File size: 1,291 Bytes
e976bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a1c7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
dataset_info:
  features:
  - name: latent
    sequence:
      sequence:
        sequence: float32
  splits:
  - name: train
    num_bytes: 3427164684
    num_examples: 202599
  download_size: 3338993120
  dataset_size: 3427164684
---
# Dataset Card for "latent_celebA_256px"

Each image is cropped to 256px square and encoded to a 4x32x32 latent representation using the same VAE as that employed by Stable Diffusion

Decoding
```python
from diffusers import AutoencoderKL
from datasets import load_dataset
from PIL import Image
import numpy as np
import torch
# load the dataset
dataset = load_dataset('tglcourse/latent_celebA_256px')
# Load the VAE (requires access - see repo model card for info)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
latent = torch.tensor([dataset['train'][0]['latent']]) # To tensor (bs, 4, 32, 32)
latent = (1 / 0.18215) * latent # Scale to match SD implementation
with torch.no_grad():
    image = vae.decode(latent).sample[0] # Decode 
image = (image / 2 + 0.5).clamp(0, 1) # To (0, 1)
image = image.detach().cpu().permute(1, 2, 0).numpy() # To numpy, channels lsat
image = (image * 255).round().astype("uint8") # (0, 255) and type uint8
image = Image.fromarray(image) # To PIL
image # The resulting PIL image
```