tokenizer tool developped by Graham Neubig. Kytea has a different algorithm from one of Mecab or Juman. # Setting up ## Tokenizers auto-install ``` make install ``` ### mecab-neologd dictionary auto-install ``` make install_neologd ``` ## Tokenizers manual-install ### MeCab See [here](https://github.com/jordwest/mecab-docs-en) to install MeCab system. ### Mecab Neologd dictionary Mecab-neologd dictionary is a dictionary-extension based on ipadic-dictionary, which is basic dictionary of Mecab. With, Mecab-neologd dictionary, you're able to parse new-coming words make one token. Here, new-coming words is such like, movie actor name or company name..... See [here](https://github.com/neologd/mecab-ipadic-neologd) and install mecab-neologd dictionary. ### Juman ``` wget -O juman7.0.1.tar.bz2 "http://nlp.ist.i.kyoto-u.ac.jp/DLcounter/lime.cgi?down=http://nlp.ist.i.kyoto-u.ac.jp/nl-resource/juman/juman-7.01.tar.bz2&name=juman-7.01.tar.bz2" bzip2 -dc juman7.0.1.tar.bz2 | tar xvf - cd juman-7.01 ./configure make [sudo] make install ``` ## Juman++ * GCC version must be >= 5 ``` wget http://lotus.kuee.kyoto-u.ac.jp/nl-resource/jumanpp/jumanpp-1.02.tar.xz tar xJvf jumanpp-1.02.tar.xz cd jumanpp-1.02/ ./configure make [sudo] make install ``` ## Kytea Install Kytea system ``` wget http://www.phontron.com/kytea/download/kytea-0.4.7.tar.gz tar -xvf kytea-0.4.7.tar cd kytea-0.4.7 ./configure make make install ``` Kytea has [python wrapper](https://github.com/chezou/Mykytea-python) thanks to michiaki ariga. Install Kytea-python wrapper ``` pip install kytea ``` ## install ``` [sudo] python setup.py install ``` ### Note During install, you see warning message when it fails to install `pyknp` or `kytea`. if you see these messages, try to re-install these packages manually. # Usage Tokenization Example(For python3.x. To see exmaple code for Python2.x, plaese see [here](https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers/blob/master/examples/examples.py)) ``` import JapaneseTokenizer input_sentence = '10日放送の「中居正広のミになる図書館」(テレビ朝日系)で、SMAPの中居正広が、篠原信一の過去の勘違いを明かす一幕があった。' # ipadic is well-maintained dictionary # mecab_wrapper = JapaneseTokenizer.MecabWrapper(dictType='ipadic') print(mecab_wrapper.tokenize(input_sentence).convert_list_object()) # neologd is automatically-generated dictionary from huge web-corpus # mecab_neologd_wrapper = JapaneseTokenizer.MecabWrapper(dictType='neologd') print(mecab_neologd_wrapper.tokenize(input_sentence).convert_list_object()) ``` ## Filtering example ``` import JapaneseTokenizer # with word filtering by stopword & part-of-speech condition # print(mecab_wrapper.tokenize(input_sentence).filter(stopwords=['テレビ朝日'], pos_condition=[('名詞', '固有名詞')]).convert_list_object()) ``` ## Part-of-speech structure Mecab, Juman, Kytea have different system of Part-of-Speech(POS). You can check tables of Part-of-Speech(POS) [here](http://www.unixuser.org/~euske/doc/postag/) # Similar Package ## natto-py natto-py is sophisticated package for tokenization. It supports following features * easy interface for tokenization * importing additional dictionary * partial parsing mode # LICENSE MIT license # For developers You could build an environment which has dependencies to test this package. Simply, you build docker image and run docker container. ## Dev environment Develop environment is defined with `test/docker-compose-dev.yml`. With the docker-compose.yml file, you could call python2.7 or python3.7 If you're using Pycharm Professional edition, you could set docker-compose.yml as remote interpreter. To call python2.7, set `/opt/conda/envs/p27/bin/python2.7` To call python3.7, set `/opt/conda/envs/p37/bin/python3.7` ## Test environment These commands checks from procedures of package install until test of package. ```bash $ docker-compose build $ docker-compose up ```
[ "Morphology", "Responsible & Trustworthy NLP", "Robustness in NLP", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/tokuhirom/akaza
2015-10-14T01:17:00Z
Yet another Japanese IME for IBus/Linux
akaza-im / akaza Public Branches Tags Go to file Go to file Code .github… .run akaza-… akaza-… akaza-… develo… docs ibus-ak… ibus-sys keymap libakaza marisa… romkan .gitattri… .gitignore .gitmo… CONT… Cargo.l… Cargo.… Chang… LICEN… About Yet another Japanese IME for IBus/Linux # nlp # rust # ime # ibus Readme MIT license Activity Custom properties 216 stars 7 watching 7 forks Report repository Releases 4 v0.2.0 Latest on Jan 29, 2023 + 3 releases Packages No packages published Contributors 5 Languages Rust 95.6% Perl 1.8% C 1.1% Other 1.5% Code Issues 18 Pull requests 3 Discussions Actions Wiki Security Makefile Note.md READ… deny.to… renova… Yet another kana-kanji-converter on IBus, written in Rust. 統計的かな漢字変換による日本語IMEです。 Rust で書いていま す。 現在、開発途中のプロダクトです。非互換の変更が予告なくはい ります いじりやすくて ある程度 UIが使いやすいかな漢字変換があったら 面白いなと思ったので作ってみています。 「いじりやすくて」と いうのはつまり、Hack-able であるという意味です。 モデルデータを自分で生成できて、特定の企業に依存しない自由 なかな漢字変換エンジンを作りたい。 UI/Logic をすべて Rust で書いてあるので、拡張が容易です。 統計的かな漢字変換モデルを採用しています 言語モデルの生成元は日本語 Wikipedia と青空文庫で す。 形態素解析器 Vibrato で分析した結果をもとに 2gram 言語モデルを構築しています。 利用者の環境で 1 から言語モデルを再生成すること が可能です。 ユーザー環境で、利用者の変換結果を学習します(unigram, bigramの頻度を学習します) ibus-akaza モチベーション 特徴 README MIT license ibus 1.5+ marisa-trie gtk4 rust Linux 6.0 以上 ibus 1.5 以上 リトルエンディアン環境 モデルファイルをダウンロードして展開してください。 ibus-akaza をインストールしてください。 Akaza は典型的には以下の順番で探します。 1. ~/.local/share/akaza/keymap/{KEYMAP_NAME}.yml 2. /usr/local/share/akaza/keymap/{KEYMAP_NAME}.yml 3. /usr/share/akaza/keymap/{KEYMAP_NAME}.yml Dependencies Runtime dependencies Build time dependencies Supported environment Install 方法 sudo mkdir -p /usr/share/akaza/model/default/ curl -L https://github.com/akaza-im/akaza- default- model/releases/download/<<VERSION>>/akaza- default-model.tar.gz | sudo tar xzv --strip- components=1 -C /usr/share/akaza/model/default/ rustup install stable make sudo make install ibus restart ibus engine akaza 設定方法 Keymap の設定 このパスは、XDG ユーザーディレクトリ の仕様に基づいていま す。 Akaza は Keymap は XDG_DATA_HOME と XDG_DATA_DIRS か らさがします。 XDG_DATA_HOME は設定していなければ ~/.local/share/ です。XDGA_DATA_DIR は設定していなければ /usr/local/share:/usr/share/ です。 ローマ字かなマップも同様のパスからさがします。 1. ~/.local/share/akaza/romkan/{KEYMAP_NAME}.yml 2. /usr/local/share/akaza/romkan/{KEYMAP_NAME}.yml 3. /usr/share/akaza/romkan/{KEYMAP_NAME}.yml model は複数のファイルからなります。 unigram.model bigram.model SKK-JISYO.akaza この切り替えは以下のようなところから読まれます。 ~/.local/share/akaza/model/{MODEL_NAME}/unigram.model ~/.local/share/akaza/model/{MODEL_NAME}/bigram.model ~/.local/share/akaza/model/{MODEL_NAME}/SKK- JISYO.akaza keymap, romkan と同様に、XDG_DATA_DIRS から読むこともでき ます。 流行り言葉が入力できない場合、jawiki-kana-kanji-dict の利用を検 討してください。 Wikipedia から自動的に抽出されたデータを元 に SKK 辞書を作成しています。 Github Actions で自動的に実行さ れているため、常に新鮮です。 一方で、自動抽出しているために変なワードも入っています。変 なワードが登録されていることに気づいたら、github issues で報 告してください。 RomKan の設定 model の設定 FAQ 最近の言葉が変換できません/固有名詞が変換できま せん 人名が入力できません。など。 必要な SKK の辞書を読み込んでください。 現時点では config.yml を手で編集する必要があります。 https://skk-dev.github.io/dict/ ibus-uniemoji を参考に初期の実装を行いました。 日本語入力を支える技術 を読み込んで実装しました。この本 が 実装 THANKS TO
# ibus-akaza Yet another kana-kanji-converter on IBus, written in Rust. 統計的かな漢字変換による日本語IMEです。 Rust で書いています。 **現在、開発途中のプロダクトです。非互換の変更が予告なくはいります** ## モチベーション いじりやすくて **ある程度** UIが使いやすいかな漢字変換があったら面白いなと思ったので作ってみています。 「いじりやすくて」というのはつまり、Hack-able であるという意味です。 モデルデータを自分で生成できて、特定の企業に依存しない自由なかな漢字変換エンジンを作りたい。 ## 特徴 * UI/Logic をすべて Rust で書いてあるので、拡張が容易です。 * 統計的かな漢字変換モデルを採用しています * 言語モデルの生成元は日本語 Wikipedia と青空文庫です。 * 形態素解析器 Vibrato で分析した結果をもとに 2gram 言語モデルを構築しています。 * 利用者の環境で 1 から言語モデルを再生成することが可能です。 * ユーザー環境で、利用者の変換結果を学習します(unigram, bigramの頻度を学習します) ## Dependencies ### Runtime dependencies * ibus 1.5+ * marisa-trie * gtk4 ### Build time dependencies * rust ### Supported environment * Linux 6.0 以上 * ibus 1.5 以上 * リトルエンディアン環境 ## Install 方法 モデルファイルをダウンロードして展開してください。 sudo mkdir -p /usr/share/akaza/model/default/ curl -L https://github.com/akaza-im/akaza-default-model/releases/download/<<VERSION>>/akaza-default-model.tar.gz | sudo tar xzv --strip-components=1 -C /usr/share/akaza/model/default/ ibus-akaza をインストールしてください。 rustup install stable make sudo make install ibus restart ibus engine akaza ## 設定方法 ### Keymap の設定 Akaza は典型的には以下の順番で探します。 1. `~/.local/share/akaza/keymap/{KEYMAP_NAME}.yml` 2. `/usr/local/share/akaza/keymap/{KEYMAP_NAME}.yml` 3. `/usr/share/akaza/keymap/{KEYMAP_NAME}.yml` このパスは、[XDG ユーザーディレクトリ](https://wiki.archlinux.jp/index.php/XDG_%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E3%83%87%E3%82%A3%E3%83%AC%E3%82%AF%E3%83%88%E3%83%AA) の仕様に基づいています。 Akaza は Keymap は `XDG_DATA_HOME` と `XDG_DATA_DIRS` からさがします。 `XDG_DATA_HOME` は設定していなければ `~/.local/share/` です。`XDGA_DATA_DIR` は設定していなければ `/usr/local/share:/usr/share/` です。 ### RomKan の設定 ローマ字かなマップも同様のパスからさがします。 1. `~/.local/share/akaza/romkan/{KEYMAP_NAME}.yml` 2. `/usr/local/share/akaza/romkan/{KEYMAP_NAME}.yml` 3. `/usr/share/akaza/romkan/{KEYMAP_NAME}.yml` ### model の設定 model は複数のファイルからなります。 - unigram.model - bigram.model - SKK-JISYO.akaza この切り替えは以下のようなところから読まれます。 - `~/.local/share/akaza/model/{MODEL_NAME}/unigram.model` - `~/.local/share/akaza/model/{MODEL_NAME}/bigram.model` - `~/.local/share/akaza/model/{MODEL_NAME}/SKK-JISYO.akaza` keymap, romkan と同様に、`XDG_DATA_DIRS` から読むこともできます。 ## FAQ ### 最近の言葉が変換できません/固有名詞が変換できません 流行り言葉が入力できない場合、[jawiki-kana-kanji-dict](https://github.com/tokuhirom/jawiki-kana-kanji-dict) の利用を検討してください。 Wikipedia から自動的に抽出されたデータを元に SKK 辞書を作成しています。 Github Actions で自動的に実行されているため、常に新鮮です。 一方で、自動抽出しているために変なワードも入っています。変なワードが登録されていることに気づいたら、github issues で報告してください。 ### 人名が入力できません。など。 必要な SKK の辞書を読み込んでください。 現時点では config.yml を手で編集する必要があります。 https://skk-dev.github.io/dict/ ## THANKS TO * [ibus-uniemoji](https://github.com/salty-horse/ibus-uniemoji) を参考に初期の実装を行いました。 * [日本語入力を支える技術](https://gihyo.jp/book/2012/978-4-7741-4993-6) を読み込んで実装しました。この本がなかったら実装しようと思わなかったと思います。
[ "Language Models", "Syntactic Text Processing" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/hexenq/kuroshiro
2016-01-03T09:16:40Z
Japanese language library for converting Japanese sentence to Hiragana, Katakana or Romaji with furigana and okurigana modes supported.
hexenq / kuroshiro Public 7 Branches 18 Tags Go to file Go to file Code src test .babelrc .eslintrc .gitignore .npmignore .travis.yml CHANGELOG.md CONTRIBUTING.md LICENSE README.eo-eo.md README.jp.md README.md README.zh-cn.md README.zh-tw.md package.json Build Status coverage coverage 96% 96% gitter gitter join chat join chat license license MIT MIT kuroshiro is a Japanese language library for converting Japanese sentence to Hiragana, Katakana or Romaji with furigana and okurigana modes supported. Read this in other languages: English, 日本語, 简体中文, 繁體中文, Esperanto. You can check the demo here. Japanese Sentence => Hiragana, Katakana or Romaji Furigana and okurigana supported About Japanese language library for converting Japanese sentence to Hiragana, Katakana or Romaji with furigana and okurigana modes supported. kuroshiro.org # katakana # hiragana # japanese # romaji # kana # kanji # hepburn # mecab # furigana # kuromoji # okurigana Readme MIT license Activity 836 stars 16 watching 94 forks Report repository Releases 2 1.2.0 Latest on Jun 8, 2021 + 1 release Used by 486 + 478 Contributors 8 Languages JavaScript 100.0% Code Issues 42 Pull requests 6 Actions Projects Security Insights kuroshiro Demo Feature README MIT license 🆕Multiple morphological analyzers supported 🆕Multiple romanization systems supported Useful Japanese utils Seperate morphological analyzer from phonetic notation logic to make it possible that we can use different morphological analyzers (ready-made or customized) Embrace ES8/ES2017 to use async/await functions Use ES6 Module instead of CommonJS You should check the environment compatibility of each analyzer before you start working with them Analyzer Node.js Support Browser Support Plugin Repo Developer Kuromoji ✓ ✓ kuroshiro-analyzer-kuromoji Hexen Qi Mecab ✓ ✗ kuroshiro-analyzer-mecab Hexen Qi Yahoo Web API ✓ ✗ kuroshiro-analyzer-yahoo-webapi Hexen Qi Install with npm package manager: Load the library: Support ES6 Module import And CommonJS require Add dist/kuroshiro.min.js to your frontend project (you may first build it from source with npm run build after npm install ), and in your HTML: Breaking Change in 1.x Ready-made Analyzer Plugins Usage Node.js (or using a module bundler (e.g. Webpack)) $ npm install kuroshiro import Kuroshiro from "kuroshiro"; // Initialize kuroshiro with an instance of analyzer (You could check the [apidoc](#initanalyzer) for more informatio // For this example, you should npm install and import the kuromoji analyzer first import KuromojiAnalyzer from "kuroshiro-analyzer-kuromoji"; // Instantiate const kuroshiro = new Kuroshiro(); // Initialize // Here uses async/await, you could also use Promise await kuroshiro.init(new KuromojiAnalyzer()); // Convert what you want const result = await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", { to: "hiragana" } const Kuroshiro = require("kuroshiro"); const KuromojiAnalyzer = require("kuroshiro-analyzer-kuromoji"); const kuroshiro = new Kuroshiro(); kuroshiro.init(new KuromojiAnalyzer()) .then(function(){ return kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", { to: "hiragana" }); }) .then(function(result){ console.log(result); }) Browser For this example, you should also include kuroshiro-analyzer-kuromoji.min.js which you could get from kuroshiro-analyzer-kuromoji Instantiate: Initialize kuroshiro with an instance of analyzer, then convert what you want: Examples Initialize kuroshiro with an instance of analyzer. You should first import an analyzer and initialize it. You can make use of the Ready-made Analyzers listed above. And please refer to documentation of analyzers for analyzer initialization instructions Arguments analyzer - An instance of analyzer. Examples Convert given string to target syllabary with options available Arguments str - A String to be converted. options - Optional kuroshiro has several convert options as below. Options Type Default Description to String "hiragana" Target syllabary [ hiragana , katakana , romaji ] mode String "normal" Convert mode [ normal , spaced , okurigana , furigana ] romajiSystem String "hepburn" Romanization system [ nippon , passport , hepburn ] delimiter_start String "(" Delimiter(Start) delimiter_end String ")" Delimiter(End) *: Param romajiSystem is only applied when the value of param to is romaji . For more about it, check Romanization System <script src="url/to/kuroshiro.min.js"></script> <script src="url/to/kuroshiro-analyzer-kuromoji.min.js"></script> var kuroshiro = new Kuroshiro(); kuroshiro.init(new KuromojiAnalyzer({ dictPath: "url/to/dictFiles" })) .then(function () { return kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", { to: "hiragana" }); }) .then(function(result){ console.log(result); }) API Constructor const kuroshiro = new Kuroshiro(); Instance Medthods init(analyzer) await kuroshiro.init(new KuromojiAnalyzer()); convert(str, [options]) * Examples // furigana await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"furigana", to:"hiragana"}); // result: 感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高! かん と て つな かさ じんせい さいこう Examples Check if input char is hiragana. Check if input char is katakana. Check if input char is kana. Check if input char is kanji. Check if input char is Japanese. Check if input string has hiragana. Check if input string has katakana. Check if input string has kana. Check if input string has kanji. Check if input string has Japanese. Convert input kana string to hiragana. // normal await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"} // result:かんじとれたらてをつなごう、かさなるのはじんせいのライン and レミリアさいこう! // spaced await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"} // result:かんじとれ たら て を つなご う 、 かさなる の は じんせい の ライン and レミ リア さいこう ! // okurigana await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"} // result: 感(かん)じ取(と)れたら手(て)を繋(つな)ごう、重(かさ)なるのは人生(じんせい)のライン and レミリア最高(さいこう)! Utils const result = Kuroshiro.Util.isHiragana("あ")); isHiragana(char) isKatakana(char) isKana(char) isKanji(char) isJapanese(char) hasHiragana(str) hasKatakana(str) hasKana(str) hasKanji(str) hasJapanese(str) kanaToHiragna(str) Convert input kana string to katakana. Convert input kana string to romaji. Param system accepts "nippon" , "passport" , "hepburn" (Default: "hepburn"). kuroshiro supports three kinds of romanization systems. nippon : Nippon-shiki romanization. Refer to ISO 3602 Strict. passport : Passport-shiki romanization. Refer to Japanese romanization table published by Ministry of Foreign Affairs of Japan. hepburn : Hepburn romanization. Refer to BS 4812 : 1972. There is a useful webpage for you to check the difference between these romanization systems. Since it's impossible to fully automatically convert furigana directly to romaji because furigana lacks information on pronunciation (Refer to な ぜ フリガナでは ダメなのか?). kuroshiro will not handle chōon when processing directly furigana (kana) -> romaji conversion with every romanization system (Except that Chōonpu will be handled) For example, you'll get "kousi", "koushi", "koushi" respectively when converts kana "こうし" to romaji using nippon , passport , hepburn romanization system. The kanji -> romaji conversion with/without furigana mode is unaffected by this logic. Please check CONTRIBUTING. kuromoji wanakana MIT kanaToKatakana(str) kanaToRomaji(str, system) Romanization System Notice for Romaji Conversion Contributing Inspired By License
![kuroshiro](https://kuroshiro.org/kuroshiro.png) # kuroshiro [![Build Status](https://travis-ci.org/hexenq/kuroshiro.svg?branch=master)](https://travis-ci.org/hexenq/kuroshiro) [![Coverage Status](https://coveralls.io/repos/hexenq/kuroshiro/badge.svg)](https://coveralls.io/r/hexenq/kuroshiro) [![npm version](https://badge.fury.io/js/kuroshiro.svg)](http://badge.fury.io/js/kuroshiro) [![Join the chat at https://gitter.im/hexenq/kuroshiro](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/hexenq/kuroshiro) [![License](https://img.shields.io/github/license/lassjs/lass.svg)](LICENSE) kuroshiroは日本語文をローマ字や仮名なとに変換できるライブラリです。フリガナ・送り仮名の機能も搭載します。 *ほかの言語:[English](README.md), [日本語](README.jp.md), [简体中文](README.zh-cn.md), [繁體中文](README.zh-tw.md), [Esperanto](README.eo-eo.md)。* ## デモ オンラインデモは[こちら](https://kuroshiro.org/#demo)です。 ## 特徴 - 日本語文 => ひらがな、カタカナ、ローマ字 - フリガナ、送り仮名サポート - 🆕複数の形態素解析器をサポート - 🆕複数のローマ字表記法をサポート - 実用ツール付き ## バッジョン1.xでの重大な変更 - 形態素解析器がルビロジックから分離される。それゆえ、様々な形態素解析器([レディーメイド](#形態素解析器プラグイン)も[カスタマイズ](CONTRIBUTING.md#how-to-submit-new-analyzer-plugins)も)を利用できることになります。 - ES2017の新機能「async/await」を利用します - CommonJSからES Modulesへ移行します ## 形態素解析器プラグイン *始まる前にプラグインの適合性をチェックしてください* | 解析器 | Node.js サポート | ブラウザ サポート | レポジトリ | 開発者 | |---|---|---|---|---| |Kuromoji|✓|✓|[kuroshiro-analyzer-kuromoji](https://github.com/hexenq/kuroshiro-analyzer-kuromoji)|[Hexen Qi](https://github.com/hexenq)| |Mecab|✓|✗|[kuroshiro-analyzer-mecab](https://github.com/hexenq/kuroshiro-analyzer-mecab)|[Hexen Qi](https://github.com/hexenq)| |Yahoo Web API|✓|✗|[kuroshiro-analyzer-yahoo-webapi](https://github.com/hexenq/kuroshiro-analyzer-yahoo-webapi)|[Hexen Qi](https://github.com/hexenq)| ## 使い方 ### Node.js (又はWebpackなどのモジュールバンドラを使ってる時) npmでインストール: ```sh $ npm install kuroshiro ``` kuroshiroをロードします: *ES6 Module `import` と CommonJS `require`、どちらでもOK* ```js import Kuroshiro from "kuroshiro"; ``` インスタンス化します: ```js const kuroshiro = new Kuroshiro(); ``` 形態素解析器のインスタンスを引数にしてkuroshiroを初期化する ([API説明](#initanalyzer)を参考にしてください): ```js // この例では,まずnpm installとimportを通じてkuromojiの形態素解析器を導入します import KuromojiAnalyzer from "kuroshiro-analyzer-kuromoji"; // ... // 初期化 // ここでasync/awaitを使ってますが, Promiseも使えます await kuroshiro.init(new KuromojiAnalyzer()); ``` 変換の実行: ```js const result = await kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", { to: "hiragana" }); ``` ### ブラウザ `dist/kuroshiro.min.js`を導入し (その前に`npm install`と`npm run build`を通じて`kuroshiro.min.js`を生成します)、そしてHTMLに: ```html <script src="url/to/kuroshiro.min.js"></script> ``` この例では`kuroshiro-analyzer-kuromoji.min.js`の導入は必要です。詳しくは[kuroshiro-analyzer-kuromoji](https://github.com/hexenq/kuroshiro-analyzer-kuromoji)を参考にしてください ```html <script src="url/to/kuroshiro-analyzer-kuromoji.min.js"></script> ``` インスタンス化します: ```js var kuroshiro = new Kuroshiro(); ``` 形態素解析器のインスタンスを引数にしてkuroshiroを初期化するから,変換を実行します: ```js kuroshiro.init(new KuromojiAnalyzer({ dictPath: "url/to/dictFiles" })) .then(function () { return kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", { to: "hiragana" }); }) .then(function(result){ console.log(result); }) ``` ## APIの説明 ### コンストラクタ __例__ ```js const kuroshiro = new Kuroshiro(); ``` ### インスタンス関数 #### init(analyzer) 形態素解析器のインスタンスを引数にしてkuroshiroを初期化する。先に形態素解析器の導入と初期化は必要です。前述の[形態素解析器プラグイン](#形態素解析器プラグイン)を利用できます。形態素解析器の初期化方法は各自のドキュメントを参照してください。 __引数__ * `analyzer` - 形態素解析器のインスタンス。 __例__ ```js await kuroshiro.init(new KuromojiAnalyzer()); ``` #### convert(str, [options]) 文字列を目標音節文字に変換します(変換モードが設置できます)。 __引数__ * `str` - 変換される文字列。 * `options` - *任意* 変換のパラメータ。下表の通り。 | オプション | タイプ | デフォルト値 | 説明 | |---|---|---|---| | to | String | 'hiragana' | 目標音節文字<br />`hiragana` (ひらがな),<br />`katakana` (カタカナ),<br />`romaji` (ローマ字) | | mode | String | 'normal' | 変換モード<br />`normal` (一般),<br />`spaced` (スペースで組み分け),<br />`okurigana` (送り仮名),<br />`furigana` (フリガナ) | | romajiSystem<sup>*</sup> | String | "hepburn" | ローマ字<br />`nippon` (日本式),<br />`passport` (パスポート式),<br />`hepburn` (ヘボン式) | | delimiter_start | String | '(' | 区切り文字 (始め) | | delimiter_end | String | ')' | 区切り文字 (終り) | **: 引数`romajiSystem`は引数`to`が`romaji`に設定されてる場合にのみ有効です。詳細については, [ローマ字表記法](#ローマ字表記法)を参考にしてください。* __例__ ```js // normal (一般) kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"}); // 結果:かんじとれたらてをつなごう、かさなるのはじんせいのライン and レミリアさいこう! ``` ```js // spaced (スペースで組み分け) kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"}); // 結果:かんじとれ たら て を つなご う 、 かさなる の は じんせい の ライン and レミ リア さいこう ! ``` ```js // okurigana (送り仮名) kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"okurigana", to:"hiragana"}); // 結果: 感(かん)じ取(と)れたら手(て)を繋(つな)ごう、重(かさ)なるのは人生(じんせい)のライン and レミリア最高(さいこう)! ``` <pre> // furigana (フリガナ) kuroshiro.convert("感じ取れたら手を繋ごう、重なるのは人生のライン and レミリア最高!", {mode:"furigana", to:"hiragana"}); // 結果: <ruby>感<rp>(</rp><rt>かん</rt><rp>)</rp></ruby>じ<ruby>取<rp>(</rp><rt>と</rt><rp>)</rp></ruby>れたら<ruby>手<rp>(</rp><rt>て</rt><rp>)</rp></ruby>を<ruby>繋<rp>(</rp><rt>つな</rt><rp>)</rp></ruby>ごう、<ruby>重<rp>(</rp><rt>かさ</rt><rp>)</rp></ruby>なるのは<ruby>人生<rp>(</rp><rt>じんせい</rt><rp>)</rp></ruby>のライン and レミリア<ruby>最高<rp>(</rp><rt>さいこう</rt><rp>)</rp></ruby>! </pre> ### 実用ツール __例__ ```js const result = Kuroshiro.Util.isHiragana("あ")); ``` #### isHiragana(char) 入力文字はひらがなかどうかを判断します。 #### isKatakana(char) 入力文字はカタカナかどうかを判断します。 #### isKana(char) 入力文字は仮名かどうかを判断します。 #### isKanji(char) 入力文字は漢字かどうかを判断します。 #### isJapanese(char) 入力文字は日本語かどうかを判断します。 #### hasHiragana(str) 入力文字列にひらがながあるかどうかを確認する。 #### hasKatakana(str) 入力文字列にカタカナがあるかどうかを確認する。 #### hasKana(str) 入力文字列に仮名があるかどうかを確認する。 #### hasKanji(str) 入力文字列に漢字があるかどうかを確認する。 #### hasJapanese(str) 入力文字列に日本語があるかどうかを確認する。 #### kanaToHiragna(str) 入力仮名文字列をひらがなへ変換します。 #### kanaToKatakana(str) 入力仮名文字列をカタカナへ変換します。 #### kanaToRomaji(str, system) 入力仮名文字列をローマ字へ変換します。引数`system`の指定可能値は`"nippon"`, `"passport"`, `"hepburn"` (デフォルト値: "hepburn") ## ローマ字表記法 kuroshiroは三種類のローマ字表記法をサポートします。 `nippon`: 日本式ローマ字。[ISO 3602 Strict](http://www.age.ne.jp/x/nrs/iso3602/iso3602.html) を参照。 `passport`: パスポート式ローマ字。 日本外務省が発表した [ヘボン式ローマ字綴方表](https://www.ezairyu.mofa.go.jp/passport/hebon.html) を参照。 `hepburn`: ヘボン式ローマ字。[BS 4812 : 1972](https://archive.is/PiJ4) を参照。 各種ローマ字表の比較は[こちら](http://jgrammar.life.coocan.jp/ja/data/rohmaji2.htm)を参考にしてください。 ### ローマ字変換のお知らせ フリガナは音声を正確にあらわしていないため、__フリガナ__ を __ローマ字__ に完全自動的に変換することは不可能です。([なぜフリガナではダメなのか?](https://green.adam.ne.jp/roomazi/onamae.html#naze)を参照) そのゆえ、任意のローマ字表記法を使って、フリガナ(仮名)-> ローマ字 変換を行うとき、kuroshiroは長音の処理を実行しません。(長音符は処理されます) *例えば`nippon`、` passport`、 `hepburn`のローマ字表記法を使って フリガナ->ローマ字 変換を行うと、それぞれ"kousi"、 "koushi"、 "koushi"が得られます。* フリガナモードを使うかどうかにかかわらず、漢字->ローマ字の変換はこの仕組みに影響を与えられないです。 ## 貢献したい方 [CONTRIBUTING](CONTRIBUTING.md) を参考にしてみてください。 ## 感謝 - kuromoji - wanakana ## ライセンス MIT
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/scriptin/kanji-frequency
2016-01-24T01:51:10Z
Kanji usage frequency data collected from various sources
scriptin / kanji-frequency Public Branches Tags Go to file Go to file Code .github… .vscode data data2015 public scripts src .editor… .gitignore .prettie… .prettie… CONT… LICEN… READ… astro.c… packag… packag… tailwin… tsconfi… About Kanji usage frequency data collected from various sources scriptin.github.io/kanji-frequency/ # data # japanese # corpus # data-visualization # cjk # kanji # japanese-language # corpus-linguistics # frequency-lists # cjk-characters # kanji-frequency Readme CC-BY-4.0 license Activity 131 stars 5 watching 19 forks Report repository Releases No releases published Packages No packages published Contributors 2 Languages Astro 46.6% JavaScript 40.9% MDX 9.9% TypeScript 2.6% Code Issues Pull requests Actions Projects Security Insights README CC-BY-4.0 license Datasets built from various Japanese language corpora https://scriptin.github.io/kanji-frequency/ - see this website for the dataset description. This readme describes only technical aspects. You can download the datasets here: https://github.com/scriptin/kanji- frequency/tree/master/data You'll need Node.js 18 or later. See scripts section in package.json. Aozora: aozora:download - use crawler/scraper to collect the data aozora:gaiji:extract - extract gaiji notations data from scraped pages. Gaiji refers to kanji charasters which are replaced with images in the documents, because Shift-JIS encoding cannot represent them aozora:gaiji:replacements - build gaiji replacements file - produces only partial results, which may need to be manually completed aozora:clean - clean the scraped pages (apply gaiji replacements) aozora:count - create the dataset Wikipedia: wikipedia:fetch - fetch random pages using MediaWiki API wikipedia:count - create the dataset News: news:wikinews:fetch - fetch random pages from Wikinews using MediaWiki API news:count - create the dataset news:dates - create additional file with dates of articles Kanji usage frequency Building the datasets See Astro docs and the scripts section in package.json. Building the website
# Kanji usage frequency Datasets built from various Japanese language corpora <https://scriptin.github.io/kanji-frequency/> - see this website for the dataset description. This readme describes only technical aspects. You can download the datasets here: <https://github.com/scriptin/kanji-frequency/tree/master/data> ## Building the datasets You'll need Node.js 18 or later. See `scripts` section in [package.json](./package.json). Aozora: - `aozora:download` - use crawler/scraper to collect the data - `aozora:gaiji:extract` - extract gaiji notations data from scraped pages. Gaiji refers to kanji charasters which are replaced with images in the documents, because Shift-JIS encoding cannot represent them - `aozora:gaiji:replacements` - build gaiji replacements file - produces only partial results, which may need to be manually completed - `aozora:clean` - clean the scraped pages (apply gaiji replacements) - `aozora:count` - create the dataset Wikipedia: - `wikipedia:fetch` - fetch random pages using MediaWiki API - `wikipedia:count` - create the dataset News: - `news:wikinews:fetch` - fetch random pages from Wikinews using MediaWiki API - `news:count` - create the dataset - `news:dates` - create additional file with dates of articles ## Building the website See [Astro](https://astro.build/) [docs](https://docs.astro.build/en/getting-started/) and the `scripts` section in [package.json](./package.json).
[ "Information Extraction & Text Mining", "Structured Data in NLP", "Term Extraction" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/scriptin/jmdict-simplified
2016-02-07T16:34:32Z
JMdict and JMnedict in JSON format
scriptin / jmdict-simplified Public Branches Tags Go to file Go to file Code .github… checks… docs gradle/… node src/mai… .editor… .gitignore CHAN… CONT… LICEN… READ… build.g… gradle.… gradlew gradle… setting… About JMdict, JMnedict, Kanjidic, KRADFILE/RADKFILE in JSON format # language # json # xml # dictionary # japanese # japanese-language # dictionary-tools # jmdict # kanjidic2 # jmnedict # radkfile # kradfile # kanjidic Readme CC-BY-SA-4.0 license Activity 193 stars 8 watching 13 forks Report repository Releases 121 3.6.1+20241104122244 Latest 3 days ago + 120 releases Contributors 4 Languages Kotlin 77.7% TypeScript 18.1% JavaScript 4.2% Code Issues Pull requests Actions Security Insights jmdict-simplified README CC-BY-SA-4.0 license JMdict, JMnedict, Kanjidic, and Kradfile/Radkfile in JSON format with more comprehensible structure and beginner- friendly documentation DOWNLOAD J S O N F I L E S READ FORMAT DOCS NPM @scriptin/jmdict-simplified-types NPM @scriptin/jmdict-simplified-loader Releases are automatically scheduled for every Monday. See release.yml Found a bug? Need a new feature? See CONTRIBUTING.md Original XML files are less than ideal in terms of format. (My opinion only, the JMdict/JMnedict project in general is absolutely awesome!) This project provides the following changes and improvements: 1. JSON instead of XML (or custom text format of RADKFILE/KRADFILE). Because the original format used some "advanced" XML features, such as entities and DOCTYPE, it could be quite difficult to use in some tech stacks, e.g. when your programming language of choice has no libraries for parsing some syntax 2. Regular structure for every item in every collection, no "same as in previous" implicit values. This is a problem with original XML files because users' code has to keep track of various parts of state while traversing collections. In this project, I tried to make every item of every collection "self-contained," with all the fields having all the values, without a need to refer to preceding items 3. Avoiding null (with few exceptions) and missing fields, preferring empty arrays. See http://thecodelesscode.com/case/6 for the inspiration for this 4. Human-readable names for fields instead of cryptic abbreviations with no explanations Why? 5. Documentation in a single file instead of browsing obscure pages across multiple sites. In my opinion, the documentation is the weakest part of JMDict/JMnedict project See the Format documentation or TypeScript types Please also read the original documentation if you have more questions: EDRDG wiki JMdict (also wiki) JMnedict Kanjidic RADKFILE/KRADFILE There are also Kotlin types, although they contain some methods and annotations you might not need. JMdictJsonElement.kt JMnedictJsonElement.kt Kanjidic2JsonElement.kt There are three main types of JSON files for the JMdict dictionary: full - same as original files, with no omissions of entries "common-only" - containing only dictionary entries considered "common" - if any of /k_ele/ke_pri or /r_ele/re_pri elements in XML files contain one of these markers: "news1", "ichi1", "spec1", "spec2", "gai1". Only one such element is enough for the whole word to be considered common. This corresponds to how online dictionaries such as https://jisho.org classify words as "common". Common-only distributions are much smaller. They are marked with "common" keyword in file names, see the latest release Format Full, "common-only", with examples, and language-specific versions with example sentences (built from JMdict_e_examp.xml source file) - English-only version with example sentences from Tanaka corpus maintained by https://tatoeba.org. This version doesn't have a full support in this project: NPM libraries do not provide parsers and type definitions Also, JMdict and Kanjidic have language-specific versions with language codes (3-letter ISO 639-2 codes for JMdict, 2-letter ISO 639-1 codes for Kanjidic) in file names: all - all languages, i.e. no language filter was applied eng / en - English ger / de - German rus / ru - Russian hun / hu - Hungarian dut / nl - Dutch spa / es - Spanish fre / fr - French swe / sv - Swedish slv / sl - Slovenian JMnedict and JMdict with examples have only one respective version each, since they are both English- only, and JMnedict has no "common" indicators on entries. Java 17 (JRE only, JDK is not necessary) - you can use Azul Zulu OpenJDK You don't need to install Gradle, just use the Gradle wrapper provided in this repository: gradlew (for Linux/Mac) or gradlew.bat (for Windows) NOTE: You can grab the pre-built JSON files in the latest release Requirements for running the conversion script Converting XML dictionaries Use included scripts: gradlew (for Linux/macOS) or gradlew.bat (for Windows). Tasks to convert dictionary files and create distribution archives: ./gradlew clean - clean all build artifacts to start a fresh build, in cases when you need to re- download and convert from scratch ./gradlew download - download and extract original dictionary XML files into build/dict-xml ./gradlew convert - convert all dictionaries to JSON and place into build/dict-json ./gradlew archive - create distribution archives (zip, tar+gzip) in build/distributions Utility tasks (for CI/CD workflows): ./gradlew --quiet jmdictHasChanged , ./gradlew --quiet jmnedictHasChanged , and ./gradlew --quiet kanjidicHasChanged - check if dictionary files have changed by comparing checksums of downloaded files with those stored in the checksums. Outputs YES or NO . Run this only after download task! The --quiet is to silence Gradle logs, e.g. when you need to put values into environments variables. ./gradlew updateChecksums - update checksum files in the checksums directory. Run after creating distribution archives and commit checksum files into the repository, so that next time CI/CD workflow knows if it needs to rebuild anything. ./gradlew uberJar - create an Uber JAR for standalone use (i.e. w/o Gradle). The JAR program shows help messages and should be intuitive to use if you know how to run it. For the full list of available tasks, run ./gradlew tasks Make sure to run tasks in order: download -> convert -> archive If running Gradle fails, make sure java is available on your $PATH environment variable Troubleshooting Run Gradle with --stacktrace , --info , or -- debug arguments to see more details if you get an error The original XML files - JMdict.xml, JMdict_e.xml, JMdict_e_examp.xml,and JMnedict.xml - are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's license. Project started in 1991 by Jim Breen. All derived files are distributed under the same license, as the original license requires it. The original kanjidic2.xml file is released under Creative Commons Attribution-ShareAlike License v4.0. See the Copyright and Permissions section on the Kanjidic wiki for details. All derived files are distributed under the same license, as the original license requires it. The RADKFILE and KRADFILE files are copyright and available under the EDRDG Licence. The copyright of the RADKFILE2 and KRADFILE2 files is held by Jim Rose. NPM packages @scriptin/jmdict-simplified-types and @scriptin/jmdict-simplified-loader are available under MIT license. License JMdict and JMnedict Kanjidic RADKFILE/KRADFILE NPM packages h fil
# jmdict-simplified **[JMdict][], [JMnedict][], [Kanjidic][], and [Kradfile/Radkfile][Kradfile] in JSON format**<br> with more comprehensible structure and beginner-friendly documentation [![Download JSON files](https://img.shields.io/static/v1?label=Download&message=JSON%20files&color=blue&style=for-the-badge)][latest-release] [![Format docs](https://img.shields.io/static/v1?label=Read&message=Format%20Docs&color=blue&style=for-the-badge)][format] [![NPM package: @scriptin/jmdict-simplified-types](https://img.shields.io/static/v1?label=NPM&message=@scriptin/jmdict-simplified-types&color=blue&style=flat-square&logo=npm)][npm-types]<br> [![NPM package: @scriptin/jmdict-simplified-loader](https://img.shields.io/static/v1?label=NPM&message=@scriptin/jmdict-simplified-loader&color=blue&style=flat-square&logo=npm)][npm-loader] --- - Releases are automatically scheduled for every Monday. See [release.yml](.github/workflows/release.yml) - Found a bug? Need a new feature? See [CONTRIBUTING.md](CONTRIBUTING.md) ## Why? Original XML files are less than ideal in terms of format. (My opinion only, the JMdict/JMnedict project in general is absolutely awesome!) This project provides the following changes and improvements: 1. JSON instead of XML (or custom text format of RADKFILE/KRADFILE). Because the original format used some "advanced" XML features, such as entities and DOCTYPE, it could be quite difficult to use in some tech stacks, e.g. when your programming language of choice has no libraries for parsing some syntax 2. Regular structure for every item in every collection, no "same as in previous" implicit values. This is a problem with original XML files because users' code has to keep track of various parts of state while traversing collections. In this project, I tried to make every item of every collection "self-contained," with all the fields having all the values, without a need to refer to preceding items 3. Avoiding `null` (with few exceptions) and missing fields, preferring empty arrays. See <http://thecodelesscode.com/case/6> for the inspiration for this 4. Human-readable names for fields instead of cryptic abbreviations with no explanations 5. Documentation in a single file instead of browsing obscure pages across multiple sites. In my opinion, the documentation is the weakest part of JMDict/JMnedict project ## Format > See the [Format documentation][format] or [TypeScript types](node/packages/jmdict-simplified-types/index.ts) Please also read the original documentation if you have more questions: - [EDRDG wiki](https://www.edrdg.org/wiki/index.php/Main_Page) - [JMdict][] (also [wiki](https://www.edrdg.org/wiki/index.php/JMdict-EDICT_Dictionary_Project)) - [JMnedict][] - [Kanjidic][] - [RADKFILE/KRADFILE][Kradfile] There are also Kotlin types, although they contain some methods and annotations you might not need. - [JMdictJsonElement.kt](src/main/kotlin/org/edrdg/jmdict/simplified/conversion/jmdict/JMdictJsonElement.kt) - [JMnedictJsonElement.kt](src/main/kotlin/org/edrdg/jmdict/simplified/conversion/jmnedict/JMnedictJsonElement.kt) - [Kanjidic2JsonElement.kt](src/main/kotlin/org/edrdg/jmdict/simplified/conversion/kanjidic/Kanjidic2JsonElement.kt) ## Full, "common-only", with examples, and language-specific versions There are three main types of JSON files for the JMdict dictionary: - full - same as original files, with no omissions of entries - "common-only" - containing only dictionary entries considered "common" - if any of `/k_ele/ke_pri` or `/r_ele/re_pri` elements in XML files contain one of these markers: "news1", "ichi1", "spec1", "spec2", "gai1". Only one such element is enough for the whole word to be considered common. This corresponds to how online dictionaries such as <https://jisho.org> classify words as "common". Common-only distributions are much smaller. They are marked with "common" keyword in file names, see the [latest release][latest-release] - with example sentences (built from JMdict_e_examp.xml source file) - English-only version with example sentences from Tanaka corpus maintained by <https://tatoeba.org>. This version doesn't have a full support in this project: NPM libraries do not provide parsers and type definitions Also, JMdict and Kanjidic have language-specific versions with language codes (3-letter [ISO 639-2](https://en.wikipedia.org/wiki/ISO_639-2) codes for JMdict, 2-letter [ISO 639-1](https://en.wikipedia.org/wiki/ISO_639-1) codes for Kanjidic) in file names: - `all` - all languages, i.e. no language filter was applied - `eng`/`en` - English - `ger`/`de` - German - `rus`/`ru` - Russian - `hun`/`hu` - Hungarian - `dut`/`nl` - Dutch - `spa`/`es` - Spanish - `fre`/`fr` - French - `swe`/`sv` - Swedish - `slv`/`sl` - Slovenian JMnedict and JMdict with examples have only one respective version each, since they are both English-only, and JMnedict has no "common" indicators on entries. ## Requirements for running the conversion script - Java 17 (JRE only, JDK is not necessary) - you can use [Azul Zulu OpenJDK][AzulJava17] You don't need to install Gradle, just use the Gradle wrapper provided in this repository: `gradlew` (for Linux/Mac) or `gradlew.bat` (for Windows) ## Converting XML dictionaries NOTE: You can grab the pre-built JSON files in the [latest release][latest-release] Use included scripts: `gradlew` (for Linux/macOS) or `gradlew.bat` (for Windows). Tasks to convert dictionary files and create distribution archives: - `./gradlew clean` - clean all build artifacts to start a fresh build, in cases when you need to re-download and convert from scratch - `./gradlew download` - download and extract original dictionary XML files into `build/dict-xml` - `./gradlew convert` - convert all dictionaries to JSON and place into `build/dict-json` - `./gradlew archive` - create distribution archives (zip, tar+gzip) in `build/distributions` Utility tasks (for CI/CD workflows): - `./gradlew --quiet jmdictHasChanged`, `./gradlew --quiet jmnedictHasChanged`, and `./gradlew --quiet kanjidicHasChanged`- check if dictionary files have changed by comparing checksums of downloaded files with those stored in the [checksums](checksums). Outputs `YES` or `NO`. Run this only after `download` task! The `--quiet` is to silence Gradle logs, e.g. when you need to put values into environments variables. - `./gradlew updateChecksums` - update checksum files in the [checksums](checksums) directory. Run after creating distribution archives and commit checksum files into the repository, so that next time CI/CD workflow knows if it needs to rebuild anything. - `./gradlew uberJar` - create an Uber JAR for standalone use (i.e. w/o Gradle). The JAR program shows help messages and should be intuitive to use if you know how to run it. For the full list of available tasks, run `./gradlew tasks` ## Troubleshooting - Make sure to run tasks in order: `download` -> `convert` -> `archive` - If running Gradle fails, make sure `java` is available on your `$PATH` environment variable - Run Gradle with `--stacktrace`, `--info`, or `--debug` arguments to see more details if you get an error ## License ### JMdict and JMnedict The original XML files - **JMdict.xml**, **JMdict_e.xml**, **JMdict_e_examp.xml**,and **JMnedict.xml** - are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's [license][EDRDG-license]. Project started in 1991 by Jim Breen. All derived files are distributed under the same license, as the original license requires it. ### Kanjidic The original **kanjidic2.xml** file is released under [Creative Commons Attribution-ShareAlike License v4.0][CC-BY-SA-4]. See the [Copyright and Permissions](https://www.edrdg.org/wiki/index.php/KANJIDIC_Project#Copyright_and_Permissions) section on the Kanjidic wiki for details. All derived files are distributed under the same license, as the original license requires it. ### RADKFILE/KRADFILE The RADKFILE and KRADFILE files are copyright and available under the [EDRDG Licence][EDRDG-license]. The copyright of the RADKFILE2 and KRADFILE2 files is held by Jim Rose. ### NPM packages NPM packages [`@scriptin/jmdict-simplified-types`][npm-types] and [`@scriptin/jmdict-simplified-loader`][npm-loader] are available under [MIT license][MIT]. ### Other files The source code and other files of this project, excluding the files and packages mentioned above, are available under [Creative Commons Attribution-ShareAlike License v4.0][CC-BY-SA-4]. See [LICENSE.txt](LICENSE.txt) [JMdict]: http://www.edrdg.org/jmdict/j_jmdict.html [JMnedict]: http://www.edrdg.org/enamdict/enamdict_doc.html [Kanjidic]: https://www.edrdg.org/wiki/index.php/KANJIDIC_Project [Kradfile]: https://www.edrdg.org/krad/kradinf.html [latest-release]: https://github.com/scriptin/jmdict-simplified/releases/latest [format]: https://scriptin.github.io/jmdict-simplified/ [npm-types]: https://www.npmjs.com/package/@scriptin/jmdict-simplified-types [npm-loader]: https://www.npmjs.com/package/@scriptin/jmdict-simplified-loader [AzulJava17]: https://www.azul.com/downloads/?version=java-17-lts&package=jre [EDRDG-license]: http://www.edrdg.org/edrdg/licence.html [CC-BY-SA-4]: http://creativecommons.org/licenses/by-sa/4.0/ [MIT]: https://opensource.org/license/mit/
[ "Multilinguality" ]
[ "Annotation and Dataset Development", "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/FooSoft/yomichan
2016-03-17T03:15:49Z
Japanese pop-up dictionary extension for Chrome and Firefox.
FooSoft / yomichan Public archive 33 Branches 127 Tags Go to file Go to file Code FooSoft Update maintanence info 2f13cf5 · last year .github Update node version and depe… 2 years ago dev Change URL Firefox testing bui… 2 years ago dl Remove updates.json from ma… 2 years ago docs Update browser bugs (#2189) 2 years ago ext Update version 2 years ago img Add site metadata, update REA… 3 years ago resources Structured content links (#2089) 2 years ago test DocumentUtil static (#2232) 2 years ago .eslintignore Ignore file updates (#2252) 2 years ago .eslintrc.json Lint updates (#2247) 2 years ago .gitattributes Refactor Translator and diction… 3 years ago .gitignore Ignore file updates (#2252) 2 years ago .htmlvalidate.json Html lint (#1336) 3 years ago .htmlvalidateignore Ignore file updates (#2252) 2 years ago .stylelintignore Ignore file updates (#2252) 2 years ago .stylelintrc.json Update node dependencies (#2… 2 years ago CONTRIBUTING.md Update CONTRIBUTING.md wi… 3 years ago LICENSE Update copyright date (#2062) 2 years ago README.md Update maintanence info last year build.bat Build system updates (#839) 4 years ago build.sh Build system updates (#839) 4 years ago package-lock.json Dependency updates (#2253) 2 years ago package.json Dependency updates (#2253) 2 years ago Note: this project is no longer maintained. Please see this post for more information. Yomichan turns your web browser into a tool for building Japanese language literacy by helping you to decipher texts which would be otherwise too difficult tackle. This extension is similar to Rikaichamp for Firefox and Rikaikun for Chrome, but it stands apart in its goal of being an all-encompassing learning tool as opposed to a mere browser-based dictionary. Yomichan provides advanced features not available in other browser-based dictionaries: About Japanese pop-up dictionary extension for Chrome and Firefox. foosoft.net/projects/yomichan # language # firefox # chrome # extension # translation # dictionaries # addon # flashcards # dictionary # japanese # japanese-language # anki # epwing # yomichan # anki-deck Readme View license Activity 1.1k stars 21 watching 230 forks Report repository Releases 60 22.10.23.0 (testing) Latest on Oct 24, 2022 + 59 releases Packages No packages published Contributors 25 + 11 contributors Languages JavaScript 82.4% HTML 10.7% CSS 6.0% Other 0.9% This repository has been archived by the owner on Feb 25, 2023. It is now read-only. Code Issues 195 Pull requests 6 Actions Projects Wiki Security Insights Yomichan README License Interactive popup definition window for displaying search results. On-demand audio playback for select dictionary definitions. Kanji stroke order diagrams are just a click away for most characters. Custom search page for easily executing custom search queries. Support for multiple dictionary formats including EPWING via the Yomichan Import tool. Automatic note creation for the Anki flashcard program via the AnkiConnect plugin. Clean, modern code makes it easy for developers to contribute new features. Installation Dictionaries Basic Usage Custom Dictionaries Anki Integration Flashcard Configuration Flashcard Creation Keyboard Shortcuts Frequently Asked Questions Licenses Third-Party Libraries Yomichan comes in two flavors: stable and testing. Over the years, this extension has evolved to contain many complex features which have become increasingly difficult to test across different browsers, versions, and environments. New changes are initially introduced into the testing version, and after some time spent ensuring that they are relatively bug free, they will be promoted to the stable version. If you are technically savvy and don't mind submitting issues on GitHub, try the testing version; otherwise, the stable version will be your best bet. Google Chrome (stable or testing) Mozilla Firefox (stable or testing) Unlike Chrome, Firefox does not allow extensions meant for testing to be hosted in the marketplace. You will have to download a desired version and side-load it yourself. You only need to do this once and will get updates automatically. There are several free Japanese dictionaries available for Yomichan, with two of them having glossaries available in different languages. You must download and import the dictionaries you wish to use in order to enable Yomichan definition lookups. If you have proprietary EPWING dictionaries that you would like to use, check the Yomichan Import page to learn how to convert and import them into Yomichan. Be aware that the non-English dictionaries contain fewer entries than their English counterparts. Even if your primary language is not English, you may consider also importing the English version for better coverage. JMdict (Japanese vocabulary) jmdict_dutch.zip jmdict_english.zip jmdict_french.zip jmdict_german.zip jmdict_hungarian.zip jmdict_russian.zip jmdict_slovenian.zip Table of Contents Installation Dictionaries jmdict_spanish.zip jmdict_swedish.zip JMnedict (Japanese names) jmnedict.zip KireiCake (Japanese slang) kireicake.zip KANJIDIC (Japanese kanji) kanjidic_english.zip kanjidic_french.zip kanjidic_portuguese.zip kanjidic_spanish.zip Innocent Corpus (Term and kanji frequencies across 5000+ novels) innocent_corpus.zip Kanjium (Pitch dictionary, see related project page for details) kanjium_pitch_accents.zip 1. Click the Yomichan button in the browser bar to open the quick-actions popup. The cog button will open the Settings page. The magnifying glass button will open the Search page. The question mark button will open the Information page. The profile button will appear when multiple profiles exist, allowing the current profile to be quickly changed. 2. Import the dictionaries you wish to use for term and kanji searches. If you do not have any dictionaries installed or enabled, Yomichan will warn you that it is not ready for use by displaying an orange exclamation mark over its icon. This exclamation mark will disappear once you have installed and enabled at least one dictionary. 3. Webpage text can be scanned by moving the cursor while holding a modifier key, which is Shift by default. If definitions are found for the text at the cursor position, a popup window containing term definitions will open. This window can be dismissed by clicking anywhere outside of it. Basic Usage 4. Click on the speaker button to hear the term pronounced by a native speaker. If an audio sample is not available, you will hear a short click instead. You can configure the sources used to retrieve audio samples in the options page. 5. Click on individual kanji in the term definition results to view additional information about those characters, including stroke order diagrams, readings, meanings, as well as other useful data. Yomichan supports the use of custom dictionaries, including the esoteric but popular EPWING format. They were often utilized in portable electronic dictionaries similar to the ones pictured below. These dictionaries are often sought after by language learners for their correctness and excellent coverage of the Japanese language. Unfortunately, as most of the dictionaries released in this format are proprietary, they are unable to be bundled with Yomichan. Instead, you will need to procure these dictionaries yourself and import them using Yomichan Import. Check the project page for additional details. Custom Dictionaries Yomichan features automatic flashcard creation for Anki, a free application designed to help you retain knowledge. This feature requires the prior installation of an Anki plugin called AnkiConnect. Check the respective project page for more information about how to set up this software. Before flashcards can be automatically created, you must configure the templates used to create term and/or kanji notes. If you are unfamiliar with Anki deck and model management, this would be a good time to reference the Anki Manual. In short, you must specify what information should be included in the flashcards that Yomichan creates through AnkiConnect. Flashcard fields can be configured with the following steps: 1. Open the Yomichan options page and scroll down to the section labeled Anki Options. 2. Tick the checkbox labeled Enable Anki integration (Anki must be running with AnkiConnect installed). 3. Select the type of template to configure by clicking on either the Terms or Kanji tabs. 4. Select the Anki deck and model to use for new creating new flashcards of this type. 5. Fill the model fields with markers corresponding to the information you wish to include (several can be used at once). Advanced users can also configure the actual Handlebars templates used to create the flashcard contents (this is strictly optional). Marker Description {audio} Audio sample of a native speaker's pronunciation in MP3 format (if available). {clipboard-image} An image which is stored in the system clipboard, if present. {clipboard-text} Text which is stored in the system clipboard, if present. {cloze-body} Raw, inflected term as it appeared before being reduced to dictionary form by Yomichan. {cloze-prefix} Fragment of the containing {sentence} starting at the beginning of {sentence} until the beginning of {cloze-body} . {cloze-suffix} Fragment of the containing {sentence} starting at the end of {cloze-body} until the end of {sentence} . Anki Integration Flashcard Configuration Markers for Term Cards Marker Description {conjugation} Conjugation path from the raw inflected term to the source term. {dictionary} Name of the dictionary from which the card is being created (unavailable in grouped mode). {document-title} Title of the web page that the term appeared in. {expression} Term expressed as kanji (will be displayed in kana if kanji is not available). {frequencies} Frequency information for the term. {furigana} Term expressed as kanji with furigana displayed above it (e.g. 日本語). にほんご {furigana-plain} Term expressed as kanji with furigana displayed next to it in brackets (e.g. 日本語[にほんご]). {glossary} List of definitions for the term (output format depends on whether running in grouped mode). {glossary-brief} List of definitions for the term in a more compact format. {glossary-no- dictionary} List of definitions for the term, except the dictionary tag is omitted. {part-of-speech} Part of speech information for the term. {pitch-accents} List of pitch accent downstep notations for the term. {pitch-accent-graphs} List of pitch accent graphs for the term. {pitch-accent- positions} List of accent downstep positions for the term as a number. {reading} Kana reading for the term (empty for terms where the expression is the reading). {screenshot} Screenshot of the web page taken at the time the term was added. {search-query} The full search query shown on the search page. {selection-text} The selected text on the search page or popup. {sentence} Sentence, quote, or phrase that the term appears in from the source content. {sentence-furigana} Sentence, quote, or phrase that the term appears in from the source content, with furigana added. {tags} Grammar and usage tags providing information about the term (unavailable in grouped mode). {url} Address of the web page in which the term appeared in. Marker Description {character} Unicode glyph representing the current kanji. {clipboard-image} An image which is stored in the system clipboard, if present. {clipboard-text} Text which is stored in the system clipboard, if present. {cloze-body} Raw, inflected parent term as it appeared before being reduced to dictionary form by Yomichan. {cloze-prefix} Fragment of the containing {sentence} starting at the beginning of {sentence} until the beginning of {cloze-body} . {cloze-suffix} Fragment of the containing {sentence} starting at the end of {cloze-body} until the end of {sentence} . {dictionary} Name of the dictionary from which the card is being created. {document-title} Title of the web page that the kanji appeared in. {frequencies} Frequency information for the kanji. {glossary} List of definitions for the kanji. {kunyomi} Kunyomi (Japanese reading) for the kanji expressed as katakana. {onyomi} Onyomi (Chinese reading) for the kanji expressed as hiragana. {screenshot} Screenshot of the web page taken at the time the kanji was added. {search-query} The full search query shown on the search page. Markers for Kanji Cards Marker Description {selection-text} The selected text on the search page or popup. {sentence} Sentence, quote, or phrase that the character appears in from the source content. {sentence- furigana} Sentence, quote, or phrase that the character appears in from the source content, with furigana added. {stroke-count} Number of strokes that the kanji character has. {url} Address of the web page in which the kanji appeared in. When creating your model for Yomichan, make sure that you pick a unique field to be first; fields that will contain {expression} or {character} are ideal candidates for this. Anki does not allow duplicate flashcards to be added to a deck by default; it uses the first field in the model to check for duplicates. For example, if you have {reading} configured to be the first field in your model and 橋 is already in your はし deck, you will not be able to create a flashcard for 箸 because they share the same reading. はし Once Yomichan is configured, it becomes trivial to create new flashcards with a single click. You will see the following icons next to term definitions: Clicking adds the current expression as kanji (e.g. 食べる). Clicking adds the current expression as hiragana or katakana (e.g. たべる). Below are some troubleshooting tips you can try if you are unable to create new flashcards: Individual icons will appear grayed out if a flashcard cannot be created for the current definition (e.g. it already exists in the deck). If all of the buttons appear grayed out, then you should double-check your deck and model configuration settings. If no icons appear at all, make sure that Anki is running in the background and that AnkiConnect has been installed. The following shortcuts are globally available: Shortcut Action Alt + Insert Open search page. Alt + Delete Toggle extension on/off. The following shortcuts are available on search results: Shortcut Action Esc Cancel current search. Alt + PgUp Page up through results. Alt + PgDn Page down through results. Alt + End Go to last result. Alt + Home Go to first result. Alt + Up Go to previous result. Alt + Down Go to next result. Alt + b Go to back to source term. Alt + e Add current term as expression to Anki. Alt + r Add current term as reading to Anki. Alt + p Play audio for current term. Alt + k Add current kanji to Anki. I'm having problems importing dictionaries in Firefox, what do I do? Flashcard Creation Keyboard Shortcuts Frequently Asked Questions Yomichan uses the cross-browser IndexedDB system for storing imported dictionary data into your user profile. Although everything "just works" in Chrome, depending on settings, Firefox users can run into problems due to browser bugs. Yomichan catches errors and tries to offer suggestions about how to work around Firefox issues, but in general at least one of the following solutions should work for you: Make sure you have cookies enabled. It appears that disabling them also disables IndexedDB for some reason. You can still have cookies be disabled on other sites; just make sure to add the Yomichan extension to the whitelist of whatever tool you are using to restrict cookies. You can get the extension "URL" by looking at the address bar when you have the search page open. Make sure that you have sufficient disk space available on the drive Firefox uses to store your user profile. Firefox limits the amount of space that can be used by IndexedDB to a small fraction of the disk space actually available on your computer. Make sure that you have history set to "Remember history" enabled in your privacy settings. When this option is set to "Never remember history", IndexedDB access is once again disabled for an inexplicable reason. As a last resort, try using the Refresh Firefox feature to reset your user profile. It appears that the Firefox profile system can corrupt itself preventing IndexedDB from being accessible to Yomichan. Will you add support for online dictionaries? Online dictionaries will not be implemented because it is not possible to support them in a robust way. In order to perform Japanese deinflection, Yomichan must execute dozens of database queries for every single word. Factoring in network latency and the fragility of web scraping, it would not be possible to maintain a good and consistent user experience. Is it possible to use Yomichan with files saved locally on my computer with Chrome? In order to use Yomichan with local files in Chrome, you must first tick the Allow access to file URLs checkbox for Yomichan on the extensions page. Due to the restrictions placed on browser addons in the WebExtensions model, it will likely never be possible to use Yomichan with PDF files. Is it possible to delete individual dictionaries without purging the database? Yomichan is able to delete individual dictionaries, but keep in mind that this process can be very slow and can cause the browser to become unresponsive. The time it takes to delete a single dictionary can sometimes be roughly the same as the time it originally took to import, which can be significant for certain large dictionaries. Why aren't EPWING dictionaries bundled with Yomichan? The vast majority of EPWING dictionaries are proprietary, so they are unfortunately not able to be included in this extension due to copyright reasons. When are you going to add support for $MYLANGUAGE? Developing Yomichan requires a decent understanding of Japanese sentence structure and grammar, and other languages are likely to have their own unique set of rules for syntax, grammar, inflection, and so on. Supporting additional languages would not only require many additional changes to the codebase, it would also incur significant maintenance overhead and knowledge demands for the developers.
# Yomichan *Note: this project is no longer maintained. Please see [this post](https://foosoft.net/posts/sunsetting-the-yomichan-project/) for more information.* Yomichan turns your web browser into a tool for building Japanese language literacy by helping you to decipher texts which would be otherwise too difficult tackle. This extension is similar to [Rikaichamp](https://addons.mozilla.org/en-US/firefox/addon/rikaichamp/) for Firefox and [Rikaikun](https://chrome.google.com/webstore/detail/rikaikun/jipdnfibhldikgcjhfnomkfpcebammhp?hl=en) for Chrome, but it stands apart in its goal of being an all-encompassing learning tool as opposed to a mere browser-based dictionary. Yomichan provides advanced features not available in other browser-based dictionaries: * Interactive popup definition window for displaying search results. * On-demand audio playback for select dictionary definitions. * Kanji stroke order diagrams are just a click away for most characters. * Custom search page for easily executing custom search queries. * Support for multiple dictionary formats including [EPWING](https://ja.wikipedia.org/wiki/EPWING) via the [Yomichan Import](https://foosoft.net/projects/yomichan-import) tool. * Automatic note creation for the [Anki](https://apps.ankiweb.net/) flashcard program via the [AnkiConnect](https://foosoft.net/projects/anki-connect) plugin. * Clean, modern code makes it easy for developers to [contribute](https://github.com/FooSoft/yomichan/blob/master/CONTRIBUTING.md) new features. [![Term definitions](img/ss-terms-thumb.png)](img/ss-terms.png) [![Kanji information](img/ss-kanji-thumb.png)](img/ss-kanji.png) [![Dictionary options](img/ss-dictionaries-thumb.png)](img/ss-dictionaries.png) [![Anki options](img/ss-anki-thumb.png)](img/ss-anki.png) ## Table of Contents * [Installation](#installation) * [Dictionaries](#dictionaries) * [Basic Usage](#basic-usage) * [Custom Dictionaries](#custom-dictionaries) * [Anki Integration](#anki-integration) * [Flashcard Configuration](#flashcard-configuration) * [Flashcard Creation](#flashcard-creation) * [Keyboard Shortcuts](#keyboard-shortcuts) * [Frequently Asked Questions](#frequently-asked-questions) * [Licenses](#licenses) * [Third-Party Libraries](#third-party-libraries) ## Installation Yomichan comes in two flavors: *stable* and *testing*. Over the years, this extension has evolved to contain many complex features which have become increasingly difficult to test across different browsers, versions, and environments. New changes are initially introduced into the *testing* version, and after some time spent ensuring that they are relatively bug free, they will be promoted to the *stable* version. If you are technically savvy and don't mind submitting issues on GitHub, try the *testing* version; otherwise, the *stable* version will be your best bet. * **Google Chrome** ([stable](https://chrome.google.com/webstore/detail/yomichan/ogmnaimimemjmbakcfefmnahgdfhfami) or [testing](https://chrome.google.com/webstore/detail/yomichan-testing/bcknnfebhefllbjhagijobjklocakpdm)) \ [![](img/chrome-web-store.png)](https://chrome.google.com/webstore/detail/yomichan/ogmnaimimemjmbakcfefmnahgdfhfami) * **Mozilla Firefox** ([stable](https://addons.mozilla.org/en-US/firefox/addon/yomichan/) or [testing](https://github.com/FooSoft/yomichan/releases)<sup>*</sup>) \ [![](img/firefox-marketplace.png)](https://addons.mozilla.org/en-US/firefox/addon/yomichan/) \ <sup>*</sup>Unlike Chrome, Firefox does not allow extensions meant for testing to be hosted in the marketplace. You will have to download a desired version and side-load it yourself. You only need to do this once and will get updates automatically. ## Dictionaries There are several free Japanese dictionaries available for Yomichan, with two of them having glossaries available in different languages. You must download and import the dictionaries you wish to use in order to enable Yomichan definition lookups. If you have proprietary EPWING dictionaries that you would like to use, check the [Yomichan Import](https://foosoft.net/projects/yomichan-import) page to learn how to convert and import them into Yomichan. Be aware that the non-English dictionaries contain fewer entries than their English counterparts. Even if your primary language is not English, you may consider also importing the English version for better coverage. * **[JMdict](https://www.edrdg.org/jmdict/edict_doc.html)** (Japanese vocabulary) * [jmdict\_dutch.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_dutch.zip) * [jmdict\_english.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_english.zip) * [jmdict\_french.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_french.zip) * [jmdict\_german.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_german.zip) * [jmdict\_hungarian.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_hungarian.zip) * [jmdict\_russian.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_russian.zip) * [jmdict\_slovenian.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_slovenian.zip) * [jmdict\_spanish.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_spanish.zip) * [jmdict\_swedish.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmdict_swedish.zip) * **[JMnedict](https://www.edrdg.org/enamdict/enamdict_doc.html)** (Japanese names) * [jmnedict.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/jmnedict.zip) * **[KireiCake](https://kireicake.com/rikaicakes/)** (Japanese slang) * [kireicake.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kireicake.zip) * **[KANJIDIC](http://nihongo.monash.edu/kanjidic2/index.html)** (Japanese kanji) * [kanjidic\_english.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kanjidic_english.zip) * [kanjidic\_french.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kanjidic_french.zip) * [kanjidic\_portuguese.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kanjidic_portuguese.zip) * [kanjidic\_spanish.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kanjidic_spanish.zip) * **[Innocent Corpus](https://web.archive.org/web/20190309073023/https://forum.koohii.com/thread-9459.html#pid168613)** (Term and kanji frequencies across 5000+ novels) * [innocent\_corpus.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/innocent_corpus.zip) * **[Kanjium](https://github.com/mifunetoshiro/kanjium)** (Pitch dictionary, see [related project page](https://github.com/toasted-nutbread/yomichan-pitch-accent-dictionary) for details) * [kanjium_pitch_accents.zip](https://github.com/FooSoft/yomichan/raw/dictionaries/kanjium_pitch_accents.zip) ## Basic Usage 1. Click the <img src="ext/images/yomichan-icon.svg" alt="" width="16" height="16"> _Yomichan_ button in the browser bar to open the quick-actions popup. <img src="resources/images/browser-action-popup1.png" alt=""> * The <img src="ext/images/cog.svg" alt="" width="16" height="16"> _cog_ button will open the Settings page. * The <img src="ext/images/magnifying-glass.svg" alt="" width="16" height="16"> _magnifying glass_ button will open the Search page. * The <img src="ext/images/question-mark-circle.svg" alt="" width="16" height="16"> _question mark_ button will open the Information page. * The <img src="ext/images/profile.svg" alt="" width="16" height="16"> _profile_ button will appear when multiple profiles exist, allowing the current profile to be quickly changed. 2. Import the dictionaries you wish to use for term and kanji searches. If you do not have any dictionaries installed or enabled, Yomichan will warn you that it is not ready for use by displaying an orange exclamation mark over its icon. This exclamation mark will disappear once you have installed and enabled at least one dictionary. <img src="resources/images/settings-dictionaries-popup.png" alt=""> 3. Webpage text can be scanned by moving the cursor while holding a modifier key, which is <kbd>Shift</kbd> by default. If definitions are found for the text at the cursor position, a popup window containing term definitions will open. This window can be dismissed by clicking anywhere outside of it. <img src="resources/images/search-popup-terms.png" alt=""> 4. Click on the <img src="ext/images/play-audio.svg" alt="" width="16" height="16"> _speaker_ button to hear the term pronounced by a native speaker. If an audio sample is not available, you will hear a short click instead. You can configure the sources used to retrieve audio samples in the options page. 5. Click on individual kanji in the term definition results to view additional information about those characters, including stroke order diagrams, readings, meanings, as well as other useful data. <img src="resources/images/search-popup-kanji.png" alt=""> ## Custom Dictionaries Yomichan supports the use of custom dictionaries, including the esoteric but popular [EPWING](https://ja.wikipedia.org/wiki/EPWING) format. They were often utilized in portable electronic dictionaries similar to the ones pictured below. These dictionaries are often sought after by language learners for their correctness and excellent coverage of the Japanese language. Unfortunately, as most of the dictionaries released in this format are proprietary, they are unable to be bundled with Yomichan. Instead, you will need to procure these dictionaries yourself and import them using [Yomichan Import](https://foosoft.net/projects/yomichan-import). Check the project page for additional details. ![Pocket EPWING dictionaries](img/epwing-devices.jpg) ## Anki Integration Yomichan features automatic flashcard creation for [Anki](https://apps.ankiweb.net/), a free application designed to help you retain knowledge. This feature requires the prior installation of an Anki plugin called [AnkiConnect](https://foosoft.net/projects/anki-connect). Check the respective project page for more information about how to set up this software. ### Flashcard Configuration Before flashcards can be automatically created, you must configure the templates used to create term and/or kanji notes. If you are unfamiliar with Anki deck and model management, this would be a good time to reference the [Anki Manual](https://docs.ankiweb.net/#/). In short, you must specify what information should be included in the flashcards that Yomichan creates through AnkiConnect. Flashcard fields can be configured with the following steps: 1. Open the Yomichan options page and scroll down to the section labeled *Anki Options*. 2. Tick the checkbox labeled *Enable Anki integration* (Anki must be running with [AnkiConnect](https://foosoft.net/projects/anki-connect) installed). 3. Select the type of template to configure by clicking on either the *Terms* or *Kanji* tabs. 4. Select the Anki deck and model to use for new creating new flashcards of this type. 5. Fill the model fields with markers corresponding to the information you wish to include (several can be used at once). Advanced users can also configure the actual [Handlebars](https://handlebarsjs.com/) templates used to create the flashcard contents (this is strictly optional). #### Markers for Term Cards Marker | Description -------|------------ `{audio}` | Audio sample of a native speaker's pronunciation in MP3 format (if available). `{clipboard-image}` | An image which is stored in the system clipboard, if present. `{clipboard-text}` | Text which is stored in the system clipboard, if present. `{cloze-body}` | Raw, inflected term as it appeared before being reduced to dictionary form by Yomichan. `{cloze-prefix}` | Fragment of the containing `{sentence}` starting at the beginning of `{sentence}` until the beginning of `{cloze-body}`. `{cloze-suffix}` | Fragment of the containing `{sentence}` starting at the end of `{cloze-body}` until the end of `{sentence}`. `{conjugation}` | Conjugation path from the raw inflected term to the source term. `{dictionary}` | Name of the dictionary from which the card is being created (unavailable in *grouped* mode). `{document-title}` | Title of the web page that the term appeared in. `{expression}` | Term expressed as kanji (will be displayed in kana if kanji is not available). `{frequencies}` | Frequency information for the term. `{furigana}` | Term expressed as kanji with furigana displayed above it (e.g. <ruby>日本語<rt>にほんご</rt></ruby>). `{furigana-plain}` | Term expressed as kanji with furigana displayed next to it in brackets (e.g. 日本語[にほんご]). `{glossary}` | List of definitions for the term (output format depends on whether running in *grouped* mode). `{glossary-brief}` | List of definitions for the term in a more compact format. `{glossary-no-dictionary}` | List of definitions for the term, except the dictionary tag is omitted. `{part-of-speech}` | Part of speech information for the term. `{pitch-accents}` | List of pitch accent downstep notations for the term. `{pitch-accent-graphs}` | List of pitch accent graphs for the term. `{pitch-accent-positions}` | List of accent downstep positions for the term as a number. `{reading}` | Kana reading for the term (empty for terms where the expression is the reading). `{screenshot}` | Screenshot of the web page taken at the time the term was added. `{search-query}` | The full search query shown on the search page. `{selection-text}` | The selected text on the search page or popup. `{sentence}` | Sentence, quote, or phrase that the term appears in from the source content. `{sentence-furigana}` | Sentence, quote, or phrase that the term appears in from the source content, with furigana added. `{tags}` | Grammar and usage tags providing information about the term (unavailable in *grouped* mode). `{url}` | Address of the web page in which the term appeared in. #### Markers for Kanji Cards Marker | Description -------|------------ `{character}` | Unicode glyph representing the current kanji. `{clipboard-image}` | An image which is stored in the system clipboard, if present. `{clipboard-text}` | Text which is stored in the system clipboard, if present. `{cloze-body}` | Raw, inflected parent term as it appeared before being reduced to dictionary form by Yomichan. `{cloze-prefix}` | Fragment of the containing `{sentence}` starting at the beginning of `{sentence}` until the beginning of `{cloze-body}`. `{cloze-suffix}` | Fragment of the containing `{sentence}` starting at the end of `{cloze-body}` until the end of `{sentence}`. `{dictionary}` | Name of the dictionary from which the card is being created. `{document-title}` | Title of the web page that the kanji appeared in. `{frequencies}` | Frequency information for the kanji. `{glossary}` | List of definitions for the kanji. `{kunyomi}` | Kunyomi (Japanese reading) for the kanji expressed as katakana. `{onyomi}` | Onyomi (Chinese reading) for the kanji expressed as hiragana. `{screenshot}` | Screenshot of the web page taken at the time the kanji was added. `{search-query}` | The full search query shown on the search page. `{selection-text}` | The selected text on the search page or popup. `{sentence}` | Sentence, quote, or phrase that the character appears in from the source content. `{sentence-furigana}` | Sentence, quote, or phrase that the character appears in from the source content, with furigana added. `{stroke-count}` | Number of strokes that the kanji character has. `{url}` | Address of the web page in which the kanji appeared in. When creating your model for Yomichan, *make sure that you pick a unique field to be first*; fields that will contain `{expression}` or `{character}` are ideal candidates for this. Anki does not allow duplicate flashcards to be added to a deck by default; it uses the first field in the model to check for duplicates. For example, if you have `{reading}` configured to be the first field in your model and <ruby>橋<rt>はし</rt></ruby> is already in your deck, you will not be able to create a flashcard for <ruby>箸<rt>はし</rt></ruby> because they share the same reading. ### Flashcard Creation Once Yomichan is configured, it becomes trivial to create new flashcards with a single click. You will see the following icons next to term definitions: * Clicking ![](img/btn-add-expression.png) adds the current expression as kanji (e.g. 食べる). * Clicking ![](img/btn-add-reading.png) adds the current expression as hiragana or katakana (e.g. たべる). Below are some troubleshooting tips you can try if you are unable to create new flashcards: * Individual icons will appear grayed out if a flashcard cannot be created for the current definition (e.g. it already exists in the deck). * If all of the buttons appear grayed out, then you should double-check your deck and model configuration settings. * If no icons appear at all, make sure that Anki is running in the background and that [AnkiConnect](https://foosoft.net/projects/anki-connect) has been installed. ## Keyboard Shortcuts The following shortcuts are globally available: Shortcut | Action ---------|------- <kbd>Alt</kbd> + <kbd>Insert</kbd> | Open search page. <kbd>Alt</kbd> + <kbd>Delete</kbd> | Toggle extension on/off. The following shortcuts are available on search results: Shortcut | Action ---------|------- <kbd>Esc</kbd> | Cancel current search. <kbd>Alt</kbd> + <kbd>PgUp</kbd> | Page up through results. <kbd>Alt</kbd> + <kbd>PgDn</kbd> | Page down through results. <kbd>Alt</kbd> + <kbd>End</kbd> | Go to last result. <kbd>Alt</kbd> + <kbd>Home</kbd> | Go to first result. <kbd>Alt</kbd> + <kbd>Up</kbd> | Go to previous result. <kbd>Alt</kbd> + <kbd>Down</kbd> | Go to next result. <kbd>Alt</kbd> + <kbd>b</kbd> | Go to back to source term. <kbd>Alt</kbd> + <kbd>e</kbd> | Add current term as expression to Anki. <kbd>Alt</kbd> + <kbd>r</kbd> | Add current term as reading to Anki. <kbd>Alt</kbd> + <kbd>p</kbd> | Play audio for current term. <kbd>Alt</kbd> + <kbd>k</kbd> | Add current kanji to Anki. ## Frequently Asked Questions **I'm having problems importing dictionaries in Firefox, what do I do?** Yomichan uses the cross-browser IndexedDB system for storing imported dictionary data into your user profile. Although everything "just works" in Chrome, depending on settings, Firefox users can run into problems due to browser bugs. Yomichan catches errors and tries to offer suggestions about how to work around Firefox issues, but in general at least one of the following solutions should work for you: * Make sure you have cookies enabled. It appears that disabling them also disables IndexedDB for some reason. You can still have cookies be disabled on other sites; just make sure to add the Yomichan extension to the whitelist of whatever tool you are using to restrict cookies. You can get the extension "URL" by looking at the address bar when you have the search page open. * Make sure that you have sufficient disk space available on the drive Firefox uses to store your user profile. Firefox limits the amount of space that can be used by IndexedDB to a small fraction of the disk space actually available on your computer. * Make sure that you have history set to "Remember history" enabled in your privacy settings. When this option is set to "Never remember history", IndexedDB access is once again disabled for an inexplicable reason. * As a last resort, try using the [Refresh Firefox](https://support.mozilla.org/en-US/kb/reset-preferences-fix-problems) feature to reset your user profile. It appears that the Firefox profile system can corrupt itself preventing IndexedDB from being accessible to Yomichan. **Will you add support for online dictionaries?** Online dictionaries will not be implemented because it is not possible to support them in a robust way. In order to perform Japanese deinflection, Yomichan must execute dozens of database queries for every single word. Factoring in network latency and the fragility of web scraping, it would not be possible to maintain a good and consistent user experience. **Is it possible to use Yomichan with files saved locally on my computer with Chrome?** In order to use Yomichan with local files in Chrome, you must first tick the *Allow access to file URLs* checkbox for Yomichan on the extensions page. Due to the restrictions placed on browser addons in the WebExtensions model, it will likely never be possible to use Yomichan with PDF files. **Is it possible to delete individual dictionaries without purging the database?** Yomichan is able to delete individual dictionaries, but keep in mind that this process can be *very* slow and can cause the browser to become unresponsive. The time it takes to delete a single dictionary can sometimes be roughly the same as the time it originally took to import, which can be significant for certain large dictionaries. **Why aren't EPWING dictionaries bundled with Yomichan?** The vast majority of EPWING dictionaries are proprietary, so they are unfortunately not able to be included in this extension due to copyright reasons. **When are you going to add support for $MYLANGUAGE?** Developing Yomichan requires a decent understanding of Japanese sentence structure and grammar, and other languages are likely to have their own unique set of rules for syntax, grammar, inflection, and so on. Supporting additional languages would not only require many additional changes to the codebase, it would also incur significant maintenance overhead and knowledge demands for the developers. Therefore, suggestions and contributions for supporting new languages will be declined, allowing Yomichan's focus to remain Japanese-centric. ## Licenses Required licensing notices for this project follow below: * **EDRDG License** \ This package uses the [EDICT](https://www.edrdg.org/jmdict/edict.html) and [KANJIDIC](https://www.edrdg.org/wiki/index.php/KANJIDIC_Project) dictionary files. These files are the property of the [Electronic Dictionary Research and Development Group](https://www.edrdg.org/), and are used in conformance with the Group's [license](https://www.edrdg.org/edrdg/licence.html). * **Kanjium License** \ The pitch accent notation, verb particle data, phonetics, homonyms and other additions or modifications to EDICT, KANJIDIC or KRADFILE were provided by Uros Ozvatic through his free database. ## Third-Party Libraries Yomichan uses several third-party libraries to function. Below are links to homepages, snapshots, and licenses of the exact versions packaged. * Handlebars: [homepage](https://handlebarsjs.com/) - [snapshot](https://s3.amazonaws.com/builds.handlebarsjs.com/handlebars.min-v4.7.7.js) - [license](https://github.com/handlebars-lang/handlebars.js/blob/v4.7.7/LICENSE) * JSZip: [homepage](https://stuk.github.io/jszip/) - [snapshot](https://github.com/Stuk/jszip/blob/v3.9.1/dist/jszip.min.js) - [license](https://github.com/Stuk/jszip/blob/v3.9.1/LICENSE.markdown) * WanaKana: [homepage](https://wanakana.com/) - [snapshot](https://unpkg.com/[email protected]/umd/wanakana.min.js) - [license](https://github.com/WaniKani/WanaKana/blob/4.0.2/LICENSE) * parse5: [homepage](https://github.com/inikulin/parse5) - [snapshot](https://github.com/inikulin/parse5/tree/v7.1.1/packages/parse5) - [license](https://github.com/inikulin/parse5/blob/v7.1.1/LICENSE) _(Only used in MV3 build)_
[ "Multilinguality", "Syntactic Text Processing" ]
[ "Annotation and Dataset Development", "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/kariminf/jslingua
2016-03-22T10:05:12Z
Javascript libraries to process text: Arabic, Japanese, etc.
