Update README.md
Browse files
README.md
CHANGED
|
@@ -4,9 +4,225 @@ task_categories:
|
|
| 4 |
- text-generation
|
| 5 |
language:
|
| 6 |
- en
|
|
|
|
|
|
|
| 7 |
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- agent
|
| 9 |
-
|
| 10 |
size_categories:
|
| 11 |
- n<1K
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- text-generation
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
+
multilinguality:
|
| 8 |
+
- monolingual
|
| 9 |
tags:
|
| 10 |
+
- nlg
|
| 11 |
+
- generation
|
| 12 |
+
- drone
|
| 13 |
+
- data-to-text
|
| 14 |
- agent
|
| 15 |
+
pretty_name: drone
|
| 16 |
size_categories:
|
| 17 |
- n<1K
|
| 18 |
|
| 19 |
+
configs:
|
| 20 |
+
- config_name: default
|
| 21 |
+
data_files:
|
| 22 |
+
- split: train
|
| 23 |
+
path: "all_train.csv"
|
| 24 |
+
- split: val
|
| 25 |
+
path: "all_val.csv"
|
| 26 |
+
- split: test
|
| 27 |
+
path: "all_test.csv"
|
| 28 |
+
default: true
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Dataset Card for **Retrieval-Augmented Modular Prompt Tuning for Low-Resource Data-to-Text Generation (RAMP)**
|
| 33 |
+
|
| 34 |
+
**[Hugging Face Dataset](https://huggingface.co/datasets/tonyhong/ramp)** | **[GitHub Repository](https://github.com/tony-hong/ramp)** | **[paper](https://aclanthology.org/2024.lrec-main.1224v2.pdf)** | **[Gitlab Repository](https://gitlab.com/forfrt/drone/-/tree/main?ref_type=heads)**
|
| 35 |
+
|
| 36 |
+
<!-- Provide a quick summary of the dataset. -->
|
| 37 |
+
|
| 38 |
+
RAMP provides a prepared version of a low-resource **data-to-text** corpus for **drone handover message generation**: structured sensor records (status + time-step object lists) paired with natural-language “handover” messages describing critical situations. The release includes raw/filtered splits and domain-specific subsets (e.g., *urban, rural, ocean, desert, island, factory, disturbance, misc*), suitable for training and evaluating retrieval-augmented and prompt-tuned models.
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## Dataset Details
|
| 43 |
+
|
| 44 |
+
### Dataset Links
|
| 45 |
+
|
| 46 |
+
- **Paper (LREC-COLING 2024):** *Retrieval-Augmented Modular Prompt Tuning for Low-Resource Data-to-Text Generation*
|
| 47 |
+
- **Code & Data:** GitHub repo (experiments)
|
| 48 |
+
- **HF Dataset:** `tonyhong/ramp` (CSV files with train/val/test + subsets)
|
| 49 |
+
|
| 50 |
+
### Dataset Description
|
| 51 |
+
|
| 52 |
+
The dataset targets **low-resource data-to-text (D2T)** generation where models verbalize *structured* inputs into faithful messages. Instances pair:
|
| 53 |
+
|
| 54 |
+
- **Input:** a drone **status** dictionary (e.g., wind speed, battery level, altitude, pilot experience, etc.) and a time-ordered list of **time-step objects** near the flight path (type, distance, moving/in-path flags, timestamps).
|
| 55 |
+
- **Output:** a **handover message** (English) that surfaces only *critical* information (e.g., “Risk of physical damage! There is a castle in the drone’s flight path at a distance of 2.5 m.”)
|
| 56 |
+
|
| 57 |
+
The RAMP paper reports a **low-resource** setup with ~**1.6K data points** (input–output pairs). Inputs average **~541 tokens** (range ~274–2481), and outputs average **~149 tokens** (range ~29–1263), reflecting long, information-dense inputs common in real-time settings. The dataset is organized to support **retrieval-augmented** few-shot prompting and **modular prompt-tuning**.
|
| 58 |
+
|
| 59 |
+
- **Curated by:** Ruitao Feng, Xudong Hong, Mayank Jobanputra, Mattes Warning, Vera Demberg
|
| 60 |
+
- **Language(s) (NLP):** English
|
| 61 |
+
- **License:** Apache License 2.0
|
| 62 |
+
|
| 63 |
+
> **Provenance:** The content ultimately derives from a drone sensor/utterance corpus introduced by Chang et al. (LREC 2022). RAMP repackages/extends the resource with splits, filtered variants, and files that support retrieval-augmented and modular-prompt workflows.
