Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
License:
File size: 2,834 Bytes
6186068 a1cc0d4 cf9ef57 6186068 cf9ef57 6186068 3d788d0 6186068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: Ontonotes5
---
# Dataset Card for "tner/ontonotes5"
## Dataset Description
- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/N06-2015/](https://aclanthology.org/N06-2015/)
- **Dataset:** Ontonotes5
- **Domain:** News
- **Number of Entity:** 8
### Dataset Summary
Ontonotes5 NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `CARDINAL`, `DATE`, `PERSON`, `NORP`, `GPE`, `LAW`, `PERCENT`, `ORDINAL`, `MONEY`, `WORK_OF_ART`, `FAC`, `TIME`, `QUANTITY`, `PRODUCT`, `LANGUAGE`, `ORG`, `LOC`, `EVENT`
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
'tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 11, 12, 12, 12, 12, 0, 0, 7, 0, 0, 0, 0, 0],
'tokens': ['``', 'It', "'s", 'very', 'costly', 'and', 'time', '-', 'consuming', ',', "''", 'says', 'Phil', 'Rosen', ',', 'a', 'partner', 'in', 'Fleet', '&', 'Leasing', 'Management', 'Inc.', ',', 'a', 'Boston', 'car', '-', 'leasing', 'company', '.']
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/onotonotes5/raw/main/dataset/label.json).
```python
{
"O": 0,
"B-CARDINAL": 1,
"B-DATE": 2,
"I-DATE": 3,
"B-PERSON": 4,
"I-PERSON": 5,
"B-NORP": 6,
"B-GPE": 7,
"I-GPE": 8,
"B-LAW": 9,
"I-LAW": 10,
"B-ORG": 11,
"I-ORG": 12,
"B-PERCENT": 13,
"I-PERCENT": 14,
"B-ORDINAL": 15,
"B-MONEY": 16,
"I-MONEY": 17,
"B-WORK_OF_ART": 18,
"I-WORK_OF_ART": 19,
"B-FAC": 20,
"B-TIME": 21,
"I-CARDINAL": 22,
"B-LOC": 23,
"B-QUANTITY": 24,
"I-QUANTITY": 25,
"I-NORP": 26,
"I-LOC": 27,
"B-PRODUCT": 28,
"I-TIME": 29,
"B-EVENT": 30,
"I-EVENT": 31,
"I-FAC": 32,
"B-LANGUAGE": 33,
"I-PRODUCT": 34,
"I-ORDINAL": 35,
"I-LANGUAGE": 36
}
```
### Data Splits
| name |train|validation|test|
|---------|----:|---------:|---:|
|ontonotes5|59924| 8528|8262|
### Citation Information
```
@inproceedings{hovy-etal-2006-ontonotes,
title = "{O}nto{N}otes: The 90{\%} Solution",
author = "Hovy, Eduard and
Marcus, Mitchell and
Palmer, Martha and
Ramshaw, Lance and
Weischedel, Ralph",
booktitle = "Proceedings of the Human Language Technology Conference of the {NAACL}, Companion Volume: Short Papers",
month = jun,
year = "2006",
address = "New York City, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N06-2015",
pages = "57--60",
}
``` |