kariminf / jslingua Public 2 Branches 11 Tags Go to file Go to file Code kariminf Merge pull request #74 from shilik/patch-6 4683b7a · last year assets embedded surface feat… last year package embedded surface feat… last year src Update jpn.morpho.mjs last year test embedded surface feat… last year .codeclimate.yml embedded surface feat… last year .eslintignore embedded surface feat… last year .eslintrc.json embedded surface feat… last year .gitignore embedded surface feat… last year .nycrc embedded surface feat… last year .travis.yml embedded surface feat… last year CHANGELOG.md embedded surface feat… last year CODE_CONVE… embedded surface feat… last year CODE_OF_CO… embedded surface feat… last year CONTRIBUTIN… embedded surface feat… last year CREDITS.md embedded surface feat… last year FCT.md embedded surface feat… last year LICENSE embedded surface feat… last year README.md embedded surface feat… last year jsdoc.json embedded surface feat… last year min.sh changing readme 3 years ago package.json embedded surface feat… last year server fix some broken links in… 6 years ago webpack.config.js embedded surface feat… last year About Javascript libraries to process text: Arabic, Japanese, etc. # nodejs # javascript # nlp # language # npm # frontend # toolkit # japanese # morphology # transformations # transliteration # morse-code # number-to-words # english # conjugation # french # arabic # stemming # verb-conjugation Readme Apache-2.0 license Code of conduct Activity 47 stars 5 watching 5 forks Report repository Releases 11 Version 0.12.2 Latest on May 31, 2021 + 10 releases Packages 1 jslingua Contributors 5 Languages JavaScript 97.7% HTML 2.0% Other 0.3% Code Issues 11 Pull requests Actions Projects Security Insights README Code of conduct Apache-2.0 license Testing Testing Click here Click here License License Apache 2.0 Apache 2.0 Travis downloads downloads 96/month 96/month Javascript library for language processing. For now, there are 4 modules : Info, Lang, Trans and Morpho. Detection of language's characters Transforming numbers to strings (pronunciation) JsLingua Functionalities Information about the language (Info) Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > JsLingua.version 0.13.0 > let AraInfo = JsLingua.gserv('info', 'ara') undefined > AraInfo.gname() 'Arabic' > AraInfo.goname() 'عربية' > AraInfo.gdir() 'rtl' > AraInfo.gfamily() 'Afro-asiatic' > AraInfo.gorder() 'vso' > AraInfo.gbranch() 'Semitic' Basic language functions (Lang) Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let FraLang = JsLingua.gserv('lang', 'fra') undefined > FraLang.nbr2words(58912) 'cinquante-huit mille neuf cent douze' > FraLang.lchars() ['BasicLatin', 'Latin-1Supplement'] > let verifyFcts = FraLang.gcharverify('BasicLatin') undefined > verifyFcts.every('un élève') false > verifyFcts.some('un élève') true Different morphological functions Verb Conjugation Stemming: deleting affixes (suffixes, prefixes and infixes) Noun declension: from feminine to masculine and the inverse, from singular to plural, etc. Text segmentation: text to sentences; sentences to words Text normalization Stop words filtering > FraLang.schars('BasicLatin') undefined > FraLang.every('un élève') false > FraLang.some('un élève') true > FraLang.strans('min2maj') undefined > FraLang.trans('Un texte en minuscule : lowercase') 'UN TEXTE EN MINUSCULE : LOWERCASE' > FraLang.strans('maj2min') undefined > FraLang.trans('UN TEXTE EN MAJUSCULE : uppercase') 'un texte en majuscule : uppercase' > Transliteration (Trans) Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let JpnTrans = JsLingua.gserv('trans', 'jpn') undefined > JpnTrans.l() [ 'hepburn', 'nihonshiki', 'kunreishiki', 'morse' ] > JpnTrans.s('hepburn') undefined > JpnTrans.t('じゃ,しゃしん,いっぱい') 'ja,shashin,ippai' > JpnTrans.u('ja,shashin,ippai') 'じゃ,しゃしん,いっぱい' > JpnTrans.s('nihonshiki') undefined > JpnTrans.t('じゃ,しゃしん,いっぱい') 'zya,syasin,ippai' > JpnTrans.u('zya,syasin,ippai') 'じゃ,しゃしん,いっぱい' > JpnTrans.s('morse') undefined > JpnTrans.t('しゃしん') '-..--- --.-. .-- --.-. .-.-. ...-.' Morphology (Morpho) Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let EngMorpho = JsLingua.gserv('morpho', 'eng') undefined > let forms = EngMorpho.lform() undefined To get the list of available functionalities, check FCT.md To get tutorials Click here You can either use it by downloading it via NPM or by using UNPKG CDN (content delivery network). There are two versions: One file containing all the functions at once (not very large): it is usefull if you want to use all the functions in your website. Also, if you don't want to use ES6 asynchronuous import. Many files : not recomanded since the files are not minimized. Here an example using UNPKG CDN Here an example when you want to select the services at execution time. > Object.keys(forms) [ 'pres', 'past', 'fut', 'pres_perf', 'past_perf', 'fut_perf', 'pres_cont', 'past_cont', 'fut_cont', 'pres_perf_cont', 'past_perf_cont', 'fut_perf_cont' ] > let I = {person:'first', number:'singular'} undefined > Morpho.conj('go', Object.assign({}, forms['past_perf'], I)) 'had gone' > Morpho.goptname('Pronoun', I) 'I' > EngMorpho.lconv() ['sing2pl'] > EngMorpho.sconv('sing2pl') undefined > EngMorpho.conv('ox') 'oxen' > EngMorpho.lstem() [ 'porter', 'lancaster'] > EngMorpho.sstem('porter') undefined > EngMorpho.stem('formative') 'form' > EngMorpho.norm("ain't") 'is not' > EngMorpho.gsents('Where is Dr. Whatson? I cannot see him with Mr. Charloc.') [ 'Where is Dr. Whatson', '?', 'I cannot see him with Mr. Charloc', '.' ] > EngMorpho.gwords('Where is Dr. Whatson') [ 'Where', 'is', 'Dr.', 'Watson'] > How to use? Use in Browser <script type="text/javascript" src="https://unpkg.com/jslingua@latest/dist/jslingua.js"></script> <script type="text/javascript"> alert(JsLingua.version); </script> First of all, you have to install the package in your current project Then, you can import it as follows : You can call them one by one, if you know the services and their implemented languages. For example, if you want to use Arabic implementation of "Morpho": Or, you can just loop over the services and test available languages. For example, the "Info" service: Check More section for more tutorials. All the C's are here: CREDITS : List of contributors CONTRIBUTING : How to contribute to this project CODE OF CONDUCT : Some recommendations must be followed for a healthy development environment. CODE CONVENTION : Some rules to follow while coding CHANGELOG : Changes in every version <script type="module"> import JsLingua from "../../src/jslingua.mjs"; window.JsLingua = JsLingua; </script> <script type="text/javascript"> async function loadingAsync(){ await Promise.all([ JsLingua.load("[Service]", "[lang]"), JsLingua.load("[Service]", "[lang]"), ... ]); loading(); } window.onload = loadingAsync; </script> Use in Node npm install jslingua let JsLingua = require("jslingua"); Get the services (Browser & Node) //Get Arabic Morpho class let AraMorpho = JsLingua.gserv("morpho", "ara"); //Get the list of languages codes which support the Info service let langIDs = JsLingua.llang("info"); //Or: let langIDs = JsLingua.llang("info"); //list languages let result = ""; for (let i = 0; i < langIDs.length; i++){ let infoClass = JsLingua.gserv("info", langIDs[i]); result += i + "- " + infoClass.getName() + "\n"; } Community If you are looking to have fun, you are welcome to contribute. If you think this project must have a business plan, please feel free to refer to this project (click) You can test the browser version on https://kariminf.github.io/jslingua.web You can test nodejs version online on https://runkit.com/npm/jslingua jsdoc generated API is located in https://kariminf.github.io/jslingua.web/docs/ Examples on how to use JsLingua are located in https://github.com/kariminf/jslingua_docs A tutorial on how to use JsLingua is located in https://github.com/kariminf/jslingua_docs/blob/master/doc/index.md A Youtube tutorial for JsLingua and nodejs is located in this list: https://www.youtube.com/watch? v=piAysG5W55A&list=PLMNbVokbNS0cIjZxF8AnmgDfmu3XXddeq This project aims to afford some of the tasks related to languages, such as: detecting charsets, some transformations (majuscule to minuscule), verb conjugation, etc. There are a lot of projects like this such as: NLTK (python), OpenNLP (Java), etc. But, mostly, they are server side and needs some configurations before being put in action. A lot of tasks doesn't need many resources such as stemming, tokenization, transliteration, etc. When we use these toolkits in a web application, the server will do all of these tasks. Why not exploit the users machines to do such tasks, and gain some benefits: The server will be relieved to do some other serious tasks. The number of communications will drop, resulting in a faster respond time which leads to a better user experience. The amount of exchanged data may drop; this case is applicable when we want to send a big text, then we tokenize it, stem it and remove stop words. This will decrease the size of data to be sent. Easy to configure and to integrate into your web pages. Also, it can be used in server side using node.js. The project's ambitions are: To deliver the maximum language-related tasks with a minimum of resources pushed down to the client. To benefit from oriented object programming (OOP) concepts so the code will be minimal and readable. To give the web-master the ability to choose witch tasks they want to use by using many modules instead of using one giant program. To afford good resources for those who want to learn javascript programming. TO HAVE FUN: programming is fun, spend time for useful things, happiness is when your work is helpful to others, more obstacles give more experience. Copyright (C) 2016-2021 Abdelkrime Aries More About the project Contributors License Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
# JsLingua ![Logo](assets/design/logo128.png) [![NPM](https://nodei.co/npm/jslingua.png?downloads=true&downloadRank=true)](https://nodei.co/npm/jslingua/) [![Project](https://img.shields.io/badge/Testing-Click_here-4BC51D.svg)](https://kariminf.github.io/jslingua.web) [![License](https://img.shields.io/badge/License-Apache_2.0-4BC51D.svg)](http://www.apache.org/licenses/LICENSE-2.0) [![Travis](https://img.shields.io/travis/kariminf/jslingua.svg)](https://travis-ci.com/kariminf/jslingua) [![downloads](https://img.shields.io/npm/dm/jslingua.svg)](https://www.npmjs.com/package/jslingua) Javascript library for language processing. ## Functionalities For now, there are 4 modules : Info, Lang, Trans and Morpho. ### Information about the language (Info) ```shell Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > JsLingua.version 0.13.0 > let AraInfo = JsLingua.gserv('info', 'ara') undefined > AraInfo.gname() 'Arabic' > AraInfo.goname() 'عربية' > AraInfo.gdir() 'rtl' > AraInfo.gfamily() 'Afro-asiatic' > AraInfo.gorder() 'vso' > AraInfo.gbranch() 'Semitic' ``` <!-- ![Info](assets/info.png) --> ### Basic language functions (Lang) - Detection of language's characters - Transforming numbers to strings (pronunciation) ```shell Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let FraLang = JsLingua.gserv('lang', 'fra') undefined > FraLang.nbr2words(58912) 'cinquante-huit mille neuf cent douze' > FraLang.lchars() ['BasicLatin', 'Latin-1Supplement'] > let verifyFcts = FraLang.gcharverify('BasicLatin') undefined > verifyFcts.every('un élève') false > verifyFcts.some('un élève') true > FraLang.schars('BasicLatin') undefined > FraLang.every('un élève') false > FraLang.some('un élève') true > FraLang.strans('min2maj') undefined > FraLang.trans('Un texte en minuscule : lowercase') 'UN TEXTE EN MINUSCULE : LOWERCASE' > FraLang.strans('maj2min') undefined > FraLang.trans('UN TEXTE EN MAJUSCULE : uppercase') 'un texte en majuscule : uppercase' > ``` <!-- ![Lang](assets/lang.png) --> ### Transliteration (Trans) ```shell Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let JpnTrans = JsLingua.gserv('trans', 'jpn') undefined > JpnTrans.l() [ 'hepburn', 'nihonshiki', 'kunreishiki', 'morse' ] > JpnTrans.s('hepburn') undefined > JpnTrans.t('じゃ,しゃしん,いっぱい') 'ja,shashin,ippai' > JpnTrans.u('ja,shashin,ippai') 'じゃ,しゃしん,いっぱい' > JpnTrans.s('nihonshiki') undefined > JpnTrans.t('じゃ,しゃしん,いっぱい') 'zya,syasin,ippai' > JpnTrans.u('zya,syasin,ippai') 'じゃ,しゃしん,いっぱい' > JpnTrans.s('morse') undefined > JpnTrans.t('しゃしん') '-..--- --.-. .-- --.-. .-.-. ...-.' ``` <!-- ![Trans](assets/trans.png) --> ### Morphology (Morpho) Different morphological functions - Verb Conjugation - Stemming: deleting affixes (suffixes, prefixes and infixes) - Noun declension: from feminine to masculine and the inverse, from singular to plural, etc. - Text segmentation: text to sentences; sentences to words - Text normalization - Stop words filtering ```shell Welcome to Node.js v14.17.0 Type ".help" for more information. > let JsLingua = require('jslingua') undefined > let EngMorpho = JsLingua.gserv('morpho', 'eng') undefined > let forms = EngMorpho.lform() undefined > Object.keys(forms) [ 'pres', 'past', 'fut', 'pres_perf', 'past_perf', 'fut_perf', 'pres_cont', 'past_cont', 'fut_cont', 'pres_perf_cont', 'past_perf_cont', 'fut_perf_cont' ] > let I = {person:'first', number:'singular'} undefined > Morpho.conj('go', Object.assign({}, forms['past_perf'], I)) 'had gone' > Morpho.goptname('Pronoun', I) 'I' > EngMorpho.lconv() ['sing2pl'] > EngMorpho.sconv('sing2pl') undefined > EngMorpho.conv('ox') 'oxen' > EngMorpho.lstem() [ 'porter', 'lancaster'] > EngMorpho.sstem('porter') undefined > EngMorpho.stem('formative') 'form' > EngMorpho.norm("ain't") 'is not' > EngMorpho.gsents('Where is Dr. Whatson? I cannot see him with Mr. Charloc.') [ 'Where is Dr. Whatson', '?', 'I cannot see him with Mr. Charloc', '.' ] > EngMorpho.gwords('Where is Dr. Whatson') [ 'Where', 'is', 'Dr.', 'Watson'] > ``` <!-- ![Morpho](assets/morpho.png) ![Morpho](assets/morpho2.png) --> To get the list of available functionalities, check [FCT.md](./FCT.md) To get tutorials [Click here](https://github.com/kariminf/jslingua_docs/blob/master/doc/index.md) ## How to use? ### Use in Browser You can either use it by downloading it via **NPM** or by using **UNPKG** CDN (content delivery network). There are two versions: - One file containing all the functions at once (not very large): it is usefull if you want to use all the functions in your website. Also, if you don't want to use ES6 asynchronuous import. - Many files : not recomanded since the files are not minimized. Here an example using UNPKG CDN ```javascript <script type="text/javascript" src="https://unpkg.com/jslingua@latest/dist/jslingua.js"></script> <script type="text/javascript"> alert(JsLingua.version); </script> ``` Here an example when you want to select the services at execution time. ```javascript <script type="module"> import JsLingua from "../../src/jslingua.mjs"; window.JsLingua = JsLingua; </script> <script type="text/javascript"> async function loadingAsync(){ await Promise.all([ JsLingua.load("[Service]", "[lang]"), JsLingua.load("[Service]", "[lang]"), ... ]); loading(); } window.onload = loadingAsync; </script> ``` ### Use in Node First of all, you have to install the package in your current project ``` npm install jslingua ``` Then, you can import it as follows : ```javascript let JsLingua = require("jslingua"); ``` ### Get the services (Browser & Node) You can call them one by one, if you know the services and their implemented languages. For example, if you want to use Arabic implementation of "Morpho": ```javascript //Get Arabic Morpho class let AraMorpho = JsLingua.gserv("morpho", "ara"); ``` Or, you can just loop over the services and test available languages. For example, the "Info" service: ```javascript //Get the list of languages codes which support the Info service let langIDs = JsLingua.llang("info"); //Or: let langIDs = JsLingua.llang("info"); //list languages let result = ""; for (let i = 0; i < langIDs.length; i++){ let infoClass = JsLingua.gserv("info", langIDs[i]); result += i + "- " + infoClass.getName() + "\n"; } ``` Check [More](#more) section for more tutorials. ## Community All the C's are here: * [CREDITS](./CREDITS.md) : List of contributors * [CONTRIBUTING](./CONTRIBUTING.md) : How to contribute to this project * [CODE OF CONDUCT](./CODE_OF_CONDUCT.md) : Some recommendations must be followed for a healthy development environment. * [CODE CONVENTION](./CODE_CONVENTION.md) : Some rules to follow while coding * [CHANGELOG](./CHANGELOG.md) : Changes in every version If you are looking to have fun, you are welcome to contribute. If you think this project must have a business plan, please feel free to refer to [this project (click)](https://github.com/kariminf/tnbp) ## More You can test the browser version on [https://kariminf.github.io/jslingua.web](https://kariminf.github.io/jslingua.web) You can test nodejs version online on [https://runkit.com/npm/jslingua](https://runkit.com/npm/jslingua) jsdoc generated API is located in [https://kariminf.github.io/jslingua.web/docs/](https://kariminf.github.io/jslingua.web/docs/) Examples on how to use JsLingua are located in [https://github.com/kariminf/jslingua_docs](https://github.com/kariminf/jslingua_docs) A tutorial on how to use JsLingua is located in [https://github.com/kariminf/jslingua_docs/blob/master/doc/index.md](https://github.com/kariminf/jslingua_docs/blob/master/doc/index.md) A Youtube tutorial for JsLingua and nodejs is located in this list: [https://www.youtube.com/watch?v=piAysG5W55A&list=PLMNbVokbNS0cIjZxF8AnmgDfmu3XXddeq](https://www.youtube.com/watch?v=piAysG5W55A&list=PLMNbVokbNS0cIjZxF8AnmgDfmu3XXddeq) ## About the project This project aims to afford some of the tasks related to languages, such as: detecting charsets, some transformations (majuscule to minuscule), verb conjugation, etc. There are a lot of projects like this such as: [NLTK](https://github.com/nltk/nltk) (python), [OpenNLP](https://github.com/apache/opennlp) (Java), etc. But, mostly, they are server side and needs some configurations before being put in action. A lot of tasks doesn't need many resources such as stemming, tokenization, transliteration, etc. When we use these toolkits in a web application, the server will do all of these tasks. Why not exploit the users machines to do such tasks, and gain some benefits: * The server will be relieved to do some other serious tasks. * The number of communications will drop, resulting in a faster respond time which leads to a better user experience. * The amount of exchanged data may drop; this case is applicable when we want to send a big text, then we tokenize it, stem it and remove stop words. This will decrease the size of data to be sent. * Easy to configure and to integrate into your web pages. Also, it can be used in server side using [node.js](https://github.com/nodejs/node). The project's ambitions are: * To deliver the maximum language-related tasks with a minimum of resources pushed down to the client. * To benefit from oriented object programming (OOP) concepts so the code will be minimal and readable. * To give the web-master the ability to choose witch tasks they want to use by using many modules instead of using one giant program. * To afford good resources for those who want to learn javascript programming. * **TO HAVE FUN**: programming is fun, spend time for useful things, happiness is when your work is helpful to others, more obstacles give more experience. ## Contributors ![GitHub Contributors Image](https://contrib.rocks/image?repo=kariminf/jslingua) ## License Copyright (C) 2016-2021 Abdelkrime Aries Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
[ "Multilinguality", "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/ikegami-yukino/jaconv
2016-04-02T06:40:10Z
Pure-Python Japanese character interconverter for Hiragana, Katakana, Hankaku, and Zenkaku
ikegami-yukino / jaconv Public Branches Tags Go to file Go to file Code .github docs jaconv .gitignore .travis.… CHAN… LICEN… MANIF… READ… READ… setup.py test_ja… coverage coverage 100% 100% python python 2.7 | 3.4 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.10 | 3.11 | 3.12 2.7 | 3.4 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.10 | 3.11 | 3.12 pypi pypi v0.4.0 v0.4.0 license license MIT License MIT License Downloads Downloads 988k 988k jaconv (Japanese Converter) is interconverter for Hiragana, Katakana, Hankaku (half-width character) and Zenkaku (full-width character) Japanese README is available. About Pure-Python Japanese character interconverter for Hiragana, Katakana, Hankaku, and Zenkaku ikegami-yukino.github.io/jaconv/… # transliteration # japanese-language # text-processing # pure-python # preprocessing # character-converter # japanese-kana # julius Readme MIT license Activity 314 stars 10 watching 28 forks Report repository Releases 4 tags Sponsor this project https://www.paypal.me/yukinoi https://www.amazon.co.jp/hz/wis… Learn more about GitHub Sponsors Packages No packages published Contributors 11 Code Issues 6 Pull requests Actions Projects Security Insights jaconv README MIT license $ pip install jaconv See also document Languages Python 100.0% INSTALLATION USAGE import jaconv # Hiragana to Katakana jaconv.hira2kata('ともえまみ') # => 'トモエマミ' # Hiragana to half-width Katakana jaconv.hira2hkata('ともえまみ') # => 'トモエマミ' # Katakana to Hiragana jaconv.kata2hira('巴マミ') # => '巴まみ' # half-width character to full-width character # default parameters are followings: kana=True, ascii=False, digit=False jaconv.h2z('ティロ・フィナーレ') # => 'ティロ・フィナーレ' # half-width character to full-width character # but only ascii characters jaconv.h2z('abc', kana=False, ascii=True, digit=False) # => 'abc' # half-width character to full-width character # but only digit characters jaconv.h2z('123', kana=False, ascii=False, digit=True) # => '123' # half-width character to full-width character # except half-width Katakana jaconv.h2z('アabc123', kana=False, digit=True, ascii=True) # => 'アabc123' # an alias of h2z jaconv.hankaku2zenkaku('ティロ・フィナーレabc123') # => 'ティロ・フィナーレabc123' # full-width character to half-width character # default parameters are followings: kana=True, ascii=False, digit=False jaconv.z2h('ティロ・フィナーレ') # => 'ティロ・フィナーレ' # full-width character to half-width character jaconv.normalize method expand unicodedata.normalize for Japanese language processing. '〜' => 'ー' '~' => 'ー' "’" => "'" '”'=> '"' '“' => '``' '―' => '-' '‐' => '-' '˗' => '-' # but only ascii characters jaconv.z2h('abc', kana=False, ascii=True, digit=False) # => 'abc' # full-width character to half-width character # but only digit characters jaconv.z2h('123', kana=False, ascii=False, digit=True) # => '123' # full-width character to half-width character # except full-width Katakana jaconv.z2h('アabc123', kana=False, digit=True, ascii=True) # => 'アabc123' # an alias of z2h jaconv.zenkaku2hankaku('ティロ・フィナーレabc123') # => 'ティロ・フィナーレabc123' # normalize jaconv.normalize('ティロ・フィナ〜レ', 'NFKC') # => 'ティロ・フィナーレ' # Hiragana to alphabet jaconv.kana2alphabet('じゃぱん') # => 'japan' # Alphabet to Hiragana jaconv.alphabet2kana('japan') # => 'じゃぱん' # Katakana to Alphabet jaconv.kata2alphabet('ケツイ') # => 'ketsui' # Alphabet to Katakana jaconv.alphabet2kata('namba') # => 'ナンバ' # Hiragana to Julius's phoneme format jaconv.hiragana2julius('てんきすごくいいいいいい') # => 't e N k i s u g o k u i:' NOTE '֊' => '-' '‐' => '-' '‑' => '-' '‒' => '-' '–' => '-' '⁃' => '-' '⁻' => '-' '₋' => '-' '−' => '-' '﹣' => 'ー' '-' => 'ー' '—' => 'ー' '―' => 'ー' '━' => 'ー' ' ' ' '
jaconv ========== |coveralls| |pyversion| |version| |license| |download| jaconv (Japanese Converter) is interconverter for Hiragana, Katakana, Hankaku (half-width character) and Zenkaku (full-width character) `Japanese README <https://github.com/ikegami-yukino/jaconv/blob/master/README_JP.rst>`_ is available. INSTALLATION ============== :: $ pip install jaconv USAGE ============ See also `document <http://ikegami-yukino.github.io/jaconv/jaconv.html>`_ .. code:: python import jaconv # Hiragana to Katakana jaconv.hira2kata('ともえまみ') # => 'トモエマミ' # Hiragana to half-width Katakana jaconv.hira2hkata('ともえまみ') # => 'トモエマミ' # Katakana to Hiragana jaconv.kata2hira('巴マミ') # => '巴まみ' # half-width character to full-width character # default parameters are followings: kana=True, ascii=False, digit=False jaconv.h2z('ティロ・フィナーレ') # => 'ティロ・フィナーレ' # half-width character to full-width character # but only ascii characters jaconv.h2z('abc', kana=False, ascii=True, digit=False) # => 'abc' # half-width character to full-width character # but only digit characters jaconv.h2z('123', kana=False, ascii=False, digit=True) # => '123' # half-width character to full-width character # except half-width Katakana jaconv.h2z('アabc123', kana=False, digit=True, ascii=True) # => 'アabc123' # an alias of h2z jaconv.hankaku2zenkaku('ティロ・フィナーレabc123') # => 'ティロ・フィナーレabc123' # full-width character to half-width character # default parameters are followings: kana=True, ascii=False, digit=False jaconv.z2h('ティロ・フィナーレ') # => 'ティロ・フィナーレ' # full-width character to half-width character # but only ascii characters jaconv.z2h('abc', kana=False, ascii=True, digit=False) # => 'abc' # full-width character to half-width character # but only digit characters jaconv.z2h('123', kana=False, ascii=False, digit=True) # => '123' # full-width character to half-width character # except full-width Katakana jaconv.z2h('アabc123', kana=False, digit=True, ascii=True) # => 'アabc123' # an alias of z2h jaconv.zenkaku2hankaku('ティロ・フィナーレabc123') # => 'ティロ・フィナーレabc123' # normalize jaconv.normalize('ティロ・フィナ〜レ', 'NFKC') # => 'ティロ・フィナーレ' # Hiragana to alphabet jaconv.kana2alphabet('じゃぱん') # => 'japan' # Alphabet to Hiragana jaconv.alphabet2kana('japan') # => 'じゃぱん' # Katakana to Alphabet jaconv.kata2alphabet('ケツイ') # => 'ketsui' # Alphabet to Katakana jaconv.alphabet2kata('namba') # => 'ナンバ' # Hiragana to Julius's phoneme format jaconv.hiragana2julius('てんきすごくいいいいいい') # => 't e N k i s u g o k u i:' NOTE ============ jaconv.normalize method expand unicodedata.normalize for Japanese language processing. .. code:: '〜' => 'ー' '~' => 'ー' "’" => "'" '”'=> '"' '“' => '``' '―' => '-' '‐' => '-' '˗' => '-' '֊' => '-' '‐' => '-' '‑' => '-' '‒' => '-' '–' => '-' '⁃' => '-' '⁻' => '-' '₋' => '-' '−' => '-' '﹣' => 'ー' '-' => 'ー' '—' => 'ー' '―' => 'ー' '━' => 'ー' '─' => 'ー' .. |coveralls| image:: https://coveralls.io/repos/ikegami-yukino/jaconv/badge.svg?branch=master&service=github :target: https://coveralls.io/github/ikegami-yukino/jaconv?branch=master :alt: coveralls.io .. |pyversion| image:: https://img.shields.io/pypi/pyversions/jaconv.svg .. |version| image:: https://img.shields.io/pypi/v/jaconv.svg :target: http://pypi.python.org/pypi/jaconv/ :alt: latest version .. |license| image:: https://img.shields.io/pypi/l/jaconv.svg :target: http://pypi.python.org/pypi/jaconv/ :alt: license .. |download| image:: https://static.pepy.tech/personalized-badge/neologdn?period=total&units=international_system&left_color=black&right_color=blue&left_text=Downloads :target: https://pepy.tech/project/neologdn :alt: download
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/nicolas-raoul/jakaroma
2016-04-11T09:21:38Z
Java library and command-line tool to transliterate Japanese kanji to romaji (Latin alphabet)
nicolas-raoul / jakaroma Public Branches Tags Go to file Go to file Code src .gitignore LICEN… READ… build.sh jakaro… pom.xml Java kanji/etc-to-romaji converter. Jakaroma converts kanji and kana (katakana, hiragana) to romaji (Latin alphabet), which can be useful to make Japanese words more-or-less readable by readers who can not read Japanese. Example usage: A map app might want to convert strings such as "ハレクラニ沖縄" to "Harekurani Okinawa" for users whose locale is not the Japanese language. We hope that results are better than nothing, but please note that many conversions are not perfect. Pull requests welcome! Make sure you add the dependency below to your pom.xml before building your project. About Java library and command-line tool to transliterate Japanese kanji to romaji (Latin alphabet) # java # converter # japanese # romaji # kana # kanji # java-library # japanese-language Readme Apache-2.0 license Activity 63 stars 4 watching 9 forks Report repository Releases No releases published Packages No packages published Contributors 5 Languages Java 99.0% Shell 1.0% Code Issues 9 Pull requests Actions Projects Wiki Security Ins Jakaroma <dependency> <groupId>com.github.nicolas- raoul</groupId> <artifactId>jakaroma</artifactId> README Apache-2.0 license Usage: Build a single jar file with or just Or you can put it into your Maven project. Powered by Kuromoji. <version>1.0.0</version> </dependency> mvn clean compile assembly:single $ ./jakaroma.sh 六本木ヒルズ森タワー Roppongi Hiruzu Mori Tawa- java -cp "target/jakaroma-1.0.0-jar- with-dependencies.jar" fr.free.nrw.jakaroma.Jakaroma 六本木ヒル ズ森タワー Roppongi Hiruzu Mori Tawa-
# Jakaroma Java kanji/etc-to-romaji converter. Jakaroma converts kanji and kana (katakana, hiragana) to romaji (Latin alphabet), which can be useful to make Japanese words more-or-less readable by readers who can not read Japanese. Example usage: A map app _might_ want to convert strings such as "ハレクラニ沖縄" to "Harekurani Okinawa" for users whose locale is not the Japanese language. We hope that results are _better than nothing_, but please note that many conversions are not perfect. Pull requests welcome! Make sure you add the dependency below to your pom.xml before building your project. ``` <dependency> <groupId>com.github.nicolas-raoul</groupId> <artifactId>jakaroma</artifactId> <version>1.0.0</version> </dependency> ``` Usage: Build a single jar file with ``` mvn clean compile assembly:single ``` ``` $ ./jakaroma.sh 六本木ヒルズ森タワー Roppongi Hiruzu Mori Tawa- ``` or just ``` java -cp "target/jakaroma-1.0.0-jar-with-dependencies.jar" fr.free.nrw.jakaroma.Jakaroma 六本木ヒルズ森タワー Roppongi Hiruzu Mori Tawa- ``` Or you can put it into your Maven project. Powered by [Kuromoji](https://github.com/atilika/kuromoji).
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/gemmarx/unicode-jp-rs
2016-05-21T07:39:48Z
A Rust library to convert Japanese Half-width-kana[半角カナ] and Wide-alphanumeric[全角英数] into normal ones
gemmarx / unicode-jp-rs Public Branches Tags Go to file Go to file Code src .gitignore .travis.… Cargo.l… Cargo.… LICEN… readm… build build unknown unknown crates.io crates.io v0.4.0 v0.4.0 license license MIT MIT Converters of troublesome characters included in Japanese texts. Half-width-kana[半角カナ;HANKAKU KANA] -> normal Katakana Wide-alphanumeric[全角英数;ZENKAKU EISU] <-> normal ASCII If you need canonicalization of texts including Japanese, consider to use unicode_normalization crate at first. NFD, NFKD, NFC and NFKC can be used. This crate, however, works with you if you are in a niche such as a need of delicate control of Japanese characters for a restrictive character terminal. About A Rust library to convert Japanese Half-width-kana[半角カナ] and Wide- alphanumeric[全角英数] into normal ones # rust # unicode # japanese # kana # zenkaku # hankaku Readme MIT license Activity 19 stars 2 watching 5 forks Report repository Releases No releases published Packages No packages published Contributors 3 Languages Rust 99.5% Shell 0.5% Code Issues Pull requests 2 Actions Projects Security Insights Unicode-JP (Rust) README MIT license Japanese have two syllabary systems Hiragana and Katakana, and Half-width-kana is another notation system of them. In the systems, there are two combinable diacritical marks Voiced-sound-mark and Semi-voiced-sound-mark. Unicode has three independent code points for each of the marks. In addition to it, we often use special style Latin alphabets and Arabic numbers called Wide-alphanumeric in Japanese texts. This small utility converts these codes each other. API Reference Cargo.toml src/main.rs wide2ascii(&str) -> String convert Wide-alphanumeric into normal ASCII [A -> A] ascii2wide(&str) -> String convert normal ASCII characters into Wide-alphanumeric [A -> A] Example [dependencies] unicode-jp = "0.4.0" extern crate kana; use kana::*; fn main() { let s1 = "マツオ バショウ ア゚"; assert_eq!("マツオ バショウ ア ゚", half2kana(s1)); assert_eq!("マツオ バショウ ア゚", half2full(s1)); let s2 = "ひ゜ひ゛んは゛"; assert_eq!("ぴびんば", combine(s2)); assert_eq!("ひ ゚ひ ゙んは ゙", vsmark2combi(s2)); let s3 = "#&Rust-1.6!"; assert_eq!("#&Rust-1.6!", wide2ascii(s3)); } Functions of kana crate: half2full(&str) -> String convert Half-width-kana into normal Katakana with diacritical marks separated [ア゙パ -> ア゙パ] This method is simple, but tends to cause troubles when rendering. In such a case, use half2kana() or execute vsmark2{full|half|combi} as post process. half2kana(&str) -> String convert Half-width-kana into normal Katakana with diacritical marks combined [ア゙パ -> ア゙パ] combine(&str) -> String combine base characters and diacritical marks on Hiragana/Katakana [がハ゜ -> がパ] hira2kata(&str) -> String convert Hiragana into Katakana [あ -> ア] kata2hira(&str) -> String convert Katakana into Hiragana [ア -> あ] vsmark2full(&str) -> String convert all separated Voiced-sound-marks into full-width style "\u{309B}" vsmark2half(&str) -> String convert all separated Voiced-sound-marks into half-width style "\u{FF9E}" vsmark2combi(&str) -> String convert all separated Voiced-sound-marks into space+combining style "\u{20}\u{3099}" nowidespace(&str) -> String convert Wide-space into normal space [" " -> " "] space2wide(&str) -> String convert normal space into Wide-space [" " -> " "] nowideyen(&str) -> String convert Wide-yen into Half-width-yen ["¥" -> "¥"]
Unicode-JP (Rust) ---- [![Build Status](https://travis-ci.org/gemmarx/unicode-jp-rs.svg?branch=master)](https://travis-ci.org/gemmarx/unicode-jp-rs) [![crates.io](https://img.shields.io/crates/v/unicode-jp.svg)](https://crates.io/crates/unicode-jp) [![MIT licensed](https://img.shields.io/badge/license-MIT-blue.svg)](./LICENSE) Converters of troublesome characters included in Japanese texts. - Half-width-kana[半角カナ;HANKAKU KANA] -> normal Katakana - Wide-alphanumeric[全角英数;ZENKAKU EISU] <-> normal ASCII If you need canonicalization of texts including Japanese, consider to use [unicode_normalization](https://github.com/unicode-rs/unicode-normalization) crate at first. NFD, NFKD, NFC and NFKC can be used. This crate, however, works with you if you are in a niche such as a need of delicate control of Japanese characters for a restrictive character terminal. Japanese have two syllabary systems Hiragana and Katakana, and Half-width-kana is another notation system of them. In the systems, there are two combinable diacritical marks Voiced-sound-mark and Semi-voiced-sound-mark. Unicode has three independent code points for each of the marks. In addition to it, we often use special style Latin alphabets and Arabic numbers called Wide-alphanumeric in Japanese texts. This small utility converts these codes each other. [API Reference](https://gemmarx.github.io/unicode-jp-rs/doc/kana/index.html) ### Example Cargo.toml ```toml [dependencies] unicode-jp = "0.4.0" ``` src/main.rs ```rust extern crate kana; use kana::*; fn main() { let s1 = "マツオ バショウ ア゚"; assert_eq!("マツオ バショウ ア ゚", half2kana(s1)); assert_eq!("マツオ バショウ ア゚", half2full(s1)); let s2 = "ひ゜ひ゛んは゛"; assert_eq!("ぴびんば", combine(s2)); assert_eq!("ひ ゚ひ ゙んは ゙", vsmark2combi(s2)); let s3 = "#&Rust-1.6!"; assert_eq!("#&Rust-1.6!", wide2ascii(s3)); } ``` ### Functions of kana crate: - wide2ascii(&str) -> String convert Wide-alphanumeric into normal ASCII [A -> A] - ascii2wide(&str) -> String convert normal ASCII characters into Wide-alphanumeric [A -> A] - half2full(&str) -> String convert Half-width-kana into normal Katakana with diacritical marks separated [ア゙パ -> ア゙パ] This method is simple, but tends to cause troubles when rendering. In such a case, use half2kana() or execute vsmark2{full|half|combi} as post process. - half2kana(&str) -> String convert Half-width-kana into normal Katakana with diacritical marks combined [ア゙パ -> ア゙パ] - combine(&str) -> String combine base characters and diacritical marks on Hiragana/Katakana [がハ゜ -> がパ] - hira2kata(&str) -> String convert Hiragana into Katakana [あ -> ア] - kata2hira(&str) -> String convert Katakana into Hiragana [ア -> あ] - vsmark2full(&str) -> String convert all separated Voiced-sound-marks into full-width style "\u{309B}" - vsmark2half(&str) -> String convert all separated Voiced-sound-marks into half-width style "\u{FF9E}" - vsmark2combi(&str) -> String convert all separated Voiced-sound-marks into space+combining style "\u{20}\u{3099}" - nowidespace(&str) -> String convert Wide-space into normal space [" " -> " "] - space2wide(&str) -> String convert normal space into Wide-space [" " -> " "] - nowideyen(&str) -> String convert Wide-yen into Half-width-yen ["¥" -> "¥"] - yen2wide(&str) -> String convert Half-width-yen into Wide-yen ["¥" -> "¥"] ## TODO or NOT TODO - Voiced-sound-marks -> no space combining style "\u{3099}" - Half-width-kana <- normal Katakana - (normal/wide)tilde <-> Wave-dash
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/andree-surya/moji4j
2016-07-11T00:50:52Z
A Java library to converts between Japanese Hiragana, Katakana, and Romaji scripts.
andree-surya / moji4j Public Branches Tags Go to file Go to file Code script src .gitignore READ… pom.xml Moji4J is an open source Java library to converts between Japanese Hiragana, Katakana, and Romaji scripts. Please add the following Maven dependency to your pom.xml : About A Java library to converts between Japanese Hiragana, Katakana, and Romaji scripts. Readme Activity 32 stars 1 watching 8 forks Report repository Releases No releases published Packages No packages published Contributors 2 Languages Java 90.1% Ruby 9.9% Code Issues 4 Pull requests Actions Projects Security Insights Installation <dependency> <groupId>com.andree-surya</groupId> <artifactId>moji4j</artifactId> <version>1.0.0</version> </dependency> Romaji and Kana Conversion MojiConverter converter = new MojiConverter(); converter.convertRomajiToHiragana("Hiragana"); // ひらがな converter.convertRomajiToKatakana("Katakana"); // カタカナ converter.convertKanaToRomaji("ひらがな"); // hiragana README The romanization system adopted by this library is loosely based on the modern Hepburn system, with adjustments for cases that might causes ambiguity during conversion. Cases Romaji Kana Long vowels sentaa センター ookayama おおかやま o+u vowels toukyou とうきょう ousama おうさま Long consonants kekka けっか kasetto カセット kotchi こっち Syllabic n gunma ぐんま kan'i かんい shin'you しんよう Particles he へ wo を Others dzu づ converter.convertKanaToRomaji("カタカナ"); // katakana Romaji, Kana, and Kanji Detection MojiDetector detector = new MojiDetector(); detector.hasKanji("まっ暗"); // true detector.hasKanji("まっしろ"); // false detector.hasKana("ウソ付き"); // true detector.hasKana("東京"); // false detector.hasRomaji("モデル XYZ"); // true detector.hasRomaji("フルーツ"); // false Romanization Convention The romanization tables used in this library are derived from Mojinizer, a Ruby library to converts between Japanese Kana and Romaji. The data is modified to suit differences in algorithm and romanization convention. Acknowledgement License © Copyright 2016 Andree Surya Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
**Moji4J** is an open source Java library to converts between Japanese Hiragana, Katakana, and Romaji scripts. ## Installation Please add the following Maven dependency to your `pom.xml`: <dependency> <groupId>com.andree-surya</groupId> <artifactId>moji4j</artifactId> <version>1.0.0</version> </dependency> ## Romaji and Kana Conversion MojiConverter converter = new MojiConverter(); converter.convertRomajiToHiragana("Hiragana"); // ひらがな converter.convertRomajiToKatakana("Katakana"); // カタカナ converter.convertKanaToRomaji("ひらがな"); // hiragana converter.convertKanaToRomaji("カタカナ"); // katakana ## Romaji, Kana, and Kanji Detection MojiDetector detector = new MojiDetector(); detector.hasKanji("まっ暗"); // true detector.hasKanji("まっしろ"); // false detector.hasKana("ウソ付き"); // true detector.hasKana("東京"); // false detector.hasRomaji("モデル XYZ"); // true detector.hasRomaji("フルーツ"); // false ## Romanization Convention The romanization system adopted by this library is loosely based on the [modern Hepburn system][1], with adjustments for cases that might causes ambiguity during conversion. | Cases | Romaji | Kana |-----------------|-----------|----------- | Long vowels | sentaa | センター | | ookayama | おおかやま | *o+u* vowels | toukyou | とうきょう | | ousama | おうさま | Long consonants | kekka | けっか | | kasetto | カセット | | kotchi | こっち | Syllabic *n* | gunma | ぐんま | | kan'i | かんい | | shin'you | しんよう | Particles | he | へ | | wo | を | Others | dzu | づ ## Acknowledgement The romanization tables used in this library are derived from [Mojinizer][2], a Ruby library to converts between Japanese Kana and Romaji. The data is modified to suit differences in algorithm and romanization convention. ## License © Copyright 2016 Andree Surya Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. [1]: https://en.wikipedia.org/wiki/Hepburn_romanization [2]: https://github.com/ikayzo/mojinizer
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/FooSoft/yomichan-import
2016-07-27T03:02:43Z
External dictionary importer for Yomichan.
FooSoft / yomichan-import Public archive Branches Tags Go to file Go to file Code img scripts yomich… yomich… .gitignore .gitmo… LICEN… READ… comm… daijirin.… daijise… epwing… freque… gakken… go.mod go.sum jmdict.go jmdict_… jmdict_… jmdict_… jmdict_… About External dictionary importer for Yomichan. foosoft.net/projects/yomichan-i… # translation # japanese # edict # epwing # yomichan # enamdict Readme MIT license Activity 81 stars 6 watching 23 forks Report repository Releases 1 yomichan-import-21.12.… Latest on Dec 15, 2021 Packages No packages published Contributors 7 Languages Go 99.2% Shell 0.8% This repository has been archived by the owner on Feb 25, 2023. It is now read-only. Code Issues 14 Pull requests Actions Projects Security Insights jmdict_… jmdict_… jmdict_… jmnedi… jmnedi… jmnedi… kanjidi… kotowa… koujien… meikyo… rikai.go shoug… structu… wadai.go Note: this project is no longer maintained. Please see this post for more information. Yomichan Import allows users of the Yomichan extension to import custom dictionary files. It currently supports the following formats: JMdict XML JMnedict XML KANJIDIC2 XML Rikai SQLite DB EPWING: Daijirin (三省堂 スーパー大辞林) Daijisen (大辞泉) Kenkyusha (研究社 新和英大辞典 第5版) Yomichan Import README MIT license Kotowaza (故事ことわざの辞典) Meikyou (明鏡国語辞典) Kojien (広辞苑第六版 • 付属資料) Gakken (学研国語大辞典 • 古語辞典 • 故事こと わざ辞典 • 学研漢和大字典) Yomichan Import is being expanded to support other EPWING dictionaries based on user demand. This is a mostly non-technical (although laborious) process that requires writing regular expressions and creating font tables; volunteer contributions are welcome. Follow the steps outlined below to import your custom dictionary into Yomichan: 1. Download a pre-built binary for Linux, Mac OS X or Windows from the project page. 2. Launch the yomichan-gtk executable after extracting the entire archive (or yomichan from the command line). 3. Specify the source path of the dictionary you wish to convert. 4. Specify the target path of the dictionary ZIP archive that you wish to create. 5. Press the button labeled Import dictionary... and wait for processing to complete. 6. On the Yomichan options page, browse to the dictionary ZIP archive file you created. 7. Wait for the import progress to complete before closing the options page. Installation and Usage Notice: When converting EPWING dictionaries on Windows, it is important that the dictionary path you provide does not contain non-ASCII characters (including Japanese characters). This problem is due to the fact that the EPWING library used does not support
# Yomichan Import *Note: this project is no longer maintained. Please see [this post](https://foosoft.net/posts/sunsetting-the-yomichan-project/) for more information.* Yomichan Import allows users of the [Yomichan](https://foosoft.net/projects/yomichan) extension to import custom dictionary files. It currently supports the following formats: * [JMdict XML](http://www.edrdg.org/jmdict/edict_doc.html) * [JMnedict XML](http://www.edrdg.org/enamdict/enamdict_doc.html) * [KANJIDIC2 XML](http://www.edrdg.org/kanjidic/kanjd2index.html) * [Rikai SQLite DB](https://www.polarcloud.com/getrcx/) * [EPWING](https://ja.wikipedia.org/wiki/EPWING): * [Daijirin](https://en.wikipedia.org/wiki/Daijirin) (三省堂 スーパー大辞林) * [Daijisen](https://en.wikipedia.org/wiki/Daijisen) (大辞泉) * [Kenkyusha](https://en.wikipedia.org/wiki/Kenky%C5%ABsha%27s_New_Japanese-English_Dictionary) (研究社 新和英大辞典 第5版) * [Kotowaza](http://www.web-nihongo.com/wn/dictionary/dic_21/d-index.html) (故事ことわざの辞典) * [Meikyou](https://ja.wikipedia.org/wiki/%E6%98%8E%E9%8F%A1%E5%9B%BD%E8%AA%9E%E8%BE%9E%E5%85%B8) (明鏡国語辞典) * [Kojien](https://ja.wikipedia.org/wiki/%E5%BA%83%E8%BE%9E%E8%8B%91) (広辞苑第六版 &bull; 付属資料) * [Gakken](https://ja.wikipedia.org/wiki/%E5%AD%A6%E7%A0%94%E3%83%9B%E3%83%BC%E3%83%AB%E3%83%87%E3%82%A3%E3%83%B3%E3%82%B0%E3%82%B9) (学研国語大辞典 &bull; 古語辞典 &bull; 故事ことわざ辞典 &bull; 学研漢和大字典) Yomichan Import is being expanded to support other EPWING dictionaries based on user demand. This is a mostly non-technical (although laborious) process that requires writing regular expressions and creating font tables; volunteer contributions are welcome. ![](img/import.png) ## Installation and Usage Follow the steps outlined below to import your custom dictionary into Yomichan: 1. Download a pre-built binary for Linux, Mac OS X or Windows from the [project page](https://github.com/FooSoft/yomichan-import/releases). 2. Launch the `yomichan-gtk` executable after extracting the entire archive (or `yomichan` from the command line). 3. Specify the source path of the dictionary you wish to convert. 4. Specify the target path of the dictionary ZIP archive that you wish to create. 5. Press the button labeled *Import dictionary...* and wait for processing to complete. 6. On the Yomichan options page, browse to the dictionary ZIP archive file you created. 7. Wait for the import progress to complete before closing the options page. **Notice**: When converting EPWING dictionaries on Windows, it is important that the dictionary path you provide does not contain non-ASCII characters (including Japanese characters). This problem is due to the fact that the EPWING library used does not support such paths. Attempts to convert dictionaries stored in paths containing illegal characters may cause the conversion process to fail.
[ "Multilinguality" ]
[ "Annotation and Dataset Development", "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/bangumi-data/bangumi-data
2016-09-04T15:12:22Z
Raw data for Japanese Anime
bangumi-data / bangumi-data Public 5 Branches 300 Tags Go to file Go to file Code semantic-release-bot chore(release): 0.… af6aa34 · last week .github… update: updat… 7 months ago data update: Auto … last week dist chore(release… last week script Update depe… 3 years ago .editor… Add Travis Ci … 8 years ago .eslintrc Update depe… 3 years ago .gitattri… First commit 8 years ago .gitignore update mgtv 6 years ago .nvmrc update: add s… 8 months ago .releas… update: relea… 7 months ago .travis.… implement v0.… 5 years ago CONT… 清除无用链接… 5 months ago READ… fuck GFW 2 years ago data.d.ts Update data (… 4 months ago packag… update: relea… 7 months ago packag… update: updat… 7 months ago About Raw data for Japanese Anime Readme Activity Custom properties 493 stars 15 watching 61 forks Report repository Releases 43 v0.3.155 Latest last week + 42 releases Packages No packages published Contributors 22 + 8 contributors Languages JavaScript 100.0% Code Issues 6 Pull requests Actions Projects Security Insights Bangumi Data awesome awesome README build build unknown unknown npm npm v0.3.155 v0.3.155 minzipped size minzipped size 956.7 KB 956.7 KB jsDelivr jsDelivr 24.9K/month 24.9K/month license license CC-BY-4.0 CC-BY-4.0 slack slack welcome welcome PRs PRs welcome welcome 动画番组及其放送、资讯站点数据集合 也可通过 CDN https://unpkg.com/bangumi- [email protected]/dist/data.json 获取 v0.3.x 的最新数据 https://github.com/bangumi-data/awesome 见 CONTRIBUTING.md The data in this repo is available for use under a CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). For attribution just mention somewhere that the source is bangumi-data. If you have any questions about using the data for your project please contact us. 使用方法 npm install bangumi-data const bangumiData = require('bangumi-data'); 哪些项目在使用 帮助我们改进 License
# Bangumi Data [![Awesome](https://badgen.net/badge/icon/awesome/fc60a8?icon=awesome&label)](https://github.com/bangumi-data/awesome) [![Build Status](https://badgen.net/travis/bangumi-data/bangumi-data?icon=travis&label=build)](https://travis-ci.org/bangumi-data/bangumi-data) [![NPM Version](https://badgen.net/npm/v/bangumi-data?icon=npm)](https://www.npmjs.com/package/bangumi-data) [![File size](https://badgen.net/bundlephobia/minzip/bangumi-data?icon=https://api.iconify.design/ant-design:file-zip-outline.svg?color=white)](https://bundlephobia.com/result?p=bangumi-data) [![jsDelivr](https://badgen.net/jsdelivr/hits/npm/bangumi-data?icon=https://api.iconify.design/simple-icons:jsdelivr.svg?color=white)](https://www.jsdelivr.com/package/npm/bangumi-data) [![License](https://badgen.net/npm/license/bangumi-data?icon=https://api.iconify.design/octicon:law.svg?color=white)](https://github.com/bangumi-data/bangumi-data#license) [![Slack Welcome](https://badgen.net/badge/icon/welcome?icon=slack&label=slack)](https://bangumi-data.slack.com) [![PRs Welcome](https://badgen.net/badge/PRs/welcome?icon=https://api.iconify.design/octicon:git-pull-request.svg?color=white)](CONTRIBUTING.md) 动画番组及其放送、资讯站点数据集合 ## 使用方法 ```bash npm install bangumi-data ``` ```js const bangumiData = require('bangumi-data'); ``` 也可通过 CDN `https://unpkg.com/[email protected]/dist/data.json` 获取 `v0.3.x` 的最新数据 ## 哪些项目在使用 https://github.com/bangumi-data/awesome ## 帮助我们改进 见 [CONTRIBUTING.md](CONTRIBUTING.md) ## License The data in this repo is available for use under a CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). For attribution just mention somewhere that the source is bangumi-data. If you have any questions about using the data for your project please contact us.
[ "Structured Data in NLP" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/yoriyuki/nksnd
2016-10-07T20:28:38Z
New kana-kanji conversion engine
yoriyuki / nksnd Public Branches Tags Go to file Go to file Code nksnd tools .gitignore LICEN… READ… READ… setup.py Copyright (C) 2016, 2017: National Institute of Advanced Industrial Science and Technology (AIST) Copyright (C) 2016: Yoh Okuno Partially based on neural_ime by Yoh Okuno licensed under the same license. the program called nksndconv is installed. About New kana-kanji conversion engine Readme MIT license Activity 26 stars 5 watching 0 forks Report repository Releases 1 Version 0.1.0 (鴻巣) Latest on Dec 5, 2017 Packages No packages published Languages Python 97.4% Shell 2.6% Code Issues Pull requests Actions Projects Security Insights nksnd: Kana-kanji conversion engine Installation $ tar -xzvf nksnd-<version>.tar.gz $ cd nksnd-<version> $ python setup.py build $ python setup.py install Usage README MIT license For one-line-per-sentence inputs For S-expression API $ nksndconv $ nksndconv -m sexp ("best-path" "きょうはいいてんき") (("今日" "きょう") ("は" "は") ("言" "い") ("い" "い") ("天気" "てんき")) ("list-candidates" (("今日" "きょう") ("は" "は")) "いい" 0) (("唯々" "いい") ("井伊" "いい"))
# nksnd: オープンソースかな漢字変換 Copyright (C) 2016, 2017: National Institute of Advanced Industrial Science and Technology (AIST) Copyright (C) 2016: Yoh Okuno BCCWJパーサーは奥野陽さんの[neural_ime](https://github.com/yohokuno/neural_ime/blob/master/LICENSE)に由来します。ライセンスは同じです。 Pythonでフルスクラッチで書かれています。 ## インストール ```shell $ tar -xzvf nksnd-<version>.tar.gz $ cd nksnd-<version> $ python setup.py build $ python setup.py install ``` ## 使い方 `nksndconv`というコマンドがインストールされます。 平文による入出力 ```shell $ nksndconv きょうはいいてんき 今日はいい天気 ``` S式による入出力 ```shell $ nksndconv -m sexp ("best-path" "きょうはいいてんき") (("今日" "きょう") ("は" "は") ("言" "い") ("い" "い") ("天気" "てんき")) ("list-candidates" (("今日" "きょう") ("は" "は")) "いい" 0) (("唯々" "いい") ("井伊" "いい")) ```
[ "Language Models", "Syntactic Text Processing" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/neocl/jamdict
2016-10-25T02:47:58Z
Python 3 library for manipulating Jim Breen's JMdict, KanjiDic2, JMnedict and kanji-radical mappings
neocl / jamdict Public Branches Tags Go to file Go to file Code data docs jamdict test .gitignore .gitmodules LICENSE MANIFEST.in README.md TODO.md _config.yml jamdict_demo.py jamdol-flask.py jmd logging.json release.sh requirements.txt run setup.py test.sh Jamdict is a Python 3 library for manipulating Jim Breen's JMdict, KanjiDic2, JMnedict and kanji-radical mappings. docs docs passing passing Documentation: https://jamdict.readthedocs.io/ Support querying different Japanese language resources Japanese-English dictionary JMDict Kanji dictionary KanjiDic2 Kanji-radical and radical-kanji maps KRADFILE/RADKFILE Japanese Proper Names Dictionary (JMnedict) About Python 3 library for manipulating Jim Breen's JMdict, KanjiDic2, JMnedict and kanji-radical mappings # python # dictionary # japanese # python-library # kanji # japanese-language # jmdict # japanese-study # kanjidic2 # japanese-dictionary # jamdict Readme MIT license Activity Custom properties 129 stars 4 watching 12 forks Report repository Releases 8 jamdict 0.1a11 Latest on May 25, 2021 + 7 releases Packages No packages published Contributors 3 Languages Python 99.8% Shell 0.2% Code Issues 6 Pull requests 1 Actions Projects Wiki Security Insights Jamdict Main features README MIT license Fast look up (dictionaries are stored in SQLite databases) Command-line lookup tool (Example) Contributors are welcome! 🙇. If you want to help, please see Contributing page. Jamdict is used in Jamdict-web - a web-based free and open-source Japanese reading assistant software. Please try out the demo instance online at: https://jamdict.herokuapp.com/ There also is a demo Jamdict virtual machine online for trying out Jamdict Python code on Repl.it: https://replit.com/@tuananhle/jamdict-demo Jamdict & Jamdict database are both available on PyPI and can be installed using pip To make sure that jamdict is configured properly, try to look up a word using command line Try Jamdict out Installation pip install --upgrade jamdict jamdict-data Sample jamdict Python code from jamdict import Jamdict jam = Jamdict() # use wildcard matching to find anything starts with 食べ and ends with る result = jam.lookup('食べ%る') # print all word entries for entry in result.entries: print(entry) # [id#1358280] たべる (食べる) : 1. to eat ((Ichidan verb|transitive verb)) 2. to live on (e.g. a salary)/to live off/t # [id#1358300] たべすぎる (食べ過ぎる) : to overeat ((Ichidan verb|transitive verb)) # [id#1852290] たべつける (食べ付ける) : to be used to eating ((Ichidan verb|transitive verb)) # [id#2145280] たべはじめる (食べ始める) : to start eating ((Ichidan verb)) # [id#2449430] たべかける (食べ掛ける) : to start eating ((Ichidan verb)) # [id#2671010] たべなれる (食べ慣れる) : to be used to eating/to become used to eating/to be accustomed to eating/to acq # [id#2765050] たべられる (食べられる) : 1. to be able to eat ((Ichidan verb|intransitive verb)) 2. to be edible/to be g # [id#2795790] たべくらべる (食べ比べる) : to taste and compare several dishes (or foods) of the same type ((Ichidan ver # [id#2807470] たべあわせる (食べ合わせる) : to eat together (various foods) ((Ichidan verb)) # print all related characters for c in result.chars: print(repr(c)) # 食:9:eat,food # 喰:12:eat,drink,receive (a blow),(kokuji) # 過:12:overdo,exceed,go beyond,error # 付:5:adhere,attach,refer to,append # 始:8:commence,begin # 掛:11:hang,suspend,depend,arrive at,tax,pour # 慣:14:accustomed,get used to,become experienced # 比:4:compare,race,ratio,Philippines # 合:6:fit,suit,join,0.1 Command line tools python3 -m jamdict lookup 言語学 ======================================== Found entries ======================================== Entry: 1264430 | Kj: 言語学 | Kn: げんごがく -------------------- Jamdict has built-in support for KRAD/RADK (i.e. kanji-radical and radical-kanji mapping). The terminology of radicals/components used by Jamdict can be different from else where. A radical in Jamdict is a principal component, each character has only one radical. A character may be decomposed into several writing components. By default jamdict provides two maps: jam.krad is a Python dict that maps characters to list of components. jam.radk is a Python dict that maps each available components to a list of characters. 1. linguistics ((noun (common) (futsuumeishi))) ======================================== Found characters ======================================== Char: 言 | Strokes: 7 -------------------- Readings: yan2, eon, 언, Ngôn, Ngân, ゲン, ゴン, い.う, こと Meanings: say, word Char: 語 | Strokes: 14 -------------------- Readings: yu3, yu4, eo, 어, Ngữ, Ngứ, ゴ, かた.る, かた.らう Meanings: word, speech, language Char: 学 | Strokes: 8 -------------------- Readings: xue2, hag, 학, Học, ガク, まな.ぶ Meanings: study, learning, science No name was found. Using KRAD/RADK mapping # Find all writing components (often called "radicals") of the character 雲 print(jam.krad['雲']) # ['一', '雨', '二', '厶'] # Find all characters with the component 鼎 chars = jam.radk['鼎'] print(chars) # {'鼏', '鼒', '鼐', '鼎', '鼑'} # look up the characters info result = jam.lookup(''.join(chars)) for c in result.chars: print(c, c.meanings()) # 鼏 ['cover of tripod cauldron'] # 鼒 ['large tripod cauldron with small'] # 鼐 ['incense tripod'] # 鼎 ['three legged kettle'] # 鼑 [] Finding name entities # Find all names with 鈴木 inside result = jam.lookup('%鈴木%') for name in result.names: print(name) # [id#5025685] キューティーすずき (キューティー鈴木) : Kyu-ti- Suzuki (1969.10-) (full name of a particular person) # [id#5064867] パパイヤすずき (パパイヤ鈴木) : Papaiya Suzuki (full name of a particular person) # [id#5089076] ラジカルすずき (ラジカル鈴木) : Rajikaru Suzuki (full name of a particular person) # [id#5259356] きつねざきすずきひなた (狐崎鈴木日向) : Kitsunezakisuzukihinata (place name) # [id#5379158] こすずき (小鈴木) : Kosuzuki (family or surname) # [id#5398812] かみすずき (上鈴木) : Kamisuzuki (family or surname) # [id#5465787] かわすずき (川鈴木) : Kawasuzuki (family or surname) # [id#5499409] おおすずき (大鈴木) : Oosuzuki (family or surname) # [id#5711308] すすき (鈴木) : Susuki (family or surname) # ... Use exact matching for faster search. Find the word 花火 by idseq (1194580) Find an exact name 花火 by idseq (5170462) See jamdict_demo.py and jamdict/tools.py for more information. JMdict: http://edrdg.org/jmdict/edict_doc.html kanjidic2: https://www.edrdg.org/wiki/index.php/KANJIDIC_Project JMnedict: https://www.edrdg.org/enamdict/enamdict_doc.html KRADFILE: http://www.edrdg.org/krad/kradinf.html Le Tuan Anh (Maintainer) alt-romes Matteo Fumagalli Reem Alghamdi Techno-coder Exact matching >>> result = jam.lookup('id#1194580') >>> print(result.names[0]) [id#1194580] はなび (花火) : fireworks ((noun (common) (futsuumeishi))) >>> result = jam.lookup('id#5170462') >>> print(result.names[0]) [id#5170462] はなび (花火) : Hanabi (female given name or forename) Useful links Contributors
# Jamdict [Jamdict](https://github.com/neocl/jamdict) is a Python 3 library for manipulating Jim Breen's JMdict, KanjiDic2, JMnedict and kanji-radical mappings. [![ReadTheDocs Badge](https://readthedocs.org/projects/jamdict/badge/?version=latest&style=plastic)](https://jamdict.readthedocs.io/) **Documentation:** https://jamdict.readthedocs.io/ # Main features * Support querying different Japanese language resources - Japanese-English dictionary JMDict - Kanji dictionary KanjiDic2 - Kanji-radical and radical-kanji maps KRADFILE/RADKFILE - Japanese Proper Names Dictionary (JMnedict) * Fast look up (dictionaries are stored in SQLite databases) * Command-line lookup tool [(Example)](#command-line-tools) [Contributors](#contributors) are welcome! 🙇. If you want to help, please see [Contributing](https://jamdict.readthedocs.io/en/latest/contributing.html) page. # Try Jamdict out Jamdict is used in [Jamdict-web](https://jamdict.herokuapp.com/) - a web-based free and open-source Japanese reading assistant software. Please try out the demo instance online at: https://jamdict.herokuapp.com/ There also is a demo [Jamdict virtual machine](https://replit.com/@tuananhle/jamdict-demo) online for trying out Jamdict Python code on Repl.it: https://replit.com/@tuananhle/jamdict-demo # Installation Jamdict & Jamdict database are both available on [PyPI](https://pypi.org/project/jamdict/) and can be installed using pip ```bash pip install --upgrade jamdict jamdict-data ``` # Sample jamdict Python code ```python from jamdict import Jamdict jam = Jamdict() # use wildcard matching to find anything starts with 食べ and ends with る result = jam.lookup('食べ%る') # print all word entries for entry in result.entries: print(entry) # [id#1358280] たべる (食べる) : 1. to eat ((Ichidan verb|transitive verb)) 2. to live on (e.g. a salary)/to live off/to subsist on # [id#1358300] たべすぎる (食べ過ぎる) : to overeat ((Ichidan verb|transitive verb)) # [id#1852290] たべつける (食べ付ける) : to be used to eating ((Ichidan verb|transitive verb)) # [id#2145280] たべはじめる (食べ始める) : to start eating ((Ichidan verb)) # [id#2449430] たべかける (食べ掛ける) : to start eating ((Ichidan verb)) # [id#2671010] たべなれる (食べ慣れる) : to be used to eating/to become used to eating/to be accustomed to eating/to acquire a taste for ((Ichidan verb)) # [id#2765050] たべられる (食べられる) : 1. to be able to eat ((Ichidan verb|intransitive verb)) 2. to be edible/to be good to eat ((pre-noun adjectival (rentaishi))) # [id#2795790] たべくらべる (食べ比べる) : to taste and compare several dishes (or foods) of the same type ((Ichidan verb|transitive verb)) # [id#2807470] たべあわせる (食べ合わせる) : to eat together (various foods) ((Ichidan verb)) # print all related characters for c in result.chars: print(repr(c)) # 食:9:eat,food # 喰:12:eat,drink,receive (a blow),(kokuji) # 過:12:overdo,exceed,go beyond,error # 付:5:adhere,attach,refer to,append # 始:8:commence,begin # 掛:11:hang,suspend,depend,arrive at,tax,pour # 慣:14:accustomed,get used to,become experienced # 比:4:compare,race,ratio,Philippines # 合:6:fit,suit,join,0.1 ``` ## Command line tools To make sure that jamdict is configured properly, try to look up a word using command line ```bash python3 -m jamdict lookup 言語学 ======================================== Found entries ======================================== Entry: 1264430 | Kj: 言語学 | Kn: げんごがく -------------------- 1. linguistics ((noun (common) (futsuumeishi))) ======================================== Found characters ======================================== Char: 言 | Strokes: 7 -------------------- Readings: yan2, eon, 언, Ngôn, Ngân, ゲン, ゴン, い.う, こと Meanings: say, word Char: 語 | Strokes: 14 -------------------- Readings: yu3, yu4, eo, 어, Ngữ, Ngứ, ゴ, かた.る, かた.らう Meanings: word, speech, language Char: 学 | Strokes: 8 -------------------- Readings: xue2, hag, 학, Học, ガク, まな.ぶ Meanings: study, learning, science No name was found. ``` ## Using KRAD/RADK mapping Jamdict has built-in support for KRAD/RADK (i.e. kanji-radical and radical-kanji mapping). The terminology of radicals/components used by Jamdict can be different from else where. - A radical in Jamdict is a principal component, each character has only one radical. - A character may be decomposed into several writing components. By default jamdict provides two maps: - jam.krad is a Python dict that maps characters to list of components. - jam.radk is a Python dict that maps each available components to a list of characters. ```python # Find all writing components (often called "radicals") of the character 雲 print(jam.krad['雲']) # ['一', '雨', '二', '厶'] # Find all characters with the component 鼎 chars = jam.radk['鼎'] print(chars) # {'鼏', '鼒', '鼐', '鼎', '鼑'} # look up the characters info result = jam.lookup(''.join(chars)) for c in result.chars: print(c, c.meanings()) # 鼏 ['cover of tripod cauldron'] # 鼒 ['large tripod cauldron with small'] # 鼐 ['incense tripod'] # 鼎 ['three legged kettle'] # 鼑 [] ``` ## Finding name entities ```bash # Find all names with 鈴木 inside result = jam.lookup('%鈴木%') for name in result.names: print(name) # [id#5025685] キューティーすずき (キューティー鈴木) : Kyu-ti- Suzuki (1969.10-) (full name of a particular person) # [id#5064867] パパイヤすずき (パパイヤ鈴木) : Papaiya Suzuki (full name of a particular person) # [id#5089076] ラジカルすずき (ラジカル鈴木) : Rajikaru Suzuki (full name of a particular person) # [id#5259356] きつねざきすずきひなた (狐崎鈴木日向) : Kitsunezakisuzukihinata (place name) # [id#5379158] こすずき (小鈴木) : Kosuzuki (family or surname) # [id#5398812] かみすずき (上鈴木) : Kamisuzuki (family or surname) # [id#5465787] かわすずき (川鈴木) : Kawasuzuki (family or surname) # [id#5499409] おおすずき (大鈴木) : Oosuzuki (family or surname) # [id#5711308] すすき (鈴木) : Susuki (family or surname) # ... ``` ## Exact matching Use exact matching for faster search. Find the word 花火 by idseq (1194580) ```python >>> result = jam.lookup('id#1194580') >>> print(result.names[0]) [id#1194580] はなび (花火) : fireworks ((noun (common) (futsuumeishi))) ``` Find an exact name 花火 by idseq (5170462) ```python >>> result = jam.lookup('id#5170462') >>> print(result.names[0]) [id#5170462] はなび (花火) : Hanabi (female given name or forename) ``` See `jamdict_demo.py` and `jamdict/tools.py` for more information. # Useful links * JMdict: [http://edrdg.org/jmdict/edict_doc.html](http://edrdg.org/jmdict/edict_doc.html) * kanjidic2: [https://www.edrdg.org/wiki/index.php/KANJIDIC_Project](https://www.edrdg.org/wiki/index.php/KANJIDIC_Project) * JMnedict: [https://www.edrdg.org/enamdict/enamdict_doc.html](https://www.edrdg.org/enamdict/enamdict_doc.html) * KRADFILE: [http://www.edrdg.org/krad/kradinf.html](http://www.edrdg.org/krad/kradinf.html) # Contributors - [Le Tuan Anh](https://github.com/letuananh) (Maintainer) - [alt-romes](https://github.com/alt-romes) - [Matteo Fumagalli](https://github.com/matteofumagalli1275) - [Reem Alghamdi](https://github.com/reem-codes) - [Techno-coder](https://github.com/Techno-coder)
[ "Multilinguality" ]
[ "Annotation and Dataset Development", "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/odashi/small_parallel_enja
2016-10-27T03:14:36Z
50k English-Japanese Parallel Corpus for Machine Translation Benchmark.
