nielsr HF Staff commited on
Commit
b7ae43d
·
verified ·
1 Parent(s): f3fafde

Improve dataset card: Add description, paper link, tags, and sample usage for AQUA20

Browse files

This PR enhances the AQUA20 dataset card by:
- Adding a descriptive overview of the dataset based on the paper's abstract to the content section.
- Including a direct link to the associated paper on the Hugging Face Hub (https://huggingface.co/papers/2506.17455) for easy access.
- Providing a Python code snippet for sample usage, demonstrating how to load and interact with the dataset using the `datasets` library.
- Adding relevant tags (`underwater`, `marine-biology`, `species-classification`, `benchmark`) to the metadata for improved discoverability and categorization.

The existing comprehensive dataset information and the BibTeX citation are preserved.

Files changed (1) hide show
  1. README.md +49 -5
README.md CHANGED
@@ -1,4 +1,13 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: image
@@ -43,12 +52,46 @@ configs:
43
  path: data/train-*
44
  - split: test
45
  path: data/test-*
46
- task_categories:
47
- - image-classification
48
- language:
49
- - en
50
  ---
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ## Citation
53
 
54
  ```bibtex
@@ -60,4 +103,5 @@ language:
60
  archivePrefix={arXiv},
61
  primaryClass={cs.CV},
62
  url={https://arxiv.org/abs/2506.17455},
63
- }
 
 
1
  ---
2
+ language:
3
+ - en
4
+ task_categories:
5
+ - image-classification
6
+ tags:
7
+ - underwater
8
+ - marine-biology
9
+ - species-classification
10
+ - benchmark
11
  dataset_info:
12
  features:
13
  - name: image
 
52
  path: data/train-*
53
  - split: test
54
  path: data/test-*
 
 
 
 
55
  ---
56
 
57
+ # AQUA20 Dataset
58
+
59
+ The AQUA20 dataset is a comprehensive benchmark dataset designed for **underwater species classification** under challenging real-world conditions. It comprises 8,171 underwater images across 20 distinct marine species, specifically curated to reflect environmental complexities such as turbidity, low illumination, and occlusion, which commonly degrade the performance of standard vision systems. This dataset provides a valuable resource for advancing robust visual recognition in aquatic environments.
60
+
61
+ The dataset was presented in the paper [AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions](https://huggingface.co/papers/2506.17455).
62
+
63
+ ## Sample Usage
64
+
65
+ You can easily load the AQUA20 dataset using the Hugging Face `datasets` library:
66
+
67
+ ```python
68
+ from datasets import load_dataset
69
+
70
+ # Load the dataset
71
+ dataset = load_dataset("AQUA20")
72
+
73
+ # Access the training split
74
+ train_dataset = dataset["train"]
75
+ print(f"Number of examples in training set: {len(train_dataset)}")
76
+
77
+ # Access the test split
78
+ test_dataset = dataset["test"]
79
+ print(f"Number of examples in test set: {len(test_dataset)}")
80
+
81
+ # Example of accessing an image and its label
82
+ example = train_dataset[0]
83
+ image = example["image"]
84
+ label = example["label"]
85
+ print(f"Example label: {label} (Class Name: {train_dataset.features['label'].names[label]})")
86
+
87
+ # You can optionally display the image if you have PIL and matplotlib installed
88
+ # import matplotlib.pyplot as plt
89
+ # plt.imshow(image)
90
+ # plt.title(f"Label: {train_dataset.features['label'].names[label]}")
91
+ # plt.axis('off')
92
+ # plt.show()
93
+ ```
94
+
95
  ## Citation
96
 
97
  ```bibtex
 
103
  archivePrefix={arXiv},
104
  primaryClass={cs.CV},
105
  url={https://arxiv.org/abs/2506.17455},
106
+ }
107
+ ```