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
## Dataset Structure
|
| 68 |
+
|
| 69 |
+
The dataset is distributed as **CSV** files. You’ll find:
|
| 70 |
+
|
| 71 |
+
- **Top-level splits**
|
| 72 |
+
- `all_raw_train.csv`, `all_raw_val.csv`, `all_raw_test.csv`
|
| 73 |
+
- Filtered counterparts: `*_filtered_with_oneshot.csv`
|
| 74 |
+
- **Domain subsets** (each with `train/val/test`): `urban_*`, `rural_*`, `ocean_*`, `desert_*`, `island_*`, `factory_*`, `disturbance_*`, `misc_*`
|
| 75 |
+
- **Auxiliary files:** e.g., `DroneDataset_keywords_paraphrase_latest - Sheet1.csv` (keywords/paraphrases), and compact “drone_v*” CSVs for minimal examples.
|
| 76 |
+
|
| 77 |
+
### Data Fields (columns)
|
| 78 |
+
|
| 79 |
+
> Field names below reflect the `all_*` CSVs; JSON is provided as strings.
|
| 80 |
+
|
| 81 |
+
- **`summary`** *(string)* — The handover message text. Often contains multiple segments with inline timestamps separated by `[SEP]`.
|
| 82 |
+
- **`status`** *(JSON as string)* — A single time-invariant status dict for the 10-s snapshot (e.g., wind speed, battery level, altitude, pilot experience, criticality flags).
|
| 83 |
+
- **`timestep`** *(JSON as string)* — A list of detected objects per second with attributes: `name`, `Type`, `Moving`, `InPath`, `Distance`, `time_stamp`, `ID_obj`.
|
| 84 |
+
- **`related_status`** *(JSON as string)* — A *reduced* set of status attributes most relevant to the handover (critical attributes).
|
| 85 |
+
- **`related_timestep`** *(JSON as string)* — A *reduced* set of time-step object info relevant to the handover.
|
| 86 |
+
- **`related_sensor_data`** *(JSON as string)* — Bundles `status` + `timestep` for convenience (subsetted to relevant parts).
|
| 87 |
+
- **`templates`** *(string)* — Template-like text variants used for retrieval/one-shot prompting (if present).
|
| 88 |
+
- **`link`** *(string URL)* — Pointer to a short video snapshot (Google Drive) illustrating the scenario (may be unavailable/archived).
|
| 89 |
+
- **`source`** *(string/int)* — Internal identifier/index for traceability.
|
| 90 |
+
|
| 91 |
+
> Notes: Some CSVs include long JSON strings; use robust CSV readers (`quotechar` and `escapechar` set appropriately). Filtered files remove noisy rows and provide a consistent one-shot example alongside each item for RAMP-style prompting.
|
| 92 |
+
|
| 93 |
+
### Splits
|
| 94 |
+
|
| 95 |
+
- **Train/Validation/Test:** Provided explicitly (`all_raw_*`).
|
| 96 |
+
- **Environment-specific splits:** Each environment (e.g., `urban_test.csv`) mirrors the global schema and supports domain generalization studies.