odashi / small_parallel_enja Public Branches Tags Go to file Go to file Code READ… dev.en dev.ja test.en test.ja train.en train.e… train.e… train.e… train.e… train.e… train.e… train.e… train.ja train.ja… train.ja… train.ja… train.ja… train.ja… train.ja… train.ja… About 50k English-Japanese Parallel Corpus for Machine Translation Benchmark. Readme Activity 92 stars 2 watching 14 forks Report repository Releases No releases published Packages No packages published Languages Roff 100.0% Code Issues Pull requests Actions Projects Security Insights This directory includes a small parallel corpus for English- Japanese translation task. These data are extracted from TANAKA Corpus by filtering sentence length 4 to 16 words. English sentences are tokenized using Stanford Tokenizer and lowercased. Japanese sentences are tokenized using KyTea. All texts are encoded in UTF-8. Sentence separator is '\n' and word separator is ' ' . Attention: some English words have different tokenization results from Stanford Tokenizer, e.g., "don't" -> "don" "'t", which may came from preprocessing errors. Please take care of using this dataset in token-level evaluation. File #sentences #words #vocabulary train.en 50,000 391,047 6,634 - train.en.000 10,000 78,049 3,447 - train.en.001 10,000 78,223 3,418 - train.en.002 10,000 78,427 3,430 - train.en.003 10,000 78,118 3,402 - train.en.004 10,000 78,230 3,405 train.ja 50,000 565,618 8,774 - train.ja.000 10,000 113,209 4,181 - train.ja.001 10,000 112,852 4,102 - train.ja.002 10,000 113,044 4,105 - train.ja.003 10,000 113,346 4,183 - train.ja.004 10,000 113,167 4,174 small_parallel_enja: 50k En/Ja Parallel Corpus for Testing SMT Methods Corpus Statistics README File #sentences #words #vocabulary dev.en 500 3,931 816 dev.ja 500 5,668 894 test.en 500 3,998 839 test.ja 500 5,635 884
small_parallel_enja: 50k En/Ja Parallel Corpus for Testing SMT Methods ====================================================================== This directory includes a small parallel corpus for English-Japanese translation task. These data are extracted from [TANAKA Corpus](http://www.edrdg.org/wiki/index.php/Tanaka_Corpus) by filtering sentence length 4 to 16 words. English sentences are tokenized using [Stanford Tokenizer](http://nlp.stanford.edu/software/tokenizer.html) and lowercased. Japanese sentences are tokenized using [KyTea](http://www.phontron.com/kytea/). All texts are encoded in UTF-8. Sentence separator is `'\n'` and word separator is `' '`. **Attention**: some English words have different tokenization results from Stanford Tokenizer, e.g., "don't" -> "don" "'t", which may came from preprocessing errors. Please take care of using this dataset in token-level evaluation. Corpus Statistics ----------------- | File | #sentences | #words | #vocabulary | |:---------------|-----------:|--------:|------------:| | train.en | 50,000 | 391,047 | 6,634 | | - train.en.000 | 10,000 | 78,049 | 3,447 | | - train.en.001 | 10,000 | 78,223 | 3,418 | | - train.en.002 | 10,000 | 78,427 | 3,430 | | - train.en.003 | 10,000 | 78,118 | 3,402 | | - train.en.004 | 10,000 | 78,230 | 3,405 | | train.ja | 50,000 | 565,618 | 8,774 | | - train.ja.000 | 10,000 | 113,209 | 4,181 | | - train.ja.001 | 10,000 | 112,852 | 4,102 | | - train.ja.002 | 10,000 | 113,044 | 4,105 | | - train.ja.003 | 10,000 | 113,346 | 4,183 | | - train.ja.004 | 10,000 | 113,167 | 4,174 | | dev.en | 500 | 3,931 | 816 | | dev.ja | 500 | 5,668 | 894 | | test.en | 500 | 3,998 | 839 | | test.ja | 500 | 5,635 | 884 |
[ "Machine Translation", "Multilinguality", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/musyoku/python-npylm
2016-12-18T11:58:15Z
ベイズ階層言語モデルによる教師なし形態素解析
musyoku / python-npylm Public Branches Tags Go to file Go to file Code run src test .gitignore READ… makefile ベイズ階層言語モデルによる教師なし形態素解析の C++実装です。 単語n-gramモデルは3-gramで固定です。2-gramは非対 応です。 現在も開発途中です。 実装について ベイズ階層言語モデルによる教師なし形態素解析 Forward filtering-Backward samplingによる単語分 割でアンダーフローを防ぐ 文字列の単語ID化をハッシュで実装しているため、学習 結果を違うコンピュータで用いると正しく分割が行えな い可能性があります。 About ベイズ階層言語モデルによる教師な し形態素解析 # npylm Readme Activity 33 stars 2 watching 6 forks Report repository Releases No releases published Packages No packages published Languages C++ 94.1% Python 5.2% Makefile 0.7% Code Issues 4 Pull requests Actions Projects Security Insights Nested Pitman-Yor Language Model (NPYLM) README 前向き確率の計算をlogsumexpからスケーリングに 変更 Boost C++14 Python 3 macOSの場合、PythonとBoostはともにbrewでインス トールする必要があります。 PYTHONPATH を変更する必要があるかもしれません。 Pythonのバージョンを自身のものと置き換えてくださ い。 更新履歴 2017/11/21 動作環境 準備 macOS Python 3のインストール brew install python3 Boostのインストール brew install boost-python --with- python3 Ubuntu Boostのインストール ./bootstrap.sh --with-python=python3 -- with-python-version=3.5 ./b2 python=3.5 -d2 -j4 --prefix YOUR_BOOST_DIR install ビルド 以下のコマンドでnpylm.so が生成され、Pythonから利 用できるようになります。 makefile 内のBoostのパスを自身の環境に合わせて書 き換えてください。 Ubuntuでエラーが出る場合は代わりに以下を実行しま す。 半教師あり学習をする場合は必要です。 run/unsupervised にコード例があります。 -file 学習に使うテキストファイル -dir 学習に使うテキストファイル群が入っているデ ィレクトリ 複数ファイルを用いる場合はこちらを指定 -split 読み込んだ行のうち何割を学習に用いるか 0から1の実数を指定 1を指定すると全データを用いてモデルを学習 する -l 可能な単語の最大長 make install make install_ubuntu MeCabのインストール pip install mecab-python3 学習(教師なし) 実行例 python3 train.py -split 0.9 -l 8 -file YOUR_TEXTFILE オプション 日本語なら8〜16、英語なら16〜20程度を指定 文の長さをN、単語の最大長をLとすると、 NPYLMの計算量はO(NL^3)になる なお学習の再開はできません。 run/semi-supervised にコード例があります。 -file 学習に使うテキストファイル -dir 学習に使うテキストファイル群が入っているデ ィレクトリ 複数ファイルを用いる場合はこちらを指定 -train-split 読み込んだ行のうち何割を学習に用いるか 0から1の実数を指定 1を指定すると全データを用いてモデルを学習 する -ssl-split 学習データのうち何割を教師データに用いるか 0から1の実数を指定 -l 可能な単語の最大長 日本語なら8〜16、英語なら16〜20程度を指定 文の長さをN、単語の最大長をLとすると、 NPYLMの計算量はO(NL^3)になる なお学習の再開はできません。 分割結果をファイルに保存します。 学習(半教師あり) 実行例 python3 train.py -train-split 0.9 -ssl- split 0.01 -l 8 -file YOUR_TEXTFILE オプション 単語分割 -file 分割するテキストファイル -dir 分割するテキストファイルが入っているディレ クトリ 複数ファイルをまとめて分割する場合はこれを 指定 ファイルごとに個別の出力ファイルが作成され ます -out 出力フォルダ 研究以外の用途には使用できません。 https://twitter.com/daiti_m/status/851810748263157760 実装に誤りが含まれる可能性があります。 質問等、何かありましたらissueにてお知らせくださ い。 現在、条件付確率場とベイズ階層言語モデルの統合によ る半教師あり形態素解析と半教師あり形態素解析 NPYCRFの修正を実装しています。 アンダーフローが起きていないかを確認するためにわざ と1行あたりの文字数を多くして学習させています。 15万行あったデータから改行を削除し4,770行に圧縮し ました。 python viterbi.py -file YOUR_TEXTFILE オプション 注意事項 展望 実行結果 けものフレンズ実況スレ / アニメ / に / セルリアン / 設定 / を / 出 / す / 必要 / は / まったく / なかった / と思う / um / nk / は / 原 作 / と / 漫画 / で / 終わり方 / 変え / て / た / なあ / 原作 / 有り / だ / と / 色々 / 考え / ちゃ / う / けど / オリジナル / だ / と / 余計な / 事 / 考え / なくてい い / ね / 犬 / のフレンズ / だから / さ / 、 / ガキが 余計な / レスつけてくんな / って / 言って / る / だ ろ / ジャパリパーク / 滅亡 / まで / あと / 1 / 4 / 日 / 間 / 。 / まだ / 作品 / は / 完結 / して / ない / し / こ の / あと / 話 / に / どう / 関わって / くる / か / わか ら / ない / と思う / んだが / 最終話 / まで / い / って / / そういう / こと / だった / のか / ー / ! / / って / な / った / 後で / 見返すと / また / 唸 / ら / され / そう / な / 場面 / が / 多い / ん / だよ / ね / お別れ / エン ド / 想像 / する / だけで / 震え / て / くる / けど / ハ ッピー / エンド / なら / 受け入れ / る / しかない / よ / ね / この / スレ / は / 子供 / が / 多くて / 最終回 の / 感動 / も / 萎える / だ / ろ / う / 百合 / アニメ / として / 楽しんで / る / 奴 / もいる / ん / だね / ぇ / あー / 、 / それ / は / 誤 / り / だ / 。 / 低 / レアリテ ィ / フレンズ / にスポットライト / が / 当て / られ / て / る / こと / もある / 。 / 毒 / 抜いた / っていう / のは / 伏線 / 回収 / は / だいたい / や / る / けど / も / 鬱 / な / 感じ / に / は / して / ない / ていう / 意味 / だ / と / 解釈 / し / た / けど / 【 / ᓼ / 】 / 『けもの フレンズ』 / 第 / 10話「ろっじ」 / より / 、 / 先行 / 場面 / カット / が / 到着 / ! / 宿泊 / した / ロッジ / に / 幽霊 / ……? / 【 / ᓼ / 】 / [無断転載禁止]©2ch. / net [ / 8 / 9 / 1 / 1 / 9 / 1 / 9 / 2 / 3 / ] / 実際のとこ ろ / けもの / フレンズ / は / 百合 / なのか / ? / 例え ば / どこが / 百合 / っぽい / ? / いや / 、 / ある / だ ろ / 。 / セルリアン / が / いる / 事 / に / よって / 物 語 / に / 緊張感 / が / 生まれ / る / 。 / 伏線 / が / 結 構 / 大きい / 物 / な気がする / んだ / けど / これ / あと / 2話 / で / 終わ / る / のか / なぁ / ? / もしかし て / 「 / ジャパリ / パーク / の / 外に / 人間 / を / 探 しに / 行く / よ / ! / カバンちゃん / たち / の / 冒険 は / これから / だ!」 / エンド / じゃある / まい / な / それ / でも / あれ / は / 許容 / し / 難 / かった / と おもう / ぞ / そもそも / 利 / 潤 / 第一 / でない / け もの / プロジェクト / に / 売上 / で / 優劣 / 語 / る / の / は / ナンセンス / や / ぞ / の / タイトル / も / い い / な / カバンちゃん / 「 / さーばる / 島の外に / 出 / ちゃ / う / と / 記憶 / も / なくな / る / ん / だ / よ / ? / 」 / さーばる / 「 / うん / 、 / それ / でも / いい / よ / 。 / 」 / カバンちゃん / 「 / う / うん / 、 / ダメ / 。 / ボク / が / のこ / る / よ / 。 / 」 / さー ばる / 「 / え? / ・・・ / 」 / カバンちゃん / 「 / さ ーばる / は / 大切な / 僕 / のフレンズ / だから / 」 / わざわざ / ng / 宣言 / とか / キッズ / の / 代表 / み たいな / も / ん / だろ / 出来 / の / 良い / おさ / らい / サイト / が / ある / よ / 俺 / も / そこ / で / 予習 / し / た / タイム / アタック / 式 / の / クエスト / で / 低 / レア / 構成 / ボーナス / 入るから / 人権 / ない / ってレベル / じゃ / ない / ぞ / / 予約 / でき / ない / のに / いつまで / 2巻 / は / ラ ンキング / 1位 / なん / だ / よ / けもの / フレンズ / 、 / 縮めて / フレンズ / 。 / ジャパリパーク / の / 不思議 / な / 不思議な / 生き物 / 。 / 空 / に / 山 / に / 海 / に / フレンズ / は / いた / る / ところ / で / そ / の / 姿 / を / 見 / る / こと / が / 出来 / る / 。この / 少女 / 、 / ヒト / と / 呼ばれ / る / かばん。 / 相棒 / の / サーバル / と / 共に / バトル / & / ゲット / 。 / フレンズの / 数だけ / の / 出会い / が / あり / フレ ンズの / 数だけ / の / 別れ / がある / ( / 石塚運昇) / ニコ動 / 調子 / 悪 / そう / なんだ / けど / 上映会 / だ / いじょうぶ / か / ね / コスプレ / はよ / もう / 何度も / 書かれてる / だろうけど / 、 / 2話 / ed / で / 入 / って / きた / 身としては / ed / やっぱ / 良い / 。 / 歌 / も / 歌詞 / も / 合って / る / し / 、 / 普通の / アニメ / っぽく / ない / 廃墟 / に / した / の / も / 全部 / 良い / 。 / 情報 / が / 氾濫 / し / すぎ / て / 何 / が / ネタバレ / か / さっぱり / 分からん / けど / 、 / 1つ / ぐらい / は / 本物 / が / まじ / っ / て / そう / だな / 。 / ま、 / 来週 / を / 楽しみ / に / して / る / よ / 。 / アライさん / の / 「 / 困難は / 群れで分け 合え / 」 / って / 台詞 / もしかして / アプリ版 / で / 出て / きた / こと / あった / りする / ? / それ / なら / 記憶 / の / 引 / 継ぎ / 説 / は / ほぼ / 間違え / なさ / そう / だ / けど / 神 / 展開 / で / ワロタ / これ / は / 地上波 / 流 / せ / ません / ね / ぇ / … / まあ、 / 数 / 打ちゃ当たる / 11話の / 展開 / は / 予想 / されて / なかった / 気配 / だ / が / 汗 / まあ / ニコ動 / ラン キング / に / あ / っ / た / アプリ版 / ストーリー / 見 / た / 時 / 点 / で / すでに / 覚悟はできてる / 一 / 人 / でも / いいから / 出 / して / ほしかった / … / マジで / サーバル / / プレーリードッグ / / ヘラジカ / 殷周 / 伝説 / みたい / な / 肉 / マン / を / 想像 / し / ちゃ / っ / た / じゃぱりまん / の / 中身 / で / 肉 / が / ある / なら / だ / が / 無い / から / 安心 / / 知識 / や / 性格 / まで / クローン / は / 無理 / だ / と思う / nhkで / アニメ / 放送 / から / の / 紅白 / 出 場 / だと / 嫌な予感がする / 藤子不二 / 雄 / や / 大 友 / 克洋や / 鳥山明 / は / エール / を / 送 / られ / た / が、 / 自分 / が / 理解 / でき / ない / もの / が / 流 行 / っ / て / る / と / 怒 / った / らしい / な / 巨人の 星 / とか / ス / ポ / 根 / も / のは / 、 / どうして / こ んな / もの / が / 人気 / なん / だ / って / アシスタン ト / と / 担当 / に / 怒鳴り / 散らし / た / そう / な / 日本語 / で / しか / 伝わらない / 表現 / ある / もん / ね / ひらがな / カタカナ / 漢字 / でも / ニュアンス / 使い / 分 / け / られ / る / し / また / 同時 / に / 英語 / いい / なあ / と思う / 所 / もある / 親友 / ( / ?) / な のに / そ / の / 欠片 / も / み / られ / ない / 猫 / の / 話 / は / やめ / なさい / … / なん / か / 、 / マズルの / ところ / が / カイ / ゼル / 髭 / みたい / で / 、 / か わいい / っていうより / カッコイイ / とおもう / ん / だが / / 「 / ( / いや / 俺ら / に / 言われ / て / も / ) / 」 / って / 困惑 / する / 様子 / が / w / 藤子不二 / 雄 / は / 貶 / そう / と / 思って / た / ら / 全力で / 尊敬 / されて / 持ち / 上げ / て / くる / ので / 面倒見 / ざ るを得な / かった / とか / いう / ホント / か / ウソ / か / 分からない / 逸話 / すこ / 世界 / 最高峰 / の / 日本 / アニメ / を / 字幕 / 無し / で / 観 / られ / る / 幸せ / たぶん / そうな / ん / だろう / とは思う / が / おいしい / とこ / だけ / 取ら / れ / て / 何も / やって ない / 扱い / で / うん / ざ / り / して / そう / 結局 / 自分 / の / 好 / み / って事 / か / 本人 / に / しか / わ から / ない / 先 / 駆 / 者 / として / の / 強烈な / 自負 / と / 、 / 追い / 抜か / れ / る / 恐怖 / かわ / あった / のだろう / と愚考 / した / 。 / スポーツ / 漫画や / 劇 / 画 / が / 流行 / っ / た / 時 / ノイローゼ / になり / かけ / た / と / 聞く / が / 、 / 90年代 / 以降 / の / トーン / バリバリ / アニメ / 絵柄 / や / 萌え / 文化 / とか / 見 / た / ら / どう / なってしまう / んだろう / あと / サーバルちゃん / かわいい / コクボス / 「 / ジカ / ン / ダヨ / 」 / 礼儀 / は / 守 / る / 人 / だろう / … / 内心 / 穏やか / ではない / が / ニコ動 / の再生 数 / なんて / まったく / 当て / に / ならん / ぞ / ニコ 生 / の / 来場者 / 数 / と / 有料 / 動画 / の / 再生数 / は / 当て / に / して / いい / けど / 6話 / の / へいげ ん / の / とき / / ヘラジカ / さん / たち / に / 「 / サ ーバルキャット / のサーバル / だよ / 」って / 自己 紹介 / して / た / のが / なんか / 不思議 / だ / った / な / 「 / 省略 / する / 」って / 文化 / ある / ん / だ / / みたい / な / 一話 / の再生数 / で / 分かる / のは / 洗脳 / 度 / だけ / だ / な / すぐ / 解 / け / る / 洗脳 / かも知れん / が / それ / 見たい / わ / めちゃくちゃ / 好循環 / じゃない / か / … / イッカク / クジラ / の / イッカク / だ。 / って / 名乗 / って / る / キャラ / も いた / し / 。 / いや~ / メンゴメンゴ / / あ / 、 / ボ ス / さん / きゅー / w / アプリ版 / の / オオ / アルマ ジロ / の / 声で / 絡んで / ほしかった / ( / cv / 相 / 沢 / 舞 / ) / 名前 / の / 概念 / 例えば / ヘラジカ / は / 種族 / として / 言って / る / のか / 名前 / と / して / 言って / る / のか / かばんちゃん / と / 名 / 付け / て / る / から / 概念 / として / は / 在 / る / ん / だろう / けど / 果たして / クローン / は / 同じ / ポテンシャ ル / を / 引き / 出 / せ / る / だろう / か / 。 / 藤子f / という / か / ドラえもん / に / は / 完全 / 敗北 / を / 認め / て / た / らしい / から / ね / ドラえもん / を / 超え / る / キャラ / は / 作れ / ない / って / どうぶつ / スクープ / と / ダーウィン / と / wbc / どっち / を 優先 / すべき / か / / 捨て / た / り / しない / ん / じゃないかな / ? / ま、 / ちょっと / (ry / ロッ / ソファンタズマ / は / 先代 / サーバル / の / 技 / って / 言いたい / のは / わ かる / けど / 。 / かばんちゃん / 視点 / から / 見る と / op / の / 映像 / の意味 / になる / と / いう / ダブ ルミーニング / なの / かも知れない / これ / は / な かなか / 面白い / 基本的に / ゲスト / フレンズって / カップル / にな / る / けど / この / 二人 / は / その 後 / どうなった / ん / だろう / ね / 杏子 / も / 野中 / か / 優しく / て / 元気な / 女の子 / の / 唐突な / 涙 / は / めちゃくちゃ / くる / もの / がある / な / ppp / が / 歌 / って / る / こと / から / 考えると / あり / 得 / る / ね / 、 / 宣伝 / 曲 / そして / まんま / と / よう こそ / され / ました / なんだか / コケ / そう / な / 気がして / ならない / 12話 / だから / 話 / を / 膨ら ま / せ / て / 伏線 / を / 回収 / して / って / の / が / でき / た / けど / だら / っと / 続け / て / いく / と / すると / ・・・ / たまに / 見 / る / 豆腐 / や / 冷奴 / は / 何 / を / 示唆 / して / る / ん / だ / ? / 姿 / が / フ レンズ / だと / 判別 / でき / ない / ん / じゃないか / とりあえず / 初版 / は / 無理 / でも / 重版分 / 買お う / 古典sf / 的に / タイ / ムスリップ / して / アプリ 版 / プレイヤー / として / ミライさん / の / 運命 / を / 変え / に / 行く / とか / は / あり / そう / / すごーい / ぞ / おー / ! / が / 正解 / で / 世界遺 / 産! / が / 空耳 / おいおい / エヴァ / か / ? / 聖域 / への / 立ち / 入り / 認可 / 、 / 正体 / 不明 / な / 新規 / フレ ンズ / の / 評価 / 、 / 困った / とき / の / 相談 / 役 / 色々 / やって / る / な / 輪廻転生 / して / 二人 / は / 一緒 / も / 人間 / は / 滅んで / て / かばんちゃん / は / サーバルちゃん / とずっと一緒 / も / ぶっちゃけ / 百合厨の願望 / だし / たつきが / そんな安直な / 設 定 / に / せ / ん / でしょ / ジャパリパーク / って / 時 間 / の / 進 / み / が / サンドスター / その他 / の / 影 響 / で / 物凄く / 早 / く / なって / る / から / 人工 / 物 / が / 朽ち / て / た / り / する / ん / か / な / 聞こ え / ない / と / 言えば / ツチノコ / の / 「 / ピット 器官 / ! / 」 / って / 言 / っ / た / 後 / に / モ / ニャモ ニャ / … / って / なんか / 言って / る / けど / なんて / 言って / る / のか / 未だに / 分からない / … / メ / イ / ズ / ランナー / 的な / 人類滅亡 / とか / ちょっ と / 似てる / し / 13話 / ネタバレ / 中尉 / か / つて / の / ロッジ / で / は / フレンズと / 一 / 夜 / を / 共に / する / こと / が / でき / る / 人工 / 物 / は / ヒト / が / 使わ / なくな / る / と / たった / 数年 / で / 朽ち / る / よ / 林 / 業 / 管理 / も / やって / る / から / な / toki / o / のフレンズ / と / 言われ / て / も / 不思議 / はない / 図書館 / に / 入 / り / 浸 / って / ゴロゴロ / 絵本 / 読んで / る / フレンズ / い / ない / かな / ピッ ト器官 / ! / ・・・ / ・・・ / だとかでぇ、 / 俺には / 赤外線が見えるからな / ! / ( / ・ / ∀・) / 目 / が / か / ゆい / … / ジャパリパーク / に / も / 花粉症 / は / ある / のか / な / サーバル / が / なぜ / ハシビロコ ウ / だけ / ハシビロ / ちゃん / 呼び / なのか / が / 最大の / 謎 / 12話 / は / op / は / 一番 / 最後 / カバ ンちゃん / と / サーバルちゃんが / 仲良く / ブラン コ / に / 揺ら / れ / る / 絵 / が / 入 / る / よ / けもフ レ / を / 細かく / 見 / て / ない / 間違って / セリフ / 覚え / て / る / アプリ / 時代 / の / 知識 / を / 間違っ て / 捉え / て / る / って / いう / ので / 、 / 悶々と / 考察 / してる / 人 / の / 多 / い / こと / 多い / こと / … / … / 2chから集めた884,158行の書き込みで学習を行いまし た。 / どことなく / 硬貨 / の / 気配 / が / ある / な / 2ch / 展開 / の / ヒント / と / 世界観 / を / 膨らま / せ / る / ギミック / と / 物語 / の / 伏線 / を / 本当に / 勘 違い / して / る / 人 / は / い / ない / でしょ / / トラブっても / その / 前の / 状態 / に / 簡単 / に / 戻 / れ / る / / レシート / を / わ / た / さ / ない / 会社 / は / 100% / 脱税 / している / / すっきり / した / 。 / 実装 / 当時 / は / 2度と / や りたく / 無い / と思った / けど / / 未だ / 趣味 / な / 個人 / 用途 / で / win / 10 / に / 頑 なに / 乗り換え / ない / ヤツ / なんて / 新しい / も ん / に / 適応 / でき / ない / 老 / 化 / 始ま / っ / ちゃ / って / る / お / 人 / か / / 実家の / 猫 / がよくやる / けど / あんまり / 懐 / か れ / て / る / 気がしない / / ラデ / の / ラインナップ / は / こう / いう / 噂 / の ようだ。 / / ダメウォ / なんて / 殆ど / で / ねー / じゃねーか / ど / アホ / / 新 / retina / 、 / 旧 / retina / が / 併売 / され / て / る / 中 / で / 比較 / やら / 機種 / 選び / ごと / に / 別 / スレ / 面倒 / だ / もん / / イオク / 出 / る / だけで / 不快 / / あの / まま / やってりゃ / ジュリア / の / 撃墜 / も / 時間の問題 / だ / っ / た / し / / も / し / 踊ら / され / て / た / ら / 面白 / さ / を / 感じ / られ / る / はず / だ / / 二連 / スレ建て / オ / ッ / ツ / オ / ッ / ツ / / の / ガチャ限 / 定運極化特別ルール / って / 何 / で すか / ? / / 特に / その / 辺 / フォロー / ない / まま / あの / 状 況 / で / と / どめ / 刺 / し / 損 / ね / ました / で / 最 後 / まで / いく / の / は / な / ・・・ / / こうなると / 意外 / に / ツチノコ / が / ハードル / 低 / そう / / 強制 / アップデート / のたびに / 自分 / の / 使い方 / にあわせた / 細かい / 設定 / を / 勝手に / 戻 / す / だけ / で / なく / / マジか了 / 解した / / 今度 / は / mac / 使い / () / に / 乗り換え / た / ん / だろう / が / ・・・ / 哀れ / よ / のぅ / / 今 / 後 / も / ノエル / たくさん / 配 / って / くれ / る / なら / 問題 ない / けど / / マルチ / 魔窟 / 初めて / やった / けど / フレンド / が / いい人 / で / 上手く / 出来 / た / わ / / 咲/ くん/ も/ 女/ の/ 子/ 声優/ が/ よか た/
# Nested Pitman-Yor Language Model (NPYLM) [ベイズ階層言語モデルによる教師なし形態素解析](http://chasen.org/~daiti-m/paper/nl190segment.pdf)のC++実装です。 単語n-gramモデルは3-gramで固定です。2-gramは非対応です。 現在も開発途中です。 実装について - [ベイズ階層言語モデルによる教師なし形態素解析](http://musyoku.github.io/2016/12/14/%E3%83%99%E3%82%A4%E3%82%BA%E9%9A%8E%E5%B1%A4%E8%A8%80%E8%AA%9E%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AB%E3%82%88%E3%82%8B%E6%95%99%E5%B8%AB%E3%81%AA%E3%81%97%E5%BD%A2%E6%85%8B%E7%B4%A0%E8%A7%A3%E6%9E%90/) - [Forward filtering-Backward samplingによる単語分割でアンダーフローを防ぐ](http://musyoku.github.io/2017/04/15/forward-filtering-backward-sampling%E3%81%A7%E3%82%A2%E3%83%B3%E3%83%80%E3%83%BC%E3%83%95%E3%83%AD%E3%83%BC%E3%82%92%E9%98%B2%E3%81%90/) 文字列の単語ID化をハッシュで実装しているため、学習結果を違うコンピュータで用いると正しく分割が行えない可能性があります。 ## 更新履歴 ### 2017/11/21 - 前向き確率の計算をlogsumexpからスケーリングに変更 ## 動作環境 - Boost - C++14 - Python 3 ## 準備 ### macOS macOSの場合、PythonとBoostはともにbrewでインストールする必要があります。 #### Python 3のインストール ``` brew install python3 ``` `PYTHONPATH`を変更する必要があるかもしれません。 #### Boostのインストール ``` brew install boost-python --with-python3 ``` ### Ubuntu #### Boostのインストール ``` ./bootstrap.sh --with-python=python3 --with-python-version=3.5 ./b2 python=3.5 -d2 -j4 --prefix YOUR_BOOST_DIR install ``` Pythonのバージョンを自身のものと置き換えてください。 ### ビルド 以下のコマンドで`npylm.so`が生成され、Pythonから利用できるようになります。 ``` make install ``` `makefile`内のBoostのパスを自身の環境に合わせて書き換えてください。 Ubuntuでエラーが出る場合は代わりに以下を実行します。 ``` make install_ubuntu ``` ### MeCabのインストール 半教師あり学習をする場合は必要です。 ``` pip install mecab-python3 ``` ## 学習(教師なし) `run/unsupervised`にコード例があります。 ### 実行例 ``` python3 train.py -split 0.9 -l 8 -file YOUR_TEXTFILE ``` ### オプション - -file - 学習に使うテキストファイル - -dir - 学習に使うテキストファイル群が入っているディレクトリ - 複数ファイルを用いる場合はこちらを指定 - -split - 読み込んだ行のうち何割を学習に用いるか - 0から1の実数を指定 - 1を指定すると全データを用いてモデルを学習する - -l - 可能な単語の最大長 - 日本語なら8〜16、英語なら16〜20程度を指定 - 文の長さをN、単語の最大長をLとすると、NPYLMの計算量はO(NL^3)になる なお学習の再開はできません。 ## 学習(半教師あり) `run/semi-supervised`にコード例があります。 ### 実行例 ``` python3 train.py -train-split 0.9 -ssl-split 0.01 -l 8 -file YOUR_TEXTFILE ``` ### オプション - -file - 学習に使うテキストファイル - -dir - 学習に使うテキストファイル群が入っているディレクトリ - 複数ファイルを用いる場合はこちらを指定 - -train-split - 読み込んだ行のうち何割を学習に用いるか - 0から1の実数を指定 - 1を指定すると全データを用いてモデルを学習する - -ssl-split - 学習データのうち何割を教師データに用いるか - 0から1の実数を指定 - -l - 可能な単語の最大長 - 日本語なら8〜16、英語なら16〜20程度を指定 - 文の長さをN、単語の最大長をLとすると、NPYLMの計算量はO(NL^3)になる なお学習の再開はできません。 ## 単語分割 分割結果をファイルに保存します。 ``` python viterbi.py -file YOUR_TEXTFILE ``` ### オプション - -file - 分割するテキストファイル - -dir - 分割するテキストファイルが入っているディレクトリ - 複数ファイルをまとめて分割する場合はこれを指定 - ファイルごとに個別の出力ファイルが作成されます - -out - 出力フォルダ ## 注意事項 研究以外の用途には使用できません。 https://twitter.com/daiti_m/status/851810748263157760 実装に誤りが含まれる可能性があります。 質問等、何かありましたらissueにてお知らせください。 ## 展望 現在、[条件付確率場とベイズ階層言語モデルの統合による半教師あり形態素解析](http://chasen.org/~daiti-m/paper/nlp2011semiseg.pdf)と[半教師あり形態素解析NPYCRFの修正](http://www.anlp.jp/proceedings/annual_meeting/2016/pdf_dir/D6-3.pdf)を実装しています。 ## 実行結果 #### けものフレンズ実況スレ アンダーフローが起きていないかを確認するためにわざと1行あたりの文字数を多くして学習させています。 15万行あったデータから改行を削除し4,770行に圧縮しました。 > / アニメ / に / セルリアン / 設定 / を / 出 / す / 必要 / は / まったく / なかった / と思う / um / nk / は / 原作 / と / 漫画 / で / 終わり方 / 変え / て / た / なあ / 原作 / 有り / だ / と / 色々 / 考え / ちゃ / う / けど / オリジナル / だ / と / 余計な / 事 / 考え / なくていい / ね / 犬 / のフレンズ / だから / さ / 、 / ガキが余計な / レスつけてくんな / って / 言って / る / だろ / ジャパリパーク / 滅亡 / まで / あと / 1 / 4 / 日 / 間 / 。 / まだ / 作品 / は / 完結 / して / ない / し / この / あと / 話 / に / どう / 関わって / くる / か / わから / ない / と思う / んだが / 最終話 / まで / い / って / / そういう / こと / だった / のか / ー / ! / / って / な / った / 後で / 見返すと / また / 唸 / ら / され / そう / な / 場面 / が / 多い / ん / だよ / ね / お別れ / エンド / 想像 / する / だけで / 震え / て / くる / けど / ハッピー / エンド / なら / 受け入れ / る / しかない / よ / ね / この / スレ / は / 子供 / が / 多くて / 最終回の / 感動 / も / 萎える / だ / ろ / う / 百合 / アニメ / として / 楽しんで / る / 奴 / もいる / ん / だね / ぇ / あー / 、 / それ / は / 誤 / り / だ / 。 / 低 / レアリティ / フレンズ / にスポットライト / が / 当て / られ / て / る / こと / もある / 。 / 毒 / 抜いた / っていう / のは / 伏線 / 回収 / は / だいたい / や / る / けど / も / 鬱 / な / 感じ / に / は / して / ない / ていう / 意味 / だ / と / 解釈 / し / た / けど / 【 / � / 】 / 『けものフレンズ』 / 第 / 10話「ろっじ」 / より / 、 / 先行 / 場面 / カット / が / 到着 / ! / 宿泊 / した / ロッジ / に / 幽霊 / ……? / 【 / � / 】 / [無断転載禁止]©2ch. / net [ / 8 / 9 / 1 / 1 / 9 / 1 / 9 / 2 / 3 / ] / 実際のところ / けもの / フレンズ / は / 百合 / なのか / ? / 例えば / どこが / 百合 / っぽい / ? / いや / 、 / ある / だろ / 。 / セルリアン / が / いる / 事 / に / よって / 物語 / に / 緊張感 / が / 生まれ / る / 。 / 伏線 / が / 結構 / 大きい / 物 / な気がする / んだ / けど / これ / あと / 2話 / で / 終わ / る / のか / なぁ / ? / もしかして / 「 / ジャパリ / パーク / の / 外に / 人間 / を / 探しに / 行く / よ / ! / カバンちゃん / たち / の / 冒険は / これから / だ!」 / エンド / じゃある / まい / な / それ / でも / あれ / は / 許容 / し / 難 / かった / とおもう / ぞ / そもそも / 利 / 潤 / 第一 / でない / けもの / プロジェクト / に / 売上 / で / 優劣 / 語 / る / の / は / ナンセンス / や / ぞ / の / タイトル / も / いい / な / カバンちゃん / 「 / さーばる / 島の外に / 出 / ちゃ / う / と / 記憶 / も / なくな / る / ん / だ / よ / ? / 」 / さーばる / 「 / うん / 、 / それ / でも / いい / よ / 。 / 」 / カバンちゃん / 「 / う / うん / 、 / ダメ / 。 / ボク / が / のこ / る / よ / 。 / 」 / さーばる / 「 / え? / ・・・ / 」 / カバンちゃん / 「 / さーばる / は / 大切な / 僕 / のフレンズ / だから / 」 / わざわざ / ng / 宣言 / とか / キッズ / の / 代表 / みたいな / も / ん / だろ / 出来 / の / 良い / おさ / らい / サイト / が / ある / よ / 俺 / も / そこ / で / 予習 / し / た / タイム / アタック / 式 / の / クエスト / で / 低 / レア / 構成 / ボーナス / 入るから / 人権 / ない / ってレベル / じゃ / ない / ぞ / > / 予約 / でき / ない / のに / いつまで / 2巻 / は / ランキング / 1位 / なん / だ / よ / けもの / フレンズ / 、 / 縮めて / フレンズ / 。 / ジャパリパーク / の / 不思議 / な / 不思議な / 生き物 / 。 / 空 / に / 山 / に / 海 / に / フレンズ / は / いた / る / ところ / で / そ / の / 姿 / を / 見 / る / こと / が / 出来 / る / 。この / 少女 / 、 / ヒト / と / 呼ばれ / る / かばん。 / 相棒 / の / サーバル / と / 共に / バトル / & / ゲット / 。 / フレンズの / 数だけ / の / 出会い / が / あり / フレンズの / 数だけ / の / 別れ / がある / ( / 石塚運昇) / ニコ動 / 調子 / 悪 / そう / なんだ / けど / 上映会 / だ / いじょうぶ / か / ね / コスプレ / はよ / もう / 何度も / 書かれてる / だろうけど / 、 / 2話 / ed / で / 入 / って / きた / 身としては / ed / やっぱ / 良い / 。 / 歌 / も / 歌詞 / も / 合って / る / し / 、 / 普通の / アニメ / っぽく / ない / 廃墟 / に / した / の / も / 全部 / 良い / 。 / 情報 / が / 氾濫 / し / すぎ / て / 何 / が / ネタバレ / か / さっぱり / 分からん / けど / 、 / 1つ / ぐらい / は / 本物 / が / まじ / っ / て / そう / だな / 。 / ま、 / 来週 / を / 楽しみ / に / して / る / よ / 。 / アライさん / の / 「 / 困難は / 群れで分け合え / 」 / って / 台詞 / もしかして / アプリ版 / で / 出て / きた / こと / あった / りする / ? / それ / なら / 記憶 / の / 引 / 継ぎ / 説 / は / ほぼ / 間違え / なさ / そう / だ / けど / 神 / 展開 / で / ワロタ / これ / は / 地上波 / 流 / せ / ません / ね / ぇ / … / まあ、 / 数 / 打ちゃ当たる / 11話の / 展開 / は / 予想 / されて / なかった / 気配 / だ / が / 汗 / まあ / ニコ動 / ランキング / に / あ / っ / た / アプリ版 / ストーリー / 見 / た / 時 / 点 / で / すでに / 覚悟はできてる / 一 / 人 / でも / いいから / 出 / して / ほしかった / … / マジで / サーバル / / プレーリードッグ / / ヘラジカ / 殷周 / 伝説 / みたい / な / 肉 / マン / を / 想像 / し / ちゃ / っ / た / じゃぱりまん / の / 中身 / で / 肉 / が / ある / なら / だ / が / 無い / から / 安心 / > / 知識 / や / 性格 / まで / クローン / は / 無理 / だ / と思う / nhkで / アニメ / 放送 / から / の / 紅白 / 出場 / だと / 嫌な予感がする / 藤子不二 / 雄 / や / 大友 / 克洋や / 鳥山明 / は / エール / を / 送 / られ / た / が、 / 自分 / が / 理解 / でき / ない / もの / が / 流行 / っ / て / る / と / 怒 / った / らしい / な / 巨人の星 / とか / ス / ポ / 根 / も / のは / 、 / どうして / こんな / もの / が / 人気 / なん / だ / って / アシスタント / と / 担当 / に / 怒鳴り / 散らし / た / そう / な / 日本語 / で / しか / 伝わらない / 表現 / ある / もん / ね / ひらがな / カタカナ / 漢字 / でも / ニュアンス / 使い / 分 / け / られ / る / し / また / 同時 / に / 英語 / いい / なあ / と思う / 所 / もある / 親友 / ( / ?) / なのに / そ / の / 欠片 / も / み / られ / ない / 猫 / の / 話 / は / やめ / なさい / … / なん / か / 、 / マズルの / ところ / が / カイ / ゼル / 髭 / みたい / で / 、 / かわいい / っていうより / カッコイイ / とおもう / ん / だが / / 「 / ( / いや / 俺ら / に / 言われ / て / も / ) / 」 / って / 困惑 / する / 様子 / が / w / 藤子不二 / 雄 / は / 貶 / そう / と / 思って / た / ら / 全力で / 尊敬 / されて / 持ち / 上げ / て / くる / ので / 面倒見 / ざるを得な / かった / とか / いう / ホント / か / ウソ / か / 分からない / 逸話 / すこ / 世界 / 最高峰 / の / 日本 / アニメ / を / 字幕 / 無し / で / 観 / られ / る / 幸せ / たぶん / そうな / ん / だろう / とは思う / が / おいしい / とこ / だけ / 取ら / れ / て / 何も / やってない / 扱い / で / うん / ざ / り / して / そう / 結局 / 自分 / の / 好 / み / って事 / か / 本人 / に / しか / わから / ない / 先 / 駆 / 者 / として / の / 強烈な / 自負 / と / 、 / 追い / 抜か / れ / る / 恐怖 / かわ / あった / のだろう / と愚考 / した / 。 / スポーツ / 漫画や / 劇 / 画 / が / 流行 / っ / た / 時 / ノイローゼ / になり / かけ / た / と / 聞く / が / 、 / 90年代 / 以降 / の / トーン / バリバリ / アニメ / 絵柄 / や / 萌え / 文化 / とか / 見 / た / ら / どう / なってしまう / んだろう / あと / サーバルちゃん / かわいい / コクボス / 「 / ジカ / ン / ダヨ / 」 / 礼儀 / は / 守 / る / 人 / だろう / … / 内心 / 穏やか / ではない / が / ニコ動 / の再生数 / なんて / まったく / 当て / に / ならん / ぞ / ニコ生 / の / 来場者 / 数 / と / 有料 / 動画 / の / 再生数 / は / 当て / に / して / いい / けど / 6話 / の / へいげん / の / とき / / ヘラジカ / さん / たち / に / 「 / サーバルキャット / のサーバル / だよ / 」って / 自己紹介 / して / た / のが / なんか / 不思議 / だ / った / な / 「 / 省略 / する / 」って / 文化 / ある / ん / だ / / みたい / な / 一話 / の再生数 / で / 分かる / のは / 洗脳 / 度 / だけ / だ / な / すぐ / 解 / け / る / 洗脳 / かも知れん / が / それ / 見たい / わ / めちゃくちゃ / 好循環 / じゃない / か / … / イッカク / クジラ / の / イッカク / だ。 / って / 名乗 / って / る / キャラ / もいた / し / 。 / いや~ / メンゴメンゴ / / あ / 、 / ボス / さん / きゅー / w / アプリ版 / の / オオ / アルマジロ / の / 声で / 絡んで / ほしかった / ( / cv / 相 / 沢 / 舞 / ) / 名前 / の / 概念 / 例えば / ヘラジカ / は / 種族 / として / 言って / る / のか / 名前 / と / して / 言って / る / のか / かばんちゃん / と / 名 / 付け / て / る / から / 概念 / として / は / 在 / る / ん / だろう / けど / 果たして / クローン / は / 同じ / ポテンシャル / を / 引き / 出 / せ / る / だろう / か / 。 / 藤子f / という / か / ドラえもん / に / は / 完全 / 敗北 / を / 認め / て / た / らしい / から / ね / ドラえもん / を / 超え / る / キャラ / は / 作れ / ない / って / どうぶつ / スクープ / と / ダーウィン / と / wbc / どっち / を優先 / すべき / か / > / 捨て / た / り / しない / ん / じゃないかな / ? / ま、 / ちょっと / (ry / ロッ / ソファンタズマ / は / 先代 / サーバル / の / 技 / って / 言いたい / のは / わかる / けど / 。 / かばんちゃん / 視点 / から / 見ると / op / の / 映像 / の意味 / になる / と / いう / ダブルミーニング / なの / かも知れない / これ / は / なかなか / 面白い / 基本的に / ゲスト / フレンズって / カップル / にな / る / けど / この / 二人 / は / その後 / どうなった / ん / だろう / ね / 杏子 / も / 野中 / か / 優しく / て / 元気な / 女の子 / の / 唐突な / 涙 / は / めちゃくちゃ / くる / もの / がある / な / ppp / が / 歌 / って / る / こと / から / 考えると / あり / 得 / る / ね / 、 / 宣伝 / 曲 / そして / まんま / と / ようこそ / され / ました / なんだか / コケ / そう / な / 気がして / ならない / 12話 / だから / 話 / を / 膨らま / せ / て / 伏線 / を / 回収 / して / って / の / が / でき / た / けど / だら / っと / 続け / て / いく / と / すると / ・・・ / たまに / 見 / る / 豆腐 / や / 冷奴 / は / 何 / を / 示唆 / して / る / ん / だ / ? / 姿 / が / フレンズ / だと / 判別 / でき / ない / ん / じゃないか / とりあえず / 初版 / は / 無理 / でも / 重版分 / 買おう / 古典sf / 的に / タイ / ムスリップ / して / アプリ版 / プレイヤー / として / ミライさん / の / 運命 / を / 変え / に / 行く / とか / は / あり / そう / > / すごーい / ぞ / おー / ! / が / 正解 / で / 世界遺 / 産! / が / 空耳 / おいおい / エヴァ / か / ? / 聖域 / への / 立ち / 入り / 認可 / 、 / 正体 / 不明 / な / 新規 / フレンズ / の / 評価 / 、 / 困った / とき / の / 相談 / 役 / 色々 / やって / る / な / 輪廻転生 / して / 二人 / は / 一緒 / も / 人間 / は / 滅んで / て / かばんちゃん / は / サーバルちゃん / とずっと一緒 / も / ぶっちゃけ / 百合厨の願望 / だし / たつきが / そんな安直な / 設定 / に / せ / ん / でしょ / ジャパリパーク / って / 時間 / の / 進 / み / が / サンドスター / その他 / の / 影響 / で / 物凄く / 早 / く / なって / る / から / 人工 / 物 / が / 朽ち / て / た / り / する / ん / か / な / 聞こえ / ない / と / 言えば / ツチノコ / の / 「 / ピット器官 / ! / 」 / って / 言 / っ / た / 後 / に / モ / ニャモニャ / … / って / なんか / 言って / る / けど / なんて / 言って / る / のか / 未だに / 分からない / … / メ / イ / ズ / ランナー / 的な / 人類滅亡 / とか / ちょっと / 似てる / し / 13話 / ネタバレ / 中尉 / か / つて / の / ロッジ / で / は / フレンズと / 一 / 夜 / を / 共に / する / こと / が / でき / る / 人工 / 物 / は / ヒト / が / 使わ / なくな / る / と / たった / 数年 / で / 朽ち / る / よ / 林 / 業 / 管理 / も / やって / る / から / な / toki / o / のフレンズ / と / 言われ / て / も / 不思議 / はない / 図書館 / に / 入 / り / 浸 / って / ゴロゴロ / 絵本 / 読んで / る / フレンズ / い / ない / かな / ピット器官 / ! / ・・・ / ・・・ / だとかでぇ、 / 俺には / 赤外線が見えるからな / ! / ( / ・ / ∀・) / 目 / が / か / ゆい / … / ジャパリパーク / に / も / 花粉症 / は / ある / のか / な / サーバル / が / なぜ / ハシビロコウ / だけ / ハシビロ / ちゃん / 呼び / なのか / が / 最大の / 謎 / 12話 / は / op / は / 一番 / 最後 / カバンちゃん / と / サーバルちゃんが / 仲良く / ブランコ / に / 揺ら / れ / る / 絵 / が / 入 / る / よ / けもフレ / を / 細かく / 見 / て / ない / 間違って / セリフ / 覚え / て / る / アプリ / 時代 / の / 知識 / を / 間違って / 捉え / て / る / って / いう / ので / 、 / 悶々と / 考察 / してる / 人 / の / 多 / い / こと / 多い / こと / … / … / #### 2ch 2chから集めた884,158行の書き込みで学習を行いました。 > / どことなく / 硬貨 / の / 気配 / が / ある / な / > / 展開 / の / ヒント / と / 世界観 / を / 膨らま / せ / る / ギミック / と / 物語 / の / 伏線 / を / 本当に / 勘違い / して / る / 人 / は / い / ない / でしょ / > / トラブっても / その / 前の / 状態 / に / 簡単 / に / 戻 / れ / る / > / レシート / を / わ / た / さ / ない / 会社 / は / 100% / 脱税 / している / > / すっきり / した / 。 / 実装 / 当時 / は / 2度と / やりたく / 無い / と思った / けど / > / 未だ / 趣味 / な / 個人 / 用途 / で / win / 10 / に / 頑なに / 乗り換え / ない / ヤツ / なんて / 新しい / もん / に / 適応 / でき / ない / 老 / 化 / 始ま / っ / ちゃ / って / る / お / 人 / か / > / 実家の / 猫 / がよくやる / けど / あんまり / 懐 / かれ / て / る / 気がしない / > / ラデ / の / ラインナップ / は / こう / いう / 噂 / のようだ。 / > / ダメウォ / なんて / 殆ど / で / ねー / じゃねーか / ど / アホ / > / 新 / retina / 、 / 旧 / retina / が / 併売 / され / て / る / 中 / で / 比較 / やら / 機種 / 選び / ごと / に / 別 / スレ / 面倒 / だ / もん / > / イオク / 出 / る / だけで / 不快 / > / あの / まま / やってりゃ / ジュリア / の / 撃墜 / も / 時間の問題 / だ / っ / た / し / > / も / し / 踊ら / され / て / た / ら / 面白 / さ / を / 感じ / られ / る / はず / だ / > / 二連 / スレ建て / オ / ッ / ツ / オ / ッ / ツ / > / の / ガチャ限 / 定運極化特別ルール / って / 何 / ですか / ? / > / 特に / その / 辺 / フォロー / ない / まま / あの / 状況 / で / と / どめ / 刺 / し / 損 / ね / ました / で / 最後 / まで / いく / の / は / な / ・・・ / > / こうなると / 意外 / に / ツチノコ / が / ハードル / 低 / そう / > / 強制 / アップデート / のたびに / 自分 / の / 使い方 / にあわせた / 細かい / 設定 / を / 勝手に / 戻 / す / だけ / で / なく / > / マジか了 / 解した / > / 今度 / は / mac / 使い / () / に / 乗り換え / た / ん / だろう / が / ・・・ / 哀れ / よ / のぅ / / 今 / 後 / も / ノエル / たくさん / 配 / って / くれ / る / なら / 問題ない / けど / > / マルチ / 魔窟 / 初めて / やった / けど / フレンド / が / いい人 / で / 上手く / 出来 / た / わ / > / 咲 / くん / も / 女 / の / 子 / 声優 / が / よかった / > / 確かに / 少し / づつ / エンジン / かか / っ / て / き / た / 感じ / が / する / な / > / くっそ / 、 / まず / ラファエル / が / 出 / ねえ / > / 第六 / 世代 / cpu / で / 組 / もう / と思って / る / けど / win10 / 買 / う / の / は / は / 待った / 方が / いい / のか / な / これ / … / (´・ω・`) / > / 移動 / 先 / で / ある程度 / なんで / も / で / き / る / mbp / は / 本当に / いい / 製品 / だ / と思います / > / いや / 俺 / は / そこ / が / 好き / > / と言えば / ギャラホルン / 崩壊 / しそう / > / オオクニ欲 / しかった /
[ "Morphology", "Syntactic Text Processing", "Text Segmentation" ]
[]
true
https://github.com/Kyubyong/neural_japanese_transliterator
2017-01-01T04:20:54Z
Can neural networks transliterate Romaji into Japanese correctly?
Kyubyong / neural_japanese_transliterator Public Branches Tags Go to file Go to file Code data images results .gitignore LICEN… READ… annota… data_l… eval.py hyperp… modul… networ… prepro.py train.py utils.py About Can neural networks transliterate Romaji into Japanese correctly? # language # japanese # transliteration Readme Apache-2.0 license Activity 173 stars 9 watching 17 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues 2 Pull requests Actions Projects Security Insights Neural Japanese Transliteration—can you do better than SwiftKey™ Keyboard? README Apache-2.0 license In this project, I examine how well neural networks can convert Roman letters into the Japanese script, i.e., Hiragana, Katakana, or Kanji. The accuracy evaluation results for 896 Japanese test sentences outperform the SwiftKey™ keyboard, a well-known smartphone multilingual keyboard, by a small margin. It seems that neural networks can learn this task easily and quickly. NumPy >= 1.11.1 TensorFlow == 1.2 regex (Enables us to use convenient regular expression posix) janome (for morph analysis) romkan (for converting kana to romaji) The modern Japanese writing system employs three scripts: Hiragana, Katakana, and Chinese characters (kanji in Japanese). Hiragana and Katakana are phonetic, while Chinese characters are not. In the digital environment, people mostly type Roman alphabet (a.k.a. Romaji) to write Japanese. Basically, they rely on the suggestion the transliteration engine returns. Therefore, how accurately an engine can predict the word(s) the user has in mind is crucial with respect to a Japanese keyboard. Look at the animation on the right. You are to type "nihongo", then the machine shows 日本語 on the suggestion bar. I frame the problem as a seq2seq task. Inputs: nihongo。 Outputs: 日本語。 For training, we used Leipzig Japanese Corpus. For evaluation, 896 Japanese sentences were collected separately. See data/test.csv . Abstract Requirements Background Problem Formulation Data I adopted the encoder and the first decoder architecture of Tacotron, a speech synthesis model. hyperparams.py contains hyperparameters. You can change the value if necessary. annotate.py makes Romaji-Japanese parallel sentences. prepro.py defines and makes vocabulary and training data. modules.py has building blocks for networks. networks.py has encoding and decoding networks. data_load.py covers some functions regarding data loading. utils.py has utility functions. train.py is about training. eval.py is about evaluation. STEP 1. Download Leipzig Japanese Corpus and extract jpn_news_2005-2008_1M- sentences.txt to data/ folder. STEP 2. Adjust hyperparameters in hyperparams.py if necessary. STEP 3. Run python annotate.py . STEP 4. Run python prepro.py . Or download the preprocessed files. STEP 5. Run train.py . Or download the pretrained files. STEP 1. Run eval.py . STEP 2. Install the latest SwiftKey keyboard app and manually test it for the same sentences. (Don't worry. You don't have to because I've done it:)) The training curve looks like this. Model Architecture Contents Training Testing Results The evaluation metric is CER (Character Error Rate). Its formula is
# Neural Japanese Transliteration—can you do better than SwiftKey™ Keyboard? ## Abstract In this project, I examine how well neural networks can convert Roman letters into the Japanese script, i.e., Hiragana, Katakana, or Kanji. The accuracy evaluation results for 896 Japanese test sentences outperform the SwiftKey™ keyboard, a well-known smartphone multilingual keyboard, by a small margin. It seems that neural networks can learn this task easily and quickly. ## Requirements * NumPy >= 1.11.1 * TensorFlow == 1.2 * regex (Enables us to use convenient regular expression posix) * janome (for morph analysis) * romkan (for converting kana to romaji) ## Background <img src="images/swiftkey_ja.gif" width="200" align="right"> * The modern Japanese writing system employs three scripts: Hiragana, Katakana, and Chinese characters (kanji in Japanese). * Hiragana and Katakana are phonetic, while Chinese characters are not. * In the digital environment, people mostly type Roman alphabet (a.k.a. Romaji) to write Japanese. Basically, they rely on the suggestion the transliteration engine returns. Therefore, how accurately an engine can predict the word(s) the user has in mind is crucial with respect to a Japanese keyboard. * Look at the animation on the right. You are to type "nihongo", then the machine shows 日本語 on the suggestion bar. ## Problem Formulation I frame the problem as a seq2seq task. Inputs: nihongo。<br> Outputs: 日本語。 ## Data * For training, we used [Leipzig Japanese Corpus](http://corpora2.informatik.uni-leipzig.de/download.html). * For evaluation, 896 Japanese sentences were collected separately. See `data/test.csv`. ## Model Architecture I adopted the encoder and the first decoder architecture of [Tacotron](https://arxiv.org/abs/1703.10135), a speech synthesis model. ## Contents * `hyperparams.py` contains hyperparameters. You can change the value if necessary. * `annotate.py` makes Romaji-Japanese parallel sentences. * `prepro.py` defines and makes vocabulary and training data. * `modules.py` has building blocks for networks. * `networks.py` has encoding and decoding networks. * `data_load.py` covers some functions regarding data loading. * `utils.py` has utility functions. * `train.py` is about training. * `eval.py` is about evaluation. ## Training * STEP 1. Download [Leipzig Japanese Corpus](http://corpora2.informatik.uni-leipzig.de/downloads/jpn_news_2005-2008_1M-text.tar.gz) and extract `jpn_news_2005-2008_1M-sentences.txt` to `data/` folder. * STEP 2. Adjust hyperparameters in `hyperparams.py` if necessary. * STEP 3. Run `python annotate.py`. * STEP 4. Run `python prepro.py`. Or download the [preprocessed files](https://www.dropbox.com/s/tv81rxcjr3x9eh1/preprocessed.zip?dl=0). * STEP 5. Run `train.py`. Or download the [pretrained files](https://www.dropbox.com/s/wrbr7tnf4zva4bj/logdir.zip?dl=0). ## Testing * STEP 1. Run `eval.py`. * STEP 2. Install the latest SwiftKey keyboard app and manually test it for the same sentences. (Don't worry. You don't have to because I've done it:)) ## Results The training curve looks like this. <img src="images/training_curve.png"> The evaluation metric is CER (Character Error Rate). Its formula is * edit distance / # characters = CER. The following is the results after 13 epochs, or 79,898 global steps. Details are available in `results/*.csv`. | Proposed (Greedy decoding) | Proposed (Beam decoding) | SwiftKey 6.4.8.57 | |--- |--- |--- | |1595/12057=0.132 | 1517/12057=0.125 | 1640/12057=0.136|
[ "Language Models", "Text Generation" ]
[]
true
https://github.com/agatan/yoin
2017-01-31T14:02:09Z
A Japanese Morphological Analyzer written in pure Rust
agatan / yoin Public Branches Tags Go to file Go to file Code benches src tests yoin-core yoin-ip… .gitignore .travis.… Cargo.l… Cargo.… LICEN… NOTIC… READ… build build unknown unknown crates.io crates.io v0.0.1 v0.0.1 yoin is a Japanese morphological analyze engine written in pure Rust. mecab-ipadic is embedded in yoin . About A Japanese Morphological Analyzer written in pure Rust # nlp # rust # japanese Readme MIT license Activity 26 stars 2 watching 2 forks Report repository Releases No releases published Packages No packages published Languages Rust 100.0% Code Issues 2 Pull requests Actions Projects Security Insights Yoin - A Japanese Morphological Analyzer :) $ yoin すもももももももものうち すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ README MIT license yoin is available on crates.io yoin can be included in your Cargo project like this: and write your code like this: By default, yoin reads lines from stdin, analyzes each line, and outputs results. も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS Build & Install CLI :) $ cargo install yoin # or :) $ git clone https://github.com/agatan/yoin :) $ cd yoin && cargo install Library [dependencies] yoin = "*" extern crate yoin; Usage - CLI :) $ yoin すもももももももものうち すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS そこではなしは終わりになった そこで 接続詞,*,*,*,*,*,そこで,ソコデ,ソコデ Or, reads from file. This software in under the MIT License and contains the MeCab-ipadic model. See LICENSE and NOTICE.txt for more details. はなし 名詞,一般,*,*,*,*,はなし,ハナシ,ハナシ は 助詞,係助詞,*,*,*,*,は,ハ,ワ 終わり 動詞,自立,*,*,五段・ラ行,連用形,終わる,オワリ,オワリ に 助詞,格助詞,一般,*,*,*,に,ニ,ニ なっ 動詞,自立,*,*,五段・ラ行,連用タ接続,なる,ナッ,ナッ た 助動詞,*,*,*,特殊・タ,基本形,た,タ,タ EOS :) $ cat input.txt すもももももももものうち :) $ yoin --file input.txt すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS LICENSE
## Yoin - A Japanese Morphological Analyzer [![Build Status](https://travis-ci.org/agatan/yoin.svg?branch=master)](https://travis-ci.org/agatan/yoin) [![Version info](https://img.shields.io/crates/v/yoin.svg)](https://crates.io/crates/yoin) `yoin` is a Japanese morphological analyze engine written in pure Rust. [mecab-ipadic](https://taku910.github.io/mecab/) is embedded in `yoin`. ```sh :) $ yoin すもももももももものうち すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS ``` ## Build & Install *`yoin` is available on [crates.io](https://crates.io)* ### CLI ```sh :) $ cargo install yoin # or :) $ git clone https://github.com/agatan/yoin :) $ cd yoin && cargo install ``` ### Library yoin can be included in your Cargo project like this: ```toml [dependencies] yoin = "*" ``` and write your code like this: ```rust extern crate yoin; ``` ## Usage - CLI By default, `yoin` reads lines from stdin, analyzes each line, and outputs results. ```sh :) $ yoin すもももももももものうち すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS そこではなしは終わりになった そこで 接続詞,*,*,*,*,*,そこで,ソコデ,ソコデ はなし 名詞,一般,*,*,*,*,はなし,ハナシ,ハナシ は 助詞,係助詞,*,*,*,*,は,ハ,ワ 終わり 動詞,自立,*,*,五段・ラ行,連用形,終わる,オワリ,オワリ に 助詞,格助詞,一般,*,*,*,に,ニ,ニ なっ 動詞,自立,*,*,五段・ラ行,連用タ接続,なる,ナッ,ナッ た 助動詞,*,*,*,特殊・タ,基本形,た,タ,タ EOS ``` Or, reads from file. ```sh :) $ cat input.txt すもももももももものうち :) $ yoin --file input.txt すもも 名詞,一般,*,*,*,*,すもも,スモモ,スモモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ も 助詞,係助詞,*,*,*,*,も,モ,モ もも 名詞,一般,*,*,*,*,もも,モモ,モモ の 助詞,連体化,*,*,*,*,の,ノ,ノ うち 名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ EOS ``` ## LICENSE This software in under the MIT License and contains the MeCab-ipadic model. See `LICENSE` and `NOTICE.txt` for more details.
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/tmu-nlp/simple-jppdb
2017-03-09T08:38:20Z
A paraphrase database for Japanese text simplification
tmu-nlp / simple-jppdb Public Branches Tags Go to file Go to file Code READ… comple… simple-… word-l… 日本語のテキスト平易化のために利用可能な2つの大規 模な辞書を構築しました。 Wikipediaから得られる統計 情報をもとに、日本語の各単語に日本語教育語彙表に由 来する3段階の難易度(初級・中級・上級)を付与しま した。 ##1. 単語難易度辞書 (word-level-japanese) 57万単語に ついて単語 <TAB> 難易度の情報を収録しました。 ただ し、難易度は1が初級、2が中級、3が上級を意味しま す。 Wikipediaの本文をMeCabとmecab-ipadic-NEologd で分割したものを単語とし、出現頻度が5回以上の単語 を対象としました。 ##2. 平易な言い換え辞書 (simple-ppdb-japanese) 34万 単語対について言い換え確率 <TAB> 難解な単語 <TAB> 平 易な単語 <TAB> 難解な単語の難易度 <TAB> 平易な単語の難 易度の情報を収録しました。 ただし、難易度は1が初 級、2が中級、3が上級を意味します。 PPDB: Japanese (日本語言い換えデータベース)のうち、上記の単語難 易度辞書に掲載されている単語のみからなる言い換え対 を対象としました。 About A paraphrase database for Japanese text simplification Readme Activity Custom properties 32 stars 5 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Simple PPDB: Japanese README 日本語教育語彙表に掲載されている単語難易度の情報 は?に置換して隠しています。 日本語教育語彙表の利用 規約に同意できる場合は、まず日本語教育語彙表をダウ ンロードしてください。 python complement.py /path/to/日本語教育語彙表.csv を実行すると、すべての 情報が補完されます。 梶原智之, 小町守. Simple PPDB: Japanese. 言語処理学 会第23回年次大会, P8-5, pp.529-532, 2017. Creative Commons Attribution Share-Alike Licenseでの 利用が可能です。 ただし、日本語教育語彙表の単語難 易度の情報を使う場合は、日本語教育語彙表のライセン スをご確認ください。 For questions, please contact Tomoyuki Kajiwara at Tokyo Metropolitan University 注意事項 参考文献 ライセンス
# Simple PPDB: Japanese 日本語のテキスト平易化のために利用可能な2つの大規模な辞書を構築しました。 Wikipediaから得られる統計情報をもとに、日本語の各単語に[日本語教育語彙表](http://jhlee.sakura.ne.jp/JEV.html)に由来する3段階の難易度(初級・中級・上級)を付与しました。 ##1. 単語難易度辞書 (word-level-japanese) 57万単語について`単語 <TAB> 難易度`の情報を収録しました。 ただし、難易度は1が初級、2が中級、3が上級を意味します。 Wikipediaの本文を[MeCab](http://taku910.github.io/mecab/)と[mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd)で分割したものを単語とし、出現頻度が5回以上の単語を対象としました。 ##2. 平易な言い換え辞書 (simple-ppdb-japanese) 34万単語対について`言い換え確率 <TAB> 難解な単語 <TAB> 平易な単語 <TAB> 難解な単語の難易度 <TAB> 平易な単語の難易度`の情報を収録しました。 ただし、難易度は1が初級、2が中級、3が上級を意味します。 [PPDB: Japanese(日本語言い換えデータベース)](http://ahclab.naist.jp/resource/jppdb/)のうち、上記の単語難易度辞書に掲載されている単語のみからなる言い換え対を対象としました。 ## 注意事項 [日本語教育語彙表](http://jhlee.sakura.ne.jp/JEV.html)に掲載されている単語難易度の情報は?に置換して隠しています。 日本語教育語彙表の利用規約に同意できる場合は、まず日本語教育語彙表をダウンロードしてください。 `python complement.py /path/to/日本語教育語彙表.csv`を実行すると、すべての情報が補完されます。 ## 参考文献 梶原智之, 小町守. Simple PPDB: Japanese. 言語処理学会第23回年次大会, P8-5, pp.529-532, 2017. ## ライセンス [Creative Commons Attribution Share-Alike License](http://creativecommons.org/licenses/by-sa/3.0/)での利用が可能です。 ただし、[日本語教育語彙表](http://jhlee.sakura.ne.jp/JEV.html)の単語難易度の情報を使う場合は、日本語教育語彙表のライセンスをご確認ください。 For questions, please contact [Tomoyuki Kajiwara at Tokyo Metropolitan University](https://sites.google.com/site/moguranosenshi/).
[ "Paraphrasing", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/twada/japanese-numerals-to-number
2017-03-18T04:14:04Z
Converts Japanese Numerals into number
twada / japanese-numerals-to-number Public Branches Tags Go to file Go to file Code .github/workflows test .gitignore CHANGELOG.… LICENSE README.md index.js package-lock.j… package.json Converts Japanese Numerals into number . Node.js CI Node.js CI no status no status code style code style semistandard semistandard license license MIT MIT About Converts Japanese Numerals into number Readme MIT license Activity 58 stars 3 watching 1 fork Report repository Releases 4 tags Packages No packages published Contributors 2 Languages JavaScript 100.0% Code Issues Pull requests 1 Actions Projects Security Insights japanese-numerals-to-number USAGE const ja2num = require('japanese-numerals-to-number'); const assert = require('assert'); assert(ja2num('〇') === 0); assert(ja2num('一億二千三百四十五万六千七百八十九') === 123456789); assert(ja2num('二千十七') === 2017); assert(ja2num('二〇一七') === 2017); // supports positional notation assert.throws(() => ja2num(null), TypeError); assert.throws(() => ja2num('二十三十'), Error); assert.throws(() => ja2num('億千万'), Error); assert(ja2num('壱百壱拾') === 110); // supports formal numerals (daiji) used in legal documents assert.throws(() => ja2num('一百一十'), Error); README MIT license Supports Japanese Numerals between 0 (that is '〇' ) and Number.MAX_SAFE_INTEGER ( 9007199254740991 , that is '九千七兆千九百九十二億五千四百七十四万九百九十一' ). Any number larger than Number.MAX_SAFE_INTEGER is not guaranteed. Throws TypeError when argument is not a string. Throws Error when argument is an invalid Japanese Numerals. 〇, 一, 二, 三, 四, 五, 六, 七, 八, 九 十, 百, 千, 万, 億, 兆 壱, 弐, 参, 拾 Takuto Wada API var convertedNum = ja2num(stringOfJapaneseNumerals); supported characters numbers 0 to 9 names of powers of 10 formal numerals (daiji) used in legal documents INSTALL $ npm install japanese-numerals-to-number AUTHOR LICENSE
japanese-numerals-to-number ================================ Converts [Japanese Numerals](https://en.wikipedia.org/wiki/Japanese_numerals) into `number`. [![Build Status][ci-image]][ci-url] [![NPM version][npm-image]][npm-url] [![Code Style][style-image]][style-url] [![License][license-image]][license-url] USAGE --------------------------------------- ```js const ja2num = require('japanese-numerals-to-number'); const assert = require('assert'); assert(ja2num('〇') === 0); assert(ja2num('一億二千三百四十五万六千七百八十九') === 123456789); assert(ja2num('二千十七') === 2017); assert(ja2num('二〇一七') === 2017); // supports positional notation assert.throws(() => ja2num(null), TypeError); assert.throws(() => ja2num('二十三十'), Error); assert.throws(() => ja2num('億千万'), Error); assert(ja2num('壱百壱拾') === 110); // supports formal numerals (daiji) used in legal documents assert.throws(() => ja2num('一百一十'), Error); ``` API --------------------------------------- ### var convertedNum = ja2num(stringOfJapaneseNumerals); - Supports Japanese Numerals between `0` (that is `'〇'`) and [Number.MAX_SAFE_INTEGER](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER) (`9007199254740991`, that is `'九千七兆千九百九十二億五千四百七十四万九百九十一'`). Any number larger than `Number.MAX_SAFE_INTEGER` is not guaranteed. - Throws `TypeError` when argument is not a string. - Throws `Error` when argument is an invalid Japanese Numerals. ### supported characters #### numbers 0 to 9 - `〇`, `一`, `二`, `三`, `四`, `五`, `六`, `七`, `八`, `九` #### names of powers of 10 - `十`, `百`, `千`, `万`, `億`, `兆` #### [formal numerals (daiji) used in legal documents](https://en.wikipedia.org/wiki/Japanese_numerals#Formal_numbers) - `壱`, `弐`, `参`, `拾` INSTALL --------------------------------------- ```sh $ npm install japanese-numerals-to-number ``` AUTHOR --------------------------------------- * [Takuto Wada](https://github.com/twada) LICENSE --------------------------------------- Licensed under the [MIT](https://github.com/twada/japanese-numerals-to-number/blob/master/LICENSE) license. [npm-url]: https://npmjs.org/package/japanese-numerals-to-number [npm-image]: https://badge.fury.io/js/japanese-numerals-to-number.svg [ci-image]: https://github.com/twada/japanese-numerals-to-number/workflows/Node.js%20CI/badge.svg [ci-url]: https://github.com/twada/japanese-numerals-to-number/actions?query=workflow%3A%22Node.js+CI%22 [style-url]: https://github.com/Flet/semistandard [style-image]: https://img.shields.io/badge/code%20style-semistandard-brightgreen.svg [license-url]: https://github.com/twada/japanese-numerals-to-number/blob/master/LICENSE [license-image]: https://img.shields.io/badge/license-MIT-brightgreen.svg
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/Greatdane/Convert-Numbers-to-Japanese
2017-03-24T12:30:01Z
Converts Arabic numerals, or 'western' style numbers, to a Japanese context.
Greatdane / Convert-Numbers-to-Japanese Public Branches Tags Go to file Go to file Code Conver… LICEN… READ… Converts Arabic numerals, or 'western' style numbers to a Japanese context. python python 3.x 3.x Types; "kanji", "hiragana", "romaji", "all" "all" will return a list of kanji, hiragana and romaji conversions Can also convert Kanji to 'western' number using: About Converts Arabic numerals, or 'western' style numbers, to a Japanese context. www.japanesenumberconverter.… # japanese # japanese-language Readme MIT license Activity 44 stars 2 watching 6 forks Report repository Releases No releases published Packages No packages published Contributors 2 Languages Python 100.0% Code Issues 1 Pull requests Actions Projects Security Insights Convert-Numbers-to- Japanese Usage: Convert(number,type) ConvertKanji(kanji) Examples: Convert(20.8,"romaji") Convert(2000,"hiragana") Convert(458,"kanji") README MIT license Online version available here: https://www.japanesenumberconverter.com/ Convert("458222","kanji") Convert(31400,"all") ConvertKanji("二十点五") ConvertKanji("二十五")
# Convert-Numbers-to-Japanese Converts Arabic numerals, or 'western' style numbers to a Japanese context. ![Python 3x](https://img.shields.io/badge/python-3.x-blue.svg) ## Usage: ``` bash Convert(number,type) ``` **Types;** "kanji", "hiragana", "romaji", "all"\ "all" will return a list of kanji, hiragana and romaji conversions Can also convert Kanji to 'western' number using: ``` bash ConvertKanji(kanji) ``` ### Examples: ``` bash Convert(20.8,"romaji") Convert(2000,"hiragana") Convert(458,"kanji") Convert("458222","kanji") Convert(31400,"all") ``` ``` bash ConvertKanji("二十点五") ConvertKanji("二十五") ``` Online version available here: https://www.japanesenumberconverter.com/
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/esrille/ibus-hiragana
2017-04-27T18:50:59Z
ひらがなIME for IBus
esrille / ibus-hiragana Public Branches Tags Go to file Go to file Code data debian dic dic_tools docs docs_md engine layouts man meson po setup tests CONT… COPYI… LICEN… NOTICE READ… READ… READ… ibus-hi… About ひらがなIME for IBus esrille.github.io/ibus-hiragana/ # ime # ibus Readme Apache-2.0, GPL-2.0 licenses found Activity Custom properties 68 stars 5 watching 4 forks Report repository Releases 42 ibus-hiragana-1.0 Latest last week + 41 releases Languages Python 92.5% Meson 4.3% Shell 1.9% HTML 1.3% Code Issues 5 Pull requests Actions Security Insights meson… meson… require…  「ひらがなIME」は、平明な日本語の文章を入力しやす へいめい にほんご ぶんしょう にゅうりょく くした日本語インプットメソッドです。これまでのインプ にほんご ットメソッドでは、むずかしい漢字のおおい文章をかいて かんじ ぶんしょう しまいがちでした。自分でもよめないような漢字をつかっ じぶん かんじ てしまっていることもよくありました。  「ひらがなIME」の漢字辞書は、人名や地名をのぞけば、 かんじじしょ じんめい ちめい 常用漢字表のなかの漢字だけでつくられています。ひつ じょうようかんじひょう かんじ ようがあれば、学校でそれまでにならった漢字だけをつか がっこう かんじ うように設定することもできます。 せってい  「ひらがなIME」では、文字を入力する作業と、漢字に も じ にゅうりょく さぎょう かんじ 変換する作業は、かんぜんにわかれています。キーボード へんかん さぎょう でうった文字は、漢字に変換されることなく、ひらがなだ も じ かんじ へんかん けの文章としてうちだされます。漢字をつかいたいとき ぶんしょう かんじ は、本文中のひらがなをあとから、いつでも漢字におきか ほんぶんちゅう かんじ えることができます。入力中にひとつひとつ漢字に変換 にゅうりょくちゅう かんじ へんかん していく必要はありません。 ひつよう ひらがなIME for IBus アイエムイーフォーアイバス README Apache-2.0 license GPL-2.0 license  また、「ふりがなパッド」を「ひらがなIME」といっしょ につかうと、入力した漢字に自動的にふりがなをつけて にゅうりょく かんじ じどうてき いくことができます。いまでは、だれもがかんたんに漢字 かんじ をよめるわけではないことがわかってきました。学校のデ がっこう ジタル教科書も総ルビのものが用意されるようになってい きょうかしょ そう ようい ます。これからは、漢字をよめなくてもこまらないような かんじ 社会にしていくこともたいせつなことです。 しゃかい しりょう
# Hiragana IME for IBus **Hiragana IME** is a Japanese input method that makes it easier to input plain Japanese sentences. With previous input methods, people often wrote sentences with difficult kanji characters. Many found themselves using kanji they couldn't even read. The kanji dictionary in **Hiragana IME** is assembled using only the kanji characters from the Jōyō Kanji list, excluding names of people and places. If necessary, you can also select a kanji dictionary that includes only the kanji characters you've learned so far at school. In **Hiragana IME**, the steps for inputting characters and converting them to kanji are separate. As you type on the keyboard, characters are entered as hiragana-only sentences without automatic kanji conversion. If you want to use kanji, you can easily replace hiragana characters anywhere in the text with kanji. There's no need to convert hiragana into kanji while typing. ![screenshot](docs/screenshot.png) Additionally, when using the [FuriganaPad](https://github.com/esrille/furiganapad) with **Hiragana IME**, you can automatically add Furigana, or readings, to the inputted kanji. Not everyone can easily read kanji due to dyslexia and other reasons. Digital Japanese textbooks now include Furigana for Japanese schoolchildren. It is crucial to reshape our society so that no one is left behind just because they cannot read kanji.
[ "Language Models", "Syntactic Text Processing" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/borh/aozora-corpus-generator
2017-10-09T07:11:25Z
Generates plain or tokenized text files from the Aozora Bunko
borh / aozora-corpus-generator Public Branches Tags Go to file Go to file Code libs .gitignore LICENSE Pipfile Pipfile.lock README.md aozora-corpus-generator… author-title.csv jisx0213-2004-std.txt ndc-3digits.tsv supplemental-authors.csv unidic2udpos.py Generates plain or tokenized text files from the Aozora Bunko [English] for use in corpus-based studies. Primarily for use in an upcoming research project. WARNING: Currently, the tool requires a checked-out repository of the Aozora Bunko. A git clone will take up to several hours and take up around 14GB of space. Future versions will ease this requirement. You must install MeCab and UniDic. On Debian-based distros, the command below should suffice: MacOS users can install the native dependencies with: About Generates plain or tokenized text files from the Aozora Bunko # python # japanese # corpus # mecab # aozorabunko # aozora-bunko Readme BSD-2-Clause license Activity 8 stars 2 watching 4 forks Report repository Releases No releases published Packages No packages published Contributors 2 borh Bor Hodošček dependabot[bot] Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Aozora Bunko Corpus Generator Goals Requirements Aozora Bunko Repository Native sudo apt install -y mecab libmecab-dev unidic-mecab brew install mecab mecab-unidic README BSD-2-Clause license Python 3 is required. All testing is done on the latest stable version (currently 3.6.2), but a slightly older version should also work. Native dependencies must be installed before installing the Python dependencies (natto-py needs MeCab). This project uses pipenv. For existing users, the command below should suffice: For those using pip , you can install all the dependencies using the command below: Clone the repository and run: You may also use the Pipenv script shortcut to run the program: Python pipenv install pipenv shell pip install natto-py jaconv lxml html5_parser Usage git clone https://github.com/borh/aozora-corpus-generator.git cd aozora-corpus-generator pipenv install pipenv shell python aozora-corpus-generator.py --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' -- pipenv run aozora --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' --parallel Parameters python aozora-corpus-generator.py --help usage: aozora-corpus-generator.py [-h] [--features FEATURES [FEATURES ...]] [--features-opening-delim FEATURES_OPENING_DELIM] [--features-closing-delim FEATURES_CLOSING_DELIM] [--author-title-csv AUTHOR_TITLE_CSV [AUTHOR_TITLE_CSV ...]] [--aozora-bunko-repository AOZORA_BUNKO_REPOSITORY] --out OUT [--all] [--min-tokens MIN_TOKENS] [--no-punc] [--incremental] [--parallel] [--verbose] aozora-corpus-generator extracts given author and book pairs from Aozora Bunko and formats them into (optionally tokenized) plain text files. optional arguments: -h, --help show this help message and exit --features FEATURES [FEATURES ...] specify which features should be extracted from morphemes (default='orth') --features-opening-delim FEATURES_OPENING_DELIM specify opening char to use when outputting multiple features --features-closing-delim FEATURES_CLOSING_DELIM specify closing char to use when outputting multiple features --author-title-csv AUTHOR_TITLE_CSV [AUTHOR_TITLE_CSV ...] one or more UTF-8 formatted CSV input file(s) (default='author-title.csv') --aozora-bunko-repository AOZORA_BUNKO_REPOSITORY path to the aozorabunko git repository (default='aozor abunko/index_pages/list_person_all_extended_utf8.zip') --out OUT output (plain, tokenized) files into given output directory (default=Corpora) --all specify if all Aozora Bunko texts should be extracted, ignoring the author-title.csv (default=False) --min-tokens MIN_TOKENS specify minimum token count to filter files by (default=30000) --no-punc specify if punctuation should be discarded from You may specify multiple values for the --features and author-title-csv parameters by putting a space between them like so: -- features orth lemma pos1 . "Gaiji" characters with provided JIS X 0213 codepoints are converted to their equivalent Unicode codepoint. Aozora Bunko is conservative in encoding rare Kanji, and, therefore, uses images (html version) or textual descriptions (plaintext version). Words are sometimes emphasized in Japanese text with dots above characters, while Aozora Bunko uses bold text in their place. Emphasis tags are currently stripped. tokenized version (default=False) --incremental do not overwrite existing corpus files (default=False) --parallel specify if processing should be done in parallel (default=True) --verbose turns on verbose logging (default=False) Example usage: python aozora-corpus-generator.py --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' --parallel Issues
# Aozora Bunko Corpus Generator Generates plain or tokenized text files from the [Aozora Bunko](http://www.aozora.gr.jp/) [[English](https://en.wikipedia.org/wiki/Aozora_Bunko)] for use in corpus-based studies. # Goals Primarily for use in an upcoming research project. # Requirements ## Aozora Bunko Repository **WARNING**: Currently, the tool requires a [checked-out repository of the Aozora Bunko](https://github.com/aozorabunko/aozorabunko). A git clone will take up to several hours and take up around **14**GB of space. Future versions will ease this requirement. ## Native You must install [MeCab](https://github.com/taku910/mecab) and [UniDic](https://osdn.net/projects/unidic/). On Debian-based distros, the command below should suffice: ```bash sudo apt install -y mecab libmecab-dev unidic-mecab ``` MacOS users can install the native dependencies with: ```bash brew install mecab mecab-unidic ``` ## Python Python 3 is required. All testing is done on the latest stable version (currently 3.6.2), but a slightly older version should also work. Native dependencies must be installed before installing the Python dependencies (natto-py needs MeCab). This project uses [pipenv](https://github.com/kennethreitz/pipenv). For existing users, the command below should suffice: ```bash pipenv install pipenv shell ``` For those using `pip`, you can install all the dependencies using the command below: ```bash pip install natto-py jaconv lxml html5_parser ``` # Usage Clone the repository and run: ```bash git clone https://github.com/borh/aozora-corpus-generator.git cd aozora-corpus-generator pipenv install pipenv shell python aozora-corpus-generator.py --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' --parallel ``` You may also use the Pipenv script shortcut to run the program: ```bash pipenv run aozora --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' --parallel ``` ## Parameters ```bash python aozora-corpus-generator.py --help ``` usage: aozora-corpus-generator.py [-h] [--features FEATURES [FEATURES ...]] [--features-opening-delim FEATURES_OPENING_DELIM] [--features-closing-delim FEATURES_CLOSING_DELIM] [--author-title-csv AUTHOR_TITLE_CSV [AUTHOR_TITLE_CSV ...]] [--aozora-bunko-repository AOZORA_BUNKO_REPOSITORY] --out OUT [--all] [--min-tokens MIN_TOKENS] [--no-punc] [--incremental] [--parallel] [--verbose] aozora-corpus-generator extracts given author and book pairs from Aozora Bunko and formats them into (optionally tokenized) plain text files. optional arguments: -h, --help show this help message and exit --features FEATURES [FEATURES ...] specify which features should be extracted from morphemes (default='orth') --features-opening-delim FEATURES_OPENING_DELIM specify opening char to use when outputting multiple features --features-closing-delim FEATURES_CLOSING_DELIM specify closing char to use when outputting multiple features --author-title-csv AUTHOR_TITLE_CSV [AUTHOR_TITLE_CSV ...] one or more UTF-8 formatted CSV input file(s) (default='author-title.csv') --aozora-bunko-repository AOZORA_BUNKO_REPOSITORY path to the aozorabunko git repository (default='aozor abunko/index_pages/list_person_all_extended_utf8.zip') --out OUT output (plain, tokenized) files into given output directory (default=Corpora) --all specify if all Aozora Bunko texts should be extracted, ignoring the author-title.csv (default=False) --min-tokens MIN_TOKENS specify minimum token count to filter files by (default=30000) --no-punc specify if punctuation should be discarded from tokenized version (default=False) --incremental do not overwrite existing corpus files (default=False) --parallel specify if processing should be done in parallel (default=True) --verbose turns on verbose logging (default=False) Example usage: python aozora-corpus-generator.py --features 'orth' --author-title-csv 'author-title.csv' --out 'Corpora/Japanese' --parallel You may specify multiple values for the `--features` and `author-title-csv` parameters by putting a space between them like so: `--features orth lemma pos1`. # Issues - "Gaiji" characters with provided JIS X 0213 codepoints are converted to their equivalent Unicode codepoint. Aozora Bunko is conservative in encoding rare Kanji, and, therefore, uses images (html version) or textual descriptions (plaintext version). - Words are sometimes emphasized in Japanese text with dots above characters, while Aozora Bunko uses bold text in their place. Emphasis tags are currently stripped.
[ "Text Segmentation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/rpryzant/JESC
2017-10-25T14:41:34Z
A large parallel corpus of English and Japanese
rpryzant / JESC Public Branches Tags Go to file Go to file Code corpus… corpus… corpus… READ… require… Welcome to the JESC code release! This repo contains the crawlers, parsers, aligners, and various tools used to create the Japanese-English Subtitle Corpus (JESC). dataset homepage paper presenting this dataset Use pip: pip install -r requirements.txt Additionally, some of the corpus_processing scripts make use of google/sentencepiece, which has installation instructions on its github page. Each file is a standalone tool with usage instructions given in the comment header. These files are organized into the following categories (subdirectories): About A large parallel corpus of English and Japanese Readme Activity 79 stars 7 watching 12 forks Report repository Releases No releases published Packages No packages published Languages Python 95.0% Shell 5.0% Code Issues Pull requests Actions Projects Security Insights JESC Code Release Requirements Instructions README corpus_generation: Scripts for downloading, parsing, and aligning subtitles from the internet. corpus_cleaning: Scripts for converting file formats, thresholding on length ratios, and spellchecking. corpus_processing: Scripts for manipulating completed datasets, including tokenization and train/test/dev splitting. Please give the proper citation or credit if you use these data: Citation @ARTICLE{pryzant_jesc_2017, author = {{Pryzant}, R. and {Chung}, Y. and {Jurafsky}, D. and {Britz}, D.}, title = "{JESC: Japanese-English Subtitle Corpus}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1710.10639}, keywords = {Computer Science - Computation and Language}, year = 2017, month = oct, } ```
# JESC Code Release Welcome to the JESC code release! This repo contains the crawlers, parsers, aligners, and various tools used to create the Japanese-English Subtitle Corpus (JESC). * [dataset homepage](https://cs.stanford.edu/~rpryzant/jesc/) * [paper presenting this dataset](https://arxiv.org/abs/1710.10639) ## Requirements Use pip: `pip install -r requirements.txt` Additionally, some of the corpus_processing scripts make use of [google/sentencepiece](https://github.com/google/sentencepiece), which has installation instructions on its github page. ## Instructions Each file is a standalone tool with usage instructions given in the comment header. These files are organized into the following categories (subdirectories): * **corpus_generation**: Scripts for downloading, parsing, and aligning subtitles from the internet. * **corpus_cleaning**: Scripts for converting file formats, thresholding on length ratios, and spellchecking. * **corpus_processing**: Scripts for manipulating completed datasets, including tokenization and train/test/dev splitting. ## Citation Please give the proper citation or credit if you use these data: ``` @ARTICLE{pryzant_jesc_2017, author = {{Pryzant}, R. and {Chung}, Y. and {Jurafsky}, D. and {Britz}, D.}, title = "{JESC: Japanese-English Subtitle Corpus}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1710.10639}, keywords = {Computer Science - Computation and Language}, year = 2017, month = oct, } ```
[ "Machine Translation", "Multilinguality" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/ktnyt/go-moji
2018-01-15T14:30:36Z
A Go library for Zenkaku/Hankaku conversion
ktnyt / go-moji Public Branches Tags Go to file Go to file Code .circleci .gitignore LICEN… READ… conver… conver… default… diction… maybe… Build Status go report go report A+ A+ GoDoc This package provides a Go interface for converting between Zenkaku (全 角 i.e. full-width) and Hankaku (半角 i.e. half-width) characters (mostly for Japanese). The library has been largely influenced by niwaringo/moji the JavaScript implementation. For detailed information of the API, see the documents. Use go get : About A Go library for Zenkaku/Hankaku conversion # go # japanese # conversion Readme MIT license Activity 19 stars 3 watching 2 forks Report repository Releases 1 Version 1.0.0 Latest on Jan 16, 2018 Packages No packages published Contributors 2 Languages Go 100.0% Code Issues Pull requests Actions Projects Security Insights go-moji Installation $ go get github.com/ktnyt/go-moji README MIT license This package has only been tested on Go >= 1.8. Beware when using lower versions. Copyright (C) 2018 by Kotone Itaya <kotone [at] sfc.keio.ac.jp> go-moji is released under the terms of the MIT License. See LICENSE for details. Requirements Example package main import ( "fmt" "github.com/ktnyt/go-moji" ) func main() { s := "ABC ABC あがぱ アガパ アガパ" // Convert Zenkaku Eisuu to Hankaku Eisuu fmt.Println(moji.Convert(s, moji.ZE, moji.HE)) // Convert Hankaku Eisuu to Zenkaku Eisuu fmt.Println(moji.Convert(s, moji.HE, moji.ZE)) // Convert HiraGana to KataKana fmt.Println(moji.Convert(s, moji.HG, moji.KK)) // Convert KataKana to HiraGana fmt.Println(moji.Convert(s, moji.KK, moji.HG)) // Convert Zenkaku Katakana to Hankaku Katakana fmt.Println(moji.Convert(s, moji.ZK, moji.HK)) // Convert Hankaku Katakana to Zenkaku Katakana fmt.Println(moji.Convert(s, moji.HK, moji.ZK)) // Convert Zenkaku Space to Hankaku Space fmt.Println(moji.Convert(s, moji.ZS, moji.HS)) // Convert Hankaku Space to Zenkaku Space fmt.Println(moji.Convert(s, moji.HS, moji.ZS)) } Copyright
# go-moji [![Build Status](https://circleci.com/gh/ktnyt/go-moji.svg?style=shield&circle-token==7da9cb901d095995e930651e7298c8ab233a0c85)](https://circleci.com/gh/ktnyt/go-moji) [![Go Report Card](https://goreportcard.com/badge/github.com/ktnyt/go-moji)](https://goreportcard.com/report/github.com/ktnyt/go-moji) [![GoDoc](http://godoc.org/github.com/ktnyt/go-moji?status.svg)](http://godoc.org/github.com/ktnyt/go-moji) This package provides a Go interface for converting between Zenkaku (全角 i.e. full-width) and Hankaku (半角 i.e. half-width) characters (mostly for Japanese). The library has been largely influenced by [niwaringo/moji](https://github.com/niwaringo/moji) the JavaScript implementation. For detailed information of the API, see the [documents](https://godoc.org/github.com/ktnyt/go-moji). ## Installation Use `go get`: ```sh $ go get github.com/ktnyt/go-moji ``` ## Requirements This package has only been tested on Go >= 1.8. Beware when using lower versions. ## Example ```go package main import ( "fmt" "github.com/ktnyt/go-moji" ) func main() { s := "ABC ABC あがぱ アガパ アガパ" // Convert Zenkaku Eisuu to Hankaku Eisuu fmt.Println(moji.Convert(s, moji.ZE, moji.HE)) // Convert Hankaku Eisuu to Zenkaku Eisuu fmt.Println(moji.Convert(s, moji.HE, moji.ZE)) // Convert HiraGana to KataKana fmt.Println(moji.Convert(s, moji.HG, moji.KK)) // Convert KataKana to HiraGana fmt.Println(moji.Convert(s, moji.KK, moji.HG)) // Convert Zenkaku Katakana to Hankaku Katakana fmt.Println(moji.Convert(s, moji.ZK, moji.HK)) // Convert Hankaku Katakana to Zenkaku Katakana fmt.Println(moji.Convert(s, moji.HK, moji.ZK)) // Convert Zenkaku Space to Hankaku Space fmt.Println(moji.Convert(s, moji.ZS, moji.HS)) // Convert Hankaku Space to Zenkaku Space fmt.Println(moji.Convert(s, moji.HS, moji.ZS)) } ``` ## Copyright Copyright (C) 2018 by Kotone Itaya <kotone [at] sfc.keio.ac.jp> go-moji is released under the terms of the MIT License. See [LICENSE](https://github.com/ktnyt/go-moji/blob/master/LICENSE) for details.
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/PSeitz/wana_kana_rust
2018-02-02T17:37:29Z
and Romaji
PSeitz / wana_kana_rust Public Branches Tags Go to file Go to file Code .github… .idea bench… benches nodejs… src tests upstre… wana_… .gitignore .travis.… Cargo.… LICEN… READ… covera… make_… rustfmt… crates.io crates.io v4.0.0 v4.0.0 docs docs passing passing build build passing passing coverage coverage 100% 100% About Utility library for checking and converting between Japanese characters - Hiragana, Katakana - and Romaji # converter # katakana # japanese # romaji # kana # romaji-translation Readme MIT license Activity 70 stars 4 watching 14 forks Report repository Releases 2 v4.0.0 Latest on Oct 2 + 1 release Packages No packages published Contributors 5 Languages Rust 99.1% Other 0.9% Code Issues 3 Pull requests 1 Actions Projects Security Insights README MIT license Utility library for checking and converting between Japanese characters - Hiragana, Katakana - and Romaji (Ported from https://github.com/WaniKani/WanaKana V4.0.2) On Migrating to 2.0 some performance improvements have been implemented by using more efficient lookup structures and avoiding allocations. According to these results around 1000 words can be converted per millisecond on a Core i7-6700. WanaKana Rust ワナカナ <--> WanaKana <--> わなかな [dependencies] wana_kana = "4.0" Examples use wana_kana::to_romaji::*; use wana_kana::to_kana::*; use wana_kana::to_hiragana::*; use wana_kana::Options; assert_eq!(to_romaji("ワナカナ"), "wanakana"); assert_eq!(to_hiragana("WanaKana"), "わなかな"); assert_eq!(to_kana("WANAKANA"), "ワナカナ"); Tests Performance bench_hiragana_to_romaji 3,519 1,070 -2,449 -69.59% x 3.29 bench_kana_1 3,066 567 -2,499 -81.51% x 5.41 bench_kana_2 8,006 1,831 -6,175 -77.13% x 4.37 A detailed analysis has been done in the bench_compare subfolder, the analysis below may be inaccurate. A short comparison suggests around 25x performance node -r esm run.js bench_katakana_to_hiragana 2,512 622 -1,890 -75.24% x 4.04 bench_katakana_to_katakana 1,664 629 -1,035 -62.20% x 2.65 bench_katakana_to_romaji 6,922 1,067 -5,855 -84.59% x 6.49 bench_romaji_to_hiragana 3,802 1,300 -2,502 -65.81% x 2.92 bench_romaji_to_katakana 4,361 1,929 -2,432 -55.77% x 2.26 Comparison To WanaKana import toKana from './src/toKana'; import toHiragana from './src/toHiragana'; import toKatakana from './src/toKatakana'; import toRomaji from './src/toRomaji'; console.time("yo") for (var i = 0; i < 1000; i++) { toKana('aiueosashisusesonaninunenokakikukeko') toKana('AIUEOSASHISUSESONANINUNENOKAKIKUKEKO') toHiragana('aiueosashisusesonaninunenokakikukeko') toHiragana('アイウエオサシスセソナニヌネノカキクケコ') toKatakana('aiueosashisusesonaninunenokakikukeko') toKatakana('あいうえおさしすせそなにぬねのかきくけこ') toRomaji('あいうえおさしすせそなにぬねのかきくけこ') toRomaji('アイウエオサシスセソナニヌネノカキクケコ') } console.timeEnd("yo") extern crate wana_kana; use wana_kana::to_hiragana::to_hiragana; use wana_kana::to_katakana::to_katakana; use wana_kana::to_romaji::to_romaji; use wana_kana::to_kana::*; fn main() { let start = std::time::Instant::now(); for _ in 0..1000 { to_kana("aiueosashisusesonaninunenokakikukeko"); to_kana("AIUEOSASHISUSESONANINUNENOKAKIKUKEKO"); to_hiragana("aiueosashisusesonaninunenokakikukeko"); node -r esm run.js 253.231ms cargo run --release --bin bench 9ms cargo install wana_kana will install 2 CLI tools: to_kana and to_romaji . Both commands support piping ls | to kana and parameters to romaji へ to_hiragana("アイウエオサシスセソナニヌネノカキクケコ"); to_katakana("aiueosashisusesonaninunenokakikukeko"); to_katakana("あいうえおさしすせそなにぬねのかきくけこ"); to_romaji("あいうえおさしすせそなにぬねのかきくけこ"); to_romaji("アイウエオサシスセソナニヌネノカキクケコ"); } println!("{:?}", start.elapsed().as_millis()); } CLI Convert to kana and back for fun and profit
[![Crates.io](https://img.shields.io/crates/v/wana_kana.svg)](https://crates.io/crates/wana_kana) [![Docs](https://docs.rs/wana_kana/badge.svg)](https://docs.rs/crate/wana_kana/) [![Build Status](https://travis-ci.org/PSeitz/wana_kana_rust.svg?branch=master)](https://travis-ci.org/PSeitz/wana_kana_rust) [![Coverage Status](https://coveralls.io/repos/github/PSeitz/wana_kana_rust/badge.svg?branch=master)](https://coveralls.io/github/PSeitz/wana_kana_rust?branch=master) ## WanaKana Rust ### ワナカナ <--> WanaKana <--> わなかな ```toml,ignore [dependencies] wana_kana = "4.0" ``` Utility library for checking and converting between Japanese characters - Hiragana, Katakana - and Romaji (Ported from https://github.com/WaniKani/WanaKana V4.0.2) ## Examples ``` use wana_kana::to_romaji::*; use wana_kana::to_kana::*; use wana_kana::to_hiragana::*; use wana_kana::Options; assert_eq!(to_romaji("ワナカナ"), "wanakana"); assert_eq!(to_hiragana("WanaKana"), "わなかな"); assert_eq!(to_kana("WANAKANA"), "ワナカナ"); ``` ## Tests ![100% coverage](https://raw.githubusercontent.com/PSeitz/wana_kana_rust/master/coverage_good.png) ## Performance On Migrating to 2.0 some performance improvements have been implemented by using more efficient lookup structures and avoiding allocations. According to these results around 1000 words can be converted per millisecond on a Core i7-6700. ``` bench_hiragana_to_romaji 3,519 1,070 -2,449 -69.59% x 3.29 bench_kana_1 3,066 567 -2,499 -81.51% x 5.41 bench_kana_2 8,006 1,831 -6,175 -77.13% x 4.37 bench_katakana_to_hiragana 2,512 622 -1,890 -75.24% x 4.04 bench_katakana_to_katakana 1,664 629 -1,035 -62.20% x 2.65 bench_katakana_to_romaji 6,922 1,067 -5,855 -84.59% x 6.49 bench_romaji_to_hiragana 3,802 1,300 -2,502 -65.81% x 2.92 bench_romaji_to_katakana 4,361 1,929 -2,432 -55.77% x 2.26 ``` ### Comparison To [WanaKana](https://github.com/WaniKani/WanaKana) A detailed analysis has been done in the [bench_compare](bench_compare/README.md) subfolder, the analysis below may be inaccurate. A short comparison suggests around 25x performance ```javascript import toKana from './src/toKana'; import toHiragana from './src/toHiragana'; import toKatakana from './src/toKatakana'; import toRomaji from './src/toRomaji'; console.time("yo") for (var i = 0; i < 1000; i++) { toKana('aiueosashisusesonaninunenokakikukeko') toKana('AIUEOSASHISUSESONANINUNENOKAKIKUKEKO') toHiragana('aiueosashisusesonaninunenokakikukeko') toHiragana('アイウエオサシスセソナニヌネノカキクケコ') toKatakana('aiueosashisusesonaninunenokakikukeko') toKatakana('あいうえおさしすせそなにぬねのかきくけこ') toRomaji('あいうえおさしすせそなにぬねのかきくけこ') toRomaji('アイウエオサシスセソナニヌネノカキクケコ') } console.timeEnd("yo") ``` `node -r esm run.js` ```rust extern crate wana_kana; use wana_kana::to_hiragana::to_hiragana; use wana_kana::to_katakana::to_katakana; use wana_kana::to_romaji::to_romaji; use wana_kana::to_kana::*; fn main() { let start = std::time::Instant::now(); for _ in 0..1000 { to_kana("aiueosashisusesonaninunenokakikukeko"); to_kana("AIUEOSASHISUSESONANINUNENOKAKIKUKEKO"); to_hiragana("aiueosashisusesonaninunenokakikukeko"); to_hiragana("アイウエオサシスセソナニヌネノカキクケコ"); to_katakana("aiueosashisusesonaninunenokakikukeko"); to_katakana("あいうえおさしすせそなにぬねのかきくけこ"); to_romaji("あいうえおさしすせそなにぬねのかきくけこ"); to_romaji("アイウエオサシスセソナニヌネノカキクケコ"); } println!("{:?}", start.elapsed().as_millis()); } ``` `node -r esm run.js` *253.231ms* `cargo run --release --bin bench` *9ms* ### CLI #### Convert to kana and back for fun and profit `cargo install wana_kana` will install 2 CLI tools: `to_kana` and `to_romaji`. Both commands support piping `ls | to_kana` and parameters `to_romaji へろ をるど`.
