Datasets:
Tasks:
Automatic Speech Recognition
Formats:
json
Languages:
Ukrainian
Size:
10K - 100K
Tags:
podcasts
License:
Commit
·
c41c3f9
1
Parent(s):
eeaa7fe
usage
Browse files
README.md
CHANGED
@@ -10,6 +10,48 @@ task_categories:
|
|
10 |
---
|
11 |
# uk-pods - speech datasets of Ukrainian podcasts.
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
```
|
14 |
Number of wav files: 34231
|
15 |
Total duration: 51.066 hours
|
@@ -18,3 +60,8 @@ MAX duration: 19.999 sec
|
|
18 |
MEAN duration: 5.370 sec
|
19 |
MEDIAN duration: 4.640 sec
|
20 |
```
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
# uk-pods - speech datasets of Ukrainian podcasts.
|
12 |
|
13 |
+
## Preparation
|
14 |
+
|
15 |
+
1. Clone the dataset repository and extract the content of `clips.tar.gz` archive.
|
16 |
+
|
17 |
+
|
18 |
+
```
|
19 |
+
git clone https://huggingface.co/datasets/taras-sereda/uk-pods
|
20 |
+
cd uk-pods && tar -zxvf clips.tar.gz
|
21 |
+
```
|
22 |
+
|
23 |
+
2. To use these manifests for training/inference with NeMo [1] modify `audio_filepath` to absolute locations of audio files extracted in previous step.
|
24 |
+
```
|
25 |
+
# data_root=<clonned_repo_dir> # /home/ubuntu/uk-pods
|
26 |
+
data_root=$(realpath .)
|
27 |
+
sed -i -e "s|\"audio_filepath\":\"|\"audio_filepath\":\"${data_root}\/|g" pods_train.json
|
28 |
+
sed -i -e "s|\"audio_filepath\":\"|\"audio_filepath\":\"${data_root}\/|g" pods_test.json
|
29 |
+
```
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
1. Install NeMo toolkit
|
34 |
+
```
|
35 |
+
pip install nemo_toolkit['all']
|
36 |
+
```
|
37 |
+
|
38 |
+
2. Run inference with **uk-pods-conformer** [2] on all files from `pods_test.json` manifest:
|
39 |
+
```
|
40 |
+
import json
|
41 |
+
from nemo.collections.asr.models import EncDecCTCModelBPE
|
42 |
+
asr_model = EncDecCTCModelBPE.from_pretrained("taras-sereda/uk-pods-conformer")
|
43 |
+
|
44 |
+
with open('pods_test.json') as fd:
|
45 |
+
audio_paths = []
|
46 |
+
for line in fd:
|
47 |
+
audio_paths.append(json.loads(line)['audio_filepath'])
|
48 |
+
|
49 |
+
transcripts = asr_model.transcribe(audio_paths)
|
50 |
+
```
|
51 |
+
|
52 |
+
|
53 |
+
## Dataset statistics
|
54 |
+
|
55 |
```
|
56 |
Number of wav files: 34231
|
57 |
Total duration: 51.066 hours
|
|
|
60 |
MEAN duration: 5.370 sec
|
61 |
MEDIAN duration: 4.640 sec
|
62 |
```
|
63 |
+
|
64 |
+
## References
|
65 |
+
|
66 |
+
- [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
67 |
+
- [2] [uk-pods-coformer ASR mode](https://huggingface.co/taras-sereda/uk-pods-conformer)
|