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
## Uses
|
| 101 |
+
|
| 102 |
+
### Direct Use
|
| 103 |
+
|
| 104 |
+
- **Data-to-Text Generation:** Train/evaluate models (T5/Flan-T5/LED/others) on long, structured inputs to generate faithful handover messages.
|
| 105 |
+
- **Retrieval-Augmented Prompting:** Use the *filtered_with_oneshot* files or the `templates`/`related_*` columns to build **RAG-style** prompts (attribute-similar examples).
|
| 106 |
+
- **Hallucination Analysis:** Evaluate faithfulness via metrics referencing both input and output (e.g., PARENT).
|
| 107 |
+
- **Domain Generalization:** Use the environment splits to test seen/unseen domain transfer.
|
| 108 |
+
|
| 109 |
+
### Out-of-Scope Use
|
| 110 |
+
|
| 111 |
+
- **Operational decision-making for real drones:** This resource is **research-only**; do not deploy generated text for safety-critical control.
|
| 112 |
+
- **Privacy-sensitive analytics:** No personal data is included; it is not intended for identifying individuals or locations.
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## Dataset Creation
|
| 117 |
+
|
| 118 |
+
### Curation Rationale
|
| 119 |
+
|
| 120 |
+
RAMP packages a **low-resource** D2T task that stresses **faithfulness** under long, structured inputs. The files facilitate **retrieval-augmented** few-shot prompting and **modular prompt tuning** (attribute-aware routing) to reduce hallucinations.
|
| 121 |
+
|
| 122 |
+
### Source Data
|
| 123 |
+
|
| 124 |
+
- **Origin:** Drone sensor/utterance corpus introduced by Chang et al. (LREC 2022), comprising 10-s snapshots across **8 environments** (*disturbance, urban, rural, ocean, desert, island, factory, misc*) with paired handover messages.
|
| 125 |
+
- **Attributes:** ~**25** status/scene attributes (e.g., altitude, drone speed, battery level, visibility) plus per-second object lists (type, distance, moving/in-path).
|
| 126 |
+
|
| 127 |
+
### Data Collection and Processing
|
| 128 |
+
|
| 129 |
+
- **Status & Time-step Extraction:** Manually annotated status + object lists per video snapshot (1 Hz).
|
| 130 |
+
- **Criticality Mapping:** Description Logic (DL) rules/expressions identify **critical** attribute-value pairs; these appear in `related_status`/`related_timestep`.
|
| 131 |
+
- **Preprocessing for RAMP:** CSV packaging, filtered variants, and prompts/templates to support **retrieval** of attribute-similar examples and **modular** prompt routing.
|
| 132 |
+
- **Statistics (RAMP setup):** Inputs avg ~**540.8** tokens; outputs avg ~**148.5** tokens; total ~**1.6k** pairs.
|
| 133 |
+
|
| 134 |
+
### Who are the source data producers?
|
| 135 |
+
|
| 136 |
+
- **Videos & Sensor Records:** Collected/curated by the original drone dataset authors (Chang et al., 2022).
|
| 137 |
+
- **Handover Messages:** Authored by the original dataset annotators; RAMP includes them verbatim plus paraphrase/templates where indicated.
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## Annotations
|
| 142 |
+
|
| 143 |
+
### Annotation process
|
| 144 |
+
|
| 145 |
+
The **original** dataset includes human-authored handover messages and DL-based content selection cues. RAMP adds no new manual labels; it surfaces **relevant subsets** (`related_*`) and templated examples to support retrieval-augmented prompting. See the paper for details.
|
| 146 |
+
|
| 147 |
+
### Who are the annotators?
|
| 148 |
+
|
| 149 |
+
Original dataset annotators (per Chang et al., 2022). RAMP curators: the RAMP paper authors.
|
| 150 |
+
|
| 151 |
+
---
|
| 152 |
+
|
| 153 |
+
## Personal and Sensitive Information
|
| 154 |
+
|
| 155 |
+
No personal or sensitive information is included. Links may point to scenario videos of environments/objects without identifiable persons. No worker IDs or personal metadata are included.
|
| 156 |
+
|
| 157 |
+
---
|
| 158 |
+
|
| 159 |
+
## Bias, Risks, and Limitations
|
| 160 |
+
|
| 161 |
+
- **Domain specificity:** Drone scenarios; transfer to unrelated domains may be limited.
|
| 162 |
+
- **Language:** English-only messages.
|
| 163 |
+
- **Long inputs:** Models with short context windows can truncate inputs; use long-context architectures (e.g., LED) or careful chunking.
|
| 164 |
+
- **Hallucinations:** Despite DL cues and retrieval, faithful grounding is non-trivial—evaluate with input-aware metrics and human review.
|
| 165 |
+
- **Licensing of linked media:** Some `link` URLs point to externally hosted videos; availability and terms may vary.