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/mkan0141/toEmoji
2018-02-25T05:50:42Z
日本語文を絵文字だけの文に変換するなにか
mkan0141 / toEmoji Public 1 Branch Tags Go to file Go to file Code mkan0141 add: LICENCE c425cb1 · 6 years ago image update: Dem… 6 years ago wikiext… update: Dem… 6 years ago .gitignore update: test用… 6 years ago LICEN… add: LICENCE 6 years ago READ… add: LICENCE 6 years ago emoji.j… update:絵文… 6 years ago toEmoj… update: 少し… 6 years ago 与えられた日本語文をそれらしい絵文字だけの文に変換するコ ンソールアプリケーション 入力された日本語文を形態素解析し、意味のある単語を抽出す る。 そして、抽出された単語と絵文字と意味の一対一表を用いて類 似度の最も高かった絵文字を出力して文章を生成します。 About text to 「emoji string」 # emoji # nlp # python3 Readme MIT license Activity 4 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights toEmoji Description README MIT license モデルも公開したいのですが容量が大きくて公開できませんで した...。対策を考えているところです。 モデルの作り方はこのサイトを参考にしました 【Python】Word2Vecの使い方 Install $ git clone https://github.com/mkan0141/toEmoji
# toEmoji 与えられた日本語文をそれらしい絵文字だけの文に変換するコンソールアプリケーション <img src="./image/sample.png" alt="demo" title="demo"> ## Description 入力された日本語文を形態素解析し、意味のある単語を抽出する。 そして、抽出された単語と絵文字と意味の一対一表を用いて類似度の最も高かった絵文字を出力して文章を生成します。 モデルも公開したいのですが容量が大きくて公開できませんでした...。対策を考えているところです。 ## Install ```txt $ git clone https://github.com/mkan0141/toEmoji ``` モデルの作り方はこのサイトを参考にしました [【Python】Word2Vecの使い方](https://qiita.com/kenta1984/items/93b64768494f971edf86)
[ "Syntactic Text Processing", "Text Generation", "Text Normalization", "Text Style Transfer" ]
[]
true
https://github.com/nuko-yokohama/ramendb
2018-03-24T11:56:42Z
なんとかデータベース( https://supleks.jp/ )からのスクレイピングツールと収集データ
nuko-yokohama / ramendb Public Branches Tags Go to file Go to file Code chatgpt3 data ddl query_… reports READ… YLR.sh YRR.sh aggs.sh aggs_i… close-s… get_rd… get_rd… get_rd… get_rd… get_rd… get_rd… load_r… load_s… load_s… load_u… About なんとかデータベース( https://supleks.jp/ )からのスクレイ ピングツールと収集データ Readme Activity 7 stars 3 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 82.4% Shell 17.6% Code Issues 2 Pull requests Actions Projects Security Insights not-visi… visited.sh ラーメンデータベース( https://ramendb.supleks.jp/ )のサ イトから、 ユーザ 店舗 レビュー レビューコメント の内容をスクレイピングするPythonスクリプトと、その スクリプトで収集したデータ、PostgreSQL用のテーブ ル定義例をまとめた。 店舗のステータスとして「提供終了」があるので、 それも別に収集すること。 提供終了のサンプル: https://kanagawa- ramendb.supleks.jp/s/59819.html ramendb TODO README
# ramendb ラーメンデータベース( https://ramendb.supleks.jp/ )のサイトから、 * ユーザ * 店舗 * レビュー * レビューコメント の内容をスクレイピングするPythonスクリプトと、そのスクリプトで収集したデータ、PostgreSQL用のテーブル定義例をまとめた。 ## TODO * 店舗のステータスとして「提供終了」があるので、それも別に収集すること。 * 提供終了のサンプル: https://kanagawa-ramendb.supleks.jp/s/59819.html
[]
[ "Annotation and Dataset Development" ]
true
https://github.com/DJTB/hatsuon
2018-04-06T02:03:00Z
Japanese pitch accent utils
DJTB / hatsuon Public 4 Branches 5 Tags Go to file Go to file Code DJTB feat: use named exports, exp… 8c09a8e · 2 years ago .github build: add co… 2 years ago src feat: use nam… 2 years ago .all-con… chore: genera… 6 years ago .editor… chore: initial c… 6 years ago .eslinti… chore: initial c… 6 years ago .eslintr… build: use roll… 2 years ago .gitattri… chore: initial c… 6 years ago .gitignore build: use roll… 2 years ago .prettierrc build: use roll… 2 years ago .travis.… ci: update tra… 2 years ago babel.c… build: use roll… 2 years ago code_… chore(clean u… 6 years ago contrib… chore: initial c… 6 years ago license chore: initial c… 6 years ago packag… build: use roll… 2 years ago packag… build: use roll… 2 years ago packag… build: use roll… 2 years ago readm… feat: use nam… 2 years ago rollup.c… build: use roll… 2 years ago About Japanese pitch accent utils djtb.github.io/hatsuon # pattern # japanese # pronunciation # pitch # accent # mora # on # haku Readme MIT license Code of conduct Activity 25 stars 4 watching 0 forks Report repository Releases 2 v2.0.0 Latest on Mar 14, 2022 + 1 release Packages No packages published Languages JavaScript 100.0% Code Issues Pull requests 2 Actions Projects Security Insights README Code of conduct MIT license Japanese pitch accent tools npm v2.0.0 downloads 1.7k Travis branch coverage 100% commitizen friendly code of conduct Japanese dictionaries often display the pitch accent of a word with a single number that determines where the pitch falls. This can be difficult to mentally visualize without counting through the mora of the word. This library provides useful tools for generating pitch patterns which can then be easily displayed via SVG. Visualization Example Extra available utils (see source for documentation): 発音 hatsuon Why? Installation npm install --save hatsuon Demo Usage import { hatsuon } from 'hatsuon'; hatsuon({ reading: 'ちゅうがっこう', pitchNum: 3 }); // => { reading: 'ちゅうがっこう', pitchNum: 3, morae: ['ちゅ', 'う', 'が', 'っ', 'こ', 'う'], // low, high, high, low, low, low, low* // *following particle (は、が, の etc) pitch pattern: [0, 1, 1, 0, 0, 0, 0], patternName: '中高', // nakadaka } import { isDigraph, getMorae, WanaKana : Japanese romaji <-> kana transliteration library Thanks goes to these people (emoji key): 💻 📖 🚇 🎨 This project follows the all-contributors specification. Contributions of any kind welcome! MIT © Duncan Bay getMoraCount, makePitchPattern, getPitchPatternName, getPitchNumFromPattern, } from 'hatsuon'; Related Contributors Duncan Bay License
# 発音 hatsuon > Japanese pitch accent tools [![npm](https://img.shields.io/npm/v/hatsuon.svg?style=flat-square)](https://www.npmjs.com/package/hatsuon) [![npm](https://img.shields.io/npm/dt/hatsuon.svg?style=flat-square)](https://npm-stat.com/charts.html?package=hatsuon&from=2016-04-01) [![Travis branch](https://img.shields.io/travis/DJTB/hatsuon/master.svg?style=flat-square)](https://travis-ci.com/DJTB/hatsuon) [![Codecov branch](https://img.shields.io/codecov/c/github/DJTB/hatsuon/master.svg?style=flat-square)](https://codecov.io/github/DJTB/hatsuon) <br /> [![Commitizen friendly](https://img.shields.io/badge/commitizen-friendly-brightgreen.svg?style=flat-square)](http://commitizen.github.io/cz-cli/) [![Code of Conduct](https://img.shields.io/badge/code%20of-conduct-ff69b4.svg?style=flat-square)](./code_of_conduct.md) ## Why? Japanese dictionaries often display the pitch accent of a word with a single number that determines where the pitch falls. This can be difficult to mentally visualize without counting through the [mora](<https://en.wikipedia.org/wiki/Mora_(linguistics)#Japanese>) of the word. This library provides useful tools for generating pitch patterns which can then be easily displayed via SVG. ## Installation ```sh npm install --save hatsuon ``` ## Demo [Visualization Example](https://djtb.github.io/hatsuon) ## Usage ```js import { hatsuon } from 'hatsuon'; hatsuon({ reading: 'ちゅうがっこう', pitchNum: 3 }); // => { reading: 'ちゅうがっこう', pitchNum: 3, morae: ['ちゅ', 'う', 'が', 'っ', 'こ', 'う'], // low, high, high, low, low, low, low* // *following particle (は、が, の etc) pitch pattern: [0, 1, 1, 0, 0, 0, 0], patternName: '中高', // nakadaka } ``` Extra available utils (see source for documentation): ```js import { isDigraph, getMorae, getMoraCount, makePitchPattern, getPitchPatternName, getPitchNumFromPattern, } from 'hatsuon'; ``` ## Related [WanaKana](https://github.com/WaniKani/WanaKana) : Japanese romaji <-> kana transliteration library ## Contributors Thanks goes to these people ([emoji key](https://github.com/kentcdodds/all-contributors#emoji-key)): <!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore --> | [<img src="https://avatars3.githubusercontent.com/u/5353151?s=100" width="100px;"/><br /><sub><b>Duncan Bay</b></sub>](https://github.com/DJTB)<br />[💻](https://github.com/DJTB/hatsuon/commits?author=DJTB "Code") [📖](https://github.com/DJTB/hatsuon/commits?author=DJTB "Documentation") [🚇](#infra-DJTB "Infrastructure (Hosting, Build-Tools, etc)") [🎨](#design-DJTB "Design") | | :---: | <!-- ALL-CONTRIBUTORS-LIST:END --> This project follows the [all-contributors](https://github.com/kentcdodds/all-contributors) specification. Contributions of any kind welcome! ## License MIT &copy; [Duncan Bay](https://github.com/DJTB)
[ "Phonology", "Syntactic Text Processing" ]
[]
true
https://github.com/maruamyu/imas-ime-dic
2018-04-24T17:05:38Z
THE IDOLM@STER words dictionary for Japanese IME (by imas-db.jp)
maruamyu / imas-ime-dic Public Branches Tags Go to file Go to file Code dist .gitignore CNAME LICEN… READ… conver… dic.txt go.mod index.h… THE IDOLM@STER (アイドルマスター)にかかわる単語 を記述した日本語IME向けの辞書ファイルです。 アイマスDBが管理を行っています。 Windows Microsoft IME メモ帳で編集可能 Android Google日本語入力 主要なテキストエディタで編集可能 以下の文字が利用可能 About THE IDOLM@STER words dictionary for Japanese IME (by imas-db.jp) ime.imas-db.jp/ Readme MIT license Activity Custom properties 26 stars 5 watching 10 forks Report repository Releases No releases published Packages No packages published Contributors 4 Languages Go 53.3% HTML 46.7% Code Issues 2 Pull requests Actions Security Insights maruamyu/imas-ime-dic 想定環境 README MIT license 﨑 … 「赤﨑千夏」など ♥ … 「私はアイドル♥」など ♡ … 「仲良しでいようね♡」など Ø … 「ØωØver!!」 ➚ … 「JOKER➚オールマイティ」 è … 「Cafè Parade」 俠 … 「俠気乱舞」 ✿ … 「花ざかりWeekend✿」 上記想定環境から、以下のように決めます。 文字コードは UTF-16 LE Windowsのメモ帳で扱えるようにするため BOM付きにする 改行コードは CRLF リポジトリ内にある convert_dic.go をGo言語でコンパ イルして実行すると dist/ ディレクトリ以下にファイル が生成されます。 gboard.zip : Gboard(Android版)の単語リストにイン ポートするためのファイル macosx.plist : Mac OS Xの「キーボード」→「ユー ザー辞書」にドラッグ&ドロップで登録するための ファイル skk-jisyo.imas.utf8 : SKK辞書ファイル (AquaSKKで 動作確認済) 2021-10-22 から生成したファイルをコミットするよう にしました。 リポジトリ内のテキストファイルは、MITライセンス下 で配布されます。 取り決め 他形式へのコンバート go get go build convert_dic.go ./convert_dic License This repository is released under the MIT License, see LICENSE 各社の商標または登録商標が含まれる場合があります が、営利利用を意図したものではありません。 歓迎します。 forkして、新規branchを作成して、pullリ クエストしてください。 コントリビューション
maruamyu/imas-ime-dic ===================== [THE IDOLM@STER (アイドルマスター)](http://idolmaster.jp/)にかかわる単語を記述した日本語IME向けの辞書ファイルです。 [アイマスDB](https://imas-db.jp/)が管理を行っています。 ## 想定環境 - Windows - Microsoft IME - メモ帳で編集可能 - Android - Google日本語入力 - 主要なテキストエディタで編集可能 - 以下の文字が利用可能 - 﨑 … 「赤﨑千夏」など - ♥ … 「私はアイドル♥」など - ♡ … 「仲良しでいようね♡」など - Ø … 「ØωØver!!」 - ➚ … 「JOKER➚オールマイティ」 - è … 「Cafè Parade」 - 俠 … 「俠気乱舞」 - ✿ … 「花ざかりWeekend✿」 ## 取り決め 上記想定環境から、以下のように決めます。 - 文字コードは UTF-16 LE - Windowsのメモ帳で扱えるようにするためBOM付きにする - 改行コードは CRLF ## 他形式へのコンバート リポジトリ内にある *convert_dic.go* を[Go言語](https://golang.org/)でコンパイルして実行すると *dist/* ディレクトリ以下にファイルが生成されます。 - *gboard.zip* : Gboard(Android版)の単語リストにインポートするためのファイル - *macosx.plist* : Mac OS Xの「キーボード」→「ユーザー辞書」にドラッグ&ドロップで登録するためのファイル - *skk-jisyo.imas.utf8* : SKK辞書ファイル (AquaSKKで動作確認済) ```bash go get go build convert_dic.go ./convert_dic ``` 2021-10-22 から生成したファイルをコミットするようにしました。 ## License リポジトリ内のテキストファイルは、MITライセンス下で配布されます。 This repository is released under the MIT License, see [LICENSE](LICENSE) 各社の商標または登録商標が含まれる場合がありますが、営利利用を意図したものではありません。 ## コントリビューション 歓迎します。 forkして、新規branchを作成して、pullリクエストしてください。
[]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/r9y9/pyopenjtalk
2018-08-06T15:35:16Z
Python wrapper for OpenJTalk
r9y9 / pyopenjtalk Public 3 Branches 16 Tags Go to file Go to file Code r9y9 bump new dev ver a3e2115 · 4 months ago .github/workflows drop python 3.7 4 months ago docs prep for release 2 years ago lib update open_jtalk rev 4 months ago pyopenjtalk FIX: remove legacy API 6 months ago tests fix tests last year .gitignore Add htsengine module 3 years ago .gitmodules add hts_engine_API as a subm… 3 years ago .travis.yml Fix travis config 3 years ago LICENSE.md init 6 years ago MANIFEST.in #21: adjust configs for creat… 3 years ago README.md add userdict support in README last year pyproject.toml BLD: remove distutil from setup… 9 months ago release.sh Release fixes 6 years ago setup.cfg init 6 years ago setup.py bump new dev ver 4 months ago tox.ini init 6 years ago pypi pypi v0.3.4 v0.3.4 Python package Python package passing passing build build passing passing license license MIT MIT DOI DOI 10.5281/zenodo.12736538 10.5281/zenodo.12736538 A python wrapper for OpenJTalk. The package consists of two core components: Text processing frontend based on OpenJTalk Speech synthesis backend using HTSEngine The package is built with the modified version of OpenJTalk. The modified version provides the same functionality with some improvements (e.g., cmake support) but is technically different from the one from HTS working group. The package also uses the modified version of hts_engine_API. The same applies as above. Before using the pyopenjtalk package, please have a look at the LICENSE for the two software. The python package relies on cython to make python bindings for open_jtalk and hts_engine_API. You must need the following tools to build and install pyopenjtalk: About Python wrapper for OpenJTalk r9y9.github.io/pyopenjtalk/ Readme View license Activity 202 stars 7 watching 68 forks Report repository Releases 15 v0.3.4 Latest on Jul 13 + 14 releases Packages No packages published Contributors 7 Languages Python 51.3% Cython 47.2% Shell 1.5% Code Issues 14 Pull requests 5 Actions Projects Security Insights Fix pyopenjtalk Notice Build requirements README License C/C++ compilers (to build C/C++ extentions) cmake cython Linux Mac OSX Windows (MSVC) (see this PR) To build the package locally, you will need to make sure to clone open_jtalk and hts_engine_API. and then run Please check the notebook version here (nbviewer). Please check lab_format.pdf in HTS-demo_NIT-ATR503-M001.tar.bz2 for more details about full-context labels. Supported platforms Installation pip install pyopenjtalk Development git submodule update --recursive --init pip install -e . Quick demo TTS In [1]: import pyopenjtalk In [2]: from scipy.io import wavfile In [3]: x, sr = pyopenjtalk.tts("おめでとうございます") In [4]: wavfile.write("test.wav", sr, x.astype(np.int16)) Run text processing frontend only In [1]: import pyopenjtalk In [2]: pyopenjtalk.extract_fullcontext("こんにちは") Out[2]: ['xx^xx-sil+k=o/A:xx+xx+xx/B:xx-xx_xx/C:xx_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:xx_xx#xx_xx@xx_xx|xx_xx/G:5_5%0_xx_xx/ 'xx^sil-k+o=N/A:-4+1+5/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/ 'sil^k-o+N=n/A:-4+1+5/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I 'k^o-N+n=i/A:-3+2+4/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1 'o^N-n+i=ch/A:-2+3+3/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I: 'N^n-i+ch=i/A:-2+3+3/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I: 'n^i-ch+i=w/A:-1+4+2/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I: 'i^ch-i+w=a/A:-1+4+2/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I: 'ch^i-w+a=sil/A:0+5+1/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I 'i^w-a+sil=xx/A:0+5+1/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I 'w^a-sil+xx=xx/A:xx+xx+xx/B:xx-xx_xx/C:xx_xx+xx/D:xx+xx_xx/E:5_5!0_xx-xx/F:xx_xx#xx_xx@xx_xx|xx_xx/G:xx_xx%xx_xx_xx/H Grapheme-to-phoeneme (G2P) In [1]: import pyopenjtalk In [2]: pyopenjtalk.g2p("こんにちは") 1. Create a CSV file (e.g. user.csv ) and write custom words like below: 2. Call mecab_dict_index to compile the CSV file. 3. Call update_global_jtalk_with_user_dict to apply the user dictionary. After v0.3.0, the run_marine option has been available for estimating the Japanese accent with the DNN-based method (see marine). If you want to use the feature, please install pyopenjtalk as below; And then, you can use the option as the following examples; pyopenjtalk: MIT license (LICENSE.md) Open JTalk: Modified BSD license (COPYING) htsvoice in this repository: Please check pyopenjtalk/htsvoice/README.md. marine: Apache 2.0 license (LICENSE) HTS Working Group for their dedicated efforts to develop and maintain Open JTalk. Out[2]: 'k o N n i ch i w a' In [3]: pyopenjtalk.g2p("こんにちは", kana=True) Out[3]: 'コンニチワ' Create/Apply user dictionary GNU,,,1,名詞,一般,*,*,*,*,GNU,グヌー,グヌー,2/3,* In [1]: import pyopenjtalk In [2]: pyopenjtalk.mecab_dict_index("user.csv", "user.dic") reading user.csv ... 1 emitting double-array: 100% |###########################################| done! In [3]: pyopenjtalk.g2p("GNU") Out[3]: 'j i i e n u y u u' In [4]: pyopenjtalk.update_global_jtalk_with_user_dict("user.dic") In [5]: pyopenjtalk.g2p("GNU") Out[5]: 'g u n u u' About run_marine option pip install pyopenjtalk[marine] In [1]: import pyopenjtalk In [2]: x, sr = pyopenjtalk.tts("おめでとうございます", run_marine=True) # for TTS In [3]: label = pyopenjtalk.extract_fullcontext("こんにちは", run_marine=True) # for text processing frontend only LICENSE Acknowledgements
# pyopenjtalk [![PyPI](https://img.shields.io/pypi/v/pyopenjtalk.svg)](https://pypi.python.org/pypi/pyopenjtalk) [![Python package](https://github.com/r9y9/pyopenjtalk/actions/workflows/ci.yaml/badge.svg)](https://github.com/r9y9/pyopenjtalk/actions/workflows/ci.yaml) [![Build Status](https://app.travis-ci.com/r9y9/pyopenjtalk.svg?branch=master)](https://app.travis-ci.com/r9y9/pyopenjtalk) [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![DOI](https://zenodo.org/badge/143748865.svg)](https://zenodo.org/badge/latestdoi/143748865) A python wrapper for [OpenJTalk](http://open-jtalk.sp.nitech.ac.jp/). The package consists of two core components: - Text processing frontend based on OpenJTalk - Speech synthesis backend using HTSEngine ## Notice - The package is built with the [modified version of OpenJTalk](https://github.com/r9y9/open_jtalk). The modified version provides the same functionality with some improvements (e.g., cmake support) but is technically different from the one from HTS working group. - The package also uses the [modified version of hts_engine_API](https://github.com/r9y9/hts_engine_API). The same applies as above. Before using the pyopenjtalk package, please have a look at the LICENSE for the two software. ## Build requirements The python package relies on cython to make python bindings for open_jtalk and hts_engine_API. You must need the following tools to build and install pyopenjtalk: - C/C++ compilers (to build C/C++ extentions) - cmake - cython ## Supported platforms - Linux - Mac OSX - Windows (MSVC) (see [this PR](https://github.com/r9y9/pyopenjtalk/pull/13)) ## Installation ``` pip install pyopenjtalk ``` ## Development To build the package locally, you will need to make sure to clone open_jtalk and hts_engine_API. ``` git submodule update --recursive --init ``` and then run ``` pip install -e . ``` ## Quick demo Please check the notebook version [here (nbviewer)](https://nbviewer.jupyter.org/github/r9y9/pyopenjtalk/blob/master/docs/notebooks/Demo.ipynb). ### TTS ```py In [1]: import pyopenjtalk In [2]: from scipy.io import wavfile In [3]: x, sr = pyopenjtalk.tts("おめでとうございます") In [4]: wavfile.write("test.wav", sr, x.astype(np.int16)) ``` ### Run text processing frontend only ```py In [1]: import pyopenjtalk In [2]: pyopenjtalk.extract_fullcontext("こんにちは") Out[2]: ['xx^xx-sil+k=o/A:xx+xx+xx/B:xx-xx_xx/C:xx_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:xx_xx#xx_xx@xx_xx|xx_xx/G:5_5%0_xx_xx/H:xx_xx/I:xx-xx@xx+xx&xx-xx|xx+xx/J:1_5/K:1+1-5', 'xx^sil-k+o=N/A:-4+1+5/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'sil^k-o+N=n/A:-4+1+5/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'k^o-N+n=i/A:-3+2+4/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'o^N-n+i=ch/A:-2+3+3/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'N^n-i+ch=i/A:-2+3+3/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'n^i-ch+i=w/A:-1+4+2/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'i^ch-i+w=a/A:-1+4+2/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'ch^i-w+a=sil/A:0+5+1/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'i^w-a+sil=xx/A:0+5+1/B:xx-xx_xx/C:09_xx+xx/D:xx+xx_xx/E:xx_xx!xx_xx-xx/F:5_5#0_xx@1_1|1_5/G:xx_xx%xx_xx_xx/H:xx_xx/I:1-5@1+1&1-1|1+5/J:xx_xx/K:1+1-5', 'w^a-sil+xx=xx/A:xx+xx+xx/B:xx-xx_xx/C:xx_xx+xx/D:xx+xx_xx/E:5_5!0_xx-xx/F:xx_xx#xx_xx@xx_xx|xx_xx/G:xx_xx%xx_xx_xx/H:1_5/I:xx-xx@xx+xx&xx-xx|xx+xx/J:xx_xx/K:1+1-5'] ``` Please check `lab_format.pdf` in [HTS-demo_NIT-ATR503-M001.tar.bz2](http://hts.sp.nitech.ac.jp/archives/2.3/HTS-demo_NIT-ATR503-M001.tar.bz2) for more details about full-context labels. ### Grapheme-to-phoeneme (G2P) ```py In [1]: import pyopenjtalk In [2]: pyopenjtalk.g2p("こんにちは") Out[2]: 'k o N n i ch i w a' In [3]: pyopenjtalk.g2p("こんにちは", kana=True) Out[3]: 'コンニチワ' ``` ### Create/Apply user dictionary 1. Create a CSV file (e.g. `user.csv`) and write custom words like below: ```csv GNU,,,1,名詞,一般,*,*,*,*,GNU,グヌー,グヌー,2/3,* ``` 2. Call `mecab_dict_index` to compile the CSV file. ```python In [1]: import pyopenjtalk In [2]: pyopenjtalk.mecab_dict_index("user.csv", "user.dic") reading user.csv ... 1 emitting double-array: 100% |###########################################| done! ``` 3. Call `update_global_jtalk_with_user_dict` to apply the user dictionary. ```python In [3]: pyopenjtalk.g2p("GNU") Out[3]: 'j i i e n u y u u' In [4]: pyopenjtalk.update_global_jtalk_with_user_dict("user.dic") In [5]: pyopenjtalk.g2p("GNU") Out[5]: 'g u n u u' ``` ### About `run_marine` option After v0.3.0, the `run_marine` option has been available for estimating the Japanese accent with the DNN-based method (see [marine](https://github.com/6gsn/marine)). If you want to use the feature, please install pyopenjtalk as below; ```shell pip install pyopenjtalk[marine] ``` And then, you can use the option as the following examples; ```python In [1]: import pyopenjtalk In [2]: x, sr = pyopenjtalk.tts("おめでとうございます", run_marine=True) # for TTS In [3]: label = pyopenjtalk.extract_fullcontext("こんにちは", run_marine=True) # for text processing frontend only ``` ## LICENSE - pyopenjtalk: MIT license ([LICENSE.md](LICENSE.md)) - Open JTalk: Modified BSD license ([COPYING](https://github.com/r9y9/open_jtalk/blob/1.10/src/COPYING)) - htsvoice in this repository: Please check [pyopenjtalk/htsvoice/README.md](pyopenjtalk/htsvoice/README.md). - marine: Apache 2.0 license ([LICENSE](https://github.com/6gsn/marine/blob/main/LICENSE)) ## Acknowledgements HTS Working Group for their dedicated efforts to develop and maintain Open JTalk.
[ "Phonology", "Speech & Audio in NLP" ]
[]
true
https://github.com/hkiyomaru/japanese-word-aggregation
2018-08-08T04:31:10Z
Aggregating Japanese words based on Juman++ and ConceptNet5.5
hkiyomaru / japanese-word-aggregation Public Branches Tags Go to file Go to file Code data src .gitignore LICEN… READ… A simple command-line tool to aggregate Japanese words. The aggregation is based on Juman++[Morita+ 15] and ConceptNet5.5[Speer+ 17]. Python 3.6.0 Juman++ (see https://github.com/ku-nlp/jumanpp) pyknp (see http://nlp.ist.i.kyoto-u.ac.jp/index.php? PyKNP) progressbar zenhan and their dependencies First, clone this repository. About Aggregating Japanese words based on Juman++ and ConceptNet5.5 Readme MIT license Activity 2 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Japanese Word Aggregation Development Environment Getting Started README MIT license Then, enter the repository. You can see a sample input file which includes one word per one line. Run the script for aggregation. You'll get the result as a tab-separated file which includes original words and the IDs to aggregate. $ git clone  https://github.com/kiyomaro927/japanese- word-aggregation.git $ cd japanese-word-aggregation/ $ cat data/input.txt こんにちは こんにちわ こんにちは。 こんにちは! こんにちは! いぬ 犬 イヌ 鰤大根 ぶり大根 父 お父さん 父親 1年生 1年生 一年生 12月 12月 十二月 1万円 1万円 10000円 10000円 $ python src/aggregate.py data/input.txt data/output.txt $ cat data/output.txt こんにちは 0 こんにちわ 0 こんにちは。 0 こんにちは! 0 MIT Hajime Morita, Daisuke Kawahara, Sadao Kurohashi, "Morphological Analysis for Unsegmented Languages using Recurrent Neural Network Language Model", EMNLP, 2015. Robert Speer, Joshua Chin, Catherine Havasi, "ConceptNet 5.5: An Open Multilingual Graph of General Knowledge" AAAI 2017 こんにちは! 0 いぬ 1 犬 1 イヌ 1 鰤大根 2 ぶり大根2 父 3 お父さん3 父親 3 1年生 4 1年生 4 一年生 4 12月 5 12月 5 十二月 5 1万円 6 1万円 6 10000円6 10000円 6 Lisence Reference
# Japanese Word Aggregation A simple command-line tool to aggregate Japanese words. The aggregation is based on Juman++[Morita+ 15] and ConceptNet5.5[Speer+ 17]. ## Development Environment - Python 3.6.0 - Juman++ (see https://github.com/ku-nlp/jumanpp) - pyknp (see http://nlp.ist.i.kyoto-u.ac.jp/index.php?PyKNP) - progressbar - zenhan - and their dependencies ## Getting Started First, clone this repository. ``` $ git clone https://github.com/kiyomaro927/japanese-word-aggregation.git ``` Then, enter the repository. ``` $ cd japanese-word-aggregation/ ``` You can see a sample input file which includes one word per one line. ``` $ cat data/input.txt こんにちは こんにちわ こんにちは。 こんにちは! こんにちは! いぬ 犬 イヌ 鰤大根 ぶり大根 父 お父さん 父親 1年生 1年生 一年生 12月 12月 十二月 1万円 1万円 10000円 10000円 ``` Run the script for aggregation. ``` $ python src/aggregate.py data/input.txt data/output.txt ``` You'll get the result as a tab-separated file which includes original words and the IDs to aggregate. ``` $ cat data/output.txt こんにちは 0 こんにちわ 0 こんにちは。 0 こんにちは! 0 こんにちは! 0 いぬ 1 犬 1 イヌ 1 鰤大根 2 ぶり大根 2 父 3 お父さん 3 父親 3 1年生 4 1年生 4 一年生 4 12月 5 12月 5 十二月 5 1万円 6 1万円 6 10000円 6 10000円 6 ``` ## Lisence - MIT ## Reference - Hajime Morita, Daisuke Kawahara, Sadao Kurohashi, "Morphological Analysis for Unsegmented Languages using Recurrent Neural Network Language Model", EMNLP, 2015. - Robert Speer, Joshua Chin, Catherine Havasi, "ConceptNet 5.5: An Open Multilingual Graph of General Knowledge", AAAI, 2017.
[ "Information Extraction & Text Mining", "Relation Extraction" ]
[]
true
https://github.com/ku-nlp/pyknp
2018-09-10T17:43:55Z
A Python Module for JUMAN++/KNP
ku-nlp / pyknp Public Branches Tags Go to file Go to file Code docs pyknp tests .gitignore .readth… AUTH… CITATI… COPYI… Makefile READ… poetry.l… pyproj… 形態素解析器JUMAN++(JUMAN)と構文解析器KNPの Pythonバインディング (Python2系と3系の両方に対 応)。 Python About A Python Module for JUMAN++/KNP # nlp # knp # nlp-parsing # juman # jumanpp Readme View license Activity Custom properties 89 stars 11 watching 23 forks Report repository Releases No releases published Packages No packages published Contributors 18 + 4 contributors Languages Python 99.8% Makefile 0.2% Code Issues 11 Pull requests 2 Actions Projects Security Insights pyknp: Python Module for JUMAN++/KNP Requirements README License Verified Versions: 2.7.15, 3.7.11 形態素解析器 JUMAN++ [EN] (or JUMAN[EN]) JUMAN++ はJUMANの後継にあたる形態素解 析器 構文解析器 KNP [EN] https://pyknp.readthedocs.io/en/latest/ 京都大学 黒橋・河原研究室 ([email protected] u.ac.jp) John Richardson, Tomohide Shibata, Yuta Hayashibe, Tomohiro Sakaguchi Installation $ pip install pyknp Documents Authors/Contact
# pyknp: Python Module for JUMAN++/KNP 形態素解析器JUMAN++(JUMAN)と構文解析器KNPのPythonバインディング (Python2系と3系の両方に対応)。 ## Requirements - Python - Verified Versions: 2.7.15, 3.7.11 - 形態素解析器 [JUMAN++](http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN%2B%2B) [[EN](http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN%2B%2B)] (or [JUMAN](http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN)[[EN](http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN)]) - JUMAN++ はJUMANの後継にあたる形態素解析器 - 構文解析器 [KNP](http://nlp.ist.i.kyoto-u.ac.jp/index.php?KNP) [[EN](http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP)] ## Installation ``` $ pip install pyknp ``` ## Documents https://pyknp.readthedocs.io/en/latest/ ## Authors/Contact 京都大学 黒橋・河原研究室 ([email protected]) - John Richardson, Tomohide Shibata, Yuta Hayashibe, Tomohiro Sakaguchi
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/rixwew/darts-clone-python
2018-11-16T15:57:51Z
Darts-clone python binding
rixwew / darts-clone-python Public Branches Tags Go to file Go to file Code .github/… csrc @ … dartscl… test .gitignore .gitmod… LICENSE MANIF… READ… setup.py Darts-clone binding for Python 3.x. This repository provides Cython-based pip-installable package. darts-clone-python is almost compatible with darts-clone. About Darts-clone python binding # python # dart # trie # double-array-trie Readme Apache-2.0 license Activity 20 stars 3 watching 12 forks Report repository Releases 4 v0.10.2 Latest on Apr 5, 2022 + 3 releases Packages No packages published Contributors 5 Languages Cython 63.1% Python 33.7% Shell 3.2% Code Issues 1 Pull requests 2 Actions Projects Security Insights darts-clone-python Installation pip install dartsclone Usage README Apache-2.0 license import dartsclone darts = dartsclone.DoubleArray() # build index data = [b'apple', b'banana', b'orange'] values = [1, 3, 2] darts.build(data, values=values) # exact match search result = darts.exact_match_search('apple'.encode('utf-8')) print(result) # [1, 5] # common prefix search result = darts.common_prefix_search('apples'.encode('utf-8'), pair_type=False) print(result) # [1] # save index darts.save('sample.dic') # load index darts.clear() darts.open('sample.dic') # dump array data array = darts.array() # load array data darts.clear() darts.set_array(array)
# darts-clone-python [Darts-clone](https://github.com/s-yata/darts-clone) binding for Python 3.x. This repository provides Cython-based pip-installable package. ## Installation pip install dartsclone ## Usage darts-clone-python is almost compatible with darts-clone. ```python import dartsclone darts = dartsclone.DoubleArray() # build index data = [b'apple', b'banana', b'orange'] values = [1, 3, 2] darts.build(data, values=values) # exact match search result = darts.exact_match_search('apple'.encode('utf-8')) print(result) # [1, 5] # common prefix search result = darts.common_prefix_search('apples'.encode('utf-8'), pair_type=False) print(result) # [1] # save index darts.save('sample.dic') # load index darts.clear() darts.open('sample.dic') # dump array data array = darts.array() # load array data darts.clear() darts.set_array(array) ```
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/ku-nlp/Winograd-Schema-Challenge-Ja
2019-01-25T10:14:28Z
Japanese Translation of Winograd Schema Challenge
ku-nlp / Winograd-Schema-Challenge-Ja Public Branches Tags Go to file Go to file Code .gitignore README.md test.txt train.txt winograd_sc… Japanese Translation of Winograd Schema Challenge (http://www.hlt.utdallas.edu/~vince/data/emnlp12/) train: train.txt (1,322 tasks) test: test.txt ( 564 tasks) Five lines correspond to one task, which consists of the following four lines (and one blank line). Example: About Japanese Translation of Winograd Schema Challenge Readme Activity Custom properties 6 stars 6 watching 0 forks Report repository Releases 2 tags Packages No packages published Languages Python 100.0% Code Issues 1 Pull requests Actions Projects Security Insights Winograd-Schema-Challenge-Ja Dataset Format input sentence(s) Japanese translation (comments if any) target pronoun Japanese translation antecedent candidates Japanese translation correct antecedent Japanese translation "James asked Robert for a favor, but he refused." ジェームズはロバートに頼みごとをした。し かし彼は断った。 he 彼 "James,Robert" ジェームズ、 ロバート Robert ロバート Dataset Reader $ python winograd_schema_challenge_ja_reader.py --train_file train.txt --test_file test.txt README 0.2 Check the consistency. 0.1 initial commit 柴田知秀, 小浜翔太郎, 黒橋禎夫: 日本語Winograd Schema Challengeの構築と分析. 言語処理学会 第21回年次大会 (2015.3) (in Japanese). http://www.anlp.jp/proceedings/annual_meeting/2015/pdf_dir/E3-1.pdf History Reference
# Winograd-Schema-Challenge-Ja Japanese Translation of Winograd Schema Challenge (http://www.hlt.utdallas.edu/~vince/data/emnlp12/) ## Dataset - train: train.txt (1,322 tasks) - test: test.txt ( 564 tasks) ### Format - Five lines correspond to one task, which consists of the following four lines (and one blank line). ``` input sentence(s) Japanese translation (comments if any) target pronoun Japanese translation antecedent candidates Japanese translation correct antecedent Japanese translation ``` - Example: ``` "James asked Robert for a favor, but he refused." ジェームズはロバートに頼みごとをした。しかし彼は断った。 he 彼 "James,Robert" ジェームズ、 ロバート Robert ロバート ``` ## Dataset Reader ```bash $ python winograd_schema_challenge_ja_reader.py --train_file train.txt --test_file test.txt ``` ## History - 0.2 - Check the consistency. - 0.1 - initial commit ## Reference 柴田知秀, 小浜翔太郎, 黒橋禎夫: 日本語Winograd Schema Challengeの構築と分析. 言語処理学会 第21回年次大会 (2015.3) (in Japanese). http://www.anlp.jp/proceedings/annual_meeting/2015/pdf_dir/E3-1.pdf
[ "Commonsense Reasoning", "Reasoning" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/yagays/embedrank
2019-02-01T02:41:39Z
Python Implementation of EmbedRank
yagays / embedrank Public Branches Tags Go to file Go to file Code src web .dockerignore .gitignore LICENSE.md README.md dockerfile requirements.txt Python Implementaion of "Simple Unsupervised Keyphrase Extraction using Sentence Embeddings" EmbedRank requires pretrained document embeddings (now doc2vec supported). Please see my blog for using pretrained Japanese doc2vec models. (Source: 潜伏キリシタン関連遺産、世界遺産登録 - ウィキニュース) Set the extracted doc2vec model in model/ directory and run the following commands. About Python Implementation of EmbedRank Readme MIT license Activity 49 stars 3 watching 3 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues 1 Pull requests Actions Projects Security Insights EmbedRank Usage from gensim.models.doc2vec import Doc2Vec from embedrank import EmbedRank from nlp_uitl import tokenize model = Doc2Vec.load("model/jawiki.doc2vec.dbow300d.model") embedrank = EmbedRank(model=model, tokenize=tokenize) text = """バーレーンの首都マナマ(マナーマとも)で現在開催されている ユネスコ(国際連合教育科学文化機関)の第42回世界遺産委員会は日本の推薦していた 「長崎と天草地方の潜伏キリシタン関連遺産」 (長崎県、熊本県)を30日、 世界遺産に登録することを決定した。文化庁が同日発表した。 日本国内の文化財の世界遺産登録は昨年に登録された福岡県の 「『神宿る島』宗像・沖ノ島と関連遺産群」に次いで18件目。 2013年の「富士山-信仰の対象と芸術の源泉」の文化遺産登録から6年連続となった。""" In []: embedrank.extract_keyword(text) [('世界遺産登録', 0.61837685), ('(長崎県', 0.517046), ('ユネスコ(国際連合教育科学文化機関)', 0.5726031), ('潜伏キリシタン関連遺 Docker $ docker build -t embedrank . $ docker run --rm -p 8080:8080 --memory 7g -it embedrank README MIT license Caution: You need to allocate total memory size more than 7GB. Container size is very large (7.38GB) $ curl -XPOST "localhost:8080/embedrank" --data-urlencode text='バーレーンの首都マナマ(マナーマとも)で現在開催されている ユネスコ(国際連合教育科学文化機関)の第42回世界遺産委員会は日本の推薦していた 「長崎と天草地方の潜伏キリシタン関連遺産」 (長崎県、熊本県)を30日、 世界遺産に登録することを決定した。文化庁が同日発表した。 日本国内の文化財の世界遺産登録は昨年に登録された福岡県の 「『神宿る島』宗像・沖ノ島と関連遺産群」に次いで18件目。 2013年の「富士山-信仰の対象と芸術の源泉」の文化遺産登録から6年連続となった。' -d 'num_keywords=3' { "keywords": [ { "keyword": "世界遺産登録", "score": "0.58336747" }, { "keyword": "天草地方", "score": "0.52296615" }, { "keyword": "首都マナマ(マナーマ", "score": "0.5126816" } ] }
# EmbedRank Python Implementaion of "[Simple Unsupervised Keyphrase Extraction using Sentence Embeddings](https://arxiv.org/abs/1801.04470)" ## Usage EmbedRank requires pretrained document embeddings (now doc2vec supported). Please see [my blog ](https://yag-ays.github.io/project/pretrained_doc2vec_wikipedia/) for using pretrained Japanese doc2vec models. ```py from gensim.models.doc2vec import Doc2Vec from embedrank import EmbedRank from nlp_uitl import tokenize model = Doc2Vec.load("model/jawiki.doc2vec.dbow300d.model") embedrank = EmbedRank(model=model, tokenize=tokenize) text = """バーレーンの首都マナマ(マナーマとも)で現在開催されている ユネスコ(国際連合教育科学文化機関)の第42回世界遺産委員会は日本の推薦していた 「長崎と天草地方の潜伏キリシタン関連遺産」 (長崎県、熊本県)を30日、 世界遺産に登録することを決定した。文化庁が同日発表した。 日本国内の文化財の世界遺産登録は昨年に登録された福岡県の 「『神宿る島』宗像・沖ノ島と関連遺産群」に次いで18件目。 2013年の「富士山-信仰の対象と芸術の源泉」の文化遺産登録から6年連続となった。""" ``` ```py In []: embedrank.extract_keyword(text) [('世界遺産登録', 0.61837685), ('(長崎県', 0.517046), ('ユネスコ(国際連合教育科学文化機関)', 0.5726031), ('潜伏キリシタン関連遺産', 0.544827), ('首都マナマ(マナーマ', 0.4898381)] ``` (Source: [潜伏キリシタン関連遺産、世界遺産登録 \- ウィキニュース](https://ja.wikinews.org/wiki/%E6%BD%9C%E4%BC%8F%E3%82%AD%E3%83%AA%E3%82%B7%E3%82%BF%E3%83%B3%E9%96%A2%E9%80%A3%E9%81%BA%E7%94%A3%E3%80%81%E4%B8%96%E7%95%8C%E9%81%BA%E7%94%A3%E7%99%BB%E9%8C%B2)) ## Docker Set the extracted doc2vec model in `model/` directory and run the following commands. ```sh $ docker build -t embedrank . $ docker run --rm -p 8080:8080 --memory 7g -it embedrank ``` ```sh $ curl -XPOST "localhost:8080/embedrank" --data-urlencode text='バーレーンの首都マナマ(マナーマとも)で現在開催されている ユネスコ(国際連合教育科学文化機関)の第42回世界遺産委員会は日本の推薦していた 「長崎と天草地方の潜伏キリシタン関連遺産」 (長崎県、熊本県)を30日、 世界遺産に登録することを決定した。文化庁が同日発表した。 日本国内の文化財の世界遺産登録は昨年に登録された福岡県の 「『神宿る島』宗像・沖ノ島と関連遺産群」に次いで18件目。 2013年の「富士山-信仰の対象と芸術の源泉」の文化遺産登録から6年連続となった。' -d 'num_keywords=3' { "keywords": [ { "keyword": "世界遺産登録", "score": "0.58336747" }, { "keyword": "天草地方", "score": "0.52296615" }, { "keyword": "首都マナマ(マナーマ", "score": "0.5126816" } ] } ``` Caution: - You need to allocate total memory size more than 7GB. - Container size is very large (7.38GB)
[ "Information Extraction & Text Mining", "Low-Resource NLP", "Representation Learning", "Responsible & Trustworthy NLP", "Semantic Similarity", "Semantic Text Processing", "Term Extraction" ]
[]
true
https://github.com/aozorahack/aozorabunko_text
2019-02-10T18:04:27Z
text-only archives of www.aozora.gr.jp
aozorahack / aozorabunko_text Public Branches Tags Go to file Go to file Code .github/wor… cards .gitignore Gemfile Gemfile.lock README.md 青空文庫( https://www.aozora.gr.jp )のサーバ内にある青空文庫形式のテキストのみをテキスト形式のまま集 めたものです。 個別にzipコマンドで展開したりせずにすべてのテキストが読めます。 Download ZIP (200MB以上) zip形式のファイルで欲しい場合、上記からダウンロードできます。 なお、テキストファイルは全てcardsデ ィレクトリ内にあります。それ以外は無視してください。 gitレポジトリの取得については、ふつうのgithub repoなので git pullで持ってきてもらえばいいのですが、履 歴不要で最新版だけ欲しい場合は以下のコマンドの方が早いはずです。 個別のファイルには、 https://aozorahack.org/aozorabunko_text/cards/000081/files/45630_txt_23610/45630_txt_23610.txt のようなURLでアクセスできます(ただし、HTTPレスポンスヘッダのContent-Typeはtext/plain; charset=utf-8 なのにファイルはShift_JISなので、ブラウザでは文字化けします)。 About text-only archives of www.aozora.gr.jp # aozorabunko # aozora Readme Activity Custom properties 76 stars 3 watching 6 forks Report repository Releases No releases published Packages No packages published Contributors 2 Languages Ruby 100.0% Code Issues Pull requests Actions Projects Security Insights aozorabunko_text ダウンロード $ git clone --depth 1 https://github.com/aozorahack/aozorabunko_text.git 個別のテキストファイルへのアクセス README ※ zip内のテキストファイルはタイトルに合わせたファイル名が命名されているのですが、このレポジトリで はzipファイル名に合わせたファイル名にしています。 例えば、 cards/000005/files/53194_ruby_44732.zip 内のテキストなら cards/000005/files/53194_ruby_44732/53194_ruby_44732.txt というパスになります。 異なるファイル名にしているのは、元のテキストファイル名は「作家別作品一覧CSV」などにも書かれてお らず、確認するにはzipファイルの中身を見ないといけないためです。 https://github.com/aozorabunko/aozorabunko の中身を取得して、cardsディレクトリ内にあるzipファイルの 中からtxtファイルを取り出して、同様の階層のディレクトリ内に保存しています。 動作はCircleCI上で行っており、1日1回バッチで動作します。 cardsディレクトリ内のファイルについては、「青空文庫収録ファイルの取り扱い規準」の元でご利用くださ い。 著作権保護期間が終了しておらず、クリエイティブ・コモンズ・ライセンス等による許諾の元で再配布され ているファイルも含まれています。ご注意ください。 動作のしくみ 権利関係
# aozorabunko_text 青空文庫( https://www.aozora.gr.jp )のサーバ内にある青空文庫形式のテキストのみをテキスト形式のまま集めたものです。 個別にzipコマンドで展開したりせずにすべてのテキストが読めます。 ## ダウンロード [Download ZIP](https://github.com/aozorahack/aozorabunko_text/archive/master.zip) (200MB以上) zip形式のファイルで欲しい場合、上記からダウンロードできます。 なお、テキストファイルは全てcardsディレクトリ内にあります。それ以外は無視してください。 gitレポジトリの取得については、ふつうのgithub repoなので git pullで持ってきてもらえばいいのですが、履歴不要で最新版だけ欲しい場合は以下のコマンドの方が早いはずです。 ```console $ git clone --depth 1 https://github.com/aozorahack/aozorabunko_text.git ``` ### 個別のテキストファイルへのアクセス 個別のファイルには、`https://aozorahack.org/aozorabunko_text/cards/000081/files/45630_txt_23610/45630_txt_23610.txt`のようなURLでアクセスできます(ただし、HTTPレスポンスヘッダのContent-Typeは`text/plain; charset=utf-8`なのにファイルはShift_JISなので、ブラウザでは文字化けします)。 ※ zip内のテキストファイルはタイトルに合わせたファイル名が命名されているのですが、このレポジトリではzipファイル名に合わせたファイル名にしています。 例えば、`cards/000005/files/53194_ruby_44732.zip`内のテキストなら`cards/000005/files/53194_ruby_44732/53194_ruby_44732.txt`というパスになります。 異なるファイル名にしているのは、元のテキストファイル名は「作家別作品一覧CSV」などにも書かれておらず、確認するにはzipファイルの中身を見ないといけないためです。 ## 動作のしくみ https://github.com/aozorabunko/aozorabunko の中身を取得して、cardsディレクトリ内にあるzipファイルの中からtxtファイルを取り出して、同様の階層のディレクトリ内に保存しています。 動作はCircleCI上で行っており、1日1回バッチで動作します。 ## 権利関係 cardsディレクトリ内のファイルについては、[「青空文庫収録ファイルの取り扱い規準」](https://www.aozora.gr.jp/guide/kijyunn.html)の元でご利用ください。 著作権保護期間が終了しておらず、クリエイティブ・コモンズ・ライセンス等による許諾の元で再配布されているファイルも含まれています。ご注意ください。
[]
[ "Annotation and Dataset Development" ]
true
https://github.com/davidluzgouveia/kanji-data
2019-02-28T05:53:36Z
A JSON kanji dataset with updated JLPT levels and WaniKani information
davidluzgouveia / kanji-data Public Branches Tags Go to file Go to file Code docs tools .gitignore LICEN… READ… kanji-jo… kanji-k… kanji-w… kanji.json This repository contains a JSON file combining all of the kanji data that I found relevant to my studies of the Japanese language. There are also two smaller variants containing only the kyouiku and jouyou subsets. Most of the data is the same as the KANJIDIC dataset, but converted to JSON for ease of use, stripped of information I didn't need, and extended with updated JLPT levels and WaniKani content. All of the data was extracted and processed using only scripts, which should decrease the chances of human error - unless there is some bug in the code, in which case it will be easy to fix and regenerate the data. The Python scripts used to extract and organize all of the data are also provided. Even if my choice of fields does not match your requirements, the scripts might still be useful to extract what you need. About A JSON kanji dataset with updated JLPT levels and WaniKani information # python # json # japanese # wanikani # kanji # japanese-language # jlpt # japanese-study Readme MIT license Activity 147 stars 6 watching 20 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests 1 Actions Security Insights Kanji Data README MIT license Note: Some of the meanings and readings that were extracted from WaniKani have a ^ or a ! prefix. I added these to denote when an item is not a primary answer ( ^ ) or not an accepted answer ( ! ) on WaniKani. These characters don't appear at the start of any other string in the dataset, so if you prefer to remove them, you can do a simple search and replace from "^ and "! to " . Here's what a single entry in the file looks like: Many of these fields can be null so be weary of that. For instance, there are entries that don't exist in WaniKani, or that are not part of the JLPT sets, so those fields will be null . All of the data comes from the following sources: Kanji: KANJIDIC JLPT: Jonathan Waller's JLPT Resources page WaniKani: WaniKani API Example "勝": { "strokes": 12, "grade": 3, "freq": 185, "jlpt_old": 2, "jlpt_new": 3, "meanings": ["Victory","Win","Prevail","Excel"], "readings_on": ["しょう"], "readings_kun": ["か.つ","-が.ち","まさ.る","すぐ.れる","かつ"], "wk_level": 9, "wk_meanings": ["Win"], "wk_readings_on": ["しょう"], "wk_readings_kun": ["!か"], "wk_radicals": ["Moon","Gladiator","Power"] } References
# Kanji Data This repository contains a [JSON file](kanji.json) combining all of the kanji data that I found relevant to my studies of the Japanese language. There are also two smaller variants containing only the [kyouiku](kanji-kyouiku.json) and [jouyou](kanji-jouyou.json) subsets. Most of the data is the same as the KANJIDIC dataset, but converted to JSON for ease of use, stripped of information I didn't need, and extended with updated JLPT levels and WaniKani content. All of the data was extracted and processed using only scripts, which should decrease the chances of human error - unless there is some bug in the code, in which case it will be easy to fix and regenerate the data. The Python scripts used to extract and organize all of the data are also provided. Even if my choice of fields does not match your requirements, the scripts might still be useful to extract what you need. > Note: Some of the meanings and readings that were extracted from WaniKani have a `^` or a `!` prefix. I added these to denote when an item is *not a primary answer* (`^`) or *not an accepted answer* (`!`) on WaniKani. These characters don't appear at the start of any other string in the dataset, so if you prefer to remove them, you can do a simple search and replace from `"^` and `"!` to `"`. ## Example Here's what a single entry in the file looks like: ```json "勝": { "strokes": 12, "grade": 3, "freq": 185, "jlpt_old": 2, "jlpt_new": 3, "meanings": ["Victory","Win","Prevail","Excel"], "readings_on": ["しょう"], "readings_kun": ["か.つ","-が.ち","まさ.る","すぐ.れる","かつ"], "wk_level": 9, "wk_meanings": ["Win"], "wk_readings_on": ["しょう"], "wk_readings_kun": ["!か"], "wk_radicals": ["Moon","Gladiator","Power"] } ``` Many of these fields can be `null` so be weary of that. For instance, there are entries that don't exist in WaniKani, or that are not part of the JLPT sets, so those fields will be `null`. ## References All of the data comes from the following sources: - Kanji: [KANJIDIC](http://www.edrdg.org/wiki/index.php/KANJIDIC_Project) - JLPT: [Jonathan Waller's JLPT Resources page](http://www.tanos.co.uk/jlpt/) - WaniKani: [WaniKani API](https://docs.api.wanikani.com/)
[ "Syntactic Text Processing", "Text Normalization" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/Machine-Learning-Tokyo/EN-JP-ML-Lexicon
2019-05-27T07:29:35Z
This is a English-Japanese lexicon for Machine Learning and Deep Learning terminology.
Machine-Learning-Tokyo / EN-JP-ML-Lexicon Public Branches Tags Go to file Go to file Code READ… This is an English-Japanese lexicon for Machine Learning and Deep Learning terminology, based on the translation work for the Machine Learning and Deep Learning cheatsheets created by @afshinea for Stanford's CS 229 Machine Learning and CS 230 Deep Learning. We have included the Japanese cheat sheet translations that were created and reviewed by a team of MLT members for each topic. Yoshiyuki Nakai, Yuta Kanzawa, Hideaki Hamano, Tran Tuan Anh, Takatoshi Nao, Kamuela Lau, Rob Altena, Wataru Oniki and Suzana Ilic. 日本語のチートシート English 日本語 Adaptive learning rates 適応学習率 Analytical gradient 解析的勾配 Architecture アーキテクチャ Backpropagation 誤差逆伝播法 About This is a English-Japanese lexicon for Machine Learning and Deep Learning terminology. Readme Activity Custom properties 33 stars 4 watching 9 forks Report repository Releases No releases published Packages No packages published Contributors 8 Code Issues Pull requests 1 Actions Projects Security Insights Machine Learning and Deep Learning: EN-JP Lexicon Translation, review work and lexicon creation done by: Deep Learning DL tips and tricks README English 日本語 Batch normalization バッチ正規化 Binary classification 二項分類 Calculation 計算 Chain rule 連鎖律 Coefficients 係数 Color shift カラーシフト Contrast change コントラスト(鮮やかさ)の修正 Convolution layer 畳み込み層 Cross-entropy loss 交差エントロピー誤差 Dampens oscillations 振動を抑制する Data augmentation データ拡張 Data processing データ処理 Deep learning 深層学習 Derivative 微分 Dropout Dropout (ドロップアウト) Early stopping Early stopping (学習の早々な終了) Epoch エポック Error 損失 Evaluation 評価 Finding optimal weights 最適な重みの探索  Flip 反転 Forward propagation 順伝播 Fully connected layer 全結合層 Gradient checking 勾配チェック Gradient descent 勾配降下法 Gradient of the loss 損失の勾配 Hyperparameter  ハイパーパラメータ Improvement to SGD SGDの改良 Information loss 情報損失 English 日本語 Learning algorithm 学習アルゴリズム Learning rate 学習率 Loss function 損失関数 Mini-batch ミニバッチ Momentum Momentum(運動量) Neural network training ニューラルネットワークの学習 Noise addition ノイズの付加 Non-linear layer 非線形層 Numerical gradient 数値的勾配 Optimizing convergence 収束の最適化 Output 出力 Overfitting 過学習 Parameter tuning パラメータチューニング Parametrize パラメータ化する Pre-trained weights 学習済みの重み Prevent overfitting 過学習を避けるために Random crop ランダムな切り抜き Regularization 正規化 Root Mean Square propagation 二乗平均平方根のプロパゲーション Rotation 回転 Transfer learning 転移学習 Type 種類 Updating weights 重み更新 Validation loss バリデーションの損失 Weight regularization 重みの正規化 Weights initialization 重みの初期化 Xavier initialization Xavier初期化 English 日本語 Activation 活性化 Activation functions 活性化関数 Activation map 活性化マップ Anchor box アンカーボックス Architecture アーキテクチャ Average pooling 平均プーリング Bias バイアス Bounding box バウンディングボックス Computational trick architectures 計算トリックアーキテクチャ Convolution 畳み込み Convolution layer 畳み込み層 Convolutional Neural Networks 畳み込みニューラルネットワーク Deep Learning 深層学習 Detection 検出 Dimensions 次元 Discriminative model 識別モデル Face verification/recognition 顔認証/認識 Feature map 特徴マップ Filter hyperparameters フィルタハイパーパラメタ Fine tuning ファインチューニング Flatten 平滑化 Fully connected 全結合 Generative Adversarial Net 敵対的生成ネットワーク Generative model 生成モデル Gram matrix グラム行列 Image classification 画像分類 Inception Network インセプションネットワーク Convolutional Neural Nets English 日本語 Intersection over Union 和集合における共通部分の割合 (IoU) Layer 層 Localization 位置特定 Max pooling 最大プーリング Model complexity モデルの複雑さ Neural style transfer ニューラルスタイル変換 Noise ノイズ Non-linearity 非線形性 Non-max suppression 非極大抑制 Object detection オブジェクト検出 Object recognition 物体認識 One Shot Learning One Shot学習 Padding パディング Parameter compatibility パラメータの互換性 Pooling プーリング R-CNN R-CNN Receptive field 受容野 Rectified Linear Unit 正規化線形ユニット (ReLU) Residual Network (ResNet) 残差ネットワーク (ResNet) Segmentation セグメンテーション Siamese Network シャムネットワーク Softmax ソフトマックス Stride ストライド Style matrix スタイル行列 Style/content cost function スタイル/コンテンツコスト関数 Training set 学習セット Triplet loss トリプレット損失 Tuning hyperparameters ハイパーパラメータの調整 You Only Look Once (YOLO) YOLO English 日本語 1-hot representation 1-hot 表現 A Conditional language model 条件付き言語モデル A language model 言語モデル Amount of attention 注意量 Attention model アテンションモデル Beam search ビームサーチ Bidirectional RNN 双方向 RNN Binary classifiers バイナリ分類器 Bleu score ブルースコア(機械翻訳比較スコア) Brevity penalty 簡潔さへのペナルティ CBOW CBOW Co-occurence matrix 共起行列 Conditional probabilities 条件付き確率 Cosine similarity コサイン類似度 Deep RNN ディープ RNN Embedding Matrix 埋め込み行列 Exploding gradient 勾配爆発 Forget gate 忘却ゲート GloVe グローブ Gradient clipping 勾配クリッピング GRU ゲート付き回帰型ユニット Length normalization 言語長正規化 Length normalization 文章の長さの正規化 Likelihood 可能性 Long term/ dependencies 長期依存性関係 LSTM 長・短期記憶 Machine translation 機会翻訳 Recurrent Neural Nets English 日本語 Motivation and notations 動機と表記 Multiplicative gradien 掛け算の勾配 N-gram n-gram Naive greedy search 単純な貪欲法 Negative sampling ネガティブサンプリング Notations ノーテーション Output gate 出力ゲート Perplexity パープレキシティ Relevance gate 関連ゲート Skip-gram スキップグラム Skip-gram スキップグラム Softener 緩衝パラメータ t-SNE t-SNE Target/context likelihood model ターゲット/コンテキスト尤度モデル Update gate 更新ゲート Vanishing gradient 勾配喪失 Weighting function 重み関数 Word Embedding 単語埋め込み Word2vec Word2vec English 日本語  Adaptive boosting  適応的ブースティング  Batch gradient descent  バッチ勾配降下法  Bayes' rule  ベイズの定理  Bernoulli  ベルヌーイ  Bernoulli distribution   ベルヌーイ分布  Machine Learning Supervised Learning English 日本語  Bias  バイア  Binary trees  二分木  Boosting  ブースティング  Boosting step  ブースティングステップ  Canonical parameter  正準パラメータ  Categorical variable カテゴリ変数  Chernoff bound  チェルノフ上界  Class  クラス  Classification  分類   Classification and Regression Trees (CART)  分類・回帰ツリー (CART)  Classifier  分類器  Closed form solution  閉形式の解  Coefficients  係数 Confusion matrix 混同行列  Continuous values  連続値  Cost function  コスト関数  Cross-entropy  クロスエントロピー Cross validation 交差検証 / クロスバリデーション  Decision boundary  決定境界  Decision trees  決定ツリー  Discriminative model  判別モデル  Distribution  分布  Empirical error  経験誤差  Ensemble methods  アンサンブル学習  Error rate 誤答率  Estimation  推定  Exponential distributions  般的な指数分布族  Exponential family  指数分布族 ― 正準パラメータ  Feature engineering  特徴量エンジニアリング English 日本語  Feature mapping  特徴写像  Features  特徴  Framework  フレームワーク  Function  関数  Gaussian  ガウス  Gaussian Discriminant Analysis  ガウシアン判別分析  Gaussian kernel  ガウシアンカーネル  Generalized Linear Models  一般化線形モデル  Generative Learning  生成学習  Generative model  生成モデル  Geometric  幾何  Good performance  的に良い性能  Gradient boosting  勾配ブースティング  Gradient descent  勾配降下法  Highly uninterpretable  解釈しにくい  Hinge loss  ヒンジ損失  Hoeffding inequality  ヘフディング不等式  Hold out ホールドアウト  Hypothesis  仮説  Independent  独立  Input  入力  Interpretable  解釈しやすい  k-nearest neighbors (k-NN)  k近傍法 (k-NN)  Kernel  カーネル  Kernel mapping  カーネル写像  Kernel trick  カーネルトリック  Lagrange multipliers  ラグランジュ乗数  Lagrangian  ラグランジアン  Learning Theory  学習理論 English 日本語  Least Mean Squares  最小2乗法  Least squared error  最小2乗誤差  Likelihood  尤度  Linear classifier  線形分類器  Linear discriminant analysis 線形判別分析(LDA)  Linear models  線形モデル  Linear regression  線形回帰  Link function  リンク関数  Locally Weighted Regression  局所重み付き回帰  Log-likelihood  対数尤度  Logistic loss  ロジスティック損失  Logistic regression  ロジスティック回帰  Loss function  損失関数  Matrix  行列  Maximizing the likelihood  尤度を最大にする  Minimum distance  最短距離  Misclassification  誤分類 Missing value 欠損値  Multi-class logistic regression  多クラス分類ロジスティック回帰  Multi-label classification 多ラベル分類 / マルチラベル分類  Multidimensional generalization  高次元正則化  Naive Bayes  ナイーブベイズ  Natural parameter  自然パラメータ  Non-linear separability  非線形分離問題  Non-parametric approaches  ノン・パラメトリックな手法  Normal equations  正規方程式  Normalization parameter  正規化定数  Numerical variable 数値変数  Optimal margin classifier  最適マージン分類器 English 日本語  Optimal parameters  最適なパラメータ  Optimization  最適化  Optimization problem   最適化問題   Ordinary least squares  最小2乗回帰  Output  出力  Parameter  パラメータ  Parameter update  パラメータ更新  Poisson  ポワソン  Prediction  予測  Probability  確率  Probability distributions of the data  データの確率分布  Probably Approximately Correct (PAC)  確率的に近似的に正しい (PAC)  Random forest  ランダムフォレスト  Random variable  ランダムな変数  Randomly selected features  ランダムに選択された特徴量 Recommendation レコメンデーション  Regression  回帰  Sample mean  標本平均  Shattering  細分化  Sigmoid function  シグモイド関数  Softmax regression   ソフトマックス回帰   Spam detection  スパム検知  Stochastic gradient descent  確率的勾配降下法  Supervised Learning  教師あり学習  Support Vector Machine (SVM)  サポートベクターマシン  Text classification  テキスト分類  To maximize  最大化する  To minimize  最小化する  To predict  予測する English 日本語  Training data  学習データ  Training error  学習誤差  Tree-based methods  ツリーベース学習  Union bound  和集合上界  Update rule  更新ルール  Upper bound theorem  上界定理  Vapnik-Chervonenkis (VC) dimension  ヴァプニク・チェルヴォーネンキス次元 (VC)  Variables  変数  Variance  分散  Weights  重み English 日本語 Agglomerative hierarchical 凝集階層 Average linkage 平均リンケージ Bell and Sejnowski ICA algorithm ベルとシノスキーのICAアルゴリズム Calinski-Harabaz index Calinski-Harabazインデックス Centroids 重心 Clustering クラスタリング Clustering assessment metrics クラスタリング評価指標 Complete linkage 完全リンケージ Convergence 収束 Diagonal Diagonal Dimension reduction 次元削減 Dispersion matrices 分散行列 Distortion function ひずみ関数 E-step E-ステップ Eigenvalue 固有値 Eigenvector 固有ベクトル Unsupervised Learning English 日本語 Expectation-Maximization 期待値最大化法 Factor analysis 因子分析 Gaussians initialization ガウス分布初期化 Hierarchical clustering 階層的クラスタリング Independent component analysis (ICA) 独立成分分析 Jensen's inequality イェンセンの不等式 K-means clustering K平均法 Latent variables 潜在変数 M-step M-ステップ Means initialization 平均の初期化 Orthogonal matrix 実直交行列 Posterior probabilities 事後確率 Principal components 主成分 Principal component analysis (PCA) 主成分分析 Random variables ランダムな変数 Silhouette coefficient シルエット係数 Spectral theorem スペクトル定理 Unmixing matrix 非混合行列 Unsupervised learning 教師なし学習 Ward linkage ウォードリンケージ English 日本語 Axiom 公理 Bayes' rule ベイズの定理 Boundary 境界 Characteristic function 特性関数 Chebyshev's inequality チェビシェフの不等式 Chi-square statistic カイ二乗統計量 Probabilities and Statistics English 日本語 Combinatorics 組合せ Conditional Probability 条件付き確率 Continuous 連続 Cumulative distribution function (CDF) 累積分布関数 Cumulative function 累積関数 Discrete 離散 Distribution 分布 Event 事象 Expected value 期待値 Generalized expected value 一般化した期待値 Jointly Distributed Random Variables 同時分布の確率変数 Leibniz integral rule ライプニッツの積分則 Marginal density 周辺密度 Mutual information 相互情報量 Mutually exclusive events 互いに排反な事象 Order 順番 Partition 分割 Pearson correlation coefficient 相関係数 (ピアソンの積率相関係数) Permutation 順列 Probability 確率 Probability density function (PDF) 確率密度関数 Probability distribution 確率分布 Random variable 確率変数 Result 結果 Sample space 標本空間 Sequence 数列 Spearman's rank correlation coefficient スピアマンの順位相関係数 Standard deviation 標準偏差 Standard error 標準誤差 English 日本語 Statistics 統計 Subset 部分集合 Type 種類 Variance 分散 Weighted mean 加重平均 English 日本語 Antisymmetric 反対称 Calculus 微積分 Column 列 Column-vector 列ベクトル Algebra and Calculus
# Machine Learning and Deep Learning: EN-JP Lexicon This is an English-Japanese lexicon for Machine Learning and Deep Learning terminology, based on the translation work for the [Machine Learning](https://github.com/afshinea/stanford-cs-229-machine-learning) and [Deep Learning cheatsheets](https://github.com/afshinea/stanford-cs-230-deep-learning) created by [@afshinea](https://github.com/afshinea) for Stanford's CS 229 Machine Learning and CS 230 Deep Learning. We have included the Japanese cheat sheet translations that were created and reviewed by a team of MLT members for each topic. ## Translation, review work and lexicon creation done by: [Yoshiyuki Nakai](https://github.com/yoshiyukinakai/), [Yuta Kanzawa](https://ytknzw.github.io/), Hideaki Hamano, Tran Tuan Anh, [Takatoshi Nao](https://github.com/nao0811ta), Kamuela Lau, Rob Altena, Wataru Oniki and [Suzana Ilic](https://www.linkedin.com/in/suzanailic/). # Deep Learning ## DL tips and tricks - [日本語のチートシート](https://github.com/shervinea/cheatsheet-translation/blob/master/ja/cs-230-deep-learning-tips-and-tricks.md) | English | 日本語 | |:--- |:--------------------------- | | Adaptive learning rates | 適応学習率 | | Analytical gradient | 解析的勾配 | | Architecture | アーキテクチャ | | Backpropagation | 誤差逆伝播法 | | Batch normalization | バッチ正規化 | | Binary classification | 二項分類 | | Calculation | 計算 | | Chain rule | 連鎖律 | | Coefficients | 係数 | | Color shift | カラーシフト | | Contrast change | コントラスト(鮮やかさ)の修正 | | Convolution layer | 畳み込み層 | | Cross-entropy loss | 交差エントロピー誤差 | | Dampens oscillations | 振動を抑制する | | Data augmentation | データ拡張 | | Data processing | データ処理 | | Deep learning | 深層学習 | | Derivative | 微分 | | Dropout | Dropout (ドロップアウト) | | Early stopping | Early stopping (学習の早々な終了) | | Epoch | エポック | | Error | 損失 | | Evaluation | 評価 | | Finding optimal weights | 最適な重みの探索 | | Flip | 反転 | | Forward propagation | 順伝播 | | Fully connected layer | 全結合層 | | Gradient checking | 勾配チェック | | Gradient descent | 勾配降下法 | | Gradient of the loss | 損失の勾配 | | Hyperparameter | ハイパーパラメータ | | Improvement to SGD | SGDの改良 | | Information loss | 情報損失 | | Learning algorithm | 学習アルゴリズム | | Learning rate | 学習率 | | Loss function | 損失関数 | | Mini-batch | ミニバッチ | | Momentum | Momentum(運動量)| | Neural network training | ニューラルネットワークの学習 | | Noise addition | ノイズの付加 | | Non-linear layer | 非線形層 | | Numerical gradient | 数値的勾配 | | Optimizing convergence | 収束の最適化 | | Output | 出力 | | Overfitting | 過学習 | | Parameter tuning | パラメータチューニング | | Parametrize | パラメータ化する | | Pre-trained weights | 学習済みの重み | | Prevent overfitting | 過学習を避けるために | | Random crop | ランダムな切り抜き | | Regularization | 正規化 | | Root Mean Square propagation | 二乗平均平方根のプロパゲーション | | Rotation | 回転 | | Transfer learning | 転移学習 | | Type | 種類 | | Updating weights | 重み更新 | | Validation loss | バリデーションの損失 | | Weight regularization | 重みの正規化 | | Weights initialization | 重みの初期化 | | Xavier initialization | Xavier初期化 | ## Convolutional Neural Nets | English | 日本語 | |:-------------------|:-----------------------| | Activation | 活性化 | | Activation functions | 活性化関数 | | Activation map | 活性化マップ | | Anchor box | アンカーボックス | | Architecture | アーキテクチャ | | Average pooling | 平均プーリング | | Bias | バイアス | | Bounding box | バウンディングボックス | | Computational trick architectures | 計算トリックアーキテクチャ | | Convolution | 畳み込み | | Convolution layer | 畳み込み層 | | Convolutional Neural Networks | 畳み込みニューラルネットワーク | | Deep Learning | 深層学習 | | Detection | 検出 | | Dimensions | 次元 | | Discriminative model | 識別モデル | | Face verification/recognition | 顔認証/認識 | | Feature map | 特徴マップ | | Filter hyperparameters | フィルタハイパーパラメタ | | Fine tuning | ファインチューニング | | Flatten | 平滑化 | | Fully connected | 全結合 | | Generative Adversarial Net | 敵対的生成ネットワーク | | Generative model | 生成モデル | | Gram matrix | グラム行列 | | Image classification | 画像分類 | | Inception Network | インセプションネットワーク | | Intersection over Union | 和集合における共通部分の割合 (IoU) | | Layer | 層 | | Localization | 位置特定 | | Max pooling | 最大プーリング | | Model complexity | モデルの複雑さ| | Neural style transfer | ニューラルスタイル変換 | | Noise | ノイズ | | Non-linearity | 非線形性 | | Non-max suppression | 非極大抑制 | | Object detection | オブジェクト検出 | | Object recognition | 物体認識 | | One Shot Learning | One Shot学習 | | Padding | パディング | | Parameter compatibility | パラメータの互換性 | | Pooling | プーリング | | R-CNN | R-CNN | | Receptive field | 受容野 | | Rectified Linear Unit | 正規化線形ユニット (ReLU) | | Residual Network (ResNet) | 残差ネットワーク (ResNet) | | Segmentation | セグメンテーション | | Siamese Network | シャムネットワーク | | Softmax | ソフトマックス | | Stride | ストライド | | Style matrix | スタイル行列 | | Style/content cost function | スタイル/コンテンツコスト関数 | | Training set | 学習セット | | Triplet loss | トリプレット損失 | | Tuning hyperparameters | ハイパーパラメータの調整 | | You Only Look Once (YOLO) | YOLO | ## Recurrent Neural Nets | English | 日本語 | |:-------------------|:-----------------------| | 1-hot representation | 1-hot 表現 | | A Conditional language model | 条件付き言語モデル | | A language model | 言語モデル | | Amount of attention | 注意量 | | Attention model | アテンションモデル | | Beam search | ビームサーチ | | Bidirectional RNN | 双方向 RNN | | Binary classifiers | バイナリ分類器 | | Bleu score | ブルースコア(機械翻訳比較スコア) | | Brevity penalty | 簡潔さへのペナルティ | | CBOW | CBOW | | Co-occurence matrix | 共起行列 | | Conditional probabilities | 条件付き確率 | | Cosine similarity | コサイン類似度 | | Deep RNN | ディープ RNN | | Embedding Matrix | 埋め込み行列 | | Exploding gradient | 勾配爆発 | | Forget gate | 忘却ゲート | | GloVe | グローブ | | Gradient clipping | 勾配クリッピング | | GRU | ゲート付き回帰型ユニット | | Length normalization | 言語長正規化 | | Length normalization | 文章の長さの正規化 | | Likelihood | 可能性 | | Long term/ dependencies | 長期依存性関係 | | LSTM | 長・短期記憶 | | Machine translation | 機会翻訳 | | Motivation and notations | 動機と表記 | | Multiplicative gradien| 掛け算の勾配 | | N-gram | n-gram | | Naive greedy search | 単純な貪欲法 | | Negative sampling | ネガティブサンプリング | | Notations | ノーテーション | | Output gate | 出力ゲート | | Perplexity | パープレキシティ | | Relevance gate | 関連ゲート | | Skip-gram | スキップグラム | | Skip-gram | スキップグラム | | Softener | 緩衝パラメータ | | t-SNE | t-SNE | | Target/context likelihood model | ターゲット/コンテキスト尤度モデル | | Update gate | 更新ゲート | | Vanishing gradient | 勾配喪失 | | Weighting function | 重み関数 | | Word Embedding | 単語埋め込み | | Word2vec | Word2vec | # Machine Learning ## Supervised Learning | English | 日本語 | |:--- |:--------------------------- | | Adaptive boosting | 適応的ブースティング | | Batch gradient descent | バッチ勾配降下法 | | Bayes' rule | ベイズの定理 | | Bernoulli | ベルヌーイ | | Bernoulli distribution | ベルヌーイ分布 | | Bias | バイア | | Binary trees | 二分木 | | Boosting | ブースティング | | Boosting step | ブースティングステップ | | Canonical parameter | 正準パラメータ | | Categorical variable | カテゴリ変数 | | Chernoff bound | チェルノフ上界 | | Class | クラス | | Classification | 分類 | | Classification and Regression Trees (CART) | 分類・回帰ツリー (CART) | | Classifier | 分類器 | | Closed form solution | 閉形式の解 | | Coefficients | 係数 | | Confusion matrix | 混同行列 | | Continuous values | 連続値 | | Cost function | コスト関数 | | Cross-entropy | クロスエントロピー | | Cross validation | 交差検証 / クロスバリデーション| | Decision boundary | 決定境界 | | Decision trees | 決定ツリー | | Discriminative model | 判別モデル |  | Distribution | 分布 | | Empirical error | 経験誤差 | | Ensemble methods | アンサンブル学習 | | Error rate | 誤答率 | | Estimation | 推定 | | Exponential distributions | 般的な指数分布族 | | Exponential family | 指数分布族 ― 正準パラメータ | | Feature engineering | 特徴量エンジニアリング | | Feature mapping | 特徴写像 | | Features | 特徴 | | Framework | フレームワーク | | Function | 関数 | | Gaussian | ガウス | | Gaussian Discriminant Analysis | ガウシアン判別分析 | | Gaussian kernel | ガウシアンカーネル | | Generalized Linear Models | 一般化線形モデル | | Generative Learning | 生成学習 | | Generative model | 生成モデル | | Geometric | 幾何 | | Good performance | 的に良い性能 | | Gradient boosting | 勾配ブースティング | | Gradient descent | 勾配降下法 | | Highly uninterpretable | 解釈しにくい | | Hinge loss | ヒンジ損失 | | Hoeffding inequality | ヘフディング不等式 | | Hold out | ホールドアウト | | Hypothesis | 仮説 |  | Independent | 独立 | | Input | 入力 | | Interpretable | 解釈しやすい | | k-nearest neighbors (k-NN) | k近傍法 (k-NN) |  | Kernel | カーネル | | Kernel mapping | カーネル写像 | | Kernel trick | カーネルトリック | | Lagrange multipliers | ラグランジュ乗数 | | Lagrangian | ラグランジアン | | Learning Theory | 学習理論 | | Least Mean Squares | 最小2乗法 | | Least squared error | 最小2乗誤差 | | Likelihood | 尤度 | | Linear classifier | 線形分類器 | | Linear discriminant analysis | 線形判別分析(LDA) | | Linear models | 線形モデル | | Linear regression | 線形回帰 | | Link function | リンク関数 | | Locally Weighted Regression | 局所重み付き回帰 | | Log-likelihood | 対数尤度 | | Logistic loss | ロジスティック損失 | | Logistic regression | ロジスティック回帰 | | Loss function | 損失関数 | | Matrix | 行列 | | Maximizing the likelihood | 尤度を最大にする | | Minimum distance | 最短距離 | | Misclassification | 誤分類 | | Missing value | 欠損値 | | Multi-class logistic regression | 多クラス分類ロジスティック回帰 | | Multi-label classification | 多ラベル分類 / マルチラベル分類 | | Multidimensional generalization | 高次元正則化 | | Naive Bayes | ナイーブベイズ | | Natural parameter | 自然パラメータ | | Non-linear separability | 非線形分離問題 | | Non-parametric approaches | ノン・パラメトリックな手法 | | Normal equations | 正規方程式 | | Normalization parameter | 正規化定数 | | Numerical variable | 数値変数 | | Optimal margin classifier | 最適マージン分類器 | | Optimal parameters | 最適なパラメータ | | Optimization | 最適化 | | Optimization problem | 最適化問題 | | Ordinary least squares | 最小2乗回帰 | | Output | 出力 | | Parameter | パラメータ | | Parameter update | パラメータ更新 | | Poisson | ポワソン | | Prediction | 予測 | | Probability | 確率 | | Probability distributions of the data | データの確率分布 | | Probably Approximately Correct (PAC) | 確率的に近似的に正しい (PAC) | | Random forest | ランダムフォレスト | | Random variable | ランダムな変数 | | Randomly selected features | ランダムに選択された特徴量 | | Recommendation | レコメンデーション | | Regression | 回帰 | | Sample mean | 標本平均 | | Shattering | 細分化 | | Sigmoid function | シグモイド関数 | | Softmax regression | ソフトマックス回帰 |  | Spam detection | スパム検知 | | Stochastic gradient descent | 確率的勾配降下法 | | Supervised Learning | 教師あり学習 | | Support Vector Machine (SVM) | サポートベクターマシン | | Text classification | テキスト分類 | | To maximize | 最大化する | | To minimize | 最小化する | | To predict | 予測する | | Training data | 学習データ | | Training error | 学習誤差 | | Tree-based methods | ツリーベース学習 | | Union bound | 和集合上界 | | Update rule | 更新ルール | | Upper bound theorem | 上界定理 | | Vapnik-Chervonenkis (VC) dimension | ヴァプニク・チェルヴォーネンキス次元 (VC) | | Variables | 変数 | | Variance | 分散 | | Weights | 重み | ## Unsupervised Learning | English | 日本語 | |:-------------------|:-----------------------| | Agglomerative hierarchical | 凝集階層 | | Average linkage | 平均リンケージ | | Bell and Sejnowski ICA algorithm | ベルとシノスキーのICAアルゴリズム | | Calinski-Harabaz index | Calinski-Harabazインデックス | | Centroids | 重心 | | Clustering | クラスタリング | | Clustering assessment metrics | クラスタリング評価指標 | | Complete linkage | 完全リンケージ | | Convergence | 収束 | | Diagonal | Diagonal | | Dimension reduction | 次元削減 | | Dispersion matrices | 分散行列 | | Distortion function | ひずみ関数 | | E-step | E-ステップ | | Eigenvalue | 固有値 | | Eigenvector | 固有ベクトル | | Expectation-Maximization | 期待値最大化法 | | Factor analysis | 因子分析 | | Gaussians initialization | ガウス分布初期化 | | Hierarchical clustering | 階層的クラスタリング | | Independent component analysis (ICA) | 独立成分分析 | | Jensen's inequality | イェンセンの不等式 | | K-means clustering | K平均法 | | Latent variables | 潜在変数 | | M-step | M-ステップ | | Means initialization | 平均の初期化 | | Orthogonal matrix | 実直交行列 | | Posterior probabilities | 事後確率 | | Principal components | 主成分 | | Principal component analysis (PCA) | 主成分分析 | | Random variables | ランダムな変数 | | Silhouette coefficient | シルエット係数 | | Spectral theorem | スペクトル定理 | | Unmixing matrix | 非混合行列 | | Unsupervised learning | 教師なし学習 | | Ward linkage | ウォードリンケージ | ## Probabilities and Statistics | English | 日本語 | |:-------------------|:-----------------------| | Axiom | 公理 | | Bayes' rule | ベイズの定理 | | Boundary | 境界 | | Characteristic function | 特性関数 | | Chebyshev's inequality | チェビシェフの不等式 | | Chi-square statistic | カイ二乗統計量 | | Combinatorics | 組合せ | | Conditional Probability | 条件付き確率 | | Continuous | 連続 | | Cumulative distribution function (CDF) | 累積分布関数 | | Cumulative function | 累積関数 | | Discrete | 離散 | | Distribution | 分布 | | Event | 事象 | | Expected value | 期待値 | | Generalized expected value | 一般化した期待値 | | Jointly Distributed Random Variables | 同時分布の確率変数 | | Leibniz integral rule | ライプニッツの積分則 | | Marginal density | 周辺密度 | | Mutual information | 相互情報量 | | Mutually exclusive events | 互いに排反な事象 | | Order | 順番 | | Partition | 分割 | | Pearson correlation coefficient | 相関係数 (ピアソンの積率相関係数) | | Permutation | 順列 | | Probability | 確率 | | Probability density function (PDF) | 確率密度関数 | | Probability distribution | 確率分布 | | Random variable | 確率変数 | | Result | 結果 | | Sample space | 標本空間 | | Sequence | 数列 | | Spearman's rank correlation coefficient | スピアマンの順位相関係数 | | Standard deviation | 標準偏差 | | Standard error | 標準誤差 | | Statistics | 統計 | | Subset | 部分集合 | | Type | 種類 | | Variance | 分散 | | Weighted mean | 加重平均 | ## Algebra and Calculus | English | 日本語 | |:-------------------|:-----------------------| | Antisymmetric | 反対称 | | Calculus | 微積分 | | Column | 列 | | Column-vector | 列ベクトル | | Diagonal | 対角成 | | Element | 要素 | | Function | 関数 | | Invertible | 可逆 | | Linear Algebra | 線形代数 | | Matrix | 行列 | | Norm | ノルム | | Notation | 表記法 | | Row | 行 | | Scalar | スカラー | | Square matrix | 正方行列 | | Sum | 和 | | Symmetric | 対称 | | Symmetric decomposition | 対称分解 | | Trace | 跡 | | Vector | ベクトル | | Vector space | ベクトル空間 |
[ "Machine Translation", "Multilinguality", "Text Generation" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/yusugomori/jesc_small
2019-07-04T16:10:21Z
Small Japanese-English Subtitle Corpus
yusugomori / jesc_small Public Branches Tags Go to file Go to file Code READ… dev.en dev.ja test.en test.ja train.en train.ja Small Japanese-English Subtitle Corpus. Sentences are extracted from JESC: Japanese-English Subtitle Corpus, and filtered with the length of 4 to 16 words. Both Japanese and English sentences are tokenized with StanfordNLP (v0.2.0). All texts are encoded in UTF-8. Sentence separator is '\n' and word separator is ' ' . Additionally, all tokenized data can be downloaded from here. File #sentences #words #vocabulary train.en 100,000 809,353 29,682 About Small Japanese-English Subtitle Corpus Readme Activity 3 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Code Issues 1 Pull requests Actions Projects Security Insights jesc_small Corpus statistics README File #sentences #words #vocabulary train.ja 100,000 808,157 46,471 dev.en 1,000 8,025 1,827 dev.ja 1,000 8,163 2,340 test.en 1,000 8,057 1,805 test.ja 1,000 8,084 2,306 This repo is inspired by small parallel enja
# jesc_small Small Japanese-English Subtitle Corpus. Sentences are extracted from [JESC: Japanese-English Subtitle Corpus](https://nlp.stanford.edu/projects/jesc/index.html), and filtered with the length of 4 to 16 words. Both Japanese and English sentences are tokenized with [StanfordNLP](https://stanfordnlp.github.io/stanfordnlp/) (v0.2.0). All texts are encoded in UTF-8. Sentence separator is `'\n'` and word separator is `' '`. Additionally, all tokenized data can be downloaded from [here](https://drive.google.com/drive/folders/1ldHD6mAJK6Q7vGeu8zk7OXdHPFVcO361?usp=sharing). ## Corpus statistics | File | #sentences | #words | #vocabulary | |:---------------|-----------:|---------:|------------:| | train.en | 100,000 | 809,353 | 29,682 | | train.ja | 100,000 | 808,157 | 46,471 | | dev.en | 1,000 | 8,025 | 1,827 | | dev.ja | 1,000 | 8,163 | 2,340 | | test.en | 1,000 | 8,057 | 1,805 | | test.ja | 1,000 | 8,084 | 2,306 | <br> This repo is inspired by [small_parallel_enja](https://github.com/odashi/small_parallel_enja).
