Update README.md
Browse files
README.md
CHANGED
|
@@ -161,3 +161,79 @@ This dataset is a structured extraction of the [Million Song Subset](http://mill
|
|
| 161 |
For more details, visit the [Million Song Dataset website](http://millionsongdataset.com).
|
| 162 |
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
For more details, visit the [Million Song Dataset website](http://millionsongdataset.com).
|
| 162 |
|
| 163 |
|
| 164 |
+
## Appendix: Processing Code
|
| 165 |
+
|
| 166 |
+
The dataset was converted using the following snippet:
|
| 167 |
+
|
| 168 |
+
```python
|
| 169 |
+
import os
|
| 170 |
+
import unibox as ub
|
| 171 |
+
import pandas as pd
|
| 172 |
+
import numpy as np
|
| 173 |
+
import h5py
|
| 174 |
+
from tqdm import tqdm
|
| 175 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 176 |
+
|
| 177 |
+
# https://github.com/tbertinmahieux/MSongsDB/blob/0c276e289606d5bd6f3991f713e7e9b1d4384e44/PythonSrc/hdf5_getters.py
|
| 178 |
+
import hdf5_getters
|
| 179 |
+
|
| 180 |
+
# Define dataset path
|
| 181 |
+
dataset_path = "/lv0/yada/dataproc5/data/MillionSongSubset"
|
| 182 |
+
|
| 183 |
+
# Function to extract all available fields from an HDF5 file
|
| 184 |
+
def extract_song_data(file_path):
|
| 185 |
+
"""Extracts all available fields from an HDF5 song file using hdf5_getters."""
|
| 186 |
+
song_data = {}
|
| 187 |
+
|
| 188 |
+
try:
|
| 189 |
+
with hdf5_getters.open_h5_file_read(file_path) as h5:
|
| 190 |
+
# Get all getter functions from hdf5_getters
|
| 191 |
+
getters = [func for func in dir(hdf5_getters) if func.startswith("get_")]
|
| 192 |
+
|
| 193 |
+
for getter in getters:
|
| 194 |
+
try:
|
| 195 |
+
# Dynamically call each getter function
|
| 196 |
+
value = getattr(hdf5_getters, getter)(h5)
|
| 197 |
+
|
| 198 |
+
# Optimize conversions
|
| 199 |
+
if isinstance(value, np.ndarray):
|
| 200 |
+
value = value.tolist()
|
| 201 |
+
elif isinstance(value, bytes):
|
| 202 |
+
value = value.decode()
|
| 203 |
+
|
| 204 |
+
# Store in dictionary with a cleaned-up key name
|
| 205 |
+
song_data[getter[4:]] = value
|
| 206 |
+
|
| 207 |
+
except Exception:
|
| 208 |
+
continue # Skip errors but don't slow down
|
| 209 |
+
|
| 210 |
+
except Exception as e:
|
| 211 |
+
print(f"Error processing {file_path}: {e}")
|
| 212 |
+
|
| 213 |
+
return song_data
|
| 214 |
+
|
| 215 |
+
# Function to process multiple files in parallel
|
| 216 |
+
def process_files_in_parallel(h5_files, num_workers=8):
|
| 217 |
+
"""Processes multiple .h5 files in parallel."""
|
| 218 |
+
all_songs = []
|
| 219 |
+
|
| 220 |
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
| 221 |
+
for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)):
|
| 222 |
+
if song_data:
|
| 223 |
+
all_songs.append(song_data)
|
| 224 |
+
|
| 225 |
+
return all_songs
|
| 226 |
+
|
| 227 |
+
# Find all .h5 files
|
| 228 |
+
h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(".h5")]
|
| 229 |
+
|
| 230 |
+
# Process files in parallel
|
| 231 |
+
all_songs = process_files_in_parallel(h5_files, num_workers=24)
|
| 232 |
+
|
| 233 |
+
# Convert to Pandas DataFrame
|
| 234 |
+
df = pd.DataFrame(all_songs)
|
| 235 |
+
|
| 236 |
+
ub.saves(df, "hf://trojblue/million-song-subset", private=False)
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
|