--- language: - en task_categories: - image-classification tags: - underwater - marine-biology - species-classification - benchmark dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': coral '1': crab '2': diver '3': eel '4': fish '5': fishInGroups '6': flatworm '7': jellyfish '8': marine_dolphin '9': octopus '10': rayfish '11': seaAnemone '12': seaCucumber '13': seaSlug '14': seaUrchin '15': shark '16': shrimp '17': squid '18': starfish '19': turtle splits: - name: train num_bytes: 102853257.2 num_examples: 6559 - name: test num_bytes: 23452132.448 num_examples: 1612 download_size: 199773745 dataset_size: 126305389.648 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # AQUA20 Dataset The AQUA20 dataset is a comprehensive benchmark dataset designed for **underwater species classification** under challenging real-world conditions. It comprises 8,171 underwater images across 20 distinct marine species, specifically curated to reflect environmental complexities such as turbidity, low illumination, and occlusion, which commonly degrade the performance of standard vision systems. This dataset provides a valuable resource for advancing robust visual recognition in aquatic environments. The dataset was presented in the paper [AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions](https://huggingface.co/papers/2506.17455). ## Sample Usage You can easily load the AQUA20 dataset using the Hugging Face `datasets` library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("AQUA20") # Access the training split train_dataset = dataset["train"] print(f"Number of examples in training set: {len(train_dataset)}") # Access the test split test_dataset = dataset["test"] print(f"Number of examples in test set: {len(test_dataset)}") # Example of accessing an image and its label example = train_dataset[0] image = example["image"] label = example["label"] print(f"Example label: {label} (Class Name: {train_dataset.features['label'].names[label]})") # You can optionally display the image if you have PIL and matplotlib installed # import matplotlib.pyplot as plt # plt.imshow(image) # plt.title(f"Label: {train_dataset.features['label'].names[label]}") # plt.axis('off') # plt.show() ``` ## Citation ```bibtex @misc{fuad2025aqua20benchmarkdatasetunderwater, title={AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions}, author={Taufikur Rahman Fuad and Sabbir Ahmed and Shahriar Ivan}, year={2025}, eprint={2506.17455}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.17455}, } ```