[ "Machine Translation", "Multilinguality", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/Takeuchi-Lab-LM/python_asa
2019-07-10T05:01:43Z
python版日本語意味役割付与システム(ASA)
Takeuchi-Lab-LM / python_asa Public Branches Tags Go to file Go to file Code asapy utils .gitignore LICENSE README.md setup.py (English description of the programme follows Japanese) python版日本語意味役割付与システム(ASA) Python 3.5 以上 cabochaをpythonで使えるようにしておく cabochaのダウンロード https://taku910.github.io/cabocha/ git clone {url} pip install -e python_asa cd asapy でディレクトリを移動し、 python main.py で起動して標準入力を受け付けます。 About python版日本語意味役割付与シス テム(ASA) Readme MIT license Activity 23 stars 1 watching 11 forks Report repository Releases No releases published Packages No packages published Contributors 3 Languages Python 99.9% Shell 0.1% Code Issues 1 Pull requests 2 Actions Projects Security Insights python_asa 動作環境 インストール 使用方法 README MIT license 2020/1/12 バグの修正.辞書構造をJsonに変更.moodなど動詞ムードなどの判定変更.semroleの場所 判定の修正.願望(DESIDERATIVE)を追加. ASA extracts predicate-argument structures in Japanese sentences based on the predicate frame file Predicate Thesaurus (PT), which is constructed under Project of Constructing Japanese Thesaurus of Predicate-Argument Structure. Thus, ASA may fail to detect some predicate-argument structures in the cases which the predicates are not registered in PT. Although PT currently contains more than about 10,000 predicates, there may remains some bugs since the thesaurus is under construction. ASA detects a set of predicate-arguments based on chunk dependency. Since the dependency unit employed in this analyzer is not phrasal based, you need to follow the dependency links if a full phrase is necessary. When you input a Japanese sentence, 「太郎の本を健が捨てた」Ken threw Taro's book away, for instance, ASA punctuates it into several chunks, as shown below. The square brackets [ ] signify the boundaries of a chunk. The chunk IDs and head chunk IDs are also assigned in the brackets. [0 1 Taro-no] [1 3 hon-wo] [2 3 Ken-ga] [3 -1 suteta] [0 1 Taro-ɢᴇɴ] [1 3 book-ᴀᴄᴄ] [2 3 Ken-ɴᴏᴍ] [3 -1 throw.away] ASA returns the predicate-arguments of the sentence as: Here, the dative chunk [太郎の] in the noun phrase 太郎の本 is ignored. In order to get a complete phrase of arg1 , i.e., [arg1 太郎の本を] , you have to follow the chunk dependency links and extract the chunk [太郎 の]. Accuracy of semantic role labeling is about 60% evaluated on BCCWJ-PT corpus. The accuracy is not high enough, as the system utilizes a simple, rule-based approach. Input sentence: 太郎は6時に次郎を追いかけた。 Output: ['追いかける', ['太郎は', '対象'], ['6時に', '場所(時)(点)'], ['次郎を', '']] 変更点 Argument Structure Analyzer (ASA) and ASA python [0 1 太郎の] [1 3 本を] [2 3 健が] [3 -1 捨てた] [arg0 健が] [arg1 本を] [v 捨てた] Accuracy of detecting semantic role labels How to get a set of predicate-arguments getpas.py from ASA import ASA def out_predarg(result_chunks): for chunk in result_chunks: if chunk.get('semantic') != None: # get a predicate-argument out_st = [] out_st.append(chunk['main']) record_arg_chunk_ids = [] for arg_chunk in chunk['frames']: arg_chunk_id = arg_chunk['id'] if arg_chunk_id in record_arg_chunk_ids: continue arg_surface = result_chunks[arg_chunk_id]['surface'] arg_role = arg_chunk['semrole'] #arg_nrole = result_chunks[arg_chunk_id]['surface'] out_st.append([arg_surface,arg_role]) record_arg_chunk_ids.append(arg_chunk_id) print(out_st) if __name__ == '__main__': asa = ASA() sentences = ["太郎は6時に次郎を追いかけた", "昨日,太郎に会った", "太郎が買った本を売った"] for sent in sentences: asa.parse(sent) #Class resut.Result result json = asa.dumpJson()
(English description of the programme follows Japanese) # `python_asa` python版日本語意味役割付与システム(ASA) ## 動作環境 - Python 3.5 以上 - cabochaをpythonで使えるようにしておく - cabochaのダウンロード https://taku910.github.io/cabocha/ ## インストール ```git clone {url} ``` ```pip install -e python_asa``` ## 使用方法 ```cd asapy```でディレクトリを移動し、 ```python main.py``` で起動して標準入力を受け付けます。 ## 変更点 - 2020/1/12 バグの修正.辞書構造をJsonに変更.moodなど動詞ムードなどの判定変更.semroleの場所判定の修正.願望(DESIDERATIVE)を追加. # Argument Structure Analyzer (ASA) and ASA python ASA extracts predicate-argument structures in Japanese sentences based on the predicate frame file [Predicate Thesaurus (PT)](http://pth.cl.cs.okayama-u.ac.jp/testp/pth/Vths), which is constructed under Project of Constructing Japanese Thesaurus of Predicate-Argument Structure. Thus, ASA may fail to detect some predicate-argument structures in the cases which the predicates are not registered in PT. Although PT currently contains more than about 10,000 predicates, there may remains some bugs since the thesaurus is under construction. ASA detects a set of predicate-arguments based on chunk dependency. Since the dependency unit employed in this analyzer is not phrasal based, you need to follow the dependency links if a full phrase is necessary. When you input a Japanese sentence, 「太郎の本を健が捨てた」*Ken threw Taro's book away*, for instance, ASA punctuates it into several chunks, as shown below. The square brackets `[ ]` signify the boundaries of a chunk. The chunk IDs and head chunk IDs are also assigned in the brackets. ``` [0 1 太郎の] [1 3 本を] [2 3 健が] [3 -1 捨てた] ``` >[0 1 Taro-no] [1 3 hon-wo] [2 3 Ken-ga] [3 -1 suteta] > >[0 1 Taro-ɢᴇɴ] [1 3 book-ᴀᴄᴄ] [2 3 Ken-ɴᴏᴍ] [3 -1 throw.away] ASA returns the predicate-arguments of the sentence as: ``` [arg0 健が] [arg1 本を] [v 捨てた] ``` Here, the dative chunk [太郎の] in the noun phrase 太郎の本 is ignored. In order to get a complete phrase of `arg1`, i.e., `[arg1 太郎の本を]`, you have to follow the chunk dependency links and extract the chunk [太郎の]. ## Accuracy of detecting semantic role labels Accuracy of semantic role labeling is about 60% evaluated on [BCCWJ-PT corpus](http://pth.cl.cs.okayama-u.ac.jp/). The accuracy is not high enough, as the system utilizes a simple, rule-based approach. ## How to get a set of predicate-arguments > Input sentence: 太郎は6時に次郎を追いかけた。 > Output: `['追いかける', ['太郎は', '対象'], ['6時に', '場所(時)(点)'], ['次郎を', '']]` ### getpas.py ```python from ASA import ASA def out_predarg(result_chunks): for chunk in result_chunks: if chunk.get('semantic') != None: # get a predicate-argument out_st = [] out_st.append(chunk['main']) record_arg_chunk_ids = [] for arg_chunk in chunk['frames']: arg_chunk_id = arg_chunk['id'] if arg_chunk_id in record_arg_chunk_ids: continue arg_surface = result_chunks[arg_chunk_id]['surface'] arg_role = arg_chunk['semrole'] #arg_nrole = result_chunks[arg_chunk_id]['surface'] out_st.append([arg_surface,arg_role]) record_arg_chunk_ids.append(arg_chunk_id) print(out_st) if __name__ == '__main__': asa = ASA() sentences = ["太郎は6時に次郎を追いかけた", "昨日,太郎に会った", "太郎が買った本を売った"] for sent in sentences: asa.parse(sent) #Class resut.Result result_json = asa.dumpJson() print (result_json['surface']) # input sentence result_chunks = result_json['chunks'] out_predarg(result_chunks) ```
[ "Semantic Parsing", "Syntactic Text Processing" ]
[]
true
https://github.com/DayuanJiang/giant_ja-en_parallel_corpus
2019-08-04T03:01:03Z
This directory includes a giant Japanese-English subtitle corpus. The raw data comes from the Stanford’s JESC project.
DayuanJiang / giant_ja-en_parallel_corpus Public Branches Tags Go to file Go to file Code READ… en_ja_… prepro… This directory includes a giant Japanese-English subtitle corpus. The raw data comes from the Stanford’s JESC project. About This directory includes a giant Japanese-English subtitle corpus. The raw data comes from the Stanford’s JESC project. Readme Activity 6 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Giant_ja- en_parallel_corpus: 2.8M Ja/En Subtitle Corpus Data Example # test.ja 顔面 パンチ かい ? お姉ちゃん 、 何で ? もしくは 実際 の 私 の 要求 を 満たす こと も かのう でしょ う 。 分かっ た 、 リジー 。 夫 を 自分 で 、 けがす こと に なり ます 。 あの 、 それ くらい に 、 し て おい て くれ ない ? お 掛け 下さい 。 # test.en so face punch , huh ? lisa , no ! or you could actually meet my need . me ! ok , lizzy . README A large corpus consisting of 2.8 million sentences. Translations of casual language, colloquialisms, expository writing, and narrative discourse. These are domains that are hard to find in JA-EN MT. Several pre-processing has been done to make the dataset easier to use. Overall: Delete the pair that Japanese phrase only have only one word. The data has been split into train/dev/test set with following size train: 2,795,067 phrase pairs dev: 2,800 phrase pairs test: 2,800 phrase pairs For English text: Add ‘.’ to the end of English phrase if it do not end with punctuation. Tokenize text with `nltk. For Japanese text: Add ‘。’ to the end of Japanese phrase if it do not end with punctuation. Replace space inside the phrase with ‘、’. Tokenize text with tokenizer Mecab and dictionary mecab-ipadic-neologd . my husband would defile himself . hey , can you leave it at that ? we can sit in here . Contents Modifications
# Giant_ja-en_parallel_corpus: 2.8M Ja/En Subtitle Corpus This directory includes a giant Japanese-English subtitle corpus. The raw data comes from the Stanford’s [JESC](https://nlp.stanford.edu/projects/jesc/) project. ## Data Example ``` # test.ja 顔面 パンチ かい ? お姉ちゃん 、 何で ? もしくは 実際 の 私 の 要求 を 満たす こと も かのう でしょ う 。 分かっ た 、 リジー 。 夫 を 自分 で 、 けがす こと に なり ます 。 あの 、 それ くらい に 、 し て おい て くれ ない ? お 掛け 下さい 。 ``` ``` # test.en so face punch , huh ? lisa , no ! or you could actually meet my need . me ! ok , lizzy . my husband would defile himself . hey , can you leave it at that ? we can sit in here . ``` ## Contents - A large corpus consisting of 2.8 million sentences. - Translations of casual language, colloquialisms, expository writing, and narrative discourse. These are domains that are hard to find in JA-EN MT. ## Modifications Several pre-processing has been done to make the dataset easier to use. Overall: - Delete the pair that Japanese phrase only have only one word. - The data has been split into train/dev/test set with following size - train: 2,795,067 phrase pairs - dev: 2,800 phrase pairs - test: 2,800 phrase pairs For English text: - Add ‘.’ to the end of English phrase if it do not end with punctuation. - Tokenize text with `nltk. For Japanese text: - Add ‘。’ to the end of Japanese phrase if it do not end with punctuation. - Replace space inside the phrase with ‘、’. - Tokenize text with tokenizer `Mecab` and dictionary `mecab-ipadic-neologd`.
[ "Machine Translation", "Multilinguality" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/kmizu/sftly-replace
2019-08-20T15:11:46Z
A Chrome extention to replace the selected text softly
kmizu / softly-replace Public Branches Tags Go to file Go to file Code LICEN… READ… backgr… conten… manife… options… options.js 選択された範囲のテキストを「柔らかく言い換える」 Chrome拡張です。 とりあえず手元で動いたという程度です。 使ってみたい方はリポジトリをcloneした上で、Chrome の「パッケージ化されていない拡張機能を読み込む」か らディレクトリごと読み込んでください。 OpenAIのいわゆるChatGPT APIを使っています。 拡張機能の設定ページからOpenAIのAPIキーを設定して ください。APIキーはサーバに保存されたりしないので 安心してください。 About A Chrome extention to replace the selected text softly Readme MIT license Activity 4 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Languages JavaScript 87.8% HTML 12.2% Code Issues Pull requests Actions Projects Security Insights softly-replace README MIT license スクリーンショット
# softly-replace 選択された範囲のテキストを「柔らかく言い換える」Chrome拡張です。 とりあえず手元で動いたという程度です。 使ってみたい方はリポジトリをcloneした上で、Chromeの「パッケージ化されていない拡張機能を読み込む」からディレクトリごと読み込んでください。 OpenAIのいわゆるChatGPT APIを使っています。 拡張機能の設定ページからOpenAIのAPIキーを設定してください。APIキーはサーバに保存されたりしないので安心してください。 ## スクリーンショット ![image](https://github.com/kmizu/softly-replace/assets/97326/cca3680c-12a6-447c-a25e-9c8346b2ce1e) ![image](https://github.com/kmizu/softly-replace/assets/97326/d5335770-1450-4b5d-b35d-67e8af4febc4) ![image](https://github.com/kmizu/softly-replace/assets/97326/70cbc862-2926-41b4-8c23-bcbd8cbdb047)
[ "Natural Language Interfaces", "Paraphrasing", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/chakki-works/CoARiJ
2019-09-02T05:12:47Z
Corpus of Annual Reports in Japan
chakki-works / CoARiJ Public Branches Tags Go to file Go to file Code coarij releases tests .gitignore .travis.yml LICENSE README.md requirements-test.txt requirements.txt setup.py build build unknown unknown codecov codecov 83% 83% We organized Japanese financial reports to encourage applying NLP techniques to financial analytics. The corpora are separated to each financial years. master version. fiscal_year Raw file version (F) Text extracted version (E) 2014 .zip (9.3GB) .zip (269.9MB) 2015 .zip (9.8GB) .zip (291.1MB) 2016 .zip (10.2GB) .zip (334.7MB) 2017 .zip (9.1GB) .zip (309.4MB) 2018 .zip (10.5GB) .zip (260.9MB) financial data is from 決算短信情報. We use non-cosolidated data if it exist. stock data is from 月間相場表(内国株式). close is fiscal period end and open is 1 year before of it. v1.0 About Corpus of Annual Reports in Japan # finance # natural-language-processing # corpus # dataset Readme MIT license Activity Custom properties 86 stars 11 watching 7 forks Report repository Releases 4 tags Packages No packages published Languages Python 100.0% Code Issues 4 Pull requests Actions Projects Wiki Security Insights CoARiJ: Corpus of Annual Reports in Japan Dataset Past release Statistics README MIT license fiscal_year number_of_reports has_csr_reports has_financial_data has_stock_data 2014 3,724 92 3,583 3,595 2015 3,870 96 3,725 3,751 2016 4,066 97 3,924 3,941 2017 3,578 89 3,441 3,472 2018 3,513 70 2,893 3,413 The structure of dataset is following. docs includes XBRL and PDF file. XBRL file of annual reports (files are retrieved from EDINET). PDF file of CSR reports (additional content). documents.csv has metadata like following. Please refer the detail at Wiki. edinet_code: E0000X filer_name: XXX株式会社 fiscal_year: 201X fiscal_period: FY doc_path: docs/S000000X.xbrl csr_path: docs/E0000X_201X_JP_36.pdf Text extracted version includes txt files that match each part of an annual report. The extracted parts are defined at xbrr . You can download dataset by command line tool. Please refer the usage by -- (using fire). Example command. File structure Raw file version ( --kind F ) chakki_esg_financial_{year}.zip └──{year} ├── documents.csv └── docs/ Text extracted version ( --kind E ) chakki_esg_financial_{year}_extracted.zip └──{year} ├── documents.csv └── docs/ Tool pip install coarij coarij -- # Download raw file version dataset of 2014. coarij download --kind F --year 2014 # Extract business.overview_of_result part of TIS.Inc (sec code=3626). coarij extract business.overview_of_result --sec_code 3626 # Tokenize text by Janome (`janome` or `sudachi` is supported). If you want to download latest dataset, please specify --version master when download the data. About the parsable part, please refer the xbrr . You can use Ledger to select your necessary file from overall CoARiJ dataset. pip install janome coarij tokenize --tokenizer janome # Show tokenized result (words are separated by \t). head -n 5 data/processed/2014/docs/S100552V_business_overview_of_result_tokenized.txt 1 【 業績 等 の 概要 】 ( 1 ) 業績 当 連結 会計 年度 における 我が国 経済 は 、 消費 税率 引上げ に 伴う 駆け込み行見 from coarij.storage import Storage storage = Storage("your/data/directory") ledger = storage.get_ledger() collected = ledger.collect(edinet_code="E00021")
# CoARiJ: Corpus of Annual Reports in Japan [![PyPI version](https://badge.fury.io/py/coarij.svg)](https://badge.fury.io/py/coarij) [![Build Status](https://travis-ci.org/chakki-works/coarij.svg?branch=master)](https://travis-ci.org/chakki-works/coarij) [![codecov](https://codecov.io/gh/chakki-works/coarij/branch/master/graph/badge.svg)](https://codecov.io/gh/chakki-works/coarij) We organized Japanese financial reports to encourage applying NLP techniques to financial analytics. ## Dataset The corpora are separated to each financial years. master version. | fiscal_year | Raw file version (F) | Text extracted version (E) | |-------------|-------------------|-----------------| | 2014 | [.zip (9.3GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2014.zip) | [.zip (269.9MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2014.zip) | | 2015 | [.zip (9.8GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2015.zip) | [.zip (291.1MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2015.zip) | | 2016 | [.zip (10.2GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2016.zip) | [.zip (334.7MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2016.zip) | | 2017 | [.zip (9.1GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2017.zip) | [.zip (309.4MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2017.zip) | | 2018 | [.zip (10.5GB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_2018.zip) | [.zip (260.9MB)](https://s3-ap-northeast-1.amazonaws.com/chakki.esg.financial.jp/dataset/release/chakki_esg_financial_extracted_2018.zip) | * financial data is from [決算短信情報](http://db-ec.jpx.co.jp/category/C027/). * We use non-cosolidated data if it exist. * stock data is from [月間相場表(内国株式)](http://db-ec.jpx.co.jp/category/C021/STAT1002.html). * `close` is fiscal period end and `open` is 1 year before of it. ### Past release * [v1.0](https://github.com/chakki-works/CoARiJ/blob/master/releases/v1.0.md) ### Statistics | fiscal_year | number_of_reports | has_csr_reports | has_financial_data | has_stock_data | |-------------|-------------------|-----------------|--------------------|----------------| | 2014 | 3,724 | 92 | 3,583 | 3,595 | | 2015 | 3,870 | 96 | 3,725 | 3,751 | | 2016 | 4,066 | 97 | 3,924 | 3,941 | | 2017 | 3,578 | 89 | 3,441 | 3,472 | | 2018 | 3,513 | 70 | 2,893 | 3,413 | ### File structure #### Raw file version (`--kind F`) The structure of dataset is following. ``` chakki_esg_financial_{year}.zip └──{year} ├── documents.csv └── docs/ ``` `docs` includes XBRL and PDF file. * XBRL file of annual reports (files are retrieved from [EDINET](http://disclosure.edinet-fsa.go.jp/)). * PDF file of CSR reports (additional content). `documents.csv` has metadata like following. Please refer the detail at [Wiki](https://github.com/chakki-works/CoARiJ/wiki/Columns-on-the-file). * edinet_code: `E0000X` * filer_name: `XXX株式会社` * fiscal_year: `201X` * fiscal_period: `FY` * doc_path: `docs/S000000X.xbrl` * csr_path: `docs/E0000X_201X_JP_36.pdf` #### Text extracted version (`--kind E`) Text extracted version includes `txt` files that match each part of an annual report. The extracted parts are defined at [`xbrr`](https://github.com/chakki-works/xbrr/blob/master/docs/edinet.md). ``` chakki_esg_financial_{year}_extracted.zip └──{year} ├── documents.csv └── docs/ ``` ## Tool You can download dataset by command line tool. ``` pip install coarij ``` Please refer the usage by `--` (using [fire](https://github.com/google/python-fire)). ``` coarij -- ``` Example command. ```bash # Download raw file version dataset of 2014. coarij download --kind F --year 2014 # Extract business.overview_of_result part of TIS.Inc (sec code=3626). coarij extract business.overview_of_result --sec_code 3626 # Tokenize text by Janome (`janome` or `sudachi` is supported). pip install janome coarij tokenize --tokenizer janome # Show tokenized result (words are separated by \t). head -n 5 data/processed/2014/docs/S100552V_business_overview_of_result_tokenized.txt 1 【 業績 等 の 概要 】 ( 1 ) 業績 当 連結 会計 年度 における 我が国 経済 は 、 消費 税率 引上げ に 伴う 駆け込み 需要 の 反動 や 海外 景気 動向 に対する 先行き 懸念 等 から 弱い 動き も 見 られ まし た が 、 企業 収益 の 改善 等 により 全体 ... ``` If you want to download latest dataset, please specify `--version master` when download the data. * About the parsable part, please refer the [`xbrr`](https://github.com/chakki-works/xbrr/blob/master/docs/edinet.md). You can use `Ledger` to select your necessary file from overall CoARiJ dataset. ```python from coarij.storage import Storage storage = Storage("your/data/directory") ledger = storage.get_ledger() collected = ledger.collect(edinet_code="E00021") ```
[]
[ "Annotation and Dataset Development" ]
true
https://github.com/cl-tohoku/elmo-japanese
2019-10-01T03:16:13Z
elmo-japanese
cl-tohoku / elmo-japanese Public Branches Tags Go to file Go to file Code data scripts src READ… Tensorflow implementation of bidirectional language models (biLM) used to compute ELMo representations from "Deep contextualized word representations". This codebase is based on bilm-tf and deals with Japanese. This repository supports both training biLMs and using pre-trained models for prediction. CPU GPU About No description, website, or topics provided. Readme Activity Custom properties 5 stars 6 watching 1 fork Report repository Releases No releases published Packages No packages published Languages Python 99.8% Shell 0.2% Code Issues Pull requests Actions Projects Security Insights elmo-japanese Installation conda create -n elmo-jp python=3.6 anaconda source activate elmo-jp pip install tensorflow==1.10 h5py git clone https://github.com/cl- tohoku/elmo-japanese.git README Training ELMo Computing representations from the trained biLM The following command outputs the ELMo representations (elmo.hdf5) for the text (sample.jp.wakati.txt) in the checkpoint directory (save_dir). The following command prints out the information of the elmo.hdf5, such as the number of sentences, words and dimensions. conda create -n elmo-jp python=3.6 anaconda source activate elmo-jp pip install tensorflow-gpu==1.10 h5py git clone https://github.com/cl- tohoku/elmo-japanese.git Getting started python src/run_train.py \ --option_file data/config.json \ --save_dir checkpoint \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --train_prefix data/sample.jp.wakati.txt python src/run_elmo.py \ --option_file checkpoint/options.json \ --weight_file checkpoint/weight.hdf5 \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 python scripts/view_hdf5.py elmo.hdf5 Save sentence-level ELMo representations View sentence similarities Making a token vocab file Making a character vocab file Computing sentence representations python src/run_elmo.py \ --option_file checkpoint/options.json \ --weight_file checkpoint/weight.hdf5 \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 \ --sent_vec python scripts/view_sent_sim.py \ --data data/sample.jp.wakati.txt \ --elmo elmo.hdf5 Training ELMo on a new corpus python scripts/make_vocab_file.py \ --input_fn data/sample.jp.wakati.txt \ --output_fn data/vocab.sample.jp.wakati.txt python scripts/space_split.py \ --input_fn data/sample.jp.wakati.txt \ --output_fn data/sample.jp.space.txt python scripts/make_vocab.py \ --input_fn data/sample.jp.space.txt \ --output_fn data/vocab.sample.jp.space.txt Training ELMo Retraining the trained ELMo Computing token representations from the ELMo Download: checkpoint, vocab tokens, vocab characters Computing sentence representations python src/run_train.py \\ --train_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --config_file data/config.json --save_dir checkpoint python src/run_train.py \ --train_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --save_dir checkpoint \ --restart python src/run_elmo.py \ --test_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --save_dir checkpoint Using the ELMo trained on Wikipedia python src/run_elmo.py \ --option_file data/checkpoint_wiki- wakati-cleaned_token-10_epoch- 10/options.json \ --weight_file data/checkpoint_wiki- wakati-cleaned_token-10_epoch- Retraining the pre-trained ELMo on your corpus Making a dataset for text classification Computing sentence representations 10/weight.hdf5 \ --word_file data/vocab.token.wiki_wakati.cleaned.min- 10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min- 0.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 \ --sent_vec python src/run_train.py \ --train_prefix PATH_TO_YOUR_CORPUS \ --word_file data/vocab.token.wiki_wakati.cleaned.min- 10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min- 0.txt \ --save_dir checkpoint_wiki-wakati- cleaned_token-10_epoch-10 \ --restart Checking performance in text classification cd data ./make_data.sh python src/run_elmo.py \ --option_file data/checkpoint_wiki- wakati-cleaned_token-10_epoch- 10/options.json \ --weight_file data/checkpoint_wiki- wakati-cleaned_token-10_epoch- 10/weight.hdf5 \ --word_file data/vocab.token.wiki_wakati.cleaned.min- 10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min- 0.txt \ --data_file data/dataset.wakati.txt Predicting nearest neighbors \ --output_file elmo.hdf5 \ --sent_vec python src/knn.py \ --data data/dataset.wakati-label.txt \ --elmo elmo.hdf5 LICENCE
# elmo-japanese Tensorflow implementation of bidirectional language models (biLM) used to compute ELMo representations from ["Deep contextualized word representations"](http://arxiv.org/abs/1802.05365). This codebase is based on [bilm-tf](https://github.com/allenai/bilm-tf) and deals with Japanese. This repository supports both training biLMs and using pre-trained models for prediction. ## Installation - CPU ``` conda create -n elmo-jp python=3.6 anaconda source activate elmo-jp pip install tensorflow==1.10 h5py git clone https://github.com/cl-tohoku/elmo-japanese.git ``` - GPU ``` conda create -n elmo-jp python=3.6 anaconda source activate elmo-jp pip install tensorflow-gpu==1.10 h5py git clone https://github.com/cl-tohoku/elmo-japanese.git ``` ## Getting started - Training ELMo ``` python src/run_train.py \ --option_file data/config.json \ --save_dir checkpoint \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --train_prefix data/sample.jp.wakati.txt ``` - Computing representations from the trained biLM The following command outputs the ELMo representations (elmo.hdf5) for the text (sample.jp.wakati.txt) in the checkpoint directory (save_dir). ``` python src/run_elmo.py \ --option_file checkpoint/options.json \ --weight_file checkpoint/weight.hdf5 \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 ``` The following command prints out the information of the elmo.hdf5, such as the number of sentences, words and dimensions. ``` python scripts/view_hdf5.py elmo.hdf5 ``` ## Computing sentence representations - Save sentence-level ELMo representations ``` python src/run_elmo.py \ --option_file checkpoint/options.json \ --weight_file checkpoint/weight.hdf5 \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 \ --sent_vec ``` - View sentence similarities ``` python scripts/view_sent_sim.py \ --data data/sample.jp.wakati.txt \ --elmo elmo.hdf5 ``` ## Training ELMo on a new corpus - Making a token vocab file ``` python scripts/make_vocab_file.py \ --input_fn data/sample.jp.wakati.txt \ --output_fn data/vocab.sample.jp.wakati.txt ``` - Making a character vocab file ``` python scripts/space_split.py \ --input_fn data/sample.jp.wakati.txt \ --output_fn data/sample.jp.space.txt ``` ``` python scripts/make_vocab.py \ --input_fn data/sample.jp.space.txt \ --output_fn data/vocab.sample.jp.space.txt ``` - Training ELMo ``` python src/run_train.py \\ --train_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --config_file data/config.json --save_dir checkpoint ``` - Retraining the trained ELMo ``` python src/run_train.py \ --train_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --save_dir checkpoint \ --restart ``` - Computing token representations from the ELMo ``` python src/run_elmo.py \ --test_prefix data/sample.jp.wakati.txt \ --word_file data/vocab.sample.jp.wakati.txt \ --char_file data/vocab.sample.jp.space.txt \ --save_dir checkpoint ``` ## Using the ELMo trained on Wikipedia - Download: [checkpoint](https://drive.google.com/open?id=11tsu7cXV6KRS8aYnxoquEQ0xOp_i9mfa), [vocab tokens](https://drive.google.com/open?id=193JOeZcU6nSpGjJH9IP4Qn_UWiJXtRnp), [vocab characters](https://drive.google.com/open?id=15D8F3XRCm3oEdLBbl978KaJG_AAJDW4v) - Computing sentence representations ``` python src/run_elmo.py \ --option_file data/checkpoint_wiki-wakati-cleaned_token-10_epoch-10/options.json \ --weight_file data/checkpoint_wiki-wakati-cleaned_token-10_epoch-10/weight.hdf5 \ --word_file data/vocab.token.wiki_wakati.cleaned.min-10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min-0.txt \ --data_file data/sample.jp.wakati.txt \ --output_file elmo.hdf5 \ --sent_vec ``` - Retraining the pre-trained ELMo on your corpus ``` python src/run_train.py \ --train_prefix PATH_TO_YOUR_CORPUS \ --word_file data/vocab.token.wiki_wakati.cleaned.min-10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min-0.txt \ --save_dir checkpoint_wiki-wakati-cleaned_token-10_epoch-10 \ --restart ``` ## Checking performance in text classification - Making a dataset for text classification ``` cd data ./make_data.sh ``` - Computing sentence representations ``` python src/run_elmo.py \ --option_file data/checkpoint_wiki-wakati-cleaned_token-10_epoch-10/options.json \ --weight_file data/checkpoint_wiki-wakati-cleaned_token-10_epoch-10/weight.hdf5 \ --word_file data/vocab.token.wiki_wakati.cleaned.min-10.txt \ --char_file data/vocab.char.wiki_wakati.cleaned.min-0.txt \ --data_file data/dataset.wakati.txt \ --output_file elmo.hdf5 \ --sent_vec ``` - Predicting nearest neighbors ``` python src/knn.py \ --data data/dataset.wakati-label.txt \ --elmo elmo.hdf5 ``` ## LICENCE MIT Licence
[ "Language Models", "Representation Learning", "Semantic Text Processing" ]
[]
true
https://github.com/ku-nlp/KWDLC
2019-11-06T04:07:47Z
Kyoto University Web Document Leads Corpus
ku-nlp / KWDLC Public Branches Tags Go to file Go to file Code .github disc doc id knp org scripts .gitignore .pre-commit-config.yaml README.md poetry.lock pyproject.toml requirements.txt This is a Japanese text corpus that consists of lead three sentences of web documents with various linguistic annotations. By collecting lead three sentences of web documents, this corpus contains documents with various genres and styles, such as news articles, encyclopedic articles, blogs and commercial pages. It comprises approximately 5,000 documents, which correspond to 15,000 sentences. The linguistic annotations consist of annotations of morphology, named entities, dependencies, predicate-argument structures including zero anaphora, coreferences, and discourse. All the annotations except discourse annotations were given by manually modifying automatic analyses of the morphological analyzer JUMAN and the dependency, case structure and anaphora analyzer KNP. The discourse annotations were given by two types of annotators; experts and crowd workers. This corpus consists of linguistically annotated Web documents that have been made publicly available on the Web at some time. The corpus is released for the purpose of contributing to the research of natural language processing. Since the collected documents are fragmentary, i.e., only the lead three sentences of each Web document, we have not obtained permission from copyright owners of the Web documents and do not provide source information such as URL. If copyright owners of Web documents request the addition of source information or deletion of these documents, we will update the corpus and newly release it. In this case, please delete the downloaded old version and replace it with the new version. About Kyoto University Web Document Leads Corpus # japanese # corpus # named-entities # part-of-speech # morphological-analysis # dependency-parsing Readme Activity Custom properties 77 stars 8 watching 7 forks Report repository Releases 3 v1.1.1 Latest on Dec 18, 2023 + 2 releases Packages No packages published Contributors 7 Languages Python 100.0% Code Issues 12 Pull requests Actions Projects Wiki Security Insights Kyoto University Web Document Leads Corpus Overview Notes README The annotation guidelines for this corpus are written in the manuals found in the "doc" directory. The guidelines for morphology and dependencies are described in syn_guideline.pdf, those for predicate-argument structures and coreferences are described in rel_guideline.pdf, and those for discourse relations are described in disc_guideline.pdf. The guidelines for named entities are available on the IREX website (http://nlp.cs.nyu.edu/irex/). knp/ : the corpus annotated with morphology, named entities, dependencies, predicate-argument structures, and coreferences disc/ : the corpus annotated with discourse relations org/ : the raw corpus doc/ : annotation guidelines id/ : document id files providing train/test split # of documents # of sentences # of morphemes # of named entities # of predicates # of coreferring mentions train 3,915 11,745 194,490 6,267 51,702 16,079 dev 512 1,536 22,625 974 6,139 1,641 test 700 2,100 35,869 1,122 9,549 3,074 total 5,127 15,381 252,984 8,363 67,390 20,794 Annotations of this corpus are given in the following format. The first line represents the ID of this sentence. In the subsequent lines, the lines starting with "*" denote "bunsetsu," the lines starting with "+" denote basic phrases, and the other lines denote morphemes. The line of morphemes is the same as the output of the morphological analyzers, JUMAN and Juman++. This information includes surface string, reading, lemma, part of speech (POS), fine-grained POS, conjugate type, and conjugate form. "*" means that its field is not available. Note that this format is slightly different from KWDLC 1.0, which adopted the same format as Kyoto University Text Corpus 4.0. The line starting with "*" represents "bunsetsu," which is a conventional unit for dependency in Japanese. "Bunsetsu" consists of one or more content words and zero or more function words. In this line, the first numeral means the ID of its depending head. The subsequent alphabet denotes the type of dependency relation, i.e., "D" (normal dependency), "P" (coordination dependency), "I" (incomplete coordination dependency), and "A" (appositive dependency). The line starting with "+" represents a basic phrase, which is a unit to which various relations are annotated. A basic phrase consists of one content word and zero or more function words. Therefore, it is equivalent to a bunsetsu or a part of a bunsetsu. In this line, the first numeral means the ID of its depending head. The subsequent alphabet is defined in the same way as bunsetsu. The remaining part of this line includes the annotations of named entity and various relations. Notes on annotation guidelines Distributed files Statistics Format of the corpus annotated with annotations of morphology, named entities, dependencies, predicate-argument structures, and coreferences # S-ID:w201106-0000010001-1 * 2D + 3D 太郎 たろう 太郎 名詞 6 人名 5 * 0 * 0 は は は 助詞 9 副助詞 2 * 0 * 0 * 2D + 2D 京都 きょうと 京都 名詞 6 地名 4 * 0 * 0 + 3D <NE:ORGANIZATION:京都大学> 大学 だいがく 大学 名詞 6 普通名詞 1 * 0 * 0 に に に 助詞 9 格助詞 1 * 0 * 0 * -1D + -1D <rel type="ガ" target="太郎" sid="w201106-0000010001-1" id="0"/><rel type="ニ" target="大学" sid="w201106- 0000010001-1" id="2"/> 行った いった 行く 動詞 2 * 0 子音動詞カ行促音便形 3 タ形 10 EOS Annotations of named entity are given in <NE> tags. <NE> has the following four attributes: type, target, possibility, and optional_type, which mean the class of a named entity, the string of a named entity, possible classes for an OPTIONAL named entity, and a type for an OPTIONAL named entity, respectively. The details of these attributes are described in the IREX annotation guidelines. Annotations of various relations are given in <rel> tags. <rel> has the following four attributes: type, target, sid, and id, which mean the name of a relation, the string of the counterpart, the sentence ID of the counterpart, and the basic phrase ID of the counterpart, respectively. If a basic phrase has multiple tags of the same type, a "mode" attribute is also assigned, which has one of "AND," "OR," and "?." The details of these attributes are described in the annotation guidelines (rel_guideline.pdf). In this corpus, a clause pair is given a discourse type and its votes as follows. The first line represents the ID of this document, the subsequent block denotes clause IDs and clauses, and the last block denotes discourse relations for clause pairs and their voting results. These discourse relations and voting results are the results of the second stage of crowdsourcing. Each line is the list of a discourse relation and its votes in order of votes. For the discourse relation annotated by experts, the discourse direction is annotated; if it is reverse order, "(逆方向)" is added to the discourse relation. The details of annotation methods and discourse relations are described in [Kawahara et al., 2014] and the annotation guidelines (disc_guideline.pdf). Masatsugu Hangyo, Daisuke Kawahara and Sadao Kurohashi. Building a Diverse Document Leads Corpus Annotated with Semantic Relations, In Proceedings of the 26th Pacific Asia Conference on Language Information and Computing, pp.535-544, 2012. http://www.aclweb.org/anthology/Y/Y12/Y12-1058.pdf 萩行正嗣, 河原大輔, 黒橋禎夫. 多様な文書の書き始めに対する意味関係タグ付きコーパスの構築とその分析, 自然言語処理, Vol.21, No.2, pp.213-248, 2014. https://doi.org/10.5715/jnlp.21.213 Daisuke Kawahara, Yuichiro Machida, Tomohide Shibata, Sadao Kurohashi, Hayato Kobayashi and Manabu Sassano. Rapid Development of a Corpus with Discourse Annotations using Two-stage Crowdsourcing, In Proceedings of the 25th International Conference on Computational Linguistics, pp.269-278, 2014. http://www.aclweb.org/anthology/C/C14/C14-1027.pdf 岸本裕大, 村脇有吾, 河原大輔, 黒橋禎夫. 日本語談話関係解析:タスク設計・談話標識の自動認識・ コーパスアノテーション, 自然言語処 理, Vol.27, No.4, pp.889-931, 2020. https://doi.org/10.5715/jnlp.27.889 The creation of this corpus was supported by JSPS KAKENHI Grant Number 24300053 and JST CREST "Advanced Core Technologies for Big Data Integration." The discourse annotations were acquired by crowdsourcing under the support of Yahoo! Japan Corporation. We deeply appreciate their support. Format of the corpus annotated with discourse relations # A-ID:w201106-0001998536 1 今日とある企業のトップの話を聞くことが出来た。 2 経営者として何事も全てビジネスチャンスに変えるマインドが大切だと感じた。 3 生きていく上で追い風もあれば、 4 逆風もある。 1-2 談話関係なし:5 原因・理由:4 条件:1 3-4 原因・理由:3 談話関係なし:2 逆接:2 対比:2 目的:1 References Acknowledgment
# Kyoto University Web Document Leads Corpus ## Overview This is a Japanese text corpus that consists of lead three sentences of web documents with various linguistic annotations. By collecting lead three sentences of web documents, this corpus contains documents with various genres and styles, such as news articles, encyclopedic articles, blogs and commercial pages. It comprises approximately 5,000 documents, which correspond to 15,000 sentences. The linguistic annotations consist of annotations of morphology, named entities, dependencies, predicate-argument structures including zero anaphora, coreferences, and discourse. All the annotations except discourse annotations were given by manually modifying automatic analyses of the morphological analyzer JUMAN and the dependency, case structure and anaphora analyzer KNP. The discourse annotations were given by two types of annotators; experts and crowd workers. ## Notes This corpus consists of linguistically annotated Web documents that have been made publicly available on the Web at some time. The corpus is released for the purpose of contributing to the research of natural language processing. Since the collected documents are fragmentary, i.e., only the lead three sentences of each Web document, we have not obtained permission from copyright owners of the Web documents and do not provide source information such as URL. If copyright owners of Web documents request the addition of source information or deletion of these documents, we will update the corpus and newly release it. In this case, please delete the downloaded old version and replace it with the new version. ## Notes on annotation guidelines The annotation guidelines for this corpus are written in the manuals found in the "doc" directory. The guidelines for morphology and dependencies are described in syn_guideline.pdf, those for predicate-argument structures and coreferences are described in rel_guideline.pdf, and those for discourse relations are described in disc_guideline.pdf. The guidelines for named entities are available on the IREX website (<http://nlp.cs.nyu.edu/irex/>). ## Distributed files * `knp/`: the corpus annotated with morphology, named entities, dependencies, predicate-argument structures, and coreferences * `disc/`: the corpus annotated with discourse relations * `org/`: the raw corpus * `doc/`: annotation guidelines * `id/`: document id files providing train/test split ## Statistics | | # of documents | # of sentences | # of morphemes | # of named entities | # of predicates | # of coreferring mentions | |-------|---------------:|---------------:|---------------:|--------------------:|----------------:|--------------------------:| | train | 3,915 | 11,745 | 194,490 | 6,267 | 51,702 | 16,079 | | dev | 512 | 1,536 | 22,625 | 974 | 6,139 | 1,641 | | test | 700 | 2,100 | 35,869 | 1,122 | 9,549 | 3,074 | | total | 5,127 | 15,381 | 252,984 | 8,363 | 67,390 | 20,794 | ## Format of the corpus annotated with annotations of morphology, named entities, dependencies, predicate-argument structures, and coreferences Annotations of this corpus are given in the following format. ```text # S-ID:w201106-0000010001-1 * 2D + 3D 太郎 たろう 太郎 名詞 6 人名 5 * 0 * 0 は は は 助詞 9 副助詞 2 * 0 * 0 * 2D + 2D 京都 きょうと 京都 名詞 6 地名 4 * 0 * 0 + 3D <NE:ORGANIZATION:京都大学> 大学 だいがく 大学 名詞 6 普通名詞 1 * 0 * 0 に に に 助詞 9 格助詞 1 * 0 * 0 * -1D + -1D <rel type="ガ" target="太郎" sid="w201106-0000010001-1" id="0"/><rel type="ニ" target="大学" sid="w201106-0000010001-1" id="2"/> 行った いった 行く 動詞 2 * 0 子音動詞カ行促音便形 3 タ形 10 EOS ``` The first line represents the ID of this sentence. In the subsequent lines, the lines starting with "*" denote "bunsetsu," the lines starting with "+" denote basic phrases, and the other lines denote morphemes. The line of morphemes is the same as the output of the morphological analyzers, JUMAN and Juman++. This information includes surface string, reading, lemma, part of speech (POS), fine-grained POS, conjugate type, and conjugate form. "*" means that its field is not available. Note that this format is slightly different from KWDLC 1.0, which adopted the same format as Kyoto University Text Corpus 4.0. The line starting with "*" represents "bunsetsu," which is a conventional unit for dependency in Japanese. "Bunsetsu" consists of one or more content words and zero or more function words. In this line, the first numeral means the ID of its depending head. The subsequent alphabet denotes the type of dependency relation, i.e., "D" (normal dependency), "P" (coordination dependency), "I" (incomplete coordination dependency), and "A" (appositive dependency). The line starting with "+" represents a basic phrase, which is a unit to which various relations are annotated. A basic phrase consists of one content word and zero or more function words. Therefore, it is equivalent to a bunsetsu or a part of a bunsetsu. In this line, the first numeral means the ID of its depending head. The subsequent alphabet is defined in the same way as bunsetsu. The remaining part of this line includes the annotations of named entity and various relations. Annotations of named entity are given in `<NE>` tags. `<NE>` has the following four attributes: type, target, possibility, and optional_type, which mean the class of a named entity, the string of a named entity, possible classes for an OPTIONAL named entity, and a type for an OPTIONAL named entity, respectively. The details of these attributes are described in the IREX annotation guidelines. Annotations of various relations are given in `<rel>` tags. `<rel>` has the following four attributes: type, target, sid, and id, which mean the name of a relation, the string of the counterpart, the sentence ID of the counterpart, and the basic phrase ID of the counterpart, respectively. If a basic phrase has multiple tags of the same type, a "mode" attribute is also assigned, which has one of "AND," "OR," and "?." The details of these attributes are described in the annotation guidelines (rel_guideline.pdf). ## Format of the corpus annotated with discourse relations In this corpus, a clause pair is given a discourse type and its votes as follows. ```text # A-ID:w201106-0001998536 1 今日とある企業のトップの話を聞くことが出来た。 2 経営者として何事も全てビジネスチャンスに変えるマインドが大切だと感じた。 3 生きていく上で追い風もあれば、 4 逆風もある。 1-2 談話関係なし:5 原因・理由:4 条件:1 3-4 原因・理由:3 談話関係なし:2 逆接:2 対比:2 目的:1 ``` The first line represents the ID of this document, the subsequent block denotes clause IDs and clauses, and the last block denotes discourse relations for clause pairs and their voting results. These discourse relations and voting results are the results of the second stage of crowdsourcing. Each line is the list of a discourse relation and its votes in order of votes. For the discourse relation annotated by experts, the discourse direction is annotated; if it is reverse order, "(逆方向)" is added to the discourse relation. The details of annotation methods and discourse relations are described in [Kawahara et al., 2014] and the annotation guidelines (disc_guideline.pdf). ## References * Masatsugu Hangyo, Daisuke Kawahara and Sadao Kurohashi. Building a Diverse Document Leads Corpus Annotated with Semantic Relations, In Proceedings of the 26th Pacific Asia Conference on Language Information and Computing, pp.535-544, 2012. <http://www.aclweb.org/anthology/Y/Y12/Y12-1058.pdf> * 萩行正嗣, 河原大輔, 黒橋禎夫. 多様な文書の書き始めに対する意味関係タグ付きコーパスの構築とその分析, 自然言語処理, Vol.21, No.2, pp.213-248, 2014. <https://doi.org/10.5715/jnlp.21.213> * Daisuke Kawahara, Yuichiro Machida, Tomohide Shibata, Sadao Kurohashi, Hayato Kobayashi and Manabu Sassano. Rapid Development of a Corpus with Discourse Annotations using Two-stage Crowdsourcing, In Proceedings of the 25th International Conference on Computational Linguistics, pp.269-278, 2014. <http://www.aclweb.org/anthology/C/C14/C14-1027.pdf> * 岸本裕大, 村脇有吾, 河原大輔, 黒橋禎夫. 日本語談話関係解析:タスク設計・談話標識の自動認識・ コーパスアノテーション, 自然言語処理, Vol.27, No.4, pp.889-931, 2020. <https://doi.org/10.5715/jnlp.27.889> ## Acknowledgment The creation of this corpus was supported by JSPS KAKENHI Grant Number 24300053 and JST CREST "Advanced Core Technologies for Big Data Integration." The discourse annotations were acquired by crowdsourcing under the support of Yahoo! Japan Corporation. We deeply appreciate their support. ## Contact If you have any questions or problems with this corpus, please send an email to nl-resource at nlp.ist.i.kyoto-u.ac.jp. If you have a request to add source information or to delete a document in the corpus, please send an email to this mail address.
[ "Morphology", "Named Entity Recognition", "Semantic Text Processing", "Syntactic Parsing", "Syntactic Text Processing", "Tagging" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/ku-nlp/JumanDIC
2019-11-10T23:53:09Z
This repository contains source dictionary files to build dictionaries for JUMAN and Juman++.
ku-nlp / JumanDIC Public Branches Tags Go to file Go to file Code dic emoji experi… grammar kaomoji onoma… scripts userdic webdic wikipe… wiktion… .gitignore Makefile Makefil… blackli… del_we… jppdic.… ken2to… ken2to… readm… require… About No description or website provided. # nlp # dictionary # japanese # morphological-analysis # juman Readme Activity Custom properties 1 star 6 watching 1 fork Report repository Releases No releases published Packages No packages published Contributors 6 Languages Perl 51.7% Python 37.7% Ruby 6.8% Makefile 2.6% Shell 1.2% Code Issues 1 Pull requests Actions Projects Security Insights This repository contains source dictionary files to build dictionaries for JUMAN and Juman++. blacklist_entries.txt : List words that should not be included in the final dictionary. Overview Blacklist To generate a dictionary for Juman++ make jumanpp To generate a dictionary for JUMAN make -f Makefile_juman juman README
# Overview This repository contains source dictionary files to build dictionaries for JUMAN and Juman++. ## Blacklist `blacklist_entries.txt`: List words that should not be included in the final dictionary. ## To generate a dictionary for Juman++ ```bash make jumanpp ``` ## To generate a dictionary for JUMAN ```bash make -f Makefile_juman juman ```
[]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/MorinoseiMorizo/jparacrawl-finetune
2019-11-17T05:46:57Z
An example usage of JParaCrawl pre-trained Neural Machine Translation (NMT) models.
MorinoseiMorizo / jparacrawl-finetune Public Branches Tags Go to file Go to file Code docker en-ja ja-en scripts README.md get-data.sh preprocess.sh This repository includes an example usage of JParaCrawl pre-trained Neural Machine Translation (NMT) models. Our goal is to train (fine-tune) the domain-adapted NMT model in a few hours. We wrote this document as beginner-friendly so that many people can try NMT experiments. Thus, some parts might be too easy or redundant for experts. In this example, we focus on fine-tuning the pre-trained model for KFTT corpus, which contains Wikipedia articles related to Kyoto. We prepared two examples, English-to-Japanese and Japanese-to-English. We recommend you to try the English-to-Japanese example if you are fluent Japanese speaker, otherwise Japanese-to-English since we expect you to read the MT output. In the following, we use the Japanese-to- English example. JParaCrawl is the largest publicly available English-Japanese parallel corpus created by NTT. In this example, we will fine-tune the model pre- trained on JParaCrawl. For more details about JParaCrawl, visit the official web site. http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/ This example uses the followings. Python 3 PyTorch fairseq sentencepiece MeCab with IPA dic NVIDIA GPU with CUDA For fairseq, we recommend to use the same version as we pre-trained the model. About An example usage of JParaCrawl pre-trained Neural Machine Translation (NMT) models. www.kecl.ntt.co.jp/icl/lirg/jparacr… Readme Activity 103 stars 3 watching 8 forks Report repository Releases No releases published Packages No packages published Languages Shell 95.0% Dockerfile 4.5% Python 0.5% Code Issues 2 Pull requests Actions Projects Security Insights JParaCrawl Fine-tuning Example JParaCrawl Requirements $ cd fairseq $ git checkout c81fed46ac7868c6d80206ff71c6f6cfe93aee22 README We prepared the Docker container that was already installed the requisites. Use the following commands to run. Note that you can change ~/jparacrawl-experiments to the path you want to store the experimental results. This will be connected to the container as /host_disk . First, you need to prepare the corpus and pre-trained model. These commands will download the KFTT corpus and the pre-trained NMT model. Then will tokenize the corpus to subwords with the provided sentencepiece models. The subword tokenized corpus is located at ./corpus/spm . You can see that a word is tokenized into several subwords. We use subwords to reduce the vocabulary size and express a low-frequent word as a combination of subwords. For example, the word revolutionized is tokenized into revolutionize and d . Before fine-tuning experiments, let's try to decode (translate) a file with the pre-trained model to see how the current model works. We prepared decode.sh that decodes the KFTT test set with the pre-trained NMT model. We can automatically evaluate the translation results by comparing reference translations. Here, we use BLEU scores, which is the most used evaluation matrix in the MT community. The script automatically calculates the BLEU score and save it to decode/test.log . BLEU scores ranges 0 to 100, so this result is somewhat low. It is also important to check outputs as well as BLEU scores. Input and output files are located on ./corpus/kftt-data- 1.0/data/orig/kyoto-test.ja and ./decode/kyoto-test.ja.true.detok . This is just an example so the result may vary. You can also find the reference translations at ./corpus/kftt-data-1.0/data/orig/kyoto-test.en . Docker $ docker pull morinoseimorizo/jparacrawl-fairseq $ docker run -it --gpus 1 -v ~/jparacrawl-experiments:/host_disk morinoseimorizo/jparacrawl-fairseq bash Prepare the data $ cd /host_disk $ git clone https://github.com/MorinoseiMorizo/jparacrawl-finetune.git # Clone the repository. $ cd jparacrawl-finetune $ ./get-data.sh # This script will download KFTT and sentencepiece model for pre-processing the corpus. $ ./preprocess.sh # Split the corpus into subwords. $ cp ./ja-en/*.sh ./ # If you try the English-to-Japanese example, use en-ja directory instead. $ ./get-model.sh # Download the pre-trained model. $ head -n 2 corpus/spm/kyoto-train.en ▁Known ▁as ▁Se s shu ▁( 14 20 ▁- ▁150 6) , ▁he ▁was ▁an ▁ink ▁painter ▁and ▁Zen ▁monk ▁active ▁in ▁the ▁Muromachi ▁pe ▁He ▁revolutionize d ▁the ▁Japanese ▁ink ▁painting . Decoding with pre-trained NMT models $ ./decode.sh Evaluation $ cat decode/test.log BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.4.2 = 14.2 50.4/22.0/11.2/5.9 (BP = 0.868 ratio = 0.876 hyp_l $ head -n4 ./corpus/kftt-data-1.0/data/orig/kyoto-test.ja InfoboxBuddhist 道元(どうげん)は、鎌倉時代初期の禅僧。 曹洞宗の開祖。 晩年に希玄という異称も用いた。。 $ head -n4 ./decode/kyoto-test.ja.true.detok InfoboxBuddhist Dogen is a Zen monk from the early Kamakura period. The founder of the Soto sect. In his later years, he also used the heterogeneous name "Legend". The current model mistranslated the name "Kigen" to "Legend" at line 4. Also, "heterogeneous" is not an appropriate translation. Let's see how this could be improved by fine-tuning. Now, let's move to fine-tuning. By fine-tuning, the model will adapt to the specific domain, KFTT. Thus, we can expect the translation accuracy improves. Following scripts will fine-tune the pre-trained model with the KFTT training set. Modern GPUs can use mixed-precision training that make use of Tensor Cores, which can compute half-precision floating-point faster. If you want to use this feature, run fine-tune_kftt_mixed.sh instead of fine-tune_kftt_fp32.sh with Volta or later generations GPUs such as Tesla V100 or Geforce RTX 2080 Ti GPUs. Training will take several hours to finish. We tested on single RTX 2080Ti GPU with mixed-precision training and it finished in two hours. Training time drastically differs based on the environment, so it may take a few more hours. Once it finished, you can find the BLEU score on the models/fine-tune/test.log . You can see the BLEU score is greatly improved by fine- tuning. Translated text is on ./models/fine-tune/kyoto-test.ja.true.detok . The fine-tuned model could correctly translate line 4. In this document, we described how to use the pre-trained model and fine-tune it with KFTT. By fine-tuning, we can obtain the domain-specific NMT model with a low computational cost. We listed some examples to go further for NMT beginners. Looking into the provided scripts and find what commands are used. Try to translate your documents with the pre-trained and fine-tuned models. You need to edit decode.sh . See how well the model works. Try fine-tuning with other English-Japanese parallel corpora. You can find the corpora from: OPUS A list created by Prof. Neubig. You need to tokenize it to subwords first. Modify preprocess.sh . $ head -n4 ./corpus/kftt-data-1.0/data/orig/kyoto-test.en Infobox Buddhist Dogen was a Zen monk in the early Kamakura period. The founder of Soto Zen Later in his life he also went by the name Kigen. Fine-tuning on KFTT corpus $ nohup ./fine-tune_kftt_fp32.sh &> fine-tune.log & $ tail -f fine-tune.log Evaluation $ cat models/fine-tune/test.log BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.4.2 = 26.4 57.8/31.7/20.1/13.5 (BP = 0.992 ratio = 0.992 hyp_ $ head -n4 models/fine-tune/kyoto-test.ja.true.detok Nickel buddhist Dogen was a Zen priest in the early Kamakura period. He was the founder of the Soto sect. In his later years, he also used another name, Kigen. Conclusion Next steps NMT architectures Sequence to Sequence Learning with Neural Networks Effective Approaches to Attention-based Neural Machine Translation Attention Is All You Need Subwords Neural Machine Translation of Rare Words with Subword Units SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing Corpora JParaCrawl: A Large Scale Web-Based English-Japanese Parallel Corpus The Kyoto Free Translation Task (KFTT) Tools fairseq: A Fast, Extensible Toolkit for Sequence Modeling Please send an issue on GitHub or contact us by email. NTT Communication Science Laboratories Makoto Morishita jparacrawl-ml -a- hco.ntt.co.jp Further reading Contact
# JParaCrawl Fine-tuning Example This repository includes an example usage of JParaCrawl pre-trained Neural Machine Translation (NMT) models. Our goal is to train (fine-tune) the domain-adapted NMT model in a few hours. We wrote this document as beginner-friendly so that many people can try NMT experiments. Thus, some parts might be too easy or redundant for experts. In this example, we focus on fine-tuning the pre-trained model for KFTT corpus, which contains Wikipedia articles related to Kyoto. We prepared two examples, English-to-Japanese and Japanese-to-English. We recommend you to try the English-to-Japanese example if you are fluent Japanese speaker, otherwise Japanese-to-English since we expect you to read the MT output. In the following, we use the Japanese-to-English example. ## JParaCrawl JParaCrawl is the largest publicly available English-Japanese parallel corpus created by NTT. In this example, we will fine-tune the model pre-trained on JParaCrawl. For more details about JParaCrawl, visit the official web site. http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/ ## Requirements This example uses the followings. - Python 3 - [PyTorch](https://pytorch.org/) - [fairseq](https://github.com/pytorch/fairseq) - [sentencepiece](https://github.com/google/sentencepiece) - [MeCab](https://taku910.github.io/mecab/) with IPA dic - NVIDIA GPU with CUDA For fairseq, we recommend to use the same version as we pre-trained the model. ``` $ cd fairseq $ git checkout c81fed46ac7868c6d80206ff71c6f6cfe93aee22 ``` ### Docker We prepared the Docker container that was already installed the requisites. Use the following commands to run. Note that you can change `~/jparacrawl-experiments` to the path you want to store the experimental results. This will be connected to the container as `/host_disk`. ``` sh $ docker pull morinoseimorizo/jparacrawl-fairseq $ docker run -it --gpus 1 -v ~/jparacrawl-experiments:/host_disk morinoseimorizo/jparacrawl-fairseq bash ``` ## Prepare the data First, you need to prepare the corpus and pre-trained model. ``` sh $ cd /host_disk $ git clone https://github.com/MorinoseiMorizo/jparacrawl-finetune.git # Clone the repository. $ cd jparacrawl-finetune $ ./get-data.sh # This script will download KFTT and sentencepiece model for pre-processing the corpus. $ ./preprocess.sh # Split the corpus into subwords. $ cp ./ja-en/*.sh ./ # If you try the English-to-Japanese example, use en-ja directory instead. $ ./get-model.sh # Download the pre-trained model. ``` These commands will download the KFTT corpus and the pre-trained NMT model. Then will tokenize the corpus to subwords with the provided sentencepiece models. The subword tokenized corpus is located at `./corpus/spm`. ``` sh $ head -n 2 corpus/spm/kyoto-train.en ▁Known ▁as ▁Se s shu ▁( 14 20 ▁- ▁150 6) , ▁he ▁was ▁an ▁ink ▁painter ▁and ▁Zen ▁monk ▁active ▁in ▁the ▁Muromachi ▁period ▁in ▁the ▁latter ▁half ▁of ▁the ▁15 th ▁century , ▁and ▁was ▁called ▁a ▁master ▁painter . ▁He ▁revolutionize d ▁the ▁Japanese ▁ink ▁painting . ``` You can see that a word is tokenized into several subwords. We use subwords to reduce the vocabulary size and express a low-frequent word as a combination of subwords. For example, the word `revolutionized` is tokenized into `revolutionize` and `d`. ## Decoding with pre-trained NMT models Before fine-tuning experiments, let's try to decode (translate) a file with the pre-trained model to see how the current model works. We prepared `decode.sh` that decodes the KFTT test set with the pre-trained NMT model. ``` sh $ ./decode.sh ``` ### Evaluation We can automatically evaluate the translation results by comparing reference translations. Here, we use [BLEU](https://www.aclweb.org/anthology/P02-1040/) scores, which is the most used evaluation matrix in the MT community. The script automatically calculates the BLEU score and save it to `decode/test.log`. BLEU scores ranges 0 to 100, so this result is somewhat low. ``` sh $ cat decode/test.log BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.4.2 = 14.2 50.4/22.0/11.2/5.9 (BP = 0.868 ratio = 0.876 hyp_len = 24351 ref_len = 27790) ``` It is also important to check outputs as well as BLEU scores. Input and output files are located on `./corpus/kftt-data-1.0/data/orig/kyoto-test.ja` and `./decode/kyoto-test.ja.true.detok`. ``` $ head -n4 ./corpus/kftt-data-1.0/data/orig/kyoto-test.ja InfoboxBuddhist 道元(どうげん)は、鎌倉時代初期の禅僧。 曹洞宗の開祖。 晩年に希玄という異称も用いた。。 $ head -n4 ./decode/kyoto-test.ja.true.detok InfoboxBuddhist Dogen is a Zen monk from the early Kamakura period. The founder of the Soto sect. In his later years, he also used the heterogeneous name "Legend". ``` This is just an example so the result may vary. You can also find the reference translations at `./corpus/kftt-data-1.0/data/orig/kyoto-test.en`. ``` $ head -n4 ./corpus/kftt-data-1.0/data/orig/kyoto-test.en Infobox Buddhist Dogen was a Zen monk in the early Kamakura period. The founder of Soto Zen Later in his life he also went by the name Kigen. ``` The current model mistranslated the name "Kigen" to "Legend" at line 4. Also, "heterogeneous" is not an appropriate translation. Let's see how this could be improved by fine-tuning. ## Fine-tuning on KFTT corpus Now, let's move to fine-tuning. By fine-tuning, the model will adapt to the specific domain, KFTT. Thus, we can expect the translation accuracy improves. Following scripts will fine-tune the pre-trained model with the KFTT training set. ``` sh $ nohup ./fine-tune_kftt_fp32.sh &> fine-tune.log & $ tail -f fine-tune.log ``` Modern GPUs can use [mixed-precision training](https://arxiv.org/abs/1710.03740) that make use of Tensor Cores, which can compute half-precision floating-point faster. If you want to use this feature, run `fine-tune_kftt_mixed.sh` instead of `fine-tune_kftt_fp32.sh` with Volta or later generations GPUs such as Tesla V100 or Geforce RTX 2080 Ti GPUs. Training will take several hours to finish. We tested on single RTX 2080Ti GPU with mixed-precision training and it finished in two hours. Training time drastically differs based on the environment, so it may take a few more hours. ### Evaluation Once it finished, you can find the BLEU score on the `models/fine-tune/test.log`. You can see the BLEU score is greatly improved by fine-tuning. ``` sh $ cat models/fine-tune/test.log BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.4.2 = 26.4 57.8/31.7/20.1/13.5 (BP = 0.992 ratio = 0.992 hyp_len = 27572 ref_len = 27790) ``` Translated text is on `./models/fine-tune/kyoto-test.ja.true.detok`. ``` sh $ head -n4 models/fine-tune/kyoto-test.ja.true.detok Nickel buddhist Dogen was a Zen priest in the early Kamakura period. He was the founder of the Soto sect. In his later years, he also used another name, Kigen. ``` The fine-tuned model could correctly translate line 4. ## Conclusion In this document, we described how to use the pre-trained model and fine-tune it with KFTT. By fine-tuning, we can obtain the domain-specific NMT model with a low computational cost. ## Next steps We listed some examples to go further for NMT beginners. - Looking into the provided scripts and find what commands are used. - Try to translate your documents with the pre-trained and fine-tuned models. - You need to edit `decode.sh`. - See how well the model works. - Try fine-tuning with other English-Japanese parallel corpora. - You can find the corpora from: - [OPUS](http://opus.nlpl.eu/) - [A list created by Prof. Neubig.](http://www.phontron.com/japanese-translation-data.php) - You need to tokenize it to subwords first. - Modify `preprocess.sh`. ## Further reading - NMT architectures - [Sequence to Sequence Learning with Neural Networks](https://arxiv.org/abs/1409.3215) - [Effective Approaches to Attention-based Neural Machine Translation](https://arxiv.org/abs/1508.04025) - [Attention Is All You Need](https://arxiv.org/abs/1706.03762) - Subwords - [Neural Machine Translation of Rare Words with Subword Units](https://arxiv.org/abs/1508.07909) - [SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing](https://arxiv.org/abs/1808.06226) - Corpora - JParaCrawl: A Large Scale Web-Based English-Japanese Parallel Corpus - [The Kyoto Free Translation Task (KFTT)](http://www.phontron.com/kftt/) - Tools - [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) ## Contact Please send an issue on GitHub or contact us by email. NTT Communication Science Laboratories Makoto Morishita jparacrawl-ml -a- hco.ntt.co.jp
[ "Language Models", "Machine Translation", "Multilinguality", "Semantic Text Processing", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/WorksApplications/sudachi.rs
2019-11-23T12:04:58Z
SudachiPy 0.6* and above are developed as Sudachi.rs.
WorksApplications / sudachi.rs Public Branches Tags Go to file Go to file Code .github docs plugin python resources sudachi-cli sudachi-fuzz sudachi .gitignore CHANGELOG.md Cargo.lock Cargo.toml LICENSE README.ja.md README.md fetch_dictionary.sh logo.png update_version.sh Rust Rust passing passing 2023-12-14 UPDATE: 0.6.8 Release Try it: sudachi.rs is a Rust implementation of Sudachi, a Japanese morphological analyzer. 日本語 README SudachiPy Documentation About Sudachi in Rust 🦀 and new generation of SudachiPy # python # rust # segmentation # pos-tagging # morphological-analysis # tokenization # sudachi # nlp-libary Readme Apache-2.0 license Activity Custom properties 318 stars 7 watching 34 forks Report repository Releases 10 v0.6.8 Latest on Dec 14, 2023 + 9 releases Sponsor this project Learn more about GitHub Sponsors Packages No packages published Contributors 11 Languages Rust 89.1% Python 10.1% Other 0.8% Code Issues 29 Pull requests 9 Actions Projects Security Insights … sudachi.rs - English README pip install --upgrade 'sudachipy>=0.6.8' Sponsor README Apache-2.0 license Multi-granular Tokenization Normalized Form Wakati (space-delimited surface form) Output You need sudachi.rs, default plugins, and a dictionary. (This crate don't include dictionary.) Sudachi requires a dictionary to operate. You can download a dictionary ZIP file from WorksApplications/SudachiDict (choose one from small , core , or full ), unzip it, and place the system_*.dic file somewhere. By the default setting file, sudachi.rs assumes that it is placed at resources/system.dic . TL;DR $ git clone https://github.com/WorksApplications/sudachi.rs.git $ cd ./sudachi.rs $ cargo build --release $ cargo install --path sudachi-cli/ $ ./fetch_dictionary.sh $ echo "高輪ゲートウェイ駅" | sudachi 高輪ゲートウェイ駅 名詞,固有名詞,一般,*,*,* 高輪ゲートウェイ駅 EOS Example $ echo 選挙管理委員会 | sudachi 選挙管理委員会 名詞,固有名詞,一般,*,*,* 選挙管理委員会 EOS $ echo 選挙管理委員会 | sudachi --mode A 選挙 名詞,普通名詞,サ変可能,*,*,* 選挙 管理 名詞,普通名詞,サ変可能,*,*,* 管理 委員 名詞,普通名詞,一般,*,*,* 委員 会 名詞,普通名詞,一般,*,*,* 会 EOS $ echo 打込む かつ丼 附属 vintage | sudachi 打込む 動詞,一般,*,*,五段-マ行,終止形-一般 打ち込む 空白,*,*,*,*,* かつ丼 名詞,普通名詞,一般,*,*,* カツ丼 空白,*,*,*,*,* 附属 名詞,普通名詞,サ変可能,*,*,* 付属 空白,*,*,*,*,* vintage 名詞,普通名詞,一般,*,*,* ビンテージ EOS $ cat lemon.txt えたいの知れない不吉な塊が私の心を始終圧えつけていた。 焦躁と言おうか、嫌悪と言おうか――酒を飲んだあとに宿酔があるように、酒を毎日飲んでいると宿酔に相当した時期がやって来る。 それが来たのだ。これはちょっといけなかった。 $ sudachi --wakati lemon.txt えたい の 知れ ない 不吉 な 塊 が 私 の 心 を 始終 圧え つけ て い た 。 焦躁 と 言おう か 、 嫌悪 と 言おう か ― ― 酒 を 飲ん だ あと に 宿酔 が ある よう に 、 酒 を 毎日 飲ん で いる と 宿酔 に 相当 し それ が 来 た の だ 。 これ は ちょっと いけ なかっ た 。 Setup 1. Get the source code $ git clone https://github.com/WorksApplications/sudachi.rs.git 2. Download a Sudachi Dictionary Convenience Script Optionally, you can use the fetch_dictionary.sh shell script to download a dictionary and install it to resources/system.dic . This was un-implemented and does not work currently, see #35 Specify the bake_dictionary feature to embed a dictionary into the binary. The sudachi executable will contain the dictionary binary. The baked dictionary will be used if no one is specified via cli option or setting file. You must specify the path the dictionary file in the SUDACHI_DICT_PATH environment variable when building. SUDACHI_DICT_PATH is relative to the sudachi.rs directory (or absolute). Example on Unix-like system: $ ./fetch_dictionary.sh 3. Build $ cargo build --release Build (bake dictionary into binary) # Download dictionary to resources/system.dic $ ./fetch_dictionary.sh # Build with bake_dictionary feature (relative path) $ env SUDACHI_DICT_PATH=resources/system.dic cargo build --release --features bake_dictionary # or # Build with bake_dictionary feature (absolute path) $ env SUDACHI_DICT_PATH=/path/to/my-sudachi.dic cargo build --release --features bake_dictionary 4. Install sudachi.rs/ $ cargo install --path sudachi-cli/ $ which sudachi /Users/<USER>/.cargo/bin/sudachi $ sudachi -h sudachi 0.6.0 A Japanese tokenizer ... Usage as a command $ sudachi -h A Japanese tokenizer Usage: sudachi [OPTIONS] [FILE] [COMMAND] Commands: build Builds system dictionary ubuild Builds user dictionary dump help Print this message or the help of the given subcommand(s) Arguments: [FILE] Input text file: If not present, read from STDIN Options: -r, --config-file <CONFIG_FILE> Path to the setting file in JSON format -p, --resource_dir <RESOURCE_DIR> Path to the root directory of resources Columns are tab separated. Surface Part-of-Speech Tags (comma separated) Normalized Form When you add the -a ( --all ) flag, it additionally outputs Dictionary Form Reading Form Dictionary ID 0 for the system dictionary 1 and above for the user dictionaries -1 if a word is Out-of-Vocabulary (not in the dictionary) Synonym group IDs (OOV) if a word is Out-of-Vocabulary (not in the dictionary) When you add -w ( --wakati ) flag, it outputs space-delimited surface instead. Out of Vocabulary handling Easy dictionary file install & management, similar to SudachiPy Registration to crates.io WorksApplications/Sudachi WorksApplications/SudachiDict WorksApplications/SudachiPy -m, --mode <MODE> Split unit: "A" (short), "B" (middle), or "C" (Named Entity) [default: C] -o, --output <OUTPUT_FILE> Output text file: If not present, use stdout -a, --all Prints all fields -w, --wakati Outputs only surface form -d, --debug Debug mode: Print the debug information -l, --dict <DICTIONARY_PATH> Path to sudachi dictionary. If None, it refer config and then baked dictionary --split-sentences <SPLIT_SENTENCES> How to split sentences [default: yes] -h, --help Print help (see more with '--help') -V, --version Print version Output $ echo "外国人参政権" | sudachi -a 外国人参政権 名詞,普通名詞,一般,*,*,* 外国人参政権 外国人参政権 ガイコクジンサンセイケン 0 [] EOS echo "阿quei" | sudachipy -a 阿 名詞,普通名詞,一般,*,*,* 阿 阿 -1 [] (OOV) quei 名詞,普通名詞,一般,*,*,* quei quei -1 [] (OOV) EOS $ echo "外国人参政権" | sudachi -m A -w 外国 人 参政 権 ToDo References Sudachi msnoigrs/gosudachi agatan/yoin: A Japanese Morphological Analyzer written in pure Rust wareya/notmecab-rs: notmecab-rs is a very basic mecab clone, designed only to do parsing, not training. Sudachi Logo Crab illustration: Pixabay Morphological Analyzers in Rust Logo
# sudachi.rs - 日本語README <p align="center"><img width="100" src="logo.png" alt="sudachi.rs logo"></p> sudachi.rs は日本語形態素解析器 [Sudachi](https://github.com/WorksApplications/Sudachi) のRust実装です。 [English README](README.md) [SudachiPy Documentation](https://worksapplications.github.io/sudachi.rs/python) ## TL;DR SudachiPyとして使うには ```bash $ pip install --upgrade 'sudachipy>=0.6.8' ``` ```bash $ git clone https://github.com/WorksApplications/sudachi.rs.git $ cd ./sudachi.rs $ cargo build --release $ cargo install --path sudachi-cli/ $ ./fetch_dictionary.sh $ echo "高輪ゲートウェイ駅" | sudachi 高輪ゲートウェイ駅 名詞,固有名詞,一般,*,*,* 高輪ゲートウェイ駅 EOS ``` ### 利用例 複数粒度での分割 ``` $ echo 選挙管理委員会 | sudachi 選挙管理委員会 名詞,固有名詞,一般,*,*,* 選挙管理委員会 EOS $ echo 選挙管理委員会 | sudachi --mode A 選挙 名詞,普通名詞,サ変可能,*,*,* 選挙 管理 名詞,普通名詞,サ変可能,*,*,* 管理 委員 名詞,普通名詞,一般,*,*,* 委員 会 名詞,普通名詞,一般,*,*,* 会 EOS ``` 正規化表記 ``` $ echo 打込む かつ丼 附属 vintage | sudachi 打込む 動詞,一般,*,*,五段-マ行,終止形-一般 打ち込む 空白,*,*,*,*,* かつ丼 名詞,普通名詞,一般,*,*,* カツ丼 空白,*,*,*,*,* 附属 名詞,普通名詞,サ変可能,*,*,* 付属 空白,*,*,*,*,* vintage 名詞,普通名詞,一般,*,*,* ビンテージ EOS ``` 分かち書き出力 ``` $ cat lemon.txt えたいの知れない不吉な塊が私の心を始終圧えつけていた。 焦躁と言おうか、嫌悪と言おうか――酒を飲んだあとに宿酔があるように、酒を毎日飲んでいると宿酔に相当した時期がやって来る。 それが来たのだ。これはちょっといけなかった。 $ sudachi --wakati lemon.txt えたい の 知れ ない 不吉 な 塊 が 私 の 心 を 始終 圧え つけ て い た 。 焦躁 と 言おう か 、 嫌悪 と 言おう か ― ― 酒 を 飲ん だ あと に 宿酔 が ある よう に 、 酒 を 毎日 飲ん で いる と 宿酔 に 相当 し た 時期 が やっ て 来る 。 それ が 来 た の だ 。 これ は ちょっと いけ なかっ た 。 ``` ## セットアップ sudachi.rs本体に加え、デフォルトで使用するプラグイン、また辞書が必要になります。※パッケージには辞書が含まれていません。 ### 1. ソースコードの取得 ``` $ git clone https://github.com/WorksApplications/sudachi.rs.git ``` ### 2. Sudachi辞書のダウンロード [WorksApplications/SudachiDict](https://github.com/WorksApplications/SudachiDict)から辞書のzipファイル( `small` 、 `core` 、 `full` から一つ選択)し、解凍して、必要であれば中にある `system_*.dic` ファイルをわかりやすい位置に置いてください。 デフォルトの設定ファイルでは、辞書ファイルが `resources/system.dic` に存在していると指定しています(ファイル名が `system.dic` に変わっていることに注意)。 #### ダウンロードスクリプト 上記のように手動で設置する以外に、レポジトリにあるスクリプトを使って自動的に辞書をダウンロードし `resources/system.dic` として設置することもできます。 ``` $ ./fetch_dictionary.sh ``` ### 3. ビルド #### ビルド(デフォルト) `--all` フラグを使って付属のプラグインもまとめてビルドすることができます。 ``` $ cargo build --release ``` #### ビルド(辞書バイナリの埋め込み) **以下は現在未対応となっています** https://github.com/WorksApplications/sudachi.rs/issues/35 をご参考ください。 `bake_dictionary` フィーチャーフラグを立ててビルドすることで、辞書ファイルをバイナリに埋め込むことができます。 これによってビルドされた実行ファイルは、**辞書バイナリを内包しています**。 オプションや設定ファイルで辞書が指定されなかった場合、この内包辞書が使用されます。 ビルド時、埋め込む辞書へのパスを `SUDACHI_DICT_PATH` 環境変数によって指定する必要があります。 このパスは絶対パスもしくは sudachi.rs ディレクトリからの相対パスで指定してください。 Unix-likeシステムでの例: ```sh # resources/system.dic への辞書ダウンロード $ ./fetch_dictionary.sh # bake_dictionary フィーチャーフラグ付きでビルド (辞書を相対パスで指定) $ env SUDACHI_DICT_PATH=resources/system.dic cargo build --release --features bake_dictionary # もしくは # bake_dictionary フィーチャーフラグ付きでビルド (辞書を絶対パスで指定) $ env SUDACHI_DICT_PATH=/path/to/my-sudachi.dic cargo build --release --features bake_dictionary ``` ### 4. インストール ``` sudachi.rs/ $ cargo install --path sudachi-cli/ $ which sudachi /Users/<USER>/.cargo/bin/sudachi $ sudachi -h sudachi 0.6.0 A Japanese tokenizer ... ``` ## 利用方法 ```bash $ sudachi -h A Japanese tokenizer Usage: sudachi [OPTIONS] [FILE] [COMMAND] Commands: build Builds system dictionary ubuild Builds user dictionary dump help Print this message or the help of the given subcommand(s) Arguments: [FILE] Input text file: If not present, read from STDIN Options: -r, --config-file <CONFIG_FILE> Path to the setting file in JSON format -p, --resource_dir <RESOURCE_DIR> Path to the root directory of resources -m, --mode <MODE> Split unit: "A" (short), "B" (middle), or "C" (Named Entity) [default: C] -o, --output <OUTPUT_FILE> Output text file: If not present, use stdout -a, --all Prints all fields -w, --wakati Outputs only surface form -d, --debug Debug mode: Print the debug information -l, --dict <DICTIONARY_PATH> Path to sudachi dictionary. If None, it refer config and then baked dictionary --split-sentences <SPLIT_SENTENCES> How to split sentences [default: yes] -h, --help Print help (see more with '--help') -V, --version Print version ``` ### 出力 タブ区切りで出力されます。 デフォルトは以下の情報が含まれます。 - 表層形 - 品詞(コンマ区切り) - 正規化表記 オプションで -a (--all) を指定すると以下の情報が追加されます。 - 辞書形 - 読み - 辞書ID - 0 システム辞書 - 1 ユーザー辞書 - -1 未知語(辞書に含まれない単語) - 同義語グループID - "OOV" 未知語(辞書に含まれない単語)の場合のみ ```bash $ echo "外国人参政権" | sudachi -a 外国人参政権 名詞,普通名詞,一般,*,*,* 外国人参政権 外国人参政権 ガイコクジンサンセイケン 0 [] EOS ``` ```bash echo "阿quei" | sudachipy -a 阿 名詞,普通名詞,一般,*,*,* 阿 阿 -1 [] (OOV) quei 名詞,普通名詞,一般,*,*,* quei quei -1 [] (OOV) EOS ``` オプションで -w (--wakati) を指定すると代わりに表層形のみをスペース区切りで出力します。 ```bash $ echo "外国人参政権" | sudachi -m A -w 外国 人 参政 権 ``` ## ToDo - [x] 未知語処理 - [ ] 簡単な辞書ファイルのインストール、管理([SudachiPyでの方式を参考に](https://github.com/WorksApplications/SudachiPy/issues/73)) - [ ] crates.io への登録 ## リファレンス ### Sudachi - [WorksApplications/Sudachi](https://github.com/WorksApplications/Sudachi) - [WorksApplications/SudachiDict](https://github.com/WorksApplications/SudachiDict) - [WorksApplications/SudachiPy](https://github.com/WorksApplications/SudachiPy) - [msnoigrs/gosudachi](https://github.com/msnoigrs/gosudachi) ### Rustによる形態素解析器の実装 - [agatan/yoin: A Japanese Morphological Analyzer written in pure Rust](https://github.com/agatan/yoin) - [wareya/notmecab-rs: notmecab-rs is a very basic mecab clone, designed only to do parsing, not training.](https://github.com/wareya/notmecab-rs) ### ロゴ - [Sudachiのロゴ](https://github.com/WorksApplications/Sudachi/blob/develop/docs/Sudachi.png) - カニのイラスト: [Pixabay](https://pixabay.com/ja/vectors/%E5%8B%95%E7%89%A9-%E3%82%AB%E3%83%8B-%E7%94%B2%E6%AE%BB%E9%A1%9E-%E6%B5%B7-2029728/)
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[]
true
https://github.com/polm/unidic-py
2020-01-05T07:05:06Z
Unidic packaged for installation via pip.