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
+
|
| 169 |
+
## How to Load
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
from datasets import load_dataset
|
| 173 |
+
|
| 174 |
+
ds = load_dataset("tonyhong/ramp")
|
| 175 |
+
train = ds["train"] # or use config/splits as hosted
|
| 176 |
+
|
| 177 |
+
from datasets import load_dataset
|
| 178 |
+
|
| 179 |
+
ds = load_dataset("tonyhong/ramp")
|
| 180 |
+
train = ds["train"] # or use config/splits as hosted
|
| 181 |
+
|
| 182 |
+
# Tip: If the viewer/loader errors on CSV quoting, download locally and load
|
| 183 |
+
# with a robust parser (e.g., pandas with engine="python" and proper
|
| 184 |
+
# quotechar/escapechar).
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
## Citation
|
| 190 |
+
|
| 191 |
+
**RAMP paper (LREC-COLING 2024)**
|
| 192 |
+
Ruitao Feng, Xudong Hong, Mayank Jobanputra, Mattes Warning, and Vera Demberg. 2024. *Retrieval-Augmented Modular Prompt Tuning for Low-Resource Data-to-Text Generation.*
|
| 193 |
+
|
| 194 |
+
**Upstream dataset (LREC 2022)**
|
| 195 |
+
Ernie Chang, Alisa Kovtunova, Stefan Borgwardt, Vera Demberg, Kathryn Chapman, and Hui-Syuan Yeh. 2022. *Logic-Guided Message Generation from Raw Real-Time Sensor Data.*
|
| 196 |
+
|
| 197 |
+
```bibtex
|
| 198 |
+
@inproceedings{feng2024ramp,
|
| 199 |
+
title={Retrieval-Augmented Modular Prompt Tuning for Low-Resource Data-to-Text Generation},
|
| 200 |
+
author={Feng, Ruitao and Hong, Xudong and Jobanputra, Mayank and Warning, Mattes and Demberg, Vera},
|
| 201 |
+
booktitle={Proceedings of LREC-COLING 2024},
|
| 202 |
+
year={2024}
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
@inproceedings{chang2022drone,
|
| 206 |
+
title={Logic-Guided Message Generation from Raw Real-Time Sensor Data},
|
| 207 |
+
author={Chang, Ernie and Kovtunova, Alisa and Borgwardt, Stefan and Demberg, Vera and Chapman, Kathryn and Yeh, Hui-Syuan},
|
| 208 |
+
booktitle={Proceedings of LREC 2022},
|
| 209 |
+
pages={6899--6908},
|
| 210 |
+
year={2022}
|
| 211 |
+
}
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
## Dataset Card Authors
|
| 216 |
+
|
| 217 |
+
Xudong Hong (maintainer); with contributions from Ruitao Feng, Mayank Jobanputra, Mattes Warning, Vera Demberg.
|
| 218 |
+
|
| 219 |
+
## Dataset Card Contact
|
| 220 |
+
|
| 221 | |
| 222 |
+
|
| 223 |
+
---
|
| 224 |
+
|
| 225 |
+
## Disclaimer
|
| 226 |
+
|
| 227 |
+
RAMP repackages data originating from a drone sensor/utterance corpus. The CSVs may contain long JSON strings; handle parsing carefully. Linked videos are provided for academic/research use; availability is not guaranteed. **Do not** use this dataset to operate real drones or for any safety-critical decision making.
|
| 228 |
+
|