polm / unidic-py Public Branches Tags Go to file Go to file Code doc extras unidic LICEN… LICEN… MANIF… READ… dicts.json require… setup.cfg setup.py This is a version of UniDic for Contemporary Written Japanese packaged for use with pip. Currently it supports 3.1.0, the latest version of UniDic. Note this will take up 770MB on disk after install. If you want a small package, try unidic-lite. The data for this dictionary is hosted as part of the AWS Open Data Sponsorship Program. You can read the announcement here. About Unidic packaged for installation via pip. # nlp # japanese # unidic Readme MIT, BSD-3-Clause licenses found Activity 77 stars 3 watching 8 forks Report repository Releases 6 v1.1.0: UniDic 3.1.0 is n… Latest on Oct 10, 2021 + 5 releases Packages No packages published Contributors 2 polm Paul O'Leary McCann shogo82148 ICHINOSE Shogo Languages Python 87.7% Shell 12.3% Code Issues Pull requests Actions Projects Security Insights unidic-py README MIT license BSD-3-Clause license After installing via pip, you need to download the dictionary using the following command: With fugashi or mecab-python3 unidic will be used automatically when installed, though if you want you can manually pass the MeCab arguments: This has a few changes from the official UniDic release to make it easier to use. entries for 令和 have been added single-character numeric and alphabetic words have been deleted unk.def has been modified so unknown punctuation won't be marked as a noun See the extras directory for details on how to replicate the build process. Here is a list of fields included in this edition of UniDic. For more information see the UniDic FAQ, though not all fields are included. For fields in the UniDic FAQ the name given there is included. Als orefer to the description of the field hierarchy for details. Fields which are not applicable are usually marked with an asterisk ( * ). pos1, pos2, pos3, pos4: Part of speech fields. The earlier fields are more general, the later fields are more specific. cType: 活用型, conjugation type. Will have a value like 五段-ラ行. python -m unidic download import fugashi import unidic tagger = fugashi.Tagger('-d " {}"'.format(unidic.DICDIR)) # that's it! Differences from the Official UniDic Release Fields cForm: 活用形, conjugation shape. Will have a value like 連用形-促音便. lForm: 語彙素読み, lemma reading. The reading of the lemma in katakana, this uses the same format as the kana field, not pron . lemma: 語彙素(+語彙素細分類). The lemma is a non-inflected "dictionary form" of a word. UniDic lemmas sometimes include extra info or have unusual forms, like using katakana for some place names. orth: 書字形出現形, the word as it appears in text, this appears to be identical to the surface. pron: 発音形出現形, pronunciation. This is similar to kana except that long vowels are indicated with a ー, so 講師 is こーし. orthBase: 書字形基本形, the uninflected form of the word using its current written form. For example, for 彷徨った the lemma is さ迷う but the orthBase is 彷 徨う. pronBase: 発音形基本形, the pronunciation of the base form. Like pron for the lemma or orthBase . goshu: 語種, word type. Etymological category. In order of frequency, 和, 固, 漢, 外, 混, 記号, 不明. Defined for all dictionary words, blank for unks. iType: 語頭変化化型, "i" is for "initial". This is the type of initial transformation the word undergoes when combining, for example 兵 is へ半濁 because it can be read as べい in combination. This is available for <2% of entries. iForm: 語頭変化形, this is the initial form of the word in context, such as 基本形 or 半濁音形. fType: 語末変化化型, "f" is for "final", but otherwise as iType. For example 医学 is ク促 because it can change to いがっ (apparently). This is available for <0.1% of entries. fForm: 語末変化形, as iForm but for final transformations. iConType: 語頭変化結合型, initial change fusion type. Describes phonetic change at the start of the word in counting expressions. Only available for a few hundred entries, mostly numbers. Values are N followed by a letter or number; most entries with this value are numeric. fConType: 語末変化結合型, final change fusion type. This is also used for counting expressions, and like iConType it is only available for a few hundred entries. Unlike iConType the values are very complicated, like B1S6SjShS,B1S6S8SjShS . type: Appears to refer to the type of the lemma. See the details below for an overview. Type and POS fields in unidic-cwj-202302 kana: 読みがな, this is the typical representation of a word in katakana, unlike pron. 講師 is コウシ. kanaBase: 仮名形基本形, this is the typical katakana representation of the lemma. form: 語形出現形, the form of the word as it appears. Form groups the same word with different written expressions together. formBase: 語形基本形 the uninflected form of the word. For example, the formBase オオキイ groups its orthBase 書字形基本形 大きい and おおきい together. Also since its casual form of the orthBase おっきい has a different pronunciation, it is regarded as a distinct formBase オッキイ (see the UniDic hierarchy for details). aType: Accent type. This is a (potentially) comma- separated field which has the number of the mora taking the accent in 標準語 (standard language). When there are multiple values, more common accent patterns come first. aConType: This describes how the accent shifts when the word is used in a counter expression. It uses complicated notation. aModType: Presumably accent related but unclear use. Available for <25% of entries and only has 6 non-default values. lid: 語彙表ID. A long lemma ID. This seems to be a kind of GUID. There is usually one entry per line in the CSV, except that half-width and full-width variations can be combined. Example: 7821659499274752 lemma_id: 語彙素ID. A shorter lemma id, starting from 1. This seems to be as unique as the lemma field, so many CSV lines can share this value. Examples of values that share an ID are: クリエイテ ィブ, クリエイティヴ, クリエーティブ and Crea tive. The modern Japanese UniDic is available under the GPL, LGPL, or BSD license, see here. UniDic is developed by NINJAL, the National Institute for Japanese Language and Linguistics. UniDic is copyrighted by the UniDic Consortium and is distributed here under the terms of the BSD License. License
# unidic-py This is a version of [UniDic](https://ccd.ninjal.ac.jp/unidic/) for Contemporary Written Japanese packaged for use with pip. Currently it supports 3.1.0, the latest version of UniDic. **Note this will take up 770MB on disk after install.** If you want a small package, try [unidic-lite](https://github.com/polm/unidic-lite). The data for this dictionary is hosted as part of the AWS Open Data Sponsorship Program. You can read the announcement [here](https://aws.amazon.com/jp/blogs/news/published-unidic-mecab-on-aws-open-data/). After installing via pip, you need to download the dictionary using the following command: python -m unidic download With [fugashi](https://github.com/polm/fugashi) or [mecab-python3](https://github.com/samurait/mecab-python3) unidic will be used automatically when installed, though if you want you can manually pass the MeCab arguments: import fugashi import unidic tagger = fugashi.Tagger('-d "{}"'.format(unidic.DICDIR)) # that's it! ## Differences from the Official UniDic Release This has a few changes from the official UniDic release to make it easier to use. - entries for 令和 have been added - single-character numeric and alphabetic words have been deleted - `unk.def` has been modified so unknown punctuation won't be marked as a noun See the `extras` directory for details on how to replicate the build process. ## Fields Here is a list of fields included in this edition of UniDic. For more information see the [UniDic FAQ](https://clrd.ninjal.ac.jp/unidic/faq.html#col_name), though not all fields are included. For fields in the UniDic FAQ the name given there is included. Als orefer to the [description of the field hierarchy](https://clrd.ninjal.ac.jp/unidic/glossary.html#kaisouteki) for details. Fields which are not applicable are usually marked with an asterisk (`*`). - **pos1, pos2, pos3, pos4**: Part of speech fields. The earlier fields are more general, the later fields are more specific. - **cType:** 活用型, conjugation type. Will have a value like `五段-ラ行`. - **cForm:** 活用形, conjugation shape. Will have a value like `連用形-促音便`. - **lForm:** 語彙素読み, lemma reading. The reading of the lemma in katakana, this uses the same format as the `kana` field, not `pron`. - **lemma:** 語彙素(+語彙素細分類). The lemma is a non-inflected "dictionary form" of a word. UniDic lemmas sometimes include extra info or have unusual forms, like using katakana for some place names. - **orth:** 書字形出現形, the word as it appears in text, this appears to be identical to the surface. - **pron:** 発音形出現形, pronunciation. This is similar to kana except that long vowels are indicated with a ー, so 講師 is こーし. - **orthBase:** 書字形基本形, the uninflected form of the word using its current written form. For example, for 彷徨った the lemma is さ迷う but the orthBase is 彷徨う. - **pronBase:** 発音形基本形, the pronunciation of the base form. Like `pron` for the `lemma` or `orthBase`. - **goshu:** 語種, word type. Etymological category. In order of frequency, 和, 固, 漢, 外, 混, 記号, 不明. Defined for all dictionary words, blank for unks. - **iType:** 語頭変化化型, "i" is for "initial". This is the type of initial transformation the word undergoes when combining, for example 兵 is へ半濁 because it can be read as べい in combination. This is available for <2% of entries. - **iForm:** 語頭変化形, this is the initial form of the word in context, such as 基本形 or 半濁音形. - **fType:** 語末変化化型, "f" is for "final", but otherwise as iType. For example 医学 is ク促 because it can change to いがっ (apparently). This is available for <0.1% of entries. - **fForm:** 語末変化形, as iForm but for final transformations. - **iConType:** 語頭変化結合型, initial change fusion type. Describes phonetic change at the start of the word in counting expressions. Only available for a few hundred entries, mostly numbers. Values are N followed by a letter or number; most entries with this value are numeric. - **fConType:** 語末変化結合型, final change fusion type. This is also used for counting expressions, and like iConType it is only available for a few hundred entries. Unlike iConType the values are very complicated, like `B1S6SjShS,B1S6S8SjShS`. - **type:** Appears to refer to the type of the lemma. See the details below for an overview. <details> <summary>Type and POS fields in unidic-cwj-202302</summary> <pre> type,pos1,pos2,pos3,pos4 人名,名詞,固有名詞,人名,一般 他,感動詞,フィラー,*,* 他,感動詞,一般,*,* 他,接続詞,*,*,* 体,代名詞,*,*,* 体,名詞,助動詞語幹,*,* 体,名詞,普通名詞,サ変可能,* 体,名詞,普通名詞,サ変形状詞可能,* 体,名詞,普通名詞,一般,* 体,名詞,普通名詞,副詞可能,* 体,名詞,普通名詞,助数詞可能,* 体,名詞,普通名詞,形状詞可能,* 係助,助詞,係助詞,*,* 副助,助詞,副助詞,*,* 助動,助動詞,*,*,* 助動,形状詞,助動詞語幹,*,* 助数,接尾辞,名詞的,助数詞,* 名,名詞,固有名詞,人名,名 固有名,名詞,固有名詞,一般,* 国,名詞,固有名詞,地名,国 地名,名詞,固有名詞,地名,一般 姓,名詞,固有名詞,人名,姓 接助,助詞,接続助詞,*,* 接尾体,接尾辞,名詞的,サ変可能,* 接尾体,接尾辞,名詞的,一般,* 接尾体,接尾辞,名詞的,副詞可能,* 接尾用,接尾辞,動詞的,*,* 接尾相,接尾辞,形容詞的,*,* 接尾相,接尾辞,形状詞的,*,* 接頭,接頭辞,*,*,* 数,名詞,数詞,*,* 格助,助詞,格助詞,*,* 準助,助詞,準体助詞,*,* 用,動詞,一般,*,* 用,動詞,非自立可能,*,* 相,副詞,*,*,* 相,形容詞,一般,*,* 相,形容詞,非自立可能,*,* 相,形状詞,タリ,*,* 相,形状詞,一般,*,* 相,連体詞,*,*,* 終助,助詞,終助詞,*,* 補助,空白,*,*,* 補助,補助記号,一般,*,* 補助,補助記号,句点,*,* 補助,補助記号,括弧閉,*,* 補助,補助記号,括弧開,*,* 補助,補助記号,読点,*,* 補助,補助記号,AA,一般,* 補助,補助記号,AA,顔文字,* 記号,記号,一般,*,* 記号,記号,文字,*,* </pre> </details> - **kana:** 読みがな, this is the typical representation of a word in katakana, unlike pron. 講師 is コウシ. - **kanaBase:** 仮名形基本形, this is the typical katakana representation of the lemma. - **form:** 語形出現形, the form of the word as it appears. Form groups the same word with different written expressions together. - **formBase:** 語形基本形 the uninflected form of the word. For example, the formBase オオキイ groups its orthBase 書字形基本形 大きい and おおきい together. Also since its casual form of the orthBase おっきい has a different pronunciation, it is regarded as a distinct formBase オッキイ (see the UniDic hierarchy for details). - **aType:** Accent type. This is a (potentially) comma-separated field which has the number of the mora taking the accent in 標準語 (standard language). When there are multiple values, more common accent patterns come first. - **aConType:** This describes how the accent shifts when the word is used in a counter expression. It uses complicated notation. - **aModType:** Presumably accent related but unclear use. Available for <25% of entries and only has 6 non-default values. - **lid:** 語彙表ID. A long lemma ID. This seems to be a kind of GUID. There is usually one entry per line in the CSV, except that half-width and full-width variations can be combined. Example: 7821659499274752 - **lemma_id:** 語彙素ID. A shorter lemma id, starting from 1. This seems to be as unique as the `lemma` field, so many CSV lines can share this value. Examples of values that share an ID are: クリエイティブ, クリエイティヴ, クリエーティブ and Creative. # License The modern Japanese UniDic is available under the GPL, LGPL, or BSD license, [see here](https://ccd.ninjal.ac.jp/unidic/download#unidic_bccwj). UniDic is developed by [NINJAL](https://www.ninjal.ac.jp/), the National Institute for Japanese Language and Linguistics. UniDic is copyrighted by the UniDic Consortium and is distributed here under the terms of the [BSD License](./LICENSE.unidic). The code in this repository is not written or maintained by NINJAL. The code is available under the MIT or WTFPL License, as you prefer.
[]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/chakki-works/Japanese-Company-Lexicon
2020-01-16T05:43:49Z
Japanese Company Lexicon (JCLdic)
chakki-works / Japanese-Company-Lexicon Public Branches Tags Go to file Go to file Code models scripts tools .gitignore LICENSE README.md main.py requirements.txt This repository contains the implementation for the paper: High Coverage Lexicon for Japanese Company Name Recognition(ANLP 2020) We provide two kinds of format. The CSV format contains one name per line, and the MeCab format contains one record per line. Users can directly open MeCab CSV format to check the record. The MeCab Dic format is compiled by MeCab, which can be used as the user dictionary of MeCab. MeCab Dic usage JCL_slim (7067216, CSV, MeCab CSV, MeCab Dic): No furigana, no extra enNames, no digital names, the name length is longer than 2 and shorter than 30. JCL_medium (7555163, CSV, MeCab CSV, MeCab Dic): No digital names, the name length is longer than 2 and shorter than 30. JCL_full (8491326, CSV, MeCab CSV, MeCab Dic 1 (5,000,000), MeCab Dic 2 (3,491,326)): Contain all kinds of names. I split the MeCab Dic into two files because MeCab cannot compile the single file due to the large file size. Our goal is to build the enterprise knowledge graph, so we only consider the companies that conducts economic activity for commercial purposes. These companies are denoted as Stock Company (株式会社), Limited Company (有限会社), and Limited Liability Company (合同会社). The full version contains all kinds of names, including digits, one character aliases, etc. These abnormal names will cause annotation error for NER task. We recommend use the JCL_medium version or JCL_slim version. These release versions are easier to use than the version we used in the paper. Considering the trade-off between dictionary size and searching performance, we delete zenkaku(全角) names and only preserve the hankaku(半角) names. For example, we delete '株式会社KADOKAWA' but preserve '株式会社KADOKAWA' . As for the normalization process, please read the Python section in usage page. About No description, website, or topics provided. Readme MIT license Activity Custom properties 94 stars 5 watching 9 forks Report repository Releases No releases published Packages No packages published Contributors 4 Languages Python 98.8% Shell 1.2% Code Issues Pull requests 1 Actions Projects Wiki Security Insights Japanese Company Lexicon (JCLdic) Download links README MIT license Single Lexicon Total Names Unique Company Names JCL-slim 7067216 7067216 JCL-medium 7555163 7555163 JCL-full 8491326 8491326 IPAdic 392126 16596 Juman 751185 9598 NEologd 3171530 244213 Multiple Lexicon IPAdic-NEologd 4615340 257246 IPAdic-NEologd-JCL(medium) 12093988 7722861 See wiki page for detail usage. Instead of downloading the data, you can even build the JCLdic from scratch by following the below instructions. If you want to download the data by Selenium, you have to download the ChromeDriver. First check your Chrome version, and then download the corresponding version of ChromeDriver from here. Uncompressing ZIP file to get chromedriver , then move it to target directory: We create JCLdic according to the original data from National Tax Agency Corporate Number Publication Site (国税庁法人番号公 表サイト). Please download the ZIP files data from the below site: CSV形式・Unicode Put the ZIP files to data/hojin/zip directory, and run below script to preprocess the data: Below directories will be generated automatically, but you need to create data/hojin/zip directory manually to store the ZIP files in the first place. Usage JCLdic Generation Process Data Preparation # conda create -n jcl python=3.6 # source activate jcl pip install -r requirements.txt cd $HOME/Downloads unzip chromedriver_mac64.zip mv chromedriver /usr/local/bin bash scripts/download.sh . ├── data │ ├── corpora │ │ ├── bccwj # raw dataset │ │ ├── mainichi # raw dataset │ │ └── output # processed bccwj and mainichi dataset as IBO2 format │ ├── dictionaries │ │ ├── ipadic # raw lexicon Generating alias Until now, the JCLdic is prepared. If you want to get the MeCab format: Below result is based on the latest version of JCLdic, which might be different with the performance of the paper reported. Because these datasets (Mainichi, BCCWJ) are not free, you should get the datasets by yourself. After you get the datasets, put them to data/corpora/{bccwj,mainichi} and run the below command: If you want to compare other dictionaries, you could download it from below links and put them to data/dictionaries/{ipadic,jumman,neologd} : Calculate coverage: The intrinsic evaluation is calculate how many company names in different lexicons. The best results are highlighted. │ │ ├── neologd # raw lexicon │ │ ├── juman # raw lexicon │ │ └── output # processed lexicons │ └── hojin │ ├── csv # downloaded hojin data │ ├── output # processed JCLdic │ └── zip # downloaded hojin data JCLdic Generation bash scripts/generate_alias.sh python tools/save_mecab_format.py Evaluation Datasets, dictionaries, and annotated datasets preparation # 1 Datasets preparation python tools/dataset_converter.py # Read data from .xml, .sgml to .tsv python tools/dataset_preprocess.py # Generate .bio data # ipadic # https://github.com/taku910/mecab/tree/master/mecab-ipadic # juman # https://github.com/taku910/mecab/tree/master/mecab-jumandic # neologd # https://github.com/neologd/mecab-ipadic-neologd/blob/master/seed/mecab-user-dict-seed.20200109.csv.xz # 2 Prepare dictionaries python tools/dictionary_preprocess.py # 3 Annotate datasets with different dictionaries python tools/annotation_with_dict.py Intrinsic Evaluation: Coverage python tools/coverage.py Single Lexicon Mainichi BCCWJ Count Coverage Count Coverage JCL-slim 727 0.4601 419 0.4671 JCL-medium 730 0.4620 422 0.4705 JCL-full 805 0.5095 487 0.5429 IPAdic 726 0.4595 316 0.3523 Juman 197 0.1247 133 0.1483 NEologd 424 0.2684 241 0.2687 Multiple Lexicon IPAdic-NEologd 839 0.5310 421 0.4693 IPAdic-neologd-JCL(medium) 1064 0.6734 568 0.6332 Make sure the main.py has following setting: Run the below command: The extrinsic evaluation is using using the NER taks to measure different lexicon performance. We annotate training set with different lexicons, train the model (CRF and Bi-LSTM-CRF), and test on the test set. The Glod means we train the model with true labels. The best result is highlighted. Following table is the extrinsic evaluation result. The best results are highlighted. Single Lexicon Mainichi F1 BCCWJ F1 CRF Bi-LSTM-CRF CRF Bi-LSTM-CRF Gold 0.9756 0.9683 0.9273 0.8911 JCL-slim 0.8533 0.8708 0.8506 0.8484 JCL-meidum 0.8517 0.8709 0.8501 0.8526 JCL-full 0.5264 0.5792 0.5646 0.7028 Juman 0.8865 0.8905 0.8320 0.8169 IPAdic 0.9048 0.9141 0.8646 0.8334 NEologd 0.8975 0.9066 0.8453 0.8288 Multiple Lexicon IPAdic-NEologd 0.8911 0.9074 0.8624 0.8360 IPAdic-NEologd-JCL(medium) 0.8335 0.8752 0.8530 0.8524 Extrinsic Evaluation: NER task # main.py setting entity_level = False # ... ### result 1 ### # bccwj main(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi main(mainichi_paths, mainichi_glod, entity_level=entity_level) python main.py The new experiment results are in the parentheses. We use the dictionary annotation as CRF feature, and the best results are highlighted. The result shows that the dictionary feature boost the performance, especially the JCL. Single Lexicon Mainichi F1 BCCWJ F1 CRF CRF Gold 0.9756 (1) 0.9273 (1) JCL-slim 0.8533 (0.9754) 0.8506 (0.9339) JCL-meidum 0.8517 (0.9752) 0.8501 (0.9303) JCL-full 0.5264 (0.9764) 0.5646 (0.9364) Juman 0.8865 (0.9754) 0.8320 (0.9276) IPAdic 0.9048 (0.9758) 0.8646 (0.9299) NEologd 0.8975 (0.9750) 0.8453 (0.9282) Multiple Lexicon IPAdic-NEologd 0.8911 (0.9767) 0.8624 (0.9366) IPAdic-NEologd-JCL(medium) 0.8335 (0.9759) 0.8530 (0.9334) Make sure the main.py has following setting: Run the below command: The entity level result: result1 : train the data on the labels that tagged by dictionary result2 : add the dictionary tag as feature for CRF, use the true label for training Single Lexicon Mainichi F1 (CRF) Mainichi F1 (CRF) BCCWJ F1 (CRF) BCCWJ F1 (CRF) Result1 Result2 Result1 Result2 Gold 0.7826 0.5537 JCL-slim 0.1326 0.7969 0.1632 0.5892 Extra Experiment Dictionary annotation as feature on token level Dictionary annotation as feature on entity level # main.py setting entity_level = True # ... ### result 1 ### # bccwj main(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi main(mainichi_paths, mainichi_glod, entity_level=entity_level) ### result 2 ### # bccwj: use dictionary as feature for CRF crf_tagged_pipeline(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi: use dictionary as feature for CRF crf_tagged_pipeline(mainichi_paths, mainichi_glod, entity_level=entity_level) python main.py Single Lexicon Mainichi F1 (CRF) Mainichi F1 (CRF) BCCWJ F1 (CRF) BCCWJ F1 (CRF) JCL-meidum 0.1363 0.7927 0.1672 0.5813 JCL-full 0.0268 0.8039 0.0446 0.6205 Juman 0.0742 0.7923 0.0329 0.5661 IPAdic 0.3099 0.7924 0.1605 0.5961 NEologd 0.1107 0.7897 0.0814 0.5718 Multiple Lexicon IPAdic-NEologd 0.2456 0.7986 0.1412 0.6187 IPAdic-NEologd-JCL(medium) 0.1967 0.8009 0.2166 0.6132 From result1 and result2 , we can see these dictionary are not suitable for annotating training label, but the dictionary feature do improve the performance in result2 . We first divide the result into 3 categories: Category Description Evaluation Zero the entity not exist in the training set Zero-shot, performance on unseen entity One the entity only exists once in the training set One-shot, performance on low frequency entity More the entity exists many times in the training set Training on normal data The dataset statistics: Dataset BCCWJ Mainichi Company Samples/Sentence 1364 3027 Company Entities 1704 4664 Unique Company Entities 897 1580 Number of Unique Company Entities Exist in Training Set Zero: 226 One: 472 More: 199 Zero: 1440 One: 49 More: 91 The experiment results: Single Lexicon BCCWJ F1(CRF) Mainichi F1(CRF) Zero One More Zero One More Gold 0.4080 0.8211 0.9091 0.4970 0.8284 0.9353 JCL-slim 0.4748 0.8333 0.9091 0.5345 0.8075 0.9509 JCL-meidum 0.4530 0.8660 0.9091 0.5151 0.8061 0.9503 JCL-full 0.5411 0.8333 0.8933 0.5630 0.8467 0.9476 Juman 0.4506 0.7957 0.9032 0.5113 0.8655 0.9431 IPAdic 0.4926 0.8421 0.9161 0.5369 0.8633 0.9419 NEologd 0.4382 0.8454 0.9161 0.5343 0.8456 0.9359 Multiple Lexicon IPAdic-NEologd 0.5276 0.8600 0.9091 0.5556 0.8623 0.9432 Dictionary feature for low frequency company names on entity level Single Lexicon BCCWJ F1(CRF) Mainichi F1(CRF) IPAdic-NEologd-JCL(medium) 0.5198 0.8421 0.8947 0.5484 0.8487 0.9476 From the result above, we can see JCLdic boost the zero-shot and one-shot performance a lot, especially on the BCCWJ dataset. Please use the following bibtex, when you refer JCLdic from your papers. Citation @INPROCEEDINGS{liang2020jcldic, author = {Xu Liang, Taniguchi Yasufumi and Nakayama Hiroki},
# Japanese Company Lexicon (JCLdic) This repository contains the implementation for the paper: [High Coverage Lexicon for Japanese Company Name Recognition(ANLP 2020)](https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/B2-3.pdf) ## Download links We provide two kinds of format. The `CSV` format contains one name per line, and the [MeCab format](https://gist.github.com/Kimtaro/ab137870ad4a385b2d79) contains one record per line. Users can directly open `MeCab CSV` format to check the record. The `MeCab Dic` format is compiled by MeCab, which can be used as the user dictionary of MeCab. [MeCab Dic usage](https://github.com/chakki-works/Japanese-Company-Lexicon/wiki/JCLdic-Usage) - JCL_slim (7067216, [CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_slim.csv.zip), [MeCab CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_slim_mecab.csv.zip), [MeCab Dic](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_slim_mecab.dic.zip)): No furigana, no extra enNames, no digital names, the name length is longer than 2 and shorter than 30. - JCL_medium (7555163, [CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_medium.csv.zip), [MeCab CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_medium_mecab.csv.zip), [MeCab Dic](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_medium_mecab.dic.zip)): No digital names, the name length is longer than 2 and shorter than 30. - JCL_full (8491326, [CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_full.csv.zip), [MeCab CSV](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_full_mecab.csv.zip), [MeCab Dic 1 (5,000,000)](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_full_mecab_1.dic.zip), [MeCab Dic 2 (3,491,326)](https://s3-ap-northeast-1.amazonaws.com/chakki.jcl.jp/public/jcl_full_mecab_2.dic.zip)): Contain all kinds of names. I split the MeCab Dic into two files because MeCab cannot compile the single file due to the large file size. Our goal is to build the enterprise knowledge graph, so we only consider the companies that conducts economic activity for commercial purposes. These companies are denoted as Stock Company (株式会社), Limited Company (有限会社), and Limited Liability Company (合同会社). The full version contains all kinds of names, including digits, one character aliases, etc. These abnormal names will cause annotation error for NER task. We recommend use the JCL_medium version or JCL_slim version. These release versions are easier to use than the version we used in the paper. Considering the trade-off between dictionary size and searching performance, we delete zenkaku(全角) names and only preserve the hankaku(半角) names. For example, we delete `'株式会社KADOKAWA'` but preserve `'株式会社KADOKAWA'`. As for the normalization process, please read the Python section in [usage page](https://github.com/chakki-works/Japanese-Company-Lexicon/wiki/JCLdic-Usage). | **Single Lexicon** | Total Names | Unique Company Names | | -------------------------- | ----------- | -------------------- | | JCL-slim | 7067216 | 7067216 | | JCL-medium | 7555163 | 7555163 | | JCL-full | 8491326 | 8491326 | | IPAdic | 392126 | 16596 | | Juman | 751185 | 9598 | | NEologd | 3171530 | 244213 | | **Multiple Lexicon** | | | | IPAdic-NEologd | 4615340 | 257246 | | IPAdic-NEologd-JCL(medium) | 12093988 | 7722861 | ## Usage See [wiki](https://github.com/chakki-works/Japanese-Company-Lexicon/wiki/JCLdic-Usage) page for detail usage. ## JCLdic Generation Process Instead of downloading the data, you can even build the JCLdic from scratch by following the below instructions. ### Data Preparation ``` # conda create -n jcl python=3.6 # source activate jcl pip install -r requirements.txt ``` If you want to download the data by Selenium, you have to download the ChromeDriver. First check your Chrome version, and then download the corresponding version of ChromeDriver from [here](https://chromedriver.chromium.org/downloads). Uncompressing ZIP file to get `chromedriver`, then move it to target directory: ``` cd $HOME/Downloads unzip chromedriver_mac64.zip mv chromedriver /usr/local/bin ``` We create JCLdic according to the original data from [National Tax Agency Corporate Number Publication Site](https://www.houjin-bangou.nta.go.jp/) (国税庁法人番号公表サイト). Please download the ZIP files data from the below site: - [CSV形式・Unicode](https://www.houjin-bangou.nta.go.jp/download/zenken/#csv-unicode) Put the ZIP files to `data/hojin/zip` directory, and run below script to preprocess the data: ```bash bash scripts/download.sh ``` Below directories will be generated automatically, but you need to create `data/hojin/zip` directory manually to store the ZIP files in the first place. ```bash . ├── data │ ├── corpora │ │ ├── bccwj # raw dataset │ │ ├── mainichi # raw dataset │ │ └── output # processed bccwj and mainichi dataset as IBO2 format │ ├── dictionaries │ │ ├── ipadic # raw lexicon │ │ ├── neologd # raw lexicon │ │ ├── juman # raw lexicon │ │ └── output # processed lexicons │ └── hojin │ ├── csv # downloaded hojin data │ ├── output # processed JCLdic │ └── zip # downloaded hojin data ``` ### JCLdic Generation Generating alias ```bash bash scripts/generate_alias.sh ``` Until now, the JCLdic is prepared. If you want to get the MeCab format: ``` python tools/save_mecab_format.py ``` ### Evaluation Below result is based on the latest version of JCLdic, which might be different with the performance of the paper reported. #### Datasets, dictionaries, and annotated datasets preparation Because these datasets (Mainichi, BCCWJ) are not free, you should get the datasets by yourself. After you get the datasets, put them to `data/corpora/{bccwj,mainichi}` and run the below command: ```bash # 1 Datasets preparation python tools/dataset_converter.py # Read data from .xml, .sgml to .tsv python tools/dataset_preprocess.py # Generate .bio data ``` If you want to compare other dictionaries, you could download it from below links and put them to `data/dictionaries/{ipadic,jumman,neologd}`: ```bash # ipadic # https://github.com/taku910/mecab/tree/master/mecab-ipadic # juman # https://github.com/taku910/mecab/tree/master/mecab-jumandic # neologd # https://github.com/neologd/mecab-ipadic-neologd/blob/master/seed/mecab-user-dict-seed.20200109.csv.xz # 2 Prepare dictionaries python tools/dictionary_preprocess.py ``` ```bash # 3 Annotate datasets with different dictionaries python tools/annotation_with_dict.py ``` #### Intrinsic Evaluation: Coverage Calculate coverage: ``` python tools/coverage.py ``` The intrinsic evaluation is calculate how many company names in different lexicons. The best results are highlighted. | **Single Lexicon** | Mainichi | | BCCWJ | | | -------------------------- | -------- | ---------- | ----- | ---------- | | | Count | Coverage | Count | Coverage | | JCL-slim | 727 | 0.4601 | 419 | 0.4671 | | JCL-medium | 730 | 0.4620 | 422 | 0.4705 | | JCL-full | 805 | **0.5095** | 487 | **0.5429** | | IPAdic | 726 | 0.4595 | 316 | 0.3523 | | Juman | 197 | 0.1247 | 133 | 0.1483 | | NEologd | 424 | 0.2684 | 241 | 0.2687 | | **Multiple Lexicon** | | | | | | IPAdic-NEologd | 839 | 0.5310 | 421 | 0.4693 | | IPAdic-neologd-JCL(medium) | 1064 | **0.6734** | 568 | **0.6332** | #### Extrinsic Evaluation: NER task Make sure the `main.py` has following setting: ```python # main.py setting entity_level = False # ... ### result 1 ### # bccwj main(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi main(mainichi_paths, mainichi_glod, entity_level=entity_level) ``` Run the below command: ``` python main.py ``` The extrinsic evaluation is using using the NER taks to measure different lexicon performance. We annotate training set with different lexicons, train the model (CRF and Bi-LSTM-CRF), and test on the test set. The `Glod` means we train the model with true labels. The best result is highlighted. Following table is the extrinsic evaluation result. The best results are highlighted. | Single Lexicon | Mainichi F1 | | BCCWJ F1 | | | -------------------------- | ----------- | ----------- | ---------- | ----------- | | | CRF | Bi-LSTM-CRF | CRF | Bi-LSTM-CRF | | Gold | 0.9756 | 0.9683 | 0.9273 | 0.8911 | | JCL-slim | 0.8533 | 0.8708 | 0.8506 | 0.8484 | | JCL-meidum | 0.8517 | 0.8709 | 0.8501 | **0.8526** | | JCL-full | 0.5264 | 0.5792 | 0.5646 | 0.7028 | | Juman | 0.8865 | 0.8905 | 0.8320 | 0.8169 | | IPAdic | **0.9048** | **0.9141** | **0.8646** | 0.8334 | | NEologd | 0.8975 | 0.9066 | 0.8453 | 0.8288 | | **Multiple Lexicon** | | | | | | IPAdic-NEologd | **0.8911** | **0.9074** | **0.8624** | 0.8360 | | IPAdic-NEologd-JCL(medium) | 0.8335 | 0.8752 | 0.8530 | **0.8524** | ## Extra Experiment ### Dictionary annotation as feature on token level The new experiment results are in the parentheses. We use the dictionary annotation as CRF feature, and the best results are highlighted. The result shows that the dictionary feature boost the performance, especially the JCL. | Single Lexicon | Mainichi F1 | BCCWJ F1 | | -------------------------- | ------------------- | ------------------- | | | CRF | CRF | | Gold | 0.9756 (1) | 0.9273 (1) | | JCL-slim | 0.8533 (0.9754) | 0.8506 (0.9339) | | JCL-meidum | 0.8517 (0.9752) | 0.8501 (0.9303) | | JCL-full | 0.5264 (**0.9764**) | 0.5646 (**0.9364**) | | Juman | 0.8865 (0.9754) | 0.8320 (0.9276) | | IPAdic | 0.9048 (0.9758) | 0.8646 (0.9299) | | NEologd | 0.8975 (0.9750) | 0.8453 (0.9282) | | **Multiple Lexicon** | | | | IPAdic-NEologd | 0.8911 (**0.9767**) | 0.8624 (**0.9366**) | | IPAdic-NEologd-JCL(medium) | 0.8335 (0.9759) | 0.8530 (0.9334) | ### Dictionary annotation as feature on entity level Make sure the `main.py` has following setting: ```python # main.py setting entity_level = True # ... ### result 1 ### # bccwj main(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi main(mainichi_paths, mainichi_glod, entity_level=entity_level) ### result 2 ### # bccwj: use dictionary as feature for CRF crf_tagged_pipeline(bccwj_paths, bccwj_glod, entity_level=entity_level) # mainichi: use dictionary as feature for CRF crf_tagged_pipeline(mainichi_paths, mainichi_glod, entity_level=entity_level) ``` Run the below command: ``` python main.py ``` The entity level result: - `result1` : train the data on the labels that tagged by dictionary - `result2` : add the dictionary tag as feature for CRF, use the true label for training | Single Lexicon | Mainichi F1 (CRF) | Mainichi F1 (CRF) | BCCWJ F1 (CRF) | BCCWJ F1 (CRF) | | -------------------------- | ----------------- | ----------------- | -------------- | -------------- | | | Result1 | Result2 | Result1 | Result2 | | Gold | 0.7826 | | 0.5537 | | | JCL-slim | 0.1326 | 0.7969 | 0.1632 | 0.5892 | | JCL-meidum | 0.1363 | 0.7927 | **0.1672** | 0.5813 | | JCL-full | 0.0268 | **0.8039** | 0.0446 | **0.6205** | | Juman | 0.0742 | 0.7923 | 0.0329 | 0.5661 | | IPAdic | **0.3099** | 0.7924 | 0.1605 | 0.5961 | | NEologd | 0.1107 | 0.7897 | 0.0814 | 0.5718 | | **Multiple Lexicon** | | | | | | IPAdic-NEologd | **0.2456** | 0.7986 | 0.1412 | 0.6187 | | IPAdic-NEologd-JCL(medium) | 0.1967 | **0.8009** | **0.2166** | 0.6132 | From `result1` and `result2`, we can see these dictionary are not suitable for annotating training label, but the dictionary feature do improve the performance in `result2`. ### Dictionary feature for low frequency company names on entity level <!-- Make sure the `main.py` has following setting: ```python # main.py setting entity_level = True # ... ### result 3 ### # bccwj: evaluate on low frequency company names main(bccwj_paths, bccwj_glod, entity_level=entity_level, low_frequency=bccwj_counter) # mainichi: evaluate on low frequency company names main(mainichi_paths, mainichi_glod, entity_level=entity_level, low_frequency=mainichi_counter) ### result 4 ### # bccwj: evaluate on low frequency company names, use dictionary as feature for CRF crf_tagged_pipeline(bccwj_paths, bccwj_glod, entity_level=entity_level, low_frequency=bccwj_counter) # mainichi: evaluate on low frequency company names, use dictionary as feature for CRF crf_tagged_pipeline(mainichi_paths, mainichi_glod, entity_level=entity_level, low_frequency=mainichi_counter) ``` Run the below command: ``` python main.py ``` --> We first divide the result into 3 categories: | Category | Description | Evaluation | | -------- | ------------------------------------------------ | --------------------------------------------- | | Zero | the entity not exist in the training set | Zero-shot, performance on unseen entity | | One | the entity only exists once in the training set | One-shot, performance on low frequency entity | | More | the entity exists many times in the training set | Training on normal data | The dataset statistics: | Dataset | BCCWJ | Mainichi | | ------------------------------------------------------------ | ------------------------------------ | ----------------------------------- | | Company Samples/Sentence | 1364 | 3027 | | Company Entities | 1704 | 4664 | | Unique Company Entities | 897 | 1580 | | Number of Unique Company <br />Entities Exist in Training Set | Zero: 226<br/>One: 472<br/>More: 199 | Zero: 1440<br/>One: 49<br/>More: 91 | The experiment results: | Single Lexicon | BCCWJ<br />F1(CRF) | | | Mainichi<br />F1(CRF) | | | | -------------------------- | ------------------ | ---------- | ---------- | --------------------- | ---------- | ---------- | | | Zero | One | More | Zero | One | More | | Gold | 0.4080 | 0.8211 | 0.9091 | 0.4970 | 0.8284 | 0.9353 | | JCL-slim | 0.4748 | 0.8333 | 0.9091 | 0.5345 | 0.8075 | **0.9509** | | JCL-meidum | 0.4530 | **0.8660** | 0.9091 | 0.5151 | 0.8061 | 0.9503 | | JCL-full | **0.5411** | 0.8333 | 0.8933 | **0.5630** | 0.8467 | 0.9476 | | Juman | 0.4506 | 0.7957 | 0.9032 | 0.5113 | **0.8655** | 0.9431 | | IPAdic | 0.4926 | 0.8421 | **0.9161** | 0.5369 | 0.8633 | 0.9419 | | NEologd | 0.4382 | 0.8454 | 0.9161 | 0.5343 | 0.8456 | 0.9359 | | **Multiple Lexicon** | | | | | | | | IPAdic-NEologd | 0.5276 | **0.8600** | 0.9091 | **0.5556** | **0.8623** | 0.9432 | | IPAdic-NEologd-JCL(medium) | **0.5198** | 0.8421 | 0.8947 | 0.5484 | 0.8487 | **0.9476** | From the result above, we can see JCLdic boost the zero-shot and one-shot performance a lot, especially on the BCCWJ dataset. <!-- ### (Extra) Dictionary feature for low frequency company names on entity level We could further divide these 3 categories to 6 categories: | Category | Description | Evaluation | | -------- | ------------------------------------------------------------ | --------------------------------------------- | | 0-1 | Not shown in training set, but only shown once in test set | Zero-shot, performance on unseen entity | | 0-2 | Not shown in training set, but shown more than 2 times in test set | Zero-shot, performance on unseen entity | | 1-1 | Shown once in training set, and also shown once in test set | One-shot, performance on low frequency entity | | 1-2 | Shown once in training set, and shown more than 2 times in test set | One-shot, performance on low frequency entity | | 2-1 | Shown more than 2 times in training set, but only shown once in test set | Training on normal data | | 2-2 | Shown more than 2 times in training set, and also shown more than 2 times in test set | Training on normal data | | Single Lexicon | BCCWJ<br />F1(CRF) | | | | | | | -------------------------- | ------------------ | ---------- | ---------- | ---------- | ---------- | ------ | | | 0-1 | 0-2 | 1-1 | 1-2 | 2-1 | 2-2 | | Gold | 0.6512 | 0.6880 | 0.9091 | 0.8197 | 0.8387 | 0.9173 | | JCL-slim | 0.6931 | 0.6753 | 0.9032 | 0.8182 | 0.8387 | 0.8714 | | JCL-meidum | 0.6872 | 0.6438 | **0.9091** | **0.8485** | **0.8387** | 0.8905 | | JCL-full | **0.7097** | 0.6842 | 0.8571 | 0.7879 | 0.8276 | 0.8406 | | Juman | 0.6413 | 0.7059 | 0.9032 | 0.8000 | 0.8387 | 0.8611 | | IPAdic | 0.6802 | **0.7081** | 0.9032 | 0.8060 | 0.8387 | 0.8671 | | NEologd | 0.6630 | 0.6621 | **0.9091** | 0.8060 | 0.8387 | 0.8732 | | **Multiple Lexicon** | | | | | | | | IPAdic-NEologd | 0.6957 | **0.6957** | **0.9143** | **0.8308** | 0.8387 | 0.8299 | | IPAdic-NEologd-JCL(medium) | **0.7440** | 0.6914 | 0.8824 | 0.8254 | 0.8387 | 0.8741 | For BCCWJ dataset, after adding dictionary features, JCL-full boosts the f1 from 0.6512 to 0.7097 for 0-1. | Single Lexicon | Mainichi<br />F1(CRF) | | | | | | | -------------------------- | --------------------- | ---------- | ---------- | ---------- | ---------- | ---------- | | | 0-1 | 0-2 | 1-1 | 1-2 | 2-1 | 2-2 | | Gold | 0.4837 | 0.3848 | 0.4921 | 0.5862 | 0.5354 | 0.5881 | | JCL-slim | 0.4831 | **0.4244** | 0.4974 | 0.5702 | 0.5344 | **0.5885** | | JCL-meidum | 0.4784 | 0.4043 | 0.5109 | 0.5780 | **0.5385** | 0.5857 | | JCL-full | 0.4959 | 0.4169 | **0.5204** | 0.5785 | 0.5217 | 0.5845 | | Juman | 0.4978 | 0.3777 | 0.4813 | **0.6111** | 0.5211 | 0.5842 | | IPAdic | 0.4920 | 0.3890 | 0.4923 | 0.5992 | 0.5275 | 0.5760 | | NEologd | **0.5052** | 0.3832 | 0.5000 | 0.5917 | 0.5267 | 0.5805 | | **Multiple Lexicon** | | | | | | | | IPAdic-NEologd | 0.5069 | 0.4000 | 0.5078 | **0.5827** | 0.5191 | 0.5778 | | IPAdic-NEologd-JCL(medium) | **0.5072** | **0.4115** | **0.5078** | 0.5774 | **0.5308** | 0.5799 | For Mainichi dataset, after adding dictionary features, JCL-slim boosts the f1 from 0.3848 to 0.4244 for 0-2, and JCL-full boosts the f1 from 0.4921 to 0.5204. --> ## Citation Please use the following bibtex, when you refer JCLdic from your papers. ``` @INPROCEEDINGS{liang2020jcldic, author = {Xu Liang, Taniguchi Yasufumi and Nakayama Hiroki}, title = {High Coverage Lexicon for Japanese Company Name Recognition}, booktitle = {Proceedings of the Twenty-six Annual Meeting of the Association for Natural Language Processing}, year = {2020}, pages = {NLP2020-B2-3}, publisher = {The Association for Natural Language Processing}, } ```
[ "Information Extraction & Text Mining", "Term Extraction" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/PKSHATechnology-Research/camphr
2020-02-10T03:39:58Z
NLP libary for creating pipeline components
PKSHATechnology-Research / camphr Public Branches Tags Go to file Go to file Code .github docker… docs img packag… scripts typings .devco… .docke… .gitignore .gitmo… .grenrc… .pre-co… CONT… LICEN… READ… pyproj… readth… test_d… test_lo… About Camphr - NLP libary for creating pipeline components camphr.readthedocs.io/en/latest/ # spacy # spacy-extension Readme Apache-2.0 license Activity Custom properties 340 stars 6 watching 17 forks Report repository Releases 21 0.7.0 Latest on Aug 21, 2020 + 20 releases Packages No packages published Contributors 8 Languages Python 99.8% Other 0.2% Code Issues 2 Pull requests 2 Actions Projects Security Insights README Apache-2.0 license docs docs failing failing chat chat on gitter on gitter Check the documentation for more information. Camphr is licensed under Apache 2.0. Camphr - NLP libary for creating pipeline components License
<p align="center"><img src="https://raw.githubusercontent.com/PKSHATechnology-Research/camphr/master/img/logoc.svg?sanitize=true" width="200" /></p> # Camphr - NLP libary for creating pipeline components [![Documentation Status](https://readthedocs.org/projects/camphr/badge/?version=latest)](https://camphr.readthedocs.io/en/latest/?badge=latest) [![Gitter](https://badges.gitter.im/camphr/community.svg)](https://gitter.im/camphr/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![PyPI version](https://badge.fury.io/py/camphr.svg)](https://badge.fury.io/py/camphr) Check the [documentation](https://camphr.readthedocs.io/en/latest/) for more information. # License Camphr is licensed under [Apache 2.0](./LICENSE).
[ "Semantic Text Processing", "Syntactic Text Processing" ]
[]
true
https://github.com/ku-nlp/text-cleaning
2020-02-10T06:25:12Z
A powerful text cleaner for Japanese web texts
ku-nlp / text-cleaning Public Branches Tags Go to file Go to file Code src/text_clea… tests .gitignore LICENSE Makefile README.md poetry.lock pyproject.toml This project cleans dirty Japanese texts, which include a lot of emoji and kaomoji in a whitelist method. About A powerful text cleaner for Japanese web texts # python # cleaner # text-preprocessing Readme MIT license Activity Custom properties 12 stars 1 watching 4 forks Report repository Releases No releases published Packages No packages published Contributors 3 Taka008 Takashi Kodama nobu-g Nobuhiro Ueda dependabot[bot] Languages Python 86.8% Makefile 13.2% Code Issues 2 Pull requests Actions Projects Security Insights text-cleaning: A Japanese powerful text cleaner Description Cleaning Example INPUT: これはサンプルです(≧∇≦*)!見てみて→http://a.bc/defGHIjkl OUTPUT: これはサンプルです!見てみて。 INPUT: 一緒に応援してるよ(o^^o)。ありがとう😃 OUTPUT: 一緒に応援してるよ。ありがとう。 INPUT: いいぞ〜⸜(* ॑꒳ ॑* )⸝⋆* OUTPUT: いいぞ。 INPUT: えっ((((;゚Д゚))))))) OUTPUT: えっ。 INPUT: 確かに「嘘でしょww」って笑ってたね OUTPUT: 確かに「嘘でしょ。」って笑ってたね。 INPUT: おはようございますヽ(*´∀`)ノ。。今日は雨ですね・・・・・(T_T) OUTPUT: おはようございます。今日は雨ですね。 README MIT license Python 3.7+ mojimoji neologdn joblib When input files are located in directories hierarchically you can clean them keeping directory structure by using makefile. If input is compressed files, Makefile detect their format from their suffix and output cleaned files in the same format. Options: FILE_FORMAT=txt: Format of input file (txt or csv or tsv) NUM_JOBS_PER_MACHINE=10: The maximum number of concurrently running jobs per machine TWITTER=1: Perform twitter specific cleaning PYTHON: Path to python interpreter of virtual environment INPUT: (灬º﹃º灬)おいしそうです♡ OUTPUT: おいしそうです。 INPUT: 今日の夜、友達とラーメン行くよ(((o(*゚▽゚*)o))) OUTPUT: 今日の夜、友達とラーメン行くよ。 # When using the twitter option. INPUT: @abcde0123 おっとっとwwそうでした✋!!よろしくお願いします♪‼ #挨拶 OUTPUT: おっとっと。そうでした!よろしくお願いします。 Requirements How to Run Using python script directly cat input.txt | python src/text_cleaning/main.py <options> > output.txt Using makefile make INPUT_DIR=/somewhere/in OUTPUT_DIR=/somewhere/out PYTHON=/somewhere/.venv/bin/python
<p align="center"><img src="https://raw.githubusercontent.com/PKSHATechnology-Research/camphr/master/img/logoc.svg?sanitize=true" width="200" /></p> # Camphr - NLP libary for creating pipeline components [![Documentation Status](https://readthedocs.org/projects/camphr/badge/?version=latest)](https://camphr.readthedocs.io/en/latest/?badge=latest) [![Gitter](https://badges.gitter.im/camphr/community.svg)](https://gitter.im/camphr/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![PyPI version](https://badge.fury.io/py/camphr.svg)](https://badge.fury.io/py/camphr) Check the [documentation](https://camphr.readthedocs.io/en/latest/) for more information. # License Camphr is licensed under [Apache 2.0](./LICENSE).
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/yagays/nayose-wikipedia-ja
2020-03-09T00:17:38Z
Wikipediaから作成した日本語名寄せデータセット
yagays / nayose-wikipedia-ja Public Branches Tags Go to file Go to file Code data .gitignore READ… make_… parse_… test_uti… util.py Wikipediaより作成した日本語の名寄せデータセットです。 Wikipediaを元にした日本語の名寄せデータセットを作成し ました - Sansan Builders Box エンティティ数:1,054,856 メンション数:2,213,547 名前 データ数 エンティティ数 メンション数 train 447,071 632,913 322,583 dev 146,153 210,971 118,776 About Wikipediaから作成した日本語名寄 せデータセット Readme Activity 34 stars 2 watching 0 forks Report repository Releases 1 v1.0 Latest on Mar 10, 2020 Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights nayose-wikipedia-ja 概要 統計 README 名前 データ数 エンティティ数 メンション数 test 149,409 210,972 120,397 [1907 10165v1] Optimal Transport-based Alignment of 参考
# nayose-wikipedia-ja ## 概要 Wikipediaより作成した日本語の名寄せデータセットです。 [Wikipediaを元にした日本語の名寄せデータセットを作成しました \- Sansan Builders Box](https://buildersbox.corp-sansan.com/entry/2020/03/10/110000) ## 統計 - エンティティ数:1,054,856 - メンション数:2,213,547 | 名前 | データ数 | エンティティ数 | メンション数 | | :---- | :------ | :------ | :------ | | `train` | 447,071 | 632,913 | 322,583 | | `dev` | 146,153 | 210,971 | 118,776 | | `test` | 149,409 | 210,972 | 120,397 | ## 参考 - [\[1907\.10165v1\] Optimal Transport\-based Alignment of Learned Character Representations for String Similarity](https://arxiv.org/abs/1907.10165v1)
[ "Information Extraction & Text Mining", "Named Entity Recognition", "Term Extraction" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/verypluming/JapaneseNLI
2020-03-10T13:43:23Z
Google Colabで日本語テキスト推論を試す
verypluming / JapaneseNLI Public Branches Tags Go to file Go to file Code .gitignore Japan… Japan… LICEN… READ… train.tsv Google Colabで日本語テキスト推論を試す 含意関係認識(Recognizing Textual Entailment, RTE) または自然言語推論・テキスト推論(Natural Language Inference)は、以下の例のように、ある前提文に対して 仮説文が推論できるか否かを判定する自然言語処理のタ スクです。 About Google Colabで日本語テキスト推 論を試す Readme Apache-2.0 license Activity 6 stars 2 watching 1 fork Report repository Releases No releases published Packages No packages published Languages Jupyter Notebook 100.0% Code Issues 1 Pull requests Actions Projects Security Insights JapaneseNLI 概要 前提文: 太郎は花子が山頂まで登っている間に、 山頂まで登った。 仮説文: 太郎は花子が山頂まで登る前に、山頂ま で登った。 正解ラベル: 含意 (entailment) 前提文: 太郎は花子が山頂まで登る前に、山頂ま で登った。 仮説文: 太郎は花子が山頂まで登っている間に、 山頂まで登った。 正解ラベル: 非含意 (neutral) README Apache-2.0 license JapaneseBERT_NLI.ipynb: Transformersライブラリの BERTとGoogle Colabを用いて日本語テキスト推論を試 せるコードです。 JapaneseXLM_NLI.ipynb: Transformersライブラリの XLMとGoogle Colabを用いて日本語テキスト推論を試 せるコードです。 ファインチューニング用の学習データがある場合は、一 行目はタブ区切りでpremise, hypothesis, gold_labelと記 述し、二行目以降にタブ区切りで前提文、仮説文、正解 ラベル(entailment, contradiction, neutralの3値)が書かれ たtrain.tsvファイルを用意して、Google Driveにアップ ロードしてください。 train.tsvのサンプル Hitomi Yanaka [email protected] Apache License 前提文: 太郎は花子が山頂まで登る前に、山頂ま で登った。 仮説文: 太郎は花子が山頂まで登った後に、山頂 まで登った。 正解ラベル: 矛盾 (contradiction) 学習データの用意 Contact License
# JapaneseNLI Google Colabで日本語テキスト推論を試す ## 概要 含意関係認識(Recognizing Textual Entailment, RTE)または自然言語推論・テキスト推論(Natural Language Inference)は、以下の例のように、ある前提文に対して仮説文が推論できるか否かを判定する自然言語処理のタスクです。 ``` 前提文: 太郎は花子が山頂まで登っている間に、山頂まで登った。 仮説文: 太郎は花子が山頂まで登る前に、山頂まで登った。 正解ラベル: 含意 (entailment) 前提文: 太郎は花子が山頂まで登る前に、山頂まで登った。 仮説文: 太郎は花子が山頂まで登っている間に、山頂まで登った。 正解ラベル: 非含意 (neutral) 前提文: 太郎は花子が山頂まで登る前に、山頂まで登った。 仮説文: 太郎は花子が山頂まで登った後に、山頂まで登った。 正解ラベル: 矛盾 (contradiction) ``` [JapaneseBERT_NLI.ipynb](https://github.com/verypluming/JapaneseNLI/blob/master/JapaneseBERT_NLI.ipynb): [Transformers](https://github.com/huggingface/transformers)ライブラリのBERTとGoogle Colabを用いて日本語テキスト推論を試せるコードです。 [JapaneseXLM_NLI.ipynb](https://github.com/verypluming/JapaneseNLI/blob/master/JapaneseXLM_NLI.ipynb): [Transformers](https://github.com/huggingface/transformers)ライブラリのXLMとGoogle Colabを用いて日本語テキスト推論を試せるコードです。 ## 学習データの用意 ファインチューニング用の学習データがある場合は、一行目はタブ区切りでpremise, hypothesis, gold_labelと記述し、二行目以降にタブ区切りで前提文、仮説文、正解ラベル(entailment, contradiction, neutralの3値)が書かれたtrain.tsvファイルを用意して、[Google Drive](https://www.google.co.jp/drive/apps.html)にアップロードしてください。 [train.tsvのサンプル](https://github.com/verypluming/JapaneseNLI/blob/master/train.tsv) ## Contact Hitomi Yanaka [email protected] ## License Apache License
[ "Reasoning", "Semantic Text Processing", "Textual Inference" ]
[]
true
https://github.com/Tzawa/google-vs-deepl-je
2020-03-22T10:45:10Z
google-vs-deepl-je
Tzawa / google-vs-deepl-je Public Branches Tags Go to file Go to file Code Pipfile READ… devtest… devtest… devtest… devtest… devtest… devtest… eval.py jparacr… jparacr… jparacr… jparacr… jparacr… jparacr… About No description, website, or topics provided. Readme Activity 4 stars 1 watching 1 fork Report repository Releases No releases published Packages No packages published Contributors 2 Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights google-vs-deepl-je pipenv install pipenv run python eval.py devtest.en-ja.google devtest.ja -l ja pipenv run python eval.py devtest.en-ja.deepl devtest.ja -l ja README Ja -> En (as of March 22, 2020) DATA Google DeepL ASPEC (devtest) 24.030 20.431 JParaCrawl 25.819 26.833 En -> Ja (as of March 22, 2020) DATA Google DeepL ASPEC (devtest) 28.554 36.244 JParaCrawl 25.554 27.048 pipenv run python eval.py devtest.ja-en.google devtest.en -l en pipenv run python eval.py devtest.ja-en.deepl devtest.en -l en
# google-vs-deepl-je ```sh pipenv install pipenv run python eval.py devtest.en-ja.google devtest.ja -l ja pipenv run python eval.py devtest.en-ja.deepl devtest.ja -l ja pipenv run python eval.py devtest.ja-en.google devtest.en -l en pipenv run python eval.py devtest.ja-en.deepl devtest.en -l en ``` Ja -> En (as of March 22, 2020) |DATA|Google|DeepL| | ------------- | ------------- | ------------- | |ASPEC (devtest)|**24.030**|20.431| |JParaCrawl|25.819|**26.833**| En -> Ja (as of March 22, 2020) |DATA|Google|DeepL| | ------------- | ------------- | ------------- | |ASPEC (devtest)|28.554|**36.244**| |JParaCrawl|25.554|**27.048**|
[ "Machine Translation", "Multilinguality", "Text Generation" ]
[]
true
https://github.com/polm/unidic-lite
2020-04-07T07:24:00Z
A small version of UniDic for easy pip installs.
polm / unidic-lite Public Branches Tags Go to file Go to file Code unidic_… .gitignore LICEN… LICEN… READ… setup.py This is a version of unidic-py that is designed to be installable with pip alone, not requiring any extra downloads. At the moment it uses Unidic 2.1.2, from 2013, which is the most recent release of UniDic that's small enough to be distributed via PyPI. Note this package takes roughly 250MB on disk after being installed. In order to use this you will need to install a MeCab wrapper such as mecab-python3 or fugashi. About A small version of UniDic for easy pip installs. # nlp # japanese # unidic Readme MIT, BSD-3-Clause licenses found Activity 38 stars 3 watching 3 forks Report repository Releases 1 tags Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Unidic Lite README MIT license BSD-3-Clause license This has a few changes from the official UniDic release to make it easier to use. entries for 令和 have been added single-character numeric and alphabetic words have been deleted unk.def has been modified so unknown punctuation won't be marked as a noun This code is licensed under the MIT or WTFPL license as Differences from the Official UniDic Release License
[![Current PyPI packages](https://badge.fury.io/py/unidic-lite.svg)](https://pypi.org/project/unidic-lite/) # Unidic Lite This is a version of [unidic-py](https://github.com/polm/unidic-py) that is designed to be installable with pip alone, not requiring any extra downloads. At the moment it uses Unidic 2.1.2, from 2013, which is the most recent release of UniDic that's small enough to be distributed via PyPI. **Note this package takes roughly 250MB on disk after being installed.** In order to use this you will need to install a MeCab wrapper such as [mecab-python3](https://github.com/SamuraiT/mecab-python3) or [fugashi](https://github.com/polm/fugashi). ## Differences from the Official UniDic Release This has a few changes from the official UniDic release to make it easier to use. - entries for 令和 have been added - single-character numeric and alphabetic words have been deleted - `unk.def` has been modified so unknown punctuation won't be marked as a noun ## License This code is licensed under the MIT or WTFPL license, as you prefer. Unidic 2.1.2 is copyright the UniDic Consortium and distributed under the terms of the [BSD license](./LICENSE.unidic).
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/polm/cutlet
2020-04-16T14:00:34Z
Japanese to romaji converter in Python
polm / cutlet Public 4 Branches 37 Tags Go to file Go to file Code polm Add to gitignore 9574fad · 5 months ago .github Remove 3.7, … 7 months ago cutlet Add flag for to… 7 months ago docs Update Strea… 10 months ago .gitignore Add to gitignore 5 months ago LICEN… Add MIT Lice… 4 years ago MANIF… Fix inclusion … 4 years ago READ… Update Strea… 10 months ago cutlet.p… Initial commit 4 years ago pyproj… Add setuptool… 4 years ago pytest.ini Initial commit 4 years ago require… Add requirem… last year setup.py Bump minimu… 7 months ago About Japanese to romaji converter in Python polm.github.io/cutlet/ # nlp # japanese # romaji Readme MIT license Activity 305 stars 7 watching 21 forks Report repository Releases 4 v0.3.0: Token-aligned ro… Latest on Oct 11, 2023 + 3 releases Sponsor this project polm Paul O'Leary McCann Learn more about GitHub Sponsors Contributors 7 Code Issues 6 Pull requests 2 Discussions Actions Projects Secur cutlet Sponsor README MIT license Cutlet is a tool to convert Japanese to romaji. Check out the interactive demo! Also see the docs and the original blog post. issueを英語で書く必要はありません。 Features: support for Modified Hepburn, Kunreisiki, Nihonsiki systems custom overrides for individual mappings custom overrides for specific words built in exceptions list (Tokyo, Osaka, etc.) uses foreign spelling when available in UniDic proper nouns are capitalized slug mode for url generation Things not supported: traditional Hepburn n-to-m: Shimbashi macrons or circumflexes: Tōkyō, Tôkyô passport Hepburn: Satoh (but you can use an exception) hyphenating words Traditional Hepburn in general is not supported Internally, cutlet uses fugashi, so you can use the same dictionary you use for normal tokenization. Cutlet can be installed through pip as usual. Note that if you don't have a MeCab dictionary installed you'll also have to install one. If you're just getting started unidic-lite is a good choice. A command-line script is included for quick testing. Just use cutlet and each line of stdin will be treated as a sentence. You can specify the system to use ( hepburn , kunrei , nippon , or nihon ) as the first argument. Languages Python 100.0% Installation pip install cutlet pip install unidic-lite Usage In code: kakasi: Historically important, but not updated since 2014. pykakasi: self contained, it does segmentation on its own and uses its own dictionary. kuroshiro: Javascript based. kana: Go based. $ cutlet ローマ字変換プログラム作ってみた。 Roma ji henkan program tsukutte mita. import cutlet katsu = cutlet.Cutlet() katsu.romaji("カツカレーは美味しい") # => 'Cutlet curry wa oishii' # you can print a slug suitable for urls katsu.slug("カツカレーは美味しい") # => 'cutlet-curry-wa-oishii' # You can disable using foreign spelling too katsu.use_foreign_spelling = False katsu.romaji("カツカレーは美味しい") # => 'Katsu karee wa oishii' # kunreisiki, nihonsiki work too katu = cutlet.Cutlet('kunrei') katu.romaji("富士山") # => 'Huzi yama' # comparison nkatu = cutlet.Cutlet('nihon') sent = "彼女は王への手紙を読み上げた。" katsu.romaji(sent) # => 'Kanojo wa ou e no tegami wo yomiageta.' katu.romaji(sent) # => 'Kanozyo wa ou e no tegami o yomiageta.' nkatu.romaji(sent) # => 'Kanozyo ha ou he no tegami wo yomiageta.' Alternatives
[![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://polm-cutlet-demo-demo-0tur8v.streamlit.app/) [![Current PyPI packages](https://badge.fury.io/py/cutlet.svg)](https://pypi.org/project/cutlet/) # cutlet <img src="https://github.com/polm/cutlet/raw/master/cutlet.png" width=125 height=125 alt="cutlet by Irasutoya" /> Cutlet is a tool to convert Japanese to romaji. Check out the [interactive demo][demo]! Also see the [docs](https://polm.github.io/cutlet/cutlet.html) and the [original blog post](https://www.dampfkraft.com/nlp/cutlet-python-romaji-converter.html). [demo]: https://polm-cutlet-demo-demo-0tur8v.streamlit.app/ **issueを英語で書く必要はありません。** Features: - support for [Modified Hepburn](https://en.wikipedia.org/wiki/Hepburn_romanization), [Kunreisiki](https://en.wikipedia.org/wiki/Kunrei-shiki_romanization), [Nihonsiki](https://en.wikipedia.org/wiki/Nihon-shiki_romanization) systems - custom overrides for individual mappings - custom overrides for specific words - built in exceptions list (Tokyo, Osaka, etc.) - uses foreign spelling when available in UniDic - proper nouns are capitalized - slug mode for url generation Things not supported: - traditional Hepburn n-to-m: Shimbashi - macrons or circumflexes: Tōkyō, Tôkyô - passport Hepburn: Satoh (but you can use an exception) - hyphenating words - Traditional Hepburn in general is not supported Internally, cutlet uses [fugashi](https://github.com/polm/fugashi), so you can use the same dictionary you use for normal tokenization. ## Installation Cutlet can be installed through pip as usual. pip install cutlet Note that if you don't have a MeCab dictionary installed you'll also have to install one. If you're just getting started [unidic-lite](https://github.com/polm/unidic-lite) is a good choice. pip install unidic-lite ## Usage A command-line script is included for quick testing. Just use `cutlet` and each line of stdin will be treated as a sentence. You can specify the system to use (`hepburn`, `kunrei`, `nippon`, or `nihon`) as the first argument. $ cutlet ローマ字変換プログラム作ってみた。 Roma ji henkan program tsukutte mita. In code: ```python import cutlet katsu = cutlet.Cutlet() katsu.romaji("カツカレーは美味しい") # => 'Cutlet curry wa oishii' # you can print a slug suitable for urls katsu.slug("カツカレーは美味しい") # => 'cutlet-curry-wa-oishii' # You can disable using foreign spelling too katsu.use_foreign_spelling = False katsu.romaji("カツカレーは美味しい") # => 'Katsu karee wa oishii' # kunreisiki, nihonsiki work too katu = cutlet.Cutlet('kunrei') katu.romaji("富士山") # => 'Huzi yama' # comparison nkatu = cutlet.Cutlet('nihon') sent = "彼女は王への手紙を読み上げた。" katsu.romaji(sent) # => 'Kanojo wa ou e no tegami wo yomiageta.' katu.romaji(sent) # => 'Kanozyo wa ou e no tegami o yomiageta.' nkatu.romaji(sent) # => 'Kanozyo ha ou he no tegami wo yomiageta.' ``` ## Alternatives - [kakasi](http://kakasi.namazu.org/index.html.ja): Historically important, but not updated since 2014. - [pykakasi](https://github.com/miurahr/pykakasi): self contained, it does segmentation on its own and uses its own dictionary. - [kuroshiro](https://github.com/hexenq/kuroshiro): Javascript based. - [kana](https://github.com/gojp/kana): Go based.
[ "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/sociocom/DNorm-J
2020-05-07T04:47:42Z
Japanese version of DNorm
sociocom / DNorm-J Public 5 Branches 0 Tags Go to file Go to file Code shuntaroy add simple test 265ba7c · 2 years ago dnorm_j add simple test 2 years ago docs fix 4 years ago tests add simple test 2 years ago .gitignore add python b… 4 years ago LICEN… fix 4 years ago MANIF… fix 4 years ago Makefile fix 4 years ago READ… add simple test 2 years ago accura… Add files via u… 3 years ago require… Bump numpy … 2 years ago setup.py add simple test 2 years ago 日本語の病名を正規化するツールです DNormの日本語実装になります. Tf-idf ベースのランキング手法により病名を正規化しま す。 About Japanese version of DNorm Readme BSD-2-Clause license Activity Custom properties 9 stars 2 watching 2 forks Report repository Releases No releases published Packages No packages published Contributors 3 ujiuji1259 shuntaroy Shuntaro Yada shokowakamiya Languages Python 99.4% Makefile 0.6% Code Issues 1 Pull requests Actions Projects Security Insights DNorm-J 概要 手法 README BSD-2-Clause license 詳細はリンク先の論文をご参照ください. python >= 3.6.1 MeCab >= 0.996.5 IPA 辞書 ターミナルなどの端末アプリでコマンドラインアプリケ ーションとして使えるほか,Python スクリプト内でラ イブラリとして導入することが可能です. いずれの使い方でも,初回に学習済みモデルファイルを ローカル($HOME/.cache/Dnorm )にダウンロードしま す. そのため,初回起動には時間がかかります. -i:入力ファイル -o:出力ファイル -n:正規化先の病名リスト(デフォルト設定では指 定する必要はありません) -d:略語展開辞書(デフォルト設定では指定する必 要はありません) python -m dnorm_j -i sample.txt -o output.txt 環境 インストール pip install git+https://github.com/sociocom/DNorm- J.git 使い方 コマンドラインからの利用 入力(sample.txt) 腸閉塞症状 高Ca尿症 二次性副腎不全 出力(output.txt) イレウス 高カルシウム尿症 氏家翔吾(奈良先端科学技術大学院大学) 副腎クリーゼ ライブラリとしての利用 from dnorm_j import DNorm model = DNorm.from_pretrained() result = model.normalize('AML') print(result) # => '急性骨髄性白血病' 性能 コントリビュータ
# DNorm-J ## 概要 日本語の病名を正規化するツールです ## 手法 [DNorm](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810844/)の日本語実装になります. Tf-idf ベースのランキング手法により病名を正規化します。 詳細はリンク先の論文をご参照ください. ## 環境 - python >= 3.6.1 - MeCab >= 0.996.5 - IPA 辞書 ## インストール ``` pip install git+https://github.com/sociocom/DNorm-J.git ``` ## 使い方 ターミナルなどの端末アプリでコマンドラインアプリケーションとして使えるほか,Python スクリプト内でライブラリとして導入することが可能です. いずれの使い方でも,初回に学習済みモデルファイルをローカル(`$HOME/.cache/Dnorm`)にダウンロードします. そのため,初回起動には時間がかかります. ### コマンドラインからの利用 - -i:入力ファイル - -o:出力ファイル - -n:正規化先の病名リスト(デフォルト設定では指定する必要はありません) - -d:略語展開辞書(デフォルト設定では指定する必要はありません) `python -m dnorm_j -i sample.txt -o output.txt` #### 入力(sample.txt) ``` 腸閉塞症状 高Ca尿症 二次性副腎不全 ``` #### 出力(output.txt) ``` イレウス 高カルシウム尿症 副腎クリーゼ ``` ### ライブラリとしての利用 ```python from dnorm_j import DNorm model = DNorm.from_pretrained() result = model.normalize('AML') print(result) # => '急性骨髄性白血病' ``` ## 性能 ![image](accuracy.png) ## コントリビュータ - 氏家翔吾(奈良先端科学技術大学院大学)
[ "Syntactic Text Processing", "Term Extraction", "Text Normalization" ]
[]
true
https://github.com/megagonlabs/UD_Japanese-GSD
2020-05-16T00:37:31Z
Japanese data from the Google UDT 2.0.
megagonlabs / UD_Japanese-GSD Public forked from UniversalDependencies/UD_Japanese-GSD Branches Tags Go to file Go to file Code spacy stanza .gitignore CITATION CONTRIBUTING.md LICENSE.txt README.md ene_mapping.xlsx eval.log ja_gsd-ud-dev.conllu ja_gsd-ud-test.conllu ja_gsd-ud-train.conllu leader_board.md stats.xml This Universal Dependencies (UD) Japanese treebank is based on the definition of UD Japanese convention described in the UD documentation. The original sentences are from Google UDT 2.0. In addition, the Megagon Labs Tokyo added the files named *.ne.conllu which contain the BILUO style Named Entity gold labels in misc field. Below files are converted from *.ne.conllu for the NLP frameworks. ja_gsd-ud-(train|dev|test).ne.json : https://spacy.io/api/cli#train (train|dev|test).ne.bio : https://github.com/stanfordnlp/stanza#training-your-own-neural-pipelines The Japanese UD treebank contains the sentences from Google Universal Dependency Treebanks v2.0 (legacy): https://github.com/ryanmcd/uni-dep-tb. First, Google UDT v2.0 was converted to UD-style with bunsetsu-based word units (say "master" corpus). About Japanese data from the Google UDT 2.0. Readme View license Activity Custom properties 28 stars 1 watching 2 forks Report repository Releases 6 UD Japanese GSD r2.10 … Latest on May 29, 2022 + 5 releases Packages No packages published Languages Python 100.0% Code Pull requests Actions Projects Security Insights Summary Introduction README License The word units in "master" is significantly different from the definition of the documents based on Short Unit Word (SUW) [1], then the sentences are automatically re-processed by Hiroshi Kanayama in Feb 2017. It is the Japanese_UD v2.0 and used in the CoNLL 2017 shared task. In November 2017, UD_Japanese v2.0 is merged with the "master" data so that the manual annotations for dependencies can be reflected to the corpus. It reduced the errors in the dependency structures and relation labels. Still there are slight differences in the word unit between UD_Japanese v2.1 and UD_Japanese-KTC 1.3. In May 2020, we introduce UD_Japanese BCCWJ[3] like coversion method for UD_Japanese GSD v2.6. The data is tokenized manually in a three layered tokenization of Short Unit Word (SUW)[4], Long Unit Word (LUW)[5], and base- phrase (bunsetsu)[5] as the `Balanced Corpus of Contemporary Written Japanese'[6]. The original morporlogical labels are based on UniDic POS tagset [7] We use the slightly changed version of SUW as the UD word tokenization, in which the cardinal numbers are concatenated as in one word. The (base-)phrase level dependency structures are annotated manually with the gudeline of BCCWJ-DepPara[8]. The phrase level dependency structures are converted into the word level dependency structures by the head rule of the dependency analyser CaboCha[9]. LEMMA is the base form of conjugated words -- verbs, adjectives, and auxiliary verbs by the UniDic schema [7]. XPOS is the part-of-speech label for Short Unit Word (SUW) based on UniDic POS tagset [7]. SpaceAfter: manually annotated to discriminate alphanumeric word tokens BunsetuPositionType: heads in a bunsetu by the head rules [9]; SEM_HEAD: the head content word SYN_HEAD: the head functional word CONT: the non-head content word FUNC: the non-head functional word LUWPOS: the part-of-speech label for Long Unit Word (LUW) based on UniDic POS tagset [7]. LUWBILabel: Long Unit Word (LUW) boundary labels [5] B: Beginning of LUW I: Inside of LUW UniDicInfo: lemma information based on UniDic [7]. The UniDic lemma normalise not only conjugation forms but also orthographical variants. 1 lForm: lexeme reading (語彙素読み) 2 lemma: lexeme (語彙素) 3 orth: Infinitive Form and Surface Form (書字形出現形) 4 pron: Surface Pronunciation (発音形出現形) 5 orthBase: Infinitive Form (書字形基本形) 6 pronBase: Surface Pronunciation(発音形基本形) Specification Overview LEMMA field XPOS field MISC field 7 form: Word Form (語形) 8 formBase: Word Form (語形基本形) The original treebank was provided by: Adam LaMontagne Milan Souček Timo Järvinen Alessandra Radici via Dan Zeman. The corpus was converted by: Mai Omura Yusuke Miyao Hiroshi Kanayama Hiroshi Matsuda through annotation, discussion and validation with Aya Wakasa Kayo Yamashita Masayuki Asahara Takaaki Tanaka Yugo Murawaki Yuji Matsumoto Kaoru Ito Taishi Chika Shinsuke Mori Sumire Uematsu See file LICENSE.txt [1] Tanaka, T., Miyao, Y., Asahara, M., Uematsu, S., Kanayama, H., Mori, S., & Matsumoto, Y. (2016). Universal Dependencies for Japanese. In LREC. [2] Asahara, M., Kanayama, H., Tanaka, T., Miyao, Y., Uematsu, S., Mori, S., Matsumoto, Y., Omura, M, & Murawaki, Y. (2018). Universal Dependencies Version 2 for Japanese. In LREC. [3] Omura, M., & Asahara, M. (2020). UD-Japanese BCCWJ: Universal Dependencies Annotation for the Balanced Corpus of Contemporary Written Japanese. In UDW 2018. [4] 小椋 秀樹, 小磯 花絵, 冨士池優美, 宮内 佐夜香, 小西 光, 原 裕 (2011). 『現代日本語書き言葉均衡コーパス』形態論情報規程集 第4版 (下),(LR-CCG-10-05-02), 国立国語研究所, Tokyo, Japan. [5] 小椋 秀樹, 小磯 花絵, 冨士池優美, 宮内 佐夜香, 小西 光, 原 裕 (2011). 『現代日本語書き言葉均衡コーパス』形態論情報規程集 第4版 (上),(LR-CCG-10-05-01), 国立国語研究所, Tokyo, Japan. Acknowledgments License Reference [6] Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., Koiso, H., Yamaguchi, M., Tanaka, M., & Den, Y. (2014). Balanced Corpus of Contemporary Written Japanese. Language Resources and Evaluation, 48(2):345-371. [7] Den, Y., Nakamura, J., Ogiso, T., Ogura, H., (2008). A Proper Approach to Japanese Morphologican Analysis: Dictionary, Model, and Evaluation. In LREC 2008. pp.1019-1024. [8] Asahara, M., & Matsumoto, Y. (2016). BCCWJ-DepPara: A Syntactic Annotation Treebank on the `Balanced Corpus of Contemporary Written Japanese'. In ALR-12. [9] Kudo, T. & Matsumoto, Y. (2002). Japanese Dependency Analysis using Cascaded Chunking, In CoNLL 2002. pp.63-69. [10] 松田 寛, 若狭 絢, 山下 華代, 大村 舞, 浅原 正幸 (2020). UD Japanese GSD の再整備と固有表現情報付与, 言語処理学会第26 回年次大会発表論文集 2020-05- v2.6 Update for v2.6. Introduce the conversion method of UD-Japanese BCCWJ [3] Add the files containing the NE gold labels 2019-11-15 v2.5 Google gave permission to drop the "NC" restriction from the license. This applies to the UD annotations (not the underlying content, of which Google claims no ownership or copyright). 2018-11- v2.3 Updates for v2.3. Errors in morphologies are fixed, and unknown words and dep labels are reduced. XPOS is added. 2017-11- v2.1 Updates for v2.1. Several errors are removed by adding PoS/label rules and merging the manual dependency annotations in the original bunsetu-style annotations in Google UDT 2.0. 2017-03-01 v2.0 Converted to UD v2 guidelines. 2016-11-15 v1.4 Initial release in Universal Dependencies. Changelog =================================== Universal Dependency Treebanks v2.0 (legacy information) =================================== ========================= Licenses and terms-of-use ========================= For the following languages German, Spanish, French, Indonesian, Italian, Japanese, Korean and Brazilian Portuguese we will distinguish between two portions of the data. 1. The underlying text for sentences that were annotated. This data Google asserts no ownership over and no copyright over. Some or all of these sentences may be copyrighted in some jurisdictions. Where copyrighted, Google collected these sentences under exceptions to copyright or implied license rights. GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. 2. The annotations -- part-of-speech tags and dependency annotations. These are made available under a CC BY-SA 4.0. GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. See attached LICENSE file for the text of CC BY-NC-SA. Portions of the German data were sampled from the CoNLL 2006 Tiger Treebank data. Hans Uszkoreit graciously gave permission to use the underlying sentences in this data as part of this release. Any use of the data should reference the above plus: Universal Dependency Annotation for Multilingual Parsing Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee Proceedings of ACL 2013 ======= Contact ======= [email protected] [email protected] [email protected] See https://github.com/ryanmcd/uni-dep-tb for more details === Machine-readable metadata ================================================= Data available since: UD v1.4 License: CC BY-SA 4.0 Includes text: yes Genre: news blog Lemmas: converted from manual UPOS: converted from manual XPOS: manual native Features: not available Relations: converted from manual Contributors: Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel Contributing: here Contact: [email protected]
# Summary This Universal Dependencies (UD) Japanese treebank is based on the definition of UD Japanese convention described in the UD documentation. The original sentences are from Google UDT 2.0. In addition, the Megagon Labs Tokyo added the files named `*.ne.conllu` which contain the BILUO style Named Entity gold labels in misc field. Below files are converted from `*.ne.conllu` for the NLP frameworks. - `ja_gsd-ud-(train|dev|test).ne.json`: https://spacy.io/api/cli#train - `(train|dev|test).ne.bio`: https://github.com/stanfordnlp/stanza#training-your-own-neural-pipelines # Introduction The Japanese UD treebank contains the sentences from Google Universal Dependency Treebanks v2.0 (legacy): https://github.com/ryanmcd/uni-dep-tb. First, Google UDT v2.0 was converted to UD-style with bunsetsu-based word units (say "master" corpus). The word units in "master" is significantly different from the definition of the documents based on **Short Unit Word** (SUW) [1], then the sentences are automatically re-processed by Hiroshi Kanayama in Feb 2017. It is the Japanese_UD v2.0 and used in the CoNLL 2017 shared task. In November 2017, UD_Japanese v2.0 is merged with the "master" data so that the manual annotations for dependencies can be reflected to the corpus. It reduced the errors in the dependency structures and relation labels. Still there are slight differences in the word unit between UD_Japanese v2.1 and UD_Japanese-KTC 1.3. In May 2020, we introduce UD_Japanese BCCWJ[3] like coversion method for UD_Japanese GSD v2.6. # Specification ## Overview The data is tokenized manually in a three layered tokenization of Short Unit Word (SUW)[4], Long Unit Word (LUW)[5], and base-phrase (bunsetsu)[5] as the `Balanced Corpus of Contemporary Written Japanese'[6]. The original morporlogical labels are based on UniDic POS tagset [7] We use the slightly changed version of SUW as the UD word tokenization, in which the cardinal numbers are concatenated as in one word. The (base-)phrase level dependency structures are annotated manually with the gudeline of BCCWJ-DepPara[8]. The phrase level dependency structures are converted into the word level dependency structures by the head rule of the dependency analyser CaboCha[9]. ## LEMMA field LEMMA is the base form of conjugated words -- verbs, adjectives, and auxiliary verbs by the UniDic schema [7]. ## XPOS field XPOS is the part-of-speech label for Short Unit Word (SUW) based on UniDic POS tagset [7]. ## MISC field - SpaceAfter: manually annotated to discriminate alphanumeric word tokens - BunsetuPositionType: heads in a bunsetu by the head rules [9]; - SEM_HEAD: the head content word - SYN_HEAD: the head functional word - CONT: the non-head content word - FUNC: the non-head functional word - LUWPOS: the part-of-speech label for Long Unit Word (LUW) based on UniDic POS tagset [7]. - LUWBILabel: Long Unit Word (LUW) boundary labels [5] - B: Beginning of LUW - I: Inside of LUW - UniDicInfo: lemma information based on UniDic [7]. The UniDic lemma normalise not only conjugation forms but also orthographical variants. - 1 lForm: lexeme reading (語彙素読み) - 2 lemma: lexeme (語彙素) - 3 orth: Infinitive Form and Surface Form (書字形出現形) - 4 pron: Surface Pronunciation (発音形出現形) - 5 orthBase: Infinitive Form (書字形基本形) - 6 pronBase: Surface Pronunciation(発音形基本形) - 7 form: Word Form (語形) - 8 formBase: Word Form (語形基本形) # Acknowledgments The original treebank was provided by: - Adam LaMontagne - Milan Souček - Timo Järvinen - Alessandra Radici via - Dan Zeman. The corpus was converted by: - Mai Omura - Yusuke Miyao - Hiroshi Kanayama - Hiroshi Matsuda through annotation, discussion and validation with - Aya Wakasa - Kayo Yamashita - Masayuki Asahara - Takaaki Tanaka - Yugo Murawaki - Yuji Matsumoto - Kaoru Ito - Taishi Chika - Shinsuke Mori - Sumire Uematsu # License See file LICENSE.txt # Reference [1] Tanaka, T., Miyao, Y., Asahara, M., Uematsu, S., Kanayama, H., Mori, S., & Matsumoto, Y. (2016). Universal Dependencies for Japanese. In LREC. [2] Asahara, M., Kanayama, H., Tanaka, T., Miyao, Y., Uematsu, S., Mori, S., Matsumoto, Y., Omura, M, & Murawaki, Y. (2018). Universal Dependencies Version 2 for Japanese. In LREC. [3] Omura, M., & Asahara, M. (2020). UD-Japanese BCCWJ: Universal Dependencies Annotation for the Balanced Corpus of Contemporary Written Japanese. In UDW 2018. [4] 小椋 秀樹, 小磯 花絵, 冨士池優美, 宮内 佐夜香, 小西 光, 原 裕 (2011). 『現代日本語書き言葉均衡コーパス』形態論情報規程集 第4版 (下),(LR-CCG-10-05-02), 国立国語研究所, Tokyo, Japan. [5] 小椋 秀樹, 小磯 花絵, 冨士池優美, 宮内 佐夜香, 小西 光, 原 裕 (2011). 『現代日本語書き言葉均衡コーパス』形態論情報規程集 第4版 (上),(LR-CCG-10-05-01), 国立国語研究所, Tokyo, Japan. [6] Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., Koiso, H., Yamaguchi, M., Tanaka, M., & Den, Y. (2014). Balanced Corpus of Contemporary Written Japanese. Language Resources and Evaluation, 48(2):345-371. [7] Den, Y., Nakamura, J., Ogiso, T., Ogura, H., (2008). A Proper Approach to Japanese Morphologican Analysis: Dictionary, Model, and Evaluation. In LREC 2008. pp.1019-1024. [8] Asahara, M., & Matsumoto, Y. (2016). BCCWJ-DepPara: A Syntactic Annotation Treebank on the `Balanced Corpus of Contemporary Written Japanese'. In ALR-12. [9] Kudo, T. & Matsumoto, Y. (2002). Japanese Dependency Analysis using Cascaded Chunking, In CoNLL 2002. pp.63-69. [10] 松田 寛, 若狭 絢, 山下 華代, 大村 舞, 浅原 正幸 (2020). UD Japanese GSD の再整備と固有表現情報付与, 言語処理学会第26回年次大会発表論文集 # Changelog * 2020-05- v2.6 * Update for v2.6. Introduce the conversion method of UD-Japanese BCCWJ [3] * Add the files containing the NE gold labels * 2019-11-15 v2.5 * Google gave permission to drop the "NC" restriction from the license. This applies to the UD annotations (not the underlying content, of which Google claims no ownership or copyright). * 2018-11- v2.3 * Updates for v2.3. Errors in morphologies are fixed, and unknown words and dep labels are reduced. XPOS is added. * 2017-11- v2.1 * Updates for v2.1. Several errors are removed by adding PoS/label rules and merging the manual dependency annotations in the original bunsetu-style annotations in Google UDT 2.0. * 2017-03-01 v2.0 * Converted to UD v2 guidelines. * 2016-11-15 v1.4 * Initial release in Universal Dependencies. ``` =================================== Universal Dependency Treebanks v2.0 (legacy information) =================================== ========================= Licenses and terms-of-use ========================= For the following languages German, Spanish, French, Indonesian, Italian, Japanese, Korean and Brazilian Portuguese we will distinguish between two portions of the data. 1. The underlying text for sentences that were annotated. This data Google asserts no ownership over and no copyright over. Some or all of these sentences may be copyrighted in some jurisdictions. Where copyrighted, Google collected these sentences under exceptions to copyright or implied license rights. GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. 2. The annotations -- part-of-speech tags and dependency annotations. These are made available under a CC BY-SA 4.0. GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. See attached LICENSE file for the text of CC BY-NC-SA. Portions of the German data were sampled from the CoNLL 2006 Tiger Treebank data. Hans Uszkoreit graciously gave permission to use the underlying sentences in this data as part of this release. Any use of the data should reference the above plus: Universal Dependency Annotation for Multilingual Parsing Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee Proceedings of ACL 2013 ======= Contact ======= [email protected] [email protected] [email protected] See https://github.com/ryanmcd/uni-dep-tb for more details ``` === Machine-readable metadata ================================================= Data available since: UD v1.4 License: CC BY-SA 4.0 Includes text: yes Genre: news blog Lemmas: converted from manual UPOS: converted from manual XPOS: manual native Features: not available Relations: converted from manual Contributors: Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel Contributing: here Contact: [email protected] =============================================================================== (Original treebank contributors: LaMontagne, Adam; Souček, Milan; Järvinen, Timo; Radici, Alessandra)
[ "Cross-Lingual Transfer", "Multilinguality", "Syntactic Parsing", "Syntactic Text Processing" ]
[]
true
https://github.com/Katsumata420/wikihow_japanese
2020-05-28T08:07:59Z
wikiHow dataset (Japanese version)
Katsumata420 / wikihow_japanese Public Branches Tags Go to file Go to file Code data script READ… crawl_… get.sh require… scrape… This dataset is based on a paper, which describes wikiHow English summarization dataset. This dataset is crawled from Japanese wikiHow for Japanese summarization dataset. Python3 pip install -r requirements.txt For quick start, run the script bash get.sh . The train/dev/test json files are made in data/output . In detail, you run the following steps. About No description, website, or topics provided. Readme Activity 36 stars 3 watching 2 forks Report repository Releases 2 wikiHow Japanese v1.1 Latest on Jan 1, 2021 + 1 release Packages No packages published Languages HTML 96.7% Python 3.1% Shell 0.2% Code Issues Pull requests Actions Projects Security Insights wikiHow dataset (Japanese version) Requirements How to get the dataset README 1. bash crawl_article.sh Crawling each article from the url addresses in data/urls . 2. bash scrape2jsonl.sh Extract knowledge from the html files crawled in step 1. the extracted info is described in below #json_description. 3. python script/make_data.py Make train/dev/test data from the json files extracted in step 2 based on data/divided_data.tsv . The detail of the json files is below section. Howtojson key value meta_title html meta title text num_part the total part number in the article original_title title text part_name_exist exist the part title or not contents list of part (number is the same as num_part) - part_title part title - part_contents list of the each step content in the part -- article the article text in the step -- bold_line the bold line in the step train/dev/test.json key value src source text tgt target text; bold lines in the article title article title + current part number English wikiHow summarization dataset: https://github.com/mahnazkoupaee/WikiHow-Dataset json description Related repository The articles are provided by wikiHow. Content on wikiHow can be shared under a Creative Commons License (CC-BY-NC-SA). License
# wikiHow dataset (Japanese version) - This dataset is based on [a paper](https://arxiv.org/abs/1810.09305), which describes wikiHow English summarization dataset. - This dataset is crawled from [Japanese wikiHow](https://www.wikihow.jp/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8) for Japanese summarization dataset. ## Requirements - Python3 - `pip install -r requirements.txt` ## How to get the dataset - For quick start, run the script `bash get.sh`. - The train/dev/test json files are made in `data/output`. - In detail, you run the following steps. 1. `bash crawl_article.sh` - Crawling each article from the url addresses in `data/urls`. 2. `bash scrape2jsonl.sh` - Extract knowledge from the html files crawled in step 1. - the extracted info is described in below #json_description. 3. `python script/make_data.py` - Make train/dev/test data from the json files extracted in step 2 based on `data/divided_data.tsv`. - The detail of the json files is below section. ### json description - Howtojson | key | value | | :---|:--- | | meta_title | html meta title text | | num_part | the total part number in the article | | original_title | title text | | part_name_exist | exist the part title or not | | contents | list of part (number is the same as num_part)| | - part_title | part title | | - part_contents | list of the each step content in the part| | -- article | the article text in the step | | -- bold_line | the bold line in the step | - train/dev/test.json | key | value | | :---|:--- | | src | source text | | tgt | target text; bold lines in the article | | title | article title + current part number | ## Related repository - English wikiHow summarization dataset: https://github.com/mahnazkoupaee/WikiHow-Dataset ## License The articles are provided by wikiHow. Content on wikiHow can be shared under a Creative Commons License (CC-BY-NC-SA).
[ "Information Extraction & Text Mining", "Summarization", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/echamudi/japanese-toolkit
2020-07-09T02:58:17Z
Monorepo for Kanji, Furigana, Japanese DB, and others
echamudi / japanese-toolkit Public 57 Branches 41 Tags Go to file Go to file Code .github/workflows images packages .eslintrc.json .gitignore README.md lerna.json package-lock.json package.json structure.md Monorepo for Kanji, Furigana, Japanese DB, and others. Japanese Toolkit JS Japanese Toolkit JS no status no status Name Description NPM Kanji Get kanji readings, kanji composition trees, and groupings. Open readme - Try now in Repl.it! kanji downloads downloads 500/month 500/month Furigana Fit kana text into Japanese writing. Open readme - Try now in Repl.it! furigana downloads downloads 827/month 827/month Kyarakuta Categorize and manipulate characters. Open readme - Try now in Repl.it! kyarakuta downloads downloads 841/month 841/month About Monorepo for Kanji, Furigana, Japanese DB, and others Readme Activity 45 stars 4 watching 3 forks Report repository Releases 41 tags Packages No packages published Languages JavaScript 70.4% TypeScript 29.6% Code Issues 2 Pull requests 55 Actions Projects Security Insights Japanese Toolkit JS Package List README Name Description NPM Japanese-DB Generate Japanese dictionary SQLite database from open source materials. Open readme japanese-db downloads downloads 67/month 67/month Goi ⏳ Work in Progress Japanese words data (writings, readings, meaning, etc) goi Bunpou ⏳ Work in Progress Japanese word conjugator bunpou Copyright © 2020 Ezzat Chamudi Japanese Toolkit code is licensed under MPL-2.0. Images, logos, docs, and articles in this project are released under CC-BY-SA-4.0. Some packages have their own acknowledgement list and additional license notices. Please refer to the readme file of each package License
# Japanese Toolkit JS <p align="center"> <a href="https://github.com/echamudi/japanese-toolkit/"> <img src="https://raw.githubusercontent.com/echamudi/japanese-toolkit/master/images/japanese-toolkit.svg" alt="Japanese Toolkit Logo" width="160" height="128"> </a> </p> Monorepo for Kanji, Furigana, Japanese DB, and others. <img src="https://github.com/echamudi/japanese-toolkit/workflows/Japanese%20Toolkit%20JS/badge.svg"> ## Package List | Name | Description | NPM | | - | - | - | | Kanji | Get kanji readings, kanji composition trees, and groupings.<br> [Open readme](https://github.com/echamudi/japanese-toolkit/tree/master/packages/kanji) - [Try now in Repl.it!](https://repl.it/@echamudi/demo-kanji) | [kanji](https://www.npmjs.com/package/kanji) <br> <a href="https://www.npmjs.com/package/kanji"><img alt="npm" src="https://img.shields.io/npm/dm/kanji"></a> | | Furigana | Fit kana text into Japanese writing.<br> [Open readme](https://github.com/echamudi/japanese-toolkit/tree/master/packages/furigana) - [Try now in Repl.it!](https://repl.it/@echamudi/demo-furigana) | [furigana](https://www.npmjs.com/package/furigana) <br> <a href="https://www.npmjs.com/package/furigana"><img alt="npm" src="https://img.shields.io/npm/dm/furigana"></a> | | Kyarakuta | Categorize and manipulate characters.<br> [Open readme](https://github.com/echamudi/japanese-toolkit/tree/master/packages/kyarakuta) - [Try now in Repl.it!](https://repl.it/@echamudi/demo-kyarakuta) | [kyarakuta](https://www.npmjs.com/package/kyarakuta) <br> <a href="https://www.npmjs.com/package/kyarakuta"><img alt="npm" src="https://img.shields.io/npm/dm/kyarakuta"></a> | | Japanese-DB | Generate Japanese dictionary SQLite database from open source materials.<br> [Open readme](https://github.com/echamudi/japanese-toolkit/tree/master/packages/japanese-db) | [japanese-db](https://www.npmjs.com/package/japanese-db) <br> <a href="https://www.npmjs.com/package/japanese-db"><img alt="npm" src="https://img.shields.io/npm/dm/japanese-db"></a> | | Goi | ⏳ *Work in Progress* <br> Japanese words data (writings, readings, meaning, etc) | [goi](https://www.npmjs.com/package/goi) | | Bunpou | ⏳ *Work in Progress* <br> Japanese word conjugator | [bunpou](https://www.npmjs.com/package/bunpou) | ## License Copyright © 2020 [Ezzat Chamudi](https://github.com/echamudi) Japanese Toolkit code is licensed under [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/). Images, logos, docs, and articles in this project are released under [CC-BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode). Some packages have their own acknowledgement list and additional license notices. Please refer to the readme file of each package.
[ "Syntactic Text Processing", "Text Normalization" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/ids-cv/wrime
2020-08-18T05:13:42Z
WRIME: 主観と客観の感情分析データセット
ids-cv / wrime Public Branches Tags Go to file Go to file Code LICEN… READ… READ… wrime-… wrime-… 日本語の感情分析の研究のために、以下の特徴を持つデータセットを構築しました。 主観(テキストの筆者1人)と客観(クラウドワーカ3人)の両方の立場から感情ラベ ルを付与しました。 Plutchikの基本8感情(喜び、悲しみ、期待、驚き、怒り、恐れ、嫌悪、信頼)を扱い ました。 各感情の強度を4段階(0:無、1:弱、2:中、3:強)でラベル付けしました。 Ver.2では、感情極性(-2:強いネガティブ、-1:ネガティブ、0:ニュートラル、1:ポジテ ィブ、2:強いポジティブ)も追加しました。 @shunk031 さんが本データセットを HuggingFace Datasets Hub に登録してください ました。 Ver.2: 60人の筆者から収集した35,000件の投稿(Ver.1のサブセット)に感情極性を追 加でラベル付けしました。 Ver.1: 80人の筆者から収集した43,200件の投稿に感情強度をラベル付けしました。 About No description, website, or topics provided. Readme View license Activity Custom properties 145 stars 3 watching 9 forks Report repository Releases No releases published Packages No packages published Contributors 2 moguranosenshi 梶原智之 nakatuba Tsubasa Nakagawa Code Issues 2 Pull requests 1 Actions Projects Security Insights WRIME: 主観と客観の感情分析データセット [English] 更新履歴 README License 投稿:車のタイヤがパンクしてた。。いたずらの可能性が高いんだって。。 喜び 悲しみ 期待 驚き 怒り 恐れ 嫌悪 信頼 感情極性 主観 0 3 0 1 3 0 0 0 0 客観A 0 3 0 3 1 2 1 0 -1 客観B 0 2 0 2 0 0 0 0 -1 客観C 0 2 0 2 0 1 1 0 -2 近藤里咲, 寺面杏優, 梶川怜恩, 堀口航輝, 梶原智之, 二宮崇, 早志英朗, 中島悠太, 長原 一. テキスト正規化による日本語感情分析の性能改善. 人工知能学会第38回全国大会, 2024. 鈴木陽也, 山内洋輝, 梶原智之, 二宮崇, 早志英朗, 中島悠太, 長原一. 書き手の複数投稿 を用いた感情分析. 人工知能学会第38回全国大会, 2024. 近藤里咲, 大塚琢生, 梶原智之, 二宮崇, 早志英朗, 中島悠太, 長原一. 大規模言語モデル による日本語感情分析の性能評価. 情報処理学会第86回全国大会, pp.859-860, 2024. Haruya Suzuki, Sora Tarumoto, Tomoyuki Kajiwara, Takashi Ninomiya, Yuta Nakashima, Hajime Nagahara. Emotional Intensity Estimation based on Writer’s Personality. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop (AACL-SRW 2022), pp.1-7, 2022. 鈴木陽也, 秋山和輝, 梶原智之, 二宮崇, 武村紀子, 中島悠太, 長原一. 書き手の性格情報 を用いた感情強度推定. 人工知能学会第36回全国大会, 2022. Haruya Suzuki, Yuto Miyauchi, Kazuki Akiyama, Tomoyuki Kajiwara, Takashi Ninomiya, Noriko Takemura, Yuta Nakashima, Hajime Nagahara. A Japanese Dataset for Subjective and Objective Sentiment Polarity Classification in Micro Blog Domain. In Proceedings of the 13th International Conference on Language Resources and Evaluation (LREC 2022), pp.7022-7028, 2022. 宮内裕人, 鈴木陽也, 秋山和輝, 梶原智之, 二宮崇, 武村紀子, 中島悠太, 長原一. 主観と客 観の感情極性分類のための日本語データセット. 言語処理学会第28回年次大会, pp.1495-1499, 2022. Tomoyuki Kajiwara, Chenhui Chu, Noriko Takemura, Yuta Nakashima, Hajime Nagahara. WRIME: A New Dataset for Emotional Intensity Estimation with Subjective and Objective Annotations. In Proceedings of the 2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2021), pp.2095-2104, 2021. 梶原智之, Chenhui Chu, 武村紀子, 中島悠太, 長原一. 主観感情と客観感情の強度推定の ための日本語データセット. 言語処理学会第27回年次大会, pp.523-527, 2021. テキストとラベルの例 文献情報 本データセットを研究で利用された場合、論文情報をご連絡いただきましたらここに掲載 させていただきます。 本研究は、文部科学省によるSociety 5.0 実現化研究拠点支援事業(グラント番号: JPMXP0518071489)の助成を受けたものです。 CC BY-NC-ND 4.0 梶原 智之(愛媛大学 大学院理工学研究科 講師) 中島 悠太(大阪大学 D3センター 教授) sentiment-dataset at is.ids.osaka-u.ac.jp 謝辞 ライセンス 連絡先
# WRIME: Dataset for Emotional Intensity Estimation We annotated SNS posts with emotional intensity to construct a Japanese emotion analysis dataset. - We provide both subjective (i.e. based on what the writer feels) and objective (i.e. based on what humans and other machines think that the writer feels) annotations. - Annotations follow Plutchik’s 8-category emotion schema on a 4-point intensity scale (0:no, 1:weak, 2:medium, and 3:strong). - In Ver.2, we also annotate sentiment polarity (-2: Strong Negative, -1: Negative, 0: Neutral, 1: Positive, 2: Strong Positive). ## Change Log - Thanks to [@shunk031](https://github.com/shunk031), WRIME is now available on the [HuggingFace Datasets Hub](https://huggingface.co/datasets/shunk031/wrime). - Ver.2: We annotate 35,000 Japanese posts from 60 crowdsourced workers (a subset of Ver.1) with both emotional intensity and sentiment polarity. - Ver.1: We annotate 43,200 Japanese posts from 80 crowdsourced workers with emotional intensity. ## Examples Text: 車のタイヤがパンクしてた。。いたずらの可能性が高いんだって。。<br> (The tire of my car was flat. I heard that it might be mischief.) ||Joy|Sadness|Anticipation|Surprise|Anger|Fear|Disgust|Trust|Sentiment Polarity| | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Writer |0|3|0|1|3|0|0|0|0| |Reader 1|0|3|0|3|1|2|1|0|-1| |Reader 2|0|2|0|2|0|0|0|0|-1| |Reader 3|0|2|0|2|0|1|1|0|-2| ## Research with WRIME A list of known publications that use WRIME is shown below. If you know more, please let us know. - Haruya Suzuki, Sora Tarumoto, Tomoyuki Kajiwara, Takashi Ninomiya, Yuta Nakashima, Hajime Nagahara. **[Emotional Intensity Estimation based on Writer’s Personality.](https://aclanthology.org/2022.aacl-srw.1/)** In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop (AACL-SRW 2022), pp.1-7, 2022. - Haruya Suzuki, Yuto Miyauchi, Kazuki Akiyama, Tomoyuki Kajiwara, Takashi Ninomiya, Noriko Takemura, Yuta Nakashima, Hajime Nagahara. **[A Japanese Dataset for Subjective and Objective Sentiment Polarity Classification in Micro Blog Domain.](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.759.pdf)** In Proceedings of the 13th International Conference on Language Resources and Evaluation (LREC 2022), pp.7022-7028, 2022. - Tomoyuki Kajiwara, Chenhui Chu, Noriko Takemura, Yuta Nakashima, Hajime Nagahara. **[WRIME: A New Dataset for Emotional Intensity Estimation with Subjective and Objective Annotations.](https://aclanthology.org/2021.naacl-main.169/)** In Proceedings of the 2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2021), pp.2095-2104, 2021. ## Acknowledgments This work was supported by [Innovation Platform for Society 5.0](https://www.ids.osaka-u.ac.jp/ildi/en/index.html) from Japan Ministry of Education, Culture, Sports, Science and Technology. ## Licence [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/) ## Authors - [Tomoyuki Kajiwara](http://moguranosenshi.sakura.ne.jp/cv.pdf) (Senior Assistant Professor, Graduate School of Science and Engineering, Ehime University, Japan) - [Yuta Nakashima](https://www.n-yuta.jp/) (Professor, D3 Center, Osaka University, Japan) sentiment-dataset *at* is.ids.osaka-u.ac.jp
[ "Emotion Analysis", "Sentiment Analysis" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/tokuhirom/jawiki-kana-kanji-dict
2020-08-23T14:21:04Z
Generate SKK/MeCab dictionary from Wikipedia(Japanese edition)
tokuhirom / jawiki-kana-kanji-dict Public 2 Branches 0 Tags Go to file Go to file Code renovate[bot] Update dependency python-Levenshtein to v0.26.1 69f3368 · 2 weeks ago .github/workflows bin dat jawiki logs tests .gitattributes .gitignore Makefile README.md SKK-JISYO.jawiki check.py lindera-userdic.csv mecab-userdic.csv pytest.ini renovate.json requirements.txt setup.py user_simpledic.csv wikipedia 日本語版のデータを元に、SKK/MeCab の辞書をつくるスクリプトです。 github actions で wikipedia から定期的にデータを取得して https://github.com/tokuhirom/skk-jisyo-jawiki/blob/master/SKK-JISYO.jawiki を、定 期的に更新するようにしています。 (github actions を利用することで、メンテナが何もしなくても自動的に更新されることを期待していま す。) python 3.4+ jaconv pytests About Generate SKK/MeCab dictionary from Wikipedia(Japanese edition) # nlp # wikipedia # japanese-language Readme Activity 51 stars 6 watching 2 forks Report repository Contributors 3 tokuhirom Tokuhiro Matsuno renovate[bot] github-actions[bot] Languages Python 98.7% Makefile 1.3% Code Issues 2 Pull requests Actions Projects Security Insights jawiki-kana-kanji-dict これは何? Requirements README Levenshtein janome bunzip2 gnu make gnu grep check.py に条件を追加します(これにより、デグレしづらくなります) 手元で make check を実行して、実行失敗することを確認します。 grep 対象ワード dat/* として、対象のワードの状態をみます。 user_simpledic.csv か jawiki/*.py のルールを変更します .github/workflows/python-app.yml が github actions の定義ファイルです。これにより、定期的に辞書ファイルが再生成されます。 処理のフローは以下の通りです。試行錯誤/途中のステップのバグ発見しやすいように、複数ステップに分割されています。 make を実行すれば、一通りファイルが実行されます。 make check を実行すると、辞書ファイルを生成し、辞書ファイルの正当性を確認します。 make test を実行すると、テストスイートを実行します。 Python scripts are: How to contribute どう動いているのか LICENSE The MIT License (MIT) Copyright © 2020 Tokuhiro Matsuno, http://64p.org/ <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights Wikipedia license is: https://ja.wikipedia.org/wiki/Wikipedia:%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3 %82%92%E4%BA%8C%E6%AC%A1%E5%88%A9%E7%94%A8%E3%81%99%E3%82%8B 自動生成されたファイルは Wikipedia のコンテンツに対する軽微利用であると私は考えます。 よって、生成ファイルは Python script と同様 の MIT License で配布します。 Wikipedia 日本語版がなければ、(もちろん)このプロジェクトはありえませんでしたし、今後も継続的に利用可能な新語辞書を作れるのは、 wikipedia あってこそです。 Wikipedia 日本語版の貢献者各位に感謝いたします。 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 謝辞
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/poyo46/ginza-examples
2020-08-24T16:42:23Z
日本語NLPライブラリGiNZAのすゝめ
poyo46 / ginza-examples Public Branches Tags Go to file Go to file Code .github/workflows dev examples tests .gitignore .replit LICENSE README.md poetry.lock pyproject.toml 本記事は、日本語の自然言語処理ライブラリである GiNZA の紹介記事です。 Qiitaの記事 と GiNZA examples - GitHub の二箇所に同じ ものを公開しています。 記事を書いた経緯 想定する読者 自然言語処理ってどんなことができるの?という初学者の方 筆者もまだまだ初学者ですが GiNZA は簡単にすごいことができるのでぜひ見ていってください。 Pythonを学びたての方やこれから学ぼうとしている方 Python学習のモチベーションになると思います。 MeCab などの形態素解析器を使ったことはあるが GiNZA は初めて聞いたという方 簡単に比較できるものではありませんが新たに GiNZA を知る価値はあると思います。 GiNZA は 日本語の 自然言語処理ライブラリです。 もともと spaCy という自然言語処理のフレームワークがあり、英語など主要な言語 に対応していました。 GiNZA は言わば spaCy の日本語対応版です。 詳細については GiNZAの公開ページ をご覧ください。 About 日本語NLPライブラリGiNZAのすゝ め # python # nlp # japanese # spacy # mecab # ginza Readme MIT license Activity 15 stars 1 watching 3 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights 日本語NLPライブラリGiNZAのすゝめ この記事について GiNZAとは README MIT license GiNZAを選ぶ理由 ここで紹介するコードは GitHubホストランナーの仮想環境 のubuntu-latest, macos-latestとPython 3.6, 3.7, 3.8の組み合わせ(計6通り) で動作検証しています。 動作検証結果 TestGinzaExamples (GiNZA Examples 本体) TestOther (リンク切れのチェックなど) オンライン Pythonに親しみのない方や手っ取り早く動作環境がほしい方向けにオンラインの実行環境を用意しています。ブラウザで GiNZA examples - Repl.it を開いて Run をクリックしてください。セットアップ完了までに5分程度かかります。 ローカル環境 もし poetry が未導入であれば $ pip install poetry でインストールしてください。 ソースコードを開く ソースコードをGitHubで見る 実行 結果 i text lemma_ reading_form pos_ tag_ inflection ent_type_ 0 田中 田中 タナカ PROPN 名詞-固有名詞-人名-姓 Person 1 部長 部長 ブチョウ NOUN 名詞-普通名詞-一般 Position_Vocation 2 に に ニ ADP 助詞-格助詞 3 伝え 伝える ツタエ VERB 動詞-一般 下一段-ア行,連用形-一般 4 て て テ SCONJ 助詞-接続助詞 5 ください くださる クダサイ AUX 動詞-非自立可能 五段-ラ行,命令形 6 。 。 。 PUNCT 補助記号-句点 ※結果は見やすいように加工しています。 説明を開く 応用 この解析結果を使って例えば次のようなことができます。 文中に含まれる単語から動詞と形容詞の原形を抽出する。 文中に含まれる食べ物を抽出してカウントする。 文中の個人情報をマスキングする。 ソースコードを開く GiNZAを動かす セットアップ git clone https://github.com/poyo46/ginza-examples.git cd ginza-examples poetry install 形態素解析 python examples/token_information.py 田中部長に伝えてください。 テキストを文のリストに分割する ソースコードをGitHubで見る 実行 結果 説明を開く ソースコードを開く ソースコードをGitHubで見る 実行 結果 あの DET ラーメン NOUN 屋 NOUN に ADP は ADP よく ADV ⾏く。 AUX de t c o m p o u n d obl c a s e ca se a d v m o d ブラウザで http://localhost:5000 を開くと解析結果が表示されます。同時に、サンプルコードでは画像を examples/displacy.svg に保存し ています。 LexRankアルゴリズムを用いて抽出型要約を実行します。抽出型要約とは、元の文から重要な文を(無加工で)抽出するものです。サン プル文として 『走れメロス』 を用意しました。 ソースコードを開く ソースコードをGitHubで見る 実行 結果 python examples/split_text.py はい、そうです。ありがとうございますよろしくお願いします。 はい、そうです。 ありがとうございます よろしくお願いします。 依存構造解析・可視化 python examples/displacy.py あのラーメン屋にはよく行く。 Using the 'dep' visualizer Serving on http://0.0.0.0:5000 ... 文章要約 python examples/lexrank_summary.py examples/data/run_melos.txt 15 人を、信ずる事が出来ぬ、というのです。 三日のうちに、私は村で結婚式を挙げさせ、必ず、ここへ帰って来ます。 LexRankアルゴリズムによって抽出された、重要度の高い上位 15 文です。重要度のスコアは一度だけ計算すればよいため、抽出する文 の数を変更したい場合は lexrank_scoring の結果を再利用すると速いです。 ソースコードを開く ソースコードをGitHubで見る 実行 結果 今日はとても良い天気です。 昨日の天気は大雨だったのに。 ラーメンを食べました。 今日はとても良い天気です。 1.0 0.9085916084662856 0.7043564497093551 昨日の天気は大雨だったのに。 0.9085916084662856 1.0 0.7341796340817486 ラーメンを食べました。 0.7043564497093551 0.7341796340817486 1.0 ※結果は見やすいように加工しています。 説明を開く GiNZA そのものは MIT License で利用できます。詳しくは ライセンス条項 をご覧ください。 筆者の Qiitaの記事 および GiNZA examples - GitHub も同様に MIT License で利用できます。 GiNZA を利用できる言語はPythonのみです。しかしフレームワークである spaCy にはJavaScript版やR版など Python以外の言語で の実装 があるため、すごい人たちが移植してくれることを期待します。 単語のネガティブ・ポジティブを数値化する Token.sentiment は現時点で実装されていませんが、 GiNZA 開発者の方から直々にコ メントをいただき、今後実装を計画していただけるとのことです。 ご意見・ご要望などは随時受け付けています。 Qiitaの記事 へコメント、または GitHubのIssues へ投稿をお願いします。 そうして身代りの男を、三日目に殺してやるのも気味がいい。 ものも言いたくなくなった。 そうして、少し事情があるから、結婚式を明日にしてくれ、と頼んだ。 あれが沈んでしまわぬうちに、王城に行き着くことが出来なかったら、あの佳い友達が、私のために死ぬのです。 何をするのだ。 けれども、今になってみると、私は王の言うままになっている。 王は、ひとり合点して私を笑い、そうして事も無く私を放免するだろう。 私を、待っている人があるのだ。 死んでお詫び、などと気のいい事は言って居られぬ。 メロス。 その人を殺してはならぬ。 メロスが帰って来た。 メロスだ。 文の類似度 python examples/similarity.py 今日はとても良い天気です。 昨日の天気は大雨だったのに。 ラーメンを食べました。 ライセンス GiNZA GiNZA examples 注意事項 ご意見・ご要望など
# 日本語NLPライブラリGiNZAのすゝめ ## この記事について 本記事は、日本語の自然言語処理ライブラリである [GiNZA](https://github.com/megagonlabs/ginza) の紹介記事です。 [Qiitaの記事](https://qiita.com/poyo46/items/7a4965455a8a2b2d2971) と [GiNZA examples - GitHub](https://github.com/poyo46/ginza-examples) の二箇所に同じものを公開しています。 <details> <summary>記事を書いた経緯</summary> <div> 筆者は [GiNZA](https://github.com/megagonlabs/ginza) の開発者の方々と何の利害関係もありません。 自然言語処理系の最新技術を検索していてたまたま見つけ、その簡単さに感動したので勝手に宣伝しています。 > 全ての開発は感動から始まる。 コンピュータ産業の父であり筆者の尊敬するエンジニアである池田敏雄さんはこのように言いました。この記事の目的は [GiNZA](https://github.com/megagonlabs/ginza) の感動を共有することです。 自然言語処理という難解な分野でありますが、なるべく事前知識なしで [GiNZA](https://github.com/megagonlabs/ginza) を楽しめるようにと願っています。 なお、最初にこの記事を書いたのは2019年の8月です。 [GiNZA](https://github.com/megagonlabs/ginza) の更新に追いつけなくなっていたので改めて書き直しました。 </div> </details> **想定する読者** * 自然言語処理ってどんなことができるの?という初学者の方 * 筆者もまだまだ初学者ですが [GiNZA](https://github.com/megagonlabs/ginza) は簡単にすごいことができるのでぜひ見ていってください。 * Pythonを学びたての方やこれから学ぼうとしている方 * Python学習のモチベーションになると思います。 * [MeCab](https://taku910.github.io/mecab/) などの形態素解析器を使ったことはあるが [GiNZA](https://github.com/megagonlabs/ginza) は初めて聞いたという方 * 簡単に比較できるものではありませんが新たに [GiNZA](https://github.com/megagonlabs/ginza) を知る価値はあると思います。 ## GiNZAとは ![GiNZAのロゴ](https://raw.githubusercontent.com/megagonlabs/ginza/static/docs/images/GiNZA_logo_4c_y.png) [GiNZA](https://github.com/megagonlabs/ginza) は **日本語の** 自然言語処理ライブラリです。 もともと [spaCy](https://spacy.io/) という自然言語処理のフレームワークがあり、英語など主要な言語に対応していました。 [GiNZA](https://github.com/megagonlabs/ginza) は言わば [spaCy](https://spacy.io/) の日本語対応版です。 詳細については [GiNZAの公開ページ](https://megagonlabs.github.io/ginza/) をご覧ください。 <details> <summary>GiNZAを選ぶ理由</summary> <div> 日本語の形態素解析器として有名なものに [MeCab](https://taku910.github.io/mecab/) があります(形態素解析って何?という方は [Web茶まめ ©国立国語研究所](https://chamame.ninjal.ac.jp/) にて実行してみてください)。 [GiNZA](https://github.com/megagonlabs/ginza) も同様に日本語の文を分かち書きすることができます。単に日本語を分かち書きしたいだけなら [MeCab](https://taku910.github.io/mecab/) の方が圧倒的に速いです。 それでも [GiNZA](https://github.com/megagonlabs/ginza) には次のメリットがあると思います。 * 簡単に導入できる * [MeCab](https://taku910.github.io/mecab/) はOSに応じた環境構築を行わねばなりません。 * [GiNZA](https://github.com/megagonlabs/ginza) の導入はOSに関係なく `$ pip install ginza` でできます。 * [spaCy](https://spacy.io/) フレームワークを採用している * 英語などの言語で [spaCy](https://spacy.io/) を利用した機械学習の実践例が見つかります。 * [GiNZA](https://github.com/megagonlabs/ginza) の登場で同じことが日本語でもできるようになりました。 * 例えばチャットボットAIのフレームワークで有名な [Rasa](https://rasa.com/) は [GiNZA](https://github.com/megagonlabs/ginza) のおかげで日本語でも使えるようになりました。 * [最新の研究](https://github.com/megagonlabs/ginza#training-data-sets) を反映している なお、決して [MeCab](https://taku910.github.io/mecab/) をディスっているわけではないことを強調しておきます。状況や目的によって最適な選択は変わります。 [MeCab](https://taku910.github.io/mecab/) はすでに長期間使用されており、高速というだけでなく高い信頼性、そして豊富な実践例があります。 また、最新の語彙に随時対応し続ける [NEologd](https://github.com/neologd/mecab-ipadic-neologd) や、国立国語研究所が開発した [UniDic](https://unidic.ninjal.ac.jp/about_unidic) を利用することができるのも [MeCab](https://taku910.github.io/mecab/) のメリットだと思います。 </div> </details> ## GiNZAを動かす ここで紹介するコードは GitHubホストランナーの仮想環境 のubuntu-latest, macos-latestとPython 3.6, 3.7, 3.8の組み合わせ(計6通り)で動作検証しています。 **動作検証結果** [![TestGinzaExamples](https://github.com/poyo46/ginza-examples/workflows/TestGinzaExamples/badge.svg)](https://github.com/poyo46/ginza-examples/actions?query=workflow%3ATestGinzaExamples) (GiNZA Examples 本体) [![TestOther](https://github.com/poyo46/ginza-examples/workflows/TestOther/badge.svg)](https://github.com/poyo46/ginza-examples/actions?query=workflow%3ATestOther) (リンク切れのチェックなど) ### セットアップ **オンライン** Pythonに親しみのない方や手っ取り早く動作環境がほしい方向けにオンラインの実行環境を用意しています。ブラウザで [GiNZA examples - Repl.it](https://repl.it/github/poyo46/ginza-examples) を開いて `Run` をクリックしてください。セットアップ完了までに5分程度かかります。 **ローカル環境** ``` git clone https://github.com/poyo46/ginza-examples.git cd ginza-examples poetry install ``` もし `poetry` が未導入であれば `$ pip install poetry` でインストールしてください。 ### 形態素解析 <details><summary>ソースコードを開く</summary><div> ```python:examples/token_information.py import sys from typing import List from pprint import pprint import spacy import ginza nlp = spacy.load('ja_ginza') def tokenize(text: str) -> List[List[str]]: """ 日本語文を形態素解析する。 Parameters ---------- text : str 解析対象の日本語テキスト。 Returns ------- List[List[str]] 形態素解析結果。 Notes ----- * Token 属性の詳細については次のリンク先をご覧ください。 https://spacy.io/api/token#attributes * Token.lemma_ の値は SudachiPy の Morpheme.dictionary_form() です。 * Token.ent_type_ の詳細については次のリンク先をご覧ください。 http://liat-aip.sakura.ne.jp/ene/ene8/definition_jp/html/enedetail.html """ doc = nlp(text) attrs_list = [] for token in doc: token_attrs = [ token.i, # トークン番号 token.text, # テキスト token.lemma_, # 基本形 ginza.reading_form(token), # 読みカナ token.pos_, # 品詞 token.tag_, # 品詞詳細 ginza.inflection(token), # 活用情報 token.ent_type_ # 固有表現 ] attrs_list.append([str(a) for a in token_attrs]) return attrs_list EXAMPLE_TEXT = '田中部長に伝えてください。' EXAMPLE_SCRIPT = f'python examples/token_information.py {EXAMPLE_TEXT}' ATTRS = [ 'i', 'text', 'lemma_', 'reading_form', 'pos_', 'tag_', 'inflection', 'ent_type_' ] if __name__ == '__main__': if len(sys.argv) > 1: input_text = sys.argv[1] pprint(tokenize(input_text)) else: print('Please run as follows: \n$ ' + EXAMPLE_SCRIPT) ``` </div></details> [ソースコードをGitHubで見る](https://github.com/poyo46/ginza-examples/blob/master/examples/token_information.py) **実行** ``` python examples/token_information.py 田中部長に伝えてください。 ``` **結果** | i | text | lemma_ | reading_form | pos_ | tag_ | inflection | ent_type_ | | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | | 0 | 田中 | 田中 | タナカ | PROPN | 名詞-固有名詞-人名-姓 | | Person | | 1 | 部長 | 部長 | ブチョウ | NOUN | 名詞-普通名詞-一般 | | Position_Vocation | | 2 | に | に | ニ | ADP | 助詞-格助詞 | | | | 3 | 伝え | 伝える | ツタエ | VERB | 動詞-一般 | 下一段-ア行,連用形-一般 | | | 4 | て | て | テ | SCONJ | 助詞-接続助詞 | | | | 5 | ください | くださる | クダサイ | AUX | 動詞-非自立可能 | 五段-ラ行,命令形 | | | 6 | 。 | 。 | 。 | PUNCT | 補助記号-句点 | | | ※結果は見やすいように加工しています。 <details> <summary>説明を開く</summary> <div> 日本語の文を単語ごとに分け、各単語の解析結果を表示しています。 `Token.pos_` は [Universal Part-of-speech Tags](https://spacy.io/api/annotation#pos-universal) と呼ばれるもので、言語に依存せず全世界的に単語の品詞を表そうというものです(Part-of-speech = 品詞)。 `Token.ent_type_` は固有表現と呼ばれるもので、例えば人名には `Person` が、料理名には `Dish` が割り当てられます。詳細な定義については [こちら](http://liat-aip.sakura.ne.jp/ene/ene8/definition_jp/html/enedetail.html) をご覧ください。 `Token` の他の属性については [spaCy API doc](https://spacy.io/api/token#attributes) をご覧ください。 </div> </details> **応用** この解析結果を使って例えば次のようなことができます。 * 文中に含まれる単語から動詞と形容詞の原形を抽出する。 * 文中に含まれる食べ物を抽出してカウントする。 * 文中の個人情報をマスキングする。 ### テキストを文のリストに分割する <details><summary>ソースコードを開く</summary><div> ```python:examples/split_text.py import sys from typing import List import spacy nlp = spacy.load('ja_ginza') def get_sentences(text: str) -> List[str]: """ 文のリストに分割したテキストを取得する。 Parameters ---------- text : str 分割対象の日本語テキスト。 Returns ------- List[str] 文のリスト。結合すると `text` に一致する。 See Also -------- https://spacy.io/api/doc#sents """ doc = nlp(text) sentences = [s.text for s in doc.sents] return sentences EXAMPLE_TEXT = 'はい、そうです。ありがとうございますよろしくお願いします。' EXAMPLE_SCRIPT = f'python examples/split_text.py {EXAMPLE_TEXT}' if __name__ == '__main__': if len(sys.argv) > 1: input_text = sys.argv[1] print('\n'.join(get_sentences(input_text))) else: print('Please run as follows: \n$ ' + EXAMPLE_SCRIPT) ``` </div></details> [ソースコードをGitHubで見る](https://github.com/poyo46/ginza-examples/blob/master/examples/split_text.py) **実行** ``` python examples/split_text.py はい、そうです。ありがとうございますよろしくお願いします。 ``` **結果** ``` はい、そうです。 ありがとうございます よろしくお願いします。 ``` <details> <summary>説明を開く</summary> <div> [spaCy](https://spacy.io/) の [Doc.sents](https://spacy.io/api/doc#sents) を利用してテキストを文のリストに変換しています。 </div> </details> ### 依存構造解析・可視化 <details><summary>ソースコードを開く</summary><div> ```python:examples/displacy.py import sys from pathlib import Path import spacy from spacy import displacy nlp = spacy.load('ja_ginza') def visualize(text: str) -> None: """ 日本語文の文法的構造を解析し、可視化する。 Parameters ---------- text : str 解析対象の日本語テキスト。 Notes ----- 実行後、 ブラウザで http://localhost:5000 を開くと画像が表示される。 """ doc = nlp(text) displacy.serve(doc, style='dep') def save_as_image(text: str, path) -> None: """ 日本語文の文法的構造を解析し、結果を画像として保存する。 Parameters ---------- text : str 解析対象の日本語テキスト。 path 保存先のファイルパス。 Notes ----- 画像はSVG形式で保存される。 """ doc = nlp(text) svg = displacy.render(doc, style='dep') with open(path, mode='w') as f: f.write(svg) EXAMPLE_TEXT = 'あのラーメン屋にはよく行く。' EXAMPLE_SCRIPT = f'python examples/displacy.py {EXAMPLE_TEXT}' if __name__ == '__main__': if len(sys.argv) > 1: input_text = sys.argv[1] save_to = Path(__file__).with_name('displacy.svg') save_as_image(input_text, save_to) visualize(input_text) else: print('Please run as follows: \n$ ' + EXAMPLE_SCRIPT) ``` </div></details> [ソースコードをGitHubで見る](https://github.com/poyo46/ginza-examples/blob/master/examples/displacy.py) **実行** ``` python examples/displacy.py あのラーメン屋にはよく行く。 ``` **結果** ``` Using the 'dep' visualizer Serving on http://0.0.0.0:5000 ... ``` ![結果の画像](https://raw.githubusercontent.com/poyo46/ginza-examples/master/examples/displacy.svg) ブラウザで http://localhost:5000 を開くと解析結果が表示されます。同時に、サンプルコードでは画像を [examples/displacy.svg](https://raw.githubusercontent.com/poyo46/ginza-examples/master/examples/displacy.svg) に保存しています。 ### 文章要約 LexRankアルゴリズムを用いて抽出型要約を実行します。抽出型要約とは、元の文から重要な文を(無加工で)抽出するものです。サンプル文として [『走れメロス』](https://github.com/poyo46/ginza-examples/blob/master/examples/data/run_melos.txt) を用意しました。 <details><summary>ソースコードを開く</summary><div> ```python:examples/lexrank_summary.py import sys import re from typing import Tuple, List from pathlib import Path import numpy as np import spacy from sumy.summarizers.lex_rank import LexRankSummarizer nlp = spacy.load('ja_ginza') def preprocess(text: str) -> str: """ 要約の前処理を実施する。 * 全角スペースや括弧、改行を削除する。 * !?を。に置換する Parameters ---------- text : str 日本語のテキスト。 Returns ------- str 前処理が実施されたtext """ text = re.sub('[ 「」『』【】\r\n]', '', text) text = re.sub('[!?]', '。', text) text = text.strip() return text def lexrank_scoring(text: str) -> Tuple[List[str], np.ndarray]: """ LexRankアルゴリズムによって文に点数をつける。 この点数は文の重要度とみなすことができる。 Parameters ---------- text : str 分析対象のテキスト。 Returns ------- List[str] text を文のリストに分解したもの。 np.ndarray 文のリストに対応する重要度のリスト。 """ doc = nlp(text) # 文のリストと単語のリストをつくる sentences = [] corpus = [] for sent in doc.sents: sentences.append(sent.text) tokens = [] for token in sent: # 文に含まれる単語のうち, 名詞・副詞・形容詞・動詞に限定する if token.pos_ in ('NOUN', 'ADV', 'ADJ', 'VERB'): # ぶれをなくすため, 単語の見出し語 Token.lemma_ を使う tokens.append(token.lemma_) corpus.append(tokens) # sentences = [文0, 文1, ...] # corpus = [[文0の単語0, 文0の単語1, ...], [文1の単語0, 文1の単語1, ...], ...] # sumyライブラリによるLexRankスコアリング lxr = LexRankSummarizer() tf_metrics = lxr._compute_tf(corpus) idf_metrics = lxr._compute_idf(corpus) matrix = lxr._create_matrix(corpus, lxr.threshold, tf_metrics, idf_metrics) scores = lxr.power_method(matrix, lxr.epsilon) # scores = [文0の重要度, 文1の重要度, ...] return sentences, scores def extract(sentences: List[str], scores: np.ndarray, n: int) -> List[str]: """ スコアの高い順にn個の文を抽出する。 Parameters ---------- sentences : List[str] 文のリスト。 scores : np.ndarray スコアのリスト。 n : int 抽出する文の数。 Returns ------- List[str] sentencesから抽出されたn個の文のリスト。 """ assert len(sentences) == len(scores) # scoresのインデックスリスト indices = range(len(scores)) # スコアの大きい順に並べ替えたリスト sorted_indices = sorted(indices, key=lambda i: scores[i], reverse=True) # スコアの大きい順からn個抽出したリスト extracted_indices = sorted_indices[:n] # インデックスの並び順をもとに戻す extracted_indices.sort() # 抽出されたインデックスに対応する文のリストを返す return [sentences[i] for i in extracted_indices] def get_summary(path, n) -> List[str]: with open(path, mode='rt', encoding='utf-8') as f: text = f.read() text = preprocess(text) sentences, scores = lexrank_scoring(text) return extract(sentences, scores, n) EXAMPLE_PATH = Path(__file__).with_name('data') / 'run_melos.txt' N = 15 EXAMPLE_SCRIPT = f'python examples/lexrank_summary.py examples/data/run_melos.txt {N}' if __name__ == '__main__': if len(sys.argv) > 2: input_path = sys.argv[1] input_n = int(sys.argv[2]) extracted_sentences = get_summary(input_path, input_n) print('\n'.join(extracted_sentences)) else: print('Please run as follows: \n$ ' + EXAMPLE_SCRIPT) ``` </div></details> [ソースコードをGitHubで見る](https://github.com/poyo46/ginza-examples/blob/master/examples/lexrank_summary.py) **実行** ``` python examples/lexrank_summary.py examples/data/run_melos.txt 15 ``` **結果** ``` 人を、信ずる事が出来ぬ、というのです。 三日のうちに、私は村で結婚式を挙げさせ、必ず、ここへ帰って来ます。 そうして身代りの男を、三日目に殺してやるのも気味がいい。 ものも言いたくなくなった。 そうして、少し事情があるから、結婚式を明日にしてくれ、と頼んだ。 あれが沈んでしまわぬうちに、王城に行き着くことが出来なかったら、あの佳い友達が、私のために死ぬのです。 何をするのだ。 けれども、今になってみると、私は王の言うままになっている。 王は、ひとり合点して私を笑い、そうして事も無く私を放免するだろう。 私を、待っている人があるのだ。 死んでお詫び、などと気のいい事は言って居られぬ。 メロス。 その人を殺してはならぬ。 メロスが帰って来た。 メロスだ。 ``` LexRankアルゴリズムによって抽出された、重要度の高い上位 15 文です。重要度のスコアは一度だけ計算すればよいため、抽出する文の数を変更したい場合は [lexrank_scoring](https://github.com/poyo46/ginza-examples/blob/master/examples/lexrank_summary.py#L34) の結果を再利用すると速いです。 ### 文の類似度 <details><summary>ソースコードを開く</summary><div> ```python:examples/similarity.py import sys from typing import List from pprint import pprint import spacy import numpy as np nlp = spacy.load('ja_ginza') def similarity_matrix(texts: List[str]) -> List[List[np.float64]]: """ テキスト同士の類似度を計算する。 Parameters ---------- texts : str 日本語文のリスト。 Returns ------- List[List[np.float64]] 文同士の類似度。 Notes ----- spaCy の Doc.similarity (https://spacy.io/api/doc#similarity) を使っている。 """ docs = [nlp(text) for text in texts] rows = [[a.similarity(b) for a in docs] for b in docs] return rows EXAMPLE_TEXTS = [ '今日はとても良い天気です。', '昨日の天気は大雨だったのに。', 'ラーメンを食べました。' ] EXAMPLE_SCRIPT = f'python examples/similarity.py ' + ' '.join(EXAMPLE_TEXTS) if __name__ == '__main__': if len(sys.argv) > 2: input_texts = sys.argv[1:] pprint(similarity_matrix(input_texts)) else: print('Please run as follows: \n$ ' + EXAMPLE_SCRIPT) ``` </div></details> [ソースコードをGitHubで見る](https://github.com/poyo46/ginza-examples/blob/master/examples/similarity.py) **実行** ``` python examples/similarity.py 今日はとても良い天気です。 昨日の天気は大雨だったのに。 ラーメンを食べました。 ``` **結果** | | 今日はとても良い天気です。 | 昨日の天気は大雨だったのに。 | ラーメンを食べました。 | | :-- | :-- | :-- | :-- | | 今日はとても良い天気です。 | 1.0 | 0.9085916084662856 | 0.7043564497093551 | | 昨日の天気は大雨だったのに。 | 0.9085916084662856 | 1.0 | 0.7341796340817486 | | ラーメンを食べました。 | 0.7043564497093551 | 0.7341796340817486 | 1.0 | ※結果は見やすいように加工しています。 <details> <summary>説明を開く</summary> <div> [spaCy](https://spacy.io/) の [Doc.similarity()](https://spacy.io/api/doc#similarity) を利用して文同士の類似度を計算しています。自分自身との類似度は1で、類似度の値が大きいほど似ているということです。 </div> </details> ## ライセンス ### GiNZA [GiNZA](https://github.com/megagonlabs/ginza) そのものは [MIT License](https://github.com/megagonlabs/ginza/blob/develop/LICENSE) で利用できます。詳しくは [ライセンス条項](https://github.com/megagonlabs/ginza#license) をご覧ください。 ### GiNZA examples 筆者の [Qiitaの記事](https://qiita.com/poyo46/items/7a4965455a8a2b2d2971) および [GiNZA examples - GitHub](https://github.com/poyo46/ginza-examples) も同様に [MIT License](https://github.com/poyo46/ginza-examples/blob/master/LICENSE) で利用できます。 ## 注意事項 * [GiNZA](https://github.com/megagonlabs/ginza) を利用できる言語はPythonのみです。しかしフレームワークである [spaCy](https://spacy.io/) にはJavaScript版やR版など [Python以外の言語での実装](https://spacy.io/universe/category/nonpython) があるため、すごい人たちが移植してくれることを期待します。 * 単語のネガティブ・ポジティブを数値化する [Token.sentiment](https://spacy.io/api/token#attributes) は現時点で実装されていませんが、 [GiNZA](https://github.com/megagonlabs/ginza) 開発者の方から直々にコメントをいただき、今後実装を計画していただけるとのことです。 ## ご意見・ご要望など ご意見・ご要望などは随時受け付けています。 [Qiitaの記事](https://qiita.com/poyo46/items/7a4965455a8a2b2d2971) へコメント、または [GitHubのIssues](https://github.com/poyo46/ginza-examples/issues) へ投稿をお願いします。
[ "Named Entity Recognition", "Semantic Text Processing", "Syntactic Parsing", "Syntactic Text Processing", "Tagging" ]
[]
true
https://github.com/PKSHATechnology-Research/tdmelodic
2020-09-14T09:12:44Z
A Japanese accent dictionary generator
PKSHATechnology-Research / tdmelodic Public Branches Tags Go to file Go to file Code .github/workflows docs tdmelodic tests .gitignore .readthedocs.yaml Dockerfile LICENSE MANIFEST.in README.md packege.sh requirements.txt setup.py docs docs passing passing arXiv arXiv 2009.09679 2009.09679 Python unittest Python unittest passing passing Docker Docker passing passing Lilypond Lilypond passing passing License License BSD 3-Clause BSD 3-Clause This module generates a large scale accent dictionary of Japanese (Tokyo dialect) using a neural network based technique. For academic use, please cite the following paper. [IEEE Xplore] [arXiv] About A Japanese accent dictionary generator # nlp # japanese # speech-synthesis # accent Readme BSD-3-Clause license Activity Custom properties 112 stars 6 watching 11 forks Report repository Releases 1 package v1.0.0 (#9) Latest on Jul 3, 2021 Packages No packages published Contributors 2 tachi-hi Hideyuki Tachibana uehara1414 uehara Languages Python 98.1% Dockerfile 1.2% Shell 0.7% Code Issues 1 Pull requests Actions Projects Security Insights Tokyo Dialect MELOdic accent DICtionary (tdmelodic) generator @inproceedings{tachibana2020icassp, author = "H. Tachibana and Y. Katayama", title = "Accent Estimation of {Japanese} Words from Their Surfaces and Romanizations for Building Large Vocabulary Accent Dictionaries", booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, README BSD-3-Clause license English: tdmelodic Documentation 日本語: tdmelodic 利用マニュアル Some part of this work is based on the results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO). pages = "8059--8063", year = "2020", doi = "10.1109/ICASSP40776.2020.9054081" } Installation and Usage Acknowledgement
<p align="center"> <img src="https://github.com/PKSHATechnology-Research/tdmelodic/raw/master/docs/imgs/logo/logo_tdmelodic.svg" width="200" /> </p> # Tokyo Dialect MELOdic accent DICtionary (tdmelodic) generator [![document](https://readthedocs.org/projects/tdmelodic/badge/?version=latest)](https://tdmelodic.readthedocs.io/en/latest) [![arXiv](https://img.shields.io/badge/arXiv-2009.09679-B31B1B.svg)](https://arxiv.org/abs/2009.09679) [![Python unittest](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/test.yml/badge.svg)](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/test.yml) [![Docker](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/docker-image.yml/badge.svg)](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/docker-image.yml) [![Lilypond](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/img.yml/badge.svg)](https://github.com/PKSHATechnology-Research/tdmelodic/actions/workflows/img.yml) [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) This module generates a large scale accent dictionary of Japanese (Tokyo dialect) using a neural network based technique. For academic use, please cite the following paper. [[IEEE Xplore]](https://ieeexplore.ieee.org/document/9054081) [[arXiv]](https://arxiv.org/abs/2009.09679) ```bibtex @inproceedings{tachibana2020icassp, author = "H. Tachibana and Y. Katayama", title = "Accent Estimation of {Japanese} Words from Their Surfaces and Romanizations for Building Large Vocabulary Accent Dictionaries", booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages = "8059--8063", year = "2020", doi = "10.1109/ICASSP40776.2020.9054081" } ``` ## Installation and Usage - English: [tdmelodic Documentation](https://tdmelodic.readthedocs.io/en/latest) - 日本語: [tdmelodic 利用マニュアル](https://tdmelodic.readthedocs.io/ja/latest) ## Acknowledgement Some part of this work is based on the results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).
[ "Multimodality", "Phonology", "Speech & Audio in NLP" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/cl-tohoku/PheMT
2020-10-27T08:04:59Z
A phenomenon-wise evaluation dataset for Japanese-English machine translation robustness. The dataset is based on the MTNT dataset, with additional annotations of four linguistic phenomena; Proper Noun, Abbreviated Noun, Colloquial Expression, and Variant. COLING 2020.
cl-tohoku / PheMT Public Branches Tags Go to file Go to file Code abbrev colloq eval_to… proper src variant READ… mtnt_a… PheMT is a phenomenon-wise dataset designed for evaluating the robustness of Japanese- English machine translation systems. The dataset is based on the MTNT dataset , with additional annotations of four linguistic phenomena common in UGC; Proper Noun, Abbreviated Noun, Colloquial Expression, and Variant. COLING 2020. See the paper for more information. New!! ready-to-use evaluation tools are now available! (Feb. 2021) About A phenomenon-wise evaluation dataset for Japanese-English machine translation robustness. The dataset is based on the MTNT dataset, with additional annotations of four linguistic phenomena; Proper Noun, Abbreviated Noun, Colloquial Expression, and Variant. COLING 2020. Readme Activity Custom properties 14 stars 6 watching 2 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights PheMT: A Phenomenon-wise Dataset for Machine Translation Robustness on User- Generated Contents Introduction [1] README This repository contains the following. Please feed both original and normalized versions of source sentences to your model to get the difference of arbitrary metrics as a robustness measure. Also, we extracted translations for expressions presenting targeted phenomena. We recommend using src/calc_acc.py to measure the effect of each phenomenon more directly with the help of translation accuracy. USAGE: python calc_acc.py system_output {proper, abbrev, colloq, variant}.alignment Statistics Dataset # sent. # unique expressions (ratio) average edit distance Proper Noun 943 747 (79.2%) (no normalized version) Abbreviated Noun 348 234 (67.2%) 5.04 About this repository . ├── README.md ├── mtnt_approp_annotated.tsv # pre-filtered MTNT dataset with annotated appropriateness (See Appendix A) ├── proper │   ├── proper.alignment # translations of targeted expressions │   ├── proper.en # references │   ├── proper.ja # source sentences │   └── proper.tsv ├── abbrev │   ├── abbrev.alignment │   ├── abbrev.en │   ├── abbrev.norm.ja # normalized source sentences │   ├── abbrev.orig.ja # original source sentences │   └── abbrev.tsv ├── colloq │   ├── colloq.alignment │   ├── colloq.en │   ├── colloq.norm.ja │   ├── colloq.orig.ja │   └── colloq.tsv ├── variant │ ├── variant.alignment │ ├── variant.en │ ├── variant.norm.ja │ ├── variant.orig.ja │ └── variant.tsv └── src   └── calc_acc.py # script for calculating translation accuracy Basic statistics and examples from the dataset Dataset # sent. # unique expressions (ratio) average edit distance Colloquial Expression 172 153 (89.0%) 1.77 Variant 103 97 (94.2%) 3.42 Examples If you use our dataset for your research, please cite the following paper: - Abbreviated Noun original source : 地味なアプデ (apude, meaning update) だが normalized source : 地味なアップデート (update) だが reference : That’s a plain update though alignment : update - Colloquial Expression original source : ここまで描いて飽きた、かなちい (kanachii, meaning sad) normalized source : ここまで描いて飽きた、かなしい (kanashii) reference : Drawing this much then getting bored, how sad. alignment : sad Citation @inproceedings{fujii-etal-2020-phemt, title = "{P}he{MT}: A Phenomenon-wise Dataset for Machine Translation Robustness on User-Generated Contents", author = "Fujii, Ryo and Mita, Masato and Abe, Kaori and Hanawa, Kazuaki and Morishita, Makoto and Suzuki, Jun and Inui, Kentaro", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.coling-main.521", pages = "5929--5943", } Reference
# PheMT: A Phenomenon-wise Dataset for Machine Translation Robustness on User-Generated Contents ## Introduction PheMT is a phenomenon-wise dataset designed for evaluating the robustness of Japanese-English machine translation systems. The dataset is based on the MTNT dataset<sup>[1]</sup>, with additional annotations of four linguistic phenomena common in UGC; Proper Noun, Abbreviated Noun, Colloquial Expression, and Variant. COLING 2020. See [the paper](https://www.aclweb.org/anthology/2020.coling-main.521) for more information. New!! ready-to-use [evaluation tools](https://github.com/cl-tohoku/PheMT/tree/main/eval_tools) are now available! (Feb. 2021) ## About this repository This repository contains the following. ``` . ├── README.md ├── mtnt_approp_annotated.tsv # pre-filtered MTNT dataset with annotated appropriateness (See Appendix A) ├── proper │   ├── proper.alignment # translations of targeted expressions │   ├── proper.en # references │   ├── proper.ja # source sentences │   └── proper.tsv ├── abbrev │   ├── abbrev.alignment │   ├── abbrev.en │   ├── abbrev.norm.ja # normalized source sentences │   ├── abbrev.orig.ja # original source sentences │   └── abbrev.tsv ├── colloq │   ├── colloq.alignment │   ├── colloq.en │   ├── colloq.norm.ja │   ├── colloq.orig.ja │   └── colloq.tsv ├── variant │ ├── variant.alignment │ ├── variant.en │ ├── variant.norm.ja │ ├── variant.orig.ja │ └── variant.tsv └── src   └── calc_acc.py # script for calculating translation accuracy ``` Please feed both original and normalized versions of source sentences to your model to get the difference of arbitrary metrics as a robustness measure. Also, we extracted translations for expressions presenting targeted phenomena. We recommend using `src/calc_acc.py` to measure the effect of each phenomenon more directly with the help of translation accuracy. USAGE: `python calc_acc.py system_output {proper, abbrev, colloq, variant}.alignment` ## Basic statistics and examples from the dataset - Statistics | Dataset | # sent. | # unique expressions (ratio) | average edit distance | | ---- | ---- | ---- | ---- | | Proper Noun | 943 | 747 (79.2%) | (no normalized version) | | Abbreviated Noun | 348 | 234 (67.2%) | 5.04 | | Colloquial Expression | 172 | 153 (89.0%) | 1.77 | | Variant | 103 | 97 (94.2%) | 3.42 | - Examples ``` - Abbreviated Noun original source : 地味なアプデ (apude, meaning update) だが normalized source : 地味なアップデート (update) だが reference : That’s a plain update though alignment : update - Colloquial Expression original source : ここまで描いて飽きた、かなちい (kanachii, meaning sad) normalized source : ここまで描いて飽きた、かなしい (kanashii) reference : Drawing this much then getting bored, how sad. alignment : sad ``` ## Citation If you use our dataset for your research, please cite the following paper: ``` @inproceedings{fujii-etal-2020-phemt, title = "{P}he{MT}: A Phenomenon-wise Dataset for Machine Translation Robustness on User-Generated Contents", author = "Fujii, Ryo and Mita, Masato and Abe, Kaori and Hanawa, Kazuaki and Morishita, Makoto and Suzuki, Jun and Inui, Kentaro", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.coling-main.521", pages = "5929--5943", } ``` ## Reference [1] Michel and Neubig (2018), MTNT: A Testbed for Machine Translation of Noisy Text.
[ "Machine Translation", "Multilinguality", "Responsible & Trustworthy NLP", "Robustness in NLP", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/tsuruoka-lab/AMI-Meeting-Parallel-Corpus
2020-12-11T04:54:03Z
AMI Meeting Parallel Corpus
tsuruoka-lab / AMI-Meeting-Parallel-Corpus Public Branches Tags Go to file Go to file Code LICENSE.md README.md dev.json test.json train.json ©2020, The University of Tokyo The original AMI Meeting Corpus is a multi-modal dataset containing 100 hours of meeting recordings in English. The parallel version was constructed by asking professional translators to translate utterances from the original corpus into Japanese. Since the original corpus consists of speech transcripts, the English sentences contain a lot of short utterances (e.g., "Yeah", "Okay") or fillers (e.g., "Um"), and these are translated into Japanese as well. Therefore, it contains many duplicate sentences. We provide training, development and evaluation splits from the AMI Meeting Parallel Corpus. In this repository we publicly share the full development and evaluation sets and a part of the training data set. Training Development Evaluation Sentences 20,000 2,000 2,000 Scenarios 30 5 5 The corpus is structured in json format consisting of documents, which consist of sentence pairs. Each sentence pair has a sentence number, speaker identifier (to distinguish different speakers), text in English and Japanese, and original language (always English). About AMI Meeting Parallel Corpus # japanese # machine-translation # corpus # english # parallel-corpus # parallel-corpora # annotated-corpora # document-aligned Readme CC-BY-4.0 license Activity Custom properties 9 stars 3 watching 1 fork Report repository Releases No releases published Packages No packages published Contributors 2 Code Issues Pull requests Actions Projects Security Insights The AMI Meeting Parallel Corpus Corpus Description Corpus Structure [ { "id": "IS1004a", "original_language": "en", "conversation": [ ..., { "no": 22, "speaker": "A", "ja_sentence": "では、このプロジェクトの目的は、あー、新しいリモコンを作ることです。", "en_sentence": "So, the goal of this project is to uh developed a new remote }, ... ] }, ... ] README CC-BY-4.0 license Our dataset is released under the Creative Commons Attribution-ShareAlike (CC BY 4.0) license. If you use this dataset, please cite the following paper: Matīss Rikters, Ryokan Ri, Tong Li, and Toshiaki Nakazawa (2020). "Document-aligned Japanese-English Conversation Parallel Corpus." In Proceedings of the Fifth Conference on Machine Translation, 2020. This work was supported by "Research and Development of Deep Learning Technology for Advanced Multilingual Speech Translation", the Commissioned Research of National Institute of Information and Communications Technology (NICT), JAPAN. License Reference @InProceedings{rikters-EtAl:2020:WMT, author = {Rikters, Matīss and Ri, Ryokan and Li, Tong and Nakazawa, Toshiaki}, title = {Document-aligned Japanese-English Conversation Parallel Corpus}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {637--643}, url = {https://www.aclweb.org/anthology/2020.wmt-1.74} } Acknowledgements
# The AMI Meeting Parallel Corpus ©2020, The University of Tokyo # Corpus Description The [original AMI Meeting Corpus](http://groups.inf.ed.ac.uk/ami/corpus/index.shtml) is a multi-modal dataset containing 100 hours of meeting recordings in English. The parallel version was constructed by asking professional translators to translate utterances from the original corpus into Japanese. Since the original corpus consists of speech transcripts, the English sentences contain a lot of short utterances (e.g., "Yeah", "Okay") or fillers (e.g., "Um"), and these are translated into Japanese as well. Therefore, it contains many duplicate sentences. We provide training, development and evaluation splits from the AMI Meeting Parallel Corpus. In this repository we publicly share the full development and evaluation sets and a part of the training data set. | | Training | Development | Evaluation | |-------- |---------: |:-----------: |:----------: | | Sentences | 20,000 | 2,000 | 2,000 | | Scenarios | 30 | 5 | 5 | # Corpus Structure The corpus is structured in json format consisting of documents, which consist of sentence pairs. Each sentence pair has a sentence number, speaker identifier (to distinguish different speakers), text in English and Japanese, and original language (always English). ```json [ { "id": "IS1004a", "original_language": "en", "conversation": [ ..., { "no": 22, "speaker": "A", "ja_sentence": "では、このプロジェクトの目的は、あー、新しいリモコンを作ることです。", "en_sentence": "So, the goal of this project is to uh developed a new remote control." }, ... ] }, ... ] ``` ## License Our dataset is released under the [Creative Commons Attribution-ShareAlike (CC BY 4.0) license](https://creativecommons.org/licenses/by/4.0/legalcode). ## Reference If you use this dataset, please cite the following paper: Matīss Rikters, Ryokan Ri, Tong Li, and Toshiaki Nakazawa (2020). "[Document-aligned Japanese-English Conversation Parallel Corpus](http://www.statmt.org/wmt20/pdf/2020.wmt-1.74.pdf)." In Proceedings of the Fifth Conference on Machine Translation, 2020. ```bibtex @InProceedings{rikters-EtAl:2020:WMT, author = {Rikters, Matīss and Ri, Ryokan and Li, Tong and Nakazawa, Toshiaki}, title = {Document-aligned Japanese-English Conversation Parallel Corpus}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {637--643}, url = {https://www.aclweb.org/anthology/2020.wmt-1.74} } ``` ## Acknowledgements This work was supported by "Research and Development of Deep Learning Technology for Advanced Multilingual Speech Translation", the Commissioned Research of National Institute of Information and Communications Technology (NICT), JAPAN.
[ "Machine Translation", "Multilinguality", "Speech & Audio in NLP", "Text Generation" ]
[ "Annotation and Dataset Development" ]
true
https://github.com/mkartawijaya/hasami
2020-12-29T19:45:15Z
A tool to perform sentence segmentation on Japanese text
mkartawijaya / hasami Public Branches Tags Go to file Go to file Code .github/workflo… hasami tests .gitignore LICENSE README.md setup.py Hasami is a tool to perform sentence segmentation on japanese text. Sentences are split on common sentence ending markers like !?。 Enclosed sentence endings will not be split, i.e. those inside quotes or parentheses. Runs of sentence ending markers are treated as a single sentence ending. You can configure custom sentence ending markers and enclosures if the defaults don't cover your needs. You can define exceptions for when not to split sentences. A simple command line interface is provided. Input is read from stdin or from a file. About A tool to perform sentence segmentation on Japanese text # nlp # japanese # japanese-language # sentence-tokenizer # sentence-segmentation # sentence-boundary-detection Readme BSD-3-Clause license Activity 5 stars 1 watching 0 forks Report repository Releases 1 First Release Latest on Feb 21, 2021 Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights Hasami Installation $ pip install hasami Usage $ echo "これが最初の文。これは二番目の文。これが最後の文。" | tee input.txt | hasami これが最初の文。 これは二番目の文。 これが最後の文。 $ hasami input.txt これが最初の文。 README BSD-3-Clause license Usage in code: More examples: The defaults should work for most of the punctuation found in natural text but it is possible to define custom enclosures and sentence ending markers if necessary. You can also define exceptions for when sentence segmentation should not happen, for example in cases of untypical use of punctuation. Released under the BSD-3-Clause License これは二番目の文。 これが最後の文。 import hasami hasami.segment_sentences('これが最初の文。これは二番目の文。これが最後の文。') # => ['これが最初の文。', 'これは二番目の文。', 'これが最後の文。'] import hasami # Instead of splitting you can also just insert newlines. hasami.insert_newlines('これが最初の文。これは二番目の文。これが最後の文。') # => 'これが最初の文。\nこれは二番目の文。\nこれが最後の文。\n' # Runs of sentence ending markers are treated as a single sentence ending. hasami.segment_sentences('え、本当…!?嘘だろ…') # => ['え、本当…!?', '嘘だろ…'] # Enclosed sentence endings are ignored. hasami.segment_sentences('「うまく行くかな?」と思った。') # => ['「うまく行くかな?」と思った。'] Customization from hasami import Hasami, DEFAULT_ENCLOSURES, DEFAULT_SENTENCE_ENDING_MARKERS # Pass a string of pairs of opening/closing characters to define custom enclosures. with_custom_enclosures = Hasami(enclosures=DEFAULT_ENCLOSURES + '<>') with_custom_enclosures.segment_sentences('<うまく行くかな?>と思った。') # => ['<うまく行くかな?>と思った。'] # Pass an empty string if you want all enclosures to be ignored. without_enclosures = Hasami(enclosures='') without_enclosures.segment_sentences('「うまく行くかな?」と思った。') # => ['「うまく行くかな?', '」と思った。'] # Pass a string of characters that should be considered as sentence ending markers. with_custom_endings = Hasami(sentence_ending_markers=DEFAULT_SENTENCE_ENDING_MARKERS + '.,') with_custom_endings.segment_sentences('これが最初の文.これは二番目の文,これが最後の文.') # => ['これが最初の文.', 'これは二番目の文,', 'これが最後の文.'] # Pass a list of patterns to define exceptions where segmentation should not happen. # Make sure to include the newline which should be removed in the pattern. with_exceptions = Hasami(exceptions=['君の名は。\n']) with_exceptions.segment_sentences('君の名は。見たことあるの?') # => ['君の名は。見たことあるの?'] License
# Hasami Hasami is a tool to perform sentence segmentation on japanese text. * Sentences are split on common sentence ending markers like `!?。` * Enclosed sentence endings will not be split, i.e. those inside quotes or parentheses. * Runs of sentence ending markers are treated as a single sentence ending. * You can configure custom sentence ending markers and enclosures if the defaults don't cover your needs. * You can define exceptions for when not to split sentences. ## Installation ```bash $ pip install hasami ``` ## Usage A simple command line interface is provided. Input is read from `stdin` or from a file. ```bash $ echo "これが最初の文。これは二番目の文。これが最後の文。" | tee input.txt | hasami これが最初の文。 これは二番目の文。 これが最後の文。 $ hasami input.txt これが最初の文。 これは二番目の文。 これが最後の文。 ``` Usage in code: ```python import hasami hasami.segment_sentences('これが最初の文。これは二番目の文。これが最後の文。') # => ['これが最初の文。', 'これは二番目の文。', 'これが最後の文。'] ``` More examples: ```python import hasami # Instead of splitting you can also just insert newlines. hasami.insert_newlines('これが最初の文。これは二番目の文。これが最後の文。') # => 'これが最初の文。\nこれは二番目の文。\nこれが最後の文。\n' # Runs of sentence ending markers are treated as a single sentence ending. hasami.segment_sentences('え、本当…!?嘘だろ…') # => ['え、本当…!?', '嘘だろ…'] # Enclosed sentence endings are ignored. hasami.segment_sentences('「うまく行くかな?」と思った。') # => ['「うまく行くかな?」と思った。'] ``` ## Customization The defaults should work for most of the punctuation found in natural text but it is possible to define custom enclosures and sentence ending markers if necessary. You can also define exceptions for when sentence segmentation should not happen, for example in cases of untypical use of punctuation. ```python from hasami import Hasami, DEFAULT_ENCLOSURES, DEFAULT_SENTENCE_ENDING_MARKERS # Pass a string of pairs of opening/closing characters to define custom enclosures. with_custom_enclosures = Hasami(enclosures=DEFAULT_ENCLOSURES + '<>') with_custom_enclosures.segment_sentences('<うまく行くかな?>と思った。') # => ['<うまく行くかな?>と思った。'] # Pass an empty string if you want all enclosures to be ignored. without_enclosures = Hasami(enclosures='') without_enclosures.segment_sentences('「うまく行くかな?」と思った。') # => ['「うまく行くかな?', '」と思った。'] # Pass a string of characters that should be considered as sentence ending markers. with_custom_endings = Hasami(sentence_ending_markers=DEFAULT_SENTENCE_ENDING_MARKERS + '.,') with_custom_endings.segment_sentences('これが最初の文.これは二番目の文,これが最後の文.') # => ['これが最初の文.', 'これは二番目の文,', 'これが最後の文.'] # Pass a list of patterns to define exceptions where segmentation should not happen. # Make sure to include the newline which should be removed in the pattern. with_exceptions = Hasami(exceptions=['君の名は。\n']) with_exceptions.segment_sentences('君の名は。見たことあるの?') # => ['君の名は。見たことあるの?'] ``` ## License Released under the BSD-3-Clause License
[ "Syntactic Text Processing", "Text Segmentation" ]
[]
true
https://github.com/s-taka/fugumt
2021-01-11T07:23:13Z
ぷるーふおぶこんせぷと で公開した機械翻訳エンジンを利用する翻訳環境です。 フォームに入力された文字列の翻訳、PDFの翻訳が可能です。
s-taka / fugumt Public Branches Tags Go to file Go to file Code cache db docker fugumt log model pdf pickle template README.md config.json pdf_server.py run.py server.py setenv_and_cache.py ぷるーふおぶこんせぷと で公開した機械翻訳エンジンを利用する翻訳環境です。 フォームに入力された文字列の翻訳、PDFの翻訳が可能で す。 あくまで検証用の環境・ソフトウェアであり、公開サーバ上での実行を想定したものではありません。 (上記BLOGで公開されているWEB 環境で用いているソフトウェアではありません。) Dockerがセットアップされている場合、下記のように実行できます。 1. git clone後、model/ 以下に「FuguMT model 」で配布されているモデルをダウンロード、展開 git clone http://github.com/s-taka/fugumt wget https://fugumt.com/FuguMT_ver.202011.1.zip shasum FuguMT_ver.202011.1.zip ハッシュ値が 0cf8a1fc540b4c7b4388b75b71858c0eb32e392a であることを確認 unzip FuguMT_ver.202011.1.zip 解凍した場所から移動 mv model/* fugumt/model 2. Docker環境を構築 cd fugumt/docker About No description, website, or topics provided. Readme Activity 61 stars 1 watching 2 forks Report repository Releases No releases published Packages No packages published Languages Python 95.9% Dockerfile 4.1% Code Issues 2 Pull requests Actions Projects Security Insights Fugu-Machine Translator Usage 翻訳サーバの実行 README docker build -t fugu_mt . 3. コンテナを実行 docker run -v /path_to/fugumt/:/app/fugu_mt -p 127.0.0.1:8888:8080 -it --user `id -u`:`id -g` --rm fugu_mt python3 /app/fugu_mt/run.py /app/fugu_mt/config.json 「/path_to」は環境に合わせて変更してください。git cloneを行った先のディレクトリを指定する必要があります。 Load completeと表示されたら実行ができています。 実行後、http://localhost:8888/ にアクセスすることで翻訳エンジンを利用可能です。 http://localhost:8888/pdf_upload/ からPDFの翻訳を行うことができます。 パスワードはconfig.jsonの"auth_info"から設定可能です。 デフォル トではpdf/pdfとなっています。 本ソフトウェアは信頼できるネットワーク上での実行を前提に利用してください。 翻訳サーバの実行の2.まで構築が終わっていれば、環境変数を設定し、コマンドラインからPDFを翻訳することもできます。 1. Dockerコンテナ起動 docker run -v /path_to/fugumt/:/app/fugu_mt -it --user `id -u`:`id -g` --rm fugu_mt bash 2. 環境変数を設定、カレントディレクトリの変更 3. コマンド実行 python3 /app/fugu_mt/pdf_server.py --pdf Dockerコンテナ上のPDFパス --out Dockerコンテナ上のpickle保存場所 --out_html Dockerコンテナ上のHTML保存場所 --mk_process 1 /app/fugu_mt/config.json より簡易にモデルを試す場合は以下の手順でテストが可能です。 Docker build、モデルのダウンロードは「翻訳サーバの実行」と同じです。 docker run -v /path_to/fugumt/:/app/fugu_mt -it --user `id -u`:`id -g` --rm fugu_mt bash 「/path_to」は環境に合わせて変更してください。git cloneを行った先のディレクトリを指定する必要があります。 cd /app/fugu_mt echo "Fugu MT model" | /app/marian/build/marian-decoder -c model/model.npz.decoder.yml 下記のように_uncasedを指定すると、大文字・小文字を無視した翻訳を行います。 echo "Fugu MT model" | /app/marian/build/marian-decoder -c model/model_uncased.npz.decoder.yml ライブラリを通した翻訳は下記のように実行することができます。 Docker build、モデルのダウンロードは「翻訳サーバの実行」と同じで す。 1. 環境変数を設定 2. pythonコードを実行(python3を実行後に入力) pdfの翻訳 export TFHUB_CACHE_DIR=/app/fugu_mt/cache/ export NLTK_DATA=/app/fugu_mt/cache/ export ALLENNLP_CACHE_ROOT=/app/fugu_mt/cache/ cd /app/fugu_mt/ marian-decoderの実行 fugumtライブラリの実行 export TFHUB_CACHE_DIR=/app/fugu_mt/cache/ export NLTK_DATA=/app/fugu_mt/cache/ export ALLENNLP_CACHE_ROOT=/app/fugu_mt/cache/ # ライブラリをimport from fugumt.tojpn import FuguJPNTranslator from fugumt.misc import make_marian_process from fugumt.misc import close_marian_process # marian processを作成 marian_processes = make_marian_process("/app/marian/build/marian-server", [["-p","8001","-c","model/model.npz.decoder.yml", "--log", "log/marian8001.log [8001]) 3. translate_textが返す値は下記の構造となっています。複数の文が入力された場合はlistにappendされます。 訳抜け防止モードの説明は「 機械翻訳と訳抜けとConstituency parsing 」をご参照下さい。 本ソフトウェアは下記のライブラリ・ソフトウェアを利用しています。 またDockerfileに記載の通り、ubuntuで使用可能なパッケージを多数 使用しています。 OSSとして素晴らしいソフトウェアを公開された方々に感謝いたします。 Marian-NMT (MIT-License): https://github.com/marian-nmt/marian SentencePiece(Apache-2.0 License): https://github.com/google/sentencepiece NLTK (Apache License Version 2.0): https://www.nltk.org/ MeCab (BSDライセンス): https://taku910.github.io/mecab/ mecab-python3 (Like MeCab itself, mecab-python3 is copyrighted free software by Taku Kudo [email protected] and Nippon Telegraph and Telephone Corporation, and is distributed under a 3-clause BSD license ): https://github.com/SamuraiT/mecab-python3 unidic-lite(BSD license): https://github.com/polm/unidic-lite bottle (MIT-License): https://bottlepy.org/docs/dev/ gunicorn (MIT License): https://github.com/benoitc/gunicorn tensorflow (Apache 2.0): https://github.com/tensorflow/tensorflow Universal Sentence Encoder (Apache 2.0): https://tfhub.dev/google/universal-sentence-encoder/3 allennlp (Apache 2.0):https://github.com/allenai/allennlp , AllenNLP: A Deep Semantic Natural Language Processing Platform spacy (MIT License): https://spacy.io/ pdfminer (MIT-License): https://github.com/euske/pdfminer websocket-client (BSD-3-Clause License): https://github.com/websocket-client/websocket-client psutil(BSD-3-Clause License): https://github.com/giampaolo/psutil timeout-decorator (MIT License): https://github.com/pnpnpn/timeout-decorator bootstrap(MIT-License) : https://getbootstrap.com/ jquery(MIT-License): https://jquery.com/ DataTables(MIT-License): https://datatables.net/ 本ソフトウェアは研究用を目的に公開しています。 作者(Satoshi Takahashi)は本ソフトウェアの動作を保証せず、本ソフトウェアを使用し て発生したあらゆる結果について一切の責任を負いません。 本ソフトウェア(Code)はMIT-Licenseです。 モデル作成では上記ソフトウェアに加え、下記のデータセット・ソフトウェアを使用しています。 オープンなライセンスでソフトウェア・デ ータセットを公開された方々に感謝いたします。 Beautiful Soap (MIT License): https://www.crummy.com/software/BeautifulSoup/ feedparser (BSD License): https://github.com/kurtmckee/feedparser LaBSE (Apache 2.0): https://tfhub.dev/google/LaBSE/ Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. Language-agnostic BERT Sentence Embedding. July 2020 Japanese-English Subtitle Corpus (CC BY-SA 4.0): https://nlp.stanford.edu/projects/jesc/ Pryzant, R. and Chung, Y. and Jurafsky, D. and Britz, D., JESC: Japanese-English Subtitle Corpus, Language Resources and Evaluation Conference (LREC), 2018 京都フリー翻訳タスク (KFTT) (CC BY-SA 3.0): http://www.phontron.com/kftt/index-ja.html Graham Neubig, "The Kyoto Free Translation Task," http://www.phontron.com/kftt, 2011. Tanaka Corpus (CC BY 2.0 FR):http://www.edrdg.org/wiki/index.php/Tanaka_Corpus # 翻訳 fgmt = FuguJPNTranslator([8001]) translated = fgmt.translate_text("This is a Fugu machine translator.") print(translated) # marian processをクローズ close_marian_process(marian_processes) [{'best_is_norm': 1, # 通常翻訳のスコアが良い場合は1、訳抜け防止モードが良い場合は0 'en': 'This is a Fugu machine translator.', # 入力された英文 'ja_best': 'ふぐ機械翻訳機。', # スコアが一番良かった日本語訳 'ja_best_score': 0.2991045981645584, # 上記スコア 'ja_norm': 'ふぐ機械翻訳機。', # 通常翻訳で一番良かった日本語訳 'ja_norm_score': 0.2991045981645584, # 上記スコア 'ja_parse': 'ふぐ機械翻訳機。', # 訳抜け防止モードで一番良かった日本語訳 'ja_parse_score': 0.2991045981645584 # 上記スコア }] 謝辞・ライセンス Professor Tanaka originally placed the Corpus in the Public Domain, and that status was maintained for the versions used by WWWJDIC. In late 2009 the Tatoeba Project decided to move it to a Creative Commons CC-BY licence (that project is in France, where the concept of public domain is not part of the legal framework.) It can be freely downloaded and used provided the source is attributed. JSNLI (CC BY-SA 4.0):http://nlp.ist.i.kyoto-u.ac.jp/index.php? %E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E 3%83%88 吉越 卓見, 河原 大輔, 黒橋 禎夫: 機械翻訳を用いた自然言語推論データセットの多言語化, 第244回自然言語処理研究会, (2020.7.3). WikiMatrix (Creative Commons Attribution-ShareAlike license):https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia, arXiv, July 11 2019. Tatoeba (CC BY 2.0 FR): https://tatoeba.org/jpn https://tatoeba.org TatoebaのデータはCC-BY 2.0 FRで提供されています。 CCAligned (No claims of intellectual property are made on the work of preparation of the corpus. ): http://www.statmt.org/cc-aligned/ El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp, CCAligned: A Massive Collection of Cross- lingual Web-Document Pairs, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), 2020 ニューラル機械翻訳モデル「FuguMT model 」は 上記に独自収集データを加えMarian-NMT + SentencePieceで作成しています。 モデル構築 に使用したデータ量は約660万対訳ペア、V100 GPU 1つを用いて約30時間学習しています。 「FuguMT model ver.202011.1」のライセンスはCC BY-SA 4.0 です。fine tuningを行う場合も本モデルのライセンスに従った取扱いをお願い いたします。 (zipファイル内のreadmeもご確認ください。) 本モデルは研究用を目的に公開しています。 作者(Satoshi Takahashi)は本モデルの動作を保証せず、本モデルを使用して発生したあらゆる 結果について一切の責任を負いません。 ※ FuguMT model ver.202011.1ではTatoeba、CCAlignedは使用しておらず、ver.202101.1以降のモデルで使用予定です。 ※ 出典を書く際はBlogのURL記載またはリンクをお願いします。https://staka jp/wordpress/
Fugu-Machine Translator ==== [ぷるーふおぶこんせぷと](https://staka.jp/wordpress/?p=413) で公開した機械翻訳エンジンを利用する翻訳環境です。 フォームに入力された文字列の翻訳、PDFの翻訳が可能です。 あくまで検証用の環境・ソフトウェアであり、公開サーバ上での実行を想定したものではありません。 (上記BLOGで公開されているWEB環境で用いているソフトウェアではありません。) Usage ---- ### 翻訳サーバの実行 Dockerがセットアップされている場合、下記のように実行できます。 1. git clone後、model/ 以下に「[FuguMT model](https://fugumt.com/FuguMT_ver.202011.1.zip) 」で配布されているモデルをダウンロード、展開 - ``git clone http://github.com/s-taka/fugumt`` - ``wget https://fugumt.com/FuguMT_ver.202011.1.zip`` - ``shasum FuguMT_ver.202011.1.zip`` - ハッシュ値が 0cf8a1fc540b4c7b4388b75b71858c0eb32e392a であることを確認 - ``unzip FuguMT_ver.202011.1.zip`` - 解凍した場所から移動 ``mv model/* fugumt/model`` 2. Docker環境を構築 - ``cd fugumt/docker`` - ``docker build -t fugu_mt .`` 3. コンテナを実行 - ``docker run -v /path_to/fugumt/:/app/fugu_mt -p 127.0.0.1:8888:8080 -it --user `id -u`:`id -g` --rm fugu_mt python3 /app/fugu_mt/run.py /app/fugu_mt/config.json`` - 「/path_to」は環境に合わせて変更してください。git cloneを行った先のディレクトリを指定する必要があります。 - Load completeと表示されたら実行ができています。 実行後、http://localhost:8888/ にアクセスすることで翻訳エンジンを利用可能です。 http://localhost:8888/pdf_upload/ からPDFの翻訳を行うことができます。 パスワードはconfig.jsonの"auth_info"から設定可能です。 デフォルトではpdf/pdfとなっています。 本ソフトウェアは信頼できるネットワーク上での実行を前提に利用してください。 ### pdfの翻訳 翻訳サーバの実行の2.まで構築が終わっていれば、環境変数を設定し、コマンドラインからPDFを翻訳することもできます。 1. Dockerコンテナ起動 * ``docker run -v /path_to/fugumt/:/app/fugu_mt -it --user `id -u`:`id -g` --rm fugu_mt bash`` 2. 環境変数を設定、カレントディレクトリの変更 ```shell export TFHUB_CACHE_DIR=/app/fugu_mt/cache/ export NLTK_DATA=/app/fugu_mt/cache/ export ALLENNLP_CACHE_ROOT=/app/fugu_mt/cache/ cd /app/fugu_mt/ ``` 3. コマンド実行 * ``python3 /app/fugu_mt/pdf_server.py --pdf Dockerコンテナ上のPDFパス --out Dockerコンテナ上のpickle保存場所 --out_html Dockerコンテナ上のHTML保存場所 --mk_process 1 /app/fugu_mt/config.json`` ### marian-decoderの実行 より簡易にモデルを試す場合は以下の手順でテストが可能です。 Docker build、モデルのダウンロードは「翻訳サーバの実行」と同じです。 * ``docker run -v /path_to/fugumt/:/app/fugu_mt -it --user `id -u`:`id -g` --rm fugu_mt bash`` * 「/path_to」は環境に合わせて変更してください。git cloneを行った先のディレクトリを指定する必要があります。 * ``cd /app/fugu_mt`` * ``echo "Fugu MT model" | /app/marian/build/marian-decoder -c model/model.npz.decoder.yml`` 下記のように_uncasedを指定すると、大文字・小文字を無視した翻訳を行います。 * ``echo "Fugu MT model" | /app/marian/build/marian-decoder -c model/model_uncased.npz.decoder.yml`` ### fugumtライブラリの実行 ライブラリを通した翻訳は下記のように実行することができます。 Docker build、モデルのダウンロードは「翻訳サーバの実行」と同じです。 1. 環境変数を設定 ```shell export TFHUB_CACHE_DIR=/app/fugu_mt/cache/ export NLTK_DATA=/app/fugu_mt/cache/ export ALLENNLP_CACHE_ROOT=/app/fugu_mt/cache/ ``` 2. pythonコードを実行(python3を実行後に入力) ```python # ライブラリをimport from fugumt.tojpn import FuguJPNTranslator from fugumt.misc import make_marian_process from fugumt.misc import close_marian_process # marian processを作成 marian_processes = make_marian_process("/app/marian/build/marian-server", [["-p","8001","-c","model/model.npz.decoder.yml", "--log", "log/marian8001.log"]], [8001]) # 翻訳 fgmt = FuguJPNTranslator([8001]) translated = fgmt.translate_text("This is a Fugu machine translator.") print(translated) # marian processをクローズ close_marian_process(marian_processes) ``` 3. translate_textが返す値は下記の構造となっています。複数の文が入力された場合はlistにappendされます。 訳抜け防止モードの説明は「 [ 機械翻訳と訳抜けとConstituency parsing](https://staka.jp/wordpress/?p=357) 」をご参照下さい。 ```python [{'best_is_norm': 1, # 通常翻訳のスコアが良い場合は1、訳抜け防止モードが良い場合は0 'en': 'This is a Fugu machine translator.', # 入力された英文 'ja_best': 'ふぐ機械翻訳機。', # スコアが一番良かった日本語訳 'ja_best_score': 0.2991045981645584, # 上記スコア 'ja_norm': 'ふぐ機械翻訳機。', # 通常翻訳で一番良かった日本語訳 'ja_norm_score': 0.2991045981645584, # 上記スコア 'ja_parse': 'ふぐ機械翻訳機。', # 訳抜け防止モードで一番良かった日本語訳 'ja_parse_score': 0.2991045981645584 # 上記スコア }] ``` 謝辞・ライセンス ---- 本ソフトウェアは下記のライブラリ・ソフトウェアを利用しています。 またDockerfileに記載の通り、ubuntuで使用可能なパッケージを多数使用しています。 OSSとして素晴らしいソフトウェアを公開された方々に感謝いたします。 * Marian-NMT (MIT-License): https://github.com/marian-nmt/marian * SentencePiece(Apache-2.0 License): https://github.com/google/sentencepiece * NLTK (Apache License Version 2.0): https://www.nltk.org/ * MeCab (BSDライセンス): https://taku910.github.io/mecab/ * mecab-python3 (Like MeCab itself, mecab-python3 is copyrighted free software by Taku Kudo [email protected] and Nippon Telegraph and Telephone Corporation, and is distributed under a 3-clause BSD license ): https://github.com/SamuraiT/mecab-python3 * unidic-lite(BSD license): https://github.com/polm/unidic-lite * bottle (MIT-License): https://bottlepy.org/docs/dev/ * gunicorn (MIT License): https://github.com/benoitc/gunicorn * tensorflow (Apache 2.0): https://github.com/tensorflow/tensorflow * Universal Sentence Encoder (Apache 2.0): https://tfhub.dev/google/universal-sentence-encoder/3 * allennlp (Apache 2.0):https://github.com/allenai/allennlp , [AllenNLP: A Deep Semantic Natural Language Processing Platform](https://www.semanticscholar.org/paper/AllenNLP%3A-A-Deep-Semantic-Natural-Language-Platform-Gardner-Grus/a5502187140cdd98d76ae711973dbcdaf1fef46d) * spacy (MIT License): https://spacy.io/ * pdfminer (MIT-License): https://github.com/euske/pdfminer * websocket-client (BSD-3-Clause License): https://github.com/websocket-client/websocket-client * psutil(BSD-3-Clause License): https://github.com/giampaolo/psutil * timeout-decorator (MIT License): https://github.com/pnpnpn/timeout-decorator * bootstrap(MIT-License) : https://getbootstrap.com/ * jquery(MIT-License): https://jquery.com/ * DataTables(MIT-License): https://datatables.net/ 本ソフトウェアは研究用を目的に公開しています。 作者(Satoshi Takahashi)は本ソフトウェアの動作を保証せず、本ソフトウェアを使用して発生したあらゆる結果について一切の責任を負いません。 本ソフトウェア(Code)はMIT-Licenseです。 モデル作成では上記ソフトウェアに加え、下記のデータセット・ソフトウェアを使用しています。 オープンなライセンスでソフトウェア・データセットを公開された方々に感謝いたします。 * Beautiful Soap (MIT License): https://www.crummy.com/software/BeautifulSoup/ * feedparser (BSD License): https://github.com/kurtmckee/feedparser * LaBSE (Apache 2.0): https://tfhub.dev/google/LaBSE/ * Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. Language-agnostic BERT Sentence Embedding. July 2020 * Japanese-English Subtitle Corpus (CC BY-SA 4.0): https://nlp.stanford.edu/projects/jesc/ * Pryzant, R. and Chung, Y. and Jurafsky, D. and Britz, D., JESC: Japanese-English Subtitle Corpus, Language Resources and Evaluation Conference (LREC), 2018 * 京都フリー翻訳タスク (KFTT) (CC BY-SA 3.0): http://www.phontron.com/kftt/index-ja.html * Graham Neubig, "The Kyoto Free Translation Task," http://www.phontron.com/kftt, 2011. * Tanaka Corpus (CC BY 2.0 FR):http://www.edrdg.org/wiki/index.php/Tanaka_Corpus * > Professor Tanaka originally placed the Corpus in the Public Domain, and that status was maintained for the versions used by WWWJDIC. In late 2009 the Tatoeba Project decided to move it to a Creative Commons CC-BY licence (that project is in France, where the concept of public domain is not part of the legal framework.) It can be freely downloaded and used provided the source is attributed. * JSNLI (CC BY-SA 4.0):http://nlp.ist.i.kyoto-u.ac.jp/index.php?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88 * 吉越 卓見, 河原 大輔, 黒橋 禎夫: 機械翻訳を用いた自然言語推論データセットの多言語化, 第244回自然言語処理研究会, (2020.7.3). * WikiMatrix (Creative Commons Attribution-ShareAlike license):https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix * Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia, arXiv, July 11 2019. * Tatoeba (CC BY 2.0 FR): https://tatoeba.org/jpn * > https://tatoeba.org TatoebaのデータはCC-BY 2.0 FRで提供されています。 * CCAligned (No claims of intellectual property are made on the work of preparation of the corpus. ): http://www.statmt.org/cc-aligned/ * El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp, CCAligned: A Massive Collection of Cross-lingual Web-Document Pairs, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), 2020 ニューラル機械翻訳モデル「[FuguMT model](http://plant-check.jp:8080/static/FuguMT_ver.202011.1.zip) 」は 上記に独自収集データを加えMarian-NMT + SentencePieceで作成しています。 モデル構築に使用したデータ量は約660万対訳ペア、V100 GPU 1つを用いて約30時間学習しています。 「FuguMT model ver.202011.1」のライセンスは[CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.ja) です。fine tuningを行う場合も本モデルのライセンスに従った取扱いをお願いいたします。 (zipファイル内のreadmeもご確認ください。) 本モデルは研究用を目的に公開しています。 作者(Satoshi Takahashi)は本モデルの動作を保証せず、本モデルを使用して発生したあらゆる結果について一切の責任を負いません。 ※ FuguMT model ver.202011.1ではTatoeba、CCAlignedは使用しておらず、ver.202101.1以降のモデルで使用予定です。 ※ 出典を書く際はBlogのURL記載またはリンクをお願いします。 https://staka.jp/wordpress/
[ "Machine Translation", "Multilinguality", "Text Generation" ]
[]
true
https://github.com/wtnv-lab/tweetMapping
2021-02-16T22:54:22Z
東日本大震災発生から24時間以内につぶやかれたジオタグ付きツイートのデジタルアーカイブです。
wtnv-lab / tweetMapping Public Branches Tags Go to file Go to file Code Cesium css data font js .htaccess CNAME LICEN… READ… index.h… 東日本大震災発生から24時間以内につぶやかれたジオ タグ付きツイートのデジタルアーカイブです。 https://tweet.mapping.jp/で公開中です。 全ジオタグ付きツイートから,@付き,BOTによ るものなどを削除した5765件を,位置情報をある 程度ずらした上でマッピングしています。 このコンテンツは,2012年に開催された「東日本 大震災ビッグデータワークショップ」の成果物を Cesiumに移植したものです。 About 東日本大震災発生から24時間以内 につぶやかれたジオタグ付きツイー トのデジタルアーカイブです。 tweet.mapping.jp/ Readme MIT license Activity Custom properties 25 stars 5 watching 0 forks Report repository Releases No releases published Packages No packages published Languages JavaScript 97.1% CSS 2.2% Other 0.7% Code Issues Pull requests Actions Projects Security Insights 東日本大震災ツイートマッ ピング README MIT license 東京大学大学院 渡邉英徳研究室が作成・運営して います。 ソースコードはコメントを参考に改修の上,自由に お使いください。 お問い合わせは hwtnv(at)iii.u-tokyo.ac.jp まで
# 東日本大震災ツイートマッピング 東日本大震災発生から24時間以内につぶやかれたジオタグ付きツイートのデジタルアーカイブです。 - [https://tweet.mapping.jp/](https://tweet.mapping.jp/)で公開中です。 - 全ジオタグ付きツイートから,@付き,BOTによるものなどを削除した5765件を,位置情報をある程度ずらした上でマッピングしています。 - このコンテンツは,2012年に開催された「[東日本大震災ビッグデータワークショップ](https://sites.google.com/site/prj311/)」の成果物をCesiumに移植したものです。 - [東京大学大学院 渡邉英徳研究室](https://labo.wtnv.jp/)が作成・運営しています。 - ソースコードはコメントを参考に改修の上,自由にお使いください。 - お問い合わせは hwtnv(at)iii.u-tokyo.ac.jp まで
[]
[ "Annotation and Dataset Development" ]
true
https://github.com/t-sagara/jageocoder
2021-02-20T08:31:55Z
Pure Python Japanese address geocoder
t-sagara / jageocoder Public Branches Tags Go to file Go to file Code .vscode docs flask-demo itaiji_dic jageocoder tests .gitignore .readthedocs.yaml LICENSE Pipfile README.md README_ja.md SECURITY.md poetry.lock pyproject.toml requirements.txt setup.cfg setup.py 日本語版は README_ja.md をお読みください。 This is a Python port of the Japanese-address geocoder DAMS used in CSIS at the University of Tokyo's "Address Matching Service" and GSI Maps. This package provides address-geocoding and reverse-geocoding functionality for Python programs. The basic usage is to specify a dictionary with init() then call search() to get geocoding results. About Japanese address geocoder that works both offline and online. t-sagara.github.io/jageocoder/ # python # geocoding # address Readme View license Security policy Activity 64 stars 4 watching 7 forks Report repository Releases 26 v2.1.8 Latest last month + 25 releases Packages No packages published Contributors 4 Languages Python 92.2% HTML 7.8% Code Issues Pull requests Actions Projects Security Insights Jageocoder - A Python Japanese geocoder Getting Started >>> import jageocoder >>> jageocoder.init(url='https://jageocoder.info-proto.com/jsonrpc') >>> jageocoder.search('新宿区西新宿2-8-1') {'matched': '新宿区西新宿2-8-', 'candidates': [{'id': 5961406, 'name': '8番', 'x': 139.691778, 'y': 35.689627, 'level': README License Security Requires Python 3.8 or later. All other required packages will be installed automatically. Install the package with pip install jageocoder To use Jageocoder, you need to install the "Dictionary Database" on the same machine or connect to the RPC service provided by jageocoder- server . When a dictionary database is installed, large amounts of data can be processed at high speed. A database covering addresses in Japan requires 25 GB or more of storage. Download an address database file compatible with that version from here Install the dictionary with install-dictionary command If you need to know the location of the dictionary directory, perform get-db-dir command as follows. (Or call jageocoder.get_db_dir() in your script) If you prefer to create the database in another location, set the environment variable JAGEOCODER_DB2_DIR before executing install_dictionary() to specify the directory. Since dictionary databases are large in size, installing them on multiple machines consumes storage and requires time and effort to update them. Instead of installing a dictionary database on each machine, you can connect to a Jageocoder server to perform the search process. If you want to use a server, specify the server endpoint in the environment variable JAGEOCODER_SERVER_URL . For a public demonstration server, use the following However, the server for public demonstrations cannot withstand the load when accesses are concentrated, so it is limited to one request per second. If you want to process a large number of requests, please refer to here to set up your own Jageocoder server. The endpoint is '/jsonrpc' on the server. Remove the directory containing the database, or perform uninstall-dictionary command as follows. Then, uninstall the package with pip command. How to install Prerequisites Install instructions Install Dictionary Database jageocoder download-dictionary https://www.info-proto.com/static/jageocoder/latest/v2/jukyo_all_v21.zip jageocoder install-dictionary jukyo_all_v21.zip jageocoder get-db-dir export JAGEOCODER_DB2_DIR='/usr/local/share/jageocoder/db2' install-dictionary <db-file> Connect to the Jageocoder server export JAGEOCODER_SERVER_URL=https://jageocoder.info-proto.com/jsonrpc Uninstall instructions jageocoder uninstall-dictionary Jageocoder is intended to be embedded in applications as a library and used by calling the API, but a simple command line interface is also provided. For example, to geocode an address, execute the following command. You can check the list of available commands with --help . First, import jageocoder and initialize it with init() . The parameter db_dir of init() can be used to specify the directory where the address database is installed. Alternatively, you can specify the endpoint URL of the Jageocoder server with url . If it is omitted, the value of the environment variable is used. Use search() to search for the address you want to check the longitude and latitude of. The search() function returns a dict with matched as the matched string and candidates as the list of search results. (The results are formatted for better viewing) Each element of candidates contains the information of an address node (AddressNode). The meaning of the items is as follows id: ID in the database name: Address notation x: longitude y: latitude level: Address level (1:Prefecture, 2:County, 3:City and 23 district, 4:Ward, 5:Oaza, 6:Aza and Chome, 7:Block, 8:Building) note: Notes such as city codes fullname: List of address notations from the prefecture level to this node You can specify the latitude and longitude of a point and look up the address of that point (so-called reverse geocoding). When you pass the longitude and latitude of the point you wish to look up to reverse() , you can retrieve up to three address nodes surrounding the specified point. pip uninstall jageocoder How to use Use from the command line jageocoder search 新宿区西新宿2-8-1 jageocoder --help Using API >>> import jageocoder >>> jageocoder.init() Search for latitude and longitude by address >>> jageocoder.search('新宿区西新宿2-8-1') { 'matched': '新宿区西新宿2-8-', 'candidates': [{ 'id': 12299846, 'name': '8番', 'x': 139.691778, 'y': 35.689627, 'level': 7, 'note': None, 'fullname': ['東京都', '新宿区', '西新宿', '二丁目', '8番'] }] } Search for addresses by longitude and latitude In the example above, the level optional parameter is set to 7 to search down to the block (街区・地番) level. Note Indexes for reverse geocoding are automatically created the first time you perform reverse geocoding. Note that this process can take a long time. Use searchNode() to retrieve information about an address. This function returns a list of type jageocoder.result.Result . You can access the address node from node element of the Result object. You can use the as_geojson() method of the Result and AddressNode objects to obtain the GeoJSON representation. There are two types of local government codes: JISX0402 (5-digit) and Local Government Code (6-digit). You can also obtain the prefecture code JISX0401 (2 digits). Generate URLs to link to GSI and Google maps. A "parent node" is a node that represents a level above the address. Get the node by attribute parent . Now the node points to '8番', so the parent node will be '二丁目'. >>> import jageocoder >>> jageocoder.init() >>> triangle = jageocoder.reverse(139.6917, 35.6896, level=7) >>> if len(triangle) > 0: ... print(triangle[0]['candidate']['fullname']) ... ['東京都', '新宿区', '西新宿', '二丁目', '8番'] Explore the attribute information of an address >>> results = jageocoder.searchNode('新宿区西新宿2-8-1') >>> len(results) 1 >>> results[0].matched '新宿区西新宿2-8-' >>> type(results[0].node) <class 'jageocoder.node.AddressNode'> >>> node = results[0].node >>> node.get_fullname() ['東京都', '新宿区', '西新宿', '二丁目', '8番'] Get GeoJSON representation >>> results[0].as_geojson() {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [139.691778, 35.689627]}, 'properties': {'id': 12299 >>> results[0].node.as_geojson() {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [139.691778, 35.689627]}, 'properties': {'id': 12299 Get the local government codes >>> node.get_city_jiscode() # 5-digit code '13104' >>> node.get_city_local_authority_code() # 6-digit code '131041' >>> node.get_pref_jiscode() # prefecture code '13' Get link URLs to maps >>> node.get_gsimap_link() 'https://maps.gsi.go.jp/#16/35.689627/139.691778/' >>> node.get_googlemap_link() 'https://maps.google.com/maps?q=35.689627,139.691778&z=16' Traverse the parent node A "child node" is a node that represents a level below the address. Get the node by attribute children . There is one parent node, but there are multiple child nodes. The actual return is a SQL query object, but it can be looped through with an iterator or cast to a list. Now the parent points to '二丁目', so the child node will be the block number (○番) contained therein. Tutorials and references are here. Consider using jageocoder-converter. Address notation varies. So suggestions for logic improvements are welcome. Please submit an issue with examples of address notations in use and how they should be parsed. Takeshi SAGARA - Info-proto Co.,Ltd. This project is licensed under the MIT License. This is not the scope of the dictionary data license. Please follow the license of the respective dictionary data. We would like to thank CSIS for allowing us to provide address matching services on their institutional website for over 20 years. >>> parent = node.parent >>> parent.get_fullname() ['東京都', '新宿区', '西新宿', '二丁目'] >>> parent.x, parent.y (139.691774, 35.68945) Traverse the child nodes >>> parent.children <sqlalchemy.orm.dynamic.AppenderQuery object at 0x7fbc08404b38> >>> [child.name for child in parent.children] ['10番', '11番', '1番', '2番', '3番', '4番', '5番', '6番', '7番', '8番', '9番'] For developers Documentation Create your own dictionary Contributing Authors License Acknowledgements
# Jageocoder - A Python Japanese geocoder `Jageocoder` は日本の住所用ジオコーダです。 東京大学空間情報科学研究センターの [「CSV アドレスマッチングサービス」](https://geocode.csis.u-tokyo.ac.jp/home/csv-admatch/) および国土地理院の [「地理院地図」](https://maps.gsi.go.jp/) で利用している C++ ジオコーダ `DAMS` を Python に移植しました。 # はじめに このパッケージは Python プログラムに住所ジオコーディングと逆ジオコーディング機能を提供します。 `init()` で初期化し、 `search()` に住所文字列を渡すと、ジオコーディング結果が得られます。 ```python >>> import jageocoder >>> jageocoder.init(url='https://jageocoder.info-proto.com/jsonrpc') >>> jageocoder.search('新宿区西新宿2-8-1') {'matched': '新宿区西新宿2-8-', 'candidates': [{'id': 5961406, 'name': '8番', 'x': 139.691778, 'y': 35.689627, 'level': 7, 'note': None, 'fullname': ['東京都', '新宿区', '西新宿', '二丁目', '8番']}]} ``` # インストール方法 ## 事前準備 Python 3.7 以降が動作する環境が必要です。 その他の依存パッケージは自動的にインストールされます。 ## インストール手順 `pip install jageocoder` でパッケージをインストールします ``` pip install jageocoder ``` Jageocoder を利用するには、同一マシン上に「辞書データベース」をインストールするか、 [jageocoder-server](https://t-sagara.github.io/jageocoder/server/) が提供する RPC サービスに接続する必要があります。 ### 辞書データベースをインストールする場合 辞書データベースをインストールすると大量のデータも高速に処理できます。全国の住所を網羅するデータベースは 30GB 以上のストレージが必要です。 - 利用する辞書データベースファイルを [ここから](https://www.info-proto.com/static/jageocoder/latest/v2/) ダウンロードします wget https://www.info-proto.com/static/jageocoder/latest/v2/jukyo_all_v21.zip - 辞書データベースをインストールします jageocoder install-dictionary jukyo_all_v21.zip 辞書データベースが作成されたディレクトリを知る必要がある場合、 以下のように `get-db-dir` コマンドを実行するか、スクリプト内で `jageocoder.get_db_dir()` メソッドを呼びだしてください。 ```bash jageocoder get-db-dir ``` 上記以外の任意の場所に作成したい場合、住所辞書をインストールする前に 環境変数 `JAGEOCODER_DB2_DIR` でディレクトリを指定してください。 ```bash export JAGEOCODER_DB2_DIR='/usr/local/share/jageocoder/db2' jageocoder install-dictionary jukyo_all_v21.zip ``` ### Jageocoder サーバに接続する場合 辞書データベースはサイズが大きいので、複数のマシンにインストールするとストレージを消費しますし、更新の手間もかかります。 そこで各マシンに辞書データベースをインストールする代わりに、Jageocoder サーバに接続して検索処理を代行させることもできます。 サーバを利用したい場合、環境変数 `JAGEOCODER_SERVER_URL` にサーバの エンドポイントを指定してください。 公開デモンストレーション用サーバの場合は次の通りです。 ```bash export JAGEOCODER_SERVER_URL=https://jageocoder.info-proto.com/jsonrpc ``` ただし公開デモンストレーション用サーバはアクセスが集中すると負荷に耐えられないため、1秒1リクエストまでに制限しています。 大量の処理を行いたい場合は [こちら](https://t-sagara.github.io/jageocoder/server/) を参照して独自 Jageocoder サーバを設置してください。エンドポイントはサーバの `/jsonrpc` になります。 ## アンインストール手順 アンインストールする場合、まず辞書データベースを含むディレクトリを 削除してください。ディレクトリごと削除しても構いませんが、 `uninstall-dictionary` コマンドも利用できます。 ```bash jageocoder uninstall-dictionary ``` その後、 jageocoder パッケージを pip でアンインストールしてください。 ```bash pip uninstall jageocoder ``` # 使い方 ## コマンドラインから利用する Jageocoder はライブラリとしてアプリケーションに組み込み、API を呼びだして利用することを想定していますが、簡単なコマンドラインインタフェースも用意しています。 たとえば住所をジオコーディングしたい場合は次のコマンドを実行します。 ```bash jageocoder search 新宿区西新宿2-8-1 ``` 利用可能なコマンド一覧は `--help` で確認してください。 ```bash jageocoder --help ``` ## APIを利用する まず jageocoder をインポートし、 `init()` で初期化します。 ```python >>> import jageocoder >>> jageocoder.init() ``` `init()` のパラメータ `db_dir` で住所データベースがインストールされているディレクトリを指定できます。あるいは `url` で Jageocoder サーバのエンドポイント URL を指定できます。省略された場合は環境変数の値を利用します。 ```python >>> jageocoder.init(db_dir='/path/to/the/database') >>> jageocoder.init(url='https://your.jageocoder.server/jsonrpc') ``` ### 住所から経緯度を調べる 経緯度を調べたい住所を `search()` で検索します。 `search()` は一致した文字列を `matched` に、検索結果のリストを `candidates` に持つ dict を返します。 `candidates` の各要素には 住所ノード (AddressNode) の情報が入っています (見やすくするために表示結果を整形しています)。 ```python >>> jageocoder.search('新宿区西新宿2-8-1') { 'matched': '新宿区西新宿2-8-', 'candidates': [{ 'id': 12299846, 'name': '8番', 'x': 139.691778, 'y': 35.689627, 'level': 7, 'note': None, 'fullname': ['東京都', '新宿区', '西新宿', '二丁目', '8番'] }] } ``` 項目の意味は次の通りです。 - id: データベース内での ID - name: 住所表記 - x: 経度 - y: 緯度 - level: 住所レベル(1:都道府県, 2:郡/振興局, 3:市町村・23特別区, 4:政令市の区, 5:大字, 6:字・丁目, 7:街区・地番, 8:住居番号・枝番) - note: メモ(自治体コードなど) - fullname: 都道府県レベルからこのノードまでの住所表記のリスト ### 経緯度から住所を調べる 地点の経緯度を指定し、その地点の住所を調べることができます (いわゆるリバースジオコーディング)。 `reverse()` に調べたい地点の経度と緯度を渡すと、指定した地点を囲む最大3点の住所ノードを検索できます。 ```python >>> import jageocoder >>> jageocoder.init() >>> triangle = jageocoder.reverse(139.6917, 35.6896, level=7) >>> if len(triangle) > 0: ... print(triangle[0]['candidate']['fullname']) ... ['東京都', '新宿区', '西新宿', '二丁目', '8番'] ``` 上の例では ``level`` オプションパラメータに 7 を指定して、街区・地番レベルまで検索しています。 > [!Note] > > リバースジオコーディング用のインデックスは、初めてリバースジオコーディングを実行した時に自動的に作成されます。 この処理には長い時間がかかりますので、注意してください。 ### 住所の属性情報を調べる 住所に関する情報を取得するには `searchNode()` を使います。 この関数は `jageocoder.result.Result` 型のリストを返します。 Result オブジェクトの node 要素から住所ノードにアクセスできます。 ```python >>> results = jageocoder.searchNode('新宿区西新宿2-8-1') >>> len(results) 1 >>> results[0].matched '新宿区西新宿2-8-' >>> type(results[0].node) <class 'jageocoder.node.AddressNode'> >>> node = results[0].node >>> node.get_fullname() ['東京都', '新宿区', '西新宿', '二丁目', '8番'] ``` #### GeoJSON 表現を取得する Result および AddressNode オブジェクトの `as_geojson()` メソッドを 利用すると GeoJSON 表現を取得できます。 ```python >>> results[0].as_geojson() {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [139.691778, 35.689627]}, 'properties': {'id': 12299851, 'name': '8番', 'level': 7, 'note': None, 'fullname': ['東京都', '新宿区', '西新宿', '二丁目', '8番'], 'matched': '新宿区西新宿2-8-'}} >>> results[0].node.as_geojson() {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [139.691778, 35.689627]}, 'properties': {'id': 12299851, 'name': '8番', 'level': 7, 'note': None, 'fullname': ['東京都', '新宿区', '西新宿', '二丁目', '8番']}} ``` #### 自治体コードを取得する 自治体コードには JISX0402(5桁)と地方公共団体コード(6桁)があります。 都道府県コード JISX0401(2桁)も取得できます。 ```python >>> node.get_city_jiscode() # 5桁コード '13104' >>> node.get_city_local_authority_code() # 6桁コード '131041' >>> node.get_pref_jiscode() # 都道府県コード '13' ``` #### 地図へのリンクを取得する 地理院地図と Google 地図へのリンク URL を生成します。 ```python >>> node.get_gsimap_link() 'https://maps.gsi.go.jp/#16/35.689627/139.691778/' >>> node.get_googlemap_link() 'https://maps.google.com/maps?q=35.689627,139.691778&z=16' ``` #### 親ノードを辿る 「親ノード」とは、住所の一つ上の階層を表すノードのことです。 ノードの属性 `parent` で取得します。 今 `node` は '8番' を指しているので、親ノードは '二丁目' になります。 ```python >>> parent = node.parent >>> parent.get_fullname() ['東京都', '新宿区', '西新宿', '二丁目'] >>> parent.x, parent.y (139.691774, 35.68945) ``` #### 子ノードを辿る 「子ノード」とは、住所の一つ下の階層を表すノードのことです。 ノードの属性 `children` で取得します。 親ノードは一つですが、子ノードは複数あります。 実際に返すのは SQL クエリオブジェクトですが、 イテレータでループしたり list にキャストできます。 今 `parent` は '二丁目' を指しているので、子ノードは そこに含まれる街区符号(○番)になります。 ```python >>> parent.children <sqlalchemy.orm.dynamic.AppenderQuery object at 0x7fbc08404b38> >>> [child.name for child in parent.children] ['10番', '11番', '1番', '2番', '3番', '4番', '5番', '6番', '7番', '8番', '9番'] ``` # 開発者向け情報 ## Documentation チュートリアルやリファレンスは [こちら](https://jageocoder.readthedocs.io/ja/latest/) 。 ## 独自の辞書を作成したい場合 辞書コンバータ [jageocoder-converter](https://github.com/t-sagara/jageocoder-converter) を利用してください。Version 2.x 系列の辞書を作成するには、 jageocoder-converter も 2.x 以降を利用する必要があります。 ## 異体字を追加したい場合 特定の文字を別の文字に読み替えたい場合、異体字辞書に登録します。 詳細は `itaiji_dic/README.md` を参照してください。 ## サンプルウェブアプリ Flask を利用したシンプルなウェブアプリのサンプルが `flask-demo` の下にあります。 次の手順を実行し、ポート 5000 にアクセスしてください。 ```bash cd flask-demo pip install flask flask-cors bash run.sh ``` ## ご協力頂ける場合 日本の住所表記は非常に多様なので、うまく変換できない場合にはお知らせ頂けるとありがたいです。ロジックの改良提案も歓迎します。どのような住所がどう解析されるべきかをご連絡頂ければ幸いです。 ## 作成者 * **相良 毅** - [株式会社情報試作室](https://www.info-proto.com/) ## 利用許諾条件 MIT ライセンスでご利用頂けます。 This project is licensed under [the MIT License](https://opensource.org/licenses/mit-license.php). ただしこの利用許諾条件は住所辞書データに対しては適用されません。 各辞書データのライセンスを参照してください。 ## 謝辞 20年以上にわたり、アドレスマッチングサービスを継続するために所内ウェブサーバを利用させて頂いている東京大学空間情報科学研究センターに感謝いたします。 また、NIIの北本朝展教授には、比較的古い住所体系を利用している地域の 大規模なサンプルのご提供と、解析結果の確認に多くのご協力を頂きましたことを感謝いたします。
[ "Structured Data in NLP", "Syntactic Text Processing" ]
[]
true
https://github.com/hppRC/jawiki-cleaner
2021-02-21T11:43:43Z
Japanese Wikipedia Cleaner
hppRC / jawiki-cleaner Public Branches Tags Go to file Go to file Code src/jawiki_cleaner tests .gitignore README.md poetry.lock pyproject.toml Split sentences at the proper position taking parentheses into account. Normalize Unicode characters by NFKC. Extract text from wiki links Remove of unnecessary symbols. Apply this tool for a extracted text by WikiExtractor. About 🧹Japanese Wikipedia Cleaner 🧹 pypi.org/project/jawiki-cleaner/ # nlp # wikipedia # python3 Readme Activity 6 stars 3 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 100.0% Code Issues Pull requests 1 Actions Projects Security Insights Japanese Wikipedia Cleaner Instralltion pip install jawiki-cleaner Usage # specify a input file path and output file path jawiki-cleaner --input ./wiki.txt --output ./cleaned-wiki.txt jawiki-cleaner -i ./wiki.txt -o ./cleaned-wiki.txt # or only specify a input file path # output file path will be `./cleaned-wiki.txt` jawiki-cleaner -i ./wiki.txt Example Before <doc id="5" url="?curid=5" title="アンパサンド"> アンパサンド アンパサンド (&amp;、英語名:) とは並立助詞「…と…」を意味する記号である。ラテン語の の合字で、Trebuchet MSフォントでは、と表示され " 歴史. その使用は1世紀に遡ることができ、5世紀中葉から現代に至るまでの変遷がわかる。 Z に続くラテン文字アルファベットの27字目とされた時期もある。 アンパサンドと同じ役割を果たす文字に「のet」と呼ばれる、数字の「7」に似た記号があった(, U+204A)。この記号は現在もゲール文字で使われてい 記号名の「アンパサンド」は、ラテン語まじりの英語「&amp; はそれ自身 "and" を表す」(&amp; per se and) のくずれた形である。英語以外の言 手書き. 日常的な手書きの場合、欧米でアンパサンドは「ε」に縦線を引く単純化されたものが使われることがある。 また同様に、「t」または「+(プラス)」に輪を重ねたような、無声歯茎側面摩擦音を示す発音記号「」のようなものが使われることもある。 README </doc> <doc id="11" url="?curid=11" title="日本語"> 日本語 ... 学校図書を除く四社の教科書では、単文節でできているものを「主語」のように「-語」と呼び、連文節でできているものを「主部」のように「-部」文文文大 種類とその役割. 以下、学校文法の区分に従いつつ、それぞれの文の成分の種類と役割とについて述べる。 主語・述語. 文を成り立たせる基本的な成分である。ことに述語は、文をまとめる重要な役割を果たす。「雨が降る。」「本が多い。」「私は学生だ。」などは、いずれも主・立文一方止 </doc> Run jawiki-cleaner -i wiki.txt After アンパサンド(&、英語名)とは並立助詞「...と...」を意味する記号である。 ラテン語の の合字で、Trebuchet MSフォントでは、と表示され "et" の合字であることが容易にわかる。 ampersa、すなわち "and per se and"、その意味は"and [the symbol which] by itself [is] and"である。 その使用は1世紀に遡ることができ、5世紀中葉から現代に至るまでの変遷がわかる。 Z に続くラテン文字アルファベットの27字目とされた時期もある。 アンパサンドと同じ役割を果たす文字に「のet」と呼ばれる、数字の「7」に似た記号があった(U+204A)。 この記号は現在もゲール文字で使われている。 記号名の「アンパサンド」は、ラテン語まじりの英語「& はそれ自身 "and" を表す」(& per se and)のくずれた形である。 英語以外の言語での名称は多様である。 日常的な手書きの場合、欧米でアンパサンドは「ε」に縦線を引く単純化されたものが使われることがある。 また同様に、「t」または「+(プラス)」に輪を重ねたような、無声歯茎側面摩擦音を示す発音記号のようなものが使われることもある。 学校図書を除く四社の教科書では、単文節でできているものを「主語」のように「-語」と呼び、連文節でできているものを「主部」のように「-部」 と呼んでいる。 それに対し学校図書だけは、文節/連文節どうしの関係概念を「-語」と呼び、いわゆる成分(文を構成する個々の最大要素)を「-部」と呼んでいる。 以下、学校文法の区分に従いつつ、それぞれの文の成分の種類と役割とについて述べる。 文を成り立たせる基本的な成分である。 ことに述語は、文をまとめる重要な役割を果たす。 「雨が降る。」「本が多い。」「私は学生だ。」などは、いずれも主語・述語から成り立っている。 教科書によっては、述語を文のまとめ役として最も重視する一方、主語については修飾語と併せて説明するものもある(前節「主語廃止論」参照)。
# Japanese Wikipedia Cleaner - Split sentences at the proper position taking parentheses into account. - Normalize Unicode characters by NFKC. - Extract text from wiki links - Remove of unnecessary symbols. Apply this tool for a extracted text by WikiExtractor. ## Instralltion ```bash pip install jawiki-cleaner ``` ## Usage ```bash # specify a input file path and output file path jawiki-cleaner --input ./wiki.txt --output ./cleaned-wiki.txt jawiki-cleaner -i ./wiki.txt -o ./cleaned-wiki.txt # or only specify a input file path # output file path will be `./cleaned-wiki.txt` jawiki-cleaner -i ./wiki.txt ``` ## Example ### Before ```txt:wiki.txt <doc id="5" url="?curid=5" title="アンパサンド"> アンパサンド アンパサンド (&amp;、英語名:) とは並立助詞「…と…」を意味する記号である。ラテン語の の合字で、Trebuchet MSフォントでは、と表示され "et" の合字であることが容易にわかる。ampersa、すなわち "and per se and"、その意味は"and [the symbol which] by itself [is] and"である。 歴史. その使用は1世紀に遡ることができ、5世紀中葉から現代に至るまでの変遷がわかる。 Z に続くラテン文字アルファベットの27字目とされた時期もある。 アンパサンドと同じ役割を果たす文字に「のet」と呼ばれる、数字の「7」に似た記号があった(, U+204A)。この記号は現在もゲール文字で使われている。 記号名の「アンパサンド」は、ラテン語まじりの英語「&amp; はそれ自身 "and" を表す」(&amp; per se and) のくずれた形である。英語以外の言語での名称は多様である。 手書き. 日常的な手書きの場合、欧米でアンパサンドは「ε」に縦線を引く単純化されたものが使われることがある。 また同様に、「t」または「+(プラス)」に輪を重ねたような、無声歯茎側面摩擦音を示す発音記号「」のようなものが使われることもある。 </doc> <doc id="11" url="?curid=11" title="日本語"> 日本語 ... 学校図書を除く四社の教科書では、単文節でできているものを「主語」のように「-語」と呼び、連文節でできているものを「主部」のように「-部」と呼んでいる。それに対し学校図書だけは、文節/連文節どうしの関係概念を「-語」と呼び、いわゆる成分(文を構成する個々の最大要素)を「-部」と呼んでいる。 種類とその役割. 以下、学校文法の区分に従いつつ、それぞれの文の成分の種類と役割とについて述べる。 主語・述語. 文を成り立たせる基本的な成分である。ことに述語は、文をまとめる重要な役割を果たす。「雨が降る。」「本が多い。」「私は学生だ。」などは、いずれも主語・述語から成り立っている。教科書によっては、述語を文のまとめ役として最も重視する一方、主語については修飾語と併せて説明するものもある(前節「主語廃止論」参照)。 </doc> ``` ### Run `jawiki-cleaner -i wiki.txt` ### After ``` アンパサンド(&、英語名)とは並立助詞「...と...」を意味する記号である。 ラテン語の の合字で、Trebuchet MSフォントでは、と表示され "et" の合字であることが容易にわかる。 ampersa、すなわち "and per se and"、その意味は"and [the symbol which] by itself [is] and"である。 その使用は1世紀に遡ることができ、5世紀中葉から現代に至るまでの変遷がわかる。 Z に続くラテン文字アルファベットの27字目とされた時期もある。 アンパサンドと同じ役割を果たす文字に「のet」と呼ばれる、数字の「7」に似た記号があった(U+204A)。 この記号は現在もゲール文字で使われている。 記号名の「アンパサンド」は、ラテン語まじりの英語「& はそれ自身 "and" を表す」(& per se and)のくずれた形である。 英語以外の言語での名称は多様である。 日常的な手書きの場合、欧米でアンパサンドは「ε」に縦線を引く単純化されたものが使われることがある。 また同様に、「t」または「+(プラス)」に輪を重ねたような、無声歯茎側面摩擦音を示す発音記号のようなものが使われることもある。 学校図書を除く四社の教科書では、単文節でできているものを「主語」のように「-語」と呼び、連文節でできているものを「主部」のように「-部」と呼んでいる。 それに対し学校図書だけは、文節/連文節どうしの関係概念を「-語」と呼び、いわゆる成分(文を構成する個々の最大要素)を「-部」と呼んでいる。 以下、学校文法の区分に従いつつ、それぞれの文の成分の種類と役割とについて述べる。 文を成り立たせる基本的な成分である。 ことに述語は、文をまとめる重要な役割を果たす。 「雨が降る。」「本が多い。」「私は学生だ。」などは、いずれも主語・述語から成り立っている。 教科書によっては、述語を文のまとめ役として最も重視する一方、主語については修飾語と併せて説明するものもある(前節「主語廃止論」参照)。 ```
[ "Information Extraction & Text Mining", "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/izuna385/jel
2021-03-08T16:14:17Z
Japanese Entity Linker.
izuna385 / jel Public 8 Branches 1 Tag Go to file Go to file Code izuna385 Merge pull request #21 from izuna385/feature/addAPIPredictionMode 3bce15d · 3 years ago docs add logo 3 years ago jel enable API mode 3 years ago scripts fix for predictor 3 years ago tests add test for prediction 3 years ago .dockerignore enable fast image build 3 years ago .gitignore remove unnecessary data 3 years ago Dockerfile enable API mode. 3 years ago LICENSE add License 3 years ago MANIFEST.in fix for pypi 3 years ago README.md enable API mode 3 years ago pytest.ini add test config 3 years ago requirements.txt fix env setup and pypi package … 3 years ago setup.py fix version 3 years ago jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Currently, link and question methods are supported. This returnes named entity and its candidate ones from Wikipedia titles. About Japanese Entity Linker. pypi.org/project/jel/ # python # natural-language-processing # transformers # pytorch # question-answering # entity-linking # allennlp # jel Readme Apache-2.0 license Activity 11 stars 1 watching 1 fork Report repository Releases 1 v0.1.1 release Latest on May 29, 2021 Packages No packages published Languages Python 99.0% Dockerfile 1.0% Code Issues 3 Pull requests Actions Projects Security Insights jel: Japanese Entity Linker Usage el.link from jel import EntityLinker el = EntityLinker() el.link('今日は東京都のマックにアップルを買いに行き、スティーブジョブスとドナルドに会い、堀田区に引っ越した。') README Apache-2.0 license This returnes candidate entity for any question from Wikipedia titles. >> [ { "text": "東京都", "label": "GPE", "span": [ 3, 6 ], "predicted_normalized_entities": [ [ "東京都庁", 0.1084 ], [ "東京", 0.0633 ], [ "国家地方警察東京都本部", 0.0604 ], [ "東京都", 0.0598 ], ... ] }, { "text": "アップル", "label": "ORG", "span": [ 11, 15 ], "predicted_normalized_entities": [ [ "アップル", 0.2986 ], [ "アップル インコーポレイテッド", 0.1792 ], … ] } el.question >>> linker.question('日本の総理大臣は?') [('菅内閣', 0.05791765857101555), ('枢密院', 0.05592481946602986), ('党', 0.05430194711042564), ('総選挙', 0.05279540066 Setup $ pip install jel $ python -m spacy download ja_core_news_md Run as API $ uvicorn jel.api.server:app --reload --port 8000 --host 0.0.0.0 --log-level trace Example # link $ curl localhost:8000/link -X POST -H "Content-Type: application/json" \ -d '{"sentence": "日本の総理は菅総理だ。"}' $ python pytest faiss==1.5.3 from pip causes error _swigfaiss. To solve this, see this issue. Apache 2.0 License. # question $ curl localhost:8000/question -X POST -H "Content-Type: application/json" \ -d '{"sentence": "日本で有名な総理は?"} Test Notes LICENSE CITATION @INPROCEEDINGS{manabe2019chive, author = {真鍋陽俊, 岡照晃, 海川祥毅, 髙岡一馬, 内田佳孝, 浅原正幸}, title = {複数粒度の分割結果に基づく日本語単語分散表現}, booktitle = "言語処理学会第25回年次大会(NLP2019)", year = "2019", pages = "NLP2019-P8-5", publisher = "言語処理学会", }
<p align="center"><img width="20%" src="docs/jel-logo.png"></p> # jel: Japanese Entity Linker * jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. # Usage * Currently, `link` and `question` methods are supported. ## `el.link` * This returnes named entity and its candidate ones from Wikipedia titles. ```python from jel import EntityLinker el = EntityLinker() el.link('今日は東京都のマックにアップルを買いに行き、スティーブジョブスとドナルドに会い、堀田区に引っ越した。') >> [ { "text": "東京都", "label": "GPE", "span": [ 3, 6 ], "predicted_normalized_entities": [ [ "東京都庁", 0.1084 ], [ "東京", 0.0633 ], [ "国家地方警察東京都本部", 0.0604 ], [ "東京都", 0.0598 ], ... ] }, { "text": "アップル", "label": "ORG", "span": [ 11, 15 ], "predicted_normalized_entities": [ [ "アップル", 0.2986 ], [ "アップル インコーポレイテッド", 0.1792 ], … ] } ``` ## `el.question` * This returnes candidate entity for any question from Wikipedia titles. ```python >>> linker.question('日本の総理大臣は?') [('菅内閣', 0.05791765857101555), ('枢密院', 0.05592481946602986), ('党', 0.05430194711042564), ('総選挙', 0.052795400668513175)] ``` ## Setup ``` $ pip install jel $ python -m spacy download ja_core_news_md ``` ## Run as API ``` $ uvicorn jel.api.server:app --reload --port 8000 --host 0.0.0.0 --log-level trace ``` ### Example ``` # link $ curl localhost:8000/link -X POST -H "Content-Type: application/json" \ -d '{"sentence": "日本の総理は菅総理だ。"}' # question $ curl localhost:8000/question -X POST -H "Content-Type: application/json" \ -d '{"sentence": "日本で有名な総理は?"} ``` ## Test `$ python pytest` ## Notes * faiss==1.5.3 from pip causes error _swigfaiss. * To solve this, see [this issue](https://github.com/facebookresearch/faiss/issues/821#issuecomment-573531694). ## LICENSE Apache 2.0 License. ## CITATION ``` @INPROCEEDINGS{manabe2019chive, author = {真鍋陽俊, 岡照晃, 海川祥毅, 髙岡一馬, 内田佳孝, 浅原正幸}, title = {複数粒度の分割結果に基づく日本語単語分散表現}, booktitle = "言語処理学会第25回年次大会(NLP2019)", year = "2019", pages = "NLP2019-P8-5", publisher = "言語処理学会", } ```
[ "Information Extraction & Text Mining", "Knowledge Representation", "Relation Extraction", "Semantic Text Processing" ]
[]
true
https://github.com/shihono/alphabet2kana
2021-03-21T03:27:37Z
Convert English alphabet to Katakana
shihono / alphabet2kana Public Branches Tags Go to file Go to file Code .github alphab… tests .gitignore LICEN… READ… poetry.l… pyproj… pypi pypi v0.1.6 v0.1.6 python python 3.7 | 3.8 | 3.9 | 3.10 | 3.11 3.7 | 3.8 | 3.9 | 3.10 | 3.11 Convert English alphabet to Katakana アルファベットの日本語表記は Unidic と 英語アルファベット - Wikipedia を参考にしています。 特に、Z は ゼット 表記です。 About Convert English alphabet to Katakana pypi.org/project/alphabet2kana/ # katakana # japanese Readme MIT license Activity 13 stars 1 watching 0 forks Report repository Releases 2 Release v0.1.6 Latest on Oct 9, 2023 + 1 release Packages No packages published Contributors 3 Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights alphabet2kana Installation pip install alphabet2kana README MIT license 半角にのみ対応しています。 全角アルファベットは mojimoji や jaconv などで半角に変換してください。 Usage from alphabet2kana import a2k a2k("ABC") # "エービーシー" a2k("Alphabetと日本語") # "エーエルピーエイチエービーイーティーと日本語" a2k("Alphabetと日本語", delimiter="・") # "エー・エル・ピー・エイチ・エー・ビー・イー・ティーと日本語" a2k('k8s', delimiter='・', numeral=True) # "ケー・エイト・エス"
# alphabet2kana ![PyPI - Version](https://img.shields.io/pypi/v/alphabet2kana) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/alphabet2kana) Convert English alphabet to Katakana アルファベットの日本語表記は [Unidic](https://unidic.ninjal.ac.jp/) と [英語アルファベット - Wikipedia](https://ja.wikipedia.org/wiki/%E8%8B%B1%E8%AA%9E%E3%82%A2%E3%83%AB%E3%83%95%E3%82%A1%E3%83%99%E3%83%83%E3%83%88) を参考にしています。 特に、`Z` は `ゼット` 表記です。 ## Installation ```bash pip install alphabet2kana ``` ## Usage ```python from alphabet2kana import a2k a2k("ABC") # "エービーシー" a2k("Alphabetと日本語") # "エーエルピーエイチエービーイーティーと日本語" a2k("Alphabetと日本語", delimiter="・") # "エー・エル・ピー・エイチ・エー・ビー・イー・ティーと日本語" a2k('k8s', delimiter='・', numeral=True) # "ケー・エイト・エス" ``` 半角にのみ対応しています。 全角アルファベットは [mojimoji](https://github.com/studio-ousia/mojimoji) や [jaconv](https://github.com/ikegami-yukino/jaconv) などで半角に変換してください。 Only supported with half-width characters.
[ "Paraphrasing", "Syntactic Text Processing", "Text Normalization" ]
[]
true
https://github.com/yagays/manbyo-sudachi
2021-04-05T12:12:21Z
Sudachi向け万病辞書
yagays / manbyo-sudachi Public Branches Tags Go to file Go to file Code SudachiPy @ … config data tests util @ 8f6947f .gitignore .gitmodules LICENSE README.md build_dic.sh convert.py download_ma… manbyo20190… manbyo20190… 万病辞書を形態素解析器Sudachiで利用する - Out-of-the-box 万病辞書MANBYO_201907 から、Sudachiのユーザ辞書形式に変換したファイル manbyo20190704_sabc_dic.txt : 万病辞書で信頼度LEVELがS,A,B,Cの病名のみ manbyo20190704_all_dic.txt : 万病辞書のすべての病名 About No description, website, or topics provided. Readme CC-BY-4.0 license Activity 7 stars 2 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 92.5% Shell 7.5% Code Issues Pull requests Actions Projects Security Insights Sudachi向け万病辞書 配布辞書 使い方 1. レポジトリをcloneする README CC-BY-4.0 license BASE_PATH を自身の環境のsystem.dic が置かれている場所に変更して、下記コマンドを実行。 $ git clone --recursive https://github.com/yagays/manbyo-sudachi 2. sudachipyをインストールする $ pip install sudachipy 3. バイナリ辞書をビルドする BASE_PATH=/path/to/sudachidict/resources/ sudachipy ubuild -s $BASE_PATH/system.dic manbyo20190704_sabc_dic.txt -o user_manbyo_sabc.dic sudachipy ubuild -s $BASE_PATH/system.dic manbyo20190704_all_dic.txt -o user_manbyo_all.dic
# Sudachi向け万病辞書 [万病辞書を形態素解析器Sudachiで利用する \- Out\-of\-the\-box](https://yag-ays.github.io/project/manbyo-sudachi/) ## 配布辞書 万病辞書`MANBYO_201907`から、Sudachiのユーザ辞書形式に変換したファイル - `manbyo20190704_sabc_dic.txt`: 万病辞書で信頼度LEVELがS,A,B,Cの病名のみ - `manbyo20190704_all_dic.txt`: 万病辞書のすべての病名 ## 使い方 ### 1. レポジトリをcloneする ```sh $ git clone --recursive https://github.com/yagays/manbyo-sudachi ``` ### 2. sudachipyをインストールする ```sh $ pip install sudachipy ``` ### 3. バイナリ辞書をビルドする `BASE_PATH`を自身の環境の`system.dic`が置かれている場所に変更して、下記コマンドを実行。 ```sh BASE_PATH=/path/to/sudachidict/resources/ sudachipy ubuild -s $BASE_PATH/system.dic manbyo20190704_sabc_dic.txt -o user_manbyo_sabc.dic sudachipy ubuild -s $BASE_PATH/system.dic manbyo20190704_all_dic.txt -o user_manbyo_all.dic ```
[ "Morphology", "Syntactic Text Processing", "Tagging", "Text Segmentation" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/gecko655/proofreading-tool
2021-04-08T03:06:36Z
GUIで動作する文書校正ツール GUI tool for textlinting.
gecko655 / proofreading-tool Public 5 Branches 7 Tags Go to file Go to file Code gecko655 Merge pull request #66 f… 4452ebd · 5 months ago .github… use yarn 5 months ago assets/… preload.jsを… 3 years ago build support arm64 last year config proofreading-t… 3 years ago lib proofreading-t… 3 years ago script/t… proofreading-t… 3 years ago textlint… lint fix 3 years ago .babelrc proofreading-t… 3 years ago .eslintr… lint fix 3 years ago .gitattri… proofreading-t… 3 years ago .gitignore proofreading-t… 3 years ago LICEN… Create LICEN… 3 years ago READ… use yarn 5 months ago index.h… mark.jsもvue… 3 years ago main.js Use @nosfer… 2 years ago packag… release 1.0.10 last year preloa… preload.jsを… 3 years ago webpa… mark.jsもvue… 3 years ago yarn.lock use yarn 5 months ago About GUIで動作する文書校正ツール GUI tool for textlinting. gecko655.hatenablog.com/entry/… # proofreading Readme GPL-3.0 license Activity 86 stars 4 watching 8 forks Report repository Releases 6 1.0.11 Latest on Mar 14, 2023 + 5 releases Packages No packages published Contributors 2 gecko655 YAMAMORI, Akihiro dependabot[bot] Languages JavaScript 78.1% HTML 20.7% Shell 1.2% Code Issues 1 Pull requests 3 Actions Projects Security Insights README GPL-3.0 license Build/release Build/release no status no status downloads downloads 2.5k 2.5k (Download count not included for v1.0.4 or earlier versions) GUIで動作する文書校正ツール GUI tool for textlinting. https://gecko655.hatenablog.com/entry/proofreading-tool https://github.com/gecko655/proofreading-tool/releases proofreading-tool Usage Install How to build Prepare # Fetch dependencies yarn install # Build webpack yarn webpack # or `npm run webpack-prod` or `npm run webpack-watch` The build artifacts should be located under the dist/ folder. Edit package.json to update version number. Push tag with the same version number with prefix 'v'. GitHub Action creates a draft release Release the draft. This software is released under GPLv3 LICENSE. This software uses xpdf(pdftotext), which is released under GPLv3 license. https://github.com/mixigroup Debug yarn start Test yarn lint # or `npm run lint:fix` (prettier fixes the code format) Build for production yarn webpack-prod yarn dist:mac # or `npm run dist:win` Release git tag vX.Y.Z git push --tags LICENSE special thanks
proofreading-tool === [![Build/release](https://github.com/gecko655/proofreading-tool/actions/workflows/electron-release.yml/badge.svg)](https://github.com/gecko655/proofreading-tool/actions/workflows/electron-release.yml) ![Github All Releases](https://img.shields.io/github/downloads/gecko655/proofreading-tool/total.svg) (Download count not included for v1.0.4 or earlier versions) ![proofreading-tool-demo](https://user-images.githubusercontent.com/6166778/116985820-f616d580-ad07-11eb-971f-60ec887cff67.gif) GUIで動作する文書校正ツール GUI tool for textlinting. # Usage https://gecko655.hatenablog.com/entry/proofreading-tool # Install https://github.com/gecko655/proofreading-tool/releases # How to build ## Prepare ```bash # Fetch dependencies yarn install # Build webpack yarn webpack # or `npm run webpack-prod` or `npm run webpack-watch` ``` ## Debug ```bash yarn start ``` ## Test ```bash yarn lint # or `npm run lint:fix` (prettier fixes the code format) ``` ## Build for production ```bash yarn webpack-prod yarn dist:mac # or `npm run dist:win` ``` The build artifacts should be located under the `dist/` folder. ## Release - Edit package.json to update version number. - Push tag with the same version number with prefix 'v'. ```bash git tag vX.Y.Z git push --tags ``` - [GitHub Action](https://github.com/gecko655/proofreading-tool/actions) creates a [draft release](https://github.com/gecko655/proofreading-tool/releases) - Release the draft. # LICENSE This software is released under [GPLv3 LICENSE](LICENSE). This software uses [xpdf(pdftotext)](https://www.xpdfreader.com/), which is released under GPLv3 license. # special thanks https://github.com/mixigroup
[ "Natural Language Interfaces", "Syntactic Text Processing", "Text Error Correction", "Text Normalization" ]
[]
true
https://github.com/kotofurumiya/genshin-dict
2021-05-04T13:59:24Z
Windows/macOSで使える原神の単語辞書です
kotofurumiya / genshin-dict Public 1 Branch 48 Tags Go to file Go to file Code kotofurumiya fix: duplicate 波しぶきのエラ 2a81084 · 2 months ago .github/w… docs genshin-d… scripts worddata .gitignore .prettierrc… CONTRI… LICENSE README… package-l… package.j… tsconfig.j… 原神の日本語入力用辞書です。 人名、地名、装備名などをカバーしています。 登録データについては登録単語の一覧をご覧ください。 About Windows/macOSで使える原神の単 語辞書です Readme Zlib license Activity 104 stars 7 watching 7 forks Report repository Releases 47 v5.0.1 Latest on Sep 16 + 46 releases Packages No packages published Contributors 3 kotofurumiya Koto Furumiya masayatoy xicri Xicri Languages TypeScript 99.9% JavaScript 0.1% Code Issues Pull requests 3 Actions Security Insights 原神辞書(Windows/macOS) 登録データ README Zlib license 以下のページより genshin-dictionary.zip をダウンロードしてください。 zipファイルを展開すると それぞれの環境用のファイルが入っています。 https://github.com/kotofurumiya/genshin-dict/releases/latest IME 対応ファイル 備考 Windows標準 原神辞書_Windows.txt macOSユーザ辞書 原神辞書_macOS_ユーザ辞書.plist macOS追加辞書 原神辞書_macOS.txt iPhoneユーザ辞書 mac経由で追加可能(後述) Google IME 原神辞書_Windows.txt macでもWindows用ファイルで追加可能 タスクバーの右のほうにあるIMEアイコンを右クリックします。 IMEアイコンは「A」とか「あ」みたい な表示になっていると思います。 「単語の追加」を選びます。 ダウンロード 対応IME 利用方法(Windows) 単語の登録ウィンドウが開くので、左下の「ユーザ辞書ツール」をクリックします。 ユーザ辞書ツールが開くので、「ツール」から「テキストファイルからの登録」を選びます。 ここでダウ ンロードしたファイルの中にある「原神辞書_Windows.txt」を選択します。 あとは自動的に登録されます。 macでは2つの方法で辞書を登録できます。 ユーザ辞書として扱う 普通の単語登録と同じ ユーザ辞書に単語が大量に並んでしまう iCloud同期ができる(macで登録するとiPhoneでも使える) 追加辞書として扱う あとで一括削除できる iCloudで同期できない(iPhoneで使えない) まずはiPhoneでも同時に使える、ユーザ辞書として扱う方法を紹介します。 macの設定から「キーボード」を開き、「ユーザ辞書」タブを選択します。 利用方法(macOSとiPhoneを同期) ダウンロードしたファイルの中にある「原神辞書_macOS_ユーザ辞書.plist」を左の単語欄にドラッグ& ドロップします。 これで登録は完了です。 次に追加辞書として扱う方法を紹介します。 この方法では設定がスッキリしますが、iPhoneと同期でき ません。 macの設定から「キーボード」を開き、「入力ソース」タブを選択します。 利用方法(macOSのみ) 左から「日本語」を選びそのまま下にスクロールすると「追加辞書」という項目が見えます。
# 原神辞書(Windows/macOS) [原神](https://genshin.hoyoverse.com/ja/home)の日本語入力用辞書です。 人名、地名、装備名などをカバーしています。 ## 登録データ 登録データについては[登録単語の一覧](./docs/dict_data.md)をご覧ください。 ## ダウンロード 以下のページより `genshin-dictionary.zip` をダウンロードしてください。 zipファイルを展開するとそれぞれの環境用のファイルが入っています。 https://github.com/kotofurumiya/genshin-dict/releases/latest ## 対応IME | IME | 対応ファイル | 備考 | |----------------:|:-------------------------------|:------------------------------| | Windows標準 | 原神辞書_Windows.txt | | | macOSユーザ辞書 | 原神辞書_macOS_ユーザ辞書.plist | | | macOS追加辞書 | 原神辞書_macOS.txt | | | iPhoneユーザ辞書 | | mac経由で追加可能(後述) | | Google IME | 原神辞書_Windows.txt | macでもWindows用ファイルで追加可能 | ## 利用方法(Windows) タスクバーの右のほうにあるIMEアイコンを右クリックします。 IMEアイコンは「A」とか「あ」みたいな表示になっていると思います。 ![](./docs/img/win_ime_menu.png) 「単語の追加」を選びます。 ![](./docs/img/win_addword.png) 単語の登録ウィンドウが開くので、左下の「ユーザ辞書ツール」をクリックします。 ![](./docs/img/win_userdict_tool.png) ユーザ辞書ツールが開くので、「ツール」から「テキストファイルからの登録」を選びます。 ここでダウンロードしたファイルの中にある「原神辞書_Windows.txt」を選択します。 ![](./docs/img/win_userdict_success.png) あとは自動的に登録されます。 ## 利用方法(macOSとiPhoneを同期) macでは2つの方法で辞書を登録できます。 - ユーザ辞書として扱う - 普通の単語登録と同じ - ユーザ辞書に単語が大量に並んでしまう - iCloud同期ができる(macで登録するとiPhoneでも使える) - 追加辞書として扱う - あとで一括削除できる - iCloudで同期できない(iPhoneで使えない) まずはiPhoneでも同時に使える、ユーザ辞書として扱う方法を紹介します。 macの設定から「キーボード」を開き、「ユーザ辞書」タブを選択します。 ![](./docs/img/mac_pref_userdict.png) ダウンロードしたファイルの中にある「原神辞書_macOS_ユーザ辞書.plist」を左の単語欄にドラッグ&ドロップします。 これで登録は完了です。 ## 利用方法(macOSのみ) 次に追加辞書として扱う方法を紹介します。 この方法では設定がスッキリしますが、iPhoneと同期できません。 macの設定から「キーボード」を開き、「入力ソース」タブを選択します。 ![](./docs/img/mac_pref_keyboard.png) 左から「日本語」を選びそのまま下にスクロールすると「追加辞書」という項目が見えます。 ![](./docs/img/mac_pref_add_dict.png) 右クリックして「辞書をインストール」を選んで、ダウンロードしたファイルの中にある「原神辞書_macOS.txt」を選択します。 これで辞書が利用できるはずです。 ## トラブルシューティング ### うまく変換できない 登録したばかりだと優先度が低めだったりで、変換候補としてなかなか出てこなかったりします。 何度も使って学習させましょう。 また単語区切りも適切でないことがあります。「岩王帝君」を変換しようとして「ガン王弟くん」のようになったり……。 この場合は変換しながらShiftキーを押しつつ矢印キーの左右で変換範囲を変えることができるので、うまく調整してみてください。 ### iPhone / Androidで使える? iPhoneはmacOSで同じAppleIDでログインして、ユーザ辞書として登録すれば同期されます。 iPhone単独で一括登録する方法は無さそうです。 Androidはあんまりわかってないです……。手元にPixel4 XLはあるんですが、開発用に持っているだけなので。 ## ライセンス プログラム部分は[Zlibライセンス](./LICENSE)となります。 Zlibライセンスでは「これは自分が作った」と嘘をつかない限り自由な個人利用・商用利用や改変が認められています。 辞書に含まれる単語はすべてmiHoYoのものとなります。 可能な限り個人的な活用にとどめ、商標などに抵触しない範囲でご利用ください。 ## Contributors - 鍾離先生( https://www.youtube.com/watch?v=0Lp5wBSXLMM ) - 古都こと( https://twitter.com/kfurumiya )
[]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/ken11/noyaki
2021-05-23T09:41:16Z
Converts character span label information to tokenized text-based label information.
ken11 / noyaki Public Branches Tags Go to file Go to file Code src/noy… tests .gitignore LICEN… READ… setup.py Converts character span label information to tokenized text-based label information. Pass the tokenized text and label information as arguments to the convert function. About No description, website, or topics provided. Readme MIT license Activity 6 stars 1 watching 0 forks Report repository Releases 1 add IOB2 format support Latest on Aug 25, 2022 Packages No packages published Languages Python 100.0% Code Issues Pull requests Actions Projects Security Insights noyaki Installation $ pip install noyaki Usage import noyaki label_list = noyaki.convert( ['明日', 'は', '田中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']] ) README MIT license If you want to remove the subword symbol (eg. ##), specify the subword argument. If you want to use IOB2 tag format, specify the scheme argument. Only Japanese is supported. supported tag formats are follow: BILOU IOB2 print(label_list) # ['O', 'O', 'U-PERSON', 'O', 'O', 'O'] import noyaki label_list = noyaki.convert( ['明日', 'は', '田', '##中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']], subword="##" ) print(label_list) # ['O', 'O', 'B-PERSON', 'L-PERSON', 'O', 'O', 'O'] import noyaki label_list = noyaki.convert( ['明日', 'は', '田', '##中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']], scheme="IOB2" ) print(label_list) # ['O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'O', 'O'] Note
# noyaki Converts character span label information to tokenized text-based label information. ## Installation ```sh $ pip install noyaki ``` ## Usage Pass the tokenized text and label information as arguments to the convert function. ```py import noyaki label_list = noyaki.convert( ['明日', 'は', '田中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']] ) print(label_list) # ['O', 'O', 'U-PERSON', 'O', 'O', 'O'] ``` If you want to remove the subword symbol (eg. ##), specify the `subword` argument. ```py import noyaki label_list = noyaki.convert( ['明日', 'は', '田', '##中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']], subword="##" ) print(label_list) # ['O', 'O', 'B-PERSON', 'L-PERSON', 'O', 'O', 'O'] ``` If you want to use IOB2 tag format, specify the `scheme` argument. ```py import noyaki label_list = noyaki.convert( ['明日', 'は', '田', '##中', 'さん', 'に', '会う'], [[3, 5, 'PERSON']], scheme="IOB2" ) print(label_list) # ['O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'O', 'O'] ``` ## Note Only Japanese is supported. supported tag formats are follow: - BILOU - IOB2
[ "Chunking", "Named Entity Recognition", "Syntactic Text Processing" ]
[]
true
https://github.com/chck/AugLy-jp
2021-06-13T09:48:45Z
Data Augmentation for Japanese Text on AugLy
chck / AugLy-jp Public Branches Tags Go to file Go to file Code .github augly_jp examples tests .gitignore LICENSE README.md poetry.lock pyproject.toml setup.cfg Data Augmentation for Japanese Text on AugLy python python 3.8 | 3.9 3.8 | 3.9 Test Test no status no status coverage coverage 83% 83% Code Quality code style code style black black base_text = "あらゆる現実をすべて自分のほうへねじ曲げたのだ" Augmenter Augmented Description SynonymAugmenter あらゆる現実をすべて自身のほうへねじ曲げ たのだ Substitute similar word according to Sudachi synonym WordEmbsAugmenter あらゆる現実をすべて関心のほうへねじ曲げ たのだ Leverage word2vec, GloVe or fasttext embeddings to apply augmentation FillMaskAugmenter つまり現実を、未来な未来まで変えたいんだ Using masked language model to generate text BackTranslationAugmenter そして、ほかの人たちをそれぞれの道に安置 しておられた Leverage two translation models for augmentation Software Install Command Python 3.8.11 pyenv install 3.8.11 Poetry 1.1.* curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python About Data Augmentation for Japanese Text on AugLy # natural-language-processing # japanese # data-augmentation # sudachi # ginza # nlpaug # augly Readme MIT license Activity 7 stars 2 watching 0 forks Report repository Releases 8 tags Languages Python 100.0% Code Issues 4 Pull requests Actions Projects Security Insights AugLy-jp Augmenter Prerequisites Get Started Installation README MIT license Or clone this repository: https://github.com/facebookresearch/AugLy https://github.com/makcedward/nlpaug https://github.com/QData/TextAttack This software includes the work that is distributed in the Apache License 2.0 [1]. pip install augly-jp git clone https://github.com/chck/AugLy-jp.git poetry install Test with reformat poetry run task test Reformat poetry run task fmt Lint poetry run task lint Inspired License
# AugLy-jp > Data Augmentation for **Japanese Text** on AugLy [![PyPI Version][pypi-image]][pypi-url] [![Python Version][python-image]][python-image] [![Python Test][test-image]][test-url] [![Test Coverage][coverage-image]][coverage-url] [![Code Quality][quality-image]][quality-url] [![Python Style Guide][black-image]][black-url] ## Augmenter `base_text = "あらゆる現実をすべて自分のほうへねじ曲げたのだ"` Augmenter | Augmented | Description :---:|:---:|:---: SynonymAugmenter|あらゆる現実をすべて自身のほうへねじ曲げたのだ|Substitute similar word according to [Sudachi synonym](https://github.com/WorksApplications/SudachiDict/blob/develop/docs/synonyms.md) WordEmbsAugmenter|あらゆる現実をすべて関心のほうへねじ曲げたのだ|Leverage word2vec, GloVe or fasttext embeddings to apply augmentation FillMaskAugmenter|つまり現実を、未来な未来まで変えたいんだ|Using masked language model to generate text BackTranslationAugmenter|そして、ほかの人たちをそれぞれの道に安置しておられた|Leverage two translation models for augmentation ## Prerequisites | Software | Install Command | |----------------------------|----------------------------| | [Python 3.8.11][python] | `pyenv install 3.8.11` | | [Poetry 1.1.*][poetry] | `curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py \| python`| [python]: https://www.python.org/downloads/release/python-3811/ [poetry]: https://python-poetry.org/ ## Get Started ### Installation ```bash pip install augly-jp ``` Or clone this repository: ```bash git clone https://github.com/chck/AugLy-jp.git poetry install ``` ### Test with reformat ```bash poetry run task test ``` ### Reformat ```bash poetry run task fmt ``` ### Lint ```bash poetry run task lint ``` ## Inspired - https://github.com/facebookresearch/AugLy - https://github.com/makcedward/nlpaug - https://github.com/QData/TextAttack ## License This software includes the work that is distributed in the Apache License 2.0 [[1]][apache1-url]. [pypi-image]: https://badge.fury.io/py/augly-jp.svg [pypi-url]: https://badge.fury.io/py/augly-jp [python-image]: https://img.shields.io/pypi/pyversions/augly-jp.svg [test-image]: https://github.com/chck/AugLy-jp/workflows/Test/badge.svg [test-url]: https://github.com/chck/Augly-jp/actions?query=workflow%3ATest [coverage-image]: https://img.shields.io/codecov/c/github/chck/AugLy-jp?color=%2334D058 [coverage-url]: https://codecov.io/gh/chck/AugLy-jp [quality-image]: https://img.shields.io/lgtm/grade/python/g/chck/AugLy-jp.svg?logo=lgtm&logoWidth=18 [quality-url]: https://lgtm.com/projects/g/chck/AugLy-jp/context:python [black-image]: https://img.shields.io/badge/code%20style-black-black [black-url]: https://github.com/psf/black [apache1-url]: https://github.com/cl-tohoku/bert-japanese/blob/v2.0/LICENSE
[ "Language Models", "Low-Resource NLP", "Representation Learning", "Text Generation" ]
[]
true
https://github.com/po3rin/hirakanadic
2021-06-22T07:41:42Z
Allows Sudachi to normalize from hiragana to katakana from any compound word list
po3rin / hirakanadic Public Branches Tags Go to file Go to file Code .github… example hiraka… tests .gitignore .pytho… Makefile READ… poetry.l… pyproj… pypi pypi v0.0.4 v0.0.4 PyTest PyTest no status no status python python 3.7+ 3.7+ About Allows Sudachi to normalize from hiragana to katakana from any compound word list Readme Activity 7 stars 3 watching 0 forks Report repository Releases No releases published Packages No packages published Languages Python 98.3% Makefile 1.7% Code Issues Pull requests Actions Projects Security Insights hirakanadic Install $ pip install hirakanadic Usage $ hirakanadic example/input.txt -o out.txt README input file result コレステロール値 陰のうヘルニア 濾胞性リンパ腫 コリネバクテリウム・ウルセランス感染症 これすてろーる,5146,5146,7000,これすてろーる, 名詞,普通名詞,一般,*,*,*,コレステロール,コレス テロール,*,*,*,*,* へるにあ,5146,5146,7000,へるにあ,名詞,普通名 詞,一般,*,*,*,ヘルニア,ヘルニア,*,*,*,*,* こりねばくてりうむ,5146,5146,7000,こりねばくて りうむ,名詞,普通名詞,一般,*,*,*,コリネバクテリ ウム,コリネバクテリウム,*,*,*,*,* うるせらんす,5146,5146,7000,うるせらんす,名 詞,普通名詞,一般,*,*,*,ウルセランス,ウルセラン ス,*,*,*,*,*
# hirakanadic [![PyPi version](https://img.shields.io/pypi/v/hirakanadic.svg)](https://pypi.python.org/pypi/hirakanadic/) ![PyTest](https://github.com/po3rin/hirakanadic/workflows/PyTest/badge.svg) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/release/python-390/) ## Install ```sh $ pip install hirakanadic ``` ## Usage ```sh $ hirakanadic example/input.txt -o out.txt ``` input file ``` コレステロール値 陰のうヘルニア 濾胞性リンパ腫 コリネバクテリウム・ウルセランス感染症 ``` result ``` これすてろーる,5146,5146,7000,これすてろーる,名詞,普通名詞,一般,*,*,*,コレステロール,コレステロール,*,*,*,*,* へるにあ,5146,5146,7000,へるにあ,名詞,普通名詞,一般,*,*,*,ヘルニア,ヘルニア,*,*,*,*,* こりねばくてりうむ,5146,5146,7000,こりねばくてりうむ,名詞,普通名詞,一般,*,*,*,コリネバクテリウム,コリネバクテリウム,*,*,*,*,* うるせらんす,5146,5146,7000,うるせらんす,名詞,普通名詞,一般,*,*,*,ウルセランス,ウルセランス,*,*,*,*,* ```
[ "Syntactic Text Processing", "Term Extraction", "Text Normalization" ]
[]
true
https://github.com/Netdex/niinii
2021-06-26T23:05:50Z
Japanese glossator for assisted reading of text using Ichiran
Netdex / niinii Public Branches Tags Go to file Go to file Code ichiran niinii openai… third-p… .gitignore .gitmo… Cargo.l… Cargo.… LICEN… NOTICE READ… This project is a work-in-progress. About Japanese glossator for assisted reading of text using Ichiran # language # translation # dictionary # japanese # visual-novel # japanese-language # gloss Readme MIT license Activity 7 stars 2 watching 0 forks Report repository Releases 1 tags Packages No packages published Languages Rust 100.0% Code Issues Pull requests Actions Projects Security Insights niinii README MIT license Demonstration niinii (knee-knee) is a graphical frontend for glossing Japanese text. Useful for assisted reading of text for language learning purposes. A primary use case is glossing visual novels, which is shown in the demonstration above. I made this tool with the express intent to read a single specific visual novel, which is also where the name comes from. If someone else finds it useful that's cool too. For example, in the demonstration above, I use niinii along with a text hooker to gloss the dialogue in a visual novel. The segmented phrase along with ruby text (i.e. furigana) is displayed. Hovering over a segment will show dictionary definitions and inflections from JMDict. You can pop open a separate window by clicking on a segment. Hovering over kanji will show kanji information from KANJIDIC2. I would write a more detailed user manual but I think you can probably figure it out. Japanese language support is implemented using Ichiran by tshatrov. Ichiran is pretty amazing at text segmentation compared to other tools I've tried. This is a tool created to service a personal need, and may not be useful to you. Below, I laid out my personal justification for investing time into creating this tool. If you agree, then this tool may be useful for you. Why not use MeCab, JParser, ChaSen, Jisho etc.?: In my experience ichiran is much better at segmentation, provides more metadata, and makes fewer mistakes. Why not use rikai(kun|chan), JGlossator?: They don't do segmentation. Why not use DeepL, Google Translate, etc.?: I want a gloss, not a translation tool. If I ever integrate translation features, I'd like to do so in a way that supplements the gloss rather than dumping text. Why not use the web frontend ichi.moe?: There are some features I'd like to experiment with to improve the glossing experience. Why not use... Prepackaged builds are available in the Releases section of this repository. The only target that is properly maintained is x86_64-pc- windows-msvc . There's nothing stopping it from working on other targets (e.g. Linux), but additional work may be required. To build the application from source on Windows: If using the hooking feature, the bitness of the DLL must match the target application. To build a 32-bit application: For Japanese language support, the following additional components are required: ichiran-cli (Ichiran) PostgreSQL installation with Ichiran database You must provide the location of these additional components in the Settings pane of the application. Given that the process of building these components for use with niinii is quite involved, prebuilt versions are included with the prepackaged builds. Seems like a problem with winit. niinii is almost always used in the foreground anyways because of always on top, so I'm not going to bother fixing this. Build # install vcpkg git clone https://github.com/microsoft/vcpkg .\vcpkg\bootstrap-vcpkg.bat # install freetype vcpkg install freetype:x64-windows-static-md git clone https://github.com/Netdex/niinii.git cd niinii cargo build --release cargo +stable-i686-pc-windows-msvc build -- target i686-pc-windows-msvc --release Known Issues High CPU usage when out of focus Most visual novels are written in engines which use D3D9. This is not always true though, you may need to adjust the hooking code as necessary. There is limited recovery code for when frame buffers are resized, devices are reset, contexts are changed etc. This may lead to breakages when switching in and out full- screen mode, resizing the window, and switching to another application. Some visual novel engines will present only when necessary rather than at a fixed framerate. In this case, niinii won't work properly since it expects a fixed refresh rate. In overlay mode, niinii displays a transparent window which covers the entire screen. Newer Chromium-based browsers have a feature which suspends drawing when the window is fully occluded, for performance reasons. The window displayed by niinii counts as full occlusion despite being transparent, which causes Chromium-based browsers to suspend drawing. I suspect this could also happen with some Electron apps, but I haven't tested it. TODO See NOTICE for a list of third-party software used in this Hooking not working Issues with Chromium-based browsers Troubleshooting Third-party
[ "Multilinguality", "Representation Learning", "Syntactic Text Processing" ]
[ "Vocabulary, Dictionary, and Language Input Method" ]
true
https://github.com/yagays/ja-timex
2021-07-19T12:51:35Z
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器
yagays / ja-timex Public 42 Branches 17 Tags Go to file Go to file Code yagays bump up version to 0.2.8 5d72377 · last year .github docs ja_timex tests tools .gitignore LICENSE README.md poetry.lock pyproject.toml setup.cfg tox.ini About 自然言語で書かれた時間情報表現を 抽出/規格化するルールベースの解 析器 # python # nlp # datetime # regular-expression # temporal # time-parsing Readme MIT license Activity 134 stars 2 watching 9 forks Report repository Releases 17 v0.2.8 Latest on Nov 4, 2023 + 16 releases Contributors 4 yagays Yuki Okuda tpdn shirayu Yuta Hayashibe otokunaga2 otokunaga Languages Python 100.0% Code Issues 2 Pull requests Actions Projects Wiki Security Insights ja-timex README License 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3 と呼ばれるアノテーショ ン仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。 以下の機能を持っています。 ルールベースによる日本語テキストからの日付や時刻、期間や頻度といった時間情報表現を抽出 アラビア数字/漢数字、西暦/和暦などの多彩なフォーマットに対応 時間表現のdatetime/timedeltaオブジェクトへの変換サポート ja-timex documentation 本パッケージは、以下の論文で提案されている時間情報アノテーションの枠組みを元に作成しています。 概要 入力 from ja_timex import TimexParser timexes = TimexParser().parse("彼は2008年4月から週に3回のジョギングを、朝8時から1時間行ってきた") 出力 [<TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月">, <TIMEX3 tid="t1" type="SET" value="P1W" freq="3X" text="週に3回">, <TIMEX3 tid="t2" type="TIME" value="T08-XX-XX" text="朝8時">, <TIMEX3 tid="t3" type="DURATION" value="PT1H" text="1時間">] datetime/timedeltaへの変換 # <TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月"> In []: timexes[0].to_datetime() Out[]: DateTime(2008, 4, 1, 0, 0, 0, tzinfo=Timezone('Asia/Tokyo')) # <TIMEX3 tid="t3" type="DURATION" value="PT1H" text="1時間"> In []: timexes[3].to_duration() Out[]: Duration(hours=1) インストール pip install ja-timex ドキュメント 参考仕様 [1] 小西光, 浅原正幸, & 前川喜久雄. (2013). 『現代日本語書き言葉均衡コーパス』 に対する時間情報アノテ ーション. 自然言語処理, 20(2), 201-221. [2] 成澤克麻 (2014)「自然言語処理における数量表現の取り扱い」東北大学大学院 修士論文
![](docs/docs/img/logo_title_wide.png) # ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 ## 概要 `ja-timex` は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出し`TIMEX3`と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。 以下の機能を持っています。 - ルールベースによる日本語テキストからの日付や時刻、期間や頻度といった時間情報表現を抽出 - アラビア数字/漢数字、西暦/和暦などの多彩なフォーマットに対応 - 時間表現のdatetime/timedeltaオブジェクトへの変換サポート ### 入力 ```python from ja_timex import TimexParser timexes = TimexParser().parse("彼は2008年4月から週に3回のジョギングを、朝8時から1時間行ってきた") ``` ### 出力 ```python [<TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月">, <TIMEX3 tid="t1" type="SET" value="P1W" freq="3X" text="週に3回">, <TIMEX3 tid="t2" type="TIME" value="T08-XX-XX" text="朝8時">, <TIMEX3 tid="t3" type="DURATION" value="PT1H" text="1時間">] ``` ### datetime/timedeltaへの変換 ```python # <TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月"> In []: timexes[0].to_datetime() Out[]: DateTime(2008, 4, 1, 0, 0, 0, tzinfo=Timezone('Asia/Tokyo')) ``` ```python # <TIMEX3 tid="t3" type="DURATION" value="PT1H" text="1時間"> In []: timexes[3].to_duration() Out[]: Duration(hours=1) ``` ## インストール ``` pip install ja-timex ``` ## ドキュメント [ja\-timex documentation](https://ja-timex.github.io/docs/) ### 参考仕様 本パッケージは、以下の論文で提案されている時間情報アノテーションの枠組みを元に作成しています。 - [1] [小西光, 浅原正幸, & 前川喜久雄. (2013). 『現代日本語書き言葉均衡コーパス』 に対する時間情報アノテーション. 自然言語処理, 20(2), 201-221.](https://www.jstage.jst.go.jp/article/jnlp/20/2/20_201/_article/-char/ja/) - [2] [成澤克麻 (2014)「自然言語処理における数量表現の取り扱い」東北大学大学院 修士論文](http://www.cl.ecei.tohoku.ac.jp/publications/2015/mthesis2013_narisawa_submitted.pdf)
[ "Information Extraction & Text Mining", "Named Entity Recognition" ]
[]